rculfhash tests: make node count RCU aware
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 /*
170 * Define the minimum table size.
171 */
172 #define MIN_TABLE_SIZE 1
173
174 #if (CAA_BITS_PER_LONG == 32)
175 #define MAX_TABLE_ORDER 32
176 #else
177 #define MAX_TABLE_ORDER 64
178 #endif
179
180 /*
181 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
182 */
183 #define MIN_PARTITION_PER_THREAD_ORDER 12
184 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
185
186 #ifndef min
187 #define min(a, b) ((a) < (b) ? (a) : (b))
188 #endif
189
190 #ifndef max
191 #define max(a, b) ((a) > (b) ? (a) : (b))
192 #endif
193
194 /*
195 * The removed flag needs to be updated atomically with the pointer.
196 * It indicates that no node must attach to the node scheduled for
197 * removal, and that node garbage collection must be performed.
198 * The dummy flag does not require to be updated atomically with the
199 * pointer, but it is added as a pointer low bit flag to save space.
200 */
201 #define REMOVED_FLAG (1UL << 0)
202 #define DUMMY_FLAG (1UL << 1)
203 #define FLAGS_MASK ((1UL << 2) - 1)
204
205 /* Value of the end pointer. Should not interact with flags. */
206 #define END_VALUE NULL
207
208 struct ht_items_count {
209 unsigned long add, del;
210 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
211
212 struct rcu_level {
213 struct rcu_head head;
214 struct _cds_lfht_node nodes[0];
215 };
216
217 struct rcu_table {
218 unsigned long size; /* always a power of 2, shared (RCU) */
219 unsigned long resize_target;
220 int resize_initiated;
221 struct rcu_level *tbl[MAX_TABLE_ORDER];
222 };
223
224 struct cds_lfht {
225 struct rcu_table t;
226 cds_lfht_hash_fct hash_fct;
227 cds_lfht_compare_fct compare_fct;
228 unsigned long hash_seed;
229 int flags;
230 /*
231 * We need to put the work threads offline (QSBR) when taking this
232 * mutex, because we use synchronize_rcu within this mutex critical
233 * section, which waits on read-side critical sections, and could
234 * therefore cause grace-period deadlock if we hold off RCU G.P.
235 * completion.
236 */
237 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
238 unsigned int in_progress_resize, in_progress_destroy;
239 void (*cds_lfht_call_rcu)(struct rcu_head *head,
240 void (*func)(struct rcu_head *head));
241 void (*cds_lfht_synchronize_rcu)(void);
242 void (*cds_lfht_rcu_read_lock)(void);
243 void (*cds_lfht_rcu_read_unlock)(void);
244 void (*cds_lfht_rcu_thread_offline)(void);
245 void (*cds_lfht_rcu_thread_online)(void);
246 void (*cds_lfht_rcu_register_thread)(void);
247 void (*cds_lfht_rcu_unregister_thread)(void);
248 pthread_attr_t *resize_attr; /* Resize threads attributes */
249 long count; /* global approximate item count */
250 struct ht_items_count *percpu_count; /* per-cpu item count */
251 };
252
253 struct rcu_resize_work {
254 struct rcu_head head;
255 struct cds_lfht *ht;
256 };
257
258 struct partition_resize_work {
259 struct rcu_head head;
260 struct cds_lfht *ht;
261 unsigned long i, start, len;
262 void (*fct)(struct cds_lfht *ht, unsigned long i,
263 unsigned long start, unsigned long len);
264 };
265
266 enum add_mode {
267 ADD_DEFAULT = 0,
268 ADD_UNIQUE = 1,
269 ADD_REPLACE = 2,
270 };
271
272 static
273 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
274 unsigned long size,
275 struct cds_lfht_node *node,
276 enum add_mode mode, int dummy);
277
278 /*
279 * Algorithm to reverse bits in a word by lookup table, extended to
280 * 64-bit words.
281 * Source:
282 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
283 * Originally from Public Domain.
284 */
285
286 static const uint8_t BitReverseTable256[256] =
287 {
288 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
289 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
290 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
291 R6(0), R6(2), R6(1), R6(3)
292 };
293 #undef R2
294 #undef R4
295 #undef R6
296
297 static
298 uint8_t bit_reverse_u8(uint8_t v)
299 {
300 return BitReverseTable256[v];
301 }
302
303 static __attribute__((unused))
304 uint32_t bit_reverse_u32(uint32_t v)
305 {
306 return ((uint32_t) bit_reverse_u8(v) << 24) |
307 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
308 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
309 ((uint32_t) bit_reverse_u8(v >> 24));
310 }
311
312 static __attribute__((unused))
313 uint64_t bit_reverse_u64(uint64_t v)
314 {
315 return ((uint64_t) bit_reverse_u8(v) << 56) |
316 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
317 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
318 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
319 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
320 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
321 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
322 ((uint64_t) bit_reverse_u8(v >> 56));
323 }
324
325 static
326 unsigned long bit_reverse_ulong(unsigned long v)
327 {
328 #if (CAA_BITS_PER_LONG == 32)
329 return bit_reverse_u32(v);
330 #else
331 return bit_reverse_u64(v);
332 #endif
333 }
334
335 /*
336 * fls: returns the position of the most significant bit.
337 * Returns 0 if no bit is set, else returns the position of the most
338 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
339 */
340 #if defined(__i386) || defined(__x86_64)
341 static inline
342 unsigned int fls_u32(uint32_t x)
343 {
344 int r;
345
346 asm("bsrl %1,%0\n\t"
347 "jnz 1f\n\t"
348 "movl $-1,%0\n\t"
349 "1:\n\t"
350 : "=r" (r) : "rm" (x));
351 return r + 1;
352 }
353 #define HAS_FLS_U32
354 #endif
355
356 #if defined(__x86_64)
357 static inline
358 unsigned int fls_u64(uint64_t x)
359 {
360 long r;
361
362 asm("bsrq %1,%0\n\t"
363 "jnz 1f\n\t"
364 "movq $-1,%0\n\t"
365 "1:\n\t"
366 : "=r" (r) : "rm" (x));
367 return r + 1;
368 }
369 #define HAS_FLS_U64
370 #endif
371
372 #ifndef HAS_FLS_U64
373 static __attribute__((unused))
374 unsigned int fls_u64(uint64_t x)
375 {
376 unsigned int r = 64;
377
378 if (!x)
379 return 0;
380
381 if (!(x & 0xFFFFFFFF00000000ULL)) {
382 x <<= 32;
383 r -= 32;
384 }
385 if (!(x & 0xFFFF000000000000ULL)) {
386 x <<= 16;
387 r -= 16;
388 }
389 if (!(x & 0xFF00000000000000ULL)) {
390 x <<= 8;
391 r -= 8;
392 }
393 if (!(x & 0xF000000000000000ULL)) {
394 x <<= 4;
395 r -= 4;
396 }
397 if (!(x & 0xC000000000000000ULL)) {
398 x <<= 2;
399 r -= 2;
400 }
401 if (!(x & 0x8000000000000000ULL)) {
402 x <<= 1;
403 r -= 1;
404 }
405 return r;
406 }
407 #endif
408
409 #ifndef HAS_FLS_U32
410 static __attribute__((unused))
411 unsigned int fls_u32(uint32_t x)
412 {
413 unsigned int r = 32;
414
415 if (!x)
416 return 0;
417 if (!(x & 0xFFFF0000U)) {
418 x <<= 16;
419 r -= 16;
420 }
421 if (!(x & 0xFF000000U)) {
422 x <<= 8;
423 r -= 8;
424 }
425 if (!(x & 0xF0000000U)) {
426 x <<= 4;
427 r -= 4;
428 }
429 if (!(x & 0xC0000000U)) {
430 x <<= 2;
431 r -= 2;
432 }
433 if (!(x & 0x80000000U)) {
434 x <<= 1;
435 r -= 1;
436 }
437 return r;
438 }
439 #endif
440
441 unsigned int fls_ulong(unsigned long x)
442 {
443 #if (CAA_BITS_PER_lONG == 32)
444 return fls_u32(x);
445 #else
446 return fls_u64(x);
447 #endif
448 }
449
450 int get_count_order_u32(uint32_t x)
451 {
452 int order;
453
454 order = fls_u32(x) - 1;
455 if (x & (x - 1))
456 order++;
457 return order;
458 }
459
460 int get_count_order_ulong(unsigned long x)
461 {
462 int order;
463
464 order = fls_ulong(x) - 1;
465 if (x & (x - 1))
466 order++;
467 return order;
468 }
469
470 #ifdef POISON_FREE
471 #define poison_free(ptr) \
472 do { \
473 memset(ptr, 0x42, sizeof(*(ptr))); \
474 free(ptr); \
475 } while (0)
476 #else
477 #define poison_free(ptr) free(ptr)
478 #endif
479
480 static
481 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
482
483 /*
484 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
485 * available, then we support hash table item accounting.
486 * In the unfortunate event the number of CPUs reported would be
487 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
488 */
489 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
490
491 static
492 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
493 unsigned long count);
494
495 static long nr_cpus_mask = -1;
496
497 static
498 struct ht_items_count *alloc_per_cpu_items_count(void)
499 {
500 struct ht_items_count *count;
501
502 switch (nr_cpus_mask) {
503 case -2:
504 return NULL;
505 case -1:
506 {
507 long maxcpus;
508
509 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
510 if (maxcpus <= 0) {
511 nr_cpus_mask = -2;
512 return NULL;
513 }
514 /*
515 * round up number of CPUs to next power of two, so we
516 * can use & for modulo.
517 */
518 maxcpus = 1UL << get_count_order_ulong(maxcpus);
519 nr_cpus_mask = maxcpus - 1;
520 }
521 /* Fall-through */
522 default:
523 return calloc(nr_cpus_mask + 1, sizeof(*count));
524 }
525 }
526
527 static
528 void free_per_cpu_items_count(struct ht_items_count *count)
529 {
530 poison_free(count);
531 }
532
533 static
534 int ht_get_cpu(void)
535 {
536 int cpu;
537
538 assert(nr_cpus_mask >= 0);
539 cpu = sched_getcpu();
540 if (unlikely(cpu < 0))
541 return cpu;
542 else
543 return cpu & nr_cpus_mask;
544 }
545
546 static
547 void ht_count_add(struct cds_lfht *ht, unsigned long size)
548 {
549 unsigned long percpu_count;
550 int cpu;
551
552 if (unlikely(!ht->percpu_count))
553 return;
554 cpu = ht_get_cpu();
555 if (unlikely(cpu < 0))
556 return;
557 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
558 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
559 long count;
560
561 dbg_printf("add percpu %lu\n", percpu_count);
562 count = uatomic_add_return(&ht->count,
563 1UL << COUNT_COMMIT_ORDER);
564 /* If power of 2 */
565 if (!(count & (count - 1))) {
566 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
567 return;
568 dbg_printf("add set global %ld\n", count);
569 cds_lfht_resize_lazy_count(ht, size,
570 count >> (CHAIN_LEN_TARGET - 1));
571 }
572 }
573 }
574
575 static
576 void ht_count_del(struct cds_lfht *ht, unsigned long size)
577 {
578 unsigned long percpu_count;
579 int cpu;
580
581 if (unlikely(!ht->percpu_count))
582 return;
583 cpu = ht_get_cpu();
584 if (unlikely(cpu < 0))
585 return;
586 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].del, 1);
587 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
588 long count;
589
590 dbg_printf("del percpu %lu\n", percpu_count);
591 count = uatomic_add_return(&ht->count,
592 -(1UL << COUNT_COMMIT_ORDER));
593 /* If power of 2 */
594 if (!(count & (count - 1))) {
595 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
596 return;
597 dbg_printf("del set global %ld\n", count);
598 /*
599 * Don't shrink table if the number of nodes is below a
600 * certain threshold.
601 */
602 if (count < (1UL << COUNT_COMMIT_ORDER) * (nr_cpus_mask + 1))
603 return;
604 cds_lfht_resize_lazy_count(ht, size,
605 count >> (CHAIN_LEN_TARGET - 1));
606 }
607 }
608 }
609
610 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
611
612 static const long nr_cpus_mask = -1;
613
614 static
615 struct ht_items_count *alloc_per_cpu_items_count(void)
616 {
617 return NULL;
618 }
619
620 static
621 void free_per_cpu_items_count(struct ht_items_count *count)
622 {
623 }
624
625 static
626 void ht_count_add(struct cds_lfht *ht, unsigned long size)
627 {
628 }
629
630 static
631 void ht_count_del(struct cds_lfht *ht, unsigned long size)
632 {
633 }
634
635 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
636
637
638 static
639 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
640 {
641 unsigned long count;
642
643 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
644 return;
645 count = uatomic_read(&ht->count);
646 /*
647 * Use bucket-local length for small table expand and for
648 * environments lacking per-cpu data support.
649 */
650 if (count >= (1UL << COUNT_COMMIT_ORDER))
651 return;
652 if (chain_len > 100)
653 dbg_printf("WARNING: large chain length: %u.\n",
654 chain_len);
655 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
656 cds_lfht_resize_lazy(ht, size,
657 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
658 }
659
660 static
661 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
662 {
663 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
664 }
665
666 static
667 int is_removed(struct cds_lfht_node *node)
668 {
669 return ((unsigned long) node) & REMOVED_FLAG;
670 }
671
672 static
673 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
674 {
675 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
676 }
677
678 static
679 int is_dummy(struct cds_lfht_node *node)
680 {
681 return ((unsigned long) node) & DUMMY_FLAG;
682 }
683
684 static
685 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
686 {
687 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
688 }
689
690 static
691 struct cds_lfht_node *get_end(void)
692 {
693 return (struct cds_lfht_node *) END_VALUE;
694 }
695
696 static
697 int is_end(struct cds_lfht_node *node)
698 {
699 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
700 }
701
702 static
703 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
704 {
705 unsigned long old1, old2;
706
707 old1 = uatomic_read(ptr);
708 do {
709 old2 = old1;
710 if (old2 >= v)
711 return old2;
712 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
713 return v;
714 }
715
716 static
717 void cds_lfht_free_level(struct rcu_head *head)
718 {
719 struct rcu_level *l =
720 caa_container_of(head, struct rcu_level, head);
721 poison_free(l);
722 }
723
724 /*
725 * Remove all logically deleted nodes from a bucket up to a certain node key.
726 */
727 static
728 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
729 {
730 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
731
732 assert(!is_dummy(dummy));
733 assert(!is_removed(dummy));
734 assert(!is_dummy(node));
735 assert(!is_removed(node));
736 for (;;) {
737 iter_prev = dummy;
738 /* We can always skip the dummy node initially */
739 iter = rcu_dereference(iter_prev->p.next);
740 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
741 /*
742 * We should never be called with dummy (start of chain)
743 * and logically removed node (end of path compression
744 * marker) being the actual same node. This would be a
745 * bug in the algorithm implementation.
746 */
747 assert(dummy != node);
748 for (;;) {
749 if (unlikely(is_end(iter)))
750 return;
751 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
752 return;
753 next = rcu_dereference(clear_flag(iter)->p.next);
754 if (likely(is_removed(next)))
755 break;
756 iter_prev = clear_flag(iter);
757 iter = next;
758 }
759 assert(!is_removed(iter));
760 if (is_dummy(iter))
761 new_next = flag_dummy(clear_flag(next));
762 else
763 new_next = clear_flag(next);
764 if (is_removed(iter))
765 new_next = flag_removed(new_next);
766 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
767 }
768 return;
769 }
770
771 static
772 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
773 unsigned long size,
774 struct cds_lfht_node *node,
775 enum add_mode mode, int dummy)
776 {
777 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
778 *dummy_node, *return_node;
779 struct _cds_lfht_node *lookup;
780 unsigned long hash, index, order;
781
782 assert(!is_dummy(node));
783 assert(!is_removed(node));
784 if (!size) {
785 assert(dummy);
786 node->p.next = flag_dummy(get_end());
787 return node; /* Initial first add (head) */
788 }
789 hash = bit_reverse_ulong(node->p.reverse_hash);
790 for (;;) {
791 uint32_t chain_len = 0;
792
793 /*
794 * iter_prev points to the non-removed node prior to the
795 * insert location.
796 */
797 index = hash & (size - 1);
798 order = get_count_order_ulong(index + 1);
799 lookup = &ht->t.tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
800 iter_prev = (struct cds_lfht_node *) lookup;
801 /* We can always skip the dummy node initially */
802 iter = rcu_dereference(iter_prev->p.next);
803 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
804 for (;;) {
805 if (unlikely(is_end(iter)))
806 goto insert;
807 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
808 goto insert;
809 next = rcu_dereference(clear_flag(iter)->p.next);
810 if (unlikely(is_removed(next)))
811 goto gc_node;
812 if ((mode == ADD_UNIQUE || mode == ADD_REPLACE)
813 && !is_dummy(next)
814 && !ht->compare_fct(node->key, node->key_len,
815 clear_flag(iter)->key,
816 clear_flag(iter)->key_len)) {
817 if (mode == ADD_UNIQUE)
818 return clear_flag(iter);
819 else /* mode == ADD_REPLACE */
820 goto replace;
821 }
822 /* Only account for identical reverse hash once */
823 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
824 && !is_dummy(next))
825 check_resize(ht, size, ++chain_len);
826 iter_prev = clear_flag(iter);
827 iter = next;
828 }
829
830 insert:
831 assert(node != clear_flag(iter));
832 assert(!is_removed(iter_prev));
833 assert(!is_removed(iter));
834 assert(iter_prev != node);
835 if (!dummy)
836 node->p.next = clear_flag(iter);
837 else
838 node->p.next = flag_dummy(clear_flag(iter));
839 if (is_dummy(iter))
840 new_node = flag_dummy(node);
841 else
842 new_node = node;
843 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
844 new_node) != iter) {
845 continue; /* retry */
846 } else {
847 if (mode == ADD_REPLACE)
848 return_node = NULL;
849 else /* ADD_DEFAULT and ADD_UNIQUE */
850 return_node = node;
851 goto gc_end;
852 }
853
854 replace:
855 /* Insert after node to be replaced */
856 iter_prev = clear_flag(iter);
857 iter = next;
858 assert(node != clear_flag(iter));
859 assert(!is_removed(iter_prev));
860 assert(!is_removed(iter));
861 assert(iter_prev != node);
862 assert(!dummy);
863 node->p.next = clear_flag(iter);
864 if (is_dummy(iter))
865 new_node = flag_dummy(node);
866 else
867 new_node = node;
868 /*
869 * Here is the whole trick for lock-free replace: we add
870 * the replacement node _after_ the node we want to
871 * replace by atomically setting its next pointer at the
872 * same time we set its removal flag. Given that
873 * the lookups/get next use an iterator aware of the
874 * next pointer, they will either skip the old node due
875 * to the removal flag and see the new node, or use
876 * the old node, but will not see the new one.
877 */
878 new_node = flag_removed(new_node);
879 if (uatomic_cmpxchg(&iter_prev->p.next,
880 iter, new_node) != iter) {
881 continue; /* retry */
882 } else {
883 return_node = iter_prev;
884 goto gc_end;
885 }
886
887 gc_node:
888 assert(!is_removed(iter));
889 if (is_dummy(iter))
890 new_next = flag_dummy(clear_flag(next));
891 else
892 new_next = clear_flag(next);
893 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
894 /* retry */
895 }
896 gc_end:
897 /* Garbage collect logically removed nodes in the bucket */
898 index = hash & (size - 1);
899 order = get_count_order_ulong(index + 1);
900 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
901 dummy_node = (struct cds_lfht_node *) lookup;
902 _cds_lfht_gc_bucket(dummy_node, node);
903 return return_node;
904 }
905
906 static
907 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
908 struct cds_lfht_node *node,
909 int dummy_removal)
910 {
911 struct cds_lfht_node *dummy, *next, *old;
912 struct _cds_lfht_node *lookup;
913 int flagged = 0;
914 unsigned long hash, index, order;
915
916 /* logically delete the node */
917 assert(!is_dummy(node));
918 assert(!is_removed(node));
919 old = rcu_dereference(node->p.next);
920 do {
921 struct cds_lfht_node *new_next;
922
923 next = old;
924 if (unlikely(is_removed(next)))
925 goto end;
926 if (dummy_removal)
927 assert(is_dummy(next));
928 else
929 assert(!is_dummy(next));
930 new_next = flag_removed(next);
931 old = uatomic_cmpxchg(&node->p.next, next, new_next);
932 } while (old != next);
933
934 /* We performed the (logical) deletion. */
935 flagged = 1;
936
937 /*
938 * Ensure that the node is not visible to readers anymore: lookup for
939 * the node, and remove it (along with any other logically removed node)
940 * if found.
941 */
942 hash = bit_reverse_ulong(node->p.reverse_hash);
943 assert(size > 0);
944 index = hash & (size - 1);
945 order = get_count_order_ulong(index + 1);
946 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
947 dummy = (struct cds_lfht_node *) lookup;
948 _cds_lfht_gc_bucket(dummy, node);
949 end:
950 /*
951 * Only the flagging action indicated that we (and no other)
952 * removed the node from the hash.
953 */
954 if (flagged) {
955 assert(is_removed(rcu_dereference(node->p.next)));
956 return 0;
957 } else
958 return -ENOENT;
959 }
960
961 static
962 void *partition_resize_thread(void *arg)
963 {
964 struct partition_resize_work *work = arg;
965
966 work->ht->cds_lfht_rcu_register_thread();
967 work->fct(work->ht, work->i, work->start, work->len);
968 work->ht->cds_lfht_rcu_unregister_thread();
969 return NULL;
970 }
971
972 static
973 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
974 unsigned long len,
975 void (*fct)(struct cds_lfht *ht, unsigned long i,
976 unsigned long start, unsigned long len))
977 {
978 unsigned long partition_len;
979 struct partition_resize_work *work;
980 int thread, ret;
981 unsigned long nr_threads;
982 pthread_t *thread_id;
983
984 /*
985 * Note: nr_cpus_mask + 1 is always power of 2.
986 * We spawn just the number of threads we need to satisfy the minimum
987 * partition size, up to the number of CPUs in the system.
988 */
989 nr_threads = min(nr_cpus_mask + 1,
990 len >> MIN_PARTITION_PER_THREAD_ORDER);
991 partition_len = len >> get_count_order_ulong(nr_threads);
992 work = calloc(nr_threads, sizeof(*work));
993 thread_id = calloc(nr_threads, sizeof(*thread_id));
994 assert(work);
995 for (thread = 0; thread < nr_threads; thread++) {
996 work[thread].ht = ht;
997 work[thread].i = i;
998 work[thread].len = partition_len;
999 work[thread].start = thread * partition_len;
1000 work[thread].fct = fct;
1001 ret = pthread_create(&thread_id[thread], ht->resize_attr,
1002 partition_resize_thread, &work[thread]);
1003 assert(!ret);
1004 }
1005 for (thread = 0; thread < nr_threads; thread++) {
1006 ret = pthread_join(thread_id[thread], NULL);
1007 assert(!ret);
1008 }
1009 free(work);
1010 free(thread_id);
1011 }
1012
1013 /*
1014 * Holding RCU read lock to protect _cds_lfht_add against memory
1015 * reclaim that could be performed by other call_rcu worker threads (ABA
1016 * problem).
1017 *
1018 * When we reach a certain length, we can split this population phase over
1019 * many worker threads, based on the number of CPUs available in the system.
1020 * This should therefore take care of not having the expand lagging behind too
1021 * many concurrent insertion threads by using the scheduler's ability to
1022 * schedule dummy node population fairly with insertions.
1023 */
1024 static
1025 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1026 unsigned long start, unsigned long len)
1027 {
1028 unsigned long j;
1029
1030 ht->cds_lfht_rcu_read_lock();
1031 for (j = start; j < start + len; j++) {
1032 struct cds_lfht_node *new_node =
1033 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1034
1035 dbg_printf("init populate: i %lu j %lu hash %lu\n",
1036 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1037 new_node->p.reverse_hash =
1038 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1039 (void) _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
1040 new_node, ADD_DEFAULT, 1);
1041 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1042 break;
1043 }
1044 ht->cds_lfht_rcu_read_unlock();
1045 }
1046
1047 static
1048 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1049 unsigned long len)
1050 {
1051 assert(nr_cpus_mask != -1);
1052 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1053 ht->cds_lfht_rcu_thread_online();
1054 init_table_populate_partition(ht, i, 0, len);
1055 ht->cds_lfht_rcu_thread_offline();
1056 return;
1057 }
1058 partition_resize_helper(ht, i, len, init_table_populate_partition);
1059 }
1060
1061 static
1062 void init_table(struct cds_lfht *ht,
1063 unsigned long first_order, unsigned long len_order)
1064 {
1065 unsigned long i, end_order;
1066
1067 dbg_printf("init table: first_order %lu end_order %lu\n",
1068 first_order, first_order + len_order);
1069 end_order = first_order + len_order;
1070 for (i = first_order; i < end_order; i++) {
1071 unsigned long len;
1072
1073 len = !i ? 1 : 1UL << (i - 1);
1074 dbg_printf("init order %lu len: %lu\n", i, len);
1075
1076 /* Stop expand if the resize target changes under us */
1077 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
1078 break;
1079
1080 ht->t.tbl[i] = calloc(1, sizeof(struct rcu_level)
1081 + (len * sizeof(struct _cds_lfht_node)));
1082 assert(ht->t.tbl[i]);
1083
1084 /*
1085 * Set all dummy nodes reverse hash values for a level and
1086 * link all dummy nodes into the table.
1087 */
1088 init_table_populate(ht, i, len);
1089
1090 /*
1091 * Update table size.
1092 */
1093 cmm_smp_wmb(); /* populate data before RCU size */
1094 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
1095
1096 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
1097 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1098 break;
1099 }
1100 }
1101
1102 /*
1103 * Holding RCU read lock to protect _cds_lfht_remove against memory
1104 * reclaim that could be performed by other call_rcu worker threads (ABA
1105 * problem).
1106 * For a single level, we logically remove and garbage collect each node.
1107 *
1108 * As a design choice, we perform logical removal and garbage collection on a
1109 * node-per-node basis to simplify this algorithm. We also assume keeping good
1110 * cache locality of the operation would overweight possible performance gain
1111 * that could be achieved by batching garbage collection for multiple levels.
1112 * However, this would have to be justified by benchmarks.
1113 *
1114 * Concurrent removal and add operations are helping us perform garbage
1115 * collection of logically removed nodes. We guarantee that all logically
1116 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1117 * invoked to free a hole level of dummy nodes (after a grace period).
1118 *
1119 * Logical removal and garbage collection can therefore be done in batch or on a
1120 * node-per-node basis, as long as the guarantee above holds.
1121 *
1122 * When we reach a certain length, we can split this removal over many worker
1123 * threads, based on the number of CPUs available in the system. This should
1124 * take care of not letting resize process lag behind too many concurrent
1125 * updater threads actively inserting into the hash table.
1126 */
1127 static
1128 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1129 unsigned long start, unsigned long len)
1130 {
1131 unsigned long j;
1132
1133 ht->cds_lfht_rcu_read_lock();
1134 for (j = start; j < start + len; j++) {
1135 struct cds_lfht_node *fini_node =
1136 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1137
1138 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1139 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1140 fini_node->p.reverse_hash =
1141 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1142 (void) _cds_lfht_del(ht, !i ? 0 : (1UL << (i - 1)),
1143 fini_node, 1);
1144 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1145 break;
1146 }
1147 ht->cds_lfht_rcu_read_unlock();
1148 }
1149
1150 static
1151 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1152 {
1153
1154 assert(nr_cpus_mask != -1);
1155 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1156 ht->cds_lfht_rcu_thread_online();
1157 remove_table_partition(ht, i, 0, len);
1158 ht->cds_lfht_rcu_thread_offline();
1159 return;
1160 }
1161 partition_resize_helper(ht, i, len, remove_table_partition);
1162 }
1163
1164 static
1165 void fini_table(struct cds_lfht *ht,
1166 unsigned long first_order, unsigned long len_order)
1167 {
1168 long i, end_order;
1169
1170 dbg_printf("fini table: first_order %lu end_order %lu\n",
1171 first_order, first_order + len_order);
1172 end_order = first_order + len_order;
1173 assert(first_order > 0);
1174 for (i = end_order - 1; i >= first_order; i--) {
1175 unsigned long len;
1176
1177 len = !i ? 1 : 1UL << (i - 1);
1178 dbg_printf("fini order %lu len: %lu\n", i, len);
1179
1180 /* Stop shrink if the resize target changes under us */
1181 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1182 break;
1183
1184 cmm_smp_wmb(); /* populate data before RCU size */
1185 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1186
1187 /*
1188 * We need to wait for all add operations to reach Q.S. (and
1189 * thus use the new table for lookups) before we can start
1190 * releasing the old dummy nodes. Otherwise their lookup will
1191 * return a logically removed node as insert position.
1192 */
1193 ht->cds_lfht_synchronize_rcu();
1194
1195 /*
1196 * Set "removed" flag in dummy nodes about to be removed.
1197 * Unlink all now-logically-removed dummy node pointers.
1198 * Concurrent add/remove operation are helping us doing
1199 * the gc.
1200 */
1201 remove_table(ht, i, len);
1202
1203 ht->cds_lfht_call_rcu(&ht->t.tbl[i]->head, cds_lfht_free_level);
1204
1205 dbg_printf("fini new size: %lu\n", 1UL << i);
1206 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1207 break;
1208 }
1209 }
1210
1211 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1212 cds_lfht_compare_fct compare_fct,
1213 unsigned long hash_seed,
1214 unsigned long init_size,
1215 int flags,
1216 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1217 void (*func)(struct rcu_head *head)),
1218 void (*cds_lfht_synchronize_rcu)(void),
1219 void (*cds_lfht_rcu_read_lock)(void),
1220 void (*cds_lfht_rcu_read_unlock)(void),
1221 void (*cds_lfht_rcu_thread_offline)(void),
1222 void (*cds_lfht_rcu_thread_online)(void),
1223 void (*cds_lfht_rcu_register_thread)(void),
1224 void (*cds_lfht_rcu_unregister_thread)(void),
1225 pthread_attr_t *attr)
1226 {
1227 struct cds_lfht *ht;
1228 unsigned long order;
1229
1230 /* init_size must be power of two */
1231 if (init_size && (init_size & (init_size - 1)))
1232 return NULL;
1233 ht = calloc(1, sizeof(struct cds_lfht));
1234 assert(ht);
1235 ht->hash_fct = hash_fct;
1236 ht->compare_fct = compare_fct;
1237 ht->hash_seed = hash_seed;
1238 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1239 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1240 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1241 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1242 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1243 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1244 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1245 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1246 ht->resize_attr = attr;
1247 ht->percpu_count = alloc_per_cpu_items_count();
1248 /* this mutex should not nest in read-side C.S. */
1249 pthread_mutex_init(&ht->resize_mutex, NULL);
1250 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1251 ht->flags = flags;
1252 ht->cds_lfht_rcu_thread_offline();
1253 pthread_mutex_lock(&ht->resize_mutex);
1254 ht->t.resize_target = 1UL << (order - 1);
1255 init_table(ht, 0, order);
1256 pthread_mutex_unlock(&ht->resize_mutex);
1257 ht->cds_lfht_rcu_thread_online();
1258 return ht;
1259 }
1260
1261 void cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len,
1262 struct cds_lfht_iter *iter)
1263 {
1264 struct cds_lfht_node *node, *next, *dummy_node;
1265 struct _cds_lfht_node *lookup;
1266 unsigned long hash, reverse_hash, index, order, size;
1267
1268 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1269 reverse_hash = bit_reverse_ulong(hash);
1270
1271 size = rcu_dereference(ht->t.size);
1272 index = hash & (size - 1);
1273 order = get_count_order_ulong(index + 1);
1274 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
1275 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
1276 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
1277 dummy_node = (struct cds_lfht_node *) lookup;
1278 /* We can always skip the dummy node initially */
1279 node = rcu_dereference(dummy_node->p.next);
1280 node = clear_flag(node);
1281 for (;;) {
1282 if (unlikely(is_end(node))) {
1283 node = next = NULL;
1284 break;
1285 }
1286 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1287 node = next = NULL;
1288 break;
1289 }
1290 next = rcu_dereference(node->p.next);
1291 if (likely(!is_removed(next))
1292 && !is_dummy(next)
1293 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1294 break;
1295 }
1296 node = clear_flag(next);
1297 }
1298 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1299 iter->node = node;
1300 iter->next = next;
1301 }
1302
1303 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1304 {
1305 struct cds_lfht_node *node, *next;
1306 unsigned long reverse_hash;
1307 void *key;
1308 size_t key_len;
1309
1310 node = iter->node;
1311 reverse_hash = node->p.reverse_hash;
1312 key = node->key;
1313 key_len = node->key_len;
1314 next = iter->next;
1315 node = clear_flag(next);
1316
1317 for (;;) {
1318 if (unlikely(is_end(node))) {
1319 node = next = NULL;
1320 break;
1321 }
1322 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1323 node = next = NULL;
1324 break;
1325 }
1326 next = rcu_dereference(node->p.next);
1327 if (likely(!is_removed(next))
1328 && !is_dummy(next)
1329 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1330 break;
1331 }
1332 node = clear_flag(next);
1333 }
1334 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1335 iter->node = node;
1336 iter->next = next;
1337 }
1338
1339 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1340 {
1341 unsigned long hash, size;
1342
1343 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1344 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1345
1346 size = rcu_dereference(ht->t.size);
1347 (void) _cds_lfht_add(ht, size, node, ADD_DEFAULT, 0);
1348 ht_count_add(ht, size);
1349 }
1350
1351 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1352 struct cds_lfht_node *node)
1353 {
1354 unsigned long hash, size;
1355 struct cds_lfht_node *ret;
1356
1357 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1358 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1359
1360 size = rcu_dereference(ht->t.size);
1361 ret = _cds_lfht_add(ht, size, node, ADD_UNIQUE, 0);
1362 if (ret == node)
1363 ht_count_add(ht, size);
1364 return ret;
1365 }
1366
1367 struct cds_lfht_node *cds_lfht_replace(struct cds_lfht *ht,
1368 struct cds_lfht_node *node)
1369 {
1370 unsigned long hash, size;
1371 struct cds_lfht_node *ret;
1372
1373 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1374 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1375
1376 size = rcu_dereference(ht->t.size);
1377 ret = _cds_lfht_add(ht, size, node, ADD_REPLACE, 0);
1378 if (ret == NULL)
1379 ht_count_add(ht, size);
1380 return ret;
1381 }
1382
1383 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1384 {
1385 unsigned long size;
1386 int ret;
1387
1388 size = rcu_dereference(ht->t.size);
1389 ret = _cds_lfht_del(ht, size, node, 0);
1390 if (!ret)
1391 ht_count_del(ht, size);
1392 return ret;
1393 }
1394
1395 static
1396 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1397 {
1398 struct cds_lfht_node *node;
1399 struct _cds_lfht_node *lookup;
1400 unsigned long order, i, size;
1401
1402 /* Check that the table is empty */
1403 lookup = &ht->t.tbl[0]->nodes[0];
1404 node = (struct cds_lfht_node *) lookup;
1405 do {
1406 node = clear_flag(node)->p.next;
1407 if (!is_dummy(node))
1408 return -EPERM;
1409 assert(!is_removed(node));
1410 } while (!is_end(node));
1411 /*
1412 * size accessed without rcu_dereference because hash table is
1413 * being destroyed.
1414 */
1415 size = ht->t.size;
1416 /* Internal sanity check: all nodes left should be dummy */
1417 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1418 unsigned long len;
1419
1420 len = !order ? 1 : 1UL << (order - 1);
1421 for (i = 0; i < len; i++) {
1422 dbg_printf("delete order %lu i %lu hash %lu\n",
1423 order, i,
1424 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1425 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1426 }
1427 poison_free(ht->t.tbl[order]);
1428 }
1429 return 0;
1430 }
1431
1432 /*
1433 * Should only be called when no more concurrent readers nor writers can
1434 * possibly access the table.
1435 */
1436 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1437 {
1438 int ret;
1439
1440 /* Wait for in-flight resize operations to complete */
1441 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1442 while (uatomic_read(&ht->in_progress_resize))
1443 poll(NULL, 0, 100); /* wait for 100ms */
1444 ret = cds_lfht_delete_dummy(ht);
1445 if (ret)
1446 return ret;
1447 free_per_cpu_items_count(ht->percpu_count);
1448 if (attr)
1449 *attr = ht->resize_attr;
1450 poison_free(ht);
1451 return ret;
1452 }
1453
1454 void cds_lfht_count_nodes(struct cds_lfht *ht,
1455 long *approx_before,
1456 unsigned long *count,
1457 unsigned long *removed,
1458 long *approx_after)
1459 {
1460 struct cds_lfht_node *node, *next;
1461 struct _cds_lfht_node *lookup;
1462 unsigned long nr_dummy = 0;
1463
1464 *approx_before = 0;
1465 if (nr_cpus_mask >= 0) {
1466 int i;
1467
1468 for (i = 0; i < nr_cpus_mask + 1; i++) {
1469 *approx_before += uatomic_read(&ht->percpu_count[i].add);
1470 *approx_before -= uatomic_read(&ht->percpu_count[i].del);
1471 }
1472 }
1473
1474 *count = 0;
1475 *removed = 0;
1476
1477 /* Count non-dummy nodes in the table */
1478 lookup = &ht->t.tbl[0]->nodes[0];
1479 node = (struct cds_lfht_node *) lookup;
1480 do {
1481 next = rcu_dereference(node->p.next);
1482 if (is_removed(next)) {
1483 if (!is_dummy(next))
1484 (*removed)++;
1485 else
1486 (nr_dummy)++;
1487 } else if (!is_dummy(next))
1488 (*count)++;
1489 else
1490 (nr_dummy)++;
1491 node = clear_flag(next);
1492 } while (!is_end(node));
1493 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1494 *approx_after = 0;
1495 if (nr_cpus_mask >= 0) {
1496 int i;
1497
1498 for (i = 0; i < nr_cpus_mask + 1; i++) {
1499 *approx_after += uatomic_read(&ht->percpu_count[i].add);
1500 *approx_after -= uatomic_read(&ht->percpu_count[i].del);
1501 }
1502 }
1503 }
1504
1505 /* called with resize mutex held */
1506 static
1507 void _do_cds_lfht_grow(struct cds_lfht *ht,
1508 unsigned long old_size, unsigned long new_size)
1509 {
1510 unsigned long old_order, new_order;
1511
1512 old_order = get_count_order_ulong(old_size) + 1;
1513 new_order = get_count_order_ulong(new_size) + 1;
1514 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1515 old_size, old_order, new_size, new_order);
1516 assert(new_size > old_size);
1517 init_table(ht, old_order, new_order - old_order);
1518 }
1519
1520 /* called with resize mutex held */
1521 static
1522 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1523 unsigned long old_size, unsigned long new_size)
1524 {
1525 unsigned long old_order, new_order;
1526
1527 new_size = max(new_size, MIN_TABLE_SIZE);
1528 old_order = get_count_order_ulong(old_size) + 1;
1529 new_order = get_count_order_ulong(new_size) + 1;
1530 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1531 old_size, old_order, new_size, new_order);
1532 assert(new_size < old_size);
1533
1534 /* Remove and unlink all dummy nodes to remove. */
1535 fini_table(ht, new_order, old_order - new_order);
1536 }
1537
1538
1539 /* called with resize mutex held */
1540 static
1541 void _do_cds_lfht_resize(struct cds_lfht *ht)
1542 {
1543 unsigned long new_size, old_size;
1544
1545 /*
1546 * Resize table, re-do if the target size has changed under us.
1547 */
1548 do {
1549 ht->t.resize_initiated = 1;
1550 old_size = ht->t.size;
1551 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1552 if (old_size < new_size)
1553 _do_cds_lfht_grow(ht, old_size, new_size);
1554 else if (old_size > new_size)
1555 _do_cds_lfht_shrink(ht, old_size, new_size);
1556 ht->t.resize_initiated = 0;
1557 /* write resize_initiated before read resize_target */
1558 cmm_smp_mb();
1559 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1560 }
1561
1562 static
1563 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1564 int growth_order)
1565 {
1566 return _uatomic_max(&ht->t.resize_target,
1567 size << growth_order);
1568 }
1569
1570 static
1571 void resize_target_update_count(struct cds_lfht *ht,
1572 unsigned long count)
1573 {
1574 count = max(count, MIN_TABLE_SIZE);
1575 uatomic_set(&ht->t.resize_target, count);
1576 }
1577
1578 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1579 {
1580 resize_target_update_count(ht, new_size);
1581 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1582 ht->cds_lfht_rcu_thread_offline();
1583 pthread_mutex_lock(&ht->resize_mutex);
1584 _do_cds_lfht_resize(ht);
1585 pthread_mutex_unlock(&ht->resize_mutex);
1586 ht->cds_lfht_rcu_thread_online();
1587 }
1588
1589 static
1590 void do_resize_cb(struct rcu_head *head)
1591 {
1592 struct rcu_resize_work *work =
1593 caa_container_of(head, struct rcu_resize_work, head);
1594 struct cds_lfht *ht = work->ht;
1595
1596 ht->cds_lfht_rcu_thread_offline();
1597 pthread_mutex_lock(&ht->resize_mutex);
1598 _do_cds_lfht_resize(ht);
1599 pthread_mutex_unlock(&ht->resize_mutex);
1600 ht->cds_lfht_rcu_thread_online();
1601 poison_free(work);
1602 cmm_smp_mb(); /* finish resize before decrement */
1603 uatomic_dec(&ht->in_progress_resize);
1604 }
1605
1606 static
1607 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1608 {
1609 struct rcu_resize_work *work;
1610 unsigned long target_size;
1611
1612 target_size = resize_target_update(ht, size, growth);
1613 /* Store resize_target before read resize_initiated */
1614 cmm_smp_mb();
1615 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1616 uatomic_inc(&ht->in_progress_resize);
1617 cmm_smp_mb(); /* increment resize count before calling it */
1618 work = malloc(sizeof(*work));
1619 work->ht = ht;
1620 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1621 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1622 }
1623 }
1624
1625 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1626
1627 static
1628 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1629 unsigned long count)
1630 {
1631 struct rcu_resize_work *work;
1632
1633 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1634 return;
1635 resize_target_update_count(ht, count);
1636 /* Store resize_target before read resize_initiated */
1637 cmm_smp_mb();
1638 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1639 uatomic_inc(&ht->in_progress_resize);
1640 cmm_smp_mb(); /* increment resize count before calling it */
1641 work = malloc(sizeof(*work));
1642 work->ht = ht;
1643 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1644 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1645 }
1646 }
1647
1648 #endif
This page took 0.063482 seconds and 5 git commands to generate.