rculfhash: support replacement operation
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 /*
170 * Define the minimum table size.
171 */
172 #define MIN_TABLE_SIZE 1
173
174 #if (CAA_BITS_PER_LONG == 32)
175 #define MAX_TABLE_ORDER 32
176 #else
177 #define MAX_TABLE_ORDER 64
178 #endif
179
180 /*
181 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
182 */
183 #define MIN_PARTITION_PER_THREAD_ORDER 12
184 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
185
186 #ifndef min
187 #define min(a, b) ((a) < (b) ? (a) : (b))
188 #endif
189
190 #ifndef max
191 #define max(a, b) ((a) > (b) ? (a) : (b))
192 #endif
193
194 /*
195 * The removed flag needs to be updated atomically with the pointer.
196 * It indicates that no node must attach to the node scheduled for
197 * removal. The gc flag also needs to be updated atomically with the
198 * pointer. It indicates that node garbage collection must be performed.
199 * "removed" and "gc" flags are separate for the benefit of replacement
200 * operation.
201 * The dummy flag does not require to be updated atomically with the
202 * pointer, but it is added as a pointer low bit flag to save space.
203 */
204 #define REMOVED_FLAG (1UL << 0)
205 #define GC_FLAG (1UL << 1)
206 #define DUMMY_FLAG (1UL << 2)
207 #define FLAGS_MASK ((1UL << 3) - 1)
208
209 /* Value of the end pointer. Should not interact with flags. */
210 #define END_VALUE NULL
211
212 struct ht_items_count {
213 unsigned long add, del;
214 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
215
216 struct rcu_level {
217 struct rcu_head head;
218 struct _cds_lfht_node nodes[0];
219 };
220
221 struct rcu_table {
222 unsigned long size; /* always a power of 2, shared (RCU) */
223 unsigned long resize_target;
224 int resize_initiated;
225 struct rcu_level *tbl[MAX_TABLE_ORDER];
226 };
227
228 struct cds_lfht {
229 struct rcu_table t;
230 cds_lfht_hash_fct hash_fct;
231 cds_lfht_compare_fct compare_fct;
232 unsigned long hash_seed;
233 int flags;
234 /*
235 * We need to put the work threads offline (QSBR) when taking this
236 * mutex, because we use synchronize_rcu within this mutex critical
237 * section, which waits on read-side critical sections, and could
238 * therefore cause grace-period deadlock if we hold off RCU G.P.
239 * completion.
240 */
241 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
242 unsigned int in_progress_resize, in_progress_destroy;
243 void (*cds_lfht_call_rcu)(struct rcu_head *head,
244 void (*func)(struct rcu_head *head));
245 void (*cds_lfht_synchronize_rcu)(void);
246 void (*cds_lfht_rcu_read_lock)(void);
247 void (*cds_lfht_rcu_read_unlock)(void);
248 void (*cds_lfht_rcu_thread_offline)(void);
249 void (*cds_lfht_rcu_thread_online)(void);
250 void (*cds_lfht_rcu_register_thread)(void);
251 void (*cds_lfht_rcu_unregister_thread)(void);
252 pthread_attr_t *resize_attr; /* Resize threads attributes */
253 unsigned long count; /* global approximate item count */
254 struct ht_items_count *percpu_count; /* per-cpu item count */
255 };
256
257 struct rcu_resize_work {
258 struct rcu_head head;
259 struct cds_lfht *ht;
260 };
261
262 struct partition_resize_work {
263 struct rcu_head head;
264 struct cds_lfht *ht;
265 unsigned long i, start, len;
266 void (*fct)(struct cds_lfht *ht, unsigned long i,
267 unsigned long start, unsigned long len);
268 };
269
270 enum add_mode {
271 ADD_DEFAULT = 0,
272 ADD_UNIQUE = 1,
273 ADD_REPLACE = 2,
274 };
275
276 static
277 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
278 unsigned long size,
279 struct cds_lfht_node *node,
280 enum add_mode mode, int dummy);
281
282 static
283 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
284 struct cds_lfht_node *node,
285 int dummy_removal, int do_gc);
286
287 /*
288 * Algorithm to reverse bits in a word by lookup table, extended to
289 * 64-bit words.
290 * Source:
291 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
292 * Originally from Public Domain.
293 */
294
295 static const uint8_t BitReverseTable256[256] =
296 {
297 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
298 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
299 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
300 R6(0), R6(2), R6(1), R6(3)
301 };
302 #undef R2
303 #undef R4
304 #undef R6
305
306 static
307 uint8_t bit_reverse_u8(uint8_t v)
308 {
309 return BitReverseTable256[v];
310 }
311
312 static __attribute__((unused))
313 uint32_t bit_reverse_u32(uint32_t v)
314 {
315 return ((uint32_t) bit_reverse_u8(v) << 24) |
316 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
317 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
318 ((uint32_t) bit_reverse_u8(v >> 24));
319 }
320
321 static __attribute__((unused))
322 uint64_t bit_reverse_u64(uint64_t v)
323 {
324 return ((uint64_t) bit_reverse_u8(v) << 56) |
325 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
326 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
327 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
328 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
329 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
330 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
331 ((uint64_t) bit_reverse_u8(v >> 56));
332 }
333
334 static
335 unsigned long bit_reverse_ulong(unsigned long v)
336 {
337 #if (CAA_BITS_PER_LONG == 32)
338 return bit_reverse_u32(v);
339 #else
340 return bit_reverse_u64(v);
341 #endif
342 }
343
344 /*
345 * fls: returns the position of the most significant bit.
346 * Returns 0 if no bit is set, else returns the position of the most
347 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
348 */
349 #if defined(__i386) || defined(__x86_64)
350 static inline
351 unsigned int fls_u32(uint32_t x)
352 {
353 int r;
354
355 asm("bsrl %1,%0\n\t"
356 "jnz 1f\n\t"
357 "movl $-1,%0\n\t"
358 "1:\n\t"
359 : "=r" (r) : "rm" (x));
360 return r + 1;
361 }
362 #define HAS_FLS_U32
363 #endif
364
365 #if defined(__x86_64)
366 static inline
367 unsigned int fls_u64(uint64_t x)
368 {
369 long r;
370
371 asm("bsrq %1,%0\n\t"
372 "jnz 1f\n\t"
373 "movq $-1,%0\n\t"
374 "1:\n\t"
375 : "=r" (r) : "rm" (x));
376 return r + 1;
377 }
378 #define HAS_FLS_U64
379 #endif
380
381 #ifndef HAS_FLS_U64
382 static __attribute__((unused))
383 unsigned int fls_u64(uint64_t x)
384 {
385 unsigned int r = 64;
386
387 if (!x)
388 return 0;
389
390 if (!(x & 0xFFFFFFFF00000000ULL)) {
391 x <<= 32;
392 r -= 32;
393 }
394 if (!(x & 0xFFFF000000000000ULL)) {
395 x <<= 16;
396 r -= 16;
397 }
398 if (!(x & 0xFF00000000000000ULL)) {
399 x <<= 8;
400 r -= 8;
401 }
402 if (!(x & 0xF000000000000000ULL)) {
403 x <<= 4;
404 r -= 4;
405 }
406 if (!(x & 0xC000000000000000ULL)) {
407 x <<= 2;
408 r -= 2;
409 }
410 if (!(x & 0x8000000000000000ULL)) {
411 x <<= 1;
412 r -= 1;
413 }
414 return r;
415 }
416 #endif
417
418 #ifndef HAS_FLS_U32
419 static __attribute__((unused))
420 unsigned int fls_u32(uint32_t x)
421 {
422 unsigned int r = 32;
423
424 if (!x)
425 return 0;
426 if (!(x & 0xFFFF0000U)) {
427 x <<= 16;
428 r -= 16;
429 }
430 if (!(x & 0xFF000000U)) {
431 x <<= 8;
432 r -= 8;
433 }
434 if (!(x & 0xF0000000U)) {
435 x <<= 4;
436 r -= 4;
437 }
438 if (!(x & 0xC0000000U)) {
439 x <<= 2;
440 r -= 2;
441 }
442 if (!(x & 0x80000000U)) {
443 x <<= 1;
444 r -= 1;
445 }
446 return r;
447 }
448 #endif
449
450 unsigned int fls_ulong(unsigned long x)
451 {
452 #if (CAA_BITS_PER_lONG == 32)
453 return fls_u32(x);
454 #else
455 return fls_u64(x);
456 #endif
457 }
458
459 int get_count_order_u32(uint32_t x)
460 {
461 int order;
462
463 order = fls_u32(x) - 1;
464 if (x & (x - 1))
465 order++;
466 return order;
467 }
468
469 int get_count_order_ulong(unsigned long x)
470 {
471 int order;
472
473 order = fls_ulong(x) - 1;
474 if (x & (x - 1))
475 order++;
476 return order;
477 }
478
479 #ifdef POISON_FREE
480 #define poison_free(ptr) \
481 do { \
482 memset(ptr, 0x42, sizeof(*(ptr))); \
483 free(ptr); \
484 } while (0)
485 #else
486 #define poison_free(ptr) free(ptr)
487 #endif
488
489 static
490 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
491
492 /*
493 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
494 * available, then we support hash table item accounting.
495 * In the unfortunate event the number of CPUs reported would be
496 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
497 */
498 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
499
500 static
501 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
502 unsigned long count);
503
504 static long nr_cpus_mask = -1;
505
506 static
507 struct ht_items_count *alloc_per_cpu_items_count(void)
508 {
509 struct ht_items_count *count;
510
511 switch (nr_cpus_mask) {
512 case -2:
513 return NULL;
514 case -1:
515 {
516 long maxcpus;
517
518 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
519 if (maxcpus <= 0) {
520 nr_cpus_mask = -2;
521 return NULL;
522 }
523 /*
524 * round up number of CPUs to next power of two, so we
525 * can use & for modulo.
526 */
527 maxcpus = 1UL << get_count_order_ulong(maxcpus);
528 nr_cpus_mask = maxcpus - 1;
529 }
530 /* Fall-through */
531 default:
532 return calloc(nr_cpus_mask + 1, sizeof(*count));
533 }
534 }
535
536 static
537 void free_per_cpu_items_count(struct ht_items_count *count)
538 {
539 poison_free(count);
540 }
541
542 static
543 int ht_get_cpu(void)
544 {
545 int cpu;
546
547 assert(nr_cpus_mask >= 0);
548 cpu = sched_getcpu();
549 if (unlikely(cpu < 0))
550 return cpu;
551 else
552 return cpu & nr_cpus_mask;
553 }
554
555 static
556 void ht_count_add(struct cds_lfht *ht, unsigned long size)
557 {
558 unsigned long percpu_count;
559 int cpu;
560
561 if (unlikely(!ht->percpu_count))
562 return;
563 cpu = ht_get_cpu();
564 if (unlikely(cpu < 0))
565 return;
566 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
567 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
568 unsigned long count;
569
570 dbg_printf("add percpu %lu\n", percpu_count);
571 count = uatomic_add_return(&ht->count,
572 1UL << COUNT_COMMIT_ORDER);
573 /* If power of 2 */
574 if (!(count & (count - 1))) {
575 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
576 return;
577 dbg_printf("add set global %lu\n", count);
578 cds_lfht_resize_lazy_count(ht, size,
579 count >> (CHAIN_LEN_TARGET - 1));
580 }
581 }
582 }
583
584 static
585 void ht_count_del(struct cds_lfht *ht, unsigned long size)
586 {
587 unsigned long percpu_count;
588 int cpu;
589
590 if (unlikely(!ht->percpu_count))
591 return;
592 cpu = ht_get_cpu();
593 if (unlikely(cpu < 0))
594 return;
595 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].del, -1);
596 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
597 unsigned long count;
598
599 dbg_printf("del percpu %lu\n", percpu_count);
600 count = uatomic_add_return(&ht->count,
601 -(1UL << COUNT_COMMIT_ORDER));
602 /* If power of 2 */
603 if (!(count & (count - 1))) {
604 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
605 return;
606 dbg_printf("del set global %lu\n", count);
607 cds_lfht_resize_lazy_count(ht, size,
608 count >> (CHAIN_LEN_TARGET - 1));
609 }
610 }
611 }
612
613 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
614
615 static const long nr_cpus_mask = -1;
616
617 static
618 struct ht_items_count *alloc_per_cpu_items_count(void)
619 {
620 return NULL;
621 }
622
623 static
624 void free_per_cpu_items_count(struct ht_items_count *count)
625 {
626 }
627
628 static
629 void ht_count_add(struct cds_lfht *ht, unsigned long size)
630 {
631 }
632
633 static
634 void ht_count_del(struct cds_lfht *ht, unsigned long size)
635 {
636 }
637
638 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
639
640
641 static
642 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
643 {
644 unsigned long count;
645
646 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
647 return;
648 count = uatomic_read(&ht->count);
649 /*
650 * Use bucket-local length for small table expand and for
651 * environments lacking per-cpu data support.
652 */
653 if (count >= (1UL << COUNT_COMMIT_ORDER))
654 return;
655 if (chain_len > 100)
656 dbg_printf("WARNING: large chain length: %u.\n",
657 chain_len);
658 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
659 cds_lfht_resize_lazy(ht, size,
660 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
661 }
662
663 static
664 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
665 {
666 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
667 }
668
669 static
670 int is_removed(struct cds_lfht_node *node)
671 {
672 return ((unsigned long) node) & REMOVED_FLAG;
673 }
674
675 static
676 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
677 {
678 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
679 }
680
681 static
682 int is_gc(struct cds_lfht_node *node)
683 {
684 return ((unsigned long) node) & GC_FLAG;
685 }
686
687 static
688 struct cds_lfht_node *flag_gc(struct cds_lfht_node *node)
689 {
690 return (struct cds_lfht_node *) (((unsigned long) node) | GC_FLAG);
691 }
692
693 static
694 int is_dummy(struct cds_lfht_node *node)
695 {
696 return ((unsigned long) node) & DUMMY_FLAG;
697 }
698
699 static
700 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
701 {
702 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
703 }
704
705 static
706 struct cds_lfht_node *get_end(void)
707 {
708 return (struct cds_lfht_node *) END_VALUE;
709 }
710
711 static
712 int is_end(struct cds_lfht_node *node)
713 {
714 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
715 }
716
717 static
718 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
719 {
720 unsigned long old1, old2;
721
722 old1 = uatomic_read(ptr);
723 do {
724 old2 = old1;
725 if (old2 >= v)
726 return old2;
727 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
728 return v;
729 }
730
731 static
732 void cds_lfht_free_level(struct rcu_head *head)
733 {
734 struct rcu_level *l =
735 caa_container_of(head, struct rcu_level, head);
736 poison_free(l);
737 }
738
739 /*
740 * Remove all logically deleted nodes from a bucket up to a certain node key.
741 */
742 static
743 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
744 {
745 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
746
747 assert(!is_dummy(dummy));
748 assert(!is_gc(dummy));
749 assert(!is_removed(dummy));
750 assert(!is_dummy(node));
751 assert(!is_gc(node));
752 assert(!is_removed(node));
753 for (;;) {
754 iter_prev = dummy;
755 /* We can always skip the dummy node initially */
756 iter = rcu_dereference(iter_prev->p.next);
757 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
758 /*
759 * We should never be called with dummy (start of chain)
760 * and logically removed node (end of path compression
761 * marker) being the actual same node. This would be a
762 * bug in the algorithm implementation.
763 */
764 assert(dummy != node);
765 for (;;) {
766 if (unlikely(is_end(iter)))
767 return;
768 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
769 return;
770 next = rcu_dereference(clear_flag(iter)->p.next);
771 if (likely(is_gc(next)))
772 break;
773 iter_prev = clear_flag(iter);
774 iter = next;
775 }
776 assert(!is_gc(iter));
777 if (is_dummy(iter))
778 new_next = flag_dummy(clear_flag(next));
779 else
780 new_next = clear_flag(next);
781 if (is_removed(iter))
782 new_next = flag_removed(new_next);
783 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
784 }
785 return;
786 }
787
788 static
789 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
790 unsigned long size,
791 struct cds_lfht_node *node,
792 enum add_mode mode, int dummy)
793 {
794 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
795 *dummy_node, *return_node, *replace_pinned = NULL;
796 struct _cds_lfht_node *lookup;
797 unsigned long hash, index, order;
798
799 assert(!is_dummy(node));
800 assert(!is_gc(node));
801 assert(!is_removed(node));
802 if (!size) {
803 assert(dummy);
804 node->p.next = flag_dummy(get_end());
805 return node; /* Initial first add (head) */
806 }
807 hash = bit_reverse_ulong(node->p.reverse_hash);
808 for (;;) {
809 uint32_t chain_len;
810
811 retry:
812 chain_len = 0;
813 /*
814 * iter_prev points to the non-removed node prior to the
815 * insert location.
816 */
817 index = hash & (size - 1);
818 order = get_count_order_ulong(index + 1);
819 lookup = &ht->t.tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
820 iter_prev = (struct cds_lfht_node *) lookup;
821 /* We can always skip the dummy node initially */
822 iter = rcu_dereference(iter_prev->p.next);
823 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
824 for (;;) {
825 if (unlikely(is_end(iter)))
826 goto insert;
827 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
828 goto insert;
829 next = rcu_dereference(clear_flag(iter)->p.next);
830 if (unlikely(is_gc(next)))
831 goto gc_node;
832 if (unlikely(replace_pinned)) {
833 /*
834 * We're in the retry of a node
835 * replacement. Only get exact iter
836 * pointer match. We own it, so it
837 * _needs_ to be there at some point.
838 */
839 if (clear_flag(iter) == replace_pinned)
840 goto replace;
841 }
842 /*
843 * Next is removed but not gc'd. We need to
844 * busy-loop, because a concurrent replacement
845 * is keeping it temporarily pinned there but we
846 * cannot attach to it. The easiest solution is
847 * to retry.
848 */
849 if (unlikely(is_removed(next)))
850 goto retry;
851 if ((mode == ADD_UNIQUE || mode == ADD_REPLACE)
852 && !is_dummy(next)
853 && !ht->compare_fct(node->key, node->key_len,
854 clear_flag(iter)->key,
855 clear_flag(iter)->key_len)) {
856 if (mode == ADD_UNIQUE)
857 return clear_flag(iter);
858 else /* mode == ADD_REPLACE */
859 goto replace;
860 }
861 /* Only account for identical reverse hash once */
862 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
863 && !is_dummy(next))
864 check_resize(ht, size, ++chain_len);
865 iter_prev = clear_flag(iter);
866 iter = next;
867 }
868
869 insert:
870 assert(node != clear_flag(iter));
871 assert(!is_removed(iter_prev));
872 assert(!is_removed(iter));
873 assert(!is_gc(iter_prev));
874 assert(!is_gc(iter));
875 assert(iter_prev != node);
876 assert(!replace_pinned);
877 if (!dummy)
878 node->p.next = clear_flag(iter);
879 else
880 node->p.next = flag_dummy(clear_flag(iter));
881 if (is_dummy(iter))
882 new_node = flag_dummy(node);
883 else
884 new_node = node;
885 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
886 new_node) != iter) {
887 continue; /* retry */
888 } else {
889 if (mode == ADD_REPLACE)
890 return_node = NULL;
891 else /* ADD_DEFAULT and ADD_UNIQUE */
892 return_node = node;
893 goto gc_end;
894 }
895
896 replace:
897 assert(node != clear_flag(iter));
898 assert(!is_removed(iter_prev));
899 assert(!is_removed(iter));
900 assert(!is_gc(iter_prev));
901 assert(!is_gc(iter));
902 assert(iter_prev != node);
903 assert(!dummy);
904 node->p.next = clear_flag(next);
905 if (is_dummy(iter))
906 new_node = flag_dummy(node);
907 else
908 new_node = node;
909 /*
910 * Try to delete to-be-replaced node. Don't gc yet. Not
911 * performing gc here is important, because this lets
912 * concurrent lookups see the old node until we
913 * atomically swap the new node into its place.
914 *
915 * This algorithm is _not_ strictly lock-free between
916 * _cds_lfht_del and the uatomic_cmpxchg of the
917 * replacement operation, so a replacement should _not_
918 * crash here (which means: don't do replacements if you
919 * need strict lock-free guarantees).
920 */
921 if (!replace_pinned) {
922 if (_cds_lfht_del(ht, size, clear_flag(iter), 0, 0))
923 continue; /* concurrently removed. retry. */
924 }
925 /*
926 * After _cds_lfht_del succeeds, we have pinned the
927 * to-be-removed node in place by setting its removed
928 * flag, but not its gc flag. If we fail to cmpxchg our
929 * new node with this node, we need to retry everything
930 * from the initial lookup, and only stop when we reach
931 * the node we pinned into place.
932 */
933 return_node = uatomic_cmpxchg(&iter_prev->p.next,
934 iter, new_node);
935 if (return_node != iter) {
936 /*
937 * If cmpxchg fails, we need to do path
938 * compression, but end it by placing our own
939 * node into place.
940 */
941 replace_pinned = clear_flag(iter);
942 continue; /* retry */
943 } else {
944 /*
945 * cmpxchg succeeded. gc unnecessary, because we
946 * unlinked the return_node ourself with the
947 * cmpxchg.
948 */
949 return_node = clear_flag(return_node);
950 goto end;
951 }
952
953 gc_node:
954 assert(!is_removed(iter));
955 assert(!is_gc(iter));
956 if (is_dummy(iter))
957 new_next = flag_dummy(clear_flag(next));
958 else
959 new_next = clear_flag(next);
960 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
961 /* retry */
962 }
963 gc_end:
964 /* Garbage collect logically removed nodes in the bucket */
965 index = hash & (size - 1);
966 order = get_count_order_ulong(index + 1);
967 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
968 dummy_node = (struct cds_lfht_node *) lookup;
969 _cds_lfht_gc_bucket(dummy_node, node);
970 end:
971 return return_node;
972 }
973
974 static
975 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
976 struct cds_lfht_node *node,
977 int dummy_removal, int do_gc)
978 {
979 struct cds_lfht_node *dummy, *next, *old;
980 struct _cds_lfht_node *lookup;
981 int flagged = 0;
982 unsigned long hash, index, order;
983
984 /* logically delete the node */
985 assert(!is_dummy(node));
986 assert(!is_gc(node));
987 assert(!is_removed(node));
988 old = rcu_dereference(node->p.next);
989 do {
990 struct cds_lfht_node *new_next;
991
992 next = old;
993 if (unlikely(is_removed(next)))
994 goto end;
995 if (dummy_removal)
996 assert(is_dummy(next));
997 else
998 assert(!is_dummy(next));
999 new_next = flag_removed(next);
1000 if (do_gc)
1001 new_next = flag_gc(new_next);
1002 old = uatomic_cmpxchg(&node->p.next, next, new_next);
1003 } while (old != next);
1004
1005 /* We performed the (logical) deletion. */
1006 flagged = 1;
1007
1008 if (!do_gc)
1009 goto end;
1010
1011 /*
1012 * Ensure that the node is not visible to readers anymore: lookup for
1013 * the node, and remove it (along with any other logically removed node)
1014 * if found.
1015 */
1016 hash = bit_reverse_ulong(node->p.reverse_hash);
1017 assert(size > 0);
1018 index = hash & (size - 1);
1019 order = get_count_order_ulong(index + 1);
1020 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
1021 dummy = (struct cds_lfht_node *) lookup;
1022 _cds_lfht_gc_bucket(dummy, node);
1023 end:
1024 /*
1025 * Only the flagging action indicated that we (and no other)
1026 * removed the node from the hash.
1027 */
1028 if (flagged) {
1029 assert(is_removed(rcu_dereference(node->p.next)));
1030 return 0;
1031 } else
1032 return -ENOENT;
1033 }
1034
1035 static
1036 void *partition_resize_thread(void *arg)
1037 {
1038 struct partition_resize_work *work = arg;
1039
1040 work->ht->cds_lfht_rcu_register_thread();
1041 work->fct(work->ht, work->i, work->start, work->len);
1042 work->ht->cds_lfht_rcu_unregister_thread();
1043 return NULL;
1044 }
1045
1046 static
1047 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1048 unsigned long len,
1049 void (*fct)(struct cds_lfht *ht, unsigned long i,
1050 unsigned long start, unsigned long len))
1051 {
1052 unsigned long partition_len;
1053 struct partition_resize_work *work;
1054 int thread, ret;
1055 unsigned long nr_threads;
1056 pthread_t *thread_id;
1057
1058 /*
1059 * Note: nr_cpus_mask + 1 is always power of 2.
1060 * We spawn just the number of threads we need to satisfy the minimum
1061 * partition size, up to the number of CPUs in the system.
1062 */
1063 nr_threads = min(nr_cpus_mask + 1,
1064 len >> MIN_PARTITION_PER_THREAD_ORDER);
1065 partition_len = len >> get_count_order_ulong(nr_threads);
1066 work = calloc(nr_threads, sizeof(*work));
1067 thread_id = calloc(nr_threads, sizeof(*thread_id));
1068 assert(work);
1069 for (thread = 0; thread < nr_threads; thread++) {
1070 work[thread].ht = ht;
1071 work[thread].i = i;
1072 work[thread].len = partition_len;
1073 work[thread].start = thread * partition_len;
1074 work[thread].fct = fct;
1075 ret = pthread_create(&thread_id[thread], ht->resize_attr,
1076 partition_resize_thread, &work[thread]);
1077 assert(!ret);
1078 }
1079 for (thread = 0; thread < nr_threads; thread++) {
1080 ret = pthread_join(thread_id[thread], NULL);
1081 assert(!ret);
1082 }
1083 free(work);
1084 free(thread_id);
1085 }
1086
1087 /*
1088 * Holding RCU read lock to protect _cds_lfht_add against memory
1089 * reclaim that could be performed by other call_rcu worker threads (ABA
1090 * problem).
1091 *
1092 * When we reach a certain length, we can split this population phase over
1093 * many worker threads, based on the number of CPUs available in the system.
1094 * This should therefore take care of not having the expand lagging behind too
1095 * many concurrent insertion threads by using the scheduler's ability to
1096 * schedule dummy node population fairly with insertions.
1097 */
1098 static
1099 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1100 unsigned long start, unsigned long len)
1101 {
1102 unsigned long j;
1103
1104 ht->cds_lfht_rcu_read_lock();
1105 for (j = start; j < start + len; j++) {
1106 struct cds_lfht_node *new_node =
1107 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1108
1109 dbg_printf("init populate: i %lu j %lu hash %lu\n",
1110 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1111 new_node->p.reverse_hash =
1112 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1113 (void) _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
1114 new_node, ADD_DEFAULT, 1);
1115 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1116 break;
1117 }
1118 ht->cds_lfht_rcu_read_unlock();
1119 }
1120
1121 static
1122 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1123 unsigned long len)
1124 {
1125 assert(nr_cpus_mask != -1);
1126 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1127 ht->cds_lfht_rcu_thread_online();
1128 init_table_populate_partition(ht, i, 0, len);
1129 ht->cds_lfht_rcu_thread_offline();
1130 return;
1131 }
1132 partition_resize_helper(ht, i, len, init_table_populate_partition);
1133 }
1134
1135 static
1136 void init_table(struct cds_lfht *ht,
1137 unsigned long first_order, unsigned long len_order)
1138 {
1139 unsigned long i, end_order;
1140
1141 dbg_printf("init table: first_order %lu end_order %lu\n",
1142 first_order, first_order + len_order);
1143 end_order = first_order + len_order;
1144 for (i = first_order; i < end_order; i++) {
1145 unsigned long len;
1146
1147 len = !i ? 1 : 1UL << (i - 1);
1148 dbg_printf("init order %lu len: %lu\n", i, len);
1149
1150 /* Stop expand if the resize target changes under us */
1151 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
1152 break;
1153
1154 ht->t.tbl[i] = calloc(1, sizeof(struct rcu_level)
1155 + (len * sizeof(struct _cds_lfht_node)));
1156 assert(ht->t.tbl[i]);
1157
1158 /*
1159 * Set all dummy nodes reverse hash values for a level and
1160 * link all dummy nodes into the table.
1161 */
1162 init_table_populate(ht, i, len);
1163
1164 /*
1165 * Update table size.
1166 */
1167 cmm_smp_wmb(); /* populate data before RCU size */
1168 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
1169
1170 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
1171 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1172 break;
1173 }
1174 }
1175
1176 /*
1177 * Holding RCU read lock to protect _cds_lfht_remove against memory
1178 * reclaim that could be performed by other call_rcu worker threads (ABA
1179 * problem).
1180 * For a single level, we logically remove and garbage collect each node.
1181 *
1182 * As a design choice, we perform logical removal and garbage collection on a
1183 * node-per-node basis to simplify this algorithm. We also assume keeping good
1184 * cache locality of the operation would overweight possible performance gain
1185 * that could be achieved by batching garbage collection for multiple levels.
1186 * However, this would have to be justified by benchmarks.
1187 *
1188 * Concurrent removal and add operations are helping us perform garbage
1189 * collection of logically removed nodes. We guarantee that all logically
1190 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1191 * invoked to free a hole level of dummy nodes (after a grace period).
1192 *
1193 * Logical removal and garbage collection can therefore be done in batch or on a
1194 * node-per-node basis, as long as the guarantee above holds.
1195 *
1196 * When we reach a certain length, we can split this removal over many worker
1197 * threads, based on the number of CPUs available in the system. This should
1198 * take care of not letting resize process lag behind too many concurrent
1199 * updater threads actively inserting into the hash table.
1200 */
1201 static
1202 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1203 unsigned long start, unsigned long len)
1204 {
1205 unsigned long j;
1206
1207 ht->cds_lfht_rcu_read_lock();
1208 for (j = start; j < start + len; j++) {
1209 struct cds_lfht_node *fini_node =
1210 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1211
1212 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1213 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1214 fini_node->p.reverse_hash =
1215 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1216 (void) _cds_lfht_del(ht, !i ? 0 : (1UL << (i - 1)),
1217 fini_node, 1, 1);
1218 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1219 break;
1220 }
1221 ht->cds_lfht_rcu_read_unlock();
1222 }
1223
1224 static
1225 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1226 {
1227
1228 assert(nr_cpus_mask != -1);
1229 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1230 ht->cds_lfht_rcu_thread_online();
1231 remove_table_partition(ht, i, 0, len);
1232 ht->cds_lfht_rcu_thread_offline();
1233 return;
1234 }
1235 partition_resize_helper(ht, i, len, remove_table_partition);
1236 }
1237
1238 static
1239 void fini_table(struct cds_lfht *ht,
1240 unsigned long first_order, unsigned long len_order)
1241 {
1242 long i, end_order;
1243
1244 dbg_printf("fini table: first_order %lu end_order %lu\n",
1245 first_order, first_order + len_order);
1246 end_order = first_order + len_order;
1247 assert(first_order > 0);
1248 for (i = end_order - 1; i >= first_order; i--) {
1249 unsigned long len;
1250
1251 len = !i ? 1 : 1UL << (i - 1);
1252 dbg_printf("fini order %lu len: %lu\n", i, len);
1253
1254 /* Stop shrink if the resize target changes under us */
1255 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1256 break;
1257
1258 cmm_smp_wmb(); /* populate data before RCU size */
1259 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1260
1261 /*
1262 * We need to wait for all add operations to reach Q.S. (and
1263 * thus use the new table for lookups) before we can start
1264 * releasing the old dummy nodes. Otherwise their lookup will
1265 * return a logically removed node as insert position.
1266 */
1267 ht->cds_lfht_synchronize_rcu();
1268
1269 /*
1270 * Set "removed" flag in dummy nodes about to be removed.
1271 * Unlink all now-logically-removed dummy node pointers.
1272 * Concurrent add/remove operation are helping us doing
1273 * the gc.
1274 */
1275 remove_table(ht, i, len);
1276
1277 ht->cds_lfht_call_rcu(&ht->t.tbl[i]->head, cds_lfht_free_level);
1278
1279 dbg_printf("fini new size: %lu\n", 1UL << i);
1280 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1281 break;
1282 }
1283 }
1284
1285 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1286 cds_lfht_compare_fct compare_fct,
1287 unsigned long hash_seed,
1288 unsigned long init_size,
1289 int flags,
1290 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1291 void (*func)(struct rcu_head *head)),
1292 void (*cds_lfht_synchronize_rcu)(void),
1293 void (*cds_lfht_rcu_read_lock)(void),
1294 void (*cds_lfht_rcu_read_unlock)(void),
1295 void (*cds_lfht_rcu_thread_offline)(void),
1296 void (*cds_lfht_rcu_thread_online)(void),
1297 void (*cds_lfht_rcu_register_thread)(void),
1298 void (*cds_lfht_rcu_unregister_thread)(void),
1299 pthread_attr_t *attr)
1300 {
1301 struct cds_lfht *ht;
1302 unsigned long order;
1303
1304 /* init_size must be power of two */
1305 if (init_size && (init_size & (init_size - 1)))
1306 return NULL;
1307 ht = calloc(1, sizeof(struct cds_lfht));
1308 assert(ht);
1309 ht->hash_fct = hash_fct;
1310 ht->compare_fct = compare_fct;
1311 ht->hash_seed = hash_seed;
1312 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1313 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1314 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1315 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1316 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1317 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1318 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1319 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1320 ht->resize_attr = attr;
1321 ht->percpu_count = alloc_per_cpu_items_count();
1322 /* this mutex should not nest in read-side C.S. */
1323 pthread_mutex_init(&ht->resize_mutex, NULL);
1324 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1325 ht->flags = flags;
1326 ht->cds_lfht_rcu_thread_offline();
1327 pthread_mutex_lock(&ht->resize_mutex);
1328 ht->t.resize_target = 1UL << (order - 1);
1329 init_table(ht, 0, order);
1330 pthread_mutex_unlock(&ht->resize_mutex);
1331 ht->cds_lfht_rcu_thread_online();
1332 return ht;
1333 }
1334
1335 struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
1336 {
1337 struct cds_lfht_node *node, *next, *dummy_node;
1338 struct _cds_lfht_node *lookup;
1339 unsigned long hash, reverse_hash, index, order, size;
1340
1341 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1342 reverse_hash = bit_reverse_ulong(hash);
1343
1344 size = rcu_dereference(ht->t.size);
1345 index = hash & (size - 1);
1346 order = get_count_order_ulong(index + 1);
1347 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
1348 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
1349 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
1350 dummy_node = (struct cds_lfht_node *) lookup;
1351 /* We can always skip the dummy node initially */
1352 node = rcu_dereference(dummy_node->p.next);
1353 node = clear_flag(node);
1354 for (;;) {
1355 if (unlikely(is_end(node))) {
1356 node = NULL;
1357 break;
1358 }
1359 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1360 node = NULL;
1361 break;
1362 }
1363 next = rcu_dereference(node->p.next);
1364 /*
1365 * We consider return nodes marked removed but not gc as
1366 * hits for lookup vs replacement consistency.
1367 */
1368 if (likely(!is_gc(next))
1369 && !is_dummy(next)
1370 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1371 break;
1372 }
1373 node = clear_flag(next);
1374 }
1375 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1376 return node;
1377 }
1378
1379 struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
1380 struct cds_lfht_node *node)
1381 {
1382 struct cds_lfht_node *next;
1383 unsigned long reverse_hash;
1384 void *key;
1385 size_t key_len;
1386
1387 reverse_hash = node->p.reverse_hash;
1388 key = node->key;
1389 key_len = node->key_len;
1390 next = rcu_dereference(node->p.next);
1391 node = clear_flag(next);
1392
1393 for (;;) {
1394 if (unlikely(is_end(node))) {
1395 node = NULL;
1396 break;
1397 }
1398 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1399 node = NULL;
1400 break;
1401 }
1402 next = rcu_dereference(node->p.next);
1403 /*
1404 * We consider return nodes marked removed but not gc as
1405 * hits for lookup vs replacement consistency.
1406 */
1407 if (likely(!is_gc(next))
1408 && !is_dummy(next)
1409 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1410 break;
1411 }
1412 node = clear_flag(next);
1413 }
1414 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1415 return node;
1416 }
1417
1418 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1419 {
1420 unsigned long hash, size;
1421
1422 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1423 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1424
1425 size = rcu_dereference(ht->t.size);
1426 (void) _cds_lfht_add(ht, size, node, ADD_DEFAULT, 0);
1427 ht_count_add(ht, size);
1428 }
1429
1430 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1431 struct cds_lfht_node *node)
1432 {
1433 unsigned long hash, size;
1434 struct cds_lfht_node *ret;
1435
1436 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1437 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1438
1439 size = rcu_dereference(ht->t.size);
1440 ret = _cds_lfht_add(ht, size, node, ADD_UNIQUE, 0);
1441 if (ret == node)
1442 ht_count_add(ht, size);
1443 return ret;
1444 }
1445
1446 struct cds_lfht_node *cds_lfht_replace(struct cds_lfht *ht,
1447 struct cds_lfht_node *node)
1448 {
1449 unsigned long hash, size;
1450 struct cds_lfht_node *ret;
1451
1452 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1453 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1454
1455 size = rcu_dereference(ht->t.size);
1456 ret = _cds_lfht_add(ht, size, node, ADD_REPLACE, 0);
1457 if (ret == NULL)
1458 ht_count_add(ht, size);
1459 return ret;
1460 }
1461
1462 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1463 {
1464 unsigned long size;
1465 int ret;
1466
1467 size = rcu_dereference(ht->t.size);
1468 ret = _cds_lfht_del(ht, size, node, 0, 1);
1469 if (!ret)
1470 ht_count_del(ht, size);
1471 return ret;
1472 }
1473
1474 static
1475 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1476 {
1477 struct cds_lfht_node *node;
1478 struct _cds_lfht_node *lookup;
1479 unsigned long order, i, size;
1480
1481 /* Check that the table is empty */
1482 lookup = &ht->t.tbl[0]->nodes[0];
1483 node = (struct cds_lfht_node *) lookup;
1484 do {
1485 node = clear_flag(node)->p.next;
1486 if (!is_dummy(node))
1487 return -EPERM;
1488 assert(!is_removed(node));
1489 assert(!is_gc(node));
1490 } while (!is_end(node));
1491 /*
1492 * size accessed without rcu_dereference because hash table is
1493 * being destroyed.
1494 */
1495 size = ht->t.size;
1496 /* Internal sanity check: all nodes left should be dummy */
1497 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1498 unsigned long len;
1499
1500 len = !order ? 1 : 1UL << (order - 1);
1501 for (i = 0; i < len; i++) {
1502 dbg_printf("delete order %lu i %lu hash %lu\n",
1503 order, i,
1504 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1505 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1506 }
1507 poison_free(ht->t.tbl[order]);
1508 }
1509 return 0;
1510 }
1511
1512 /*
1513 * Should only be called when no more concurrent readers nor writers can
1514 * possibly access the table.
1515 */
1516 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1517 {
1518 int ret;
1519
1520 /* Wait for in-flight resize operations to complete */
1521 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1522 while (uatomic_read(&ht->in_progress_resize))
1523 poll(NULL, 0, 100); /* wait for 100ms */
1524 ret = cds_lfht_delete_dummy(ht);
1525 if (ret)
1526 return ret;
1527 free_per_cpu_items_count(ht->percpu_count);
1528 if (attr)
1529 *attr = ht->resize_attr;
1530 poison_free(ht);
1531 return ret;
1532 }
1533
1534 void cds_lfht_count_nodes(struct cds_lfht *ht,
1535 unsigned long *count,
1536 unsigned long *removed)
1537 {
1538 struct cds_lfht_node *node, *next;
1539 struct _cds_lfht_node *lookup;
1540 unsigned long nr_dummy = 0;
1541
1542 *count = 0;
1543 *removed = 0;
1544
1545 /* Count non-dummy nodes in the table */
1546 lookup = &ht->t.tbl[0]->nodes[0];
1547 node = (struct cds_lfht_node *) lookup;
1548 do {
1549 next = rcu_dereference(node->p.next);
1550 if (is_removed(next) || is_gc(next)) {
1551 assert(!is_dummy(next));
1552 (*removed)++;
1553 } else if (!is_dummy(next))
1554 (*count)++;
1555 else
1556 (nr_dummy)++;
1557 node = clear_flag(next);
1558 } while (!is_end(node));
1559 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1560 }
1561
1562 /* called with resize mutex held */
1563 static
1564 void _do_cds_lfht_grow(struct cds_lfht *ht,
1565 unsigned long old_size, unsigned long new_size)
1566 {
1567 unsigned long old_order, new_order;
1568
1569 old_order = get_count_order_ulong(old_size) + 1;
1570 new_order = get_count_order_ulong(new_size) + 1;
1571 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1572 old_size, old_order, new_size, new_order);
1573 assert(new_size > old_size);
1574 init_table(ht, old_order, new_order - old_order);
1575 }
1576
1577 /* called with resize mutex held */
1578 static
1579 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1580 unsigned long old_size, unsigned long new_size)
1581 {
1582 unsigned long old_order, new_order;
1583
1584 new_size = max(new_size, MIN_TABLE_SIZE);
1585 old_order = get_count_order_ulong(old_size) + 1;
1586 new_order = get_count_order_ulong(new_size) + 1;
1587 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1588 old_size, old_order, new_size, new_order);
1589 assert(new_size < old_size);
1590
1591 /* Remove and unlink all dummy nodes to remove. */
1592 fini_table(ht, new_order, old_order - new_order);
1593 }
1594
1595
1596 /* called with resize mutex held */
1597 static
1598 void _do_cds_lfht_resize(struct cds_lfht *ht)
1599 {
1600 unsigned long new_size, old_size;
1601
1602 /*
1603 * Resize table, re-do if the target size has changed under us.
1604 */
1605 do {
1606 ht->t.resize_initiated = 1;
1607 old_size = ht->t.size;
1608 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1609 if (old_size < new_size)
1610 _do_cds_lfht_grow(ht, old_size, new_size);
1611 else if (old_size > new_size)
1612 _do_cds_lfht_shrink(ht, old_size, new_size);
1613 ht->t.resize_initiated = 0;
1614 /* write resize_initiated before read resize_target */
1615 cmm_smp_mb();
1616 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1617 }
1618
1619 static
1620 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1621 int growth_order)
1622 {
1623 return _uatomic_max(&ht->t.resize_target,
1624 size << growth_order);
1625 }
1626
1627 static
1628 void resize_target_update_count(struct cds_lfht *ht,
1629 unsigned long count)
1630 {
1631 count = max(count, MIN_TABLE_SIZE);
1632 uatomic_set(&ht->t.resize_target, count);
1633 }
1634
1635 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1636 {
1637 resize_target_update_count(ht, new_size);
1638 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1639 ht->cds_lfht_rcu_thread_offline();
1640 pthread_mutex_lock(&ht->resize_mutex);
1641 _do_cds_lfht_resize(ht);
1642 pthread_mutex_unlock(&ht->resize_mutex);
1643 ht->cds_lfht_rcu_thread_online();
1644 }
1645
1646 static
1647 void do_resize_cb(struct rcu_head *head)
1648 {
1649 struct rcu_resize_work *work =
1650 caa_container_of(head, struct rcu_resize_work, head);
1651 struct cds_lfht *ht = work->ht;
1652
1653 ht->cds_lfht_rcu_thread_offline();
1654 pthread_mutex_lock(&ht->resize_mutex);
1655 _do_cds_lfht_resize(ht);
1656 pthread_mutex_unlock(&ht->resize_mutex);
1657 ht->cds_lfht_rcu_thread_online();
1658 poison_free(work);
1659 cmm_smp_mb(); /* finish resize before decrement */
1660 uatomic_dec(&ht->in_progress_resize);
1661 }
1662
1663 static
1664 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1665 {
1666 struct rcu_resize_work *work;
1667 unsigned long target_size;
1668
1669 target_size = resize_target_update(ht, size, growth);
1670 /* Store resize_target before read resize_initiated */
1671 cmm_smp_mb();
1672 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1673 uatomic_inc(&ht->in_progress_resize);
1674 cmm_smp_mb(); /* increment resize count before calling it */
1675 work = malloc(sizeof(*work));
1676 work->ht = ht;
1677 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1678 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1679 }
1680 }
1681
1682 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1683
1684 static
1685 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1686 unsigned long count)
1687 {
1688 struct rcu_resize_work *work;
1689
1690 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1691 return;
1692 resize_target_update_count(ht, count);
1693 /* Store resize_target before read resize_initiated */
1694 cmm_smp_mb();
1695 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1696 uatomic_inc(&ht->in_progress_resize);
1697 cmm_smp_mb(); /* increment resize count before calling it */
1698 work = malloc(sizeof(*work));
1699 work->ht = ht;
1700 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1701 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1702 }
1703 }
1704
1705 #endif
This page took 0.066184 seconds and 5 git commands to generate.