move memory management code out as rculfhash-mm-order.c
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups and use the returned objects safely by delaying
38 * memory reclaim of a grace period.
39 * - Add and remove operations are lock-free, and do not need to
40 * allocate memory. They need to be executed within RCU read-side
41 * critical section to ensure the objects they read are valid and to
42 * deal with the cmpxchg ABA problem.
43 * - add and add_unique operations are supported. add_unique checks if
44 * the node key already exists in the hash table. It ensures no key
45 * duplicata exists.
46 * - The resize operation executes concurrently with add/remove/lookup.
47 * - Hash table nodes are contained within a split-ordered list. This
48 * list is ordered by incrementing reversed-bits-hash value.
49 * - An index of bucket nodes is kept. These bucket nodes are the hash
50 * table "buckets", and they are also chained together in the
51 * split-ordered list, which allows recursive expansion.
52 * - The resize operation for small tables only allows expanding the hash table.
53 * It is triggered automatically by detecting long chains in the add
54 * operation.
55 * - The resize operation for larger tables (and available through an
56 * API) allows both expanding and shrinking the hash table.
57 * - Split-counters are used to keep track of the number of
58 * nodes within the hash table for automatic resize triggering.
59 * - Resize operation initiated by long chain detection is executed by a
60 * call_rcu thread, which keeps lock-freedom of add and remove.
61 * - Resize operations are protected by a mutex.
62 * - The removal operation is split in two parts: first, a "removed"
63 * flag is set in the next pointer within the node to remove. Then,
64 * a "garbage collection" is performed in the bucket containing the
65 * removed node (from the start of the bucket up to the removed node).
66 * All encountered nodes with "removed" flag set in their next
67 * pointers are removed from the linked-list. If the cmpxchg used for
68 * removal fails (due to concurrent garbage-collection or concurrent
69 * add), we retry from the beginning of the bucket. This ensures that
70 * the node with "removed" flag set is removed from the hash table
71 * (not visible to lookups anymore) before the RCU read-side critical
72 * section held across removal ends. Furthermore, this ensures that
73 * the node with "removed" flag set is removed from the linked-list
74 * before its memory is reclaimed. Only the thread which removal
75 * successfully set the "removed" flag (with a cmpxchg) into a node's
76 * next pointer is considered to have succeeded its removal (and thus
77 * owns the node to reclaim). Because we garbage-collect starting from
78 * an invariant node (the start-of-bucket bucket node) up to the
79 * "removed" node (or find a reverse-hash that is higher), we are sure
80 * that a successful traversal of the chain leads to a chain that is
81 * present in the linked-list (the start node is never removed) and
82 * that is does not contain the "removed" node anymore, even if
83 * concurrent delete/add operations are changing the structure of the
84 * list concurrently.
85 * - The add operation performs gargage collection of buckets if it
86 * encounters nodes with removed flag set in the bucket where it wants
87 * to add its new node. This ensures lock-freedom of add operation by
88 * helping the remover unlink nodes from the list rather than to wait
89 * for it do to so.
90 * - A RCU "order table" indexed by log2(hash index) is copied and
91 * expanded by the resize operation. This order table allows finding
92 * the "bucket node" tables.
93 * - There is one bucket node table per hash index order. The size of
94 * each bucket node table is half the number of hashes contained in
95 * this order (except for order 0).
96 * - synchronzie_rcu is used to garbage-collect the old bucket node table.
97 * - The per-order bucket node tables contain a compact version of the
98 * hash table nodes. These tables are invariant after they are
99 * populated into the hash table.
100 *
101 * Bucket node tables:
102 *
103 * hash table hash table the last all bucket node tables
104 * order size bucket node 0 1 2 3 4 5 6(index)
105 * table size
106 * 0 1 1 1
107 * 1 2 1 1 1
108 * 2 4 2 1 1 2
109 * 3 8 4 1 1 2 4
110 * 4 16 8 1 1 2 4 8
111 * 5 32 16 1 1 2 4 8 16
112 * 6 64 32 1 1 2 4 8 16 32
113 *
114 * When growing/shrinking, we only focus on the last bucket node table
115 * which size is (!order ? 1 : (1 << (order -1))).
116 *
117 * Example for growing/shrinking:
118 * grow hash table from order 5 to 6: init the index=6 bucket node table
119 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
120 *
121 * A bit of ascii art explanation:
122 *
123 * Order index is the off-by-one compare to the actual power of 2 because
124 * we use index 0 to deal with the 0 special-case.
125 *
126 * This shows the nodes for a small table ordered by reversed bits:
127 *
128 * bits reverse
129 * 0 000 000
130 * 4 100 001
131 * 2 010 010
132 * 6 110 011
133 * 1 001 100
134 * 5 101 101
135 * 3 011 110
136 * 7 111 111
137 *
138 * This shows the nodes in order of non-reversed bits, linked by
139 * reversed-bit order.
140 *
141 * order bits reverse
142 * 0 0 000 000
143 * 1 | 1 001 100 <-
144 * 2 | | 2 010 010 <- |
145 * | | | 3 011 110 | <- |
146 * 3 -> | | | 4 100 001 | |
147 * -> | | 5 101 101 |
148 * -> | 6 110 011
149 * -> 7 111 111
150 */
151
152 #define _LGPL_SOURCE
153 #include <stdlib.h>
154 #include <errno.h>
155 #include <assert.h>
156 #include <stdio.h>
157 #include <stdint.h>
158 #include <string.h>
159
160 #include "config.h"
161 #include <urcu.h>
162 #include <urcu-call-rcu.h>
163 #include <urcu-flavor.h>
164 #include <urcu/arch.h>
165 #include <urcu/uatomic.h>
166 #include <urcu/compiler.h>
167 #include <urcu/rculfhash.h>
168 #include <rculfhash-internal.h>
169 #include <stdio.h>
170 #include <pthread.h>
171
172 /*
173 * Split-counters lazily update the global counter each 1024
174 * addition/removal. It automatically keeps track of resize required.
175 * We use the bucket length as indicator for need to expand for small
176 * tables and machines lacking per-cpu data suppport.
177 */
178 #define COUNT_COMMIT_ORDER 10
179 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
180 #define CHAIN_LEN_TARGET 1
181 #define CHAIN_LEN_RESIZE_THRESHOLD 3
182
183 /*
184 * Define the minimum table size.
185 */
186 #define MIN_TABLE_ORDER 0
187 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
188
189 /*
190 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
191 */
192 #define MIN_PARTITION_PER_THREAD_ORDER 12
193 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
194
195 /*
196 * The removed flag needs to be updated atomically with the pointer.
197 * It indicates that no node must attach to the node scheduled for
198 * removal, and that node garbage collection must be performed.
199 * The bucket flag does not require to be updated atomically with the
200 * pointer, but it is added as a pointer low bit flag to save space.
201 */
202 #define REMOVED_FLAG (1UL << 0)
203 #define BUCKET_FLAG (1UL << 1)
204 #define FLAGS_MASK ((1UL << 2) - 1)
205
206 /* Value of the end pointer. Should not interact with flags. */
207 #define END_VALUE NULL
208
209 /*
210 * ht_items_count: Split-counters counting the number of node addition
211 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
212 * is set at hash table creation.
213 *
214 * These are free-running counters, never reset to zero. They count the
215 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
216 * operations to update the global counter. We choose a power-of-2 value
217 * for the trigger to deal with 32 or 64-bit overflow of the counter.
218 */
219 struct ht_items_count {
220 unsigned long add, del;
221 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
222
223 /*
224 * rcu_resize_work: Contains arguments passed to RCU worker thread
225 * responsible for performing lazy resize.
226 */
227 struct rcu_resize_work {
228 struct rcu_head head;
229 struct cds_lfht *ht;
230 };
231
232 /*
233 * partition_resize_work: Contains arguments passed to worker threads
234 * executing the hash table resize on partitions of the hash table
235 * assigned to each processor's worker thread.
236 */
237 struct partition_resize_work {
238 pthread_t thread_id;
239 struct cds_lfht *ht;
240 unsigned long i, start, len;
241 void (*fct)(struct cds_lfht *ht, unsigned long i,
242 unsigned long start, unsigned long len);
243 };
244
245 static
246 void _cds_lfht_add(struct cds_lfht *ht,
247 cds_lfht_match_fct match,
248 const void *key,
249 unsigned long size,
250 struct cds_lfht_node *node,
251 struct cds_lfht_iter *unique_ret,
252 int bucket);
253
254 /*
255 * Algorithm to reverse bits in a word by lookup table, extended to
256 * 64-bit words.
257 * Source:
258 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
259 * Originally from Public Domain.
260 */
261
262 static const uint8_t BitReverseTable256[256] =
263 {
264 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
265 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
266 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
267 R6(0), R6(2), R6(1), R6(3)
268 };
269 #undef R2
270 #undef R4
271 #undef R6
272
273 static
274 uint8_t bit_reverse_u8(uint8_t v)
275 {
276 return BitReverseTable256[v];
277 }
278
279 static __attribute__((unused))
280 uint32_t bit_reverse_u32(uint32_t v)
281 {
282 return ((uint32_t) bit_reverse_u8(v) << 24) |
283 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
284 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
285 ((uint32_t) bit_reverse_u8(v >> 24));
286 }
287
288 static __attribute__((unused))
289 uint64_t bit_reverse_u64(uint64_t v)
290 {
291 return ((uint64_t) bit_reverse_u8(v) << 56) |
292 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
293 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
294 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
295 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
296 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
297 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
298 ((uint64_t) bit_reverse_u8(v >> 56));
299 }
300
301 static
302 unsigned long bit_reverse_ulong(unsigned long v)
303 {
304 #if (CAA_BITS_PER_LONG == 32)
305 return bit_reverse_u32(v);
306 #else
307 return bit_reverse_u64(v);
308 #endif
309 }
310
311 /*
312 * fls: returns the position of the most significant bit.
313 * Returns 0 if no bit is set, else returns the position of the most
314 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
315 */
316 #if defined(__i386) || defined(__x86_64)
317 static inline
318 unsigned int fls_u32(uint32_t x)
319 {
320 int r;
321
322 asm("bsrl %1,%0\n\t"
323 "jnz 1f\n\t"
324 "movl $-1,%0\n\t"
325 "1:\n\t"
326 : "=r" (r) : "rm" (x));
327 return r + 1;
328 }
329 #define HAS_FLS_U32
330 #endif
331
332 #if defined(__x86_64)
333 static inline
334 unsigned int fls_u64(uint64_t x)
335 {
336 long r;
337
338 asm("bsrq %1,%0\n\t"
339 "jnz 1f\n\t"
340 "movq $-1,%0\n\t"
341 "1:\n\t"
342 : "=r" (r) : "rm" (x));
343 return r + 1;
344 }
345 #define HAS_FLS_U64
346 #endif
347
348 #ifndef HAS_FLS_U64
349 static __attribute__((unused))
350 unsigned int fls_u64(uint64_t x)
351 {
352 unsigned int r = 64;
353
354 if (!x)
355 return 0;
356
357 if (!(x & 0xFFFFFFFF00000000ULL)) {
358 x <<= 32;
359 r -= 32;
360 }
361 if (!(x & 0xFFFF000000000000ULL)) {
362 x <<= 16;
363 r -= 16;
364 }
365 if (!(x & 0xFF00000000000000ULL)) {
366 x <<= 8;
367 r -= 8;
368 }
369 if (!(x & 0xF000000000000000ULL)) {
370 x <<= 4;
371 r -= 4;
372 }
373 if (!(x & 0xC000000000000000ULL)) {
374 x <<= 2;
375 r -= 2;
376 }
377 if (!(x & 0x8000000000000000ULL)) {
378 x <<= 1;
379 r -= 1;
380 }
381 return r;
382 }
383 #endif
384
385 #ifndef HAS_FLS_U32
386 static __attribute__((unused))
387 unsigned int fls_u32(uint32_t x)
388 {
389 unsigned int r = 32;
390
391 if (!x)
392 return 0;
393 if (!(x & 0xFFFF0000U)) {
394 x <<= 16;
395 r -= 16;
396 }
397 if (!(x & 0xFF000000U)) {
398 x <<= 8;
399 r -= 8;
400 }
401 if (!(x & 0xF0000000U)) {
402 x <<= 4;
403 r -= 4;
404 }
405 if (!(x & 0xC0000000U)) {
406 x <<= 2;
407 r -= 2;
408 }
409 if (!(x & 0x80000000U)) {
410 x <<= 1;
411 r -= 1;
412 }
413 return r;
414 }
415 #endif
416
417 unsigned int fls_ulong(unsigned long x)
418 {
419 #if (CAA_BITS_PER_LONG == 32)
420 return fls_u32(x);
421 #else
422 return fls_u64(x);
423 #endif
424 }
425
426 /*
427 * Return the minimum order for which x <= (1UL << order).
428 * Return -1 if x is 0.
429 */
430 int get_count_order_u32(uint32_t x)
431 {
432 if (!x)
433 return -1;
434
435 return fls_u32(x - 1);
436 }
437
438 /*
439 * Return the minimum order for which x <= (1UL << order).
440 * Return -1 if x is 0.
441 */
442 int get_count_order_ulong(unsigned long x)
443 {
444 if (!x)
445 return -1;
446
447 return fls_ulong(x - 1);
448 }
449
450 static
451 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
452
453 static
454 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
455 unsigned long count);
456
457 static long nr_cpus_mask = -1;
458 static long split_count_mask = -1;
459
460 #if defined(HAVE_SYSCONF)
461 static void ht_init_nr_cpus_mask(void)
462 {
463 long maxcpus;
464
465 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
466 if (maxcpus <= 0) {
467 nr_cpus_mask = -2;
468 return;
469 }
470 /*
471 * round up number of CPUs to next power of two, so we
472 * can use & for modulo.
473 */
474 maxcpus = 1UL << get_count_order_ulong(maxcpus);
475 nr_cpus_mask = maxcpus - 1;
476 }
477 #else /* #if defined(HAVE_SYSCONF) */
478 static void ht_init_nr_cpus_mask(void)
479 {
480 nr_cpus_mask = -2;
481 }
482 #endif /* #else #if defined(HAVE_SYSCONF) */
483
484 static
485 void alloc_split_items_count(struct cds_lfht *ht)
486 {
487 struct ht_items_count *count;
488
489 if (nr_cpus_mask == -1) {
490 ht_init_nr_cpus_mask();
491 if (nr_cpus_mask < 0)
492 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
493 else
494 split_count_mask = nr_cpus_mask;
495 }
496
497 assert(split_count_mask >= 0);
498
499 if (ht->flags & CDS_LFHT_ACCOUNTING) {
500 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
501 assert(ht->split_count);
502 } else {
503 ht->split_count = NULL;
504 }
505 }
506
507 static
508 void free_split_items_count(struct cds_lfht *ht)
509 {
510 poison_free(ht->split_count);
511 }
512
513 #if defined(HAVE_SCHED_GETCPU)
514 static
515 int ht_get_split_count_index(unsigned long hash)
516 {
517 int cpu;
518
519 assert(split_count_mask >= 0);
520 cpu = sched_getcpu();
521 if (caa_unlikely(cpu < 0))
522 return hash & split_count_mask;
523 else
524 return cpu & split_count_mask;
525 }
526 #else /* #if defined(HAVE_SCHED_GETCPU) */
527 static
528 int ht_get_split_count_index(unsigned long hash)
529 {
530 return hash & split_count_mask;
531 }
532 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
533
534 static
535 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
536 {
537 unsigned long split_count;
538 int index;
539
540 if (caa_unlikely(!ht->split_count))
541 return;
542 index = ht_get_split_count_index(hash);
543 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
544 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
545 long count;
546
547 dbg_printf("add split count %lu\n", split_count);
548 count = uatomic_add_return(&ht->count,
549 1UL << COUNT_COMMIT_ORDER);
550 /* If power of 2 */
551 if (!(count & (count - 1))) {
552 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
553 return;
554 dbg_printf("add set global %ld\n", count);
555 cds_lfht_resize_lazy_count(ht, size,
556 count >> (CHAIN_LEN_TARGET - 1));
557 }
558 }
559 }
560
561 static
562 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
563 {
564 unsigned long split_count;
565 int index;
566
567 if (caa_unlikely(!ht->split_count))
568 return;
569 index = ht_get_split_count_index(hash);
570 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
571 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
572 long count;
573
574 dbg_printf("del split count %lu\n", split_count);
575 count = uatomic_add_return(&ht->count,
576 -(1UL << COUNT_COMMIT_ORDER));
577 /* If power of 2 */
578 if (!(count & (count - 1))) {
579 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
580 return;
581 dbg_printf("del set global %ld\n", count);
582 /*
583 * Don't shrink table if the number of nodes is below a
584 * certain threshold.
585 */
586 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
587 return;
588 cds_lfht_resize_lazy_count(ht, size,
589 count >> (CHAIN_LEN_TARGET - 1));
590 }
591 }
592 }
593
594 static
595 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
596 {
597 unsigned long count;
598
599 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
600 return;
601 count = uatomic_read(&ht->count);
602 /*
603 * Use bucket-local length for small table expand and for
604 * environments lacking per-cpu data support.
605 */
606 if (count >= (1UL << COUNT_COMMIT_ORDER))
607 return;
608 if (chain_len > 100)
609 dbg_printf("WARNING: large chain length: %u.\n",
610 chain_len);
611 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
612 cds_lfht_resize_lazy_grow(ht, size,
613 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
614 }
615
616 static
617 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
618 {
619 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
620 }
621
622 static
623 int is_removed(struct cds_lfht_node *node)
624 {
625 return ((unsigned long) node) & REMOVED_FLAG;
626 }
627
628 static
629 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
630 {
631 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
632 }
633
634 static
635 int is_bucket(struct cds_lfht_node *node)
636 {
637 return ((unsigned long) node) & BUCKET_FLAG;
638 }
639
640 static
641 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
642 {
643 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
644 }
645
646 static
647 struct cds_lfht_node *get_end(void)
648 {
649 return (struct cds_lfht_node *) END_VALUE;
650 }
651
652 static
653 int is_end(struct cds_lfht_node *node)
654 {
655 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
656 }
657
658 static
659 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
660 unsigned long v)
661 {
662 unsigned long old1, old2;
663
664 old1 = uatomic_read(ptr);
665 do {
666 old2 = old1;
667 if (old2 >= v)
668 return old2;
669 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
670 return old2;
671 }
672
673 static
674 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
675 {
676 return ht->mm->alloc_bucket_table(ht, order);
677 }
678
679 /*
680 * cds_lfht_free_bucket_table() should be called with decreasing order.
681 * When cds_lfht_free_bucket_table(0) is called, it means the whole
682 * lfht is destroyed.
683 */
684 static
685 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
686 {
687 return ht->mm->free_bucket_table(ht, order);
688 }
689
690 static inline
691 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
692 {
693 return ht->bucket_at(ht, index);
694 }
695
696 static inline
697 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
698 unsigned long hash)
699 {
700 assert(size > 0);
701 return bucket_at(ht, hash & (size - 1));
702 }
703
704 /*
705 * Remove all logically deleted nodes from a bucket up to a certain node key.
706 */
707 static
708 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
709 {
710 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
711
712 assert(!is_bucket(bucket));
713 assert(!is_removed(bucket));
714 assert(!is_bucket(node));
715 assert(!is_removed(node));
716 for (;;) {
717 iter_prev = bucket;
718 /* We can always skip the bucket node initially */
719 iter = rcu_dereference(iter_prev->next);
720 assert(!is_removed(iter));
721 assert(iter_prev->reverse_hash <= node->reverse_hash);
722 /*
723 * We should never be called with bucket (start of chain)
724 * and logically removed node (end of path compression
725 * marker) being the actual same node. This would be a
726 * bug in the algorithm implementation.
727 */
728 assert(bucket != node);
729 for (;;) {
730 if (caa_unlikely(is_end(iter)))
731 return;
732 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
733 return;
734 next = rcu_dereference(clear_flag(iter)->next);
735 if (caa_likely(is_removed(next)))
736 break;
737 iter_prev = clear_flag(iter);
738 iter = next;
739 }
740 assert(!is_removed(iter));
741 if (is_bucket(iter))
742 new_next = flag_bucket(clear_flag(next));
743 else
744 new_next = clear_flag(next);
745 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
746 }
747 return;
748 }
749
750 static
751 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
752 struct cds_lfht_node *old_node,
753 struct cds_lfht_node *old_next,
754 struct cds_lfht_node *new_node)
755 {
756 struct cds_lfht_node *bucket, *ret_next;
757
758 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
759 return -ENOENT;
760
761 assert(!is_removed(old_node));
762 assert(!is_bucket(old_node));
763 assert(!is_removed(new_node));
764 assert(!is_bucket(new_node));
765 assert(new_node != old_node);
766 for (;;) {
767 /* Insert after node to be replaced */
768 if (is_removed(old_next)) {
769 /*
770 * Too late, the old node has been removed under us
771 * between lookup and replace. Fail.
772 */
773 return -ENOENT;
774 }
775 assert(!is_bucket(old_next));
776 assert(new_node != clear_flag(old_next));
777 new_node->next = clear_flag(old_next);
778 /*
779 * Here is the whole trick for lock-free replace: we add
780 * the replacement node _after_ the node we want to
781 * replace by atomically setting its next pointer at the
782 * same time we set its removal flag. Given that
783 * the lookups/get next use an iterator aware of the
784 * next pointer, they will either skip the old node due
785 * to the removal flag and see the new node, or use
786 * the old node, but will not see the new one.
787 */
788 ret_next = uatomic_cmpxchg(&old_node->next,
789 old_next, flag_removed(new_node));
790 if (ret_next == old_next)
791 break; /* We performed the replacement. */
792 old_next = ret_next;
793 }
794
795 /*
796 * Ensure that the old node is not visible to readers anymore:
797 * lookup for the node, and remove it (along with any other
798 * logically removed node) if found.
799 */
800 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
801 _cds_lfht_gc_bucket(bucket, new_node);
802
803 assert(is_removed(rcu_dereference(old_node->next)));
804 return 0;
805 }
806
807 /*
808 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
809 * mode. A NULL unique_ret allows creation of duplicate keys.
810 */
811 static
812 void _cds_lfht_add(struct cds_lfht *ht,
813 cds_lfht_match_fct match,
814 const void *key,
815 unsigned long size,
816 struct cds_lfht_node *node,
817 struct cds_lfht_iter *unique_ret,
818 int bucket_flag)
819 {
820 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
821 *return_node;
822 struct cds_lfht_node *bucket;
823
824 assert(!is_bucket(node));
825 assert(!is_removed(node));
826 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
827 for (;;) {
828 uint32_t chain_len = 0;
829
830 /*
831 * iter_prev points to the non-removed node prior to the
832 * insert location.
833 */
834 iter_prev = bucket;
835 /* We can always skip the bucket node initially */
836 iter = rcu_dereference(iter_prev->next);
837 assert(iter_prev->reverse_hash <= node->reverse_hash);
838 for (;;) {
839 if (caa_unlikely(is_end(iter)))
840 goto insert;
841 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
842 goto insert;
843
844 /* bucket node is the first node of the identical-hash-value chain */
845 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
846 goto insert;
847
848 next = rcu_dereference(clear_flag(iter)->next);
849 if (caa_unlikely(is_removed(next)))
850 goto gc_node;
851
852 /* uniquely add */
853 if (unique_ret
854 && !is_bucket(next)
855 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
856 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
857
858 /*
859 * uniquely adding inserts the node as the first
860 * node of the identical-hash-value node chain.
861 *
862 * This semantic ensures no duplicated keys
863 * should ever be observable in the table
864 * (including observe one node by one node
865 * by forward iterations)
866 */
867 cds_lfht_next_duplicate(ht, match, key, &d_iter);
868 if (!d_iter.node)
869 goto insert;
870
871 *unique_ret = d_iter;
872 return;
873 }
874
875 /* Only account for identical reverse hash once */
876 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
877 && !is_bucket(next))
878 check_resize(ht, size, ++chain_len);
879 iter_prev = clear_flag(iter);
880 iter = next;
881 }
882
883 insert:
884 assert(node != clear_flag(iter));
885 assert(!is_removed(iter_prev));
886 assert(!is_removed(iter));
887 assert(iter_prev != node);
888 if (!bucket_flag)
889 node->next = clear_flag(iter);
890 else
891 node->next = flag_bucket(clear_flag(iter));
892 if (is_bucket(iter))
893 new_node = flag_bucket(node);
894 else
895 new_node = node;
896 if (uatomic_cmpxchg(&iter_prev->next, iter,
897 new_node) != iter) {
898 continue; /* retry */
899 } else {
900 return_node = node;
901 goto end;
902 }
903
904 gc_node:
905 assert(!is_removed(iter));
906 if (is_bucket(iter))
907 new_next = flag_bucket(clear_flag(next));
908 else
909 new_next = clear_flag(next);
910 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
911 /* retry */
912 }
913 end:
914 if (unique_ret) {
915 unique_ret->node = return_node;
916 /* unique_ret->next left unset, never used. */
917 }
918 }
919
920 static
921 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
922 struct cds_lfht_node *node,
923 int bucket_removal)
924 {
925 struct cds_lfht_node *bucket, *next, *old;
926
927 if (!node) /* Return -ENOENT if asked to delete NULL node */
928 return -ENOENT;
929
930 /* logically delete the node */
931 assert(!is_bucket(node));
932 assert(!is_removed(node));
933 old = rcu_dereference(node->next);
934 do {
935 struct cds_lfht_node *new_next;
936
937 next = old;
938 if (caa_unlikely(is_removed(next)))
939 return -ENOENT;
940 if (bucket_removal)
941 assert(is_bucket(next));
942 else
943 assert(!is_bucket(next));
944 new_next = flag_removed(next);
945 old = uatomic_cmpxchg(&node->next, next, new_next);
946 } while (old != next);
947 /* We performed the (logical) deletion. */
948
949 /*
950 * Ensure that the node is not visible to readers anymore: lookup for
951 * the node, and remove it (along with any other logically removed node)
952 * if found.
953 */
954 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
955 _cds_lfht_gc_bucket(bucket, node);
956
957 assert(is_removed(rcu_dereference(node->next)));
958 return 0;
959 }
960
961 static
962 void *partition_resize_thread(void *arg)
963 {
964 struct partition_resize_work *work = arg;
965
966 work->ht->flavor->register_thread();
967 work->fct(work->ht, work->i, work->start, work->len);
968 work->ht->flavor->unregister_thread();
969 return NULL;
970 }
971
972 static
973 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
974 unsigned long len,
975 void (*fct)(struct cds_lfht *ht, unsigned long i,
976 unsigned long start, unsigned long len))
977 {
978 unsigned long partition_len;
979 struct partition_resize_work *work;
980 int thread, ret;
981 unsigned long nr_threads;
982
983 /*
984 * Note: nr_cpus_mask + 1 is always power of 2.
985 * We spawn just the number of threads we need to satisfy the minimum
986 * partition size, up to the number of CPUs in the system.
987 */
988 if (nr_cpus_mask > 0) {
989 nr_threads = min(nr_cpus_mask + 1,
990 len >> MIN_PARTITION_PER_THREAD_ORDER);
991 } else {
992 nr_threads = 1;
993 }
994 partition_len = len >> get_count_order_ulong(nr_threads);
995 work = calloc(nr_threads, sizeof(*work));
996 assert(work);
997 for (thread = 0; thread < nr_threads; thread++) {
998 work[thread].ht = ht;
999 work[thread].i = i;
1000 work[thread].len = partition_len;
1001 work[thread].start = thread * partition_len;
1002 work[thread].fct = fct;
1003 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1004 partition_resize_thread, &work[thread]);
1005 assert(!ret);
1006 }
1007 for (thread = 0; thread < nr_threads; thread++) {
1008 ret = pthread_join(work[thread].thread_id, NULL);
1009 assert(!ret);
1010 }
1011 free(work);
1012 }
1013
1014 /*
1015 * Holding RCU read lock to protect _cds_lfht_add against memory
1016 * reclaim that could be performed by other call_rcu worker threads (ABA
1017 * problem).
1018 *
1019 * When we reach a certain length, we can split this population phase over
1020 * many worker threads, based on the number of CPUs available in the system.
1021 * This should therefore take care of not having the expand lagging behind too
1022 * many concurrent insertion threads by using the scheduler's ability to
1023 * schedule bucket node population fairly with insertions.
1024 */
1025 static
1026 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1027 unsigned long start, unsigned long len)
1028 {
1029 unsigned long j, size = 1UL << (i - 1);
1030
1031 assert(i > MIN_TABLE_ORDER);
1032 ht->flavor->read_lock();
1033 for (j = size + start; j < size + start + len; j++) {
1034 struct cds_lfht_node *new_node = bucket_at(ht, j);
1035
1036 assert(j >= size && j < (size << 1));
1037 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1038 i, j, j);
1039 new_node->reverse_hash = bit_reverse_ulong(j);
1040 _cds_lfht_add(ht, NULL, NULL, size, new_node, NULL, 1);
1041 }
1042 ht->flavor->read_unlock();
1043 }
1044
1045 static
1046 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1047 unsigned long len)
1048 {
1049 assert(nr_cpus_mask != -1);
1050 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1051 ht->flavor->thread_online();
1052 init_table_populate_partition(ht, i, 0, len);
1053 ht->flavor->thread_offline();
1054 return;
1055 }
1056 partition_resize_helper(ht, i, len, init_table_populate_partition);
1057 }
1058
1059 static
1060 void init_table(struct cds_lfht *ht,
1061 unsigned long first_order, unsigned long last_order)
1062 {
1063 unsigned long i;
1064
1065 dbg_printf("init table: first_order %lu last_order %lu\n",
1066 first_order, last_order);
1067 assert(first_order > MIN_TABLE_ORDER);
1068 for (i = first_order; i <= last_order; i++) {
1069 unsigned long len;
1070
1071 len = 1UL << (i - 1);
1072 dbg_printf("init order %lu len: %lu\n", i, len);
1073
1074 /* Stop expand if the resize target changes under us */
1075 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1076 break;
1077
1078 cds_lfht_alloc_bucket_table(ht, i);
1079
1080 /*
1081 * Set all bucket nodes reverse hash values for a level and
1082 * link all bucket nodes into the table.
1083 */
1084 init_table_populate(ht, i, len);
1085
1086 /*
1087 * Update table size.
1088 */
1089 cmm_smp_wmb(); /* populate data before RCU size */
1090 CMM_STORE_SHARED(ht->size, 1UL << i);
1091
1092 dbg_printf("init new size: %lu\n", 1UL << i);
1093 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1094 break;
1095 }
1096 }
1097
1098 /*
1099 * Holding RCU read lock to protect _cds_lfht_remove against memory
1100 * reclaim that could be performed by other call_rcu worker threads (ABA
1101 * problem).
1102 * For a single level, we logically remove and garbage collect each node.
1103 *
1104 * As a design choice, we perform logical removal and garbage collection on a
1105 * node-per-node basis to simplify this algorithm. We also assume keeping good
1106 * cache locality of the operation would overweight possible performance gain
1107 * that could be achieved by batching garbage collection for multiple levels.
1108 * However, this would have to be justified by benchmarks.
1109 *
1110 * Concurrent removal and add operations are helping us perform garbage
1111 * collection of logically removed nodes. We guarantee that all logically
1112 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1113 * invoked to free a hole level of bucket nodes (after a grace period).
1114 *
1115 * Logical removal and garbage collection can therefore be done in batch or on a
1116 * node-per-node basis, as long as the guarantee above holds.
1117 *
1118 * When we reach a certain length, we can split this removal over many worker
1119 * threads, based on the number of CPUs available in the system. This should
1120 * take care of not letting resize process lag behind too many concurrent
1121 * updater threads actively inserting into the hash table.
1122 */
1123 static
1124 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1125 unsigned long start, unsigned long len)
1126 {
1127 unsigned long j, size = 1UL << (i - 1);
1128
1129 assert(i > MIN_TABLE_ORDER);
1130 ht->flavor->read_lock();
1131 for (j = size + start; j < size + start + len; j++) {
1132 struct cds_lfht_node *fini_node = bucket_at(ht, j);
1133
1134 assert(j >= size && j < (size << 1));
1135 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1136 i, j, j);
1137 fini_node->reverse_hash = bit_reverse_ulong(j);
1138 (void) _cds_lfht_del(ht, size, fini_node, 1);
1139 }
1140 ht->flavor->read_unlock();
1141 }
1142
1143 static
1144 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1145 {
1146
1147 assert(nr_cpus_mask != -1);
1148 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1149 ht->flavor->thread_online();
1150 remove_table_partition(ht, i, 0, len);
1151 ht->flavor->thread_offline();
1152 return;
1153 }
1154 partition_resize_helper(ht, i, len, remove_table_partition);
1155 }
1156
1157 static
1158 void fini_table(struct cds_lfht *ht,
1159 unsigned long first_order, unsigned long last_order)
1160 {
1161 long i;
1162 unsigned long free_by_rcu_order = 0;
1163
1164 dbg_printf("fini table: first_order %lu last_order %lu\n",
1165 first_order, last_order);
1166 assert(first_order > MIN_TABLE_ORDER);
1167 for (i = last_order; i >= first_order; i--) {
1168 unsigned long len;
1169
1170 len = 1UL << (i - 1);
1171 dbg_printf("fini order %lu len: %lu\n", i, len);
1172
1173 /* Stop shrink if the resize target changes under us */
1174 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1175 break;
1176
1177 cmm_smp_wmb(); /* populate data before RCU size */
1178 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1179
1180 /*
1181 * We need to wait for all add operations to reach Q.S. (and
1182 * thus use the new table for lookups) before we can start
1183 * releasing the old bucket nodes. Otherwise their lookup will
1184 * return a logically removed node as insert position.
1185 */
1186 ht->flavor->update_synchronize_rcu();
1187 if (free_by_rcu_order)
1188 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1189
1190 /*
1191 * Set "removed" flag in bucket nodes about to be removed.
1192 * Unlink all now-logically-removed bucket node pointers.
1193 * Concurrent add/remove operation are helping us doing
1194 * the gc.
1195 */
1196 remove_table(ht, i, len);
1197
1198 free_by_rcu_order = i;
1199
1200 dbg_printf("fini new size: %lu\n", 1UL << i);
1201 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1202 break;
1203 }
1204
1205 if (free_by_rcu_order) {
1206 ht->flavor->update_synchronize_rcu();
1207 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1208 }
1209 }
1210
1211 static
1212 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1213 {
1214 struct cds_lfht_node *prev, *node;
1215 unsigned long order, len, i;
1216
1217 cds_lfht_alloc_bucket_table(ht, 0);
1218
1219 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1220 node = bucket_at(ht, 0);
1221 node->next = flag_bucket(get_end());
1222 node->reverse_hash = 0;
1223
1224 for (order = 1; order < get_count_order_ulong(size) + 1; order++) {
1225 len = 1UL << (order - 1);
1226 cds_lfht_alloc_bucket_table(ht, order);
1227
1228 for (i = 0; i < len; i++) {
1229 /*
1230 * Now, we are trying to init the node with the
1231 * hash=(len+i) (which is also a bucket with the
1232 * index=(len+i)) and insert it into the hash table,
1233 * so this node has to be inserted after the bucket
1234 * with the index=(len+i)&(len-1)=i. And because there
1235 * is no other non-bucket node nor bucket node with
1236 * larger index/hash inserted, so the bucket node
1237 * being inserted should be inserted directly linked
1238 * after the bucket node with index=i.
1239 */
1240 prev = bucket_at(ht, i);
1241 node = bucket_at(ht, len + i);
1242
1243 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1244 order, len + i, len + i);
1245 node->reverse_hash = bit_reverse_ulong(len + i);
1246
1247 /* insert after prev */
1248 assert(is_bucket(prev->next));
1249 node->next = prev->next;
1250 prev->next = flag_bucket(node);
1251 }
1252 }
1253 }
1254
1255 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1256 unsigned long min_nr_alloc_buckets,
1257 unsigned long max_nr_buckets,
1258 int flags,
1259 const struct cds_lfht_mm_type *mm,
1260 const struct rcu_flavor_struct *flavor,
1261 pthread_attr_t *attr)
1262 {
1263 struct cds_lfht *ht;
1264 unsigned long order;
1265
1266 /* min_nr_alloc_buckets must be power of two */
1267 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1268 return NULL;
1269
1270 /* init_size must be power of two */
1271 if (!init_size || (init_size & (init_size - 1)))
1272 return NULL;
1273
1274 /* max_nr_buckets == 0 for order based mm means infinite */
1275 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1276 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1277
1278 /* max_nr_buckets must be power of two */
1279 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1280 return NULL;
1281
1282 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1283 init_size = max(init_size, MIN_TABLE_SIZE);
1284 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1285 init_size = min(init_size, max_nr_buckets);
1286
1287 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
1288 assert(ht);
1289 assert(ht->mm == mm);
1290 assert(ht->bucket_at == mm->bucket_at);
1291
1292 ht->flags = flags;
1293 ht->flavor = flavor;
1294 ht->resize_attr = attr;
1295 alloc_split_items_count(ht);
1296 /* this mutex should not nest in read-side C.S. */
1297 pthread_mutex_init(&ht->resize_mutex, NULL);
1298 order = get_count_order_ulong(init_size);
1299 ht->resize_target = 1UL << order;
1300 cds_lfht_create_bucket(ht, 1UL << order);
1301 ht->size = 1UL << order;
1302 return ht;
1303 }
1304
1305 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1306 cds_lfht_match_fct match, const void *key,
1307 struct cds_lfht_iter *iter)
1308 {
1309 struct cds_lfht_node *node, *next, *bucket;
1310 unsigned long reverse_hash, size;
1311
1312 reverse_hash = bit_reverse_ulong(hash);
1313
1314 size = rcu_dereference(ht->size);
1315 bucket = lookup_bucket(ht, size, hash);
1316 /* We can always skip the bucket node initially */
1317 node = rcu_dereference(bucket->next);
1318 node = clear_flag(node);
1319 for (;;) {
1320 if (caa_unlikely(is_end(node))) {
1321 node = next = NULL;
1322 break;
1323 }
1324 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1325 node = next = NULL;
1326 break;
1327 }
1328 next = rcu_dereference(node->next);
1329 assert(node == clear_flag(node));
1330 if (caa_likely(!is_removed(next))
1331 && !is_bucket(next)
1332 && node->reverse_hash == reverse_hash
1333 && caa_likely(match(node, key))) {
1334 break;
1335 }
1336 node = clear_flag(next);
1337 }
1338 assert(!node || !is_bucket(rcu_dereference(node->next)));
1339 iter->node = node;
1340 iter->next = next;
1341 }
1342
1343 void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1344 const void *key, struct cds_lfht_iter *iter)
1345 {
1346 struct cds_lfht_node *node, *next;
1347 unsigned long reverse_hash;
1348
1349 node = iter->node;
1350 reverse_hash = node->reverse_hash;
1351 next = iter->next;
1352 node = clear_flag(next);
1353
1354 for (;;) {
1355 if (caa_unlikely(is_end(node))) {
1356 node = next = NULL;
1357 break;
1358 }
1359 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1360 node = next = NULL;
1361 break;
1362 }
1363 next = rcu_dereference(node->next);
1364 if (caa_likely(!is_removed(next))
1365 && !is_bucket(next)
1366 && caa_likely(match(node, key))) {
1367 break;
1368 }
1369 node = clear_flag(next);
1370 }
1371 assert(!node || !is_bucket(rcu_dereference(node->next)));
1372 iter->node = node;
1373 iter->next = next;
1374 }
1375
1376 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1377 {
1378 struct cds_lfht_node *node, *next;
1379
1380 node = clear_flag(iter->next);
1381 for (;;) {
1382 if (caa_unlikely(is_end(node))) {
1383 node = next = NULL;
1384 break;
1385 }
1386 next = rcu_dereference(node->next);
1387 if (caa_likely(!is_removed(next))
1388 && !is_bucket(next)) {
1389 break;
1390 }
1391 node = clear_flag(next);
1392 }
1393 assert(!node || !is_bucket(rcu_dereference(node->next)));
1394 iter->node = node;
1395 iter->next = next;
1396 }
1397
1398 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1399 {
1400 /*
1401 * Get next after first bucket node. The first bucket node is the
1402 * first node of the linked list.
1403 */
1404 iter->next = bucket_at(ht, 0)->next;
1405 cds_lfht_next(ht, iter);
1406 }
1407
1408 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1409 struct cds_lfht_node *node)
1410 {
1411 unsigned long size;
1412
1413 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1414 size = rcu_dereference(ht->size);
1415 _cds_lfht_add(ht, NULL, NULL, size, node, NULL, 0);
1416 ht_count_add(ht, size, hash);
1417 }
1418
1419 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1420 unsigned long hash,
1421 cds_lfht_match_fct match,
1422 const void *key,
1423 struct cds_lfht_node *node)
1424 {
1425 unsigned long size;
1426 struct cds_lfht_iter iter;
1427
1428 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1429 size = rcu_dereference(ht->size);
1430 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1431 if (iter.node == node)
1432 ht_count_add(ht, size, hash);
1433 return iter.node;
1434 }
1435
1436 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1437 unsigned long hash,
1438 cds_lfht_match_fct match,
1439 const void *key,
1440 struct cds_lfht_node *node)
1441 {
1442 unsigned long size;
1443 struct cds_lfht_iter iter;
1444
1445 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1446 size = rcu_dereference(ht->size);
1447 for (;;) {
1448 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1449 if (iter.node == node) {
1450 ht_count_add(ht, size, hash);
1451 return NULL;
1452 }
1453
1454 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1455 return iter.node;
1456 }
1457 }
1458
1459 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1460 struct cds_lfht_node *new_node)
1461 {
1462 unsigned long size;
1463
1464 size = rcu_dereference(ht->size);
1465 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1466 new_node);
1467 }
1468
1469 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1470 {
1471 unsigned long size, hash;
1472 int ret;
1473
1474 size = rcu_dereference(ht->size);
1475 ret = _cds_lfht_del(ht, size, iter->node, 0);
1476 if (!ret) {
1477 hash = bit_reverse_ulong(iter->node->reverse_hash);
1478 ht_count_del(ht, size, hash);
1479 }
1480 return ret;
1481 }
1482
1483 static
1484 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1485 {
1486 struct cds_lfht_node *node;
1487 unsigned long order, i, size;
1488
1489 /* Check that the table is empty */
1490 node = bucket_at(ht, 0);
1491 do {
1492 node = clear_flag(node)->next;
1493 if (!is_bucket(node))
1494 return -EPERM;
1495 assert(!is_removed(node));
1496 } while (!is_end(node));
1497 /*
1498 * size accessed without rcu_dereference because hash table is
1499 * being destroyed.
1500 */
1501 size = ht->size;
1502 /* Internal sanity check: all nodes left should be bucket */
1503 for (i = 0; i < size; i++) {
1504 node = bucket_at(ht, i);
1505 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1506 i, i, bit_reverse_ulong(node->reverse_hash));
1507 assert(is_bucket(node->next));
1508 }
1509
1510 for (order = get_count_order_ulong(size); (long)order >= 0; order--)
1511 cds_lfht_free_bucket_table(ht, order);
1512
1513 return 0;
1514 }
1515
1516 /*
1517 * Should only be called when no more concurrent readers nor writers can
1518 * possibly access the table.
1519 */
1520 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1521 {
1522 int ret;
1523
1524 /* Wait for in-flight resize operations to complete */
1525 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1526 cmm_smp_mb(); /* Store destroy before load resize */
1527 while (uatomic_read(&ht->in_progress_resize))
1528 poll(NULL, 0, 100); /* wait for 100ms */
1529 ret = cds_lfht_delete_bucket(ht);
1530 if (ret)
1531 return ret;
1532 free_split_items_count(ht);
1533 if (attr)
1534 *attr = ht->resize_attr;
1535 poison_free(ht);
1536 return ret;
1537 }
1538
1539 void cds_lfht_count_nodes(struct cds_lfht *ht,
1540 long *approx_before,
1541 unsigned long *count,
1542 unsigned long *removed,
1543 long *approx_after)
1544 {
1545 struct cds_lfht_node *node, *next;
1546 unsigned long nr_bucket = 0;
1547
1548 *approx_before = 0;
1549 if (ht->split_count) {
1550 int i;
1551
1552 for (i = 0; i < split_count_mask + 1; i++) {
1553 *approx_before += uatomic_read(&ht->split_count[i].add);
1554 *approx_before -= uatomic_read(&ht->split_count[i].del);
1555 }
1556 }
1557
1558 *count = 0;
1559 *removed = 0;
1560
1561 /* Count non-bucket nodes in the table */
1562 node = bucket_at(ht, 0);
1563 do {
1564 next = rcu_dereference(node->next);
1565 if (is_removed(next)) {
1566 if (!is_bucket(next))
1567 (*removed)++;
1568 else
1569 (nr_bucket)++;
1570 } else if (!is_bucket(next))
1571 (*count)++;
1572 else
1573 (nr_bucket)++;
1574 node = clear_flag(next);
1575 } while (!is_end(node));
1576 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1577 *approx_after = 0;
1578 if (ht->split_count) {
1579 int i;
1580
1581 for (i = 0; i < split_count_mask + 1; i++) {
1582 *approx_after += uatomic_read(&ht->split_count[i].add);
1583 *approx_after -= uatomic_read(&ht->split_count[i].del);
1584 }
1585 }
1586 }
1587
1588 /* called with resize mutex held */
1589 static
1590 void _do_cds_lfht_grow(struct cds_lfht *ht,
1591 unsigned long old_size, unsigned long new_size)
1592 {
1593 unsigned long old_order, new_order;
1594
1595 old_order = get_count_order_ulong(old_size);
1596 new_order = get_count_order_ulong(new_size);
1597 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1598 old_size, old_order, new_size, new_order);
1599 assert(new_size > old_size);
1600 init_table(ht, old_order + 1, new_order);
1601 }
1602
1603 /* called with resize mutex held */
1604 static
1605 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1606 unsigned long old_size, unsigned long new_size)
1607 {
1608 unsigned long old_order, new_order;
1609
1610 new_size = max(new_size, MIN_TABLE_SIZE);
1611 old_order = get_count_order_ulong(old_size);
1612 new_order = get_count_order_ulong(new_size);
1613 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1614 old_size, old_order, new_size, new_order);
1615 assert(new_size < old_size);
1616
1617 /* Remove and unlink all bucket nodes to remove. */
1618 fini_table(ht, new_order + 1, old_order);
1619 }
1620
1621
1622 /* called with resize mutex held */
1623 static
1624 void _do_cds_lfht_resize(struct cds_lfht *ht)
1625 {
1626 unsigned long new_size, old_size;
1627
1628 /*
1629 * Resize table, re-do if the target size has changed under us.
1630 */
1631 do {
1632 assert(uatomic_read(&ht->in_progress_resize));
1633 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1634 break;
1635 ht->resize_initiated = 1;
1636 old_size = ht->size;
1637 new_size = CMM_LOAD_SHARED(ht->resize_target);
1638 if (old_size < new_size)
1639 _do_cds_lfht_grow(ht, old_size, new_size);
1640 else if (old_size > new_size)
1641 _do_cds_lfht_shrink(ht, old_size, new_size);
1642 ht->resize_initiated = 0;
1643 /* write resize_initiated before read resize_target */
1644 cmm_smp_mb();
1645 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1646 }
1647
1648 static
1649 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1650 {
1651 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
1652 }
1653
1654 static
1655 void resize_target_update_count(struct cds_lfht *ht,
1656 unsigned long count)
1657 {
1658 count = max(count, MIN_TABLE_SIZE);
1659 count = min(count, ht->max_nr_buckets);
1660 uatomic_set(&ht->resize_target, count);
1661 }
1662
1663 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1664 {
1665 resize_target_update_count(ht, new_size);
1666 CMM_STORE_SHARED(ht->resize_initiated, 1);
1667 ht->flavor->thread_offline();
1668 pthread_mutex_lock(&ht->resize_mutex);
1669 _do_cds_lfht_resize(ht);
1670 pthread_mutex_unlock(&ht->resize_mutex);
1671 ht->flavor->thread_online();
1672 }
1673
1674 static
1675 void do_resize_cb(struct rcu_head *head)
1676 {
1677 struct rcu_resize_work *work =
1678 caa_container_of(head, struct rcu_resize_work, head);
1679 struct cds_lfht *ht = work->ht;
1680
1681 ht->flavor->thread_offline();
1682 pthread_mutex_lock(&ht->resize_mutex);
1683 _do_cds_lfht_resize(ht);
1684 pthread_mutex_unlock(&ht->resize_mutex);
1685 ht->flavor->thread_online();
1686 poison_free(work);
1687 cmm_smp_mb(); /* finish resize before decrement */
1688 uatomic_dec(&ht->in_progress_resize);
1689 }
1690
1691 static
1692 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1693 {
1694 struct rcu_resize_work *work;
1695
1696 /* Store resize_target before read resize_initiated */
1697 cmm_smp_mb();
1698 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
1699 uatomic_inc(&ht->in_progress_resize);
1700 cmm_smp_mb(); /* increment resize count before load destroy */
1701 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1702 uatomic_dec(&ht->in_progress_resize);
1703 return;
1704 }
1705 work = malloc(sizeof(*work));
1706 work->ht = ht;
1707 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
1708 CMM_STORE_SHARED(ht->resize_initiated, 1);
1709 }
1710 }
1711
1712 static
1713 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1714 {
1715 unsigned long target_size = size << growth;
1716
1717 target_size = min(target_size, ht->max_nr_buckets);
1718 if (resize_target_grow(ht, target_size) >= target_size)
1719 return;
1720
1721 __cds_lfht_resize_lazy_launch(ht);
1722 }
1723
1724 /*
1725 * We favor grow operations over shrink. A shrink operation never occurs
1726 * if a grow operation is queued for lazy execution. A grow operation
1727 * cancels any pending shrink lazy execution.
1728 */
1729 static
1730 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1731 unsigned long count)
1732 {
1733 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1734 return;
1735 count = max(count, MIN_TABLE_SIZE);
1736 count = min(count, ht->max_nr_buckets);
1737 if (count == size)
1738 return; /* Already the right size, no resize needed */
1739 if (count > size) { /* lazy grow */
1740 if (resize_target_grow(ht, count) >= count)
1741 return;
1742 } else { /* lazy shrink */
1743 for (;;) {
1744 unsigned long s;
1745
1746 s = uatomic_cmpxchg(&ht->resize_target, size, count);
1747 if (s == size)
1748 break; /* no resize needed */
1749 if (s > size)
1750 return; /* growing is/(was just) in progress */
1751 if (s <= count)
1752 return; /* some other thread do shrink */
1753 size = s;
1754 }
1755 }
1756 __cds_lfht_resize_lazy_launch(ht);
1757 }
This page took 0.0849569999999999 seconds and 5 git commands to generate.