use rcu_flavor for rculfhash
[urcu.git] / rculfhash.c
... / ...
CommitLineData
1/*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups and use the returned objects safely by delaying
38 * memory reclaim of a grace period.
39 * - Add and remove operations are lock-free, and do not need to
40 * allocate memory. They need to be executed within RCU read-side
41 * critical section to ensure the objects they read are valid and to
42 * deal with the cmpxchg ABA problem.
43 * - add and add_unique operations are supported. add_unique checks if
44 * the node key already exists in the hash table. It ensures no key
45 * duplicata exists.
46 * - The resize operation executes concurrently with add/remove/lookup.
47 * - Hash table nodes are contained within a split-ordered list. This
48 * list is ordered by incrementing reversed-bits-hash value.
49 * - An index of bucket nodes is kept. These bucket nodes are the hash
50 * table "buckets", and they are also chained together in the
51 * split-ordered list, which allows recursive expansion.
52 * - The resize operation for small tables only allows expanding the hash table.
53 * It is triggered automatically by detecting long chains in the add
54 * operation.
55 * - The resize operation for larger tables (and available through an
56 * API) allows both expanding and shrinking the hash table.
57 * - Split-counters are used to keep track of the number of
58 * nodes within the hash table for automatic resize triggering.
59 * - Resize operation initiated by long chain detection is executed by a
60 * call_rcu thread, which keeps lock-freedom of add and remove.
61 * - Resize operations are protected by a mutex.
62 * - The removal operation is split in two parts: first, a "removed"
63 * flag is set in the next pointer within the node to remove. Then,
64 * a "garbage collection" is performed in the bucket containing the
65 * removed node (from the start of the bucket up to the removed node).
66 * All encountered nodes with "removed" flag set in their next
67 * pointers are removed from the linked-list. If the cmpxchg used for
68 * removal fails (due to concurrent garbage-collection or concurrent
69 * add), we retry from the beginning of the bucket. This ensures that
70 * the node with "removed" flag set is removed from the hash table
71 * (not visible to lookups anymore) before the RCU read-side critical
72 * section held across removal ends. Furthermore, this ensures that
73 * the node with "removed" flag set is removed from the linked-list
74 * before its memory is reclaimed. Only the thread which removal
75 * successfully set the "removed" flag (with a cmpxchg) into a node's
76 * next pointer is considered to have succeeded its removal (and thus
77 * owns the node to reclaim). Because we garbage-collect starting from
78 * an invariant node (the start-of-bucket bucket node) up to the
79 * "removed" node (or find a reverse-hash that is higher), we are sure
80 * that a successful traversal of the chain leads to a chain that is
81 * present in the linked-list (the start node is never removed) and
82 * that is does not contain the "removed" node anymore, even if
83 * concurrent delete/add operations are changing the structure of the
84 * list concurrently.
85 * - The add operation performs gargage collection of buckets if it
86 * encounters nodes with removed flag set in the bucket where it wants
87 * to add its new node. This ensures lock-freedom of add operation by
88 * helping the remover unlink nodes from the list rather than to wait
89 * for it do to so.
90 * - A RCU "order table" indexed by log2(hash index) is copied and
91 * expanded by the resize operation. This order table allows finding
92 * the "bucket node" tables.
93 * - There is one bucket node table per hash index order. The size of
94 * each bucket node table is half the number of hashes contained in
95 * this order (except for order 0).
96 * - synchronzie_rcu is used to garbage-collect the old bucket node table.
97 * - The per-order bucket node tables contain a compact version of the
98 * hash table nodes. These tables are invariant after they are
99 * populated into the hash table.
100 *
101 * Bucket node tables:
102 *
103 * hash table hash table the last all bucket node tables
104 * order size bucket node 0 1 2 3 4 5 6(index)
105 * table size
106 * 0 1 1 1
107 * 1 2 1 1 1
108 * 2 4 2 1 1 2
109 * 3 8 4 1 1 2 4
110 * 4 16 8 1 1 2 4 8
111 * 5 32 16 1 1 2 4 8 16
112 * 6 64 32 1 1 2 4 8 16 32
113 *
114 * When growing/shrinking, we only focus on the last bucket node table
115 * which size is (!order ? 1 : (1 << (order -1))).
116 *
117 * Example for growing/shrinking:
118 * grow hash table from order 5 to 6: init the index=6 bucket node table
119 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
120 *
121 * A bit of ascii art explanation:
122 *
123 * Order index is the off-by-one compare to the actual power of 2 because
124 * we use index 0 to deal with the 0 special-case.
125 *
126 * This shows the nodes for a small table ordered by reversed bits:
127 *
128 * bits reverse
129 * 0 000 000
130 * 4 100 001
131 * 2 010 010
132 * 6 110 011
133 * 1 001 100
134 * 5 101 101
135 * 3 011 110
136 * 7 111 111
137 *
138 * This shows the nodes in order of non-reversed bits, linked by
139 * reversed-bit order.
140 *
141 * order bits reverse
142 * 0 0 000 000
143 * 1 | 1 001 100 <-
144 * 2 | | 2 010 010 <- |
145 * | | | 3 011 110 | <- |
146 * 3 -> | | | 4 100 001 | |
147 * -> | | 5 101 101 |
148 * -> | 6 110 011
149 * -> 7 111 111
150 */
151
152#define _LGPL_SOURCE
153#include <stdlib.h>
154#include <errno.h>
155#include <assert.h>
156#include <stdio.h>
157#include <stdint.h>
158#include <string.h>
159
160#include "config.h"
161#include <urcu.h>
162#include <urcu-call-rcu.h>
163#include <urcu-flavor.h>
164#include <urcu/arch.h>
165#include <urcu/uatomic.h>
166#include <urcu/compiler.h>
167#include <urcu/rculfhash.h>
168#include <stdio.h>
169#include <pthread.h>
170
171#ifdef DEBUG
172#define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
173#else
174#define dbg_printf(fmt, args...)
175#endif
176
177/*
178 * Split-counters lazily update the global counter each 1024
179 * addition/removal. It automatically keeps track of resize required.
180 * We use the bucket length as indicator for need to expand for small
181 * tables and machines lacking per-cpu data suppport.
182 */
183#define COUNT_COMMIT_ORDER 10
184#define DEFAULT_SPLIT_COUNT_MASK 0xFUL
185#define CHAIN_LEN_TARGET 1
186#define CHAIN_LEN_RESIZE_THRESHOLD 3
187
188/*
189 * Define the minimum table size.
190 */
191#define MIN_TABLE_ORDER 0
192#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
193
194#if (CAA_BITS_PER_LONG == 32)
195#define MAX_TABLE_ORDER 32
196#else
197#define MAX_TABLE_ORDER 64
198#endif
199
200/*
201 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
202 */
203#define MIN_PARTITION_PER_THREAD_ORDER 12
204#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
205
206#ifndef min
207#define min(a, b) ((a) < (b) ? (a) : (b))
208#endif
209
210#ifndef max
211#define max(a, b) ((a) > (b) ? (a) : (b))
212#endif
213
214/*
215 * The removed flag needs to be updated atomically with the pointer.
216 * It indicates that no node must attach to the node scheduled for
217 * removal, and that node garbage collection must be performed.
218 * The bucket flag does not require to be updated atomically with the
219 * pointer, but it is added as a pointer low bit flag to save space.
220 */
221#define REMOVED_FLAG (1UL << 0)
222#define BUCKET_FLAG (1UL << 1)
223#define FLAGS_MASK ((1UL << 2) - 1)
224
225/* Value of the end pointer. Should not interact with flags. */
226#define END_VALUE NULL
227
228/*
229 * ht_items_count: Split-counters counting the number of node addition
230 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
231 * is set at hash table creation.
232 *
233 * These are free-running counters, never reset to zero. They count the
234 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
235 * operations to update the global counter. We choose a power-of-2 value
236 * for the trigger to deal with 32 or 64-bit overflow of the counter.
237 */
238struct ht_items_count {
239 unsigned long add, del;
240} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
241
242/*
243 * rcu_table: Contains the size and desired new size if a resize
244 * operation is in progress, as well as the statically-sized array of
245 * bucket table pointers.
246 */
247struct rcu_table {
248 unsigned long size; /* always a power of 2, shared (RCU) */
249 unsigned long resize_target;
250 int resize_initiated;
251
252 /*
253 * Contains the per order-index-level bucket node table. The size
254 * of each bucket node table is half the number of hashes contained
255 * in this order (except for order 0). The minimum allocation size
256 * parameter allows combining the bucket node arrays of the lowermost
257 * levels to improve cache locality for small index orders.
258 */
259 struct cds_lfht_node *tbl[MAX_TABLE_ORDER];
260};
261
262/*
263 * cds_lfht: Top-level data structure representing a lock-free hash
264 * table. Defined in the implementation file to make it be an opaque
265 * cookie to users.
266 */
267struct cds_lfht {
268 struct rcu_table t;
269 unsigned long min_alloc_buckets_order;
270 unsigned long min_nr_alloc_buckets;
271 unsigned long max_nr_buckets;
272 int flags;
273 /*
274 * We need to put the work threads offline (QSBR) when taking this
275 * mutex, because we use synchronize_rcu within this mutex critical
276 * section, which waits on read-side critical sections, and could
277 * therefore cause grace-period deadlock if we hold off RCU G.P.
278 * completion.
279 */
280 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
281 unsigned int in_progress_resize, in_progress_destroy;
282 const struct rcu_flavor_struct *flavor;
283 pthread_attr_t *resize_attr; /* Resize threads attributes */
284 long count; /* global approximate item count */
285 struct ht_items_count *split_count; /* split item count */
286};
287
288/*
289 * rcu_resize_work: Contains arguments passed to RCU worker thread
290 * responsible for performing lazy resize.
291 */
292struct rcu_resize_work {
293 struct rcu_head head;
294 struct cds_lfht *ht;
295};
296
297/*
298 * partition_resize_work: Contains arguments passed to worker threads
299 * executing the hash table resize on partitions of the hash table
300 * assigned to each processor's worker thread.
301 */
302struct partition_resize_work {
303 pthread_t thread_id;
304 struct cds_lfht *ht;
305 unsigned long i, start, len;
306 void (*fct)(struct cds_lfht *ht, unsigned long i,
307 unsigned long start, unsigned long len);
308};
309
310static
311void _cds_lfht_add(struct cds_lfht *ht,
312 cds_lfht_match_fct match,
313 const void *key,
314 unsigned long size,
315 struct cds_lfht_node *node,
316 struct cds_lfht_iter *unique_ret,
317 int bucket);
318
319/*
320 * Algorithm to reverse bits in a word by lookup table, extended to
321 * 64-bit words.
322 * Source:
323 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
324 * Originally from Public Domain.
325 */
326
327static const uint8_t BitReverseTable256[256] =
328{
329#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
330#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
331#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
332 R6(0), R6(2), R6(1), R6(3)
333};
334#undef R2
335#undef R4
336#undef R6
337
338static
339uint8_t bit_reverse_u8(uint8_t v)
340{
341 return BitReverseTable256[v];
342}
343
344static __attribute__((unused))
345uint32_t bit_reverse_u32(uint32_t v)
346{
347 return ((uint32_t) bit_reverse_u8(v) << 24) |
348 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
349 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
350 ((uint32_t) bit_reverse_u8(v >> 24));
351}
352
353static __attribute__((unused))
354uint64_t bit_reverse_u64(uint64_t v)
355{
356 return ((uint64_t) bit_reverse_u8(v) << 56) |
357 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
358 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
359 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
360 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
361 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
362 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
363 ((uint64_t) bit_reverse_u8(v >> 56));
364}
365
366static
367unsigned long bit_reverse_ulong(unsigned long v)
368{
369#if (CAA_BITS_PER_LONG == 32)
370 return bit_reverse_u32(v);
371#else
372 return bit_reverse_u64(v);
373#endif
374}
375
376/*
377 * fls: returns the position of the most significant bit.
378 * Returns 0 if no bit is set, else returns the position of the most
379 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
380 */
381#if defined(__i386) || defined(__x86_64)
382static inline
383unsigned int fls_u32(uint32_t x)
384{
385 int r;
386
387 asm("bsrl %1,%0\n\t"
388 "jnz 1f\n\t"
389 "movl $-1,%0\n\t"
390 "1:\n\t"
391 : "=r" (r) : "rm" (x));
392 return r + 1;
393}
394#define HAS_FLS_U32
395#endif
396
397#if defined(__x86_64)
398static inline
399unsigned int fls_u64(uint64_t x)
400{
401 long r;
402
403 asm("bsrq %1,%0\n\t"
404 "jnz 1f\n\t"
405 "movq $-1,%0\n\t"
406 "1:\n\t"
407 : "=r" (r) : "rm" (x));
408 return r + 1;
409}
410#define HAS_FLS_U64
411#endif
412
413#ifndef HAS_FLS_U64
414static __attribute__((unused))
415unsigned int fls_u64(uint64_t x)
416{
417 unsigned int r = 64;
418
419 if (!x)
420 return 0;
421
422 if (!(x & 0xFFFFFFFF00000000ULL)) {
423 x <<= 32;
424 r -= 32;
425 }
426 if (!(x & 0xFFFF000000000000ULL)) {
427 x <<= 16;
428 r -= 16;
429 }
430 if (!(x & 0xFF00000000000000ULL)) {
431 x <<= 8;
432 r -= 8;
433 }
434 if (!(x & 0xF000000000000000ULL)) {
435 x <<= 4;
436 r -= 4;
437 }
438 if (!(x & 0xC000000000000000ULL)) {
439 x <<= 2;
440 r -= 2;
441 }
442 if (!(x & 0x8000000000000000ULL)) {
443 x <<= 1;
444 r -= 1;
445 }
446 return r;
447}
448#endif
449
450#ifndef HAS_FLS_U32
451static __attribute__((unused))
452unsigned int fls_u32(uint32_t x)
453{
454 unsigned int r = 32;
455
456 if (!x)
457 return 0;
458 if (!(x & 0xFFFF0000U)) {
459 x <<= 16;
460 r -= 16;
461 }
462 if (!(x & 0xFF000000U)) {
463 x <<= 8;
464 r -= 8;
465 }
466 if (!(x & 0xF0000000U)) {
467 x <<= 4;
468 r -= 4;
469 }
470 if (!(x & 0xC0000000U)) {
471 x <<= 2;
472 r -= 2;
473 }
474 if (!(x & 0x80000000U)) {
475 x <<= 1;
476 r -= 1;
477 }
478 return r;
479}
480#endif
481
482unsigned int fls_ulong(unsigned long x)
483{
484#if (CAA_BITS_PER_LONG == 32)
485 return fls_u32(x);
486#else
487 return fls_u64(x);
488#endif
489}
490
491/*
492 * Return the minimum order for which x <= (1UL << order).
493 * Return -1 if x is 0.
494 */
495int get_count_order_u32(uint32_t x)
496{
497 if (!x)
498 return -1;
499
500 return fls_u32(x - 1);
501}
502
503/*
504 * Return the minimum order for which x <= (1UL << order).
505 * Return -1 if x is 0.
506 */
507int get_count_order_ulong(unsigned long x)
508{
509 if (!x)
510 return -1;
511
512 return fls_ulong(x - 1);
513}
514
515#ifdef POISON_FREE
516#define poison_free(ptr) \
517 do { \
518 if (ptr) { \
519 memset(ptr, 0x42, sizeof(*(ptr))); \
520 free(ptr); \
521 } \
522 } while (0)
523#else
524#define poison_free(ptr) free(ptr)
525#endif
526
527static
528void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
529
530static
531void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
532 unsigned long count);
533
534static long nr_cpus_mask = -1;
535static long split_count_mask = -1;
536
537#if defined(HAVE_SYSCONF)
538static void ht_init_nr_cpus_mask(void)
539{
540 long maxcpus;
541
542 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
543 if (maxcpus <= 0) {
544 nr_cpus_mask = -2;
545 return;
546 }
547 /*
548 * round up number of CPUs to next power of two, so we
549 * can use & for modulo.
550 */
551 maxcpus = 1UL << get_count_order_ulong(maxcpus);
552 nr_cpus_mask = maxcpus - 1;
553}
554#else /* #if defined(HAVE_SYSCONF) */
555static void ht_init_nr_cpus_mask(void)
556{
557 nr_cpus_mask = -2;
558}
559#endif /* #else #if defined(HAVE_SYSCONF) */
560
561static
562void alloc_split_items_count(struct cds_lfht *ht)
563{
564 struct ht_items_count *count;
565
566 if (nr_cpus_mask == -1) {
567 ht_init_nr_cpus_mask();
568 if (nr_cpus_mask < 0)
569 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
570 else
571 split_count_mask = nr_cpus_mask;
572 }
573
574 assert(split_count_mask >= 0);
575
576 if (ht->flags & CDS_LFHT_ACCOUNTING) {
577 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
578 assert(ht->split_count);
579 } else {
580 ht->split_count = NULL;
581 }
582}
583
584static
585void free_split_items_count(struct cds_lfht *ht)
586{
587 poison_free(ht->split_count);
588}
589
590#if defined(HAVE_SCHED_GETCPU)
591static
592int ht_get_split_count_index(unsigned long hash)
593{
594 int cpu;
595
596 assert(split_count_mask >= 0);
597 cpu = sched_getcpu();
598 if (caa_unlikely(cpu < 0))
599 return hash & split_count_mask;
600 else
601 return cpu & split_count_mask;
602}
603#else /* #if defined(HAVE_SCHED_GETCPU) */
604static
605int ht_get_split_count_index(unsigned long hash)
606{
607 return hash & split_count_mask;
608}
609#endif /* #else #if defined(HAVE_SCHED_GETCPU) */
610
611static
612void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
613{
614 unsigned long split_count;
615 int index;
616
617 if (caa_unlikely(!ht->split_count))
618 return;
619 index = ht_get_split_count_index(hash);
620 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
621 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
622 long count;
623
624 dbg_printf("add split count %lu\n", split_count);
625 count = uatomic_add_return(&ht->count,
626 1UL << COUNT_COMMIT_ORDER);
627 /* If power of 2 */
628 if (!(count & (count - 1))) {
629 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
630 return;
631 dbg_printf("add set global %ld\n", count);
632 cds_lfht_resize_lazy_count(ht, size,
633 count >> (CHAIN_LEN_TARGET - 1));
634 }
635 }
636}
637
638static
639void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
640{
641 unsigned long split_count;
642 int index;
643
644 if (caa_unlikely(!ht->split_count))
645 return;
646 index = ht_get_split_count_index(hash);
647 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
648 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
649 long count;
650
651 dbg_printf("del split count %lu\n", split_count);
652 count = uatomic_add_return(&ht->count,
653 -(1UL << COUNT_COMMIT_ORDER));
654 /* If power of 2 */
655 if (!(count & (count - 1))) {
656 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
657 return;
658 dbg_printf("del set global %ld\n", count);
659 /*
660 * Don't shrink table if the number of nodes is below a
661 * certain threshold.
662 */
663 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
664 return;
665 cds_lfht_resize_lazy_count(ht, size,
666 count >> (CHAIN_LEN_TARGET - 1));
667 }
668 }
669}
670
671static
672void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
673{
674 unsigned long count;
675
676 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
677 return;
678 count = uatomic_read(&ht->count);
679 /*
680 * Use bucket-local length for small table expand and for
681 * environments lacking per-cpu data support.
682 */
683 if (count >= (1UL << COUNT_COMMIT_ORDER))
684 return;
685 if (chain_len > 100)
686 dbg_printf("WARNING: large chain length: %u.\n",
687 chain_len);
688 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
689 cds_lfht_resize_lazy_grow(ht, size,
690 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
691}
692
693static
694struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
695{
696 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
697}
698
699static
700int is_removed(struct cds_lfht_node *node)
701{
702 return ((unsigned long) node) & REMOVED_FLAG;
703}
704
705static
706struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
707{
708 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
709}
710
711static
712int is_bucket(struct cds_lfht_node *node)
713{
714 return ((unsigned long) node) & BUCKET_FLAG;
715}
716
717static
718struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
719{
720 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
721}
722
723static
724struct cds_lfht_node *get_end(void)
725{
726 return (struct cds_lfht_node *) END_VALUE;
727}
728
729static
730int is_end(struct cds_lfht_node *node)
731{
732 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
733}
734
735static
736unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
737 unsigned long v)
738{
739 unsigned long old1, old2;
740
741 old1 = uatomic_read(ptr);
742 do {
743 old2 = old1;
744 if (old2 >= v)
745 return old2;
746 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
747 return old2;
748}
749
750static
751void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
752{
753 if (order == 0) {
754 ht->t.tbl[0] = calloc(ht->min_nr_alloc_buckets,
755 sizeof(struct cds_lfht_node));
756 assert(ht->t.tbl[0]);
757 } else if (order > ht->min_alloc_buckets_order) {
758 ht->t.tbl[order] = calloc(1UL << (order -1),
759 sizeof(struct cds_lfht_node));
760 assert(ht->t.tbl[order]);
761 }
762 /* Nothing to do for 0 < order && order <= ht->min_alloc_buckets_order */
763}
764
765/*
766 * cds_lfht_free_bucket_table() should be called with decreasing order.
767 * When cds_lfht_free_bucket_table(0) is called, it means the whole
768 * lfht is destroyed.
769 */
770static
771void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
772{
773 if (order == 0)
774 poison_free(ht->t.tbl[0]);
775 else if (order > ht->min_alloc_buckets_order)
776 poison_free(ht->t.tbl[order]);
777 /* Nothing to do for 0 < order && order <= ht->min_alloc_buckets_order */
778}
779
780static inline
781struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
782{
783 unsigned long order;
784
785 if ((__builtin_constant_p(index) && index == 0)
786 || index < ht->min_nr_alloc_buckets) {
787 dbg_printf("bucket index %lu order 0 aridx 0\n", index);
788 return &ht->t.tbl[0][index];
789 }
790 /*
791 * equivalent to get_count_order_ulong(index + 1), but optimizes
792 * away the non-existing 0 special-case for
793 * get_count_order_ulong.
794 */
795 order = fls_ulong(index);
796 dbg_printf("bucket index %lu order %lu aridx %lu\n",
797 index, order, index & ((1UL << (order - 1)) - 1));
798 return &ht->t.tbl[order][index & ((1UL << (order - 1)) - 1)];
799}
800
801static inline
802struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
803 unsigned long hash)
804{
805 assert(size > 0);
806 return bucket_at(ht, hash & (size - 1));
807}
808
809/*
810 * Remove all logically deleted nodes from a bucket up to a certain node key.
811 */
812static
813void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
814{
815 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
816
817 assert(!is_bucket(bucket));
818 assert(!is_removed(bucket));
819 assert(!is_bucket(node));
820 assert(!is_removed(node));
821 for (;;) {
822 iter_prev = bucket;
823 /* We can always skip the bucket node initially */
824 iter = rcu_dereference(iter_prev->next);
825 assert(!is_removed(iter));
826 assert(iter_prev->reverse_hash <= node->reverse_hash);
827 /*
828 * We should never be called with bucket (start of chain)
829 * and logically removed node (end of path compression
830 * marker) being the actual same node. This would be a
831 * bug in the algorithm implementation.
832 */
833 assert(bucket != node);
834 for (;;) {
835 if (caa_unlikely(is_end(iter)))
836 return;
837 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
838 return;
839 next = rcu_dereference(clear_flag(iter)->next);
840 if (caa_likely(is_removed(next)))
841 break;
842 iter_prev = clear_flag(iter);
843 iter = next;
844 }
845 assert(!is_removed(iter));
846 if (is_bucket(iter))
847 new_next = flag_bucket(clear_flag(next));
848 else
849 new_next = clear_flag(next);
850 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
851 }
852 return;
853}
854
855static
856int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
857 struct cds_lfht_node *old_node,
858 struct cds_lfht_node *old_next,
859 struct cds_lfht_node *new_node)
860{
861 struct cds_lfht_node *bucket, *ret_next;
862
863 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
864 return -ENOENT;
865
866 assert(!is_removed(old_node));
867 assert(!is_bucket(old_node));
868 assert(!is_removed(new_node));
869 assert(!is_bucket(new_node));
870 assert(new_node != old_node);
871 for (;;) {
872 /* Insert after node to be replaced */
873 if (is_removed(old_next)) {
874 /*
875 * Too late, the old node has been removed under us
876 * between lookup and replace. Fail.
877 */
878 return -ENOENT;
879 }
880 assert(!is_bucket(old_next));
881 assert(new_node != clear_flag(old_next));
882 new_node->next = clear_flag(old_next);
883 /*
884 * Here is the whole trick for lock-free replace: we add
885 * the replacement node _after_ the node we want to
886 * replace by atomically setting its next pointer at the
887 * same time we set its removal flag. Given that
888 * the lookups/get next use an iterator aware of the
889 * next pointer, they will either skip the old node due
890 * to the removal flag and see the new node, or use
891 * the old node, but will not see the new one.
892 */
893 ret_next = uatomic_cmpxchg(&old_node->next,
894 old_next, flag_removed(new_node));
895 if (ret_next == old_next)
896 break; /* We performed the replacement. */
897 old_next = ret_next;
898 }
899
900 /*
901 * Ensure that the old node is not visible to readers anymore:
902 * lookup for the node, and remove it (along with any other
903 * logically removed node) if found.
904 */
905 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
906 _cds_lfht_gc_bucket(bucket, new_node);
907
908 assert(is_removed(rcu_dereference(old_node->next)));
909 return 0;
910}
911
912/*
913 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
914 * mode. A NULL unique_ret allows creation of duplicate keys.
915 */
916static
917void _cds_lfht_add(struct cds_lfht *ht,
918 cds_lfht_match_fct match,
919 const void *key,
920 unsigned long size,
921 struct cds_lfht_node *node,
922 struct cds_lfht_iter *unique_ret,
923 int bucket_flag)
924{
925 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
926 *return_node;
927 struct cds_lfht_node *bucket;
928
929 assert(!is_bucket(node));
930 assert(!is_removed(node));
931 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
932 for (;;) {
933 uint32_t chain_len = 0;
934
935 /*
936 * iter_prev points to the non-removed node prior to the
937 * insert location.
938 */
939 iter_prev = bucket;
940 /* We can always skip the bucket node initially */
941 iter = rcu_dereference(iter_prev->next);
942 assert(iter_prev->reverse_hash <= node->reverse_hash);
943 for (;;) {
944 if (caa_unlikely(is_end(iter)))
945 goto insert;
946 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
947 goto insert;
948
949 /* bucket node is the first node of the identical-hash-value chain */
950 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
951 goto insert;
952
953 next = rcu_dereference(clear_flag(iter)->next);
954 if (caa_unlikely(is_removed(next)))
955 goto gc_node;
956
957 /* uniquely add */
958 if (unique_ret
959 && !is_bucket(next)
960 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
961 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
962
963 /*
964 * uniquely adding inserts the node as the first
965 * node of the identical-hash-value node chain.
966 *
967 * This semantic ensures no duplicated keys
968 * should ever be observable in the table
969 * (including observe one node by one node
970 * by forward iterations)
971 */
972 cds_lfht_next_duplicate(ht, match, key, &d_iter);
973 if (!d_iter.node)
974 goto insert;
975
976 *unique_ret = d_iter;
977 return;
978 }
979
980 /* Only account for identical reverse hash once */
981 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
982 && !is_bucket(next))
983 check_resize(ht, size, ++chain_len);
984 iter_prev = clear_flag(iter);
985 iter = next;
986 }
987
988 insert:
989 assert(node != clear_flag(iter));
990 assert(!is_removed(iter_prev));
991 assert(!is_removed(iter));
992 assert(iter_prev != node);
993 if (!bucket_flag)
994 node->next = clear_flag(iter);
995 else
996 node->next = flag_bucket(clear_flag(iter));
997 if (is_bucket(iter))
998 new_node = flag_bucket(node);
999 else
1000 new_node = node;
1001 if (uatomic_cmpxchg(&iter_prev->next, iter,
1002 new_node) != iter) {
1003 continue; /* retry */
1004 } else {
1005 return_node = node;
1006 goto end;
1007 }
1008
1009 gc_node:
1010 assert(!is_removed(iter));
1011 if (is_bucket(iter))
1012 new_next = flag_bucket(clear_flag(next));
1013 else
1014 new_next = clear_flag(next);
1015 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1016 /* retry */
1017 }
1018end:
1019 if (unique_ret) {
1020 unique_ret->node = return_node;
1021 /* unique_ret->next left unset, never used. */
1022 }
1023}
1024
1025static
1026int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1027 struct cds_lfht_node *node,
1028 int bucket_removal)
1029{
1030 struct cds_lfht_node *bucket, *next, *old;
1031
1032 if (!node) /* Return -ENOENT if asked to delete NULL node */
1033 return -ENOENT;
1034
1035 /* logically delete the node */
1036 assert(!is_bucket(node));
1037 assert(!is_removed(node));
1038 old = rcu_dereference(node->next);
1039 do {
1040 struct cds_lfht_node *new_next;
1041
1042 next = old;
1043 if (caa_unlikely(is_removed(next)))
1044 return -ENOENT;
1045 if (bucket_removal)
1046 assert(is_bucket(next));
1047 else
1048 assert(!is_bucket(next));
1049 new_next = flag_removed(next);
1050 old = uatomic_cmpxchg(&node->next, next, new_next);
1051 } while (old != next);
1052 /* We performed the (logical) deletion. */
1053
1054 /*
1055 * Ensure that the node is not visible to readers anymore: lookup for
1056 * the node, and remove it (along with any other logically removed node)
1057 * if found.
1058 */
1059 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1060 _cds_lfht_gc_bucket(bucket, node);
1061
1062 assert(is_removed(rcu_dereference(node->next)));
1063 return 0;
1064}
1065
1066static
1067void *partition_resize_thread(void *arg)
1068{
1069 struct partition_resize_work *work = arg;
1070
1071 work->ht->flavor->register_thread();
1072 work->fct(work->ht, work->i, work->start, work->len);
1073 work->ht->flavor->unregister_thread();
1074 return NULL;
1075}
1076
1077static
1078void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1079 unsigned long len,
1080 void (*fct)(struct cds_lfht *ht, unsigned long i,
1081 unsigned long start, unsigned long len))
1082{
1083 unsigned long partition_len;
1084 struct partition_resize_work *work;
1085 int thread, ret;
1086 unsigned long nr_threads;
1087
1088 /*
1089 * Note: nr_cpus_mask + 1 is always power of 2.
1090 * We spawn just the number of threads we need to satisfy the minimum
1091 * partition size, up to the number of CPUs in the system.
1092 */
1093 if (nr_cpus_mask > 0) {
1094 nr_threads = min(nr_cpus_mask + 1,
1095 len >> MIN_PARTITION_PER_THREAD_ORDER);
1096 } else {
1097 nr_threads = 1;
1098 }
1099 partition_len = len >> get_count_order_ulong(nr_threads);
1100 work = calloc(nr_threads, sizeof(*work));
1101 assert(work);
1102 for (thread = 0; thread < nr_threads; thread++) {
1103 work[thread].ht = ht;
1104 work[thread].i = i;
1105 work[thread].len = partition_len;
1106 work[thread].start = thread * partition_len;
1107 work[thread].fct = fct;
1108 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1109 partition_resize_thread, &work[thread]);
1110 assert(!ret);
1111 }
1112 for (thread = 0; thread < nr_threads; thread++) {
1113 ret = pthread_join(work[thread].thread_id, NULL);
1114 assert(!ret);
1115 }
1116 free(work);
1117}
1118
1119/*
1120 * Holding RCU read lock to protect _cds_lfht_add against memory
1121 * reclaim that could be performed by other call_rcu worker threads (ABA
1122 * problem).
1123 *
1124 * When we reach a certain length, we can split this population phase over
1125 * many worker threads, based on the number of CPUs available in the system.
1126 * This should therefore take care of not having the expand lagging behind too
1127 * many concurrent insertion threads by using the scheduler's ability to
1128 * schedule bucket node population fairly with insertions.
1129 */
1130static
1131void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1132 unsigned long start, unsigned long len)
1133{
1134 unsigned long j, size = 1UL << (i - 1);
1135
1136 assert(i > MIN_TABLE_ORDER);
1137 ht->flavor->read_lock();
1138 for (j = size + start; j < size + start + len; j++) {
1139 struct cds_lfht_node *new_node = bucket_at(ht, j);
1140
1141 assert(j >= size && j < (size << 1));
1142 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1143 i, j, j);
1144 new_node->reverse_hash = bit_reverse_ulong(j);
1145 _cds_lfht_add(ht, NULL, NULL, size, new_node, NULL, 1);
1146 }
1147 ht->flavor->read_unlock();
1148}
1149
1150static
1151void init_table_populate(struct cds_lfht *ht, unsigned long i,
1152 unsigned long len)
1153{
1154 assert(nr_cpus_mask != -1);
1155 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1156 ht->flavor->thread_online();
1157 init_table_populate_partition(ht, i, 0, len);
1158 ht->flavor->thread_offline();
1159 return;
1160 }
1161 partition_resize_helper(ht, i, len, init_table_populate_partition);
1162}
1163
1164static
1165void init_table(struct cds_lfht *ht,
1166 unsigned long first_order, unsigned long last_order)
1167{
1168 unsigned long i;
1169
1170 dbg_printf("init table: first_order %lu last_order %lu\n",
1171 first_order, last_order);
1172 assert(first_order > MIN_TABLE_ORDER);
1173 for (i = first_order; i <= last_order; i++) {
1174 unsigned long len;
1175
1176 len = 1UL << (i - 1);
1177 dbg_printf("init order %lu len: %lu\n", i, len);
1178
1179 /* Stop expand if the resize target changes under us */
1180 if (CMM_LOAD_SHARED(ht->t.resize_target) < (1UL << i))
1181 break;
1182
1183 cds_lfht_alloc_bucket_table(ht, i);
1184
1185 /*
1186 * Set all bucket nodes reverse hash values for a level and
1187 * link all bucket nodes into the table.
1188 */
1189 init_table_populate(ht, i, len);
1190
1191 /*
1192 * Update table size.
1193 */
1194 cmm_smp_wmb(); /* populate data before RCU size */
1195 CMM_STORE_SHARED(ht->t.size, 1UL << i);
1196
1197 dbg_printf("init new size: %lu\n", 1UL << i);
1198 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1199 break;
1200 }
1201}
1202
1203/*
1204 * Holding RCU read lock to protect _cds_lfht_remove against memory
1205 * reclaim that could be performed by other call_rcu worker threads (ABA
1206 * problem).
1207 * For a single level, we logically remove and garbage collect each node.
1208 *
1209 * As a design choice, we perform logical removal and garbage collection on a
1210 * node-per-node basis to simplify this algorithm. We also assume keeping good
1211 * cache locality of the operation would overweight possible performance gain
1212 * that could be achieved by batching garbage collection for multiple levels.
1213 * However, this would have to be justified by benchmarks.
1214 *
1215 * Concurrent removal and add operations are helping us perform garbage
1216 * collection of logically removed nodes. We guarantee that all logically
1217 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1218 * invoked to free a hole level of bucket nodes (after a grace period).
1219 *
1220 * Logical removal and garbage collection can therefore be done in batch or on a
1221 * node-per-node basis, as long as the guarantee above holds.
1222 *
1223 * When we reach a certain length, we can split this removal over many worker
1224 * threads, based on the number of CPUs available in the system. This should
1225 * take care of not letting resize process lag behind too many concurrent
1226 * updater threads actively inserting into the hash table.
1227 */
1228static
1229void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1230 unsigned long start, unsigned long len)
1231{
1232 unsigned long j, size = 1UL << (i - 1);
1233
1234 assert(i > MIN_TABLE_ORDER);
1235 ht->flavor->read_lock();
1236 for (j = size + start; j < size + start + len; j++) {
1237 struct cds_lfht_node *fini_node = bucket_at(ht, j);
1238
1239 assert(j >= size && j < (size << 1));
1240 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1241 i, j, j);
1242 fini_node->reverse_hash = bit_reverse_ulong(j);
1243 (void) _cds_lfht_del(ht, size, fini_node, 1);
1244 }
1245 ht->flavor->read_unlock();
1246}
1247
1248static
1249void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1250{
1251
1252 assert(nr_cpus_mask != -1);
1253 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1254 ht->flavor->thread_online();
1255 remove_table_partition(ht, i, 0, len);
1256 ht->flavor->thread_offline();
1257 return;
1258 }
1259 partition_resize_helper(ht, i, len, remove_table_partition);
1260}
1261
1262static
1263void fini_table(struct cds_lfht *ht,
1264 unsigned long first_order, unsigned long last_order)
1265{
1266 long i;
1267 unsigned long free_by_rcu_order = 0;
1268
1269 dbg_printf("fini table: first_order %lu last_order %lu\n",
1270 first_order, last_order);
1271 assert(first_order > MIN_TABLE_ORDER);
1272 for (i = last_order; i >= first_order; i--) {
1273 unsigned long len;
1274
1275 len = 1UL << (i - 1);
1276 dbg_printf("fini order %lu len: %lu\n", i, len);
1277
1278 /* Stop shrink if the resize target changes under us */
1279 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1280 break;
1281
1282 cmm_smp_wmb(); /* populate data before RCU size */
1283 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1284
1285 /*
1286 * We need to wait for all add operations to reach Q.S. (and
1287 * thus use the new table for lookups) before we can start
1288 * releasing the old bucket nodes. Otherwise their lookup will
1289 * return a logically removed node as insert position.
1290 */
1291 ht->flavor->update_synchronize_rcu();
1292 if (free_by_rcu_order)
1293 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1294
1295 /*
1296 * Set "removed" flag in bucket nodes about to be removed.
1297 * Unlink all now-logically-removed bucket node pointers.
1298 * Concurrent add/remove operation are helping us doing
1299 * the gc.
1300 */
1301 remove_table(ht, i, len);
1302
1303 free_by_rcu_order = i;
1304
1305 dbg_printf("fini new size: %lu\n", 1UL << i);
1306 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1307 break;
1308 }
1309
1310 if (free_by_rcu_order) {
1311 ht->flavor->update_synchronize_rcu();
1312 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1313 }
1314}
1315
1316static
1317void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1318{
1319 struct cds_lfht_node *prev, *node;
1320 unsigned long order, len, i;
1321
1322 cds_lfht_alloc_bucket_table(ht, 0);
1323
1324 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1325 node = bucket_at(ht, 0);
1326 node->next = flag_bucket(get_end());
1327 node->reverse_hash = 0;
1328
1329 for (order = 1; order < get_count_order_ulong(size) + 1; order++) {
1330 len = 1UL << (order - 1);
1331 cds_lfht_alloc_bucket_table(ht, order);
1332
1333 for (i = 0; i < len; i++) {
1334 /*
1335 * Now, we are trying to init the node with the
1336 * hash=(len+i) (which is also a bucket with the
1337 * index=(len+i)) and insert it into the hash table,
1338 * so this node has to be inserted after the bucket
1339 * with the index=(len+i)&(len-1)=i. And because there
1340 * is no other non-bucket node nor bucket node with
1341 * larger index/hash inserted, so the bucket node
1342 * being inserted should be inserted directly linked
1343 * after the bucket node with index=i.
1344 */
1345 prev = bucket_at(ht, i);
1346 node = bucket_at(ht, len + i);
1347
1348 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1349 order, len + i, len + i);
1350 node->reverse_hash = bit_reverse_ulong(len + i);
1351
1352 /* insert after prev */
1353 assert(is_bucket(prev->next));
1354 node->next = prev->next;
1355 prev->next = flag_bucket(node);
1356 }
1357 }
1358}
1359
1360struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1361 unsigned long min_nr_alloc_buckets,
1362 unsigned long max_nr_buckets,
1363 int flags,
1364 const struct rcu_flavor_struct *flavor,
1365 pthread_attr_t *attr)
1366{
1367 struct cds_lfht *ht;
1368 unsigned long order;
1369
1370 /* min_nr_alloc_buckets must be power of two */
1371 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1372 return NULL;
1373
1374 /* init_size must be power of two */
1375 if (!init_size || (init_size & (init_size - 1)))
1376 return NULL;
1377
1378 if (!max_nr_buckets)
1379 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1380
1381 /* max_nr_buckets must be power of two */
1382 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1383 return NULL;
1384
1385 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1386 init_size = max(init_size, MIN_TABLE_SIZE);
1387 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1388 init_size = min(init_size, max_nr_buckets);
1389 ht = calloc(1, sizeof(struct cds_lfht));
1390 assert(ht);
1391 ht->flags = flags;
1392 ht->flavor = flavor;
1393 ht->resize_attr = attr;
1394 alloc_split_items_count(ht);
1395 /* this mutex should not nest in read-side C.S. */
1396 pthread_mutex_init(&ht->resize_mutex, NULL);
1397 order = get_count_order_ulong(init_size);
1398 ht->t.resize_target = 1UL << order;
1399 ht->min_nr_alloc_buckets = min_nr_alloc_buckets;
1400 ht->min_alloc_buckets_order = get_count_order_ulong(min_nr_alloc_buckets);
1401 ht->max_nr_buckets = max_nr_buckets;
1402 cds_lfht_create_bucket(ht, 1UL << order);
1403 ht->t.size = 1UL << order;
1404 return ht;
1405}
1406
1407void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1408 cds_lfht_match_fct match, const void *key,
1409 struct cds_lfht_iter *iter)
1410{
1411 struct cds_lfht_node *node, *next, *bucket;
1412 unsigned long reverse_hash, size;
1413
1414 reverse_hash = bit_reverse_ulong(hash);
1415
1416 size = rcu_dereference(ht->t.size);
1417 bucket = lookup_bucket(ht, size, hash);
1418 /* We can always skip the bucket node initially */
1419 node = rcu_dereference(bucket->next);
1420 node = clear_flag(node);
1421 for (;;) {
1422 if (caa_unlikely(is_end(node))) {
1423 node = next = NULL;
1424 break;
1425 }
1426 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1427 node = next = NULL;
1428 break;
1429 }
1430 next = rcu_dereference(node->next);
1431 assert(node == clear_flag(node));
1432 if (caa_likely(!is_removed(next))
1433 && !is_bucket(next)
1434 && node->reverse_hash == reverse_hash
1435 && caa_likely(match(node, key))) {
1436 break;
1437 }
1438 node = clear_flag(next);
1439 }
1440 assert(!node || !is_bucket(rcu_dereference(node->next)));
1441 iter->node = node;
1442 iter->next = next;
1443}
1444
1445void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1446 const void *key, struct cds_lfht_iter *iter)
1447{
1448 struct cds_lfht_node *node, *next;
1449 unsigned long reverse_hash;
1450
1451 node = iter->node;
1452 reverse_hash = node->reverse_hash;
1453 next = iter->next;
1454 node = clear_flag(next);
1455
1456 for (;;) {
1457 if (caa_unlikely(is_end(node))) {
1458 node = next = NULL;
1459 break;
1460 }
1461 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1462 node = next = NULL;
1463 break;
1464 }
1465 next = rcu_dereference(node->next);
1466 if (caa_likely(!is_removed(next))
1467 && !is_bucket(next)
1468 && caa_likely(match(node, key))) {
1469 break;
1470 }
1471 node = clear_flag(next);
1472 }
1473 assert(!node || !is_bucket(rcu_dereference(node->next)));
1474 iter->node = node;
1475 iter->next = next;
1476}
1477
1478void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1479{
1480 struct cds_lfht_node *node, *next;
1481
1482 node = clear_flag(iter->next);
1483 for (;;) {
1484 if (caa_unlikely(is_end(node))) {
1485 node = next = NULL;
1486 break;
1487 }
1488 next = rcu_dereference(node->next);
1489 if (caa_likely(!is_removed(next))
1490 && !is_bucket(next)) {
1491 break;
1492 }
1493 node = clear_flag(next);
1494 }
1495 assert(!node || !is_bucket(rcu_dereference(node->next)));
1496 iter->node = node;
1497 iter->next = next;
1498}
1499
1500void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1501{
1502 /*
1503 * Get next after first bucket node. The first bucket node is the
1504 * first node of the linked list.
1505 */
1506 iter->next = bucket_at(ht, 0)->next;
1507 cds_lfht_next(ht, iter);
1508}
1509
1510void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1511 struct cds_lfht_node *node)
1512{
1513 unsigned long size;
1514
1515 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1516 size = rcu_dereference(ht->t.size);
1517 _cds_lfht_add(ht, NULL, NULL, size, node, NULL, 0);
1518 ht_count_add(ht, size, hash);
1519}
1520
1521struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1522 unsigned long hash,
1523 cds_lfht_match_fct match,
1524 const void *key,
1525 struct cds_lfht_node *node)
1526{
1527 unsigned long size;
1528 struct cds_lfht_iter iter;
1529
1530 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1531 size = rcu_dereference(ht->t.size);
1532 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1533 if (iter.node == node)
1534 ht_count_add(ht, size, hash);
1535 return iter.node;
1536}
1537
1538struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1539 unsigned long hash,
1540 cds_lfht_match_fct match,
1541 const void *key,
1542 struct cds_lfht_node *node)
1543{
1544 unsigned long size;
1545 struct cds_lfht_iter iter;
1546
1547 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1548 size = rcu_dereference(ht->t.size);
1549 for (;;) {
1550 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1551 if (iter.node == node) {
1552 ht_count_add(ht, size, hash);
1553 return NULL;
1554 }
1555
1556 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1557 return iter.node;
1558 }
1559}
1560
1561int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1562 struct cds_lfht_node *new_node)
1563{
1564 unsigned long size;
1565
1566 size = rcu_dereference(ht->t.size);
1567 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1568 new_node);
1569}
1570
1571int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1572{
1573 unsigned long size, hash;
1574 int ret;
1575
1576 size = rcu_dereference(ht->t.size);
1577 ret = _cds_lfht_del(ht, size, iter->node, 0);
1578 if (!ret) {
1579 hash = bit_reverse_ulong(iter->node->reverse_hash);
1580 ht_count_del(ht, size, hash);
1581 }
1582 return ret;
1583}
1584
1585static
1586int cds_lfht_delete_bucket(struct cds_lfht *ht)
1587{
1588 struct cds_lfht_node *node;
1589 unsigned long order, i, size;
1590
1591 /* Check that the table is empty */
1592 node = bucket_at(ht, 0);
1593 do {
1594 node = clear_flag(node)->next;
1595 if (!is_bucket(node))
1596 return -EPERM;
1597 assert(!is_removed(node));
1598 } while (!is_end(node));
1599 /*
1600 * size accessed without rcu_dereference because hash table is
1601 * being destroyed.
1602 */
1603 size = ht->t.size;
1604 /* Internal sanity check: all nodes left should be bucket */
1605 for (i = 0; i < size; i++) {
1606 node = bucket_at(ht, i);
1607 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1608 i, i, bit_reverse_ulong(node->reverse_hash));
1609 assert(is_bucket(node->next));
1610 }
1611
1612 for (order = get_count_order_ulong(size); (long)order >= 0; order--)
1613 cds_lfht_free_bucket_table(ht, order);
1614
1615 return 0;
1616}
1617
1618/*
1619 * Should only be called when no more concurrent readers nor writers can
1620 * possibly access the table.
1621 */
1622int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1623{
1624 int ret;
1625
1626 /* Wait for in-flight resize operations to complete */
1627 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1628 cmm_smp_mb(); /* Store destroy before load resize */
1629 while (uatomic_read(&ht->in_progress_resize))
1630 poll(NULL, 0, 100); /* wait for 100ms */
1631 ret = cds_lfht_delete_bucket(ht);
1632 if (ret)
1633 return ret;
1634 free_split_items_count(ht);
1635 if (attr)
1636 *attr = ht->resize_attr;
1637 poison_free(ht);
1638 return ret;
1639}
1640
1641void cds_lfht_count_nodes(struct cds_lfht *ht,
1642 long *approx_before,
1643 unsigned long *count,
1644 unsigned long *removed,
1645 long *approx_after)
1646{
1647 struct cds_lfht_node *node, *next;
1648 unsigned long nr_bucket = 0;
1649
1650 *approx_before = 0;
1651 if (ht->split_count) {
1652 int i;
1653
1654 for (i = 0; i < split_count_mask + 1; i++) {
1655 *approx_before += uatomic_read(&ht->split_count[i].add);
1656 *approx_before -= uatomic_read(&ht->split_count[i].del);
1657 }
1658 }
1659
1660 *count = 0;
1661 *removed = 0;
1662
1663 /* Count non-bucket nodes in the table */
1664 node = bucket_at(ht, 0);
1665 do {
1666 next = rcu_dereference(node->next);
1667 if (is_removed(next)) {
1668 if (!is_bucket(next))
1669 (*removed)++;
1670 else
1671 (nr_bucket)++;
1672 } else if (!is_bucket(next))
1673 (*count)++;
1674 else
1675 (nr_bucket)++;
1676 node = clear_flag(next);
1677 } while (!is_end(node));
1678 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1679 *approx_after = 0;
1680 if (ht->split_count) {
1681 int i;
1682
1683 for (i = 0; i < split_count_mask + 1; i++) {
1684 *approx_after += uatomic_read(&ht->split_count[i].add);
1685 *approx_after -= uatomic_read(&ht->split_count[i].del);
1686 }
1687 }
1688}
1689
1690/* called with resize mutex held */
1691static
1692void _do_cds_lfht_grow(struct cds_lfht *ht,
1693 unsigned long old_size, unsigned long new_size)
1694{
1695 unsigned long old_order, new_order;
1696
1697 old_order = get_count_order_ulong(old_size);
1698 new_order = get_count_order_ulong(new_size);
1699 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1700 old_size, old_order, new_size, new_order);
1701 assert(new_size > old_size);
1702 init_table(ht, old_order + 1, new_order);
1703}
1704
1705/* called with resize mutex held */
1706static
1707void _do_cds_lfht_shrink(struct cds_lfht *ht,
1708 unsigned long old_size, unsigned long new_size)
1709{
1710 unsigned long old_order, new_order;
1711
1712 new_size = max(new_size, MIN_TABLE_SIZE);
1713 old_order = get_count_order_ulong(old_size);
1714 new_order = get_count_order_ulong(new_size);
1715 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1716 old_size, old_order, new_size, new_order);
1717 assert(new_size < old_size);
1718
1719 /* Remove and unlink all bucket nodes to remove. */
1720 fini_table(ht, new_order + 1, old_order);
1721}
1722
1723
1724/* called with resize mutex held */
1725static
1726void _do_cds_lfht_resize(struct cds_lfht *ht)
1727{
1728 unsigned long new_size, old_size;
1729
1730 /*
1731 * Resize table, re-do if the target size has changed under us.
1732 */
1733 do {
1734 assert(uatomic_read(&ht->in_progress_resize));
1735 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1736 break;
1737 ht->t.resize_initiated = 1;
1738 old_size = ht->t.size;
1739 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1740 if (old_size < new_size)
1741 _do_cds_lfht_grow(ht, old_size, new_size);
1742 else if (old_size > new_size)
1743 _do_cds_lfht_shrink(ht, old_size, new_size);
1744 ht->t.resize_initiated = 0;
1745 /* write resize_initiated before read resize_target */
1746 cmm_smp_mb();
1747 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1748}
1749
1750static
1751unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1752{
1753 return _uatomic_xchg_monotonic_increase(&ht->t.resize_target, new_size);
1754}
1755
1756static
1757void resize_target_update_count(struct cds_lfht *ht,
1758 unsigned long count)
1759{
1760 count = max(count, MIN_TABLE_SIZE);
1761 count = min(count, ht->max_nr_buckets);
1762 uatomic_set(&ht->t.resize_target, count);
1763}
1764
1765void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1766{
1767 resize_target_update_count(ht, new_size);
1768 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1769 ht->flavor->thread_offline();
1770 pthread_mutex_lock(&ht->resize_mutex);
1771 _do_cds_lfht_resize(ht);
1772 pthread_mutex_unlock(&ht->resize_mutex);
1773 ht->flavor->thread_online();
1774}
1775
1776static
1777void do_resize_cb(struct rcu_head *head)
1778{
1779 struct rcu_resize_work *work =
1780 caa_container_of(head, struct rcu_resize_work, head);
1781 struct cds_lfht *ht = work->ht;
1782
1783 ht->flavor->thread_offline();
1784 pthread_mutex_lock(&ht->resize_mutex);
1785 _do_cds_lfht_resize(ht);
1786 pthread_mutex_unlock(&ht->resize_mutex);
1787 ht->flavor->thread_online();
1788 poison_free(work);
1789 cmm_smp_mb(); /* finish resize before decrement */
1790 uatomic_dec(&ht->in_progress_resize);
1791}
1792
1793static
1794void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1795{
1796 struct rcu_resize_work *work;
1797
1798 /* Store resize_target before read resize_initiated */
1799 cmm_smp_mb();
1800 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1801 uatomic_inc(&ht->in_progress_resize);
1802 cmm_smp_mb(); /* increment resize count before load destroy */
1803 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1804 uatomic_dec(&ht->in_progress_resize);
1805 return;
1806 }
1807 work = malloc(sizeof(*work));
1808 work->ht = ht;
1809 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
1810 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1811 }
1812}
1813
1814static
1815void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1816{
1817 unsigned long target_size = size << growth;
1818
1819 target_size = min(target_size, ht->max_nr_buckets);
1820 if (resize_target_grow(ht, target_size) >= target_size)
1821 return;
1822
1823 __cds_lfht_resize_lazy_launch(ht);
1824}
1825
1826/*
1827 * We favor grow operations over shrink. A shrink operation never occurs
1828 * if a grow operation is queued for lazy execution. A grow operation
1829 * cancels any pending shrink lazy execution.
1830 */
1831static
1832void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1833 unsigned long count)
1834{
1835 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1836 return;
1837 count = max(count, MIN_TABLE_SIZE);
1838 count = min(count, ht->max_nr_buckets);
1839 if (count == size)
1840 return; /* Already the right size, no resize needed */
1841 if (count > size) { /* lazy grow */
1842 if (resize_target_grow(ht, count) >= count)
1843 return;
1844 } else { /* lazy shrink */
1845 for (;;) {
1846 unsigned long s;
1847
1848 s = uatomic_cmpxchg(&ht->t.resize_target, size, count);
1849 if (s == size)
1850 break; /* no resize needed */
1851 if (s > size)
1852 return; /* growing is/(was just) in progress */
1853 if (s <= count)
1854 return; /* some other thread do shrink */
1855 size = s;
1856 }
1857 }
1858 __cds_lfht_resize_lazy_launch(ht);
1859}
This page took 0.04896 seconds and 4 git commands to generate.