Move replace code out from _cds_lfht_add()
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/compiler.h>
148 #include <urcu/rculfhash.h>
149 #include <stdio.h>
150 #include <pthread.h>
151
152 #ifdef DEBUG
153 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
154 #else
155 #define dbg_printf(fmt, args...)
156 #endif
157
158 /*
159 * Per-CPU split-counters lazily update the global counter each 1024
160 * addition/removal. It automatically keeps track of resize required.
161 * We use the bucket length as indicator for need to expand for small
162 * tables and machines lacking per-cpu data suppport.
163 */
164 #define COUNT_COMMIT_ORDER 10
165 #define CHAIN_LEN_TARGET 1
166 #define CHAIN_LEN_RESIZE_THRESHOLD 3
167
168 /*
169 * Define the minimum table size.
170 */
171 #define MIN_TABLE_SIZE 1
172
173 #if (CAA_BITS_PER_LONG == 32)
174 #define MAX_TABLE_ORDER 32
175 #else
176 #define MAX_TABLE_ORDER 64
177 #endif
178
179 /*
180 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
181 */
182 #define MIN_PARTITION_PER_THREAD_ORDER 12
183 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
184
185 #ifndef min
186 #define min(a, b) ((a) < (b) ? (a) : (b))
187 #endif
188
189 #ifndef max
190 #define max(a, b) ((a) > (b) ? (a) : (b))
191 #endif
192
193 /*
194 * The removed flag needs to be updated atomically with the pointer.
195 * It indicates that no node must attach to the node scheduled for
196 * removal, and that node garbage collection must be performed.
197 * The dummy flag does not require to be updated atomically with the
198 * pointer, but it is added as a pointer low bit flag to save space.
199 */
200 #define REMOVED_FLAG (1UL << 0)
201 #define DUMMY_FLAG (1UL << 1)
202 #define FLAGS_MASK ((1UL << 2) - 1)
203
204 /* Value of the end pointer. Should not interact with flags. */
205 #define END_VALUE NULL
206
207 struct ht_items_count {
208 unsigned long add, del;
209 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
210
211 struct rcu_level {
212 /* Note: manually update allocation length when adding a field */
213 struct _cds_lfht_node nodes[0];
214 };
215
216 struct rcu_table {
217 unsigned long size; /* always a power of 2, shared (RCU) */
218 unsigned long resize_target;
219 int resize_initiated;
220 struct rcu_level *tbl[MAX_TABLE_ORDER];
221 };
222
223 struct cds_lfht {
224 struct rcu_table t;
225 cds_lfht_hash_fct hash_fct;
226 cds_lfht_compare_fct compare_fct;
227 unsigned long hash_seed;
228 int flags;
229 /*
230 * We need to put the work threads offline (QSBR) when taking this
231 * mutex, because we use synchronize_rcu within this mutex critical
232 * section, which waits on read-side critical sections, and could
233 * therefore cause grace-period deadlock if we hold off RCU G.P.
234 * completion.
235 */
236 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
237 unsigned int in_progress_resize, in_progress_destroy;
238 void (*cds_lfht_call_rcu)(struct rcu_head *head,
239 void (*func)(struct rcu_head *head));
240 void (*cds_lfht_synchronize_rcu)(void);
241 void (*cds_lfht_rcu_read_lock)(void);
242 void (*cds_lfht_rcu_read_unlock)(void);
243 void (*cds_lfht_rcu_thread_offline)(void);
244 void (*cds_lfht_rcu_thread_online)(void);
245 void (*cds_lfht_rcu_register_thread)(void);
246 void (*cds_lfht_rcu_unregister_thread)(void);
247 pthread_attr_t *resize_attr; /* Resize threads attributes */
248 long count; /* global approximate item count */
249 struct ht_items_count *percpu_count; /* per-cpu item count */
250 };
251
252 struct rcu_resize_work {
253 struct rcu_head head;
254 struct cds_lfht *ht;
255 };
256
257 struct partition_resize_work {
258 pthread_t thread_id;
259 struct cds_lfht *ht;
260 unsigned long i, start, len;
261 void (*fct)(struct cds_lfht *ht, unsigned long i,
262 unsigned long start, unsigned long len);
263 };
264
265 static
266 void _cds_lfht_add(struct cds_lfht *ht,
267 unsigned long size,
268 struct cds_lfht_node *node,
269 struct cds_lfht_iter *unique_ret,
270 int dummy);
271
272 /*
273 * Algorithm to reverse bits in a word by lookup table, extended to
274 * 64-bit words.
275 * Source:
276 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
277 * Originally from Public Domain.
278 */
279
280 static const uint8_t BitReverseTable256[256] =
281 {
282 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
283 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
284 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
285 R6(0), R6(2), R6(1), R6(3)
286 };
287 #undef R2
288 #undef R4
289 #undef R6
290
291 static
292 uint8_t bit_reverse_u8(uint8_t v)
293 {
294 return BitReverseTable256[v];
295 }
296
297 static __attribute__((unused))
298 uint32_t bit_reverse_u32(uint32_t v)
299 {
300 return ((uint32_t) bit_reverse_u8(v) << 24) |
301 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
302 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
303 ((uint32_t) bit_reverse_u8(v >> 24));
304 }
305
306 static __attribute__((unused))
307 uint64_t bit_reverse_u64(uint64_t v)
308 {
309 return ((uint64_t) bit_reverse_u8(v) << 56) |
310 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
311 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
312 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
313 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
314 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
315 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
316 ((uint64_t) bit_reverse_u8(v >> 56));
317 }
318
319 static
320 unsigned long bit_reverse_ulong(unsigned long v)
321 {
322 #if (CAA_BITS_PER_LONG == 32)
323 return bit_reverse_u32(v);
324 #else
325 return bit_reverse_u64(v);
326 #endif
327 }
328
329 /*
330 * fls: returns the position of the most significant bit.
331 * Returns 0 if no bit is set, else returns the position of the most
332 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
333 */
334 #if defined(__i386) || defined(__x86_64)
335 static inline
336 unsigned int fls_u32(uint32_t x)
337 {
338 int r;
339
340 asm("bsrl %1,%0\n\t"
341 "jnz 1f\n\t"
342 "movl $-1,%0\n\t"
343 "1:\n\t"
344 : "=r" (r) : "rm" (x));
345 return r + 1;
346 }
347 #define HAS_FLS_U32
348 #endif
349
350 #if defined(__x86_64)
351 static inline
352 unsigned int fls_u64(uint64_t x)
353 {
354 long r;
355
356 asm("bsrq %1,%0\n\t"
357 "jnz 1f\n\t"
358 "movq $-1,%0\n\t"
359 "1:\n\t"
360 : "=r" (r) : "rm" (x));
361 return r + 1;
362 }
363 #define HAS_FLS_U64
364 #endif
365
366 #ifndef HAS_FLS_U64
367 static __attribute__((unused))
368 unsigned int fls_u64(uint64_t x)
369 {
370 unsigned int r = 64;
371
372 if (!x)
373 return 0;
374
375 if (!(x & 0xFFFFFFFF00000000ULL)) {
376 x <<= 32;
377 r -= 32;
378 }
379 if (!(x & 0xFFFF000000000000ULL)) {
380 x <<= 16;
381 r -= 16;
382 }
383 if (!(x & 0xFF00000000000000ULL)) {
384 x <<= 8;
385 r -= 8;
386 }
387 if (!(x & 0xF000000000000000ULL)) {
388 x <<= 4;
389 r -= 4;
390 }
391 if (!(x & 0xC000000000000000ULL)) {
392 x <<= 2;
393 r -= 2;
394 }
395 if (!(x & 0x8000000000000000ULL)) {
396 x <<= 1;
397 r -= 1;
398 }
399 return r;
400 }
401 #endif
402
403 #ifndef HAS_FLS_U32
404 static __attribute__((unused))
405 unsigned int fls_u32(uint32_t x)
406 {
407 unsigned int r = 32;
408
409 if (!x)
410 return 0;
411 if (!(x & 0xFFFF0000U)) {
412 x <<= 16;
413 r -= 16;
414 }
415 if (!(x & 0xFF000000U)) {
416 x <<= 8;
417 r -= 8;
418 }
419 if (!(x & 0xF0000000U)) {
420 x <<= 4;
421 r -= 4;
422 }
423 if (!(x & 0xC0000000U)) {
424 x <<= 2;
425 r -= 2;
426 }
427 if (!(x & 0x80000000U)) {
428 x <<= 1;
429 r -= 1;
430 }
431 return r;
432 }
433 #endif
434
435 unsigned int fls_ulong(unsigned long x)
436 {
437 #if (CAA_BITS_PER_lONG == 32)
438 return fls_u32(x);
439 #else
440 return fls_u64(x);
441 #endif
442 }
443
444 /*
445 * Return the minimum order for which x <= (1UL << order).
446 * Return -1 if x is 0.
447 */
448 int get_count_order_u32(uint32_t x)
449 {
450 if (!x)
451 return -1;
452
453 return fls_u32(x - 1);
454 }
455
456 /*
457 * Return the minimum order for which x <= (1UL << order).
458 * Return -1 if x is 0.
459 */
460 int get_count_order_ulong(unsigned long x)
461 {
462 if (!x)
463 return -1;
464
465 return fls_ulong(x - 1);
466 }
467
468 #ifdef POISON_FREE
469 #define poison_free(ptr) \
470 do { \
471 memset(ptr, 0x42, sizeof(*(ptr))); \
472 free(ptr); \
473 } while (0)
474 #else
475 #define poison_free(ptr) free(ptr)
476 #endif
477
478 static
479 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
480
481 /*
482 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
483 * available, then we support hash table item accounting.
484 * In the unfortunate event the number of CPUs reported would be
485 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
486 */
487 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
488
489 static
490 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
491 unsigned long count);
492
493 static long nr_cpus_mask = -1;
494
495 static
496 struct ht_items_count *alloc_per_cpu_items_count(void)
497 {
498 struct ht_items_count *count;
499
500 switch (nr_cpus_mask) {
501 case -2:
502 return NULL;
503 case -1:
504 {
505 long maxcpus;
506
507 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
508 if (maxcpus <= 0) {
509 nr_cpus_mask = -2;
510 return NULL;
511 }
512 /*
513 * round up number of CPUs to next power of two, so we
514 * can use & for modulo.
515 */
516 maxcpus = 1UL << get_count_order_ulong(maxcpus);
517 nr_cpus_mask = maxcpus - 1;
518 }
519 /* Fall-through */
520 default:
521 return calloc(nr_cpus_mask + 1, sizeof(*count));
522 }
523 }
524
525 static
526 void free_per_cpu_items_count(struct ht_items_count *count)
527 {
528 poison_free(count);
529 }
530
531 static
532 int ht_get_cpu(void)
533 {
534 int cpu;
535
536 assert(nr_cpus_mask >= 0);
537 cpu = sched_getcpu();
538 if (unlikely(cpu < 0))
539 return cpu;
540 else
541 return cpu & nr_cpus_mask;
542 }
543
544 static
545 void ht_count_add(struct cds_lfht *ht, unsigned long size)
546 {
547 unsigned long percpu_count;
548 int cpu;
549
550 if (unlikely(!ht->percpu_count))
551 return;
552 cpu = ht_get_cpu();
553 if (unlikely(cpu < 0))
554 return;
555 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
556 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
557 long count;
558
559 dbg_printf("add percpu %lu\n", percpu_count);
560 count = uatomic_add_return(&ht->count,
561 1UL << COUNT_COMMIT_ORDER);
562 /* If power of 2 */
563 if (!(count & (count - 1))) {
564 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
565 return;
566 dbg_printf("add set global %ld\n", count);
567 cds_lfht_resize_lazy_count(ht, size,
568 count >> (CHAIN_LEN_TARGET - 1));
569 }
570 }
571 }
572
573 static
574 void ht_count_del(struct cds_lfht *ht, unsigned long size)
575 {
576 unsigned long percpu_count;
577 int cpu;
578
579 if (unlikely(!ht->percpu_count))
580 return;
581 cpu = ht_get_cpu();
582 if (unlikely(cpu < 0))
583 return;
584 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].del, 1);
585 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
586 long count;
587
588 dbg_printf("del percpu %lu\n", percpu_count);
589 count = uatomic_add_return(&ht->count,
590 -(1UL << COUNT_COMMIT_ORDER));
591 /* If power of 2 */
592 if (!(count & (count - 1))) {
593 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
594 return;
595 dbg_printf("del set global %ld\n", count);
596 /*
597 * Don't shrink table if the number of nodes is below a
598 * certain threshold.
599 */
600 if (count < (1UL << COUNT_COMMIT_ORDER) * (nr_cpus_mask + 1))
601 return;
602 cds_lfht_resize_lazy_count(ht, size,
603 count >> (CHAIN_LEN_TARGET - 1));
604 }
605 }
606 }
607
608 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
609
610 static const long nr_cpus_mask = -2;
611
612 static
613 struct ht_items_count *alloc_per_cpu_items_count(void)
614 {
615 return NULL;
616 }
617
618 static
619 void free_per_cpu_items_count(struct ht_items_count *count)
620 {
621 }
622
623 static
624 void ht_count_add(struct cds_lfht *ht, unsigned long size)
625 {
626 }
627
628 static
629 void ht_count_del(struct cds_lfht *ht, unsigned long size)
630 {
631 }
632
633 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
634
635
636 static
637 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
638 {
639 unsigned long count;
640
641 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
642 return;
643 count = uatomic_read(&ht->count);
644 /*
645 * Use bucket-local length for small table expand and for
646 * environments lacking per-cpu data support.
647 */
648 if (count >= (1UL << COUNT_COMMIT_ORDER))
649 return;
650 if (chain_len > 100)
651 dbg_printf("WARNING: large chain length: %u.\n",
652 chain_len);
653 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
654 cds_lfht_resize_lazy(ht, size,
655 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
656 }
657
658 static
659 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
660 {
661 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
662 }
663
664 static
665 int is_removed(struct cds_lfht_node *node)
666 {
667 return ((unsigned long) node) & REMOVED_FLAG;
668 }
669
670 static
671 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
672 {
673 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
674 }
675
676 static
677 int is_dummy(struct cds_lfht_node *node)
678 {
679 return ((unsigned long) node) & DUMMY_FLAG;
680 }
681
682 static
683 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
684 {
685 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
686 }
687
688 static
689 struct cds_lfht_node *get_end(void)
690 {
691 return (struct cds_lfht_node *) END_VALUE;
692 }
693
694 static
695 int is_end(struct cds_lfht_node *node)
696 {
697 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
698 }
699
700 static
701 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
702 {
703 unsigned long old1, old2;
704
705 old1 = uatomic_read(ptr);
706 do {
707 old2 = old1;
708 if (old2 >= v)
709 return old2;
710 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
711 return v;
712 }
713
714 static
715 struct _cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
716 unsigned long hash)
717 {
718 unsigned long index, order;
719
720 assert(size > 0);
721 index = hash & (size - 1);
722 /*
723 * equivalent to get_count_order_ulong(index + 1), but optimizes
724 * away the non-existing 0 special-case for
725 * get_count_order_ulong.
726 */
727 order = fls_ulong(index);
728
729 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
730 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
731
732 return &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
733 }
734
735 /*
736 * Remove all logically deleted nodes from a bucket up to a certain node key.
737 */
738 static
739 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
740 {
741 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
742
743 assert(!is_dummy(dummy));
744 assert(!is_removed(dummy));
745 assert(!is_dummy(node));
746 assert(!is_removed(node));
747 for (;;) {
748 iter_prev = dummy;
749 /* We can always skip the dummy node initially */
750 iter = rcu_dereference(iter_prev->p.next);
751 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
752 /*
753 * We should never be called with dummy (start of chain)
754 * and logically removed node (end of path compression
755 * marker) being the actual same node. This would be a
756 * bug in the algorithm implementation.
757 */
758 assert(dummy != node);
759 for (;;) {
760 if (unlikely(is_end(iter)))
761 return;
762 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
763 return;
764 next = rcu_dereference(clear_flag(iter)->p.next);
765 if (likely(is_removed(next)))
766 break;
767 iter_prev = clear_flag(iter);
768 iter = next;
769 }
770 assert(!is_removed(iter));
771 if (is_dummy(iter))
772 new_next = flag_dummy(clear_flag(next));
773 else
774 new_next = clear_flag(next);
775 if (is_removed(iter))
776 new_next = flag_removed(new_next);
777 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
778 }
779 return;
780 }
781
782 static
783 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
784 struct cds_lfht_node *old_node,
785 struct cds_lfht_node *old_next,
786 struct cds_lfht_node *new_node)
787 {
788 struct cds_lfht_node *dummy, *ret_next;
789 struct _cds_lfht_node *lookup;
790 int flagged = 0;
791
792 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
793 goto end;
794
795 assert(!is_removed(old_node));
796 assert(!is_dummy(old_node));
797 assert(!is_removed(new_node));
798 assert(!is_dummy(new_node));
799 assert(new_node != old_node);
800 for (;;) {
801 /* Insert after node to be replaced */
802 if (is_removed(old_next)) {
803 /*
804 * Too late, the old node has been removed under us
805 * between lookup and replace. Fail.
806 */
807 goto end;
808 }
809 assert(!is_dummy(old_next));
810 assert(new_node != clear_flag(old_next));
811 new_node->p.next = clear_flag(old_next);
812 /*
813 * Here is the whole trick for lock-free replace: we add
814 * the replacement node _after_ the node we want to
815 * replace by atomically setting its next pointer at the
816 * same time we set its removal flag. Given that
817 * the lookups/get next use an iterator aware of the
818 * next pointer, they will either skip the old node due
819 * to the removal flag and see the new node, or use
820 * the old node, but will not see the new one.
821 */
822 ret_next = uatomic_cmpxchg(&old_node->p.next,
823 old_next, flag_removed(new_node));
824 if (ret_next == old_next)
825 break;
826 old_next = ret_next;
827 }
828
829 /* We performed the replacement. */
830 flagged = 1;
831
832 /*
833 * Ensure that the old node is not visible to readers anymore:
834 * lookup for the node, and remove it (along with any other
835 * logically removed node) if found.
836 */
837 lookup = lookup_bucket(ht, size, bit_reverse_ulong(old_node->p.reverse_hash));
838 dummy = (struct cds_lfht_node *) lookup;
839 _cds_lfht_gc_bucket(dummy, new_node);
840 end:
841 /*
842 * Only the flagging action indicated that we (and no other)
843 * replaced the node from the hash table.
844 */
845 if (flagged) {
846 assert(is_removed(rcu_dereference(old_node->p.next)));
847 return 0;
848 } else {
849 return -ENOENT;
850 }
851 }
852
853 /*
854 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
855 * mode. A NULL unique_ret allows creation of duplicate keys.
856 */
857 static
858 void _cds_lfht_add(struct cds_lfht *ht,
859 unsigned long size,
860 struct cds_lfht_node *node,
861 struct cds_lfht_iter *unique_ret,
862 int dummy)
863 {
864 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
865 *return_node;
866 struct _cds_lfht_node *lookup;
867
868 assert(!is_dummy(node));
869 assert(!is_removed(node));
870 if (!size) {
871 assert(dummy);
872 assert(!unique_ret);
873 node->p.next = flag_dummy(get_end());
874 return; /* Initial first add (head) */
875 }
876 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
877 for (;;) {
878 uint32_t chain_len = 0;
879
880 /*
881 * iter_prev points to the non-removed node prior to the
882 * insert location.
883 */
884 iter_prev = (struct cds_lfht_node *) lookup;
885 /* We can always skip the dummy node initially */
886 iter = rcu_dereference(iter_prev->p.next);
887 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
888 for (;;) {
889 if (unlikely(is_end(iter)))
890 goto insert;
891 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
892 goto insert;
893 /* dummy node is the first node of the identical-hash-value chain */
894 if (dummy && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash)
895 goto insert;
896 next = rcu_dereference(clear_flag(iter)->p.next);
897 if (unlikely(is_removed(next)))
898 goto gc_node;
899 if (unique_ret
900 && !is_dummy(next)
901 && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash
902 && !ht->compare_fct(node->key, node->key_len,
903 clear_flag(iter)->key,
904 clear_flag(iter)->key_len)) {
905 unique_ret->node = clear_flag(iter);
906 unique_ret->next = next;
907 return;
908 }
909 /* Only account for identical reverse hash once */
910 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
911 && !is_dummy(next))
912 check_resize(ht, size, ++chain_len);
913 iter_prev = clear_flag(iter);
914 iter = next;
915 }
916
917 insert:
918 assert(node != clear_flag(iter));
919 assert(!is_removed(iter_prev));
920 assert(!is_removed(iter));
921 assert(iter_prev != node);
922 if (!dummy)
923 node->p.next = clear_flag(iter);
924 else
925 node->p.next = flag_dummy(clear_flag(iter));
926 if (is_dummy(iter))
927 new_node = flag_dummy(node);
928 else
929 new_node = node;
930 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
931 new_node) != iter) {
932 continue; /* retry */
933 } else {
934 return_node = node;
935 goto end;
936 }
937
938 gc_node:
939 assert(!is_removed(iter));
940 if (is_dummy(iter))
941 new_next = flag_dummy(clear_flag(next));
942 else
943 new_next = clear_flag(next);
944 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
945 /* retry */
946 }
947 end:
948 if (unique_ret) {
949 unique_ret->node = return_node;
950 /* unique_ret->next left unset, never used. */
951 }
952 }
953
954 static
955 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
956 struct cds_lfht_node *node,
957 int dummy_removal)
958 {
959 struct cds_lfht_node *dummy, *next, *old;
960 struct _cds_lfht_node *lookup;
961 int flagged = 0;
962
963 if (!node) /* Return -ENOENT if asked to delete NULL node */
964 goto end;
965
966 /* logically delete the node */
967 assert(!is_dummy(node));
968 assert(!is_removed(node));
969 old = rcu_dereference(node->p.next);
970 do {
971 struct cds_lfht_node *new_next;
972
973 next = old;
974 if (unlikely(is_removed(next)))
975 goto end;
976 if (dummy_removal)
977 assert(is_dummy(next));
978 else
979 assert(!is_dummy(next));
980 new_next = flag_removed(next);
981 old = uatomic_cmpxchg(&node->p.next, next, new_next);
982 } while (old != next);
983
984 /* We performed the (logical) deletion. */
985 flagged = 1;
986
987 /*
988 * Ensure that the node is not visible to readers anymore: lookup for
989 * the node, and remove it (along with any other logically removed node)
990 * if found.
991 */
992 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
993 dummy = (struct cds_lfht_node *) lookup;
994 _cds_lfht_gc_bucket(dummy, node);
995 end:
996 /*
997 * Only the flagging action indicated that we (and no other)
998 * removed the node from the hash.
999 */
1000 if (flagged) {
1001 assert(is_removed(rcu_dereference(node->p.next)));
1002 return 0;
1003 } else {
1004 return -ENOENT;
1005 }
1006 }
1007
1008 static
1009 void *partition_resize_thread(void *arg)
1010 {
1011 struct partition_resize_work *work = arg;
1012
1013 work->ht->cds_lfht_rcu_register_thread();
1014 work->fct(work->ht, work->i, work->start, work->len);
1015 work->ht->cds_lfht_rcu_unregister_thread();
1016 return NULL;
1017 }
1018
1019 static
1020 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1021 unsigned long len,
1022 void (*fct)(struct cds_lfht *ht, unsigned long i,
1023 unsigned long start, unsigned long len))
1024 {
1025 unsigned long partition_len;
1026 struct partition_resize_work *work;
1027 int thread, ret;
1028 unsigned long nr_threads;
1029
1030 /*
1031 * Note: nr_cpus_mask + 1 is always power of 2.
1032 * We spawn just the number of threads we need to satisfy the minimum
1033 * partition size, up to the number of CPUs in the system.
1034 */
1035 if (nr_cpus_mask > 0) {
1036 nr_threads = min(nr_cpus_mask + 1,
1037 len >> MIN_PARTITION_PER_THREAD_ORDER);
1038 } else {
1039 nr_threads = 1;
1040 }
1041 partition_len = len >> get_count_order_ulong(nr_threads);
1042 work = calloc(nr_threads, sizeof(*work));
1043 assert(work);
1044 for (thread = 0; thread < nr_threads; thread++) {
1045 work[thread].ht = ht;
1046 work[thread].i = i;
1047 work[thread].len = partition_len;
1048 work[thread].start = thread * partition_len;
1049 work[thread].fct = fct;
1050 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1051 partition_resize_thread, &work[thread]);
1052 assert(!ret);
1053 }
1054 for (thread = 0; thread < nr_threads; thread++) {
1055 ret = pthread_join(work[thread].thread_id, NULL);
1056 assert(!ret);
1057 }
1058 free(work);
1059 }
1060
1061 /*
1062 * Holding RCU read lock to protect _cds_lfht_add against memory
1063 * reclaim that could be performed by other call_rcu worker threads (ABA
1064 * problem).
1065 *
1066 * When we reach a certain length, we can split this population phase over
1067 * many worker threads, based on the number of CPUs available in the system.
1068 * This should therefore take care of not having the expand lagging behind too
1069 * many concurrent insertion threads by using the scheduler's ability to
1070 * schedule dummy node population fairly with insertions.
1071 */
1072 static
1073 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1074 unsigned long start, unsigned long len)
1075 {
1076 unsigned long j;
1077
1078 ht->cds_lfht_rcu_read_lock();
1079 for (j = start; j < start + len; j++) {
1080 struct cds_lfht_node *new_node =
1081 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1082
1083 dbg_printf("init populate: i %lu j %lu hash %lu\n",
1084 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1085 new_node->p.reverse_hash =
1086 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1087 _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
1088 new_node, NULL, 1);
1089 }
1090 ht->cds_lfht_rcu_read_unlock();
1091 }
1092
1093 static
1094 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1095 unsigned long len)
1096 {
1097 assert(nr_cpus_mask != -1);
1098 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1099 ht->cds_lfht_rcu_thread_online();
1100 init_table_populate_partition(ht, i, 0, len);
1101 ht->cds_lfht_rcu_thread_offline();
1102 return;
1103 }
1104 partition_resize_helper(ht, i, len, init_table_populate_partition);
1105 }
1106
1107 static
1108 void init_table(struct cds_lfht *ht,
1109 unsigned long first_order, unsigned long len_order)
1110 {
1111 unsigned long i, end_order;
1112
1113 dbg_printf("init table: first_order %lu end_order %lu\n",
1114 first_order, first_order + len_order);
1115 end_order = first_order + len_order;
1116 for (i = first_order; i < end_order; i++) {
1117 unsigned long len;
1118
1119 len = !i ? 1 : 1UL << (i - 1);
1120 dbg_printf("init order %lu len: %lu\n", i, len);
1121
1122 /* Stop expand if the resize target changes under us */
1123 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
1124 break;
1125
1126 ht->t.tbl[i] = calloc(1, len * sizeof(struct _cds_lfht_node));
1127 assert(ht->t.tbl[i]);
1128
1129 /*
1130 * Set all dummy nodes reverse hash values for a level and
1131 * link all dummy nodes into the table.
1132 */
1133 init_table_populate(ht, i, len);
1134
1135 /*
1136 * Update table size.
1137 */
1138 cmm_smp_wmb(); /* populate data before RCU size */
1139 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
1140
1141 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
1142 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1143 break;
1144 }
1145 }
1146
1147 /*
1148 * Holding RCU read lock to protect _cds_lfht_remove against memory
1149 * reclaim that could be performed by other call_rcu worker threads (ABA
1150 * problem).
1151 * For a single level, we logically remove and garbage collect each node.
1152 *
1153 * As a design choice, we perform logical removal and garbage collection on a
1154 * node-per-node basis to simplify this algorithm. We also assume keeping good
1155 * cache locality of the operation would overweight possible performance gain
1156 * that could be achieved by batching garbage collection for multiple levels.
1157 * However, this would have to be justified by benchmarks.
1158 *
1159 * Concurrent removal and add operations are helping us perform garbage
1160 * collection of logically removed nodes. We guarantee that all logically
1161 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1162 * invoked to free a hole level of dummy nodes (after a grace period).
1163 *
1164 * Logical removal and garbage collection can therefore be done in batch or on a
1165 * node-per-node basis, as long as the guarantee above holds.
1166 *
1167 * When we reach a certain length, we can split this removal over many worker
1168 * threads, based on the number of CPUs available in the system. This should
1169 * take care of not letting resize process lag behind too many concurrent
1170 * updater threads actively inserting into the hash table.
1171 */
1172 static
1173 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1174 unsigned long start, unsigned long len)
1175 {
1176 unsigned long j;
1177
1178 ht->cds_lfht_rcu_read_lock();
1179 for (j = start; j < start + len; j++) {
1180 struct cds_lfht_node *fini_node =
1181 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1182
1183 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1184 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1185 fini_node->p.reverse_hash =
1186 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1187 (void) _cds_lfht_del(ht, !i ? 0 : (1UL << (i - 1)),
1188 fini_node, 1);
1189 }
1190 ht->cds_lfht_rcu_read_unlock();
1191 }
1192
1193 static
1194 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1195 {
1196
1197 assert(nr_cpus_mask != -1);
1198 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1199 ht->cds_lfht_rcu_thread_online();
1200 remove_table_partition(ht, i, 0, len);
1201 ht->cds_lfht_rcu_thread_offline();
1202 return;
1203 }
1204 partition_resize_helper(ht, i, len, remove_table_partition);
1205 }
1206
1207 static
1208 void fini_table(struct cds_lfht *ht,
1209 unsigned long first_order, unsigned long len_order)
1210 {
1211 long i, end_order;
1212 void *free_by_rcu = NULL;
1213
1214 dbg_printf("fini table: first_order %lu end_order %lu\n",
1215 first_order, first_order + len_order);
1216 end_order = first_order + len_order;
1217 assert(first_order > 0);
1218 for (i = end_order - 1; i >= first_order; i--) {
1219 unsigned long len;
1220
1221 len = !i ? 1 : 1UL << (i - 1);
1222 dbg_printf("fini order %lu len: %lu\n", i, len);
1223
1224 /* Stop shrink if the resize target changes under us */
1225 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1226 break;
1227
1228 cmm_smp_wmb(); /* populate data before RCU size */
1229 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1230
1231 /*
1232 * We need to wait for all add operations to reach Q.S. (and
1233 * thus use the new table for lookups) before we can start
1234 * releasing the old dummy nodes. Otherwise their lookup will
1235 * return a logically removed node as insert position.
1236 */
1237 ht->cds_lfht_synchronize_rcu();
1238 if (free_by_rcu)
1239 free(free_by_rcu);
1240
1241 /*
1242 * Set "removed" flag in dummy nodes about to be removed.
1243 * Unlink all now-logically-removed dummy node pointers.
1244 * Concurrent add/remove operation are helping us doing
1245 * the gc.
1246 */
1247 remove_table(ht, i, len);
1248
1249 free_by_rcu = ht->t.tbl[i];
1250
1251 dbg_printf("fini new size: %lu\n", 1UL << i);
1252 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1253 break;
1254 }
1255
1256 if (free_by_rcu) {
1257 ht->cds_lfht_synchronize_rcu();
1258 free(free_by_rcu);
1259 }
1260 }
1261
1262 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1263 cds_lfht_compare_fct compare_fct,
1264 unsigned long hash_seed,
1265 unsigned long init_size,
1266 int flags,
1267 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1268 void (*func)(struct rcu_head *head)),
1269 void (*cds_lfht_synchronize_rcu)(void),
1270 void (*cds_lfht_rcu_read_lock)(void),
1271 void (*cds_lfht_rcu_read_unlock)(void),
1272 void (*cds_lfht_rcu_thread_offline)(void),
1273 void (*cds_lfht_rcu_thread_online)(void),
1274 void (*cds_lfht_rcu_register_thread)(void),
1275 void (*cds_lfht_rcu_unregister_thread)(void),
1276 pthread_attr_t *attr)
1277 {
1278 struct cds_lfht *ht;
1279 unsigned long order;
1280
1281 /* init_size must be power of two */
1282 if (init_size && (init_size & (init_size - 1)))
1283 return NULL;
1284 ht = calloc(1, sizeof(struct cds_lfht));
1285 assert(ht);
1286 ht->hash_fct = hash_fct;
1287 ht->compare_fct = compare_fct;
1288 ht->hash_seed = hash_seed;
1289 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1290 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1291 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1292 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1293 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1294 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1295 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1296 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1297 ht->resize_attr = attr;
1298 ht->percpu_count = alloc_per_cpu_items_count();
1299 /* this mutex should not nest in read-side C.S. */
1300 pthread_mutex_init(&ht->resize_mutex, NULL);
1301 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1302 ht->flags = flags;
1303 ht->cds_lfht_rcu_thread_offline();
1304 pthread_mutex_lock(&ht->resize_mutex);
1305 ht->t.resize_target = 1UL << (order - 1);
1306 init_table(ht, 0, order);
1307 pthread_mutex_unlock(&ht->resize_mutex);
1308 ht->cds_lfht_rcu_thread_online();
1309 return ht;
1310 }
1311
1312 void cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len,
1313 struct cds_lfht_iter *iter)
1314 {
1315 struct cds_lfht_node *node, *next, *dummy_node;
1316 struct _cds_lfht_node *lookup;
1317 unsigned long hash, reverse_hash, size;
1318
1319 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1320 reverse_hash = bit_reverse_ulong(hash);
1321
1322 size = rcu_dereference(ht->t.size);
1323 lookup = lookup_bucket(ht, size, hash);
1324 dummy_node = (struct cds_lfht_node *) lookup;
1325 /* We can always skip the dummy node initially */
1326 node = rcu_dereference(dummy_node->p.next);
1327 node = clear_flag(node);
1328 for (;;) {
1329 if (unlikely(is_end(node))) {
1330 node = next = NULL;
1331 break;
1332 }
1333 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1334 node = next = NULL;
1335 break;
1336 }
1337 next = rcu_dereference(node->p.next);
1338 if (likely(!is_removed(next))
1339 && !is_dummy(next)
1340 && clear_flag(node)->p.reverse_hash == reverse_hash
1341 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1342 break;
1343 }
1344 node = clear_flag(next);
1345 }
1346 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1347 iter->node = node;
1348 iter->next = next;
1349 }
1350
1351 void cds_lfht_next_duplicate(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1352 {
1353 struct cds_lfht_node *node, *next;
1354 unsigned long reverse_hash;
1355 void *key;
1356 size_t key_len;
1357
1358 node = iter->node;
1359 reverse_hash = node->p.reverse_hash;
1360 key = node->key;
1361 key_len = node->key_len;
1362 next = iter->next;
1363 node = clear_flag(next);
1364
1365 for (;;) {
1366 if (unlikely(is_end(node))) {
1367 node = next = NULL;
1368 break;
1369 }
1370 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1371 node = next = NULL;
1372 break;
1373 }
1374 next = rcu_dereference(node->p.next);
1375 if (likely(!is_removed(next))
1376 && !is_dummy(next)
1377 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1378 break;
1379 }
1380 node = clear_flag(next);
1381 }
1382 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1383 iter->node = node;
1384 iter->next = next;
1385 }
1386
1387 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1388 {
1389 struct cds_lfht_node *node, *next;
1390
1391 node = clear_flag(iter->next);
1392 for (;;) {
1393 if (unlikely(is_end(node))) {
1394 node = next = NULL;
1395 break;
1396 }
1397 next = rcu_dereference(node->p.next);
1398 if (likely(!is_removed(next))
1399 && !is_dummy(next)) {
1400 break;
1401 }
1402 node = clear_flag(next);
1403 }
1404 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1405 iter->node = node;
1406 iter->next = next;
1407 }
1408
1409 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1410 {
1411 struct _cds_lfht_node *lookup;
1412
1413 /*
1414 * Get next after first dummy node. The first dummy node is the
1415 * first node of the linked list.
1416 */
1417 lookup = &ht->t.tbl[0]->nodes[0];
1418 iter->next = lookup->next;
1419 cds_lfht_next(ht, iter);
1420 }
1421
1422 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1423 {
1424 unsigned long hash, size;
1425
1426 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1427 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1428
1429 size = rcu_dereference(ht->t.size);
1430 _cds_lfht_add(ht, size, node, NULL, 0);
1431 ht_count_add(ht, size);
1432 }
1433
1434 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1435 struct cds_lfht_node *node)
1436 {
1437 unsigned long hash, size;
1438 struct cds_lfht_iter iter;
1439
1440 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1441 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1442
1443 size = rcu_dereference(ht->t.size);
1444 _cds_lfht_add(ht, size, node, &iter, 0);
1445 if (iter.node == node)
1446 ht_count_add(ht, size);
1447 return iter.node;
1448 }
1449
1450 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1451 struct cds_lfht_node *node)
1452 {
1453 unsigned long hash, size;
1454 struct cds_lfht_iter iter;
1455
1456 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1457 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1458
1459 size = rcu_dereference(ht->t.size);
1460 for (;;) {
1461 _cds_lfht_add(ht, size, node, &iter, 0);
1462 if (iter.node == node) {
1463 ht_count_add(ht, size);
1464 return NULL;
1465 }
1466
1467 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1468 return iter.node;
1469 }
1470 }
1471
1472 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1473 struct cds_lfht_node *new_node)
1474 {
1475 unsigned long size;
1476
1477 size = rcu_dereference(ht->t.size);
1478 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1479 new_node);
1480 }
1481
1482 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1483 {
1484 unsigned long size;
1485 int ret;
1486
1487 size = rcu_dereference(ht->t.size);
1488 ret = _cds_lfht_del(ht, size, iter->node, 0);
1489 if (!ret)
1490 ht_count_del(ht, size);
1491 return ret;
1492 }
1493
1494 static
1495 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1496 {
1497 struct cds_lfht_node *node;
1498 struct _cds_lfht_node *lookup;
1499 unsigned long order, i, size;
1500
1501 /* Check that the table is empty */
1502 lookup = &ht->t.tbl[0]->nodes[0];
1503 node = (struct cds_lfht_node *) lookup;
1504 do {
1505 node = clear_flag(node)->p.next;
1506 if (!is_dummy(node))
1507 return -EPERM;
1508 assert(!is_removed(node));
1509 } while (!is_end(node));
1510 /*
1511 * size accessed without rcu_dereference because hash table is
1512 * being destroyed.
1513 */
1514 size = ht->t.size;
1515 /* Internal sanity check: all nodes left should be dummy */
1516 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1517 unsigned long len;
1518
1519 len = !order ? 1 : 1UL << (order - 1);
1520 for (i = 0; i < len; i++) {
1521 dbg_printf("delete order %lu i %lu hash %lu\n",
1522 order, i,
1523 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1524 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1525 }
1526 poison_free(ht->t.tbl[order]);
1527 }
1528 return 0;
1529 }
1530
1531 /*
1532 * Should only be called when no more concurrent readers nor writers can
1533 * possibly access the table.
1534 */
1535 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1536 {
1537 int ret;
1538
1539 /* Wait for in-flight resize operations to complete */
1540 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1541 cmm_smp_mb(); /* Store destroy before load resize */
1542 while (uatomic_read(&ht->in_progress_resize))
1543 poll(NULL, 0, 100); /* wait for 100ms */
1544 ret = cds_lfht_delete_dummy(ht);
1545 if (ret)
1546 return ret;
1547 free_per_cpu_items_count(ht->percpu_count);
1548 if (attr)
1549 *attr = ht->resize_attr;
1550 poison_free(ht);
1551 return ret;
1552 }
1553
1554 void cds_lfht_count_nodes(struct cds_lfht *ht,
1555 long *approx_before,
1556 unsigned long *count,
1557 unsigned long *removed,
1558 long *approx_after)
1559 {
1560 struct cds_lfht_node *node, *next;
1561 struct _cds_lfht_node *lookup;
1562 unsigned long nr_dummy = 0;
1563
1564 *approx_before = 0;
1565 if (nr_cpus_mask >= 0) {
1566 int i;
1567
1568 for (i = 0; i < nr_cpus_mask + 1; i++) {
1569 *approx_before += uatomic_read(&ht->percpu_count[i].add);
1570 *approx_before -= uatomic_read(&ht->percpu_count[i].del);
1571 }
1572 }
1573
1574 *count = 0;
1575 *removed = 0;
1576
1577 /* Count non-dummy nodes in the table */
1578 lookup = &ht->t.tbl[0]->nodes[0];
1579 node = (struct cds_lfht_node *) lookup;
1580 do {
1581 next = rcu_dereference(node->p.next);
1582 if (is_removed(next)) {
1583 if (!is_dummy(next))
1584 (*removed)++;
1585 else
1586 (nr_dummy)++;
1587 } else if (!is_dummy(next))
1588 (*count)++;
1589 else
1590 (nr_dummy)++;
1591 node = clear_flag(next);
1592 } while (!is_end(node));
1593 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1594 *approx_after = 0;
1595 if (nr_cpus_mask >= 0) {
1596 int i;
1597
1598 for (i = 0; i < nr_cpus_mask + 1; i++) {
1599 *approx_after += uatomic_read(&ht->percpu_count[i].add);
1600 *approx_after -= uatomic_read(&ht->percpu_count[i].del);
1601 }
1602 }
1603 }
1604
1605 /* called with resize mutex held */
1606 static
1607 void _do_cds_lfht_grow(struct cds_lfht *ht,
1608 unsigned long old_size, unsigned long new_size)
1609 {
1610 unsigned long old_order, new_order;
1611
1612 old_order = get_count_order_ulong(old_size) + 1;
1613 new_order = get_count_order_ulong(new_size) + 1;
1614 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1615 old_size, old_order, new_size, new_order);
1616 assert(new_size > old_size);
1617 init_table(ht, old_order, new_order - old_order);
1618 }
1619
1620 /* called with resize mutex held */
1621 static
1622 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1623 unsigned long old_size, unsigned long new_size)
1624 {
1625 unsigned long old_order, new_order;
1626
1627 new_size = max(new_size, MIN_TABLE_SIZE);
1628 old_order = get_count_order_ulong(old_size) + 1;
1629 new_order = get_count_order_ulong(new_size) + 1;
1630 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1631 old_size, old_order, new_size, new_order);
1632 assert(new_size < old_size);
1633
1634 /* Remove and unlink all dummy nodes to remove. */
1635 fini_table(ht, new_order, old_order - new_order);
1636 }
1637
1638
1639 /* called with resize mutex held */
1640 static
1641 void _do_cds_lfht_resize(struct cds_lfht *ht)
1642 {
1643 unsigned long new_size, old_size;
1644
1645 /*
1646 * Resize table, re-do if the target size has changed under us.
1647 */
1648 do {
1649 assert(uatomic_read(&ht->in_progress_resize));
1650 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1651 break;
1652 ht->t.resize_initiated = 1;
1653 old_size = ht->t.size;
1654 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1655 if (old_size < new_size)
1656 _do_cds_lfht_grow(ht, old_size, new_size);
1657 else if (old_size > new_size)
1658 _do_cds_lfht_shrink(ht, old_size, new_size);
1659 ht->t.resize_initiated = 0;
1660 /* write resize_initiated before read resize_target */
1661 cmm_smp_mb();
1662 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1663 }
1664
1665 static
1666 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1667 int growth_order)
1668 {
1669 return _uatomic_max(&ht->t.resize_target,
1670 size << growth_order);
1671 }
1672
1673 static
1674 void resize_target_update_count(struct cds_lfht *ht,
1675 unsigned long count)
1676 {
1677 count = max(count, MIN_TABLE_SIZE);
1678 uatomic_set(&ht->t.resize_target, count);
1679 }
1680
1681 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1682 {
1683 resize_target_update_count(ht, new_size);
1684 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1685 ht->cds_lfht_rcu_thread_offline();
1686 pthread_mutex_lock(&ht->resize_mutex);
1687 _do_cds_lfht_resize(ht);
1688 pthread_mutex_unlock(&ht->resize_mutex);
1689 ht->cds_lfht_rcu_thread_online();
1690 }
1691
1692 static
1693 void do_resize_cb(struct rcu_head *head)
1694 {
1695 struct rcu_resize_work *work =
1696 caa_container_of(head, struct rcu_resize_work, head);
1697 struct cds_lfht *ht = work->ht;
1698
1699 ht->cds_lfht_rcu_thread_offline();
1700 pthread_mutex_lock(&ht->resize_mutex);
1701 _do_cds_lfht_resize(ht);
1702 pthread_mutex_unlock(&ht->resize_mutex);
1703 ht->cds_lfht_rcu_thread_online();
1704 poison_free(work);
1705 cmm_smp_mb(); /* finish resize before decrement */
1706 uatomic_dec(&ht->in_progress_resize);
1707 }
1708
1709 static
1710 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1711 {
1712 struct rcu_resize_work *work;
1713 unsigned long target_size;
1714
1715 target_size = resize_target_update(ht, size, growth);
1716 /* Store resize_target before read resize_initiated */
1717 cmm_smp_mb();
1718 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1719 uatomic_inc(&ht->in_progress_resize);
1720 cmm_smp_mb(); /* increment resize count before load destroy */
1721 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1722 uatomic_dec(&ht->in_progress_resize);
1723 return;
1724 }
1725 work = malloc(sizeof(*work));
1726 work->ht = ht;
1727 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1728 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1729 }
1730 }
1731
1732 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1733
1734 static
1735 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1736 unsigned long count)
1737 {
1738 struct rcu_resize_work *work;
1739
1740 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1741 return;
1742 resize_target_update_count(ht, count);
1743 /* Store resize_target before read resize_initiated */
1744 cmm_smp_mb();
1745 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1746 uatomic_inc(&ht->in_progress_resize);
1747 cmm_smp_mb(); /* increment resize count before load destroy */
1748 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1749 uatomic_dec(&ht->in_progress_resize);
1750 return;
1751 }
1752 work = malloc(sizeof(*work));
1753 work->ht = ht;
1754 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1755 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1756 }
1757 }
1758
1759 #endif
This page took 0.066591 seconds and 5 git commands to generate.