rculfhash: put thread offline before taking mutex (fix G.P. deadlock)
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 /*
170 * Define the minimum table size. Protects against hash table resize overload
171 * when too many entries are added quickly before the resize can complete.
172 * This is especially the case if the table could be shrinked to a size of 1.
173 * TODO: we might want to make the add/remove operations help the resize to
174 * add or remove dummy nodes when a resize is ongoing to ensure upper-bound on
175 * chain length.
176 */
177 #define MIN_TABLE_SIZE 128
178
179 #if (CAA_BITS_PER_LONG == 32)
180 #define MAX_TABLE_ORDER 32
181 #else
182 #define MAX_TABLE_ORDER 64
183 #endif
184
185 #ifndef min
186 #define min(a, b) ((a) < (b) ? (a) : (b))
187 #endif
188
189 #ifndef max
190 #define max(a, b) ((a) > (b) ? (a) : (b))
191 #endif
192
193 /*
194 * The removed flag needs to be updated atomically with the pointer.
195 * The dummy flag does not require to be updated atomically with the
196 * pointer, but it is added as a pointer low bit flag to save space.
197 */
198 #define REMOVED_FLAG (1UL << 0)
199 #define DUMMY_FLAG (1UL << 1)
200 #define FLAGS_MASK ((1UL << 2) - 1)
201
202 struct ht_items_count {
203 unsigned long add, remove;
204 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
205
206 struct rcu_level {
207 struct rcu_head head;
208 struct _cds_lfht_node nodes[0];
209 };
210
211 struct rcu_table {
212 unsigned long size; /* always a power of 2, shared (RCU) */
213 unsigned long resize_target;
214 int resize_initiated;
215 struct rcu_level *tbl[MAX_TABLE_ORDER];
216 };
217
218 struct cds_lfht {
219 struct rcu_table t;
220 cds_lfht_hash_fct hash_fct;
221 cds_lfht_compare_fct compare_fct;
222 unsigned long hash_seed;
223 int flags;
224 /*
225 * We need to put the work threads offline (QSBR) when taking this
226 * mutex, because we use synchronize_rcu within this mutex critical
227 * section, which waits on read-side critical sections, and could
228 * therefore cause grace-period deadlock if we hold off RCU G.P.
229 * completion.
230 */
231 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
232 unsigned int in_progress_resize, in_progress_destroy;
233 void (*cds_lfht_call_rcu)(struct rcu_head *head,
234 void (*func)(struct rcu_head *head));
235 void (*cds_lfht_synchronize_rcu)(void);
236 void (*cds_lfht_rcu_read_lock)(void);
237 void (*cds_lfht_rcu_read_unlock)(void);
238 void (*cds_lfht_rcu_thread_offline)(void);
239 void (*cds_lfht_rcu_thread_online)(void);
240 unsigned long count; /* global approximate item count */
241 struct ht_items_count *percpu_count; /* per-cpu item count */
242 };
243
244 struct rcu_resize_work {
245 struct rcu_head head;
246 struct cds_lfht *ht;
247 };
248
249 /*
250 * Algorithm to reverse bits in a word by lookup table, extended to
251 * 64-bit words.
252 * Source:
253 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
254 * Originally from Public Domain.
255 */
256
257 static const uint8_t BitReverseTable256[256] =
258 {
259 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
260 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
261 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
262 R6(0), R6(2), R6(1), R6(3)
263 };
264 #undef R2
265 #undef R4
266 #undef R6
267
268 static
269 uint8_t bit_reverse_u8(uint8_t v)
270 {
271 return BitReverseTable256[v];
272 }
273
274 static __attribute__((unused))
275 uint32_t bit_reverse_u32(uint32_t v)
276 {
277 return ((uint32_t) bit_reverse_u8(v) << 24) |
278 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
279 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
280 ((uint32_t) bit_reverse_u8(v >> 24));
281 }
282
283 static __attribute__((unused))
284 uint64_t bit_reverse_u64(uint64_t v)
285 {
286 return ((uint64_t) bit_reverse_u8(v) << 56) |
287 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
288 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
289 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
290 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
291 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
292 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
293 ((uint64_t) bit_reverse_u8(v >> 56));
294 }
295
296 static
297 unsigned long bit_reverse_ulong(unsigned long v)
298 {
299 #if (CAA_BITS_PER_LONG == 32)
300 return bit_reverse_u32(v);
301 #else
302 return bit_reverse_u64(v);
303 #endif
304 }
305
306 /*
307 * fls: returns the position of the most significant bit.
308 * Returns 0 if no bit is set, else returns the position of the most
309 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
310 */
311 #if defined(__i386) || defined(__x86_64)
312 static inline
313 unsigned int fls_u32(uint32_t x)
314 {
315 int r;
316
317 asm("bsrl %1,%0\n\t"
318 "jnz 1f\n\t"
319 "movl $-1,%0\n\t"
320 "1:\n\t"
321 : "=r" (r) : "rm" (x));
322 return r + 1;
323 }
324 #define HAS_FLS_U32
325 #endif
326
327 #if defined(__x86_64)
328 static inline
329 unsigned int fls_u64(uint64_t x)
330 {
331 long r;
332
333 asm("bsrq %1,%0\n\t"
334 "jnz 1f\n\t"
335 "movq $-1,%0\n\t"
336 "1:\n\t"
337 : "=r" (r) : "rm" (x));
338 return r + 1;
339 }
340 #define HAS_FLS_U64
341 #endif
342
343 #ifndef HAS_FLS_U64
344 static __attribute__((unused))
345 unsigned int fls_u64(uint64_t x)
346 {
347 unsigned int r = 64;
348
349 if (!x)
350 return 0;
351
352 if (!(x & 0xFFFFFFFF00000000ULL)) {
353 x <<= 32;
354 r -= 32;
355 }
356 if (!(x & 0xFFFF000000000000ULL)) {
357 x <<= 16;
358 r -= 16;
359 }
360 if (!(x & 0xFF00000000000000ULL)) {
361 x <<= 8;
362 r -= 8;
363 }
364 if (!(x & 0xF000000000000000ULL)) {
365 x <<= 4;
366 r -= 4;
367 }
368 if (!(x & 0xC000000000000000ULL)) {
369 x <<= 2;
370 r -= 2;
371 }
372 if (!(x & 0x8000000000000000ULL)) {
373 x <<= 1;
374 r -= 1;
375 }
376 return r;
377 }
378 #endif
379
380 #ifndef HAS_FLS_U32
381 static __attribute__((unused))
382 unsigned int fls_u32(uint32_t x)
383 {
384 unsigned int r = 32;
385
386 if (!x)
387 return 0;
388 if (!(x & 0xFFFF0000U)) {
389 x <<= 16;
390 r -= 16;
391 }
392 if (!(x & 0xFF000000U)) {
393 x <<= 8;
394 r -= 8;
395 }
396 if (!(x & 0xF0000000U)) {
397 x <<= 4;
398 r -= 4;
399 }
400 if (!(x & 0xC0000000U)) {
401 x <<= 2;
402 r -= 2;
403 }
404 if (!(x & 0x80000000U)) {
405 x <<= 1;
406 r -= 1;
407 }
408 return r;
409 }
410 #endif
411
412 unsigned int fls_ulong(unsigned long x)
413 {
414 #if (CAA_BITS_PER_lONG == 32)
415 return fls_u32(x);
416 #else
417 return fls_u64(x);
418 #endif
419 }
420
421 int get_count_order_u32(uint32_t x)
422 {
423 int order;
424
425 order = fls_u32(x) - 1;
426 if (x & (x - 1))
427 order++;
428 return order;
429 }
430
431 int get_count_order_ulong(unsigned long x)
432 {
433 int order;
434
435 order = fls_ulong(x) - 1;
436 if (x & (x - 1))
437 order++;
438 return order;
439 }
440
441 #ifdef POISON_FREE
442 #define poison_free(ptr) \
443 do { \
444 memset(ptr, 0x42, sizeof(*(ptr))); \
445 free(ptr); \
446 } while (0)
447 #else
448 #define poison_free(ptr) free(ptr)
449 #endif
450
451 static
452 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
453
454 /*
455 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
456 * available, then we support hash table item accounting.
457 * In the unfortunate event the number of CPUs reported would be
458 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
459 */
460 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
461
462 static
463 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
464 unsigned long count);
465
466 static long nr_cpus_mask = -1;
467
468 static
469 struct ht_items_count *alloc_per_cpu_items_count(void)
470 {
471 struct ht_items_count *count;
472
473 switch (nr_cpus_mask) {
474 case -2:
475 return NULL;
476 case -1:
477 {
478 long maxcpus;
479
480 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
481 if (maxcpus <= 0) {
482 nr_cpus_mask = -2;
483 return NULL;
484 }
485 /*
486 * round up number of CPUs to next power of two, so we
487 * can use & for modulo.
488 */
489 maxcpus = 1UL << get_count_order_ulong(maxcpus);
490 nr_cpus_mask = maxcpus - 1;
491 }
492 /* Fall-through */
493 default:
494 return calloc(nr_cpus_mask + 1, sizeof(*count));
495 }
496 }
497
498 static
499 void free_per_cpu_items_count(struct ht_items_count *count)
500 {
501 poison_free(count);
502 }
503
504 static
505 int ht_get_cpu(void)
506 {
507 int cpu;
508
509 assert(nr_cpus_mask >= 0);
510 cpu = sched_getcpu();
511 if (unlikely(cpu < 0))
512 return cpu;
513 else
514 return cpu & nr_cpus_mask;
515 }
516
517 static
518 void ht_count_add(struct cds_lfht *ht, unsigned long size)
519 {
520 unsigned long percpu_count;
521 int cpu;
522
523 if (unlikely(!ht->percpu_count))
524 return;
525 cpu = ht_get_cpu();
526 if (unlikely(cpu < 0))
527 return;
528 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
529 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
530 unsigned long count;
531
532 dbg_printf("add percpu %lu\n", percpu_count);
533 count = uatomic_add_return(&ht->count,
534 1UL << COUNT_COMMIT_ORDER);
535 /* If power of 2 */
536 if (!(count & (count - 1))) {
537 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
538 return;
539 dbg_printf("add set global %lu\n", count);
540 cds_lfht_resize_lazy_count(ht, size,
541 count >> (CHAIN_LEN_TARGET - 1));
542 }
543 }
544 }
545
546 static
547 void ht_count_remove(struct cds_lfht *ht, unsigned long size)
548 {
549 unsigned long percpu_count;
550 int cpu;
551
552 if (unlikely(!ht->percpu_count))
553 return;
554 cpu = ht_get_cpu();
555 if (unlikely(cpu < 0))
556 return;
557 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].remove, -1);
558 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
559 unsigned long count;
560
561 dbg_printf("remove percpu %lu\n", percpu_count);
562 count = uatomic_add_return(&ht->count,
563 -(1UL << COUNT_COMMIT_ORDER));
564 /* If power of 2 */
565 if (!(count & (count - 1))) {
566 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
567 return;
568 dbg_printf("remove set global %lu\n", count);
569 cds_lfht_resize_lazy_count(ht, size,
570 count >> (CHAIN_LEN_TARGET - 1));
571 }
572 }
573 }
574
575 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
576
577 static const long nr_cpus_mask = -1;
578
579 static
580 struct ht_items_count *alloc_per_cpu_items_count(void)
581 {
582 return NULL;
583 }
584
585 static
586 void free_per_cpu_items_count(struct ht_items_count *count)
587 {
588 }
589
590 static
591 void ht_count_add(struct cds_lfht *ht, unsigned long size)
592 {
593 }
594
595 static
596 void ht_count_remove(struct cds_lfht *ht, unsigned long size)
597 {
598 }
599
600 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
601
602
603 static
604 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
605 {
606 unsigned long count;
607
608 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
609 return;
610 count = uatomic_read(&ht->count);
611 /*
612 * Use bucket-local length for small table expand and for
613 * environments lacking per-cpu data support.
614 */
615 if (count >= (1UL << COUNT_COMMIT_ORDER))
616 return;
617 if (chain_len > 100)
618 dbg_printf("WARNING: large chain length: %u.\n",
619 chain_len);
620 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
621 cds_lfht_resize_lazy(ht, size,
622 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
623 }
624
625 static
626 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
627 {
628 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
629 }
630
631 static
632 int is_removed(struct cds_lfht_node *node)
633 {
634 return ((unsigned long) node) & REMOVED_FLAG;
635 }
636
637 static
638 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
639 {
640 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
641 }
642
643 static
644 int is_dummy(struct cds_lfht_node *node)
645 {
646 return ((unsigned long) node) & DUMMY_FLAG;
647 }
648
649 static
650 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
651 {
652 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
653 }
654
655 static
656 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
657 {
658 unsigned long old1, old2;
659
660 old1 = uatomic_read(ptr);
661 do {
662 old2 = old1;
663 if (old2 >= v)
664 return old2;
665 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
666 return v;
667 }
668
669 static
670 void cds_lfht_free_level(struct rcu_head *head)
671 {
672 struct rcu_level *l =
673 caa_container_of(head, struct rcu_level, head);
674 poison_free(l);
675 }
676
677 /*
678 * Remove all logically deleted nodes from a bucket up to a certain node key.
679 */
680 static
681 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
682 {
683 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
684
685 assert(!is_dummy(dummy));
686 assert(!is_removed(dummy));
687 assert(!is_dummy(node));
688 assert(!is_removed(node));
689 for (;;) {
690 iter_prev = dummy;
691 /* We can always skip the dummy node initially */
692 iter = rcu_dereference(iter_prev->p.next);
693 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
694 /*
695 * We should never be called with dummy (start of chain)
696 * and logically removed node (end of path compression
697 * marker) being the actual same node. This would be a
698 * bug in the algorithm implementation.
699 */
700 assert(dummy != node);
701 for (;;) {
702 if (unlikely(!clear_flag(iter)))
703 return;
704 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
705 return;
706 next = rcu_dereference(clear_flag(iter)->p.next);
707 if (likely(is_removed(next)))
708 break;
709 iter_prev = clear_flag(iter);
710 iter = next;
711 }
712 assert(!is_removed(iter));
713 if (is_dummy(iter))
714 new_next = flag_dummy(clear_flag(next));
715 else
716 new_next = clear_flag(next);
717 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
718 }
719 }
720
721 static
722 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
723 unsigned long size,
724 struct cds_lfht_node *node,
725 int unique, int dummy)
726 {
727 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
728 *dummy_node;
729 struct _cds_lfht_node *lookup;
730 unsigned long hash, index, order;
731
732 assert(!is_dummy(node));
733 assert(!is_removed(node));
734 if (!size) {
735 assert(dummy);
736 node->p.next = flag_dummy(NULL);
737 return node; /* Initial first add (head) */
738 }
739 hash = bit_reverse_ulong(node->p.reverse_hash);
740 for (;;) {
741 uint32_t chain_len = 0;
742
743 /*
744 * iter_prev points to the non-removed node prior to the
745 * insert location.
746 */
747 index = hash & (size - 1);
748 order = get_count_order_ulong(index + 1);
749 lookup = &ht->t.tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
750 iter_prev = (struct cds_lfht_node *) lookup;
751 /* We can always skip the dummy node initially */
752 iter = rcu_dereference(iter_prev->p.next);
753 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
754 for (;;) {
755 /* TODO: check if removed */
756 if (unlikely(!clear_flag(iter)))
757 goto insert;
758 /* TODO: check if removed */
759 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
760 goto insert;
761 next = rcu_dereference(clear_flag(iter)->p.next);
762 if (unlikely(is_removed(next)))
763 goto gc_node;
764 if (unique
765 && !is_dummy(next)
766 && !ht->compare_fct(node->key, node->key_len,
767 clear_flag(iter)->key,
768 clear_flag(iter)->key_len))
769 return clear_flag(iter);
770 /* Only account for identical reverse hash once */
771 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
772 && !is_dummy(next))
773 check_resize(ht, size, ++chain_len);
774 iter_prev = clear_flag(iter);
775 iter = next;
776 }
777 insert:
778 assert(node != clear_flag(iter));
779 assert(!is_removed(iter_prev));
780 assert(!is_removed(iter));
781 assert(iter_prev != node);
782 if (!dummy)
783 node->p.next = clear_flag(iter);
784 else
785 node->p.next = flag_dummy(clear_flag(iter));
786 if (is_dummy(iter))
787 new_node = flag_dummy(node);
788 else
789 new_node = node;
790 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
791 new_node) != iter)
792 continue; /* retry */
793 else
794 goto gc_end;
795 gc_node:
796 assert(!is_removed(iter));
797 if (is_dummy(iter))
798 new_next = flag_dummy(clear_flag(next));
799 else
800 new_next = clear_flag(next);
801 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
802 /* retry */
803 }
804 gc_end:
805 /* Garbage collect logically removed nodes in the bucket */
806 index = hash & (size - 1);
807 order = get_count_order_ulong(index + 1);
808 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
809 dummy_node = (struct cds_lfht_node *) lookup;
810 _cds_lfht_gc_bucket(dummy_node, node);
811 return node;
812 }
813
814 static
815 int _cds_lfht_remove(struct cds_lfht *ht, unsigned long size,
816 struct cds_lfht_node *node,
817 int dummy_removal)
818 {
819 struct cds_lfht_node *dummy, *next, *old;
820 struct _cds_lfht_node *lookup;
821 int flagged = 0;
822 unsigned long hash, index, order;
823
824 /* logically delete the node */
825 assert(!is_dummy(node));
826 assert(!is_removed(node));
827 old = rcu_dereference(node->p.next);
828 do {
829 next = old;
830 if (unlikely(is_removed(next)))
831 goto end;
832 if (dummy_removal)
833 assert(is_dummy(next));
834 else
835 assert(!is_dummy(next));
836 old = uatomic_cmpxchg(&node->p.next, next,
837 flag_removed(next));
838 } while (old != next);
839
840 /* We performed the (logical) deletion. */
841 flagged = 1;
842
843 /*
844 * Ensure that the node is not visible to readers anymore: lookup for
845 * the node, and remove it (along with any other logically removed node)
846 * if found.
847 */
848 hash = bit_reverse_ulong(node->p.reverse_hash);
849 assert(size > 0);
850 index = hash & (size - 1);
851 order = get_count_order_ulong(index + 1);
852 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
853 dummy = (struct cds_lfht_node *) lookup;
854 _cds_lfht_gc_bucket(dummy, node);
855 end:
856 /*
857 * Only the flagging action indicated that we (and no other)
858 * removed the node from the hash.
859 */
860 if (flagged) {
861 assert(is_removed(rcu_dereference(node->p.next)));
862 return 0;
863 } else
864 return -ENOENT;
865 }
866
867 static
868 void init_table_hash(struct cds_lfht *ht, unsigned long i,
869 unsigned long len)
870 {
871 unsigned long j;
872
873 for (j = 0; j < len; j++) {
874 struct cds_lfht_node *new_node =
875 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
876
877 dbg_printf("init hash entry: i %lu j %lu hash %lu\n",
878 i, j, !i ? 0 : (1UL << (i - 1)) + j);
879 new_node->p.reverse_hash =
880 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
881 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
882 break;
883 }
884 }
885
886 static
887 void init_table_link(struct cds_lfht *ht, unsigned long i, unsigned long len)
888 {
889 unsigned long j;
890
891 ht->cds_lfht_rcu_thread_online();
892 ht->cds_lfht_rcu_read_lock();
893 for (j = 0; j < len; j++) {
894 struct cds_lfht_node *new_node =
895 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
896
897 dbg_printf("init link: i %lu j %lu hash %lu\n",
898 i, j, !i ? 0 : (1UL << (i - 1)) + j);
899 (void) _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
900 new_node, 0, 1);
901 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
902 break;
903 }
904 ht->cds_lfht_rcu_read_unlock();
905 ht->cds_lfht_rcu_thread_offline();
906 }
907
908 /*
909 * Holding RCU read lock to protect _cds_lfht_add against memory
910 * reclaim that could be performed by other call_rcu worker threads (ABA
911 * problem).
912 */
913 static
914 void init_table(struct cds_lfht *ht,
915 unsigned long first_order, unsigned long len_order)
916 {
917 unsigned long i, end_order;
918
919 dbg_printf("init table: first_order %lu end_order %lu\n",
920 first_order, first_order + len_order);
921 end_order = first_order + len_order;
922 for (i = first_order; i < end_order; i++) {
923 unsigned long len;
924
925 len = !i ? 1 : 1UL << (i - 1);
926 dbg_printf("init order %lu len: %lu\n", i, len);
927 ht->t.tbl[i] = calloc(1, sizeof(struct rcu_level)
928 + (len * sizeof(struct _cds_lfht_node)));
929
930 /* Set all dummy nodes reverse hash values for a level */
931 init_table_hash(ht, i, len);
932
933 /*
934 * Link all dummy nodes into the table. Concurrent
935 * add/remove are helping us.
936 */
937 init_table_link(ht, i, len);
938
939 /*
940 * Update table size (after init for now, because no
941 * concurrent updater help (TODO)).
942 */
943 cmm_smp_wmb(); /* populate data before RCU size */
944 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
945 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
946 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
947 break;
948 }
949 }
950
951 static
952 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
953 {
954 unsigned long j;
955
956 ht->cds_lfht_rcu_thread_online();
957 ht->cds_lfht_rcu_read_lock();
958 for (j = 0; j < len; j++) {
959 struct cds_lfht_node *fini_node =
960 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
961
962 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
963 i, j, !i ? 0 : (1UL << (i - 1)) + j);
964 fini_node->p.reverse_hash =
965 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
966 (void) _cds_lfht_remove(ht, !i ? 0 : (1UL << (i - 1)),
967 fini_node, 1);
968 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
969 break;
970 }
971 ht->cds_lfht_rcu_read_unlock();
972 ht->cds_lfht_rcu_thread_offline();
973 }
974
975 /*
976 * Holding RCU read lock to protect _cds_lfht_remove against memory
977 * reclaim that could be performed by other call_rcu worker threads (ABA
978 * problem).
979 */
980 static
981 void fini_table(struct cds_lfht *ht,
982 unsigned long first_order, unsigned long len_order)
983 {
984 long i, end_order;
985
986 dbg_printf("fini table: first_order %lu end_order %lu\n",
987 first_order, first_order + len_order);
988 end_order = first_order + len_order;
989 assert(first_order > 0);
990 assert(ht->t.size == (1UL << (first_order - 1)));
991 for (i = end_order - 1; i >= first_order; i--) {
992 unsigned long len;
993
994 len = !i ? 1 : 1UL << (i - 1);
995 dbg_printf("fini order %lu len: %lu\n", i, len);
996
997 /*
998 * Set "removed" flag in dummy nodes about to be removed.
999 * Unlink all now-logically-removed dummy node pointers.
1000 * Concurrent add/remove operation are helping us doing
1001 * the gc.
1002 */
1003 remove_table(ht, i, len);
1004
1005 ht->cds_lfht_call_rcu(&ht->t.tbl[i]->head, cds_lfht_free_level);
1006
1007 dbg_printf("fini new size: %lu\n", 1UL << i);
1008 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1009 break;
1010 }
1011 }
1012
1013 struct cds_lfht *cds_lfht_new(cds_lfht_hash_fct hash_fct,
1014 cds_lfht_compare_fct compare_fct,
1015 unsigned long hash_seed,
1016 unsigned long init_size,
1017 int flags,
1018 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1019 void (*func)(struct rcu_head *head)),
1020 void (*cds_lfht_synchronize_rcu)(void),
1021 void (*cds_lfht_rcu_read_lock)(void),
1022 void (*cds_lfht_rcu_read_unlock)(void),
1023 void (*cds_lfht_rcu_thread_offline)(void),
1024 void (*cds_lfht_rcu_thread_online)(void))
1025 {
1026 struct cds_lfht *ht;
1027 unsigned long order;
1028
1029 /* init_size must be power of two */
1030 if (init_size && (init_size & (init_size - 1)))
1031 return NULL;
1032 ht = calloc(1, sizeof(struct cds_lfht));
1033 ht->hash_fct = hash_fct;
1034 ht->compare_fct = compare_fct;
1035 ht->hash_seed = hash_seed;
1036 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1037 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1038 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1039 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1040 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1041 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1042 ht->percpu_count = alloc_per_cpu_items_count();
1043 /* this mutex should not nest in read-side C.S. */
1044 pthread_mutex_init(&ht->resize_mutex, NULL);
1045 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1046 ht->flags = flags;
1047 ht->cds_lfht_rcu_thread_offline();
1048 pthread_mutex_lock(&ht->resize_mutex);
1049 init_table(ht, 0, order);
1050 pthread_mutex_unlock(&ht->resize_mutex);
1051 ht->cds_lfht_rcu_thread_online();
1052 return ht;
1053 }
1054
1055 struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
1056 {
1057 struct cds_lfht_node *node, *next;
1058 struct _cds_lfht_node *lookup;
1059 unsigned long hash, reverse_hash, index, order, size;
1060
1061 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1062 reverse_hash = bit_reverse_ulong(hash);
1063
1064 size = rcu_dereference(ht->t.size);
1065 index = hash & (size - 1);
1066 order = get_count_order_ulong(index + 1);
1067 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
1068 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
1069 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
1070 node = (struct cds_lfht_node *) lookup;
1071 for (;;) {
1072 if (unlikely(!node))
1073 break;
1074 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1075 node = NULL;
1076 break;
1077 }
1078 next = rcu_dereference(node->p.next);
1079 if (likely(!is_removed(next))
1080 && !is_dummy(next)
1081 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1082 break;
1083 }
1084 node = clear_flag(next);
1085 }
1086 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1087 return node;
1088 }
1089
1090 struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
1091 struct cds_lfht_node *node)
1092 {
1093 struct cds_lfht_node *next;
1094 unsigned long reverse_hash;
1095 void *key;
1096 size_t key_len;
1097
1098 reverse_hash = node->p.reverse_hash;
1099 key = node->key;
1100 key_len = node->key_len;
1101 next = rcu_dereference(node->p.next);
1102 node = clear_flag(next);
1103
1104 for (;;) {
1105 if (unlikely(!node))
1106 break;
1107 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1108 node = NULL;
1109 break;
1110 }
1111 next = rcu_dereference(node->p.next);
1112 if (likely(!is_removed(next))
1113 && !is_dummy(next)
1114 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1115 break;
1116 }
1117 node = clear_flag(next);
1118 }
1119 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1120 return node;
1121 }
1122
1123 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1124 {
1125 unsigned long hash, size;
1126
1127 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1128 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1129
1130 size = rcu_dereference(ht->t.size);
1131 (void) _cds_lfht_add(ht, size, node, 0, 0);
1132 ht_count_add(ht, size);
1133 }
1134
1135 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1136 struct cds_lfht_node *node)
1137 {
1138 unsigned long hash, size;
1139 struct cds_lfht_node *ret;
1140
1141 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1142 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1143
1144 size = rcu_dereference(ht->t.size);
1145 ret = _cds_lfht_add(ht, size, node, 1, 0);
1146 if (ret != node)
1147 ht_count_add(ht, size);
1148 return ret;
1149 }
1150
1151 int cds_lfht_remove(struct cds_lfht *ht, struct cds_lfht_node *node)
1152 {
1153 unsigned long size;
1154 int ret;
1155
1156 size = rcu_dereference(ht->t.size);
1157 ret = _cds_lfht_remove(ht, size, node, 0);
1158 if (!ret)
1159 ht_count_remove(ht, size);
1160 return ret;
1161 }
1162
1163 static
1164 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1165 {
1166 struct cds_lfht_node *node;
1167 struct _cds_lfht_node *lookup;
1168 unsigned long order, i, size;
1169
1170 /* Check that the table is empty */
1171 lookup = &ht->t.tbl[0]->nodes[0];
1172 node = (struct cds_lfht_node *) lookup;
1173 do {
1174 node = clear_flag(node)->p.next;
1175 if (!is_dummy(node))
1176 return -EPERM;
1177 assert(!is_removed(node));
1178 } while (clear_flag(node));
1179 /*
1180 * size accessed without rcu_dereference because hash table is
1181 * being destroyed.
1182 */
1183 size = ht->t.size;
1184 /* Internal sanity check: all nodes left should be dummy */
1185 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1186 unsigned long len;
1187
1188 len = !order ? 1 : 1UL << (order - 1);
1189 for (i = 0; i < len; i++) {
1190 dbg_printf("delete order %lu i %lu hash %lu\n",
1191 order, i,
1192 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1193 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1194 }
1195 poison_free(ht->t.tbl[order]);
1196 }
1197 return 0;
1198 }
1199
1200 /*
1201 * Should only be called when no more concurrent readers nor writers can
1202 * possibly access the table.
1203 */
1204 int cds_lfht_destroy(struct cds_lfht *ht)
1205 {
1206 int ret;
1207
1208 /* Wait for in-flight resize operations to complete */
1209 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1210 while (uatomic_read(&ht->in_progress_resize))
1211 poll(NULL, 0, 100); /* wait for 100ms */
1212 ret = cds_lfht_delete_dummy(ht);
1213 if (ret)
1214 return ret;
1215 free_per_cpu_items_count(ht->percpu_count);
1216 poison_free(ht);
1217 return ret;
1218 }
1219
1220 void cds_lfht_count_nodes(struct cds_lfht *ht,
1221 unsigned long *count,
1222 unsigned long *removed)
1223 {
1224 struct cds_lfht_node *node, *next;
1225 struct _cds_lfht_node *lookup;
1226 unsigned long nr_dummy = 0;
1227
1228 *count = 0;
1229 *removed = 0;
1230
1231 /* Count non-dummy nodes in the table */
1232 lookup = &ht->t.tbl[0]->nodes[0];
1233 node = (struct cds_lfht_node *) lookup;
1234 do {
1235 next = rcu_dereference(node->p.next);
1236 if (is_removed(next)) {
1237 assert(!is_dummy(next));
1238 (*removed)++;
1239 } else if (!is_dummy(next))
1240 (*count)++;
1241 else
1242 (nr_dummy)++;
1243 node = clear_flag(next);
1244 } while (node);
1245 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1246 }
1247
1248 /* called with resize mutex held */
1249 static
1250 void _do_cds_lfht_grow(struct cds_lfht *ht,
1251 unsigned long old_size, unsigned long new_size)
1252 {
1253 unsigned long old_order, new_order;
1254
1255 old_order = get_count_order_ulong(old_size) + 1;
1256 new_order = get_count_order_ulong(new_size) + 1;
1257 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1258 old_size, old_order, new_size, new_order);
1259 assert(new_size > old_size);
1260 init_table(ht, old_order, new_order - old_order);
1261 }
1262
1263 /* called with resize mutex held */
1264 static
1265 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1266 unsigned long old_size, unsigned long new_size)
1267 {
1268 unsigned long old_order, new_order;
1269
1270 new_size = max(new_size, MIN_TABLE_SIZE);
1271 old_order = get_count_order_ulong(old_size) + 1;
1272 new_order = get_count_order_ulong(new_size) + 1;
1273 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1274 old_size, old_order, new_size, new_order);
1275 assert(new_size < old_size);
1276
1277 cmm_smp_wmb(); /* populate data before RCU size */
1278 CMM_STORE_SHARED(ht->t.size, new_size);
1279
1280 /*
1281 * We need to wait for all add operations to reach Q.S. (and
1282 * thus use the new table for lookups) before we can start
1283 * releasing the old dummy nodes. Otherwise their lookup will
1284 * return a logically removed node as insert position.
1285 */
1286 ht->cds_lfht_synchronize_rcu();
1287
1288 /* Remove and unlink all dummy nodes to remove. */
1289 fini_table(ht, new_order, old_order - new_order);
1290 }
1291
1292
1293 /* called with resize mutex held */
1294 static
1295 void _do_cds_lfht_resize(struct cds_lfht *ht)
1296 {
1297 unsigned long new_size, old_size;
1298
1299 /*
1300 * Resize table, re-do if the target size has changed under us.
1301 */
1302 do {
1303 ht->t.resize_initiated = 1;
1304 old_size = ht->t.size;
1305 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1306 if (old_size < new_size)
1307 _do_cds_lfht_grow(ht, old_size, new_size);
1308 else if (old_size > new_size)
1309 _do_cds_lfht_shrink(ht, old_size, new_size);
1310 ht->t.resize_initiated = 0;
1311 /* write resize_initiated before read resize_target */
1312 cmm_smp_mb();
1313 } while (new_size != CMM_LOAD_SHARED(ht->t.resize_target));
1314 }
1315
1316 static
1317 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1318 int growth_order)
1319 {
1320 return _uatomic_max(&ht->t.resize_target,
1321 size << growth_order);
1322 }
1323
1324 static
1325 void resize_target_update_count(struct cds_lfht *ht,
1326 unsigned long count)
1327 {
1328 count = max(count, MIN_TABLE_SIZE);
1329 uatomic_set(&ht->t.resize_target, count);
1330 }
1331
1332 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1333 {
1334 resize_target_update_count(ht, new_size);
1335 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1336 ht->cds_lfht_rcu_thread_offline();
1337 pthread_mutex_lock(&ht->resize_mutex);
1338 _do_cds_lfht_resize(ht);
1339 pthread_mutex_unlock(&ht->resize_mutex);
1340 ht->cds_lfht_rcu_thread_online();
1341 }
1342
1343 static
1344 void do_resize_cb(struct rcu_head *head)
1345 {
1346 struct rcu_resize_work *work =
1347 caa_container_of(head, struct rcu_resize_work, head);
1348 struct cds_lfht *ht = work->ht;
1349
1350 ht->cds_lfht_rcu_thread_offline();
1351 pthread_mutex_lock(&ht->resize_mutex);
1352 _do_cds_lfht_resize(ht);
1353 pthread_mutex_unlock(&ht->resize_mutex);
1354 ht->cds_lfht_rcu_thread_online();
1355 poison_free(work);
1356 cmm_smp_mb(); /* finish resize before decrement */
1357 uatomic_dec(&ht->in_progress_resize);
1358 }
1359
1360 static
1361 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1362 {
1363 struct rcu_resize_work *work;
1364 unsigned long target_size;
1365
1366 target_size = resize_target_update(ht, size, growth);
1367 /* Store resize_target before read resize_initiated */
1368 cmm_smp_mb();
1369 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1370 uatomic_inc(&ht->in_progress_resize);
1371 cmm_smp_mb(); /* increment resize count before calling it */
1372 work = malloc(sizeof(*work));
1373 work->ht = ht;
1374 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1375 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1376 }
1377 }
1378
1379 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1380
1381 static
1382 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1383 unsigned long count)
1384 {
1385 struct rcu_resize_work *work;
1386
1387 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1388 return;
1389 resize_target_update_count(ht, count);
1390 /* Store resize_target before read resize_initiated */
1391 cmm_smp_mb();
1392 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1393 uatomic_inc(&ht->in_progress_resize);
1394 cmm_smp_mb(); /* increment resize count before calling it */
1395 work = malloc(sizeof(*work));
1396 work->ht = ht;
1397 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1398 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1399 }
1400 }
1401
1402 #endif
This page took 0.060768 seconds and 5 git commands to generate.