rculfhash: type the ht count approx as long
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 /*
170 * Define the minimum table size.
171 */
172 #define MIN_TABLE_SIZE 1
173
174 #if (CAA_BITS_PER_LONG == 32)
175 #define MAX_TABLE_ORDER 32
176 #else
177 #define MAX_TABLE_ORDER 64
178 #endif
179
180 /*
181 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
182 */
183 #define MIN_PARTITION_PER_THREAD_ORDER 12
184 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
185
186 #ifndef min
187 #define min(a, b) ((a) < (b) ? (a) : (b))
188 #endif
189
190 #ifndef max
191 #define max(a, b) ((a) > (b) ? (a) : (b))
192 #endif
193
194 /*
195 * The removed flag needs to be updated atomically with the pointer.
196 * It indicates that no node must attach to the node scheduled for
197 * removal, and that node garbage collection must be performed.
198 * The dummy flag does not require to be updated atomically with the
199 * pointer, but it is added as a pointer low bit flag to save space.
200 */
201 #define REMOVED_FLAG (1UL << 0)
202 #define DUMMY_FLAG (1UL << 1)
203 #define FLAGS_MASK ((1UL << 2) - 1)
204
205 /* Value of the end pointer. Should not interact with flags. */
206 #define END_VALUE NULL
207
208 struct ht_items_count {
209 unsigned long add, del;
210 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
211
212 struct rcu_level {
213 struct rcu_head head;
214 struct _cds_lfht_node nodes[0];
215 };
216
217 struct rcu_table {
218 unsigned long size; /* always a power of 2, shared (RCU) */
219 unsigned long resize_target;
220 int resize_initiated;
221 struct rcu_level *tbl[MAX_TABLE_ORDER];
222 };
223
224 struct cds_lfht {
225 struct rcu_table t;
226 cds_lfht_hash_fct hash_fct;
227 cds_lfht_compare_fct compare_fct;
228 unsigned long hash_seed;
229 int flags;
230 /*
231 * We need to put the work threads offline (QSBR) when taking this
232 * mutex, because we use synchronize_rcu within this mutex critical
233 * section, which waits on read-side critical sections, and could
234 * therefore cause grace-period deadlock if we hold off RCU G.P.
235 * completion.
236 */
237 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
238 unsigned int in_progress_resize, in_progress_destroy;
239 void (*cds_lfht_call_rcu)(struct rcu_head *head,
240 void (*func)(struct rcu_head *head));
241 void (*cds_lfht_synchronize_rcu)(void);
242 void (*cds_lfht_rcu_read_lock)(void);
243 void (*cds_lfht_rcu_read_unlock)(void);
244 void (*cds_lfht_rcu_thread_offline)(void);
245 void (*cds_lfht_rcu_thread_online)(void);
246 void (*cds_lfht_rcu_register_thread)(void);
247 void (*cds_lfht_rcu_unregister_thread)(void);
248 pthread_attr_t *resize_attr; /* Resize threads attributes */
249 long count; /* global approximate item count */
250 struct ht_items_count *percpu_count; /* per-cpu item count */
251 };
252
253 struct rcu_resize_work {
254 struct rcu_head head;
255 struct cds_lfht *ht;
256 };
257
258 struct partition_resize_work {
259 struct rcu_head head;
260 struct cds_lfht *ht;
261 unsigned long i, start, len;
262 void (*fct)(struct cds_lfht *ht, unsigned long i,
263 unsigned long start, unsigned long len);
264 };
265
266 enum add_mode {
267 ADD_DEFAULT = 0,
268 ADD_UNIQUE = 1,
269 ADD_REPLACE = 2,
270 };
271
272 static
273 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
274 unsigned long size,
275 struct cds_lfht_node *node,
276 enum add_mode mode, int dummy);
277
278 /*
279 * Algorithm to reverse bits in a word by lookup table, extended to
280 * 64-bit words.
281 * Source:
282 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
283 * Originally from Public Domain.
284 */
285
286 static const uint8_t BitReverseTable256[256] =
287 {
288 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
289 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
290 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
291 R6(0), R6(2), R6(1), R6(3)
292 };
293 #undef R2
294 #undef R4
295 #undef R6
296
297 static
298 uint8_t bit_reverse_u8(uint8_t v)
299 {
300 return BitReverseTable256[v];
301 }
302
303 static __attribute__((unused))
304 uint32_t bit_reverse_u32(uint32_t v)
305 {
306 return ((uint32_t) bit_reverse_u8(v) << 24) |
307 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
308 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
309 ((uint32_t) bit_reverse_u8(v >> 24));
310 }
311
312 static __attribute__((unused))
313 uint64_t bit_reverse_u64(uint64_t v)
314 {
315 return ((uint64_t) bit_reverse_u8(v) << 56) |
316 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
317 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
318 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
319 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
320 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
321 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
322 ((uint64_t) bit_reverse_u8(v >> 56));
323 }
324
325 static
326 unsigned long bit_reverse_ulong(unsigned long v)
327 {
328 #if (CAA_BITS_PER_LONG == 32)
329 return bit_reverse_u32(v);
330 #else
331 return bit_reverse_u64(v);
332 #endif
333 }
334
335 /*
336 * fls: returns the position of the most significant bit.
337 * Returns 0 if no bit is set, else returns the position of the most
338 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
339 */
340 #if defined(__i386) || defined(__x86_64)
341 static inline
342 unsigned int fls_u32(uint32_t x)
343 {
344 int r;
345
346 asm("bsrl %1,%0\n\t"
347 "jnz 1f\n\t"
348 "movl $-1,%0\n\t"
349 "1:\n\t"
350 : "=r" (r) : "rm" (x));
351 return r + 1;
352 }
353 #define HAS_FLS_U32
354 #endif
355
356 #if defined(__x86_64)
357 static inline
358 unsigned int fls_u64(uint64_t x)
359 {
360 long r;
361
362 asm("bsrq %1,%0\n\t"
363 "jnz 1f\n\t"
364 "movq $-1,%0\n\t"
365 "1:\n\t"
366 : "=r" (r) : "rm" (x));
367 return r + 1;
368 }
369 #define HAS_FLS_U64
370 #endif
371
372 #ifndef HAS_FLS_U64
373 static __attribute__((unused))
374 unsigned int fls_u64(uint64_t x)
375 {
376 unsigned int r = 64;
377
378 if (!x)
379 return 0;
380
381 if (!(x & 0xFFFFFFFF00000000ULL)) {
382 x <<= 32;
383 r -= 32;
384 }
385 if (!(x & 0xFFFF000000000000ULL)) {
386 x <<= 16;
387 r -= 16;
388 }
389 if (!(x & 0xFF00000000000000ULL)) {
390 x <<= 8;
391 r -= 8;
392 }
393 if (!(x & 0xF000000000000000ULL)) {
394 x <<= 4;
395 r -= 4;
396 }
397 if (!(x & 0xC000000000000000ULL)) {
398 x <<= 2;
399 r -= 2;
400 }
401 if (!(x & 0x8000000000000000ULL)) {
402 x <<= 1;
403 r -= 1;
404 }
405 return r;
406 }
407 #endif
408
409 #ifndef HAS_FLS_U32
410 static __attribute__((unused))
411 unsigned int fls_u32(uint32_t x)
412 {
413 unsigned int r = 32;
414
415 if (!x)
416 return 0;
417 if (!(x & 0xFFFF0000U)) {
418 x <<= 16;
419 r -= 16;
420 }
421 if (!(x & 0xFF000000U)) {
422 x <<= 8;
423 r -= 8;
424 }
425 if (!(x & 0xF0000000U)) {
426 x <<= 4;
427 r -= 4;
428 }
429 if (!(x & 0xC0000000U)) {
430 x <<= 2;
431 r -= 2;
432 }
433 if (!(x & 0x80000000U)) {
434 x <<= 1;
435 r -= 1;
436 }
437 return r;
438 }
439 #endif
440
441 unsigned int fls_ulong(unsigned long x)
442 {
443 #if (CAA_BITS_PER_lONG == 32)
444 return fls_u32(x);
445 #else
446 return fls_u64(x);
447 #endif
448 }
449
450 int get_count_order_u32(uint32_t x)
451 {
452 int order;
453
454 order = fls_u32(x) - 1;
455 if (x & (x - 1))
456 order++;
457 return order;
458 }
459
460 int get_count_order_ulong(unsigned long x)
461 {
462 int order;
463
464 order = fls_ulong(x) - 1;
465 if (x & (x - 1))
466 order++;
467 return order;
468 }
469
470 #ifdef POISON_FREE
471 #define poison_free(ptr) \
472 do { \
473 memset(ptr, 0x42, sizeof(*(ptr))); \
474 free(ptr); \
475 } while (0)
476 #else
477 #define poison_free(ptr) free(ptr)
478 #endif
479
480 static
481 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
482
483 /*
484 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
485 * available, then we support hash table item accounting.
486 * In the unfortunate event the number of CPUs reported would be
487 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
488 */
489 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
490
491 static
492 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
493 unsigned long count);
494
495 static long nr_cpus_mask = -1;
496
497 static
498 struct ht_items_count *alloc_per_cpu_items_count(void)
499 {
500 struct ht_items_count *count;
501
502 switch (nr_cpus_mask) {
503 case -2:
504 return NULL;
505 case -1:
506 {
507 long maxcpus;
508
509 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
510 if (maxcpus <= 0) {
511 nr_cpus_mask = -2;
512 return NULL;
513 }
514 /*
515 * round up number of CPUs to next power of two, so we
516 * can use & for modulo.
517 */
518 maxcpus = 1UL << get_count_order_ulong(maxcpus);
519 nr_cpus_mask = maxcpus - 1;
520 }
521 /* Fall-through */
522 default:
523 return calloc(nr_cpus_mask + 1, sizeof(*count));
524 }
525 }
526
527 static
528 void free_per_cpu_items_count(struct ht_items_count *count)
529 {
530 poison_free(count);
531 }
532
533 static
534 int ht_get_cpu(void)
535 {
536 int cpu;
537
538 assert(nr_cpus_mask >= 0);
539 cpu = sched_getcpu();
540 if (unlikely(cpu < 0))
541 return cpu;
542 else
543 return cpu & nr_cpus_mask;
544 }
545
546 static
547 void ht_count_add(struct cds_lfht *ht, unsigned long size)
548 {
549 unsigned long percpu_count;
550 int cpu;
551
552 if (unlikely(!ht->percpu_count))
553 return;
554 cpu = ht_get_cpu();
555 if (unlikely(cpu < 0))
556 return;
557 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
558 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
559 long count;
560
561 dbg_printf("add percpu %lu\n", percpu_count);
562 count = uatomic_add_return(&ht->count,
563 1UL << COUNT_COMMIT_ORDER);
564 /* If power of 2 */
565 if (!(count & (count - 1))) {
566 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
567 return;
568 dbg_printf("add set global %ld\n", count);
569 /*
570 * Don't resize table if the number of nodes is below a
571 * certain threshold.
572 */
573 if (count < (1UL << COUNT_COMMIT_ORDER))
574 return;
575 cds_lfht_resize_lazy_count(ht, size,
576 count >> (CHAIN_LEN_TARGET - 1));
577 }
578 }
579 }
580
581 static
582 void ht_count_del(struct cds_lfht *ht, unsigned long size)
583 {
584 unsigned long percpu_count;
585 int cpu;
586
587 if (unlikely(!ht->percpu_count))
588 return;
589 cpu = ht_get_cpu();
590 if (unlikely(cpu < 0))
591 return;
592 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].del, 1);
593 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
594 long count;
595
596 dbg_printf("del percpu %lu\n", percpu_count);
597 count = uatomic_add_return(&ht->count,
598 -(1UL << COUNT_COMMIT_ORDER));
599 /* If power of 2 */
600 if (!(count & (count - 1))) {
601 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
602 return;
603 dbg_printf("del set global %ld\n", count);
604 /*
605 * Don't resize table if the number of nodes is below a
606 * certain threshold.
607 */
608 if (count < (1UL << COUNT_COMMIT_ORDER))
609 return;
610 cds_lfht_resize_lazy_count(ht, size,
611 count >> (CHAIN_LEN_TARGET - 1));
612 }
613 }
614 }
615
616 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
617
618 static const long nr_cpus_mask = -1;
619
620 static
621 struct ht_items_count *alloc_per_cpu_items_count(void)
622 {
623 return NULL;
624 }
625
626 static
627 void free_per_cpu_items_count(struct ht_items_count *count)
628 {
629 }
630
631 static
632 void ht_count_add(struct cds_lfht *ht, unsigned long size)
633 {
634 }
635
636 static
637 void ht_count_del(struct cds_lfht *ht, unsigned long size)
638 {
639 }
640
641 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
642
643
644 static
645 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
646 {
647 unsigned long count;
648
649 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
650 return;
651 count = uatomic_read(&ht->count);
652 /*
653 * Use bucket-local length for small table expand and for
654 * environments lacking per-cpu data support.
655 */
656 if (count >= (1UL << COUNT_COMMIT_ORDER))
657 return;
658 if (chain_len > 100)
659 dbg_printf("WARNING: large chain length: %u.\n",
660 chain_len);
661 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
662 cds_lfht_resize_lazy(ht, size,
663 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
664 }
665
666 static
667 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
668 {
669 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
670 }
671
672 static
673 int is_removed(struct cds_lfht_node *node)
674 {
675 return ((unsigned long) node) & REMOVED_FLAG;
676 }
677
678 static
679 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
680 {
681 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
682 }
683
684 static
685 int is_dummy(struct cds_lfht_node *node)
686 {
687 return ((unsigned long) node) & DUMMY_FLAG;
688 }
689
690 static
691 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
692 {
693 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
694 }
695
696 static
697 struct cds_lfht_node *get_end(void)
698 {
699 return (struct cds_lfht_node *) END_VALUE;
700 }
701
702 static
703 int is_end(struct cds_lfht_node *node)
704 {
705 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
706 }
707
708 static
709 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
710 {
711 unsigned long old1, old2;
712
713 old1 = uatomic_read(ptr);
714 do {
715 old2 = old1;
716 if (old2 >= v)
717 return old2;
718 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
719 return v;
720 }
721
722 static
723 void cds_lfht_free_level(struct rcu_head *head)
724 {
725 struct rcu_level *l =
726 caa_container_of(head, struct rcu_level, head);
727 poison_free(l);
728 }
729
730 /*
731 * Remove all logically deleted nodes from a bucket up to a certain node key.
732 */
733 static
734 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
735 {
736 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
737
738 assert(!is_dummy(dummy));
739 assert(!is_removed(dummy));
740 assert(!is_dummy(node));
741 assert(!is_removed(node));
742 for (;;) {
743 iter_prev = dummy;
744 /* We can always skip the dummy node initially */
745 iter = rcu_dereference(iter_prev->p.next);
746 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
747 /*
748 * We should never be called with dummy (start of chain)
749 * and logically removed node (end of path compression
750 * marker) being the actual same node. This would be a
751 * bug in the algorithm implementation.
752 */
753 assert(dummy != node);
754 for (;;) {
755 if (unlikely(is_end(iter)))
756 return;
757 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
758 return;
759 next = rcu_dereference(clear_flag(iter)->p.next);
760 if (likely(is_removed(next)))
761 break;
762 iter_prev = clear_flag(iter);
763 iter = next;
764 }
765 assert(!is_removed(iter));
766 if (is_dummy(iter))
767 new_next = flag_dummy(clear_flag(next));
768 else
769 new_next = clear_flag(next);
770 if (is_removed(iter))
771 new_next = flag_removed(new_next);
772 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
773 }
774 return;
775 }
776
777 static
778 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
779 unsigned long size,
780 struct cds_lfht_node *node,
781 enum add_mode mode, int dummy)
782 {
783 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
784 *dummy_node, *return_node;
785 struct _cds_lfht_node *lookup;
786 unsigned long hash, index, order;
787
788 assert(!is_dummy(node));
789 assert(!is_removed(node));
790 if (!size) {
791 assert(dummy);
792 node->p.next = flag_dummy(get_end());
793 return node; /* Initial first add (head) */
794 }
795 hash = bit_reverse_ulong(node->p.reverse_hash);
796 for (;;) {
797 uint32_t chain_len = 0;
798
799 /*
800 * iter_prev points to the non-removed node prior to the
801 * insert location.
802 */
803 index = hash & (size - 1);
804 order = get_count_order_ulong(index + 1);
805 lookup = &ht->t.tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
806 iter_prev = (struct cds_lfht_node *) lookup;
807 /* We can always skip the dummy node initially */
808 iter = rcu_dereference(iter_prev->p.next);
809 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
810 for (;;) {
811 if (unlikely(is_end(iter)))
812 goto insert;
813 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
814 goto insert;
815 next = rcu_dereference(clear_flag(iter)->p.next);
816 if (unlikely(is_removed(next)))
817 goto gc_node;
818 if ((mode == ADD_UNIQUE || mode == ADD_REPLACE)
819 && !is_dummy(next)
820 && !ht->compare_fct(node->key, node->key_len,
821 clear_flag(iter)->key,
822 clear_flag(iter)->key_len)) {
823 if (mode == ADD_UNIQUE)
824 return clear_flag(iter);
825 else /* mode == ADD_REPLACE */
826 goto replace;
827 }
828 /* Only account for identical reverse hash once */
829 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
830 && !is_dummy(next))
831 check_resize(ht, size, ++chain_len);
832 iter_prev = clear_flag(iter);
833 iter = next;
834 }
835
836 insert:
837 assert(node != clear_flag(iter));
838 assert(!is_removed(iter_prev));
839 assert(!is_removed(iter));
840 assert(iter_prev != node);
841 if (!dummy)
842 node->p.next = clear_flag(iter);
843 else
844 node->p.next = flag_dummy(clear_flag(iter));
845 if (is_dummy(iter))
846 new_node = flag_dummy(node);
847 else
848 new_node = node;
849 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
850 new_node) != iter) {
851 continue; /* retry */
852 } else {
853 if (mode == ADD_REPLACE)
854 return_node = NULL;
855 else /* ADD_DEFAULT and ADD_UNIQUE */
856 return_node = node;
857 goto gc_end;
858 }
859
860 replace:
861 /* Insert after node to be replaced */
862 iter_prev = clear_flag(iter);
863 iter = next;
864 assert(node != clear_flag(iter));
865 assert(!is_removed(iter_prev));
866 assert(!is_removed(iter));
867 assert(iter_prev != node);
868 assert(!dummy);
869 node->p.next = clear_flag(iter);
870 if (is_dummy(iter))
871 new_node = flag_dummy(node);
872 else
873 new_node = node;
874 /*
875 * Here is the whole trick for lock-free replace: we add
876 * the replacement node _after_ the node we want to
877 * replace by atomically setting its next pointer at the
878 * same time we set its removal flag. Given that
879 * the lookups/get next use an iterator aware of the
880 * next pointer, they will either skip the old node due
881 * to the removal flag and see the new node, or use
882 * the old node, but will not see the new one.
883 */
884 new_node = flag_removed(new_node);
885 if (uatomic_cmpxchg(&iter_prev->p.next,
886 iter, new_node) != iter) {
887 continue; /* retry */
888 } else {
889 return_node = iter_prev;
890 goto gc_end;
891 }
892
893 gc_node:
894 assert(!is_removed(iter));
895 if (is_dummy(iter))
896 new_next = flag_dummy(clear_flag(next));
897 else
898 new_next = clear_flag(next);
899 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
900 /* retry */
901 }
902 gc_end:
903 /* Garbage collect logically removed nodes in the bucket */
904 index = hash & (size - 1);
905 order = get_count_order_ulong(index + 1);
906 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
907 dummy_node = (struct cds_lfht_node *) lookup;
908 _cds_lfht_gc_bucket(dummy_node, node);
909 return return_node;
910 }
911
912 static
913 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
914 struct cds_lfht_node *node,
915 int dummy_removal)
916 {
917 struct cds_lfht_node *dummy, *next, *old;
918 struct _cds_lfht_node *lookup;
919 int flagged = 0;
920 unsigned long hash, index, order;
921
922 /* logically delete the node */
923 assert(!is_dummy(node));
924 assert(!is_removed(node));
925 old = rcu_dereference(node->p.next);
926 do {
927 struct cds_lfht_node *new_next;
928
929 next = old;
930 if (unlikely(is_removed(next)))
931 goto end;
932 if (dummy_removal)
933 assert(is_dummy(next));
934 else
935 assert(!is_dummy(next));
936 new_next = flag_removed(next);
937 old = uatomic_cmpxchg(&node->p.next, next, new_next);
938 } while (old != next);
939
940 /* We performed the (logical) deletion. */
941 flagged = 1;
942
943 /*
944 * Ensure that the node is not visible to readers anymore: lookup for
945 * the node, and remove it (along with any other logically removed node)
946 * if found.
947 */
948 hash = bit_reverse_ulong(node->p.reverse_hash);
949 assert(size > 0);
950 index = hash & (size - 1);
951 order = get_count_order_ulong(index + 1);
952 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
953 dummy = (struct cds_lfht_node *) lookup;
954 _cds_lfht_gc_bucket(dummy, node);
955 end:
956 /*
957 * Only the flagging action indicated that we (and no other)
958 * removed the node from the hash.
959 */
960 if (flagged) {
961 assert(is_removed(rcu_dereference(node->p.next)));
962 return 0;
963 } else
964 return -ENOENT;
965 }
966
967 static
968 void *partition_resize_thread(void *arg)
969 {
970 struct partition_resize_work *work = arg;
971
972 work->ht->cds_lfht_rcu_register_thread();
973 work->fct(work->ht, work->i, work->start, work->len);
974 work->ht->cds_lfht_rcu_unregister_thread();
975 return NULL;
976 }
977
978 static
979 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
980 unsigned long len,
981 void (*fct)(struct cds_lfht *ht, unsigned long i,
982 unsigned long start, unsigned long len))
983 {
984 unsigned long partition_len;
985 struct partition_resize_work *work;
986 int thread, ret;
987 unsigned long nr_threads;
988 pthread_t *thread_id;
989
990 /*
991 * Note: nr_cpus_mask + 1 is always power of 2.
992 * We spawn just the number of threads we need to satisfy the minimum
993 * partition size, up to the number of CPUs in the system.
994 */
995 nr_threads = min(nr_cpus_mask + 1,
996 len >> MIN_PARTITION_PER_THREAD_ORDER);
997 partition_len = len >> get_count_order_ulong(nr_threads);
998 work = calloc(nr_threads, sizeof(*work));
999 thread_id = calloc(nr_threads, sizeof(*thread_id));
1000 assert(work);
1001 for (thread = 0; thread < nr_threads; thread++) {
1002 work[thread].ht = ht;
1003 work[thread].i = i;
1004 work[thread].len = partition_len;
1005 work[thread].start = thread * partition_len;
1006 work[thread].fct = fct;
1007 ret = pthread_create(&thread_id[thread], ht->resize_attr,
1008 partition_resize_thread, &work[thread]);
1009 assert(!ret);
1010 }
1011 for (thread = 0; thread < nr_threads; thread++) {
1012 ret = pthread_join(thread_id[thread], NULL);
1013 assert(!ret);
1014 }
1015 free(work);
1016 free(thread_id);
1017 }
1018
1019 /*
1020 * Holding RCU read lock to protect _cds_lfht_add against memory
1021 * reclaim that could be performed by other call_rcu worker threads (ABA
1022 * problem).
1023 *
1024 * When we reach a certain length, we can split this population phase over
1025 * many worker threads, based on the number of CPUs available in the system.
1026 * This should therefore take care of not having the expand lagging behind too
1027 * many concurrent insertion threads by using the scheduler's ability to
1028 * schedule dummy node population fairly with insertions.
1029 */
1030 static
1031 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1032 unsigned long start, unsigned long len)
1033 {
1034 unsigned long j;
1035
1036 ht->cds_lfht_rcu_read_lock();
1037 for (j = start; j < start + len; j++) {
1038 struct cds_lfht_node *new_node =
1039 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1040
1041 dbg_printf("init populate: i %lu j %lu hash %lu\n",
1042 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1043 new_node->p.reverse_hash =
1044 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1045 (void) _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
1046 new_node, ADD_DEFAULT, 1);
1047 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1048 break;
1049 }
1050 ht->cds_lfht_rcu_read_unlock();
1051 }
1052
1053 static
1054 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1055 unsigned long len)
1056 {
1057 assert(nr_cpus_mask != -1);
1058 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1059 ht->cds_lfht_rcu_thread_online();
1060 init_table_populate_partition(ht, i, 0, len);
1061 ht->cds_lfht_rcu_thread_offline();
1062 return;
1063 }
1064 partition_resize_helper(ht, i, len, init_table_populate_partition);
1065 }
1066
1067 static
1068 void init_table(struct cds_lfht *ht,
1069 unsigned long first_order, unsigned long len_order)
1070 {
1071 unsigned long i, end_order;
1072
1073 dbg_printf("init table: first_order %lu end_order %lu\n",
1074 first_order, first_order + len_order);
1075 end_order = first_order + len_order;
1076 for (i = first_order; i < end_order; i++) {
1077 unsigned long len;
1078
1079 len = !i ? 1 : 1UL << (i - 1);
1080 dbg_printf("init order %lu len: %lu\n", i, len);
1081
1082 /* Stop expand if the resize target changes under us */
1083 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
1084 break;
1085
1086 ht->t.tbl[i] = calloc(1, sizeof(struct rcu_level)
1087 + (len * sizeof(struct _cds_lfht_node)));
1088 assert(ht->t.tbl[i]);
1089
1090 /*
1091 * Set all dummy nodes reverse hash values for a level and
1092 * link all dummy nodes into the table.
1093 */
1094 init_table_populate(ht, i, len);
1095
1096 /*
1097 * Update table size.
1098 */
1099 cmm_smp_wmb(); /* populate data before RCU size */
1100 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
1101
1102 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
1103 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1104 break;
1105 }
1106 }
1107
1108 /*
1109 * Holding RCU read lock to protect _cds_lfht_remove against memory
1110 * reclaim that could be performed by other call_rcu worker threads (ABA
1111 * problem).
1112 * For a single level, we logically remove and garbage collect each node.
1113 *
1114 * As a design choice, we perform logical removal and garbage collection on a
1115 * node-per-node basis to simplify this algorithm. We also assume keeping good
1116 * cache locality of the operation would overweight possible performance gain
1117 * that could be achieved by batching garbage collection for multiple levels.
1118 * However, this would have to be justified by benchmarks.
1119 *
1120 * Concurrent removal and add operations are helping us perform garbage
1121 * collection of logically removed nodes. We guarantee that all logically
1122 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1123 * invoked to free a hole level of dummy nodes (after a grace period).
1124 *
1125 * Logical removal and garbage collection can therefore be done in batch or on a
1126 * node-per-node basis, as long as the guarantee above holds.
1127 *
1128 * When we reach a certain length, we can split this removal over many worker
1129 * threads, based on the number of CPUs available in the system. This should
1130 * take care of not letting resize process lag behind too many concurrent
1131 * updater threads actively inserting into the hash table.
1132 */
1133 static
1134 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1135 unsigned long start, unsigned long len)
1136 {
1137 unsigned long j;
1138
1139 ht->cds_lfht_rcu_read_lock();
1140 for (j = start; j < start + len; j++) {
1141 struct cds_lfht_node *fini_node =
1142 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1143
1144 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1145 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1146 fini_node->p.reverse_hash =
1147 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1148 (void) _cds_lfht_del(ht, !i ? 0 : (1UL << (i - 1)),
1149 fini_node, 1);
1150 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1151 break;
1152 }
1153 ht->cds_lfht_rcu_read_unlock();
1154 }
1155
1156 static
1157 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1158 {
1159
1160 assert(nr_cpus_mask != -1);
1161 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1162 ht->cds_lfht_rcu_thread_online();
1163 remove_table_partition(ht, i, 0, len);
1164 ht->cds_lfht_rcu_thread_offline();
1165 return;
1166 }
1167 partition_resize_helper(ht, i, len, remove_table_partition);
1168 }
1169
1170 static
1171 void fini_table(struct cds_lfht *ht,
1172 unsigned long first_order, unsigned long len_order)
1173 {
1174 long i, end_order;
1175
1176 dbg_printf("fini table: first_order %lu end_order %lu\n",
1177 first_order, first_order + len_order);
1178 end_order = first_order + len_order;
1179 assert(first_order > 0);
1180 for (i = end_order - 1; i >= first_order; i--) {
1181 unsigned long len;
1182
1183 len = !i ? 1 : 1UL << (i - 1);
1184 dbg_printf("fini order %lu len: %lu\n", i, len);
1185
1186 /* Stop shrink if the resize target changes under us */
1187 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1188 break;
1189
1190 cmm_smp_wmb(); /* populate data before RCU size */
1191 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1192
1193 /*
1194 * We need to wait for all add operations to reach Q.S. (and
1195 * thus use the new table for lookups) before we can start
1196 * releasing the old dummy nodes. Otherwise their lookup will
1197 * return a logically removed node as insert position.
1198 */
1199 ht->cds_lfht_synchronize_rcu();
1200
1201 /*
1202 * Set "removed" flag in dummy nodes about to be removed.
1203 * Unlink all now-logically-removed dummy node pointers.
1204 * Concurrent add/remove operation are helping us doing
1205 * the gc.
1206 */
1207 remove_table(ht, i, len);
1208
1209 ht->cds_lfht_call_rcu(&ht->t.tbl[i]->head, cds_lfht_free_level);
1210
1211 dbg_printf("fini new size: %lu\n", 1UL << i);
1212 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1213 break;
1214 }
1215 }
1216
1217 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1218 cds_lfht_compare_fct compare_fct,
1219 unsigned long hash_seed,
1220 unsigned long init_size,
1221 int flags,
1222 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1223 void (*func)(struct rcu_head *head)),
1224 void (*cds_lfht_synchronize_rcu)(void),
1225 void (*cds_lfht_rcu_read_lock)(void),
1226 void (*cds_lfht_rcu_read_unlock)(void),
1227 void (*cds_lfht_rcu_thread_offline)(void),
1228 void (*cds_lfht_rcu_thread_online)(void),
1229 void (*cds_lfht_rcu_register_thread)(void),
1230 void (*cds_lfht_rcu_unregister_thread)(void),
1231 pthread_attr_t *attr)
1232 {
1233 struct cds_lfht *ht;
1234 unsigned long order;
1235
1236 /* init_size must be power of two */
1237 if (init_size && (init_size & (init_size - 1)))
1238 return NULL;
1239 ht = calloc(1, sizeof(struct cds_lfht));
1240 assert(ht);
1241 ht->hash_fct = hash_fct;
1242 ht->compare_fct = compare_fct;
1243 ht->hash_seed = hash_seed;
1244 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1245 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1246 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1247 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1248 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1249 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1250 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1251 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1252 ht->resize_attr = attr;
1253 ht->percpu_count = alloc_per_cpu_items_count();
1254 /* this mutex should not nest in read-side C.S. */
1255 pthread_mutex_init(&ht->resize_mutex, NULL);
1256 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1257 ht->flags = flags;
1258 ht->cds_lfht_rcu_thread_offline();
1259 pthread_mutex_lock(&ht->resize_mutex);
1260 ht->t.resize_target = 1UL << (order - 1);
1261 init_table(ht, 0, order);
1262 pthread_mutex_unlock(&ht->resize_mutex);
1263 ht->cds_lfht_rcu_thread_online();
1264 return ht;
1265 }
1266
1267 void cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len,
1268 struct cds_lfht_iter *iter)
1269 {
1270 struct cds_lfht_node *node, *next, *dummy_node;
1271 struct _cds_lfht_node *lookup;
1272 unsigned long hash, reverse_hash, index, order, size;
1273
1274 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1275 reverse_hash = bit_reverse_ulong(hash);
1276
1277 size = rcu_dereference(ht->t.size);
1278 index = hash & (size - 1);
1279 order = get_count_order_ulong(index + 1);
1280 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
1281 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
1282 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
1283 dummy_node = (struct cds_lfht_node *) lookup;
1284 /* We can always skip the dummy node initially */
1285 node = rcu_dereference(dummy_node->p.next);
1286 node = clear_flag(node);
1287 for (;;) {
1288 if (unlikely(is_end(node))) {
1289 node = NULL;
1290 break;
1291 }
1292 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1293 node = NULL;
1294 break;
1295 }
1296 next = rcu_dereference(node->p.next);
1297 if (likely(!is_removed(next))
1298 && !is_dummy(next)
1299 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1300 break;
1301 }
1302 node = clear_flag(next);
1303 }
1304 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1305 iter->node = node;
1306 iter->next = next;
1307 }
1308
1309 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1310 {
1311 struct cds_lfht_node *node, *next;
1312 unsigned long reverse_hash;
1313 void *key;
1314 size_t key_len;
1315
1316 node = iter->node;
1317 reverse_hash = node->p.reverse_hash;
1318 key = node->key;
1319 key_len = node->key_len;
1320 next = iter->next;
1321 node = clear_flag(next);
1322
1323 for (;;) {
1324 if (unlikely(is_end(node))) {
1325 node = NULL;
1326 break;
1327 }
1328 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1329 node = NULL;
1330 break;
1331 }
1332 next = rcu_dereference(node->p.next);
1333 if (likely(!is_removed(next))
1334 && !is_dummy(next)
1335 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1336 break;
1337 }
1338 node = clear_flag(next);
1339 }
1340 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1341 iter->node = node;
1342 iter->next = next;
1343 }
1344
1345 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1346 {
1347 unsigned long hash, size;
1348
1349 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1350 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1351
1352 size = rcu_dereference(ht->t.size);
1353 (void) _cds_lfht_add(ht, size, node, ADD_DEFAULT, 0);
1354 ht_count_add(ht, size);
1355 }
1356
1357 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1358 struct cds_lfht_node *node)
1359 {
1360 unsigned long hash, size;
1361 struct cds_lfht_node *ret;
1362
1363 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1364 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1365
1366 size = rcu_dereference(ht->t.size);
1367 ret = _cds_lfht_add(ht, size, node, ADD_UNIQUE, 0);
1368 if (ret == node)
1369 ht_count_add(ht, size);
1370 return ret;
1371 }
1372
1373 struct cds_lfht_node *cds_lfht_replace(struct cds_lfht *ht,
1374 struct cds_lfht_node *node)
1375 {
1376 unsigned long hash, size;
1377 struct cds_lfht_node *ret;
1378
1379 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1380 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1381
1382 size = rcu_dereference(ht->t.size);
1383 ret = _cds_lfht_add(ht, size, node, ADD_REPLACE, 0);
1384 if (ret == NULL)
1385 ht_count_add(ht, size);
1386 return ret;
1387 }
1388
1389 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1390 {
1391 unsigned long size;
1392 int ret;
1393
1394 size = rcu_dereference(ht->t.size);
1395 ret = _cds_lfht_del(ht, size, node, 0);
1396 if (!ret)
1397 ht_count_del(ht, size);
1398 return ret;
1399 }
1400
1401 static
1402 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1403 {
1404 struct cds_lfht_node *node;
1405 struct _cds_lfht_node *lookup;
1406 unsigned long order, i, size;
1407
1408 /* Check that the table is empty */
1409 lookup = &ht->t.tbl[0]->nodes[0];
1410 node = (struct cds_lfht_node *) lookup;
1411 do {
1412 node = clear_flag(node)->p.next;
1413 if (!is_dummy(node))
1414 return -EPERM;
1415 assert(!is_removed(node));
1416 } while (!is_end(node));
1417 /*
1418 * size accessed without rcu_dereference because hash table is
1419 * being destroyed.
1420 */
1421 size = ht->t.size;
1422 /* Internal sanity check: all nodes left should be dummy */
1423 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1424 unsigned long len;
1425
1426 len = !order ? 1 : 1UL << (order - 1);
1427 for (i = 0; i < len; i++) {
1428 dbg_printf("delete order %lu i %lu hash %lu\n",
1429 order, i,
1430 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1431 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1432 }
1433 poison_free(ht->t.tbl[order]);
1434 }
1435 return 0;
1436 }
1437
1438 /*
1439 * Should only be called when no more concurrent readers nor writers can
1440 * possibly access the table.
1441 */
1442 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1443 {
1444 int ret;
1445
1446 /* Wait for in-flight resize operations to complete */
1447 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1448 while (uatomic_read(&ht->in_progress_resize))
1449 poll(NULL, 0, 100); /* wait for 100ms */
1450 ret = cds_lfht_delete_dummy(ht);
1451 if (ret)
1452 return ret;
1453 free_per_cpu_items_count(ht->percpu_count);
1454 if (attr)
1455 *attr = ht->resize_attr;
1456 poison_free(ht);
1457 return ret;
1458 }
1459
1460 void cds_lfht_count_nodes(struct cds_lfht *ht,
1461 unsigned long *approx_before,
1462 unsigned long *count,
1463 unsigned long *removed,
1464 unsigned long *approx_after)
1465 {
1466 struct cds_lfht_node *node, *next;
1467 struct _cds_lfht_node *lookup;
1468 unsigned long nr_dummy = 0;
1469
1470 *approx_before = 0;
1471 if (nr_cpus_mask >= 0) {
1472 int i;
1473
1474 for (i = 0; i < nr_cpus_mask + 1; i++) {
1475 *approx_before += uatomic_read(&ht->percpu_count[i].add);
1476 *approx_before -= uatomic_read(&ht->percpu_count[i].del);
1477 }
1478 }
1479
1480 *count = 0;
1481 *removed = 0;
1482
1483 /* Count non-dummy nodes in the table */
1484 lookup = &ht->t.tbl[0]->nodes[0];
1485 node = (struct cds_lfht_node *) lookup;
1486 do {
1487 next = rcu_dereference(node->p.next);
1488 if (is_removed(next)) {
1489 if (!is_dummy(next))
1490 (*removed)++;
1491 else
1492 (nr_dummy)++;
1493 } else if (!is_dummy(next))
1494 (*count)++;
1495 else
1496 (nr_dummy)++;
1497 node = clear_flag(next);
1498 } while (!is_end(node));
1499 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1500 *approx_after = 0;
1501 if (nr_cpus_mask >= 0) {
1502 int i;
1503
1504 for (i = 0; i < nr_cpus_mask + 1; i++) {
1505 *approx_after += uatomic_read(&ht->percpu_count[i].add);
1506 *approx_after -= uatomic_read(&ht->percpu_count[i].del);
1507 }
1508 }
1509 }
1510
1511 /* called with resize mutex held */
1512 static
1513 void _do_cds_lfht_grow(struct cds_lfht *ht,
1514 unsigned long old_size, unsigned long new_size)
1515 {
1516 unsigned long old_order, new_order;
1517
1518 old_order = get_count_order_ulong(old_size) + 1;
1519 new_order = get_count_order_ulong(new_size) + 1;
1520 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1521 old_size, old_order, new_size, new_order);
1522 assert(new_size > old_size);
1523 init_table(ht, old_order, new_order - old_order);
1524 }
1525
1526 /* called with resize mutex held */
1527 static
1528 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1529 unsigned long old_size, unsigned long new_size)
1530 {
1531 unsigned long old_order, new_order;
1532
1533 new_size = max(new_size, MIN_TABLE_SIZE);
1534 old_order = get_count_order_ulong(old_size) + 1;
1535 new_order = get_count_order_ulong(new_size) + 1;
1536 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1537 old_size, old_order, new_size, new_order);
1538 assert(new_size < old_size);
1539
1540 /* Remove and unlink all dummy nodes to remove. */
1541 fini_table(ht, new_order, old_order - new_order);
1542 }
1543
1544
1545 /* called with resize mutex held */
1546 static
1547 void _do_cds_lfht_resize(struct cds_lfht *ht)
1548 {
1549 unsigned long new_size, old_size;
1550
1551 /*
1552 * Resize table, re-do if the target size has changed under us.
1553 */
1554 do {
1555 ht->t.resize_initiated = 1;
1556 old_size = ht->t.size;
1557 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1558 if (old_size < new_size)
1559 _do_cds_lfht_grow(ht, old_size, new_size);
1560 else if (old_size > new_size)
1561 _do_cds_lfht_shrink(ht, old_size, new_size);
1562 ht->t.resize_initiated = 0;
1563 /* write resize_initiated before read resize_target */
1564 cmm_smp_mb();
1565 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1566 }
1567
1568 static
1569 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1570 int growth_order)
1571 {
1572 return _uatomic_max(&ht->t.resize_target,
1573 size << growth_order);
1574 }
1575
1576 static
1577 void resize_target_update_count(struct cds_lfht *ht,
1578 unsigned long count)
1579 {
1580 count = max(count, MIN_TABLE_SIZE);
1581 uatomic_set(&ht->t.resize_target, count);
1582 }
1583
1584 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1585 {
1586 resize_target_update_count(ht, new_size);
1587 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1588 ht->cds_lfht_rcu_thread_offline();
1589 pthread_mutex_lock(&ht->resize_mutex);
1590 _do_cds_lfht_resize(ht);
1591 pthread_mutex_unlock(&ht->resize_mutex);
1592 ht->cds_lfht_rcu_thread_online();
1593 }
1594
1595 static
1596 void do_resize_cb(struct rcu_head *head)
1597 {
1598 struct rcu_resize_work *work =
1599 caa_container_of(head, struct rcu_resize_work, head);
1600 struct cds_lfht *ht = work->ht;
1601
1602 ht->cds_lfht_rcu_thread_offline();
1603 pthread_mutex_lock(&ht->resize_mutex);
1604 _do_cds_lfht_resize(ht);
1605 pthread_mutex_unlock(&ht->resize_mutex);
1606 ht->cds_lfht_rcu_thread_online();
1607 poison_free(work);
1608 cmm_smp_mb(); /* finish resize before decrement */
1609 uatomic_dec(&ht->in_progress_resize);
1610 }
1611
1612 static
1613 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1614 {
1615 struct rcu_resize_work *work;
1616 unsigned long target_size;
1617
1618 target_size = resize_target_update(ht, size, growth);
1619 /* Store resize_target before read resize_initiated */
1620 cmm_smp_mb();
1621 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1622 uatomic_inc(&ht->in_progress_resize);
1623 cmm_smp_mb(); /* increment resize count before calling it */
1624 work = malloc(sizeof(*work));
1625 work->ht = ht;
1626 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1627 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1628 }
1629 }
1630
1631 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1632
1633 static
1634 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1635 unsigned long count)
1636 {
1637 struct rcu_resize_work *work;
1638
1639 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1640 return;
1641 resize_target_update_count(ht, count);
1642 /* Store resize_target before read resize_initiated */
1643 cmm_smp_mb();
1644 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1645 uatomic_inc(&ht->in_progress_resize);
1646 cmm_smp_mb(); /* increment resize count before calling it */
1647 work = malloc(sizeof(*work));
1648 work->ht = ht;
1649 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1650 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1651 }
1652 }
1653
1654 #endif
This page took 0.065219 seconds and 5 git commands to generate.