rculfhash: Remove leftover assertions
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/jhash.h>
148 #include <urcu/compiler.h>
149 #include <urcu/rculfhash.h>
150 #include <stdio.h>
151 #include <pthread.h>
152
153 #ifdef DEBUG
154 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
155 #else
156 #define dbg_printf(fmt, args...)
157 #endif
158
159 /*
160 * Per-CPU split-counters lazily update the global counter each 1024
161 * addition/removal. It automatically keeps track of resize required.
162 * We use the bucket length as indicator for need to expand for small
163 * tables and machines lacking per-cpu data suppport.
164 */
165 #define COUNT_COMMIT_ORDER 10
166 #define CHAIN_LEN_TARGET 1
167 #define CHAIN_LEN_RESIZE_THRESHOLD 3
168
169 /*
170 * Define the minimum table size.
171 */
172 #define MIN_TABLE_SIZE 1
173
174 #if (CAA_BITS_PER_LONG == 32)
175 #define MAX_TABLE_ORDER 32
176 #else
177 #define MAX_TABLE_ORDER 64
178 #endif
179
180 #ifndef min
181 #define min(a, b) ((a) < (b) ? (a) : (b))
182 #endif
183
184 #ifndef max
185 #define max(a, b) ((a) > (b) ? (a) : (b))
186 #endif
187
188 /*
189 * The removed flag needs to be updated atomically with the pointer.
190 * The dummy flag does not require to be updated atomically with the
191 * pointer, but it is added as a pointer low bit flag to save space.
192 */
193 #define REMOVED_FLAG (1UL << 0)
194 #define DUMMY_FLAG (1UL << 1)
195 #define FLAGS_MASK ((1UL << 2) - 1)
196
197 /* Value of the end pointer. Should not interact with flags. */
198 #define END_VALUE NULL
199
200 struct ht_items_count {
201 unsigned long add, remove;
202 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
203
204 struct rcu_level {
205 struct rcu_head head;
206 struct _cds_lfht_node nodes[0];
207 };
208
209 struct rcu_table {
210 unsigned long size; /* always a power of 2, shared (RCU) */
211 unsigned long resize_target;
212 int resize_initiated;
213 struct rcu_level *tbl[MAX_TABLE_ORDER];
214 };
215
216 struct cds_lfht {
217 struct rcu_table t;
218 cds_lfht_hash_fct hash_fct;
219 cds_lfht_compare_fct compare_fct;
220 unsigned long hash_seed;
221 int flags;
222 /*
223 * We need to put the work threads offline (QSBR) when taking this
224 * mutex, because we use synchronize_rcu within this mutex critical
225 * section, which waits on read-side critical sections, and could
226 * therefore cause grace-period deadlock if we hold off RCU G.P.
227 * completion.
228 */
229 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
230 unsigned int in_progress_resize, in_progress_destroy;
231 void (*cds_lfht_call_rcu)(struct rcu_head *head,
232 void (*func)(struct rcu_head *head));
233 void (*cds_lfht_synchronize_rcu)(void);
234 void (*cds_lfht_rcu_read_lock)(void);
235 void (*cds_lfht_rcu_read_unlock)(void);
236 void (*cds_lfht_rcu_thread_offline)(void);
237 void (*cds_lfht_rcu_thread_online)(void);
238 unsigned long count; /* global approximate item count */
239 struct ht_items_count *percpu_count; /* per-cpu item count */
240 };
241
242 struct rcu_resize_work {
243 struct rcu_head head;
244 struct cds_lfht *ht;
245 };
246
247 static
248 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
249 unsigned long size,
250 struct cds_lfht_node *node,
251 int unique, int dummy);
252
253 /*
254 * Algorithm to reverse bits in a word by lookup table, extended to
255 * 64-bit words.
256 * Source:
257 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
258 * Originally from Public Domain.
259 */
260
261 static const uint8_t BitReverseTable256[256] =
262 {
263 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
264 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
265 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
266 R6(0), R6(2), R6(1), R6(3)
267 };
268 #undef R2
269 #undef R4
270 #undef R6
271
272 static
273 uint8_t bit_reverse_u8(uint8_t v)
274 {
275 return BitReverseTable256[v];
276 }
277
278 static __attribute__((unused))
279 uint32_t bit_reverse_u32(uint32_t v)
280 {
281 return ((uint32_t) bit_reverse_u8(v) << 24) |
282 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
283 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
284 ((uint32_t) bit_reverse_u8(v >> 24));
285 }
286
287 static __attribute__((unused))
288 uint64_t bit_reverse_u64(uint64_t v)
289 {
290 return ((uint64_t) bit_reverse_u8(v) << 56) |
291 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
292 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
293 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
294 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
295 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
296 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
297 ((uint64_t) bit_reverse_u8(v >> 56));
298 }
299
300 static
301 unsigned long bit_reverse_ulong(unsigned long v)
302 {
303 #if (CAA_BITS_PER_LONG == 32)
304 return bit_reverse_u32(v);
305 #else
306 return bit_reverse_u64(v);
307 #endif
308 }
309
310 /*
311 * fls: returns the position of the most significant bit.
312 * Returns 0 if no bit is set, else returns the position of the most
313 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
314 */
315 #if defined(__i386) || defined(__x86_64)
316 static inline
317 unsigned int fls_u32(uint32_t x)
318 {
319 int r;
320
321 asm("bsrl %1,%0\n\t"
322 "jnz 1f\n\t"
323 "movl $-1,%0\n\t"
324 "1:\n\t"
325 : "=r" (r) : "rm" (x));
326 return r + 1;
327 }
328 #define HAS_FLS_U32
329 #endif
330
331 #if defined(__x86_64)
332 static inline
333 unsigned int fls_u64(uint64_t x)
334 {
335 long r;
336
337 asm("bsrq %1,%0\n\t"
338 "jnz 1f\n\t"
339 "movq $-1,%0\n\t"
340 "1:\n\t"
341 : "=r" (r) : "rm" (x));
342 return r + 1;
343 }
344 #define HAS_FLS_U64
345 #endif
346
347 #ifndef HAS_FLS_U64
348 static __attribute__((unused))
349 unsigned int fls_u64(uint64_t x)
350 {
351 unsigned int r = 64;
352
353 if (!x)
354 return 0;
355
356 if (!(x & 0xFFFFFFFF00000000ULL)) {
357 x <<= 32;
358 r -= 32;
359 }
360 if (!(x & 0xFFFF000000000000ULL)) {
361 x <<= 16;
362 r -= 16;
363 }
364 if (!(x & 0xFF00000000000000ULL)) {
365 x <<= 8;
366 r -= 8;
367 }
368 if (!(x & 0xF000000000000000ULL)) {
369 x <<= 4;
370 r -= 4;
371 }
372 if (!(x & 0xC000000000000000ULL)) {
373 x <<= 2;
374 r -= 2;
375 }
376 if (!(x & 0x8000000000000000ULL)) {
377 x <<= 1;
378 r -= 1;
379 }
380 return r;
381 }
382 #endif
383
384 #ifndef HAS_FLS_U32
385 static __attribute__((unused))
386 unsigned int fls_u32(uint32_t x)
387 {
388 unsigned int r = 32;
389
390 if (!x)
391 return 0;
392 if (!(x & 0xFFFF0000U)) {
393 x <<= 16;
394 r -= 16;
395 }
396 if (!(x & 0xFF000000U)) {
397 x <<= 8;
398 r -= 8;
399 }
400 if (!(x & 0xF0000000U)) {
401 x <<= 4;
402 r -= 4;
403 }
404 if (!(x & 0xC0000000U)) {
405 x <<= 2;
406 r -= 2;
407 }
408 if (!(x & 0x80000000U)) {
409 x <<= 1;
410 r -= 1;
411 }
412 return r;
413 }
414 #endif
415
416 unsigned int fls_ulong(unsigned long x)
417 {
418 #if (CAA_BITS_PER_lONG == 32)
419 return fls_u32(x);
420 #else
421 return fls_u64(x);
422 #endif
423 }
424
425 int get_count_order_u32(uint32_t x)
426 {
427 int order;
428
429 order = fls_u32(x) - 1;
430 if (x & (x - 1))
431 order++;
432 return order;
433 }
434
435 int get_count_order_ulong(unsigned long x)
436 {
437 int order;
438
439 order = fls_ulong(x) - 1;
440 if (x & (x - 1))
441 order++;
442 return order;
443 }
444
445 #ifdef POISON_FREE
446 #define poison_free(ptr) \
447 do { \
448 memset(ptr, 0x42, sizeof(*(ptr))); \
449 free(ptr); \
450 } while (0)
451 #else
452 #define poison_free(ptr) free(ptr)
453 #endif
454
455 static
456 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
457
458 /*
459 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
460 * available, then we support hash table item accounting.
461 * In the unfortunate event the number of CPUs reported would be
462 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
463 */
464 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
465
466 static
467 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
468 unsigned long count);
469
470 static long nr_cpus_mask = -1;
471
472 static
473 struct ht_items_count *alloc_per_cpu_items_count(void)
474 {
475 struct ht_items_count *count;
476
477 switch (nr_cpus_mask) {
478 case -2:
479 return NULL;
480 case -1:
481 {
482 long maxcpus;
483
484 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
485 if (maxcpus <= 0) {
486 nr_cpus_mask = -2;
487 return NULL;
488 }
489 /*
490 * round up number of CPUs to next power of two, so we
491 * can use & for modulo.
492 */
493 maxcpus = 1UL << get_count_order_ulong(maxcpus);
494 nr_cpus_mask = maxcpus - 1;
495 }
496 /* Fall-through */
497 default:
498 return calloc(nr_cpus_mask + 1, sizeof(*count));
499 }
500 }
501
502 static
503 void free_per_cpu_items_count(struct ht_items_count *count)
504 {
505 poison_free(count);
506 }
507
508 static
509 int ht_get_cpu(void)
510 {
511 int cpu;
512
513 assert(nr_cpus_mask >= 0);
514 cpu = sched_getcpu();
515 if (unlikely(cpu < 0))
516 return cpu;
517 else
518 return cpu & nr_cpus_mask;
519 }
520
521 static
522 void ht_count_add(struct cds_lfht *ht, unsigned long size)
523 {
524 unsigned long percpu_count;
525 int cpu;
526
527 if (unlikely(!ht->percpu_count))
528 return;
529 cpu = ht_get_cpu();
530 if (unlikely(cpu < 0))
531 return;
532 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
533 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
534 unsigned long count;
535
536 dbg_printf("add percpu %lu\n", percpu_count);
537 count = uatomic_add_return(&ht->count,
538 1UL << COUNT_COMMIT_ORDER);
539 /* If power of 2 */
540 if (!(count & (count - 1))) {
541 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
542 return;
543 dbg_printf("add set global %lu\n", count);
544 cds_lfht_resize_lazy_count(ht, size,
545 count >> (CHAIN_LEN_TARGET - 1));
546 }
547 }
548 }
549
550 static
551 void ht_count_remove(struct cds_lfht *ht, unsigned long size)
552 {
553 unsigned long percpu_count;
554 int cpu;
555
556 if (unlikely(!ht->percpu_count))
557 return;
558 cpu = ht_get_cpu();
559 if (unlikely(cpu < 0))
560 return;
561 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].remove, -1);
562 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
563 unsigned long count;
564
565 dbg_printf("remove percpu %lu\n", percpu_count);
566 count = uatomic_add_return(&ht->count,
567 -(1UL << COUNT_COMMIT_ORDER));
568 /* If power of 2 */
569 if (!(count & (count - 1))) {
570 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
571 return;
572 dbg_printf("remove set global %lu\n", count);
573 cds_lfht_resize_lazy_count(ht, size,
574 count >> (CHAIN_LEN_TARGET - 1));
575 }
576 }
577 }
578
579 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
580
581 static const long nr_cpus_mask = -1;
582
583 static
584 struct ht_items_count *alloc_per_cpu_items_count(void)
585 {
586 return NULL;
587 }
588
589 static
590 void free_per_cpu_items_count(struct ht_items_count *count)
591 {
592 }
593
594 static
595 void ht_count_add(struct cds_lfht *ht, unsigned long size)
596 {
597 }
598
599 static
600 void ht_count_remove(struct cds_lfht *ht, unsigned long size)
601 {
602 }
603
604 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
605
606
607 static
608 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
609 {
610 unsigned long count;
611
612 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
613 return;
614 count = uatomic_read(&ht->count);
615 /*
616 * Use bucket-local length for small table expand and for
617 * environments lacking per-cpu data support.
618 */
619 if (count >= (1UL << COUNT_COMMIT_ORDER))
620 return;
621 if (chain_len > 100)
622 dbg_printf("WARNING: large chain length: %u.\n",
623 chain_len);
624 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
625 cds_lfht_resize_lazy(ht, size,
626 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
627 }
628
629 static
630 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
631 {
632 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
633 }
634
635 static
636 int is_removed(struct cds_lfht_node *node)
637 {
638 return ((unsigned long) node) & REMOVED_FLAG;
639 }
640
641 static
642 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
643 {
644 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
645 }
646
647 static
648 int is_dummy(struct cds_lfht_node *node)
649 {
650 return ((unsigned long) node) & DUMMY_FLAG;
651 }
652
653 static
654 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
655 {
656 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
657 }
658
659 static
660 struct cds_lfht_node *get_end(void)
661 {
662 return (struct cds_lfht_node *) END_VALUE;
663 }
664
665 static
666 int is_end(struct cds_lfht_node *node)
667 {
668 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
669 }
670
671 static
672 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
673 {
674 unsigned long old1, old2;
675
676 old1 = uatomic_read(ptr);
677 do {
678 old2 = old1;
679 if (old2 >= v)
680 return old2;
681 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
682 return v;
683 }
684
685 static
686 void cds_lfht_free_level(struct rcu_head *head)
687 {
688 struct rcu_level *l =
689 caa_container_of(head, struct rcu_level, head);
690 poison_free(l);
691 }
692
693 /*
694 * Remove all logically deleted nodes from a bucket up to a certain node key.
695 */
696 static
697 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
698 {
699 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
700
701 assert(!is_dummy(dummy));
702 assert(!is_removed(dummy));
703 assert(!is_dummy(node));
704 assert(!is_removed(node));
705 for (;;) {
706 iter_prev = dummy;
707 /* We can always skip the dummy node initially */
708 iter = rcu_dereference(iter_prev->p.next);
709 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
710 /*
711 * We should never be called with dummy (start of chain)
712 * and logically removed node (end of path compression
713 * marker) being the actual same node. This would be a
714 * bug in the algorithm implementation.
715 */
716 assert(dummy != node);
717 for (;;) {
718 if (unlikely(is_end(iter)))
719 return;
720 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
721 return;
722 next = rcu_dereference(clear_flag(iter)->p.next);
723 if (likely(is_removed(next)))
724 break;
725 iter_prev = clear_flag(iter);
726 iter = next;
727 }
728 assert(!is_removed(iter));
729 if (is_dummy(iter))
730 new_next = flag_dummy(clear_flag(next));
731 else
732 new_next = clear_flag(next);
733 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
734 }
735 return;
736 }
737
738 static
739 struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht,
740 unsigned long size,
741 struct cds_lfht_node *node,
742 int unique, int dummy)
743 {
744 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
745 *dummy_node;
746 struct _cds_lfht_node *lookup;
747 unsigned long hash, index, order;
748
749 assert(!is_dummy(node));
750 assert(!is_removed(node));
751 if (!size) {
752 assert(dummy);
753 node->p.next = flag_dummy(get_end());
754 return node; /* Initial first add (head) */
755 }
756 hash = bit_reverse_ulong(node->p.reverse_hash);
757 for (;;) {
758 uint32_t chain_len = 0;
759
760 /*
761 * iter_prev points to the non-removed node prior to the
762 * insert location.
763 */
764 index = hash & (size - 1);
765 order = get_count_order_ulong(index + 1);
766 lookup = &ht->t.tbl[order]->nodes[index & ((!order ? 0 : (1UL << (order - 1))) - 1)];
767 iter_prev = (struct cds_lfht_node *) lookup;
768 /* We can always skip the dummy node initially */
769 iter = rcu_dereference(iter_prev->p.next);
770 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
771 for (;;) {
772 if (unlikely(is_end(iter)))
773 goto insert;
774 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
775 goto insert;
776 next = rcu_dereference(clear_flag(iter)->p.next);
777 if (unlikely(is_removed(next)))
778 goto gc_node;
779 if (unique
780 && !is_dummy(next)
781 && !ht->compare_fct(node->key, node->key_len,
782 clear_flag(iter)->key,
783 clear_flag(iter)->key_len))
784 return clear_flag(iter);
785 /* Only account for identical reverse hash once */
786 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
787 && !is_dummy(next))
788 check_resize(ht, size, ++chain_len);
789 iter_prev = clear_flag(iter);
790 iter = next;
791 }
792 insert:
793 assert(node != clear_flag(iter));
794 assert(!is_removed(iter_prev));
795 assert(!is_removed(iter));
796 assert(iter_prev != node);
797 if (!dummy)
798 node->p.next = clear_flag(iter);
799 else
800 node->p.next = flag_dummy(clear_flag(iter));
801 if (is_dummy(iter))
802 new_node = flag_dummy(node);
803 else
804 new_node = node;
805 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
806 new_node) != iter)
807 continue; /* retry */
808 else
809 goto gc_end;
810 gc_node:
811 assert(!is_removed(iter));
812 if (is_dummy(iter))
813 new_next = flag_dummy(clear_flag(next));
814 else
815 new_next = clear_flag(next);
816 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
817 /* retry */
818 }
819 gc_end:
820 /* Garbage collect logically removed nodes in the bucket */
821 index = hash & (size - 1);
822 order = get_count_order_ulong(index + 1);
823 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
824 dummy_node = (struct cds_lfht_node *) lookup;
825 _cds_lfht_gc_bucket(dummy_node, node);
826 return node;
827 }
828
829 static
830 int _cds_lfht_remove(struct cds_lfht *ht, unsigned long size,
831 struct cds_lfht_node *node,
832 int dummy_removal)
833 {
834 struct cds_lfht_node *dummy, *next, *old;
835 struct _cds_lfht_node *lookup;
836 int flagged = 0;
837 unsigned long hash, index, order;
838
839 /* logically delete the node */
840 assert(!is_dummy(node));
841 assert(!is_removed(node));
842 old = rcu_dereference(node->p.next);
843 do {
844 next = old;
845 if (unlikely(is_removed(next)))
846 goto end;
847 if (dummy_removal)
848 assert(is_dummy(next));
849 else
850 assert(!is_dummy(next));
851 old = uatomic_cmpxchg(&node->p.next, next,
852 flag_removed(next));
853 } while (old != next);
854
855 /* We performed the (logical) deletion. */
856 flagged = 1;
857
858 /*
859 * Ensure that the node is not visible to readers anymore: lookup for
860 * the node, and remove it (along with any other logically removed node)
861 * if found.
862 */
863 hash = bit_reverse_ulong(node->p.reverse_hash);
864 assert(size > 0);
865 index = hash & (size - 1);
866 order = get_count_order_ulong(index + 1);
867 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
868 dummy = (struct cds_lfht_node *) lookup;
869 _cds_lfht_gc_bucket(dummy, node);
870 end:
871 /*
872 * Only the flagging action indicated that we (and no other)
873 * removed the node from the hash.
874 */
875 if (flagged) {
876 assert(is_removed(rcu_dereference(node->p.next)));
877 return 0;
878 } else
879 return -ENOENT;
880 }
881
882 /*
883 * Holding RCU read lock to protect _cds_lfht_add against memory
884 * reclaim that could be performed by other call_rcu worker threads (ABA
885 * problem).
886 */
887 static
888 void init_table_populate(struct cds_lfht *ht, unsigned long i, unsigned long len)
889 {
890 unsigned long j;
891
892 ht->cds_lfht_rcu_thread_online();
893 ht->cds_lfht_rcu_read_lock();
894 for (j = 0; j < len; j++) {
895 struct cds_lfht_node *new_node =
896 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
897
898 dbg_printf("init populate: i %lu j %lu hash %lu\n",
899 i, j, !i ? 0 : (1UL << (i - 1)) + j);
900 new_node->p.reverse_hash =
901 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
902 (void) _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
903 new_node, 0, 1);
904 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
905 break;
906 }
907 ht->cds_lfht_rcu_read_unlock();
908 ht->cds_lfht_rcu_thread_offline();
909 }
910
911 static
912 void init_table(struct cds_lfht *ht,
913 unsigned long first_order, unsigned long len_order)
914 {
915 unsigned long i, end_order;
916
917 dbg_printf("init table: first_order %lu end_order %lu\n",
918 first_order, first_order + len_order);
919 end_order = first_order + len_order;
920 for (i = first_order; i < end_order; i++) {
921 unsigned long len;
922
923 len = !i ? 1 : 1UL << (i - 1);
924 dbg_printf("init order %lu len: %lu\n", i, len);
925
926 /* Stop expand if the resize target changes under us */
927 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
928 break;
929
930 ht->t.tbl[i] = calloc(1, sizeof(struct rcu_level)
931 + (len * sizeof(struct _cds_lfht_node)));
932
933 /*
934 * Set all dummy nodes reverse hash values for a level and
935 * link all dummy nodes into the table.
936 */
937 init_table_populate(ht, i, len);
938
939 /*
940 * Update table size.
941 */
942 cmm_smp_wmb(); /* populate data before RCU size */
943 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
944
945 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
946 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
947 break;
948 }
949 }
950
951 /*
952 * Holding RCU read lock to protect _cds_lfht_remove against memory
953 * reclaim that could be performed by other call_rcu worker threads (ABA
954 * problem).
955 * For a single level, we logically remove and garbage collect each node.
956 *
957 * As a design choice, we perform logical removal and garbage collection on a
958 * node-per-node basis to simplify this algorithm. We also assume keeping good
959 * cache locality of the operation would overweight possible performance gain
960 * that could be achieved by batching garbage collection for multiple levels.
961 * However, this would have to be justified by benchmarks.
962 *
963 * Concurrent removal and add operations are helping us perform garbage
964 * collection of logically removed nodes. We guarantee that all logically
965 * removed nodes have been garbage-collected (unlinked) before call_rcu is
966 * invoked to free a hole level of dummy nodes (after a grace period).
967 *
968 * Logical removal and garbage collection can therefore be done in batch or on a
969 * node-per-node basis, as long as the guarantee above holds.
970 */
971 static
972 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
973 {
974 unsigned long j;
975
976 ht->cds_lfht_rcu_thread_online();
977 ht->cds_lfht_rcu_read_lock();
978 for (j = 0; j < len; j++) {
979 struct cds_lfht_node *fini_node =
980 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
981
982 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
983 i, j, !i ? 0 : (1UL << (i - 1)) + j);
984 fini_node->p.reverse_hash =
985 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
986 (void) _cds_lfht_remove(ht, !i ? 0 : (1UL << (i - 1)),
987 fini_node, 1);
988 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
989 break;
990 }
991 ht->cds_lfht_rcu_read_unlock();
992 ht->cds_lfht_rcu_thread_offline();
993 }
994
995 static
996 void fini_table(struct cds_lfht *ht,
997 unsigned long first_order, unsigned long len_order)
998 {
999 long i, end_order;
1000
1001 dbg_printf("fini table: first_order %lu end_order %lu\n",
1002 first_order, first_order + len_order);
1003 end_order = first_order + len_order;
1004 assert(first_order > 0);
1005 for (i = end_order - 1; i >= first_order; i--) {
1006 unsigned long len;
1007
1008 len = !i ? 1 : 1UL << (i - 1);
1009 dbg_printf("fini order %lu len: %lu\n", i, len);
1010
1011 /* Stop shrink if the resize target changes under us */
1012 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1013 break;
1014
1015 cmm_smp_wmb(); /* populate data before RCU size */
1016 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1017
1018 /*
1019 * We need to wait for all add operations to reach Q.S. (and
1020 * thus use the new table for lookups) before we can start
1021 * releasing the old dummy nodes. Otherwise their lookup will
1022 * return a logically removed node as insert position.
1023 */
1024 ht->cds_lfht_synchronize_rcu();
1025
1026 /*
1027 * Set "removed" flag in dummy nodes about to be removed.
1028 * Unlink all now-logically-removed dummy node pointers.
1029 * Concurrent add/remove operation are helping us doing
1030 * the gc.
1031 */
1032 remove_table(ht, i, len);
1033
1034 ht->cds_lfht_call_rcu(&ht->t.tbl[i]->head, cds_lfht_free_level);
1035
1036 dbg_printf("fini new size: %lu\n", 1UL << i);
1037 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1038 break;
1039 }
1040 }
1041
1042 struct cds_lfht *cds_lfht_new(cds_lfht_hash_fct hash_fct,
1043 cds_lfht_compare_fct compare_fct,
1044 unsigned long hash_seed,
1045 unsigned long init_size,
1046 int flags,
1047 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1048 void (*func)(struct rcu_head *head)),
1049 void (*cds_lfht_synchronize_rcu)(void),
1050 void (*cds_lfht_rcu_read_lock)(void),
1051 void (*cds_lfht_rcu_read_unlock)(void),
1052 void (*cds_lfht_rcu_thread_offline)(void),
1053 void (*cds_lfht_rcu_thread_online)(void))
1054 {
1055 struct cds_lfht *ht;
1056 unsigned long order;
1057
1058 /* init_size must be power of two */
1059 if (init_size && (init_size & (init_size - 1)))
1060 return NULL;
1061 ht = calloc(1, sizeof(struct cds_lfht));
1062 ht->hash_fct = hash_fct;
1063 ht->compare_fct = compare_fct;
1064 ht->hash_seed = hash_seed;
1065 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1066 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1067 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1068 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1069 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1070 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1071 ht->percpu_count = alloc_per_cpu_items_count();
1072 /* this mutex should not nest in read-side C.S. */
1073 pthread_mutex_init(&ht->resize_mutex, NULL);
1074 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1075 ht->flags = flags;
1076 ht->cds_lfht_rcu_thread_offline();
1077 pthread_mutex_lock(&ht->resize_mutex);
1078 ht->t.resize_target = 1UL << (order - 1);
1079 init_table(ht, 0, order);
1080 pthread_mutex_unlock(&ht->resize_mutex);
1081 ht->cds_lfht_rcu_thread_online();
1082 return ht;
1083 }
1084
1085 struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
1086 {
1087 struct cds_lfht_node *node, *next, *dummy_node;
1088 struct _cds_lfht_node *lookup;
1089 unsigned long hash, reverse_hash, index, order, size;
1090
1091 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1092 reverse_hash = bit_reverse_ulong(hash);
1093
1094 size = rcu_dereference(ht->t.size);
1095 index = hash & (size - 1);
1096 order = get_count_order_ulong(index + 1);
1097 lookup = &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1))) - 1)];
1098 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
1099 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
1100 dummy_node = (struct cds_lfht_node *) lookup;
1101 /* We can always skip the dummy node initially */
1102 node = rcu_dereference(dummy_node->p.next);
1103 node = clear_flag(node);
1104 for (;;) {
1105 if (unlikely(is_end(node))) {
1106 node = NULL;
1107 break;
1108 }
1109 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1110 node = NULL;
1111 break;
1112 }
1113 next = rcu_dereference(node->p.next);
1114 if (likely(!is_removed(next))
1115 && !is_dummy(next)
1116 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1117 break;
1118 }
1119 node = clear_flag(next);
1120 }
1121 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1122 return node;
1123 }
1124
1125 struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
1126 struct cds_lfht_node *node)
1127 {
1128 struct cds_lfht_node *next;
1129 unsigned long reverse_hash;
1130 void *key;
1131 size_t key_len;
1132
1133 reverse_hash = node->p.reverse_hash;
1134 key = node->key;
1135 key_len = node->key_len;
1136 next = rcu_dereference(node->p.next);
1137 node = clear_flag(next);
1138
1139 for (;;) {
1140 if (unlikely(is_end(node))) {
1141 node = NULL;
1142 break;
1143 }
1144 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1145 node = NULL;
1146 break;
1147 }
1148 next = rcu_dereference(node->p.next);
1149 if (likely(!is_removed(next))
1150 && !is_dummy(next)
1151 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1152 break;
1153 }
1154 node = clear_flag(next);
1155 }
1156 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1157 return node;
1158 }
1159
1160 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1161 {
1162 unsigned long hash, size;
1163
1164 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1165 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1166
1167 size = rcu_dereference(ht->t.size);
1168 (void) _cds_lfht_add(ht, size, node, 0, 0);
1169 ht_count_add(ht, size);
1170 }
1171
1172 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1173 struct cds_lfht_node *node)
1174 {
1175 unsigned long hash, size;
1176 struct cds_lfht_node *ret;
1177
1178 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1179 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1180
1181 size = rcu_dereference(ht->t.size);
1182 ret = _cds_lfht_add(ht, size, node, 1, 0);
1183 if (ret == node)
1184 ht_count_add(ht, size);
1185 return ret;
1186 }
1187
1188 int cds_lfht_remove(struct cds_lfht *ht, struct cds_lfht_node *node)
1189 {
1190 unsigned long size;
1191 int ret;
1192
1193 size = rcu_dereference(ht->t.size);
1194 ret = _cds_lfht_remove(ht, size, node, 0);
1195 if (!ret)
1196 ht_count_remove(ht, size);
1197 return ret;
1198 }
1199
1200 static
1201 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1202 {
1203 struct cds_lfht_node *node;
1204 struct _cds_lfht_node *lookup;
1205 unsigned long order, i, size;
1206
1207 /* Check that the table is empty */
1208 lookup = &ht->t.tbl[0]->nodes[0];
1209 node = (struct cds_lfht_node *) lookup;
1210 do {
1211 node = clear_flag(node)->p.next;
1212 if (!is_dummy(node))
1213 return -EPERM;
1214 assert(!is_removed(node));
1215 } while (!is_end(node));
1216 /*
1217 * size accessed without rcu_dereference because hash table is
1218 * being destroyed.
1219 */
1220 size = ht->t.size;
1221 /* Internal sanity check: all nodes left should be dummy */
1222 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1223 unsigned long len;
1224
1225 len = !order ? 1 : 1UL << (order - 1);
1226 for (i = 0; i < len; i++) {
1227 dbg_printf("delete order %lu i %lu hash %lu\n",
1228 order, i,
1229 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1230 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1231 }
1232 poison_free(ht->t.tbl[order]);
1233 }
1234 return 0;
1235 }
1236
1237 /*
1238 * Should only be called when no more concurrent readers nor writers can
1239 * possibly access the table.
1240 */
1241 int cds_lfht_destroy(struct cds_lfht *ht)
1242 {
1243 int ret;
1244
1245 /* Wait for in-flight resize operations to complete */
1246 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1247 while (uatomic_read(&ht->in_progress_resize))
1248 poll(NULL, 0, 100); /* wait for 100ms */
1249 ret = cds_lfht_delete_dummy(ht);
1250 if (ret)
1251 return ret;
1252 free_per_cpu_items_count(ht->percpu_count);
1253 poison_free(ht);
1254 return ret;
1255 }
1256
1257 void cds_lfht_count_nodes(struct cds_lfht *ht,
1258 unsigned long *count,
1259 unsigned long *removed)
1260 {
1261 struct cds_lfht_node *node, *next;
1262 struct _cds_lfht_node *lookup;
1263 unsigned long nr_dummy = 0;
1264
1265 *count = 0;
1266 *removed = 0;
1267
1268 /* Count non-dummy nodes in the table */
1269 lookup = &ht->t.tbl[0]->nodes[0];
1270 node = (struct cds_lfht_node *) lookup;
1271 do {
1272 next = rcu_dereference(node->p.next);
1273 if (is_removed(next)) {
1274 assert(!is_dummy(next));
1275 (*removed)++;
1276 } else if (!is_dummy(next))
1277 (*count)++;
1278 else
1279 (nr_dummy)++;
1280 node = clear_flag(next);
1281 } while (!is_end(node));
1282 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1283 }
1284
1285 /* called with resize mutex held */
1286 static
1287 void _do_cds_lfht_grow(struct cds_lfht *ht,
1288 unsigned long old_size, unsigned long new_size)
1289 {
1290 unsigned long old_order, new_order;
1291
1292 old_order = get_count_order_ulong(old_size) + 1;
1293 new_order = get_count_order_ulong(new_size) + 1;
1294 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1295 old_size, old_order, new_size, new_order);
1296 assert(new_size > old_size);
1297 init_table(ht, old_order, new_order - old_order);
1298 }
1299
1300 /* called with resize mutex held */
1301 static
1302 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1303 unsigned long old_size, unsigned long new_size)
1304 {
1305 unsigned long old_order, new_order;
1306
1307 new_size = max(new_size, MIN_TABLE_SIZE);
1308 old_order = get_count_order_ulong(old_size) + 1;
1309 new_order = get_count_order_ulong(new_size) + 1;
1310 printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1311 old_size, old_order, new_size, new_order);
1312 assert(new_size < old_size);
1313
1314 /* Remove and unlink all dummy nodes to remove. */
1315 fini_table(ht, new_order, old_order - new_order);
1316 }
1317
1318
1319 /* called with resize mutex held */
1320 static
1321 void _do_cds_lfht_resize(struct cds_lfht *ht)
1322 {
1323 unsigned long new_size, old_size;
1324
1325 /*
1326 * Resize table, re-do if the target size has changed under us.
1327 */
1328 do {
1329 ht->t.resize_initiated = 1;
1330 old_size = ht->t.size;
1331 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1332 if (old_size < new_size)
1333 _do_cds_lfht_grow(ht, old_size, new_size);
1334 else if (old_size > new_size)
1335 _do_cds_lfht_shrink(ht, old_size, new_size);
1336 ht->t.resize_initiated = 0;
1337 /* write resize_initiated before read resize_target */
1338 cmm_smp_mb();
1339 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1340 }
1341
1342 static
1343 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1344 int growth_order)
1345 {
1346 return _uatomic_max(&ht->t.resize_target,
1347 size << growth_order);
1348 }
1349
1350 static
1351 void resize_target_update_count(struct cds_lfht *ht,
1352 unsigned long count)
1353 {
1354 count = max(count, MIN_TABLE_SIZE);
1355 uatomic_set(&ht->t.resize_target, count);
1356 }
1357
1358 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1359 {
1360 resize_target_update_count(ht, new_size);
1361 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1362 ht->cds_lfht_rcu_thread_offline();
1363 pthread_mutex_lock(&ht->resize_mutex);
1364 _do_cds_lfht_resize(ht);
1365 pthread_mutex_unlock(&ht->resize_mutex);
1366 ht->cds_lfht_rcu_thread_online();
1367 }
1368
1369 static
1370 void do_resize_cb(struct rcu_head *head)
1371 {
1372 struct rcu_resize_work *work =
1373 caa_container_of(head, struct rcu_resize_work, head);
1374 struct cds_lfht *ht = work->ht;
1375
1376 ht->cds_lfht_rcu_thread_offline();
1377 pthread_mutex_lock(&ht->resize_mutex);
1378 _do_cds_lfht_resize(ht);
1379 pthread_mutex_unlock(&ht->resize_mutex);
1380 ht->cds_lfht_rcu_thread_online();
1381 poison_free(work);
1382 cmm_smp_mb(); /* finish resize before decrement */
1383 uatomic_dec(&ht->in_progress_resize);
1384 }
1385
1386 static
1387 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1388 {
1389 struct rcu_resize_work *work;
1390 unsigned long target_size;
1391
1392 target_size = resize_target_update(ht, size, growth);
1393 /* Store resize_target before read resize_initiated */
1394 cmm_smp_mb();
1395 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1396 uatomic_inc(&ht->in_progress_resize);
1397 cmm_smp_mb(); /* increment resize count before calling it */
1398 work = malloc(sizeof(*work));
1399 work->ht = ht;
1400 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1401 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1402 }
1403 }
1404
1405 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1406
1407 static
1408 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1409 unsigned long count)
1410 {
1411 struct rcu_resize_work *work;
1412
1413 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1414 return;
1415 resize_target_update_count(ht, count);
1416 /* Store resize_target before read resize_initiated */
1417 cmm_smp_mb();
1418 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1419 uatomic_inc(&ht->in_progress_resize);
1420 cmm_smp_mb(); /* increment resize count before calling it */
1421 work = malloc(sizeof(*work));
1422 work->ht = ht;
1423 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1424 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1425 }
1426 }
1427
1428 #endif
This page took 0.062018 seconds and 4 git commands to generate.