rculfhash: API rename: remove -> del
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 /*
170 * Define the minimum table size.
171 */
172 #define MIN_TABLE_SIZE 1
173
174 #if (CAA_BITS_PER_LONG == 32)
175 #define MAX_TABLE_ORDER 32
176 #else
177 #define MAX_TABLE_ORDER 64
178 #endif
179
180 /*
181 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
182 */
183 #define MIN_PARTITION_PER_THREAD_ORDER 12
184 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
185
186 #ifndef min
187 #define min(a, b) ((a) < (b) ? (a) : (b))
188 #endif
189
190 #ifndef max
191 #define max(a, b) ((a) > (b) ? (a) : (b))
192 #endif
193
194 /*
195 * The removed flag needs to be updated atomically with the pointer.
196 * The dummy flag does not require to be updated atomically with the
197 * pointer, but it is added as a pointer low bit flag to save space.
198 */
199 #define REMOVED_FLAG (1UL << 0)
200 #define DUMMY_FLAG (1UL << 1)
201 #define FLAGS_MASK ((1UL << 2) - 1)
202
203 /* Value of the end pointer. Should not interact with flags. */
204 #define END_VALUE NULL
205
206 struct ht_items_count {
207 unsigned long add, del;
208 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
209
210 struct rcu_level {
211 struct rcu_head head;
212 struct _cds_lfht_node nodes[0];
213 };
214
215 struct rcu_table {
216 unsigned long size; /* always a power of 2, shared (RCU) */
217 unsigned long resize_target;
218 int resize_initiated;
219 struct rcu_level *tbl[MAX_TABLE_ORDER];
220 };
221
222 struct cds_lfht {
223 struct rcu_table t;
224 cds_lfht_hash_fct hash_fct;
225 cds_lfht_compare_fct compare_fct;
226 unsigned long hash_seed;
227 int flags;
228 /*
229 * We need to put the work threads offline (QSBR) when taking this
230 * mutex, because we use synchronize_rcu within this mutex critical
231 * section, which waits on read-side critical sections, and could
232 * therefore cause grace-period deadlock if we hold off RCU G.P.
233 * completion.
234 */
235 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
236 unsigned int in_progress_resize, in_progress_destroy;
237 void (*cds_lfht_call_rcu)(struct rcu_head *head,
238 void (*func)(struct rcu_head *head));
239 void (*cds_lfht_synchronize_rcu)(void);
240 void (*cds_lfht_rcu_read_lock)(void);
241 void (*cds_lfht_rcu_read_unlock)(void);
242 void (*cds_lfht_rcu_thread_offline)(void);
243 void (*cds_lfht_rcu_thread_online)(void);
244 void (*cds_lfht_rcu_register_thread)(void);
245 void (*cds_lfht_rcu_unregister_thread)(void);
246 pthread_attr_t *resize_attr; /* Resize threads attributes */
247 unsigned long count; /* global approximate item count */
248 struct ht_items_count *percpu_count; /* per-cpu item count */
249 };
250
251 struct rcu_resize_work {
252 struct rcu_head head;
253 struct cds_lfht *ht;
254 };
255
256 struct partition_resize_work {
257 struct rcu_head head;
258 struct cds_lfht *ht;
259 unsigned long i, start, len;
260 void (*fct)(struct cds_lfht *ht, unsigned long i,
261 unsigned long start, unsigned long len);
262 };
263
264 static
265 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
266 unsigned long size,
267 struct cds_lfht_node *node,
268 int unique, int dummy);
269
270 /*
271 * Algorithm to reverse bits in a word by lookup table, extended to
272 * 64-bit words.
273 * Source:
274 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
275 * Originally from Public Domain.
276 */
277
278 static const uint8_t BitReverseTable256[256] =
279 {
280 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
281 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
282 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
283 R6(0), R6(2), R6(1), R6(3)
284 };
285 #undef R2
286 #undef R4
287 #undef R6
288
289 static
290 uint8_t bit_reverse_u8(uint8_t v)
291 {
292 return BitReverseTable256[v];
293 }
294
295 static __attribute__((unused))
296 uint32_t bit_reverse_u32(uint32_t v)
297 {
298 return ((uint32_t) bit_reverse_u8(v) << 24) |
299 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
300 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
301 ((uint32_t) bit_reverse_u8(v >> 24));
302 }
303
304 static __attribute__((unused))
305 uint64_t bit_reverse_u64(uint64_t v)
306 {
307 return ((uint64_t) bit_reverse_u8(v) << 56) |
308 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
309 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
310 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
311 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
312 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
313 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
314 ((uint64_t) bit_reverse_u8(v >> 56));
315 }
316
317 static
318 unsigned long bit_reverse_ulong(unsigned long v)
319 {
320 #if (CAA_BITS_PER_LONG == 32)
321 return bit_reverse_u32(v);
322 #else
323 return bit_reverse_u64(v);
324 #endif
325 }
326
327 /*
328 * fls: returns the position of the most significant bit.
329 * Returns 0 if no bit is set, else returns the position of the most
330 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
331 */
332 #if defined(__i386) || defined(__x86_64)
333 static inline
334 unsigned int fls_u32(uint32_t x)
335 {
336 int r;
337
338 asm("bsrl %1,%0\n\t"
339 "jnz 1f\n\t"
340 "movl $-1,%0\n\t"
341 "1:\n\t"
342 : "=r" (r) : "rm" (x));
343 return r + 1;
344 }
345 #define HAS_FLS_U32
346 #endif
347
348 #if defined(__x86_64)
349 static inline
350 unsigned int fls_u64(uint64_t x)
351 {
352 long r;
353
354 asm("bsrq %1,%0\n\t"
355 "jnz 1f\n\t"
356 "movq $-1,%0\n\t"
357 "1:\n\t"
358 : "=r" (r) : "rm" (x));
359 return r + 1;
360 }
361 #define HAS_FLS_U64
362 #endif
363
364 #ifndef HAS_FLS_U64
365 static __attribute__((unused))
366 unsigned int fls_u64(uint64_t x)
367 {
368 unsigned int r = 64;
369
370 if (!x)
371 return 0;
372
373 if (!(x & 0xFFFFFFFF00000000ULL)) {
374 x <<= 32;
375 r -= 32;
376 }
377 if (!(x & 0xFFFF000000000000ULL)) {
378 x <<= 16;
379 r -= 16;
380 }
381 if (!(x & 0xFF00000000000000ULL)) {
382 x <<= 8;
383 r -= 8;
384 }
385 if (!(x & 0xF000000000000000ULL)) {
386 x <<= 4;
387 r -= 4;
388 }
389 if (!(x & 0xC000000000000000ULL)) {
390 x <<= 2;
391 r -= 2;
392 }
393 if (!(x & 0x8000000000000000ULL)) {
394 x <<= 1;
395 r -= 1;
396 }
397 return r;
398 }
399 #endif
400
401 #ifndef HAS_FLS_U32
402 static __attribute__((unused))
403 unsigned int fls_u32(uint32_t x)
404 {
405 unsigned int r = 32;
406
407 if (!x)
408 return 0;
409 if (!(x & 0xFFFF0000U)) {
410 x <<= 16;
411 r -= 16;
412 }
413 if (!(x & 0xFF000000U)) {
414 x <<= 8;
415 r -= 8;
416 }
417 if (!(x & 0xF0000000U)) {
418 x <<= 4;
419 r -= 4;
420 }
421 if (!(x & 0xC0000000U)) {
422 x <<= 2;
423 r -= 2;
424 }
425 if (!(x & 0x80000000U)) {
426 x <<= 1;
427 r -= 1;
428 }
429 return r;
430 }
431 #endif
432
433 unsigned int fls_ulong(unsigned long x)
434 {
435 #if (CAA_BITS_PER_lONG == 32)
436 return fls_u32(x);
437 #else
438 return fls_u64(x);
439 #endif
440 }
441
442 int get_count_order_u32(uint32_t x)
443 {
444 int order;
445
446 order = fls_u32(x) - 1;
447 if (x & (x - 1))
448 order++;
449 return order;
450 }
451
452 int get_count_order_ulong(unsigned long x)
453 {
454 int order;
455
456 order = fls_ulong(x) - 1;
457 if (x & (x - 1))
458 order++;
459 return order;
460 }
461
462 #ifdef POISON_FREE
463 #define poison_free(ptr) \
464 do { \
465 memset(ptr, 0x42, sizeof(*(ptr))); \
466 free(ptr); \
467 } while (0)
468 #else
469 #define poison_free(ptr) free(ptr)
470 #endif
471
472 static
473 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
474
475 /*
476 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
477 * available, then we support hash table item accounting.
478 * In the unfortunate event the number of CPUs reported would be
479 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
480 */
481 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
482
483 static
484 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
485 unsigned long count);
486
487 static long nr_cpus_mask = -1;
488
489 static
490 struct ht_items_count *alloc_per_cpu_items_count(void)
491 {
492 struct ht_items_count *count;
493
494 switch (nr_cpus_mask) {
495 case -2:
496 return NULL;
497 case -1:
498 {
499 long maxcpus;
500
501 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
502 if (maxcpus <= 0) {
503 nr_cpus_mask = -2;
504 return NULL;
505 }
506 /*
507 * round up number of CPUs to next power of two, so we
508 * can use & for modulo.
509 */
510 maxcpus = 1UL << get_count_order_ulong(maxcpus);
511 nr_cpus_mask = maxcpus - 1;
512 }
513 /* Fall-through */
514 default:
515 return calloc(nr_cpus_mask + 1, sizeof(*count));
516 }
517 }
518
519 static
520 void free_per_cpu_items_count(struct ht_items_count *count)
521 {
522 poison_free(count);
523 }
524
525 static
526 int ht_get_cpu(void)
527 {
528 int cpu;
529
530 assert(nr_cpus_mask >= 0);
531 cpu = sched_getcpu();
532 if (unlikely(cpu < 0))
533 return cpu;
534 else
535 return cpu & nr_cpus_mask;
536 }
537
538 static
539 void ht_count_add(struct cds_lfht *ht, unsigned long size)
540 {
541 unsigned long percpu_count;
542 int cpu;
543
544 if (unlikely(!ht->percpu_count))
545 return;
546 cpu = ht_get_cpu();
547 if (unlikely(cpu < 0))
548 return;
549 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
550 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
551 unsigned long count;
552
553 dbg_printf("add percpu %lu\n", percpu_count);
554 count = uatomic_add_return(&ht->count,
555 1UL << COUNT_COMMIT_ORDER);
556 /* If power of 2 */
557 if (!(count & (count - 1))) {
558 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
559 return;
560 dbg_printf("add set global %lu\n", count);
561 cds_lfht_resize_lazy_count(ht, size,
562 count >> (CHAIN_LEN_TARGET - 1));
563 }
564 }
565 }
566
567 static
568 void ht_count_del(struct cds_lfht *ht, unsigned long size)
569 {
570 unsigned long percpu_count;
571 int cpu;
572
573 if (unlikely(!ht->percpu_count))
574 return;
575 cpu = ht_get_cpu();
576 if (unlikely(cpu < 0))
577 return;
578 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].del, -1);
579 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
580 unsigned long count;
581
582 dbg_printf("del percpu %lu\n", percpu_count);
583 count = uatomic_add_return(&ht->count,
584 -(1UL << COUNT_COMMIT_ORDER));
585 /* If power of 2 */
586 if (!(count & (count - 1))) {
587 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
588 return;
589 dbg_printf("del set global %lu\n", count);
590 cds_lfht_resize_lazy_count(ht, size,
591 count >> (CHAIN_LEN_TARGET - 1));
592 }
593 }
594 }
595
596 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
597
598 static const long nr_cpus_mask = -1;
599
600 static
601 struct ht_items_count *alloc_per_cpu_items_count(void)
602 {
603 return NULL;
604 }
605
606 static
607 void free_per_cpu_items_count(struct ht_items_count *count)
608 {
609 }
610
611 static
612 void ht_count_add(struct cds_lfht *ht, unsigned long size)
613 {
614 }
615
616 static
617 void ht_count_del(struct cds_lfht *ht, unsigned long size)
618 {
619 }
620
621 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
622
623
624 static
625 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
626 {
627 unsigned long count;
628
629 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
630 return;
631 count = uatomic_read(&ht->count);
632 /*
633 * Use bucket-local length for small table expand and for
634 * environments lacking per-cpu data support.
635 */
636 if (count >= (1UL << COUNT_COMMIT_ORDER))
637 return;
638 if (chain_len > 100)
639 dbg_printf("WARNING: large chain length: %u.\n",
640 chain_len);
641 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
642 cds_lfht_resize_lazy(ht, size,
643 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
644 }
645
646 static
647 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
648 {
649 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
650 }
651
652 static
653 int is_removed(struct cds_lfht_node *node)
654 {
655 return ((unsigned long) node) & REMOVED_FLAG;
656 }
657
658 static
659 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
660 {
661 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
662 }
663
664 static
665 int is_dummy(struct cds_lfht_node *node)
666 {
667 return ((unsigned long) node) & DUMMY_FLAG;
668 }
669
670 static
671 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
672 {
673 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
674 }
675
676 static
677 struct cds_lfht_node *get_end(void)
678 {
679 return (struct cds_lfht_node *) END_VALUE;
680 }
681
682 static
683 int is_end(struct cds_lfht_node *node)
684 {
685 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
686 }
687
688 static
689 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
690 {
691 unsigned long old1, old2;
692
693 old1 = uatomic_read(ptr);
694 do {
695 old2 = old1;
696 if (old2 >= v)
697 return old2;
698 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
699 return v;
700 }
701
702 static
703 void cds_lfht_free_level(struct rcu_head *head)
704 {
705 struct rcu_level *l =
706 caa_container_of(head, struct rcu_level, head);
707 poison_free(l);
708 }
709
710 /*
711 * Remove all logically deleted nodes from a bucket up to a certain node key.
712 */
713 static
714 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
715 {
716 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
717
718 assert(!is_dummy(dummy));
719 assert(!is_removed(dummy));
720 assert(!is_dummy(node));
721 assert(!is_removed(node));
722 for (;;) {
723 iter_prev = dummy;
724 /* We can always skip the dummy node initially */
725 iter = rcu_dereference(iter_prev->p.next);
726 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
727 /*
728 * We should never be called with dummy (start of chain)
729 * and logically removed node (end of path compression
730 * marker) being the actual same node. This would be a
731 * bug in the algorithm implementation.
732 */
733 assert(dummy != node);
734 for (;;) {
735 if (unlikely(is_end(iter)))
736 return;
737 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
738 return;
739 next = rcu_dereference(clear_flag(iter)->p.next);
740 if (likely(is_removed(next)))
741 break;
742 iter_prev = clear_flag(iter);
743 iter = next;
744 }
745 assert(!is_removed(iter));
746 if (is_dummy(iter))
747 new_next = flag_dummy(clear_flag(next));
748 else
749 new_next = clear_flag(next);
750 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
751 }
752 return;
753 }
754
755 static
756 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
757 unsigned long size,
758 struct cds_lfht_node *node,
759 int unique, int dummy)
760 {
761 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
762 *dummy_node;
763 struct _cds_lfht_node *lookup;
764 unsigned long hash, index, order;
765
766 assert(!is_dummy(node));
767 assert(!is_removed(node));
768 if (!size) {
769 assert(dummy);
770 node->p.next = flag_dummy(get_end());
771 return node; /* Initial first add (head) */
772 }
773 hash = bit_reverse_ulong(node->p.reverse_hash);
774 for (;;) {
775 uint32_t chain_len = 0;
776
777 /*
778 * iter_prev points to the non-removed node prior to the
779 * insert location.
780 */
781 index = hash & (size - 1);
782 order = get_count_order_ulong(index + 1);
783 lookup = &ht->t.tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
784 iter_prev = (struct cds_lfht_node *) lookup;
785 /* We can always skip the dummy node initially */
786 iter = rcu_dereference(iter_prev->p.next);
787 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
788 for (;;) {
789 if (unlikely(is_end(iter)))
790 goto insert;
791 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
792 goto insert;
793 next = rcu_dereference(clear_flag(iter)->p.next);
794 if (unlikely(is_removed(next)))
795 goto gc_node;
796 if (unique
797 && !is_dummy(next)
798 && !ht->compare_fct(node->key, node->key_len,
799 clear_flag(iter)->key,
800 clear_flag(iter)->key_len))
801 return clear_flag(iter);
802 /* Only account for identical reverse hash once */
803 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
804 && !is_dummy(next))
805 check_resize(ht, size, ++chain_len);
806 iter_prev = clear_flag(iter);
807 iter = next;
808 }
809 insert:
810 assert(node != clear_flag(iter));
811 assert(!is_removed(iter_prev));
812 assert(!is_removed(iter));
813 assert(iter_prev != node);
814 if (!dummy)
815 node->p.next = clear_flag(iter);
816 else
817 node->p.next = flag_dummy(clear_flag(iter));
818 if (is_dummy(iter))
819 new_node = flag_dummy(node);
820 else
821 new_node = node;
822 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
823 new_node) != iter)
824 continue; /* retry */
825 else
826 goto gc_end;
827 gc_node:
828 assert(!is_removed(iter));
829 if (is_dummy(iter))
830 new_next = flag_dummy(clear_flag(next));
831 else
832 new_next = clear_flag(next);
833 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
834 /* retry */
835 }
836 gc_end:
837 /* Garbage collect logically removed nodes in the bucket */
838 index = hash & (size - 1);
839 order = get_count_order_ulong(index + 1);
840 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
841 dummy_node = (struct cds_lfht_node *) lookup;
842 _cds_lfht_gc_bucket(dummy_node, node);
843 return node;
844 }
845
846 static
847 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
848 struct cds_lfht_node *node,
849 int dummy_removal)
850 {
851 struct cds_lfht_node *dummy, *next, *old;
852 struct _cds_lfht_node *lookup;
853 int flagged = 0;
854 unsigned long hash, index, order;
855
856 /* logically delete the node */
857 assert(!is_dummy(node));
858 assert(!is_removed(node));
859 old = rcu_dereference(node->p.next);
860 do {
861 next = old;
862 if (unlikely(is_removed(next)))
863 goto end;
864 if (dummy_removal)
865 assert(is_dummy(next));
866 else
867 assert(!is_dummy(next));
868 old = uatomic_cmpxchg(&node->p.next, next,
869 flag_removed(next));
870 } while (old != next);
871
872 /* We performed the (logical) deletion. */
873 flagged = 1;
874
875 /*
876 * Ensure that the node is not visible to readers anymore: lookup for
877 * the node, and remove it (along with any other logically removed node)
878 * if found.
879 */
880 hash = bit_reverse_ulong(node->p.reverse_hash);
881 assert(size > 0);
882 index = hash & (size - 1);
883 order = get_count_order_ulong(index + 1);
884 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
885 dummy = (struct cds_lfht_node *) lookup;
886 _cds_lfht_gc_bucket(dummy, node);
887 end:
888 /*
889 * Only the flagging action indicated that we (and no other)
890 * removed the node from the hash.
891 */
892 if (flagged) {
893 assert(is_removed(rcu_dereference(node->p.next)));
894 return 0;
895 } else
896 return -ENOENT;
897 }
898
899 static
900 void *partition_resize_thread(void *arg)
901 {
902 struct partition_resize_work *work = arg;
903
904 work->ht->cds_lfht_rcu_register_thread();
905 work->fct(work->ht, work->i, work->start, work->len);
906 work->ht->cds_lfht_rcu_unregister_thread();
907 return NULL;
908 }
909
910 static
911 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
912 unsigned long len,
913 void (*fct)(struct cds_lfht *ht, unsigned long i,
914 unsigned long start, unsigned long len))
915 {
916 unsigned long partition_len;
917 struct partition_resize_work *work;
918 int thread, ret;
919 unsigned long nr_threads;
920 pthread_t *thread_id;
921
922 /*
923 * Note: nr_cpus_mask + 1 is always power of 2.
924 * We spawn just the number of threads we need to satisfy the minimum
925 * partition size, up to the number of CPUs in the system.
926 */
927 nr_threads = min(nr_cpus_mask + 1,
928 len >> MIN_PARTITION_PER_THREAD_ORDER);
929 partition_len = len >> get_count_order_ulong(nr_threads);
930 work = calloc(nr_threads, sizeof(*work));
931 thread_id = calloc(nr_threads, sizeof(*thread_id));
932 assert(work);
933 for (thread = 0; thread < nr_threads; thread++) {
934 work[thread].ht = ht;
935 work[thread].i = i;
936 work[thread].len = partition_len;
937 work[thread].start = thread * partition_len;
938 work[thread].fct = fct;
939 ret = pthread_create(&thread_id[thread], ht->resize_attr,
940 partition_resize_thread, &work[thread]);
941 assert(!ret);
942 }
943 for (thread = 0; thread < nr_threads; thread++) {
944 ret = pthread_join(thread_id[thread], NULL);
945 assert(!ret);
946 }
947 free(work);
948 free(thread_id);
949 }
950
951 /*
952 * Holding RCU read lock to protect _cds_lfht_add against memory
953 * reclaim that could be performed by other call_rcu worker threads (ABA
954 * problem).
955 *
956 * When we reach a certain length, we can split this population phase over
957 * many worker threads, based on the number of CPUs available in the system.
958 * This should therefore take care of not having the expand lagging behind too
959 * many concurrent insertion threads by using the scheduler's ability to
960 * schedule dummy node population fairly with insertions.
961 */
962 static
963 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
964 unsigned long start, unsigned long len)
965 {
966 unsigned long j;
967
968 ht->cds_lfht_rcu_read_lock();
969 for (j = start; j < start + len; j++) {
970 struct cds_lfht_node *new_node =
971 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
972
973 dbg_printf("init populate: i %lu j %lu hash %lu\n",
974 i, j, !i ? 0 : (1UL << (i - 1)) + j);
975 new_node->p.reverse_hash =
976 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
977 (void) _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
978 new_node, 0, 1);
979 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
980 break;
981 }
982 ht->cds_lfht_rcu_read_unlock();
983 }
984
985 static
986 void init_table_populate(struct cds_lfht *ht, unsigned long i,
987 unsigned long len)
988 {
989 assert(nr_cpus_mask != -1);
990 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
991 ht->cds_lfht_rcu_thread_online();
992 init_table_populate_partition(ht, i, 0, len);
993 ht->cds_lfht_rcu_thread_offline();
994 return;
995 }
996 partition_resize_helper(ht, i, len, init_table_populate_partition);
997 }
998
999 static
1000 void init_table(struct cds_lfht *ht,
1001 unsigned long first_order, unsigned long len_order)
1002 {
1003 unsigned long i, end_order;
1004
1005 dbg_printf("init table: first_order %lu end_order %lu\n",
1006 first_order, first_order + len_order);
1007 end_order = first_order + len_order;
1008 for (i = first_order; i < end_order; i++) {
1009 unsigned long len;
1010
1011 len = !i ? 1 : 1UL << (i - 1);
1012 dbg_printf("init order %lu len: %lu\n", i, len);
1013
1014 /* Stop expand if the resize target changes under us */
1015 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
1016 break;
1017
1018 ht->t.tbl[i] = calloc(1, sizeof(struct rcu_level)
1019 + (len * sizeof(struct _cds_lfht_node)));
1020 assert(ht->t.tbl[i]);
1021
1022 /*
1023 * Set all dummy nodes reverse hash values for a level and
1024 * link all dummy nodes into the table.
1025 */
1026 init_table_populate(ht, i, len);
1027
1028 /*
1029 * Update table size.
1030 */
1031 cmm_smp_wmb(); /* populate data before RCU size */
1032 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
1033
1034 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
1035 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1036 break;
1037 }
1038 }
1039
1040 /*
1041 * Holding RCU read lock to protect _cds_lfht_remove against memory
1042 * reclaim that could be performed by other call_rcu worker threads (ABA
1043 * problem).
1044 * For a single level, we logically remove and garbage collect each node.
1045 *
1046 * As a design choice, we perform logical removal and garbage collection on a
1047 * node-per-node basis to simplify this algorithm. We also assume keeping good
1048 * cache locality of the operation would overweight possible performance gain
1049 * that could be achieved by batching garbage collection for multiple levels.
1050 * However, this would have to be justified by benchmarks.
1051 *
1052 * Concurrent removal and add operations are helping us perform garbage
1053 * collection of logically removed nodes. We guarantee that all logically
1054 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1055 * invoked to free a hole level of dummy nodes (after a grace period).
1056 *
1057 * Logical removal and garbage collection can therefore be done in batch or on a
1058 * node-per-node basis, as long as the guarantee above holds.
1059 *
1060 * When we reach a certain length, we can split this removal over many worker
1061 * threads, based on the number of CPUs available in the system. This should
1062 * take care of not letting resize process lag behind too many concurrent
1063 * updater threads actively inserting into the hash table.
1064 */
1065 static
1066 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1067 unsigned long start, unsigned long len)
1068 {
1069 unsigned long j;
1070
1071 ht->cds_lfht_rcu_read_lock();
1072 for (j = start; j < start + len; j++) {
1073 struct cds_lfht_node *fini_node =
1074 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1075
1076 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1077 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1078 fini_node->p.reverse_hash =
1079 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1080 (void) _cds_lfht_del(ht, !i ? 0 : (1UL << (i - 1)),
1081 fini_node, 1);
1082 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1083 break;
1084 }
1085 ht->cds_lfht_rcu_read_unlock();
1086 }
1087
1088 static
1089 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1090 {
1091
1092 assert(nr_cpus_mask != -1);
1093 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1094 ht->cds_lfht_rcu_thread_online();
1095 remove_table_partition(ht, i, 0, len);
1096 ht->cds_lfht_rcu_thread_offline();
1097 return;
1098 }
1099 partition_resize_helper(ht, i, len, remove_table_partition);
1100 }
1101
1102 static
1103 void fini_table(struct cds_lfht *ht,
1104 unsigned long first_order, unsigned long len_order)
1105 {
1106 long i, end_order;
1107
1108 dbg_printf("fini table: first_order %lu end_order %lu\n",
1109 first_order, first_order + len_order);
1110 end_order = first_order + len_order;
1111 assert(first_order > 0);
1112 for (i = end_order - 1; i >= first_order; i--) {
1113 unsigned long len;
1114
1115 len = !i ? 1 : 1UL << (i - 1);
1116 dbg_printf("fini order %lu len: %lu\n", i, len);
1117
1118 /* Stop shrink if the resize target changes under us */
1119 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1120 break;
1121
1122 cmm_smp_wmb(); /* populate data before RCU size */
1123 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1124
1125 /*
1126 * We need to wait for all add operations to reach Q.S. (and
1127 * thus use the new table for lookups) before we can start
1128 * releasing the old dummy nodes. Otherwise their lookup will
1129 * return a logically removed node as insert position.
1130 */
1131 ht->cds_lfht_synchronize_rcu();
1132
1133 /*
1134 * Set "removed" flag in dummy nodes about to be removed.
1135 * Unlink all now-logically-removed dummy node pointers.
1136 * Concurrent add/remove operation are helping us doing
1137 * the gc.
1138 */
1139 remove_table(ht, i, len);
1140
1141 ht->cds_lfht_call_rcu(&ht->t.tbl[i]->head, cds_lfht_free_level);
1142
1143 dbg_printf("fini new size: %lu\n", 1UL << i);
1144 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1145 break;
1146 }
1147 }
1148
1149 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1150 cds_lfht_compare_fct compare_fct,
1151 unsigned long hash_seed,
1152 unsigned long init_size,
1153 int flags,
1154 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1155 void (*func)(struct rcu_head *head)),
1156 void (*cds_lfht_synchronize_rcu)(void),
1157 void (*cds_lfht_rcu_read_lock)(void),
1158 void (*cds_lfht_rcu_read_unlock)(void),
1159 void (*cds_lfht_rcu_thread_offline)(void),
1160 void (*cds_lfht_rcu_thread_online)(void),
1161 void (*cds_lfht_rcu_register_thread)(void),
1162 void (*cds_lfht_rcu_unregister_thread)(void),
1163 pthread_attr_t *attr)
1164 {
1165 struct cds_lfht *ht;
1166 unsigned long order;
1167
1168 /* init_size must be power of two */
1169 if (init_size && (init_size & (init_size - 1)))
1170 return NULL;
1171 ht = calloc(1, sizeof(struct cds_lfht));
1172 assert(ht);
1173 ht->hash_fct = hash_fct;
1174 ht->compare_fct = compare_fct;
1175 ht->hash_seed = hash_seed;
1176 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1177 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1178 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1179 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1180 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1181 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1182 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1183 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1184 ht->resize_attr = attr;
1185 ht->percpu_count = alloc_per_cpu_items_count();
1186 /* this mutex should not nest in read-side C.S. */
1187 pthread_mutex_init(&ht->resize_mutex, NULL);
1188 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1189 ht->flags = flags;
1190 ht->cds_lfht_rcu_thread_offline();
1191 pthread_mutex_lock(&ht->resize_mutex);
1192 ht->t.resize_target = 1UL << (order - 1);
1193 init_table(ht, 0, order);
1194 pthread_mutex_unlock(&ht->resize_mutex);
1195 ht->cds_lfht_rcu_thread_online();
1196 return ht;
1197 }
1198
1199 struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
1200 {
1201 struct cds_lfht_node *node, *next, *dummy_node;
1202 struct _cds_lfht_node *lookup;
1203 unsigned long hash, reverse_hash, index, order, size;
1204
1205 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1206 reverse_hash = bit_reverse_ulong(hash);
1207
1208 size = rcu_dereference(ht->t.size);
1209 index = hash & (size - 1);
1210 order = get_count_order_ulong(index + 1);
1211 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
1212 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
1213 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
1214 dummy_node = (struct cds_lfht_node *) lookup;
1215 /* We can always skip the dummy node initially */
1216 node = rcu_dereference(dummy_node->p.next);
1217 node = clear_flag(node);
1218 for (;;) {
1219 if (unlikely(is_end(node))) {
1220 node = NULL;
1221 break;
1222 }
1223 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1224 node = NULL;
1225 break;
1226 }
1227 next = rcu_dereference(node->p.next);
1228 if (likely(!is_removed(next))
1229 && !is_dummy(next)
1230 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1231 break;
1232 }
1233 node = clear_flag(next);
1234 }
1235 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1236 return node;
1237 }
1238
1239 struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
1240 struct cds_lfht_node *node)
1241 {
1242 struct cds_lfht_node *next;
1243 unsigned long reverse_hash;
1244 void *key;
1245 size_t key_len;
1246
1247 reverse_hash = node->p.reverse_hash;
1248 key = node->key;
1249 key_len = node->key_len;
1250 next = rcu_dereference(node->p.next);
1251 node = clear_flag(next);
1252
1253 for (;;) {
1254 if (unlikely(is_end(node))) {
1255 node = NULL;
1256 break;
1257 }
1258 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1259 node = NULL;
1260 break;
1261 }
1262 next = rcu_dereference(node->p.next);
1263 if (likely(!is_removed(next))
1264 && !is_dummy(next)
1265 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1266 break;
1267 }
1268 node = clear_flag(next);
1269 }
1270 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1271 return node;
1272 }
1273
1274 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1275 {
1276 unsigned long hash, size;
1277
1278 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1279 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1280
1281 size = rcu_dereference(ht->t.size);
1282 (void) _cds_lfht_add(ht, size, node, 0, 0);
1283 ht_count_add(ht, size);
1284 }
1285
1286 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1287 struct cds_lfht_node *node)
1288 {
1289 unsigned long hash, size;
1290 struct cds_lfht_node *ret;
1291
1292 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1293 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1294
1295 size = rcu_dereference(ht->t.size);
1296 ret = _cds_lfht_add(ht, size, node, 1, 0);
1297 if (ret == node)
1298 ht_count_add(ht, size);
1299 return ret;
1300 }
1301
1302 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1303 {
1304 unsigned long size;
1305 int ret;
1306
1307 size = rcu_dereference(ht->t.size);
1308 ret = _cds_lfht_del(ht, size, node, 0);
1309 if (!ret)
1310 ht_count_del(ht, size);
1311 return ret;
1312 }
1313
1314 static
1315 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1316 {
1317 struct cds_lfht_node *node;
1318 struct _cds_lfht_node *lookup;
1319 unsigned long order, i, size;
1320
1321 /* Check that the table is empty */
1322 lookup = &ht->t.tbl[0]->nodes[0];
1323 node = (struct cds_lfht_node *) lookup;
1324 do {
1325 node = clear_flag(node)->p.next;
1326 if (!is_dummy(node))
1327 return -EPERM;
1328 assert(!is_removed(node));
1329 } while (!is_end(node));
1330 /*
1331 * size accessed without rcu_dereference because hash table is
1332 * being destroyed.
1333 */
1334 size = ht->t.size;
1335 /* Internal sanity check: all nodes left should be dummy */
1336 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1337 unsigned long len;
1338
1339 len = !order ? 1 : 1UL << (order - 1);
1340 for (i = 0; i < len; i++) {
1341 dbg_printf("delete order %lu i %lu hash %lu\n",
1342 order, i,
1343 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1344 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1345 }
1346 poison_free(ht->t.tbl[order]);
1347 }
1348 return 0;
1349 }
1350
1351 /*
1352 * Should only be called when no more concurrent readers nor writers can
1353 * possibly access the table.
1354 */
1355 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1356 {
1357 int ret;
1358
1359 /* Wait for in-flight resize operations to complete */
1360 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1361 while (uatomic_read(&ht->in_progress_resize))
1362 poll(NULL, 0, 100); /* wait for 100ms */
1363 ret = cds_lfht_delete_dummy(ht);
1364 if (ret)
1365 return ret;
1366 free_per_cpu_items_count(ht->percpu_count);
1367 if (attr)
1368 *attr = ht->resize_attr;
1369 poison_free(ht);
1370 return ret;
1371 }
1372
1373 void cds_lfht_count_nodes(struct cds_lfht *ht,
1374 unsigned long *count,
1375 unsigned long *removed)
1376 {
1377 struct cds_lfht_node *node, *next;
1378 struct _cds_lfht_node *lookup;
1379 unsigned long nr_dummy = 0;
1380
1381 *count = 0;
1382 *removed = 0;
1383
1384 /* Count non-dummy nodes in the table */
1385 lookup = &ht->t.tbl[0]->nodes[0];
1386 node = (struct cds_lfht_node *) lookup;
1387 do {
1388 next = rcu_dereference(node->p.next);
1389 if (is_removed(next)) {
1390 assert(!is_dummy(next));
1391 (*removed)++;
1392 } else if (!is_dummy(next))
1393 (*count)++;
1394 else
1395 (nr_dummy)++;
1396 node = clear_flag(next);
1397 } while (!is_end(node));
1398 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1399 }
1400
1401 /* called with resize mutex held */
1402 static
1403 void _do_cds_lfht_grow(struct cds_lfht *ht,
1404 unsigned long old_size, unsigned long new_size)
1405 {
1406 unsigned long old_order, new_order;
1407
1408 old_order = get_count_order_ulong(old_size) + 1;
1409 new_order = get_count_order_ulong(new_size) + 1;
1410 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1411 old_size, old_order, new_size, new_order);
1412 assert(new_size > old_size);
1413 init_table(ht, old_order, new_order - old_order);
1414 }
1415
1416 /* called with resize mutex held */
1417 static
1418 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1419 unsigned long old_size, unsigned long new_size)
1420 {
1421 unsigned long old_order, new_order;
1422
1423 new_size = max(new_size, MIN_TABLE_SIZE);
1424 old_order = get_count_order_ulong(old_size) + 1;
1425 new_order = get_count_order_ulong(new_size) + 1;
1426 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1427 old_size, old_order, new_size, new_order);
1428 assert(new_size < old_size);
1429
1430 /* Remove and unlink all dummy nodes to remove. */
1431 fini_table(ht, new_order, old_order - new_order);
1432 }
1433
1434
1435 /* called with resize mutex held */
1436 static
1437 void _do_cds_lfht_resize(struct cds_lfht *ht)
1438 {
1439 unsigned long new_size, old_size;
1440
1441 /*
1442 * Resize table, re-do if the target size has changed under us.
1443 */
1444 do {
1445 ht->t.resize_initiated = 1;
1446 old_size = ht->t.size;
1447 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1448 if (old_size < new_size)
1449 _do_cds_lfht_grow(ht, old_size, new_size);
1450 else if (old_size > new_size)
1451 _do_cds_lfht_shrink(ht, old_size, new_size);
1452 ht->t.resize_initiated = 0;
1453 /* write resize_initiated before read resize_target */
1454 cmm_smp_mb();
1455 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1456 }
1457
1458 static
1459 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1460 int growth_order)
1461 {
1462 return _uatomic_max(&ht->t.resize_target,
1463 size << growth_order);
1464 }
1465
1466 static
1467 void resize_target_update_count(struct cds_lfht *ht,
1468 unsigned long count)
1469 {
1470 count = max(count, MIN_TABLE_SIZE);
1471 uatomic_set(&ht->t.resize_target, count);
1472 }
1473
1474 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1475 {
1476 resize_target_update_count(ht, new_size);
1477 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1478 ht->cds_lfht_rcu_thread_offline();
1479 pthread_mutex_lock(&ht->resize_mutex);
1480 _do_cds_lfht_resize(ht);
1481 pthread_mutex_unlock(&ht->resize_mutex);
1482 ht->cds_lfht_rcu_thread_online();
1483 }
1484
1485 static
1486 void do_resize_cb(struct rcu_head *head)
1487 {
1488 struct rcu_resize_work *work =
1489 caa_container_of(head, struct rcu_resize_work, head);
1490 struct cds_lfht *ht = work->ht;
1491
1492 ht->cds_lfht_rcu_thread_offline();
1493 pthread_mutex_lock(&ht->resize_mutex);
1494 _do_cds_lfht_resize(ht);
1495 pthread_mutex_unlock(&ht->resize_mutex);
1496 ht->cds_lfht_rcu_thread_online();
1497 poison_free(work);
1498 cmm_smp_mb(); /* finish resize before decrement */
1499 uatomic_dec(&ht->in_progress_resize);
1500 }
1501
1502 static
1503 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1504 {
1505 struct rcu_resize_work *work;
1506 unsigned long target_size;
1507
1508 target_size = resize_target_update(ht, size, growth);
1509 /* Store resize_target before read resize_initiated */
1510 cmm_smp_mb();
1511 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1512 uatomic_inc(&ht->in_progress_resize);
1513 cmm_smp_mb(); /* increment resize count before calling it */
1514 work = malloc(sizeof(*work));
1515 work->ht = ht;
1516 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1517 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1518 }
1519 }
1520
1521 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1522
1523 static
1524 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1525 unsigned long count)
1526 {
1527 struct rcu_resize_work *work;
1528
1529 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1530 return;
1531 resize_target_update_count(ht, count);
1532 /* Store resize_target before read resize_initiated */
1533 cmm_smp_mb();
1534 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1535 uatomic_inc(&ht->in_progress_resize);
1536 cmm_smp_mb(); /* increment resize count before calling it */
1537 work = malloc(sizeof(*work));
1538 work->ht = ht;
1539 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1540 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1541 }
1542 }
1543
1544 #endif
This page took 0.062893 seconds and 5 git commands to generate.