Merge struct rcu_table into struct cds_lfht
[urcu.git] / rculfhash.c
... / ...
CommitLineData
1/*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups and use the returned objects safely by delaying
38 * memory reclaim of a grace period.
39 * - Add and remove operations are lock-free, and do not need to
40 * allocate memory. They need to be executed within RCU read-side
41 * critical section to ensure the objects they read are valid and to
42 * deal with the cmpxchg ABA problem.
43 * - add and add_unique operations are supported. add_unique checks if
44 * the node key already exists in the hash table. It ensures no key
45 * duplicata exists.
46 * - The resize operation executes concurrently with add/remove/lookup.
47 * - Hash table nodes are contained within a split-ordered list. This
48 * list is ordered by incrementing reversed-bits-hash value.
49 * - An index of bucket nodes is kept. These bucket nodes are the hash
50 * table "buckets", and they are also chained together in the
51 * split-ordered list, which allows recursive expansion.
52 * - The resize operation for small tables only allows expanding the hash table.
53 * It is triggered automatically by detecting long chains in the add
54 * operation.
55 * - The resize operation for larger tables (and available through an
56 * API) allows both expanding and shrinking the hash table.
57 * - Split-counters are used to keep track of the number of
58 * nodes within the hash table for automatic resize triggering.
59 * - Resize operation initiated by long chain detection is executed by a
60 * call_rcu thread, which keeps lock-freedom of add and remove.
61 * - Resize operations are protected by a mutex.
62 * - The removal operation is split in two parts: first, a "removed"
63 * flag is set in the next pointer within the node to remove. Then,
64 * a "garbage collection" is performed in the bucket containing the
65 * removed node (from the start of the bucket up to the removed node).
66 * All encountered nodes with "removed" flag set in their next
67 * pointers are removed from the linked-list. If the cmpxchg used for
68 * removal fails (due to concurrent garbage-collection or concurrent
69 * add), we retry from the beginning of the bucket. This ensures that
70 * the node with "removed" flag set is removed from the hash table
71 * (not visible to lookups anymore) before the RCU read-side critical
72 * section held across removal ends. Furthermore, this ensures that
73 * the node with "removed" flag set is removed from the linked-list
74 * before its memory is reclaimed. Only the thread which removal
75 * successfully set the "removed" flag (with a cmpxchg) into a node's
76 * next pointer is considered to have succeeded its removal (and thus
77 * owns the node to reclaim). Because we garbage-collect starting from
78 * an invariant node (the start-of-bucket bucket node) up to the
79 * "removed" node (or find a reverse-hash that is higher), we are sure
80 * that a successful traversal of the chain leads to a chain that is
81 * present in the linked-list (the start node is never removed) and
82 * that is does not contain the "removed" node anymore, even if
83 * concurrent delete/add operations are changing the structure of the
84 * list concurrently.
85 * - The add operation performs gargage collection of buckets if it
86 * encounters nodes with removed flag set in the bucket where it wants
87 * to add its new node. This ensures lock-freedom of add operation by
88 * helping the remover unlink nodes from the list rather than to wait
89 * for it do to so.
90 * - A RCU "order table" indexed by log2(hash index) is copied and
91 * expanded by the resize operation. This order table allows finding
92 * the "bucket node" tables.
93 * - There is one bucket node table per hash index order. The size of
94 * each bucket node table is half the number of hashes contained in
95 * this order (except for order 0).
96 * - synchronzie_rcu is used to garbage-collect the old bucket node table.
97 * - The per-order bucket node tables contain a compact version of the
98 * hash table nodes. These tables are invariant after they are
99 * populated into the hash table.
100 *
101 * Bucket node tables:
102 *
103 * hash table hash table the last all bucket node tables
104 * order size bucket node 0 1 2 3 4 5 6(index)
105 * table size
106 * 0 1 1 1
107 * 1 2 1 1 1
108 * 2 4 2 1 1 2
109 * 3 8 4 1 1 2 4
110 * 4 16 8 1 1 2 4 8
111 * 5 32 16 1 1 2 4 8 16
112 * 6 64 32 1 1 2 4 8 16 32
113 *
114 * When growing/shrinking, we only focus on the last bucket node table
115 * which size is (!order ? 1 : (1 << (order -1))).
116 *
117 * Example for growing/shrinking:
118 * grow hash table from order 5 to 6: init the index=6 bucket node table
119 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
120 *
121 * A bit of ascii art explanation:
122 *
123 * Order index is the off-by-one compare to the actual power of 2 because
124 * we use index 0 to deal with the 0 special-case.
125 *
126 * This shows the nodes for a small table ordered by reversed bits:
127 *
128 * bits reverse
129 * 0 000 000
130 * 4 100 001
131 * 2 010 010
132 * 6 110 011
133 * 1 001 100
134 * 5 101 101
135 * 3 011 110
136 * 7 111 111
137 *
138 * This shows the nodes in order of non-reversed bits, linked by
139 * reversed-bit order.
140 *
141 * order bits reverse
142 * 0 0 000 000
143 * 1 | 1 001 100 <-
144 * 2 | | 2 010 010 <- |
145 * | | | 3 011 110 | <- |
146 * 3 -> | | | 4 100 001 | |
147 * -> | | 5 101 101 |
148 * -> | 6 110 011
149 * -> 7 111 111
150 */
151
152#define _LGPL_SOURCE
153#include <stdlib.h>
154#include <errno.h>
155#include <assert.h>
156#include <stdio.h>
157#include <stdint.h>
158#include <string.h>
159
160#include "config.h"
161#include <urcu.h>
162#include <urcu-call-rcu.h>
163#include <urcu-flavor.h>
164#include <urcu/arch.h>
165#include <urcu/uatomic.h>
166#include <urcu/compiler.h>
167#include <urcu/rculfhash.h>
168#include <stdio.h>
169#include <pthread.h>
170
171#ifdef DEBUG
172#define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
173#else
174#define dbg_printf(fmt, args...)
175#endif
176
177/*
178 * Split-counters lazily update the global counter each 1024
179 * addition/removal. It automatically keeps track of resize required.
180 * We use the bucket length as indicator for need to expand for small
181 * tables and machines lacking per-cpu data suppport.
182 */
183#define COUNT_COMMIT_ORDER 10
184#define DEFAULT_SPLIT_COUNT_MASK 0xFUL
185#define CHAIN_LEN_TARGET 1
186#define CHAIN_LEN_RESIZE_THRESHOLD 3
187
188/*
189 * Define the minimum table size.
190 */
191#define MIN_TABLE_ORDER 0
192#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
193
194#if (CAA_BITS_PER_LONG == 32)
195#define MAX_TABLE_ORDER 32
196#else
197#define MAX_TABLE_ORDER 64
198#endif
199
200/*
201 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
202 */
203#define MIN_PARTITION_PER_THREAD_ORDER 12
204#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
205
206#ifndef min
207#define min(a, b) ((a) < (b) ? (a) : (b))
208#endif
209
210#ifndef max
211#define max(a, b) ((a) > (b) ? (a) : (b))
212#endif
213
214/*
215 * The removed flag needs to be updated atomically with the pointer.
216 * It indicates that no node must attach to the node scheduled for
217 * removal, and that node garbage collection must be performed.
218 * The bucket flag does not require to be updated atomically with the
219 * pointer, but it is added as a pointer low bit flag to save space.
220 */
221#define REMOVED_FLAG (1UL << 0)
222#define BUCKET_FLAG (1UL << 1)
223#define FLAGS_MASK ((1UL << 2) - 1)
224
225/* Value of the end pointer. Should not interact with flags. */
226#define END_VALUE NULL
227
228/*
229 * ht_items_count: Split-counters counting the number of node addition
230 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
231 * is set at hash table creation.
232 *
233 * These are free-running counters, never reset to zero. They count the
234 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
235 * operations to update the global counter. We choose a power-of-2 value
236 * for the trigger to deal with 32 or 64-bit overflow of the counter.
237 */
238struct ht_items_count {
239 unsigned long add, del;
240} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
241
242/*
243 * cds_lfht: Top-level data structure representing a lock-free hash
244 * table. Defined in the implementation file to make it be an opaque
245 * cookie to users.
246 */
247struct cds_lfht {
248 unsigned long size; /* always a power of 2, shared (RCU) */
249 int flags;
250
251 /*
252 * We need to put the work threads offline (QSBR) when taking this
253 * mutex, because we use synchronize_rcu within this mutex critical
254 * section, which waits on read-side critical sections, and could
255 * therefore cause grace-period deadlock if we hold off RCU G.P.
256 * completion.
257 */
258 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
259 pthread_attr_t *resize_attr; /* Resize threads attributes */
260 unsigned int in_progress_resize, in_progress_destroy;
261 unsigned long resize_target;
262 int resize_initiated;
263 const struct rcu_flavor_struct *flavor;
264
265 long count; /* global approximate item count */
266 struct ht_items_count *split_count; /* split item count */
267
268 unsigned long min_alloc_buckets_order;
269 unsigned long min_nr_alloc_buckets;
270 unsigned long max_nr_buckets;
271 /*
272 * Contains the per order-index-level bucket node table. The size
273 * of each bucket node table is half the number of hashes contained
274 * in this order (except for order 0). The minimum allocation size
275 * parameter allows combining the bucket node arrays of the lowermost
276 * levels to improve cache locality for small index orders.
277 */
278 struct cds_lfht_node *tbl[MAX_TABLE_ORDER];
279};
280
281/*
282 * rcu_resize_work: Contains arguments passed to RCU worker thread
283 * responsible for performing lazy resize.
284 */
285struct rcu_resize_work {
286 struct rcu_head head;
287 struct cds_lfht *ht;
288};
289
290/*
291 * partition_resize_work: Contains arguments passed to worker threads
292 * executing the hash table resize on partitions of the hash table
293 * assigned to each processor's worker thread.
294 */
295struct partition_resize_work {
296 pthread_t thread_id;
297 struct cds_lfht *ht;
298 unsigned long i, start, len;
299 void (*fct)(struct cds_lfht *ht, unsigned long i,
300 unsigned long start, unsigned long len);
301};
302
303static
304void _cds_lfht_add(struct cds_lfht *ht,
305 cds_lfht_match_fct match,
306 const void *key,
307 unsigned long size,
308 struct cds_lfht_node *node,
309 struct cds_lfht_iter *unique_ret,
310 int bucket);
311
312/*
313 * Algorithm to reverse bits in a word by lookup table, extended to
314 * 64-bit words.
315 * Source:
316 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
317 * Originally from Public Domain.
318 */
319
320static const uint8_t BitReverseTable256[256] =
321{
322#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
323#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
324#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
325 R6(0), R6(2), R6(1), R6(3)
326};
327#undef R2
328#undef R4
329#undef R6
330
331static
332uint8_t bit_reverse_u8(uint8_t v)
333{
334 return BitReverseTable256[v];
335}
336
337static __attribute__((unused))
338uint32_t bit_reverse_u32(uint32_t v)
339{
340 return ((uint32_t) bit_reverse_u8(v) << 24) |
341 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
342 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
343 ((uint32_t) bit_reverse_u8(v >> 24));
344}
345
346static __attribute__((unused))
347uint64_t bit_reverse_u64(uint64_t v)
348{
349 return ((uint64_t) bit_reverse_u8(v) << 56) |
350 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
351 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
352 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
353 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
354 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
355 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
356 ((uint64_t) bit_reverse_u8(v >> 56));
357}
358
359static
360unsigned long bit_reverse_ulong(unsigned long v)
361{
362#if (CAA_BITS_PER_LONG == 32)
363 return bit_reverse_u32(v);
364#else
365 return bit_reverse_u64(v);
366#endif
367}
368
369/*
370 * fls: returns the position of the most significant bit.
371 * Returns 0 if no bit is set, else returns the position of the most
372 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
373 */
374#if defined(__i386) || defined(__x86_64)
375static inline
376unsigned int fls_u32(uint32_t x)
377{
378 int r;
379
380 asm("bsrl %1,%0\n\t"
381 "jnz 1f\n\t"
382 "movl $-1,%0\n\t"
383 "1:\n\t"
384 : "=r" (r) : "rm" (x));
385 return r + 1;
386}
387#define HAS_FLS_U32
388#endif
389
390#if defined(__x86_64)
391static inline
392unsigned int fls_u64(uint64_t x)
393{
394 long r;
395
396 asm("bsrq %1,%0\n\t"
397 "jnz 1f\n\t"
398 "movq $-1,%0\n\t"
399 "1:\n\t"
400 : "=r" (r) : "rm" (x));
401 return r + 1;
402}
403#define HAS_FLS_U64
404#endif
405
406#ifndef HAS_FLS_U64
407static __attribute__((unused))
408unsigned int fls_u64(uint64_t x)
409{
410 unsigned int r = 64;
411
412 if (!x)
413 return 0;
414
415 if (!(x & 0xFFFFFFFF00000000ULL)) {
416 x <<= 32;
417 r -= 32;
418 }
419 if (!(x & 0xFFFF000000000000ULL)) {
420 x <<= 16;
421 r -= 16;
422 }
423 if (!(x & 0xFF00000000000000ULL)) {
424 x <<= 8;
425 r -= 8;
426 }
427 if (!(x & 0xF000000000000000ULL)) {
428 x <<= 4;
429 r -= 4;
430 }
431 if (!(x & 0xC000000000000000ULL)) {
432 x <<= 2;
433 r -= 2;
434 }
435 if (!(x & 0x8000000000000000ULL)) {
436 x <<= 1;
437 r -= 1;
438 }
439 return r;
440}
441#endif
442
443#ifndef HAS_FLS_U32
444static __attribute__((unused))
445unsigned int fls_u32(uint32_t x)
446{
447 unsigned int r = 32;
448
449 if (!x)
450 return 0;
451 if (!(x & 0xFFFF0000U)) {
452 x <<= 16;
453 r -= 16;
454 }
455 if (!(x & 0xFF000000U)) {
456 x <<= 8;
457 r -= 8;
458 }
459 if (!(x & 0xF0000000U)) {
460 x <<= 4;
461 r -= 4;
462 }
463 if (!(x & 0xC0000000U)) {
464 x <<= 2;
465 r -= 2;
466 }
467 if (!(x & 0x80000000U)) {
468 x <<= 1;
469 r -= 1;
470 }
471 return r;
472}
473#endif
474
475unsigned int fls_ulong(unsigned long x)
476{
477#if (CAA_BITS_PER_LONG == 32)
478 return fls_u32(x);
479#else
480 return fls_u64(x);
481#endif
482}
483
484/*
485 * Return the minimum order for which x <= (1UL << order).
486 * Return -1 if x is 0.
487 */
488int get_count_order_u32(uint32_t x)
489{
490 if (!x)
491 return -1;
492
493 return fls_u32(x - 1);
494}
495
496/*
497 * Return the minimum order for which x <= (1UL << order).
498 * Return -1 if x is 0.
499 */
500int get_count_order_ulong(unsigned long x)
501{
502 if (!x)
503 return -1;
504
505 return fls_ulong(x - 1);
506}
507
508#ifdef POISON_FREE
509#define poison_free(ptr) \
510 do { \
511 if (ptr) { \
512 memset(ptr, 0x42, sizeof(*(ptr))); \
513 free(ptr); \
514 } \
515 } while (0)
516#else
517#define poison_free(ptr) free(ptr)
518#endif
519
520static
521void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
522
523static
524void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
525 unsigned long count);
526
527static long nr_cpus_mask = -1;
528static long split_count_mask = -1;
529
530#if defined(HAVE_SYSCONF)
531static void ht_init_nr_cpus_mask(void)
532{
533 long maxcpus;
534
535 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
536 if (maxcpus <= 0) {
537 nr_cpus_mask = -2;
538 return;
539 }
540 /*
541 * round up number of CPUs to next power of two, so we
542 * can use & for modulo.
543 */
544 maxcpus = 1UL << get_count_order_ulong(maxcpus);
545 nr_cpus_mask = maxcpus - 1;
546}
547#else /* #if defined(HAVE_SYSCONF) */
548static void ht_init_nr_cpus_mask(void)
549{
550 nr_cpus_mask = -2;
551}
552#endif /* #else #if defined(HAVE_SYSCONF) */
553
554static
555void alloc_split_items_count(struct cds_lfht *ht)
556{
557 struct ht_items_count *count;
558
559 if (nr_cpus_mask == -1) {
560 ht_init_nr_cpus_mask();
561 if (nr_cpus_mask < 0)
562 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
563 else
564 split_count_mask = nr_cpus_mask;
565 }
566
567 assert(split_count_mask >= 0);
568
569 if (ht->flags & CDS_LFHT_ACCOUNTING) {
570 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
571 assert(ht->split_count);
572 } else {
573 ht->split_count = NULL;
574 }
575}
576
577static
578void free_split_items_count(struct cds_lfht *ht)
579{
580 poison_free(ht->split_count);
581}
582
583#if defined(HAVE_SCHED_GETCPU)
584static
585int ht_get_split_count_index(unsigned long hash)
586{
587 int cpu;
588
589 assert(split_count_mask >= 0);
590 cpu = sched_getcpu();
591 if (caa_unlikely(cpu < 0))
592 return hash & split_count_mask;
593 else
594 return cpu & split_count_mask;
595}
596#else /* #if defined(HAVE_SCHED_GETCPU) */
597static
598int ht_get_split_count_index(unsigned long hash)
599{
600 return hash & split_count_mask;
601}
602#endif /* #else #if defined(HAVE_SCHED_GETCPU) */
603
604static
605void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
606{
607 unsigned long split_count;
608 int index;
609
610 if (caa_unlikely(!ht->split_count))
611 return;
612 index = ht_get_split_count_index(hash);
613 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
614 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
615 long count;
616
617 dbg_printf("add split count %lu\n", split_count);
618 count = uatomic_add_return(&ht->count,
619 1UL << COUNT_COMMIT_ORDER);
620 /* If power of 2 */
621 if (!(count & (count - 1))) {
622 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
623 return;
624 dbg_printf("add set global %ld\n", count);
625 cds_lfht_resize_lazy_count(ht, size,
626 count >> (CHAIN_LEN_TARGET - 1));
627 }
628 }
629}
630
631static
632void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
633{
634 unsigned long split_count;
635 int index;
636
637 if (caa_unlikely(!ht->split_count))
638 return;
639 index = ht_get_split_count_index(hash);
640 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
641 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
642 long count;
643
644 dbg_printf("del split count %lu\n", split_count);
645 count = uatomic_add_return(&ht->count,
646 -(1UL << COUNT_COMMIT_ORDER));
647 /* If power of 2 */
648 if (!(count & (count - 1))) {
649 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
650 return;
651 dbg_printf("del set global %ld\n", count);
652 /*
653 * Don't shrink table if the number of nodes is below a
654 * certain threshold.
655 */
656 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
657 return;
658 cds_lfht_resize_lazy_count(ht, size,
659 count >> (CHAIN_LEN_TARGET - 1));
660 }
661 }
662}
663
664static
665void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
666{
667 unsigned long count;
668
669 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
670 return;
671 count = uatomic_read(&ht->count);
672 /*
673 * Use bucket-local length for small table expand and for
674 * environments lacking per-cpu data support.
675 */
676 if (count >= (1UL << COUNT_COMMIT_ORDER))
677 return;
678 if (chain_len > 100)
679 dbg_printf("WARNING: large chain length: %u.\n",
680 chain_len);
681 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
682 cds_lfht_resize_lazy_grow(ht, size,
683 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
684}
685
686static
687struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
688{
689 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
690}
691
692static
693int is_removed(struct cds_lfht_node *node)
694{
695 return ((unsigned long) node) & REMOVED_FLAG;
696}
697
698static
699struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
700{
701 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
702}
703
704static
705int is_bucket(struct cds_lfht_node *node)
706{
707 return ((unsigned long) node) & BUCKET_FLAG;
708}
709
710static
711struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
712{
713 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
714}
715
716static
717struct cds_lfht_node *get_end(void)
718{
719 return (struct cds_lfht_node *) END_VALUE;
720}
721
722static
723int is_end(struct cds_lfht_node *node)
724{
725 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
726}
727
728static
729unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
730 unsigned long v)
731{
732 unsigned long old1, old2;
733
734 old1 = uatomic_read(ptr);
735 do {
736 old2 = old1;
737 if (old2 >= v)
738 return old2;
739 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
740 return old2;
741}
742
743static
744void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
745{
746 if (order == 0) {
747 ht->tbl[0] = calloc(ht->min_nr_alloc_buckets,
748 sizeof(struct cds_lfht_node));
749 assert(ht->tbl[0]);
750 } else if (order > ht->min_alloc_buckets_order) {
751 ht->tbl[order] = calloc(1UL << (order -1),
752 sizeof(struct cds_lfht_node));
753 assert(ht->tbl[order]);
754 }
755 /* Nothing to do for 0 < order && order <= ht->min_alloc_buckets_order */
756}
757
758/*
759 * cds_lfht_free_bucket_table() should be called with decreasing order.
760 * When cds_lfht_free_bucket_table(0) is called, it means the whole
761 * lfht is destroyed.
762 */
763static
764void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
765{
766 if (order == 0)
767 poison_free(ht->tbl[0]);
768 else if (order > ht->min_alloc_buckets_order)
769 poison_free(ht->tbl[order]);
770 /* Nothing to do for 0 < order && order <= ht->min_alloc_buckets_order */
771}
772
773static inline
774struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
775{
776 unsigned long order;
777
778 if ((__builtin_constant_p(index) && index == 0)
779 || index < ht->min_nr_alloc_buckets) {
780 dbg_printf("bucket index %lu order 0 aridx 0\n", index);
781 return &ht->tbl[0][index];
782 }
783 /*
784 * equivalent to get_count_order_ulong(index + 1), but optimizes
785 * away the non-existing 0 special-case for
786 * get_count_order_ulong.
787 */
788 order = fls_ulong(index);
789 dbg_printf("bucket index %lu order %lu aridx %lu\n",
790 index, order, index & ((1UL << (order - 1)) - 1));
791 return &ht->tbl[order][index & ((1UL << (order - 1)) - 1)];
792}
793
794static inline
795struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
796 unsigned long hash)
797{
798 assert(size > 0);
799 return bucket_at(ht, hash & (size - 1));
800}
801
802/*
803 * Remove all logically deleted nodes from a bucket up to a certain node key.
804 */
805static
806void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
807{
808 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
809
810 assert(!is_bucket(bucket));
811 assert(!is_removed(bucket));
812 assert(!is_bucket(node));
813 assert(!is_removed(node));
814 for (;;) {
815 iter_prev = bucket;
816 /* We can always skip the bucket node initially */
817 iter = rcu_dereference(iter_prev->next);
818 assert(!is_removed(iter));
819 assert(iter_prev->reverse_hash <= node->reverse_hash);
820 /*
821 * We should never be called with bucket (start of chain)
822 * and logically removed node (end of path compression
823 * marker) being the actual same node. This would be a
824 * bug in the algorithm implementation.
825 */
826 assert(bucket != node);
827 for (;;) {
828 if (caa_unlikely(is_end(iter)))
829 return;
830 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
831 return;
832 next = rcu_dereference(clear_flag(iter)->next);
833 if (caa_likely(is_removed(next)))
834 break;
835 iter_prev = clear_flag(iter);
836 iter = next;
837 }
838 assert(!is_removed(iter));
839 if (is_bucket(iter))
840 new_next = flag_bucket(clear_flag(next));
841 else
842 new_next = clear_flag(next);
843 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
844 }
845 return;
846}
847
848static
849int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
850 struct cds_lfht_node *old_node,
851 struct cds_lfht_node *old_next,
852 struct cds_lfht_node *new_node)
853{
854 struct cds_lfht_node *bucket, *ret_next;
855
856 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
857 return -ENOENT;
858
859 assert(!is_removed(old_node));
860 assert(!is_bucket(old_node));
861 assert(!is_removed(new_node));
862 assert(!is_bucket(new_node));
863 assert(new_node != old_node);
864 for (;;) {
865 /* Insert after node to be replaced */
866 if (is_removed(old_next)) {
867 /*
868 * Too late, the old node has been removed under us
869 * between lookup and replace. Fail.
870 */
871 return -ENOENT;
872 }
873 assert(!is_bucket(old_next));
874 assert(new_node != clear_flag(old_next));
875 new_node->next = clear_flag(old_next);
876 /*
877 * Here is the whole trick for lock-free replace: we add
878 * the replacement node _after_ the node we want to
879 * replace by atomically setting its next pointer at the
880 * same time we set its removal flag. Given that
881 * the lookups/get next use an iterator aware of the
882 * next pointer, they will either skip the old node due
883 * to the removal flag and see the new node, or use
884 * the old node, but will not see the new one.
885 */
886 ret_next = uatomic_cmpxchg(&old_node->next,
887 old_next, flag_removed(new_node));
888 if (ret_next == old_next)
889 break; /* We performed the replacement. */
890 old_next = ret_next;
891 }
892
893 /*
894 * Ensure that the old node is not visible to readers anymore:
895 * lookup for the node, and remove it (along with any other
896 * logically removed node) if found.
897 */
898 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
899 _cds_lfht_gc_bucket(bucket, new_node);
900
901 assert(is_removed(rcu_dereference(old_node->next)));
902 return 0;
903}
904
905/*
906 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
907 * mode. A NULL unique_ret allows creation of duplicate keys.
908 */
909static
910void _cds_lfht_add(struct cds_lfht *ht,
911 cds_lfht_match_fct match,
912 const void *key,
913 unsigned long size,
914 struct cds_lfht_node *node,
915 struct cds_lfht_iter *unique_ret,
916 int bucket_flag)
917{
918 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
919 *return_node;
920 struct cds_lfht_node *bucket;
921
922 assert(!is_bucket(node));
923 assert(!is_removed(node));
924 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
925 for (;;) {
926 uint32_t chain_len = 0;
927
928 /*
929 * iter_prev points to the non-removed node prior to the
930 * insert location.
931 */
932 iter_prev = bucket;
933 /* We can always skip the bucket node initially */
934 iter = rcu_dereference(iter_prev->next);
935 assert(iter_prev->reverse_hash <= node->reverse_hash);
936 for (;;) {
937 if (caa_unlikely(is_end(iter)))
938 goto insert;
939 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
940 goto insert;
941
942 /* bucket node is the first node of the identical-hash-value chain */
943 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
944 goto insert;
945
946 next = rcu_dereference(clear_flag(iter)->next);
947 if (caa_unlikely(is_removed(next)))
948 goto gc_node;
949
950 /* uniquely add */
951 if (unique_ret
952 && !is_bucket(next)
953 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
954 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
955
956 /*
957 * uniquely adding inserts the node as the first
958 * node of the identical-hash-value node chain.
959 *
960 * This semantic ensures no duplicated keys
961 * should ever be observable in the table
962 * (including observe one node by one node
963 * by forward iterations)
964 */
965 cds_lfht_next_duplicate(ht, match, key, &d_iter);
966 if (!d_iter.node)
967 goto insert;
968
969 *unique_ret = d_iter;
970 return;
971 }
972
973 /* Only account for identical reverse hash once */
974 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
975 && !is_bucket(next))
976 check_resize(ht, size, ++chain_len);
977 iter_prev = clear_flag(iter);
978 iter = next;
979 }
980
981 insert:
982 assert(node != clear_flag(iter));
983 assert(!is_removed(iter_prev));
984 assert(!is_removed(iter));
985 assert(iter_prev != node);
986 if (!bucket_flag)
987 node->next = clear_flag(iter);
988 else
989 node->next = flag_bucket(clear_flag(iter));
990 if (is_bucket(iter))
991 new_node = flag_bucket(node);
992 else
993 new_node = node;
994 if (uatomic_cmpxchg(&iter_prev->next, iter,
995 new_node) != iter) {
996 continue; /* retry */
997 } else {
998 return_node = node;
999 goto end;
1000 }
1001
1002 gc_node:
1003 assert(!is_removed(iter));
1004 if (is_bucket(iter))
1005 new_next = flag_bucket(clear_flag(next));
1006 else
1007 new_next = clear_flag(next);
1008 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1009 /* retry */
1010 }
1011end:
1012 if (unique_ret) {
1013 unique_ret->node = return_node;
1014 /* unique_ret->next left unset, never used. */
1015 }
1016}
1017
1018static
1019int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1020 struct cds_lfht_node *node,
1021 int bucket_removal)
1022{
1023 struct cds_lfht_node *bucket, *next, *old;
1024
1025 if (!node) /* Return -ENOENT if asked to delete NULL node */
1026 return -ENOENT;
1027
1028 /* logically delete the node */
1029 assert(!is_bucket(node));
1030 assert(!is_removed(node));
1031 old = rcu_dereference(node->next);
1032 do {
1033 struct cds_lfht_node *new_next;
1034
1035 next = old;
1036 if (caa_unlikely(is_removed(next)))
1037 return -ENOENT;
1038 if (bucket_removal)
1039 assert(is_bucket(next));
1040 else
1041 assert(!is_bucket(next));
1042 new_next = flag_removed(next);
1043 old = uatomic_cmpxchg(&node->next, next, new_next);
1044 } while (old != next);
1045 /* We performed the (logical) deletion. */
1046
1047 /*
1048 * Ensure that the node is not visible to readers anymore: lookup for
1049 * the node, and remove it (along with any other logically removed node)
1050 * if found.
1051 */
1052 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1053 _cds_lfht_gc_bucket(bucket, node);
1054
1055 assert(is_removed(rcu_dereference(node->next)));
1056 return 0;
1057}
1058
1059static
1060void *partition_resize_thread(void *arg)
1061{
1062 struct partition_resize_work *work = arg;
1063
1064 work->ht->flavor->register_thread();
1065 work->fct(work->ht, work->i, work->start, work->len);
1066 work->ht->flavor->unregister_thread();
1067 return NULL;
1068}
1069
1070static
1071void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1072 unsigned long len,
1073 void (*fct)(struct cds_lfht *ht, unsigned long i,
1074 unsigned long start, unsigned long len))
1075{
1076 unsigned long partition_len;
1077 struct partition_resize_work *work;
1078 int thread, ret;
1079 unsigned long nr_threads;
1080
1081 /*
1082 * Note: nr_cpus_mask + 1 is always power of 2.
1083 * We spawn just the number of threads we need to satisfy the minimum
1084 * partition size, up to the number of CPUs in the system.
1085 */
1086 if (nr_cpus_mask > 0) {
1087 nr_threads = min(nr_cpus_mask + 1,
1088 len >> MIN_PARTITION_PER_THREAD_ORDER);
1089 } else {
1090 nr_threads = 1;
1091 }
1092 partition_len = len >> get_count_order_ulong(nr_threads);
1093 work = calloc(nr_threads, sizeof(*work));
1094 assert(work);
1095 for (thread = 0; thread < nr_threads; thread++) {
1096 work[thread].ht = ht;
1097 work[thread].i = i;
1098 work[thread].len = partition_len;
1099 work[thread].start = thread * partition_len;
1100 work[thread].fct = fct;
1101 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1102 partition_resize_thread, &work[thread]);
1103 assert(!ret);
1104 }
1105 for (thread = 0; thread < nr_threads; thread++) {
1106 ret = pthread_join(work[thread].thread_id, NULL);
1107 assert(!ret);
1108 }
1109 free(work);
1110}
1111
1112/*
1113 * Holding RCU read lock to protect _cds_lfht_add against memory
1114 * reclaim that could be performed by other call_rcu worker threads (ABA
1115 * problem).
1116 *
1117 * When we reach a certain length, we can split this population phase over
1118 * many worker threads, based on the number of CPUs available in the system.
1119 * This should therefore take care of not having the expand lagging behind too
1120 * many concurrent insertion threads by using the scheduler's ability to
1121 * schedule bucket node population fairly with insertions.
1122 */
1123static
1124void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1125 unsigned long start, unsigned long len)
1126{
1127 unsigned long j, size = 1UL << (i - 1);
1128
1129 assert(i > MIN_TABLE_ORDER);
1130 ht->flavor->read_lock();
1131 for (j = size + start; j < size + start + len; j++) {
1132 struct cds_lfht_node *new_node = bucket_at(ht, j);
1133
1134 assert(j >= size && j < (size << 1));
1135 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1136 i, j, j);
1137 new_node->reverse_hash = bit_reverse_ulong(j);
1138 _cds_lfht_add(ht, NULL, NULL, size, new_node, NULL, 1);
1139 }
1140 ht->flavor->read_unlock();
1141}
1142
1143static
1144void init_table_populate(struct cds_lfht *ht, unsigned long i,
1145 unsigned long len)
1146{
1147 assert(nr_cpus_mask != -1);
1148 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1149 ht->flavor->thread_online();
1150 init_table_populate_partition(ht, i, 0, len);
1151 ht->flavor->thread_offline();
1152 return;
1153 }
1154 partition_resize_helper(ht, i, len, init_table_populate_partition);
1155}
1156
1157static
1158void init_table(struct cds_lfht *ht,
1159 unsigned long first_order, unsigned long last_order)
1160{
1161 unsigned long i;
1162
1163 dbg_printf("init table: first_order %lu last_order %lu\n",
1164 first_order, last_order);
1165 assert(first_order > MIN_TABLE_ORDER);
1166 for (i = first_order; i <= last_order; i++) {
1167 unsigned long len;
1168
1169 len = 1UL << (i - 1);
1170 dbg_printf("init order %lu len: %lu\n", i, len);
1171
1172 /* Stop expand if the resize target changes under us */
1173 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1174 break;
1175
1176 cds_lfht_alloc_bucket_table(ht, i);
1177
1178 /*
1179 * Set all bucket nodes reverse hash values for a level and
1180 * link all bucket nodes into the table.
1181 */
1182 init_table_populate(ht, i, len);
1183
1184 /*
1185 * Update table size.
1186 */
1187 cmm_smp_wmb(); /* populate data before RCU size */
1188 CMM_STORE_SHARED(ht->size, 1UL << i);
1189
1190 dbg_printf("init new size: %lu\n", 1UL << i);
1191 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1192 break;
1193 }
1194}
1195
1196/*
1197 * Holding RCU read lock to protect _cds_lfht_remove against memory
1198 * reclaim that could be performed by other call_rcu worker threads (ABA
1199 * problem).
1200 * For a single level, we logically remove and garbage collect each node.
1201 *
1202 * As a design choice, we perform logical removal and garbage collection on a
1203 * node-per-node basis to simplify this algorithm. We also assume keeping good
1204 * cache locality of the operation would overweight possible performance gain
1205 * that could be achieved by batching garbage collection for multiple levels.
1206 * However, this would have to be justified by benchmarks.
1207 *
1208 * Concurrent removal and add operations are helping us perform garbage
1209 * collection of logically removed nodes. We guarantee that all logically
1210 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1211 * invoked to free a hole level of bucket nodes (after a grace period).
1212 *
1213 * Logical removal and garbage collection can therefore be done in batch or on a
1214 * node-per-node basis, as long as the guarantee above holds.
1215 *
1216 * When we reach a certain length, we can split this removal over many worker
1217 * threads, based on the number of CPUs available in the system. This should
1218 * take care of not letting resize process lag behind too many concurrent
1219 * updater threads actively inserting into the hash table.
1220 */
1221static
1222void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1223 unsigned long start, unsigned long len)
1224{
1225 unsigned long j, size = 1UL << (i - 1);
1226
1227 assert(i > MIN_TABLE_ORDER);
1228 ht->flavor->read_lock();
1229 for (j = size + start; j < size + start + len; j++) {
1230 struct cds_lfht_node *fini_node = bucket_at(ht, j);
1231
1232 assert(j >= size && j < (size << 1));
1233 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1234 i, j, j);
1235 fini_node->reverse_hash = bit_reverse_ulong(j);
1236 (void) _cds_lfht_del(ht, size, fini_node, 1);
1237 }
1238 ht->flavor->read_unlock();
1239}
1240
1241static
1242void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1243{
1244
1245 assert(nr_cpus_mask != -1);
1246 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1247 ht->flavor->thread_online();
1248 remove_table_partition(ht, i, 0, len);
1249 ht->flavor->thread_offline();
1250 return;
1251 }
1252 partition_resize_helper(ht, i, len, remove_table_partition);
1253}
1254
1255static
1256void fini_table(struct cds_lfht *ht,
1257 unsigned long first_order, unsigned long last_order)
1258{
1259 long i;
1260 unsigned long free_by_rcu_order = 0;
1261
1262 dbg_printf("fini table: first_order %lu last_order %lu\n",
1263 first_order, last_order);
1264 assert(first_order > MIN_TABLE_ORDER);
1265 for (i = last_order; i >= first_order; i--) {
1266 unsigned long len;
1267
1268 len = 1UL << (i - 1);
1269 dbg_printf("fini order %lu len: %lu\n", i, len);
1270
1271 /* Stop shrink if the resize target changes under us */
1272 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1273 break;
1274
1275 cmm_smp_wmb(); /* populate data before RCU size */
1276 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1277
1278 /*
1279 * We need to wait for all add operations to reach Q.S. (and
1280 * thus use the new table for lookups) before we can start
1281 * releasing the old bucket nodes. Otherwise their lookup will
1282 * return a logically removed node as insert position.
1283 */
1284 ht->flavor->update_synchronize_rcu();
1285 if (free_by_rcu_order)
1286 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1287
1288 /*
1289 * Set "removed" flag in bucket nodes about to be removed.
1290 * Unlink all now-logically-removed bucket node pointers.
1291 * Concurrent add/remove operation are helping us doing
1292 * the gc.
1293 */
1294 remove_table(ht, i, len);
1295
1296 free_by_rcu_order = i;
1297
1298 dbg_printf("fini new size: %lu\n", 1UL << i);
1299 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1300 break;
1301 }
1302
1303 if (free_by_rcu_order) {
1304 ht->flavor->update_synchronize_rcu();
1305 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1306 }
1307}
1308
1309static
1310void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1311{
1312 struct cds_lfht_node *prev, *node;
1313 unsigned long order, len, i;
1314
1315 cds_lfht_alloc_bucket_table(ht, 0);
1316
1317 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1318 node = bucket_at(ht, 0);
1319 node->next = flag_bucket(get_end());
1320 node->reverse_hash = 0;
1321
1322 for (order = 1; order < get_count_order_ulong(size) + 1; order++) {
1323 len = 1UL << (order - 1);
1324 cds_lfht_alloc_bucket_table(ht, order);
1325
1326 for (i = 0; i < len; i++) {
1327 /*
1328 * Now, we are trying to init the node with the
1329 * hash=(len+i) (which is also a bucket with the
1330 * index=(len+i)) and insert it into the hash table,
1331 * so this node has to be inserted after the bucket
1332 * with the index=(len+i)&(len-1)=i. And because there
1333 * is no other non-bucket node nor bucket node with
1334 * larger index/hash inserted, so the bucket node
1335 * being inserted should be inserted directly linked
1336 * after the bucket node with index=i.
1337 */
1338 prev = bucket_at(ht, i);
1339 node = bucket_at(ht, len + i);
1340
1341 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1342 order, len + i, len + i);
1343 node->reverse_hash = bit_reverse_ulong(len + i);
1344
1345 /* insert after prev */
1346 assert(is_bucket(prev->next));
1347 node->next = prev->next;
1348 prev->next = flag_bucket(node);
1349 }
1350 }
1351}
1352
1353struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1354 unsigned long min_nr_alloc_buckets,
1355 unsigned long max_nr_buckets,
1356 int flags,
1357 const struct rcu_flavor_struct *flavor,
1358 pthread_attr_t *attr)
1359{
1360 struct cds_lfht *ht;
1361 unsigned long order;
1362
1363 /* min_nr_alloc_buckets must be power of two */
1364 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1365 return NULL;
1366
1367 /* init_size must be power of two */
1368 if (!init_size || (init_size & (init_size - 1)))
1369 return NULL;
1370
1371 if (!max_nr_buckets)
1372 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1373
1374 /* max_nr_buckets must be power of two */
1375 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1376 return NULL;
1377
1378 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1379 init_size = max(init_size, MIN_TABLE_SIZE);
1380 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1381 init_size = min(init_size, max_nr_buckets);
1382 ht = calloc(1, sizeof(struct cds_lfht));
1383 assert(ht);
1384 ht->flags = flags;
1385 ht->flavor = flavor;
1386 ht->resize_attr = attr;
1387 alloc_split_items_count(ht);
1388 /* this mutex should not nest in read-side C.S. */
1389 pthread_mutex_init(&ht->resize_mutex, NULL);
1390 order = get_count_order_ulong(init_size);
1391 ht->resize_target = 1UL << order;
1392 ht->min_nr_alloc_buckets = min_nr_alloc_buckets;
1393 ht->min_alloc_buckets_order = get_count_order_ulong(min_nr_alloc_buckets);
1394 ht->max_nr_buckets = max_nr_buckets;
1395 cds_lfht_create_bucket(ht, 1UL << order);
1396 ht->size = 1UL << order;
1397 return ht;
1398}
1399
1400void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1401 cds_lfht_match_fct match, const void *key,
1402 struct cds_lfht_iter *iter)
1403{
1404 struct cds_lfht_node *node, *next, *bucket;
1405 unsigned long reverse_hash, size;
1406
1407 reverse_hash = bit_reverse_ulong(hash);
1408
1409 size = rcu_dereference(ht->size);
1410 bucket = lookup_bucket(ht, size, hash);
1411 /* We can always skip the bucket node initially */
1412 node = rcu_dereference(bucket->next);
1413 node = clear_flag(node);
1414 for (;;) {
1415 if (caa_unlikely(is_end(node))) {
1416 node = next = NULL;
1417 break;
1418 }
1419 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1420 node = next = NULL;
1421 break;
1422 }
1423 next = rcu_dereference(node->next);
1424 assert(node == clear_flag(node));
1425 if (caa_likely(!is_removed(next))
1426 && !is_bucket(next)
1427 && node->reverse_hash == reverse_hash
1428 && caa_likely(match(node, key))) {
1429 break;
1430 }
1431 node = clear_flag(next);
1432 }
1433 assert(!node || !is_bucket(rcu_dereference(node->next)));
1434 iter->node = node;
1435 iter->next = next;
1436}
1437
1438void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1439 const void *key, struct cds_lfht_iter *iter)
1440{
1441 struct cds_lfht_node *node, *next;
1442 unsigned long reverse_hash;
1443
1444 node = iter->node;
1445 reverse_hash = node->reverse_hash;
1446 next = iter->next;
1447 node = clear_flag(next);
1448
1449 for (;;) {
1450 if (caa_unlikely(is_end(node))) {
1451 node = next = NULL;
1452 break;
1453 }
1454 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1455 node = next = NULL;
1456 break;
1457 }
1458 next = rcu_dereference(node->next);
1459 if (caa_likely(!is_removed(next))
1460 && !is_bucket(next)
1461 && caa_likely(match(node, key))) {
1462 break;
1463 }
1464 node = clear_flag(next);
1465 }
1466 assert(!node || !is_bucket(rcu_dereference(node->next)));
1467 iter->node = node;
1468 iter->next = next;
1469}
1470
1471void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1472{
1473 struct cds_lfht_node *node, *next;
1474
1475 node = clear_flag(iter->next);
1476 for (;;) {
1477 if (caa_unlikely(is_end(node))) {
1478 node = next = NULL;
1479 break;
1480 }
1481 next = rcu_dereference(node->next);
1482 if (caa_likely(!is_removed(next))
1483 && !is_bucket(next)) {
1484 break;
1485 }
1486 node = clear_flag(next);
1487 }
1488 assert(!node || !is_bucket(rcu_dereference(node->next)));
1489 iter->node = node;
1490 iter->next = next;
1491}
1492
1493void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1494{
1495 /*
1496 * Get next after first bucket node. The first bucket node is the
1497 * first node of the linked list.
1498 */
1499 iter->next = bucket_at(ht, 0)->next;
1500 cds_lfht_next(ht, iter);
1501}
1502
1503void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1504 struct cds_lfht_node *node)
1505{
1506 unsigned long size;
1507
1508 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1509 size = rcu_dereference(ht->size);
1510 _cds_lfht_add(ht, NULL, NULL, size, node, NULL, 0);
1511 ht_count_add(ht, size, hash);
1512}
1513
1514struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1515 unsigned long hash,
1516 cds_lfht_match_fct match,
1517 const void *key,
1518 struct cds_lfht_node *node)
1519{
1520 unsigned long size;
1521 struct cds_lfht_iter iter;
1522
1523 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1524 size = rcu_dereference(ht->size);
1525 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1526 if (iter.node == node)
1527 ht_count_add(ht, size, hash);
1528 return iter.node;
1529}
1530
1531struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1532 unsigned long hash,
1533 cds_lfht_match_fct match,
1534 const void *key,
1535 struct cds_lfht_node *node)
1536{
1537 unsigned long size;
1538 struct cds_lfht_iter iter;
1539
1540 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1541 size = rcu_dereference(ht->size);
1542 for (;;) {
1543 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1544 if (iter.node == node) {
1545 ht_count_add(ht, size, hash);
1546 return NULL;
1547 }
1548
1549 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1550 return iter.node;
1551 }
1552}
1553
1554int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1555 struct cds_lfht_node *new_node)
1556{
1557 unsigned long size;
1558
1559 size = rcu_dereference(ht->size);
1560 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1561 new_node);
1562}
1563
1564int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1565{
1566 unsigned long size, hash;
1567 int ret;
1568
1569 size = rcu_dereference(ht->size);
1570 ret = _cds_lfht_del(ht, size, iter->node, 0);
1571 if (!ret) {
1572 hash = bit_reverse_ulong(iter->node->reverse_hash);
1573 ht_count_del(ht, size, hash);
1574 }
1575 return ret;
1576}
1577
1578static
1579int cds_lfht_delete_bucket(struct cds_lfht *ht)
1580{
1581 struct cds_lfht_node *node;
1582 unsigned long order, i, size;
1583
1584 /* Check that the table is empty */
1585 node = bucket_at(ht, 0);
1586 do {
1587 node = clear_flag(node)->next;
1588 if (!is_bucket(node))
1589 return -EPERM;
1590 assert(!is_removed(node));
1591 } while (!is_end(node));
1592 /*
1593 * size accessed without rcu_dereference because hash table is
1594 * being destroyed.
1595 */
1596 size = ht->size;
1597 /* Internal sanity check: all nodes left should be bucket */
1598 for (i = 0; i < size; i++) {
1599 node = bucket_at(ht, i);
1600 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1601 i, i, bit_reverse_ulong(node->reverse_hash));
1602 assert(is_bucket(node->next));
1603 }
1604
1605 for (order = get_count_order_ulong(size); (long)order >= 0; order--)
1606 cds_lfht_free_bucket_table(ht, order);
1607
1608 return 0;
1609}
1610
1611/*
1612 * Should only be called when no more concurrent readers nor writers can
1613 * possibly access the table.
1614 */
1615int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1616{
1617 int ret;
1618
1619 /* Wait for in-flight resize operations to complete */
1620 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1621 cmm_smp_mb(); /* Store destroy before load resize */
1622 while (uatomic_read(&ht->in_progress_resize))
1623 poll(NULL, 0, 100); /* wait for 100ms */
1624 ret = cds_lfht_delete_bucket(ht);
1625 if (ret)
1626 return ret;
1627 free_split_items_count(ht);
1628 if (attr)
1629 *attr = ht->resize_attr;
1630 poison_free(ht);
1631 return ret;
1632}
1633
1634void cds_lfht_count_nodes(struct cds_lfht *ht,
1635 long *approx_before,
1636 unsigned long *count,
1637 unsigned long *removed,
1638 long *approx_after)
1639{
1640 struct cds_lfht_node *node, *next;
1641 unsigned long nr_bucket = 0;
1642
1643 *approx_before = 0;
1644 if (ht->split_count) {
1645 int i;
1646
1647 for (i = 0; i < split_count_mask + 1; i++) {
1648 *approx_before += uatomic_read(&ht->split_count[i].add);
1649 *approx_before -= uatomic_read(&ht->split_count[i].del);
1650 }
1651 }
1652
1653 *count = 0;
1654 *removed = 0;
1655
1656 /* Count non-bucket nodes in the table */
1657 node = bucket_at(ht, 0);
1658 do {
1659 next = rcu_dereference(node->next);
1660 if (is_removed(next)) {
1661 if (!is_bucket(next))
1662 (*removed)++;
1663 else
1664 (nr_bucket)++;
1665 } else if (!is_bucket(next))
1666 (*count)++;
1667 else
1668 (nr_bucket)++;
1669 node = clear_flag(next);
1670 } while (!is_end(node));
1671 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1672 *approx_after = 0;
1673 if (ht->split_count) {
1674 int i;
1675
1676 for (i = 0; i < split_count_mask + 1; i++) {
1677 *approx_after += uatomic_read(&ht->split_count[i].add);
1678 *approx_after -= uatomic_read(&ht->split_count[i].del);
1679 }
1680 }
1681}
1682
1683/* called with resize mutex held */
1684static
1685void _do_cds_lfht_grow(struct cds_lfht *ht,
1686 unsigned long old_size, unsigned long new_size)
1687{
1688 unsigned long old_order, new_order;
1689
1690 old_order = get_count_order_ulong(old_size);
1691 new_order = get_count_order_ulong(new_size);
1692 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1693 old_size, old_order, new_size, new_order);
1694 assert(new_size > old_size);
1695 init_table(ht, old_order + 1, new_order);
1696}
1697
1698/* called with resize mutex held */
1699static
1700void _do_cds_lfht_shrink(struct cds_lfht *ht,
1701 unsigned long old_size, unsigned long new_size)
1702{
1703 unsigned long old_order, new_order;
1704
1705 new_size = max(new_size, MIN_TABLE_SIZE);
1706 old_order = get_count_order_ulong(old_size);
1707 new_order = get_count_order_ulong(new_size);
1708 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1709 old_size, old_order, new_size, new_order);
1710 assert(new_size < old_size);
1711
1712 /* Remove and unlink all bucket nodes to remove. */
1713 fini_table(ht, new_order + 1, old_order);
1714}
1715
1716
1717/* called with resize mutex held */
1718static
1719void _do_cds_lfht_resize(struct cds_lfht *ht)
1720{
1721 unsigned long new_size, old_size;
1722
1723 /*
1724 * Resize table, re-do if the target size has changed under us.
1725 */
1726 do {
1727 assert(uatomic_read(&ht->in_progress_resize));
1728 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1729 break;
1730 ht->resize_initiated = 1;
1731 old_size = ht->size;
1732 new_size = CMM_LOAD_SHARED(ht->resize_target);
1733 if (old_size < new_size)
1734 _do_cds_lfht_grow(ht, old_size, new_size);
1735 else if (old_size > new_size)
1736 _do_cds_lfht_shrink(ht, old_size, new_size);
1737 ht->resize_initiated = 0;
1738 /* write resize_initiated before read resize_target */
1739 cmm_smp_mb();
1740 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1741}
1742
1743static
1744unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1745{
1746 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
1747}
1748
1749static
1750void resize_target_update_count(struct cds_lfht *ht,
1751 unsigned long count)
1752{
1753 count = max(count, MIN_TABLE_SIZE);
1754 count = min(count, ht->max_nr_buckets);
1755 uatomic_set(&ht->resize_target, count);
1756}
1757
1758void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1759{
1760 resize_target_update_count(ht, new_size);
1761 CMM_STORE_SHARED(ht->resize_initiated, 1);
1762 ht->flavor->thread_offline();
1763 pthread_mutex_lock(&ht->resize_mutex);
1764 _do_cds_lfht_resize(ht);
1765 pthread_mutex_unlock(&ht->resize_mutex);
1766 ht->flavor->thread_online();
1767}
1768
1769static
1770void do_resize_cb(struct rcu_head *head)
1771{
1772 struct rcu_resize_work *work =
1773 caa_container_of(head, struct rcu_resize_work, head);
1774 struct cds_lfht *ht = work->ht;
1775
1776 ht->flavor->thread_offline();
1777 pthread_mutex_lock(&ht->resize_mutex);
1778 _do_cds_lfht_resize(ht);
1779 pthread_mutex_unlock(&ht->resize_mutex);
1780 ht->flavor->thread_online();
1781 poison_free(work);
1782 cmm_smp_mb(); /* finish resize before decrement */
1783 uatomic_dec(&ht->in_progress_resize);
1784}
1785
1786static
1787void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1788{
1789 struct rcu_resize_work *work;
1790
1791 /* Store resize_target before read resize_initiated */
1792 cmm_smp_mb();
1793 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
1794 uatomic_inc(&ht->in_progress_resize);
1795 cmm_smp_mb(); /* increment resize count before load destroy */
1796 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1797 uatomic_dec(&ht->in_progress_resize);
1798 return;
1799 }
1800 work = malloc(sizeof(*work));
1801 work->ht = ht;
1802 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
1803 CMM_STORE_SHARED(ht->resize_initiated, 1);
1804 }
1805}
1806
1807static
1808void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1809{
1810 unsigned long target_size = size << growth;
1811
1812 target_size = min(target_size, ht->max_nr_buckets);
1813 if (resize_target_grow(ht, target_size) >= target_size)
1814 return;
1815
1816 __cds_lfht_resize_lazy_launch(ht);
1817}
1818
1819/*
1820 * We favor grow operations over shrink. A shrink operation never occurs
1821 * if a grow operation is queued for lazy execution. A grow operation
1822 * cancels any pending shrink lazy execution.
1823 */
1824static
1825void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1826 unsigned long count)
1827{
1828 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1829 return;
1830 count = max(count, MIN_TABLE_SIZE);
1831 count = min(count, ht->max_nr_buckets);
1832 if (count == size)
1833 return; /* Already the right size, no resize needed */
1834 if (count > size) { /* lazy grow */
1835 if (resize_target_grow(ht, count) >= count)
1836 return;
1837 } else { /* lazy shrink */
1838 for (;;) {
1839 unsigned long s;
1840
1841 s = uatomic_cmpxchg(&ht->resize_target, size, count);
1842 if (s == size)
1843 break; /* no resize needed */
1844 if (s > size)
1845 return; /* growing is/(was just) in progress */
1846 if (s <= count)
1847 return; /* some other thread do shrink */
1848 size = s;
1849 }
1850 }
1851 __cds_lfht_resize_lazy_launch(ht);
1852}
This page took 0.04857 seconds and 4 git commands to generate.