rculfhash: simplify dummy node removal
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <-
124 * | | |
125 * 2 | | 2 010 010 |
126 * | | | 3 011 110 <- |
127 * | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 #ifndef max
170 #define max(a, b) ((a) > (b) ? (a) : (b))
171 #endif
172
173 /*
174 * The removed flag needs to be updated atomically with the pointer.
175 * The dummy flag does not require to be updated atomically with the
176 * pointer, but it is added as a pointer low bit flag to save space.
177 */
178 #define REMOVED_FLAG (1UL << 0)
179 #define DUMMY_FLAG (1UL << 1)
180 #define FLAGS_MASK ((1UL << 2) - 1)
181
182 struct ht_items_count {
183 unsigned long add, remove;
184 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
185
186 struct rcu_level {
187 struct rcu_head head;
188 struct _cds_lfht_node nodes[0];
189 };
190
191 struct rcu_table {
192 unsigned long size; /* always a power of 2 */
193 unsigned long resize_target;
194 int resize_initiated;
195 struct rcu_head head;
196 struct rcu_level *tbl[0];
197 };
198
199 struct cds_lfht {
200 struct rcu_table *t; /* shared */
201 cds_lfht_hash_fct hash_fct;
202 cds_lfht_compare_fct compare_fct;
203 unsigned long hash_seed;
204 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
205 unsigned int in_progress_resize, in_progress_destroy;
206 void (*cds_lfht_call_rcu)(struct rcu_head *head,
207 void (*func)(struct rcu_head *head));
208 void (*cds_lfht_synchronize_rcu)(void);
209 unsigned long count; /* global approximate item count */
210 struct ht_items_count *percpu_count; /* per-cpu item count */
211 };
212
213 struct rcu_resize_work {
214 struct rcu_head head;
215 struct cds_lfht *ht;
216 };
217
218 /*
219 * Algorithm to reverse bits in a word by lookup table, extended to
220 * 64-bit words.
221 * Source:
222 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
223 * Originally from Public Domain.
224 */
225
226 static const uint8_t BitReverseTable256[256] =
227 {
228 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
229 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
230 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
231 R6(0), R6(2), R6(1), R6(3)
232 };
233 #undef R2
234 #undef R4
235 #undef R6
236
237 static
238 uint8_t bit_reverse_u8(uint8_t v)
239 {
240 return BitReverseTable256[v];
241 }
242
243 static __attribute__((unused))
244 uint32_t bit_reverse_u32(uint32_t v)
245 {
246 return ((uint32_t) bit_reverse_u8(v) << 24) |
247 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
248 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
249 ((uint32_t) bit_reverse_u8(v >> 24));
250 }
251
252 static __attribute__((unused))
253 uint64_t bit_reverse_u64(uint64_t v)
254 {
255 return ((uint64_t) bit_reverse_u8(v) << 56) |
256 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
257 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
258 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
259 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
260 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
261 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
262 ((uint64_t) bit_reverse_u8(v >> 56));
263 }
264
265 static
266 unsigned long bit_reverse_ulong(unsigned long v)
267 {
268 #if (CAA_BITS_PER_LONG == 32)
269 return bit_reverse_u32(v);
270 #else
271 return bit_reverse_u64(v);
272 #endif
273 }
274
275 /*
276 * fls: returns the position of the most significant bit.
277 * Returns 0 if no bit is set, else returns the position of the most
278 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
279 */
280 #if defined(__i386) || defined(__x86_64)
281 static inline
282 unsigned int fls_u32(uint32_t x)
283 {
284 int r;
285
286 asm("bsrl %1,%0\n\t"
287 "jnz 1f\n\t"
288 "movl $-1,%0\n\t"
289 "1:\n\t"
290 : "=r" (r) : "rm" (x));
291 return r + 1;
292 }
293 #define HAS_FLS_U32
294 #endif
295
296 #if defined(__x86_64)
297 static inline
298 unsigned int fls_u64(uint64_t x)
299 {
300 long r;
301
302 asm("bsrq %1,%0\n\t"
303 "jnz 1f\n\t"
304 "movq $-1,%0\n\t"
305 "1:\n\t"
306 : "=r" (r) : "rm" (x));
307 return r + 1;
308 }
309 #define HAS_FLS_U64
310 #endif
311
312 #ifndef HAS_FLS_U64
313 static __attribute__((unused))
314 unsigned int fls_u64(uint64_t x)
315 {
316 unsigned int r = 64;
317
318 if (!x)
319 return 0;
320
321 if (!(x & 0xFFFFFFFF00000000ULL)) {
322 x <<= 32;
323 r -= 32;
324 }
325 if (!(x & 0xFFFF000000000000ULL)) {
326 x <<= 16;
327 r -= 16;
328 }
329 if (!(x & 0xFF00000000000000ULL)) {
330 x <<= 8;
331 r -= 8;
332 }
333 if (!(x & 0xF000000000000000ULL)) {
334 x <<= 4;
335 r -= 4;
336 }
337 if (!(x & 0xC000000000000000ULL)) {
338 x <<= 2;
339 r -= 2;
340 }
341 if (!(x & 0x8000000000000000ULL)) {
342 x <<= 1;
343 r -= 1;
344 }
345 return r;
346 }
347 #endif
348
349 #ifndef HAS_FLS_U32
350 static __attribute__((unused))
351 unsigned int fls_u32(uint32_t x)
352 {
353 unsigned int r = 32;
354
355 if (!x)
356 return 0;
357 if (!(x & 0xFFFF0000U)) {
358 x <<= 16;
359 r -= 16;
360 }
361 if (!(x & 0xFF000000U)) {
362 x <<= 8;
363 r -= 8;
364 }
365 if (!(x & 0xF0000000U)) {
366 x <<= 4;
367 r -= 4;
368 }
369 if (!(x & 0xC0000000U)) {
370 x <<= 2;
371 r -= 2;
372 }
373 if (!(x & 0x80000000U)) {
374 x <<= 1;
375 r -= 1;
376 }
377 return r;
378 }
379 #endif
380
381 unsigned int fls_ulong(unsigned long x)
382 {
383 #if (CAA_BITS_PER_lONG == 32)
384 return fls_u32(x);
385 #else
386 return fls_u64(x);
387 #endif
388 }
389
390 int get_count_order_u32(uint32_t x)
391 {
392 int order;
393
394 order = fls_u32(x) - 1;
395 if (x & (x - 1))
396 order++;
397 return order;
398 }
399
400 int get_count_order_ulong(unsigned long x)
401 {
402 int order;
403
404 order = fls_ulong(x) - 1;
405 if (x & (x - 1))
406 order++;
407 return order;
408 }
409
410 static
411 void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth);
412
413 /*
414 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
415 * available, then we support hash table item accounting.
416 * In the unfortunate event the number of CPUs reported would be
417 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
418 */
419 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
420
421 static
422 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, struct rcu_table *t,
423 unsigned long count);
424
425 static long nr_cpus_mask = -1;
426
427 static
428 struct ht_items_count *alloc_per_cpu_items_count(void)
429 {
430 struct ht_items_count *count;
431
432 switch (nr_cpus_mask) {
433 case -2:
434 return NULL;
435 case -1:
436 {
437 long maxcpus;
438
439 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
440 if (maxcpus <= 0) {
441 nr_cpus_mask = -2;
442 return NULL;
443 }
444 /*
445 * round up number of CPUs to next power of two, so we
446 * can use & for modulo.
447 */
448 maxcpus = 1UL << get_count_order_ulong(maxcpus);
449 nr_cpus_mask = maxcpus - 1;
450 }
451 /* Fall-through */
452 default:
453 return calloc(nr_cpus_mask + 1, sizeof(*count));
454 }
455 }
456
457 static
458 void free_per_cpu_items_count(struct ht_items_count *count)
459 {
460 free(count);
461 }
462
463 static
464 int ht_get_cpu(void)
465 {
466 int cpu;
467
468 assert(nr_cpus_mask >= 0);
469 cpu = sched_getcpu();
470 if (unlikely(cpu < 0))
471 return cpu;
472 else
473 return cpu & nr_cpus_mask;
474 }
475
476 static
477 void ht_count_add(struct cds_lfht *ht, struct rcu_table *t)
478 {
479 unsigned long percpu_count;
480 int cpu;
481
482 if (unlikely(!ht->percpu_count))
483 return;
484 cpu = ht_get_cpu();
485 if (unlikely(cpu < 0))
486 return;
487 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
488 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
489 unsigned long count;
490
491 dbg_printf("add percpu %lu\n", percpu_count);
492 count = uatomic_add_return(&ht->count,
493 1UL << COUNT_COMMIT_ORDER);
494 /* If power of 2 */
495 if (!(count & (count - 1))) {
496 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD)
497 < t->size)
498 return;
499 dbg_printf("add set global %lu\n", count);
500 cds_lfht_resize_lazy_count(ht, t,
501 count >> (CHAIN_LEN_TARGET - 1));
502 }
503 }
504 }
505
506 static
507 void ht_count_remove(struct cds_lfht *ht, struct rcu_table *t)
508 {
509 unsigned long percpu_count;
510 int cpu;
511
512 if (unlikely(!ht->percpu_count))
513 return;
514 cpu = ht_get_cpu();
515 if (unlikely(cpu < 0))
516 return;
517 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].remove, -1);
518 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
519 unsigned long count;
520
521 dbg_printf("remove percpu %lu\n", percpu_count);
522 count = uatomic_add_return(&ht->count,
523 -(1UL << COUNT_COMMIT_ORDER));
524 /* If power of 2 */
525 if (!(count & (count - 1))) {
526 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD)
527 >= t->size)
528 return;
529 dbg_printf("remove set global %lu\n", count);
530 cds_lfht_resize_lazy_count(ht, t,
531 count >> (CHAIN_LEN_TARGET - 1));
532 }
533 }
534 }
535
536 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
537
538 static const long nr_cpus_mask = -1;
539
540 static
541 struct ht_items_count *alloc_per_cpu_items_count(void)
542 {
543 return NULL;
544 }
545
546 static
547 void free_per_cpu_items_count(struct ht_items_count *count)
548 {
549 }
550
551 static
552 void ht_count_add(struct cds_lfht *ht, struct rcu_table *t)
553 {
554 }
555
556 static
557 void ht_count_remove(struct cds_lfht *ht, struct rcu_table *t)
558 {
559 }
560
561 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
562
563
564 static
565 void check_resize(struct cds_lfht *ht, struct rcu_table *t,
566 uint32_t chain_len)
567 {
568 unsigned long count;
569
570 count = uatomic_read(&ht->count);
571 /*
572 * Use bucket-local length for small table expand and for
573 * environments lacking per-cpu data support.
574 */
575 if (count >= (1UL << COUNT_COMMIT_ORDER))
576 return;
577 if (chain_len > 100)
578 dbg_printf("WARNING: large chain length: %u.\n",
579 chain_len);
580 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
581 cds_lfht_resize_lazy(ht, t,
582 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
583 }
584
585 static
586 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
587 {
588 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
589 }
590
591 static
592 int is_removed(struct cds_lfht_node *node)
593 {
594 return ((unsigned long) node) & REMOVED_FLAG;
595 }
596
597 static
598 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
599 {
600 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
601 }
602
603 static
604 int is_dummy(struct cds_lfht_node *node)
605 {
606 return ((unsigned long) node) & DUMMY_FLAG;
607 }
608
609 static
610 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
611 {
612 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
613 }
614
615 static
616 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
617 {
618 unsigned long old1, old2;
619
620 old1 = uatomic_read(ptr);
621 do {
622 old2 = old1;
623 if (old2 >= v)
624 return old2;
625 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
626 return v;
627 }
628
629 static
630 void cds_lfht_free_table_cb(struct rcu_head *head)
631 {
632 struct rcu_table *t =
633 caa_container_of(head, struct rcu_table, head);
634 free(t);
635 }
636
637 static
638 void cds_lfht_free_level(struct rcu_head *head)
639 {
640 struct rcu_level *l =
641 caa_container_of(head, struct rcu_level, head);
642 free(l);
643 }
644
645 /*
646 * Remove all logically deleted nodes from a bucket up to a certain node key.
647 */
648 static
649 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
650 {
651 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
652
653 for (;;) {
654 iter_prev = dummy;
655 /* We can always skip the dummy node initially */
656 iter = rcu_dereference(iter_prev->p.next);
657 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
658 for (;;) {
659 if (unlikely(!clear_flag(iter)))
660 return;
661 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
662 return;
663 next = rcu_dereference(clear_flag(iter)->p.next);
664 if (likely(is_removed(next)))
665 break;
666 iter_prev = clear_flag(iter);
667 iter = next;
668 }
669 assert(!is_removed(iter));
670 if (is_dummy(iter))
671 new_next = flag_dummy(clear_flag(next));
672 else
673 new_next = clear_flag(next);
674 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
675 }
676 }
677
678 static
679 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht, struct rcu_table *t,
680 struct cds_lfht_node *node, int unique, int dummy)
681 {
682 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
683 *dummy_node;
684 struct _cds_lfht_node *lookup;
685 unsigned long hash, index, order;
686
687 if (!t->size) {
688 assert(dummy);
689 node->p.next = flag_dummy(NULL);
690 return node; /* Initial first add (head) */
691 }
692 hash = bit_reverse_ulong(node->p.reverse_hash);
693 for (;;) {
694 uint32_t chain_len = 0;
695
696 /*
697 * iter_prev points to the non-removed node prior to the
698 * insert location.
699 */
700 index = hash & (t->size - 1);
701 order = get_count_order_ulong(index + 1);
702 lookup = &t->tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
703 iter_prev = (struct cds_lfht_node *) lookup;
704 /* We can always skip the dummy node initially */
705 iter = rcu_dereference(iter_prev->p.next);
706 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
707 for (;;) {
708 if (unlikely(!clear_flag(iter)))
709 goto insert;
710 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
711 goto insert;
712 next = rcu_dereference(clear_flag(iter)->p.next);
713 if (unlikely(is_removed(next)))
714 goto gc_node;
715 if (unique
716 && !is_dummy(next)
717 && !ht->compare_fct(node->key, node->key_len,
718 clear_flag(iter)->key,
719 clear_flag(iter)->key_len))
720 return clear_flag(iter);
721 /* Only account for identical reverse hash once */
722 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
723 && !is_dummy(next))
724 check_resize(ht, t, ++chain_len);
725 iter_prev = clear_flag(iter);
726 iter = next;
727 }
728 insert:
729 assert(node != clear_flag(iter));
730 assert(!is_removed(iter_prev));
731 assert(iter_prev != node);
732 if (!dummy)
733 node->p.next = clear_flag(iter);
734 else
735 node->p.next = flag_dummy(clear_flag(iter));
736 if (is_dummy(iter))
737 new_node = flag_dummy(node);
738 else
739 new_node = node;
740 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
741 new_node) != iter)
742 continue; /* retry */
743 else
744 goto gc_end;
745 gc_node:
746 assert(!is_removed(iter));
747 if (is_dummy(iter))
748 new_next = flag_dummy(clear_flag(next));
749 else
750 new_next = clear_flag(next);
751 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
752 /* retry */
753 }
754 gc_end:
755 /* Garbage collect logically removed nodes in the bucket */
756 index = hash & (t->size - 1);
757 order = get_count_order_ulong(index + 1);
758 lookup = &t->tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
759 dummy_node = (struct cds_lfht_node *) lookup;
760 _cds_lfht_gc_bucket(dummy_node, node);
761 return node;
762 }
763
764 static
765 int _cds_lfht_remove(struct cds_lfht *ht, struct rcu_table *t,
766 struct cds_lfht_node *node, int dummy_removal)
767 {
768 struct cds_lfht_node *dummy, *next, *old;
769 struct _cds_lfht_node *lookup;
770 int flagged = 0;
771 unsigned long hash, index, order;
772
773 /* logically delete the node */
774 old = rcu_dereference(node->p.next);
775 do {
776 next = old;
777 if (unlikely(is_removed(next)))
778 goto end;
779 if (dummy_removal)
780 assert(is_dummy(next));
781 else
782 assert(!is_dummy(next));
783 old = uatomic_cmpxchg(&node->p.next, next,
784 flag_removed(next));
785 } while (old != next);
786
787 /* We performed the (logical) deletion. */
788 flagged = 1;
789
790 if (dummy_removal)
791 node = clear_flag(node);
792
793 /*
794 * Ensure that the node is not visible to readers anymore: lookup for
795 * the node, and remove it (along with any other logically removed node)
796 * if found.
797 */
798 hash = bit_reverse_ulong(node->p.reverse_hash);
799 assert(t->size > 0);
800 index = hash & (t->size - 1);
801 order = get_count_order_ulong(index + 1);
802 lookup = &t->tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
803 dummy = (struct cds_lfht_node *) lookup;
804 _cds_lfht_gc_bucket(dummy, node);
805 end:
806 /*
807 * Only the flagging action indicated that we (and no other)
808 * removed the node from the hash.
809 */
810 if (flagged) {
811 assert(is_removed(rcu_dereference(node->p.next)));
812 return 0;
813 } else
814 return -ENOENT;
815 }
816
817 static
818 void init_table(struct cds_lfht *ht, struct rcu_table *t,
819 unsigned long first_order, unsigned long len_order)
820 {
821 unsigned long i, end_order;
822
823 dbg_printf("init table: first_order %lu end_order %lu\n",
824 first_order, first_order + len_order);
825 end_order = first_order + len_order;
826 t->size = !first_order ? 0 : (1UL << (first_order - 1));
827 for (i = first_order; i < end_order; i++) {
828 unsigned long j, len;
829
830 len = !i ? 1 : 1UL << (i - 1);
831 dbg_printf("init order %lu len: %lu\n", i, len);
832 t->tbl[i] = calloc(1, sizeof(struct rcu_level)
833 + (len * sizeof(struct _cds_lfht_node)));
834 for (j = 0; j < len; j++) {
835 struct cds_lfht_node *new_node =
836 (struct cds_lfht_node *) &t->tbl[i]->nodes[j];
837
838 dbg_printf("init entry: i %lu j %lu hash %lu\n",
839 i, j, !i ? 0 : (1UL << (i - 1)) + j);
840 new_node->p.reverse_hash =
841 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
842 (void) _cds_lfht_add(ht, t, new_node, 0, 1);
843 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
844 break;
845 }
846 /* Update table size */
847 t->size = !i ? 1 : (1UL << i);
848 dbg_printf("init new size: %lu\n", t->size);
849 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
850 break;
851 }
852 t->resize_target = t->size;
853 t->resize_initiated = 0;
854 }
855
856 static
857 void fini_table(struct cds_lfht *ht, struct rcu_table *t,
858 unsigned long first_order, unsigned long len_order)
859 {
860 long i, end_order;
861
862 dbg_printf("fini table: first_order %lu end_order %lu\n",
863 first_order, first_order + len_order);
864 end_order = first_order + len_order;
865 assert(first_order > 0);
866 assert(t->size == (1UL << (end_order - 1)));
867 for (i = end_order - 1; i >= first_order; i--) {
868 unsigned long j, len;
869
870 len = !i ? 1 : 1UL << (i - 1);
871 dbg_printf("fini order %lu len: %lu\n", i, len);
872 /* Update table size */
873 t->size = 1UL << (i - 1);
874 /* Unlink */
875 for (j = 0; j < len; j++) {
876 struct cds_lfht_node *new_node =
877 (struct cds_lfht_node *) &t->tbl[i]->nodes[j];
878
879 dbg_printf("fini entry: i %lu j %lu hash %lu\n",
880 i, j, !i ? 0 : (1UL << (i - 1)) + j);
881 new_node->p.reverse_hash =
882 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
883 (void) _cds_lfht_remove(ht, t, new_node, 1);
884 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
885 break;
886 }
887 ht->cds_lfht_call_rcu(&t->tbl[i]->head, cds_lfht_free_level);
888 dbg_printf("fini new size: %lu\n", t->size);
889 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
890 break;
891 }
892 t->resize_target = t->size;
893 t->resize_initiated = 0;
894 }
895
896 struct cds_lfht *cds_lfht_new(cds_lfht_hash_fct hash_fct,
897 cds_lfht_compare_fct compare_fct,
898 unsigned long hash_seed,
899 unsigned long init_size,
900 void (*cds_lfht_call_rcu)(struct rcu_head *head,
901 void (*func)(struct rcu_head *head)),
902 void (*cds_lfht_synchronize_rcu)(void))
903 {
904 struct cds_lfht *ht;
905 unsigned long order;
906
907 /* init_size must be power of two */
908 if (init_size && (init_size & (init_size - 1)))
909 return NULL;
910 ht = calloc(1, sizeof(struct cds_lfht));
911 ht->hash_fct = hash_fct;
912 ht->compare_fct = compare_fct;
913 ht->hash_seed = hash_seed;
914 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
915 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
916 ht->in_progress_resize = 0;
917 ht->percpu_count = alloc_per_cpu_items_count();
918 /* this mutex should not nest in read-side C.S. */
919 pthread_mutex_init(&ht->resize_mutex, NULL);
920 order = get_count_order_ulong(max(init_size, 1)) + 1;
921 ht->t = calloc(1, sizeof(struct cds_lfht)
922 + (order * sizeof(struct rcu_level *)));
923 ht->t->size = 0;
924 pthread_mutex_lock(&ht->resize_mutex);
925 init_table(ht, ht->t, 0, order);
926 pthread_mutex_unlock(&ht->resize_mutex);
927 return ht;
928 }
929
930 struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
931 {
932 struct rcu_table *t;
933 struct cds_lfht_node *node, *next;
934 struct _cds_lfht_node *lookup;
935 unsigned long hash, reverse_hash, index, order;
936
937 hash = ht->hash_fct(key, key_len, ht->hash_seed);
938 reverse_hash = bit_reverse_ulong(hash);
939
940 t = rcu_dereference(ht->t);
941 index = hash & (t->size - 1);
942 order = get_count_order_ulong(index + 1);
943 lookup = &t->tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
944 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
945 hash, index, order, index & ((1UL << (order - 1)) - 1));
946 node = (struct cds_lfht_node *) lookup;
947 for (;;) {
948 if (unlikely(!node))
949 break;
950 if (unlikely(node->p.reverse_hash > reverse_hash)) {
951 node = NULL;
952 break;
953 }
954 next = rcu_dereference(node->p.next);
955 if (likely(!is_removed(next))
956 && !is_dummy(next)
957 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
958 break;
959 }
960 node = clear_flag(next);
961 }
962 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
963 return node;
964 }
965
966 struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
967 struct cds_lfht_node *node)
968 {
969 struct cds_lfht_node *next;
970 unsigned long reverse_hash;
971 void *key;
972 size_t key_len;
973
974 reverse_hash = node->p.reverse_hash;
975 key = node->key;
976 key_len = node->key_len;
977 next = rcu_dereference(node->p.next);
978 node = clear_flag(next);
979
980 for (;;) {
981 if (unlikely(!node))
982 break;
983 if (unlikely(node->p.reverse_hash > reverse_hash)) {
984 node = NULL;
985 break;
986 }
987 next = rcu_dereference(node->p.next);
988 if (likely(!is_removed(next))
989 && !is_dummy(next)
990 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
991 break;
992 }
993 node = clear_flag(next);
994 }
995 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
996 return node;
997 }
998
999 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1000 {
1001 struct rcu_table *t;
1002 unsigned long hash;
1003
1004 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1005 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1006
1007 t = rcu_dereference(ht->t);
1008 (void) _cds_lfht_add(ht, t, node, 0, 0);
1009 ht_count_add(ht, t);
1010 }
1011
1012 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1013 struct cds_lfht_node *node)
1014 {
1015 struct rcu_table *t;
1016 unsigned long hash;
1017 struct cds_lfht_node *ret;
1018
1019 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1020 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1021
1022 t = rcu_dereference(ht->t);
1023 ret = _cds_lfht_add(ht, t, node, 1, 0);
1024 if (ret != node)
1025 ht_count_add(ht, t);
1026 return ret;
1027 }
1028
1029 int cds_lfht_remove(struct cds_lfht *ht, struct cds_lfht_node *node)
1030 {
1031 struct rcu_table *t;
1032 int ret;
1033
1034 t = rcu_dereference(ht->t);
1035 ret = _cds_lfht_remove(ht, t, node, 0);
1036 if (!ret)
1037 ht_count_remove(ht, t);
1038 return ret;
1039 }
1040
1041 static
1042 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1043 {
1044 struct rcu_table *t;
1045 struct cds_lfht_node *node;
1046 struct _cds_lfht_node *lookup;
1047 unsigned long order, i;
1048
1049 t = ht->t;
1050 /* Check that the table is empty */
1051 lookup = &t->tbl[0]->nodes[0];
1052 node = (struct cds_lfht_node *) lookup;
1053 do {
1054 node = clear_flag(node)->p.next;
1055 if (!is_dummy(node))
1056 return -EPERM;
1057 assert(!is_removed(node));
1058 } while (clear_flag(node));
1059 /* Internal sanity check: all nodes left should be dummy */
1060 for (order = 0; order < get_count_order_ulong(t->size) + 1; order++) {
1061 unsigned long len;
1062
1063 len = !order ? 1 : 1UL << (order - 1);
1064 for (i = 0; i < len; i++) {
1065 dbg_printf("delete order %lu i %lu hash %lu\n",
1066 order, i,
1067 bit_reverse_ulong(t->tbl[order]->nodes[i].reverse_hash));
1068 assert(is_dummy(t->tbl[order]->nodes[i].next));
1069 }
1070 free(t->tbl[order]);
1071 }
1072 return 0;
1073 }
1074
1075 /*
1076 * Should only be called when no more concurrent readers nor writers can
1077 * possibly access the table.
1078 */
1079 int cds_lfht_destroy(struct cds_lfht *ht)
1080 {
1081 int ret;
1082
1083 /* Wait for in-flight resize operations to complete */
1084 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1085 while (uatomic_read(&ht->in_progress_resize))
1086 poll(NULL, 0, 100); /* wait for 100ms */
1087 ret = cds_lfht_delete_dummy(ht);
1088 if (ret)
1089 return ret;
1090 free(ht->t);
1091 free_per_cpu_items_count(ht->percpu_count);
1092 free(ht);
1093 return ret;
1094 }
1095
1096 void cds_lfht_count_nodes(struct cds_lfht *ht,
1097 unsigned long *count,
1098 unsigned long *removed)
1099 {
1100 struct rcu_table *t;
1101 struct cds_lfht_node *node, *next;
1102 struct _cds_lfht_node *lookup;
1103 unsigned long nr_dummy = 0;
1104
1105 *count = 0;
1106 *removed = 0;
1107
1108 t = rcu_dereference(ht->t);
1109 /* Count non-dummy nodes in the table */
1110 lookup = &t->tbl[0]->nodes[0];
1111 node = (struct cds_lfht_node *) lookup;
1112 do {
1113 next = rcu_dereference(node->p.next);
1114 if (is_removed(next)) {
1115 assert(!is_dummy(next));
1116 (*removed)++;
1117 } else if (!is_dummy(next))
1118 (*count)++;
1119 else
1120 (nr_dummy)++;
1121 node = clear_flag(next);
1122 } while (node);
1123 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1124 }
1125
1126 /* called with resize mutex held */
1127 static
1128 void _do_cds_lfht_grow(struct cds_lfht *ht, struct rcu_table *old_t,
1129 unsigned long old_size, unsigned long new_size)
1130 {
1131 unsigned long old_order, new_order;
1132 struct rcu_table *new_t;
1133
1134 old_order = get_count_order_ulong(old_size) + 1;
1135 new_order = get_count_order_ulong(new_size) + 1;
1136 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1137 old_size, old_order, new_size, new_order);
1138 new_t = malloc(sizeof(struct cds_lfht)
1139 + (new_order * sizeof(struct rcu_level *)));
1140 assert(new_size > old_size);
1141 memcpy(&new_t->tbl, &old_t->tbl,
1142 old_order * sizeof(struct rcu_level *));
1143 init_table(ht, new_t, old_order, new_order - old_order);
1144 /* Changing table and size atomically wrt lookups */
1145 rcu_assign_pointer(ht->t, new_t);
1146 ht->cds_lfht_call_rcu(&old_t->head, cds_lfht_free_table_cb);
1147 }
1148
1149 /* called with resize mutex held */
1150 static
1151 void _do_cds_lfht_shrink(struct cds_lfht *ht, struct rcu_table *old_t,
1152 unsigned long old_size, unsigned long new_size)
1153 {
1154 unsigned long old_order, new_order;
1155 struct rcu_table *new_t;
1156
1157 new_size = max(new_size, 1);
1158 old_order = get_count_order_ulong(old_size) + 1;
1159 new_order = get_count_order_ulong(new_size) + 1;
1160 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1161 old_size, old_order, new_size, new_order);
1162 new_t = malloc(sizeof(struct cds_lfht)
1163 + (new_order * sizeof(struct rcu_level *)));
1164 assert(new_size < old_size);
1165 memcpy(&new_t->tbl, &old_t->tbl,
1166 new_order * sizeof(struct rcu_level *));
1167 new_t->size = !new_order ? 1 : (1UL << (new_order - 1));
1168 new_t->resize_target = new_t->size;
1169 new_t->resize_initiated = 0;
1170
1171 /* Changing table and size atomically wrt lookups */
1172 rcu_assign_pointer(ht->t, new_t);
1173
1174 /*
1175 * We need to wait for all reader threads to reach Q.S. (and
1176 * thus use the new table for lookups) before we can start
1177 * releasing the old dummy nodes.
1178 */
1179 ht->cds_lfht_synchronize_rcu();
1180
1181 /* Unlink and remove all now-unused dummy node pointers. */
1182 fini_table(ht, old_t, new_order, old_order - new_order);
1183 ht->cds_lfht_call_rcu(&old_t->head, cds_lfht_free_table_cb);
1184 }
1185
1186
1187 /* called with resize mutex held */
1188 static
1189 void _do_cds_lfht_resize(struct cds_lfht *ht)
1190 {
1191 unsigned long new_size, old_size;
1192 struct rcu_table *old_t;
1193
1194 old_t = ht->t;
1195 old_size = old_t->size;
1196 new_size = CMM_LOAD_SHARED(old_t->resize_target);
1197 if (old_size < new_size)
1198 _do_cds_lfht_grow(ht, old_t, old_size, new_size);
1199 else if (old_size > new_size)
1200 _do_cds_lfht_shrink(ht, old_t, old_size, new_size);
1201 else
1202 CMM_STORE_SHARED(old_t->resize_initiated, 0);
1203 }
1204
1205 static
1206 unsigned long resize_target_update(struct rcu_table *t,
1207 int growth_order)
1208 {
1209 return _uatomic_max(&t->resize_target,
1210 t->size << growth_order);
1211 }
1212
1213 static
1214 unsigned long resize_target_update_count(struct rcu_table *t,
1215 unsigned long count)
1216 {
1217 count = max(count, 1);
1218 return uatomic_set(&t->resize_target, count);
1219 }
1220
1221 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1222 {
1223 struct rcu_table *t = rcu_dereference(ht->t);
1224 unsigned long target_size;
1225
1226 target_size = resize_target_update_count(t, new_size);
1227 CMM_STORE_SHARED(t->resize_initiated, 1);
1228 pthread_mutex_lock(&ht->resize_mutex);
1229 _do_cds_lfht_resize(ht);
1230 pthread_mutex_unlock(&ht->resize_mutex);
1231 }
1232
1233 static
1234 void do_resize_cb(struct rcu_head *head)
1235 {
1236 struct rcu_resize_work *work =
1237 caa_container_of(head, struct rcu_resize_work, head);
1238 struct cds_lfht *ht = work->ht;
1239
1240 pthread_mutex_lock(&ht->resize_mutex);
1241 _do_cds_lfht_resize(ht);
1242 pthread_mutex_unlock(&ht->resize_mutex);
1243 free(work);
1244 cmm_smp_mb(); /* finish resize before decrement */
1245 uatomic_dec(&ht->in_progress_resize);
1246 }
1247
1248 static
1249 void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth)
1250 {
1251 struct rcu_resize_work *work;
1252 unsigned long target_size;
1253
1254 target_size = resize_target_update(t, growth);
1255 if (!CMM_LOAD_SHARED(t->resize_initiated) && t->size < target_size) {
1256 uatomic_inc(&ht->in_progress_resize);
1257 cmm_smp_mb(); /* increment resize count before calling it */
1258 work = malloc(sizeof(*work));
1259 work->ht = ht;
1260 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1261 CMM_STORE_SHARED(t->resize_initiated, 1);
1262 }
1263 }
1264
1265 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1266
1267 static
1268 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, struct rcu_table *t,
1269 unsigned long count)
1270 {
1271 struct rcu_resize_work *work;
1272 unsigned long target_size;
1273
1274 target_size = resize_target_update_count(t, count);
1275 if (!CMM_LOAD_SHARED(t->resize_initiated)) {
1276 uatomic_inc(&ht->in_progress_resize);
1277 cmm_smp_mb(); /* increment resize count before calling it */
1278 work = malloc(sizeof(*work));
1279 work->ht = ht;
1280 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1281 CMM_STORE_SHARED(t->resize_initiated, 1);
1282 }
1283 }
1284
1285 #endif
This page took 0.058639 seconds and 5 git commands to generate.