rculfhash: add list iteration tracer in gc
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /* For testing */
160 #define POISON_FREE
161
162 /*
163 * Per-CPU split-counters lazily update the global counter each 1024
164 * addition/removal. It automatically keeps track of resize required.
165 * We use the bucket length as indicator for need to expand for small
166 * tables and machines lacking per-cpu data suppport.
167 */
168 #define COUNT_COMMIT_ORDER 10
169 #define CHAIN_LEN_TARGET 1
170 #define CHAIN_LEN_RESIZE_THRESHOLD 3
171
172 /*
173 * Define the minimum table size. Protects against hash table resize overload
174 * when too many entries are added quickly before the resize can complete.
175 * This is especially the case if the table could be shrinked to a size of 1.
176 * TODO: we might want to make the add/remove operations help the resize to
177 * add or remove dummy nodes when a resize is ongoing to ensure upper-bound on
178 * chain length.
179 */
180 #define MIN_TABLE_SIZE 128
181
182 #ifndef max
183 #define max(a, b) ((a) > (b) ? (a) : (b))
184 #endif
185
186 /*
187 * The removed flag needs to be updated atomically with the pointer.
188 * The dummy flag does not require to be updated atomically with the
189 * pointer, but it is added as a pointer low bit flag to save space.
190 */
191 #define REMOVED_FLAG (1UL << 0)
192 #define DUMMY_FLAG (1UL << 1)
193 #define FLAGS_MASK ((1UL << 2) - 1)
194
195 struct ht_items_count {
196 unsigned long add, remove;
197 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
198
199 struct rcu_level {
200 struct rcu_head head;
201 struct _cds_lfht_node nodes[0];
202 };
203
204 struct rcu_table {
205 unsigned long size; /* always a power of 2 */
206 unsigned long resize_target;
207 int resize_initiated;
208 struct rcu_head head;
209 struct rcu_level *tbl[0];
210 };
211
212 struct cds_lfht {
213 struct rcu_table *t; /* shared */
214 cds_lfht_hash_fct hash_fct;
215 cds_lfht_compare_fct compare_fct;
216 unsigned long hash_seed;
217 int flags;
218 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
219 unsigned int in_progress_resize, in_progress_destroy;
220 void (*cds_lfht_call_rcu)(struct rcu_head *head,
221 void (*func)(struct rcu_head *head));
222 void (*cds_lfht_synchronize_rcu)(void);
223 unsigned long count; /* global approximate item count */
224 struct ht_items_count *percpu_count; /* per-cpu item count */
225 };
226
227 struct rcu_resize_work {
228 struct rcu_head head;
229 struct cds_lfht *ht;
230 };
231
232 /*
233 * Algorithm to reverse bits in a word by lookup table, extended to
234 * 64-bit words.
235 * Source:
236 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
237 * Originally from Public Domain.
238 */
239
240 static const uint8_t BitReverseTable256[256] =
241 {
242 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
243 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
244 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
245 R6(0), R6(2), R6(1), R6(3)
246 };
247 #undef R2
248 #undef R4
249 #undef R6
250
251 static
252 uint8_t bit_reverse_u8(uint8_t v)
253 {
254 return BitReverseTable256[v];
255 }
256
257 static __attribute__((unused))
258 uint32_t bit_reverse_u32(uint32_t v)
259 {
260 return ((uint32_t) bit_reverse_u8(v) << 24) |
261 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
262 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
263 ((uint32_t) bit_reverse_u8(v >> 24));
264 }
265
266 static __attribute__((unused))
267 uint64_t bit_reverse_u64(uint64_t v)
268 {
269 return ((uint64_t) bit_reverse_u8(v) << 56) |
270 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
271 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
272 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
273 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
274 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
275 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
276 ((uint64_t) bit_reverse_u8(v >> 56));
277 }
278
279 static
280 unsigned long bit_reverse_ulong(unsigned long v)
281 {
282 #if (CAA_BITS_PER_LONG == 32)
283 return bit_reverse_u32(v);
284 #else
285 return bit_reverse_u64(v);
286 #endif
287 }
288
289 /*
290 * fls: returns the position of the most significant bit.
291 * Returns 0 if no bit is set, else returns the position of the most
292 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
293 */
294 #if defined(__i386) || defined(__x86_64)
295 static inline
296 unsigned int fls_u32(uint32_t x)
297 {
298 int r;
299
300 asm("bsrl %1,%0\n\t"
301 "jnz 1f\n\t"
302 "movl $-1,%0\n\t"
303 "1:\n\t"
304 : "=r" (r) : "rm" (x));
305 return r + 1;
306 }
307 #define HAS_FLS_U32
308 #endif
309
310 #if defined(__x86_64)
311 static inline
312 unsigned int fls_u64(uint64_t x)
313 {
314 long r;
315
316 asm("bsrq %1,%0\n\t"
317 "jnz 1f\n\t"
318 "movq $-1,%0\n\t"
319 "1:\n\t"
320 : "=r" (r) : "rm" (x));
321 return r + 1;
322 }
323 #define HAS_FLS_U64
324 #endif
325
326 #ifndef HAS_FLS_U64
327 static __attribute__((unused))
328 unsigned int fls_u64(uint64_t x)
329 {
330 unsigned int r = 64;
331
332 if (!x)
333 return 0;
334
335 if (!(x & 0xFFFFFFFF00000000ULL)) {
336 x <<= 32;
337 r -= 32;
338 }
339 if (!(x & 0xFFFF000000000000ULL)) {
340 x <<= 16;
341 r -= 16;
342 }
343 if (!(x & 0xFF00000000000000ULL)) {
344 x <<= 8;
345 r -= 8;
346 }
347 if (!(x & 0xF000000000000000ULL)) {
348 x <<= 4;
349 r -= 4;
350 }
351 if (!(x & 0xC000000000000000ULL)) {
352 x <<= 2;
353 r -= 2;
354 }
355 if (!(x & 0x8000000000000000ULL)) {
356 x <<= 1;
357 r -= 1;
358 }
359 return r;
360 }
361 #endif
362
363 #ifndef HAS_FLS_U32
364 static __attribute__((unused))
365 unsigned int fls_u32(uint32_t x)
366 {
367 unsigned int r = 32;
368
369 if (!x)
370 return 0;
371 if (!(x & 0xFFFF0000U)) {
372 x <<= 16;
373 r -= 16;
374 }
375 if (!(x & 0xFF000000U)) {
376 x <<= 8;
377 r -= 8;
378 }
379 if (!(x & 0xF0000000U)) {
380 x <<= 4;
381 r -= 4;
382 }
383 if (!(x & 0xC0000000U)) {
384 x <<= 2;
385 r -= 2;
386 }
387 if (!(x & 0x80000000U)) {
388 x <<= 1;
389 r -= 1;
390 }
391 return r;
392 }
393 #endif
394
395 unsigned int fls_ulong(unsigned long x)
396 {
397 #if (CAA_BITS_PER_lONG == 32)
398 return fls_u32(x);
399 #else
400 return fls_u64(x);
401 #endif
402 }
403
404 int get_count_order_u32(uint32_t x)
405 {
406 int order;
407
408 order = fls_u32(x) - 1;
409 if (x & (x - 1))
410 order++;
411 return order;
412 }
413
414 int get_count_order_ulong(unsigned long x)
415 {
416 int order;
417
418 order = fls_ulong(x) - 1;
419 if (x & (x - 1))
420 order++;
421 return order;
422 }
423
424 #ifdef POISON_FREE
425 #define poison_free(ptr) \
426 do { \
427 memset(ptr, 0x42, sizeof(*(ptr))); \
428 free(ptr); \
429 } while (0)
430 #else
431 #define poison_free(ptr) free(ptr)
432 #endif
433
434 static
435 void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth);
436
437 /*
438 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
439 * available, then we support hash table item accounting.
440 * In the unfortunate event the number of CPUs reported would be
441 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
442 */
443 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
444
445 static
446 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, struct rcu_table *t,
447 unsigned long count);
448
449 static long nr_cpus_mask = -1;
450
451 static
452 struct ht_items_count *alloc_per_cpu_items_count(void)
453 {
454 struct ht_items_count *count;
455
456 switch (nr_cpus_mask) {
457 case -2:
458 return NULL;
459 case -1:
460 {
461 long maxcpus;
462
463 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
464 if (maxcpus <= 0) {
465 nr_cpus_mask = -2;
466 return NULL;
467 }
468 /*
469 * round up number of CPUs to next power of two, so we
470 * can use & for modulo.
471 */
472 maxcpus = 1UL << get_count_order_ulong(maxcpus);
473 nr_cpus_mask = maxcpus - 1;
474 }
475 /* Fall-through */
476 default:
477 return calloc(nr_cpus_mask + 1, sizeof(*count));
478 }
479 }
480
481 static
482 void free_per_cpu_items_count(struct ht_items_count *count)
483 {
484 poison_free(count);
485 }
486
487 static
488 int ht_get_cpu(void)
489 {
490 int cpu;
491
492 assert(nr_cpus_mask >= 0);
493 cpu = sched_getcpu();
494 if (unlikely(cpu < 0))
495 return cpu;
496 else
497 return cpu & nr_cpus_mask;
498 }
499
500 static
501 void ht_count_add(struct cds_lfht *ht, struct rcu_table *t)
502 {
503 unsigned long percpu_count;
504 int cpu;
505
506 if (unlikely(!ht->percpu_count))
507 return;
508 cpu = ht_get_cpu();
509 if (unlikely(cpu < 0))
510 return;
511 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
512 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
513 unsigned long count;
514
515 dbg_printf("add percpu %lu\n", percpu_count);
516 count = uatomic_add_return(&ht->count,
517 1UL << COUNT_COMMIT_ORDER);
518 /* If power of 2 */
519 if (!(count & (count - 1))) {
520 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD)
521 < t->size)
522 return;
523 dbg_printf("add set global %lu\n", count);
524 cds_lfht_resize_lazy_count(ht, t,
525 count >> (CHAIN_LEN_TARGET - 1));
526 }
527 }
528 }
529
530 static
531 void ht_count_remove(struct cds_lfht *ht, struct rcu_table *t)
532 {
533 unsigned long percpu_count;
534 int cpu;
535
536 if (unlikely(!ht->percpu_count))
537 return;
538 cpu = ht_get_cpu();
539 if (unlikely(cpu < 0))
540 return;
541 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].remove, -1);
542 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
543 unsigned long count;
544
545 dbg_printf("remove percpu %lu\n", percpu_count);
546 count = uatomic_add_return(&ht->count,
547 -(1UL << COUNT_COMMIT_ORDER));
548 /* If power of 2 */
549 if (!(count & (count - 1))) {
550 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD)
551 >= t->size)
552 return;
553 dbg_printf("remove set global %lu\n", count);
554 cds_lfht_resize_lazy_count(ht, t,
555 count >> (CHAIN_LEN_TARGET - 1));
556 }
557 }
558 }
559
560 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
561
562 static const long nr_cpus_mask = -1;
563
564 static
565 struct ht_items_count *alloc_per_cpu_items_count(void)
566 {
567 return NULL;
568 }
569
570 static
571 void free_per_cpu_items_count(struct ht_items_count *count)
572 {
573 }
574
575 static
576 void ht_count_add(struct cds_lfht *ht, struct rcu_table *t)
577 {
578 }
579
580 static
581 void ht_count_remove(struct cds_lfht *ht, struct rcu_table *t)
582 {
583 }
584
585 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
586
587
588 static
589 void check_resize(struct cds_lfht *ht, struct rcu_table *t,
590 uint32_t chain_len)
591 {
592 unsigned long count;
593
594 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
595 return;
596 count = uatomic_read(&ht->count);
597 /*
598 * Use bucket-local length for small table expand and for
599 * environments lacking per-cpu data support.
600 */
601 if (count >= (1UL << COUNT_COMMIT_ORDER))
602 return;
603 if (chain_len > 100)
604 dbg_printf("WARNING: large chain length: %u.\n",
605 chain_len);
606 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
607 cds_lfht_resize_lazy(ht, t,
608 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
609 }
610
611 static
612 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
613 {
614 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
615 }
616
617 static
618 int is_removed(struct cds_lfht_node *node)
619 {
620 return ((unsigned long) node) & REMOVED_FLAG;
621 }
622
623 static
624 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
625 {
626 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
627 }
628
629 static
630 int is_dummy(struct cds_lfht_node *node)
631 {
632 return ((unsigned long) node) & DUMMY_FLAG;
633 }
634
635 static
636 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
637 {
638 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
639 }
640
641 static
642 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
643 {
644 unsigned long old1, old2;
645
646 old1 = uatomic_read(ptr);
647 do {
648 old2 = old1;
649 if (old2 >= v)
650 return old2;
651 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
652 return v;
653 }
654
655 static
656 void cds_lfht_free_table_cb(struct rcu_head *head)
657 {
658 struct rcu_table *t =
659 caa_container_of(head, struct rcu_table, head);
660 poison_free(t);
661 }
662
663 static
664 void cds_lfht_free_level(struct rcu_head *head)
665 {
666 struct rcu_level *l =
667 caa_container_of(head, struct rcu_level, head);
668 poison_free(l);
669 }
670
671 /*
672 * Remove all logically deleted nodes from a bucket up to a certain node key.
673 */
674 static
675 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
676 {
677 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
678 struct cds_lfht_node *iter_trace[64];
679 unsigned long trace_idx = 0;
680
681 memset(iter_trace, 0, sizeof(iter_trace));
682 assert(!is_dummy(dummy));
683 assert(!is_removed(dummy));
684 assert(!is_dummy(node));
685 assert(!is_removed(node));
686 for (;;) {
687 iter_trace[trace_idx++ & (64 - 1)] = (void *) 0x1;
688 iter_prev = dummy;
689 /* We can always skip the dummy node initially */
690 iter = rcu_dereference(iter_prev->p.next);
691 iter_trace[trace_idx++ & (64 - 1)] = iter;
692 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
693 /*
694 * We should never be called with dummy (start of chain)
695 * and logically removed node (end of path compression
696 * marker) being the actual same node. This would be a
697 * bug in the algorithm implementation.
698 */
699 assert(dummy != node);
700 for (;;) {
701 if (unlikely(!clear_flag(iter)))
702 return;
703 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
704 return;
705 next = rcu_dereference(clear_flag(iter)->p.next);
706 if (likely(is_removed(next)))
707 break;
708 iter_prev = clear_flag(iter);
709 iter = next;
710 iter_trace[trace_idx++ & (64 - 1)] = iter;
711 }
712 assert(!is_removed(iter));
713 if (is_dummy(iter))
714 new_next = flag_dummy(clear_flag(next));
715 else
716 new_next = clear_flag(next);
717 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
718 iter_trace[trace_idx++ & (64 - 1)] = (void *) 0x2;
719 }
720 }
721
722 static
723 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht, struct rcu_table *t,
724 struct cds_lfht_node *node, int unique, int dummy)
725 {
726 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
727 *dummy_node;
728 struct _cds_lfht_node *lookup;
729 unsigned long hash, index, order;
730
731 assert(!is_dummy(node));
732 assert(!is_removed(node));
733 if (!t->size) {
734 assert(dummy);
735 node->p.next = flag_dummy(NULL);
736 return node; /* Initial first add (head) */
737 }
738 hash = bit_reverse_ulong(node->p.reverse_hash);
739 for (;;) {
740 uint32_t chain_len = 0;
741
742 /*
743 * iter_prev points to the non-removed node prior to the
744 * insert location.
745 */
746 index = hash & (t->size - 1);
747 order = get_count_order_ulong(index + 1);
748 lookup = &t->tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
749 iter_prev = (struct cds_lfht_node *) lookup;
750 /* We can always skip the dummy node initially */
751 iter = rcu_dereference(iter_prev->p.next);
752 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
753 for (;;) {
754 /* TODO: check if removed */
755 if (unlikely(!clear_flag(iter)))
756 goto insert;
757 /* TODO: check if removed */
758 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
759 goto insert;
760 next = rcu_dereference(clear_flag(iter)->p.next);
761 if (unlikely(is_removed(next)))
762 goto gc_node;
763 if (unique
764 && !is_dummy(next)
765 && !ht->compare_fct(node->key, node->key_len,
766 clear_flag(iter)->key,
767 clear_flag(iter)->key_len))
768 return clear_flag(iter);
769 /* Only account for identical reverse hash once */
770 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
771 && !is_dummy(next))
772 check_resize(ht, t, ++chain_len);
773 iter_prev = clear_flag(iter);
774 iter = next;
775 }
776 insert:
777 assert(node != clear_flag(iter));
778 assert(!is_removed(iter_prev));
779 assert(!is_removed(iter));
780 assert(iter_prev != node);
781 if (!dummy)
782 node->p.next = clear_flag(iter);
783 else
784 node->p.next = flag_dummy(clear_flag(iter));
785 if (is_dummy(iter))
786 new_node = flag_dummy(node);
787 else
788 new_node = node;
789 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
790 new_node) != iter)
791 continue; /* retry */
792 else
793 goto gc_end;
794 gc_node:
795 assert(!is_removed(iter));
796 if (is_dummy(iter))
797 new_next = flag_dummy(clear_flag(next));
798 else
799 new_next = clear_flag(next);
800 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
801 /* retry */
802 }
803 gc_end:
804 /* Garbage collect logically removed nodes in the bucket */
805 index = hash & (t->size - 1);
806 order = get_count_order_ulong(index + 1);
807 lookup = &t->tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
808 dummy_node = (struct cds_lfht_node *) lookup;
809 _cds_lfht_gc_bucket(dummy_node, node);
810 return node;
811 }
812
813 static
814 int _cds_lfht_remove(struct cds_lfht *ht, struct rcu_table *t,
815 struct cds_lfht_node *node, int dummy_removal)
816 {
817 struct cds_lfht_node *dummy, *next, *old;
818 struct _cds_lfht_node *lookup;
819 int flagged = 0;
820 unsigned long hash, index, order;
821
822 /* logically delete the node */
823 assert(!is_dummy(node));
824 assert(!is_removed(node));
825 old = rcu_dereference(node->p.next);
826 do {
827 next = old;
828 if (unlikely(is_removed(next)))
829 goto end;
830 if (dummy_removal)
831 assert(is_dummy(next));
832 else
833 assert(!is_dummy(next));
834 old = uatomic_cmpxchg(&node->p.next, next,
835 flag_removed(next));
836 } while (old != next);
837
838 /* We performed the (logical) deletion. */
839 flagged = 1;
840
841 /*
842 * Ensure that the node is not visible to readers anymore: lookup for
843 * the node, and remove it (along with any other logically removed node)
844 * if found.
845 */
846 hash = bit_reverse_ulong(node->p.reverse_hash);
847 assert(t->size > 0);
848 index = hash & (t->size - 1);
849 order = get_count_order_ulong(index + 1);
850 lookup = &t->tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
851 dummy = (struct cds_lfht_node *) lookup;
852 _cds_lfht_gc_bucket(dummy, node);
853 end:
854 /*
855 * Only the flagging action indicated that we (and no other)
856 * removed the node from the hash.
857 */
858 if (flagged) {
859 assert(is_removed(rcu_dereference(node->p.next)));
860 return 0;
861 } else
862 return -ENOENT;
863 }
864
865 static
866 void init_table(struct cds_lfht *ht, struct rcu_table *t,
867 unsigned long first_order, unsigned long len_order)
868 {
869 unsigned long i, end_order;
870
871 dbg_printf("init table: first_order %lu end_order %lu\n",
872 first_order, first_order + len_order);
873 end_order = first_order + len_order;
874 t->size = !first_order ? 0 : (1UL << (first_order - 1));
875 for (i = first_order; i < end_order; i++) {
876 unsigned long j, len;
877
878 len = !i ? 1 : 1UL << (i - 1);
879 dbg_printf("init order %lu len: %lu\n", i, len);
880 t->tbl[i] = calloc(1, sizeof(struct rcu_level)
881 + (len * sizeof(struct _cds_lfht_node)));
882 for (j = 0; j < len; j++) {
883 struct cds_lfht_node *new_node =
884 (struct cds_lfht_node *) &t->tbl[i]->nodes[j];
885
886 dbg_printf("init entry: i %lu j %lu hash %lu\n",
887 i, j, !i ? 0 : (1UL << (i - 1)) + j);
888 new_node->p.reverse_hash =
889 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
890 (void) _cds_lfht_add(ht, t, new_node, 0, 1);
891 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
892 break;
893 }
894 /* Update table size */
895 t->size = !i ? 1 : (1UL << i);
896 dbg_printf("init new size: %lu\n", t->size);
897 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
898 break;
899 }
900 t->resize_target = t->size;
901 t->resize_initiated = 0;
902 }
903
904 static
905 void fini_table(struct cds_lfht *ht, struct rcu_table *t,
906 unsigned long first_order, unsigned long len_order)
907 {
908 long i, end_order;
909
910 dbg_printf("fini table: first_order %lu end_order %lu\n",
911 first_order, first_order + len_order);
912 end_order = first_order + len_order;
913 assert(first_order > 0);
914 assert(t->size == (1UL << (end_order - 1)));
915 for (i = end_order - 1; i >= first_order; i--) {
916 unsigned long j, len;
917
918 len = !i ? 1 : 1UL << (i - 1);
919 dbg_printf("fini order %lu len: %lu\n", i, len);
920 /*
921 * Update table size. Need to shrink this table prior to
922 * removal so gc lookups use non-logically-removed dummy
923 * nodes.
924 */
925 t->size = 1UL << (i - 1);
926 /* Unlink */
927 for (j = 0; j < len; j++) {
928 struct cds_lfht_node *fini_node =
929 (struct cds_lfht_node *) &t->tbl[i]->nodes[j];
930
931 dbg_printf("fini entry: i %lu j %lu hash %lu\n",
932 i, j, !i ? 0 : (1UL << (i - 1)) + j);
933 fini_node->p.reverse_hash =
934 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
935 (void) _cds_lfht_remove(ht, t, fini_node, 1);
936 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
937 break;
938 }
939 ht->cds_lfht_call_rcu(&t->tbl[i]->head, cds_lfht_free_level);
940 dbg_printf("fini new size: %lu\n", t->size);
941 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
942 break;
943 }
944 t->resize_target = t->size;
945 t->resize_initiated = 0;
946 }
947
948 struct cds_lfht *cds_lfht_new(cds_lfht_hash_fct hash_fct,
949 cds_lfht_compare_fct compare_fct,
950 unsigned long hash_seed,
951 unsigned long init_size,
952 int flags,
953 void (*cds_lfht_call_rcu)(struct rcu_head *head,
954 void (*func)(struct rcu_head *head)),
955 void (*cds_lfht_synchronize_rcu)(void))
956 {
957 struct cds_lfht *ht;
958 unsigned long order;
959
960 /* init_size must be power of two */
961 if (init_size && (init_size & (init_size - 1)))
962 return NULL;
963 ht = calloc(1, sizeof(struct cds_lfht));
964 ht->hash_fct = hash_fct;
965 ht->compare_fct = compare_fct;
966 ht->hash_seed = hash_seed;
967 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
968 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
969 ht->in_progress_resize = 0;
970 ht->percpu_count = alloc_per_cpu_items_count();
971 /* this mutex should not nest in read-side C.S. */
972 pthread_mutex_init(&ht->resize_mutex, NULL);
973 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
974 ht->t = calloc(1, sizeof(struct cds_lfht)
975 + (order * sizeof(struct rcu_level *)));
976 ht->t->size = 0;
977 ht->flags = flags;
978 pthread_mutex_lock(&ht->resize_mutex);
979 init_table(ht, ht->t, 0, order);
980 pthread_mutex_unlock(&ht->resize_mutex);
981 return ht;
982 }
983
984 struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
985 {
986 struct rcu_table *t;
987 struct cds_lfht_node *node, *next;
988 struct _cds_lfht_node *lookup;
989 unsigned long hash, reverse_hash, index, order;
990
991 hash = ht->hash_fct(key, key_len, ht->hash_seed);
992 reverse_hash = bit_reverse_ulong(hash);
993
994 t = rcu_dereference(ht->t);
995 index = hash & (t->size - 1);
996 order = get_count_order_ulong(index + 1);
997 lookup = &t->tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
998 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
999 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
1000 node = (struct cds_lfht_node *) lookup;
1001 for (;;) {
1002 if (unlikely(!node))
1003 break;
1004 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1005 node = NULL;
1006 break;
1007 }
1008 next = rcu_dereference(node->p.next);
1009 if (likely(!is_removed(next))
1010 && !is_dummy(next)
1011 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1012 break;
1013 }
1014 node = clear_flag(next);
1015 }
1016 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1017 return node;
1018 }
1019
1020 struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
1021 struct cds_lfht_node *node)
1022 {
1023 struct cds_lfht_node *next;
1024 unsigned long reverse_hash;
1025 void *key;
1026 size_t key_len;
1027
1028 reverse_hash = node->p.reverse_hash;
1029 key = node->key;
1030 key_len = node->key_len;
1031 next = rcu_dereference(node->p.next);
1032 node = clear_flag(next);
1033
1034 for (;;) {
1035 if (unlikely(!node))
1036 break;
1037 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1038 node = NULL;
1039 break;
1040 }
1041 next = rcu_dereference(node->p.next);
1042 if (likely(!is_removed(next))
1043 && !is_dummy(next)
1044 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1045 break;
1046 }
1047 node = clear_flag(next);
1048 }
1049 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1050 return node;
1051 }
1052
1053 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1054 {
1055 struct rcu_table *t;
1056 unsigned long hash;
1057
1058 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1059 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1060
1061 t = rcu_dereference(ht->t);
1062 (void) _cds_lfht_add(ht, t, node, 0, 0);
1063 ht_count_add(ht, t);
1064 }
1065
1066 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1067 struct cds_lfht_node *node)
1068 {
1069 struct rcu_table *t;
1070 unsigned long hash;
1071 struct cds_lfht_node *ret;
1072
1073 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1074 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1075
1076 t = rcu_dereference(ht->t);
1077 ret = _cds_lfht_add(ht, t, node, 1, 0);
1078 if (ret != node)
1079 ht_count_add(ht, t);
1080 return ret;
1081 }
1082
1083 int cds_lfht_remove(struct cds_lfht *ht, struct cds_lfht_node *node)
1084 {
1085 struct rcu_table *t;
1086 int ret;
1087
1088 t = rcu_dereference(ht->t);
1089 ret = _cds_lfht_remove(ht, t, node, 0);
1090 if (!ret)
1091 ht_count_remove(ht, t);
1092 return ret;
1093 }
1094
1095 static
1096 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1097 {
1098 struct rcu_table *t;
1099 struct cds_lfht_node *node;
1100 struct _cds_lfht_node *lookup;
1101 unsigned long order, i;
1102
1103 t = ht->t;
1104 /* Check that the table is empty */
1105 lookup = &t->tbl[0]->nodes[0];
1106 node = (struct cds_lfht_node *) lookup;
1107 do {
1108 node = clear_flag(node)->p.next;
1109 if (!is_dummy(node))
1110 return -EPERM;
1111 assert(!is_removed(node));
1112 } while (clear_flag(node));
1113 /* Internal sanity check: all nodes left should be dummy */
1114 for (order = 0; order < get_count_order_ulong(t->size) + 1; order++) {
1115 unsigned long len;
1116
1117 len = !order ? 1 : 1UL << (order - 1);
1118 for (i = 0; i < len; i++) {
1119 dbg_printf("delete order %lu i %lu hash %lu\n",
1120 order, i,
1121 bit_reverse_ulong(t->tbl[order]->nodes[i].reverse_hash));
1122 assert(is_dummy(t->tbl[order]->nodes[i].next));
1123 }
1124 poison_free(t->tbl[order]);
1125 }
1126 return 0;
1127 }
1128
1129 /*
1130 * Should only be called when no more concurrent readers nor writers can
1131 * possibly access the table.
1132 */
1133 int cds_lfht_destroy(struct cds_lfht *ht)
1134 {
1135 int ret;
1136
1137 /* Wait for in-flight resize operations to complete */
1138 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1139 while (uatomic_read(&ht->in_progress_resize))
1140 poll(NULL, 0, 100); /* wait for 100ms */
1141 ret = cds_lfht_delete_dummy(ht);
1142 if (ret)
1143 return ret;
1144 poison_free(ht->t);
1145 free_per_cpu_items_count(ht->percpu_count);
1146 poison_free(ht);
1147 return ret;
1148 }
1149
1150 void cds_lfht_count_nodes(struct cds_lfht *ht,
1151 unsigned long *count,
1152 unsigned long *removed)
1153 {
1154 struct rcu_table *t;
1155 struct cds_lfht_node *node, *next;
1156 struct _cds_lfht_node *lookup;
1157 unsigned long nr_dummy = 0;
1158
1159 *count = 0;
1160 *removed = 0;
1161
1162 t = rcu_dereference(ht->t);
1163 /* Count non-dummy nodes in the table */
1164 lookup = &t->tbl[0]->nodes[0];
1165 node = (struct cds_lfht_node *) lookup;
1166 do {
1167 next = rcu_dereference(node->p.next);
1168 if (is_removed(next)) {
1169 assert(!is_dummy(next));
1170 (*removed)++;
1171 } else if (!is_dummy(next))
1172 (*count)++;
1173 else
1174 (nr_dummy)++;
1175 node = clear_flag(next);
1176 } while (node);
1177 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1178 }
1179
1180 /* called with resize mutex held */
1181 static
1182 void _do_cds_lfht_grow(struct cds_lfht *ht, struct rcu_table *old_t,
1183 unsigned long old_size, unsigned long new_size)
1184 {
1185 unsigned long old_order, new_order;
1186 struct rcu_table *new_t;
1187
1188 old_order = get_count_order_ulong(old_size) + 1;
1189 new_order = get_count_order_ulong(new_size) + 1;
1190 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1191 old_size, old_order, new_size, new_order);
1192 new_t = malloc(sizeof(struct cds_lfht)
1193 + (new_order * sizeof(struct rcu_level *)));
1194 assert(new_size > old_size);
1195 memcpy(&new_t->tbl, &old_t->tbl,
1196 old_order * sizeof(struct rcu_level *));
1197 init_table(ht, new_t, old_order, new_order - old_order);
1198 /* Changing table and size atomically wrt lookups */
1199 rcu_assign_pointer(ht->t, new_t);
1200 ht->cds_lfht_call_rcu(&old_t->head, cds_lfht_free_table_cb);
1201 }
1202
1203 /* called with resize mutex held */
1204 static
1205 void _do_cds_lfht_shrink(struct cds_lfht *ht, struct rcu_table *old_t,
1206 unsigned long old_size, unsigned long new_size)
1207 {
1208 unsigned long old_order, new_order;
1209 struct rcu_table *new_t;
1210
1211 new_size = max(new_size, MIN_TABLE_SIZE);
1212 old_order = get_count_order_ulong(old_size) + 1;
1213 new_order = get_count_order_ulong(new_size) + 1;
1214 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1215 old_size, old_order, new_size, new_order);
1216 new_t = malloc(sizeof(struct cds_lfht)
1217 + (new_order * sizeof(struct rcu_level *)));
1218 assert(new_size < old_size);
1219 memcpy(&new_t->tbl, &old_t->tbl,
1220 new_order * sizeof(struct rcu_level *));
1221 new_t->size = !new_order ? 1 : (1UL << (new_order - 1));
1222 assert(new_t->size == new_size);
1223 new_t->resize_target = new_t->size;
1224 new_t->resize_initiated = 0;
1225
1226 /* Changing table and size atomically wrt lookups */
1227 rcu_assign_pointer(ht->t, new_t);
1228
1229 /*
1230 * We need to wait for all add operations to reach Q.S. (and
1231 * thus use the new table for lookups) before we can start
1232 * releasing the old dummy nodes. Otherwise their lookup will
1233 * return a logically removed node as insert position.
1234 */
1235 ht->cds_lfht_synchronize_rcu();
1236
1237 /* Unlink and remove all now-unused dummy node pointers. */
1238 fini_table(ht, old_t, new_order, old_order - new_order);
1239 ht->cds_lfht_call_rcu(&old_t->head, cds_lfht_free_table_cb);
1240 }
1241
1242
1243 /* called with resize mutex held */
1244 static
1245 void _do_cds_lfht_resize(struct cds_lfht *ht)
1246 {
1247 unsigned long new_size, old_size;
1248 struct rcu_table *old_t;
1249
1250 old_t = ht->t;
1251 old_size = old_t->size;
1252 new_size = CMM_LOAD_SHARED(old_t->resize_target);
1253 if (old_size < new_size)
1254 _do_cds_lfht_grow(ht, old_t, old_size, new_size);
1255 else if (old_size > new_size)
1256 _do_cds_lfht_shrink(ht, old_t, old_size, new_size);
1257 else
1258 CMM_STORE_SHARED(old_t->resize_initiated, 0);
1259 }
1260
1261 static
1262 unsigned long resize_target_update(struct rcu_table *t,
1263 int growth_order)
1264 {
1265 return _uatomic_max(&t->resize_target,
1266 t->size << growth_order);
1267 }
1268
1269 static
1270 void resize_target_update_count(struct rcu_table *t,
1271 unsigned long count)
1272 {
1273 count = max(count, MIN_TABLE_SIZE);
1274 uatomic_set(&t->resize_target, count);
1275 }
1276
1277 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1278 {
1279 struct rcu_table *t = rcu_dereference(ht->t);
1280
1281 resize_target_update_count(t, new_size);
1282 CMM_STORE_SHARED(t->resize_initiated, 1);
1283 pthread_mutex_lock(&ht->resize_mutex);
1284 _do_cds_lfht_resize(ht);
1285 pthread_mutex_unlock(&ht->resize_mutex);
1286 }
1287
1288 static
1289 void do_resize_cb(struct rcu_head *head)
1290 {
1291 struct rcu_resize_work *work =
1292 caa_container_of(head, struct rcu_resize_work, head);
1293 struct cds_lfht *ht = work->ht;
1294
1295 pthread_mutex_lock(&ht->resize_mutex);
1296 _do_cds_lfht_resize(ht);
1297 pthread_mutex_unlock(&ht->resize_mutex);
1298 poison_free(work);
1299 cmm_smp_mb(); /* finish resize before decrement */
1300 uatomic_dec(&ht->in_progress_resize);
1301 }
1302
1303 static
1304 void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth)
1305 {
1306 struct rcu_resize_work *work;
1307 unsigned long target_size;
1308
1309 target_size = resize_target_update(t, growth);
1310 if (!CMM_LOAD_SHARED(t->resize_initiated) && t->size < target_size) {
1311 uatomic_inc(&ht->in_progress_resize);
1312 cmm_smp_mb(); /* increment resize count before calling it */
1313 work = malloc(sizeof(*work));
1314 work->ht = ht;
1315 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1316 CMM_STORE_SHARED(t->resize_initiated, 1);
1317 }
1318 }
1319
1320 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1321
1322 static
1323 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, struct rcu_table *t,
1324 unsigned long count)
1325 {
1326 struct rcu_resize_work *work;
1327
1328 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1329 return;
1330 resize_target_update_count(t, count);
1331 if (!CMM_LOAD_SHARED(t->resize_initiated)) {
1332 uatomic_inc(&ht->in_progress_resize);
1333 cmm_smp_mb(); /* increment resize count before calling it */
1334 work = malloc(sizeof(*work));
1335 work->ht = ht;
1336 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1337 CMM_STORE_SHARED(t->resize_initiated, 1);
1338 }
1339 }
1340
1341 #endif
This page took 0.059193 seconds and 5 git commands to generate.