cleanup: all functions have declarations (-Wmissing-prototypes)
[urcu.git] / src / rculfhash.c
CommitLineData
5e28c532 1/*
abc490a1
MD
2 * rculfhash.c
3 *
1475579c 4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
abc490a1
MD
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
0dcf4847 7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
abc490a1
MD
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
5e28c532
MD
22 */
23
e753ff5a
MD
24/*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
1475579c 33 * Some specificities of this Lock-Free Resizable RCU Hash Table
e753ff5a
MD
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
1f67ba50
MD
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
e753ff5a
MD
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
1f67ba50
MD
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
e753ff5a
MD
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
1ee8f000 52 * - An index of bucket nodes is kept. These bucket nodes are the hash
1f67ba50
MD
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
1475579c
MD
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
4c42f1b8 64 * - Split-counters are used to keep track of the number of
1475579c 65 * nodes within the hash table for automatic resize triggering.
e753ff5a 66 * - Resize operation initiated by long chain detection is executed by a
d0ec0ed2 67 * worker thread, which keeps lock-freedom of add and remove.
e753ff5a
MD
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
5c4ca589
MD
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
1f67ba50 89 * linked-list (the start node is never removed) and that it does not
5c4ca589
MD
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
1f67ba50
MD
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
29e669f6
MD
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
1f67ba50
MD
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
5f177b1c 113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
93d46c39 114 *
7f949215 115 * Ordering Guarantees:
0f5543cb 116 *
7f949215
MD
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
67ecffc0 120 * cds_lfht_add_unique (failure).
7f949215
MD
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
0f5543cb 124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
7f949215
MD
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
0f5543cb 131 *
bf09adc7 132 * We define "write" operations as any of cds_lfht_add, cds_lfht_replace,
7f949215
MD
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
0f5543cb 206 *
1ee8f000 207 * Bucket node tables:
93d46c39 208 *
1ee8f000
LJ
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
93d46c39
LJ
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
1ee8f000 220 * When growing/shrinking, we only focus on the last bucket node table
93d46c39
LJ
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
1ee8f000
LJ
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
93d46c39 226 *
1475579c 227 * A bit of ascii art explanation:
67ecffc0 228 *
1f67ba50
MD
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
67ecffc0 231 *
1475579c 232 * This shows the nodes for a small table ordered by reversed bits:
67ecffc0 233 *
1475579c
MD
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
67ecffc0
MD
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
1475579c 245 * reversed-bit order.
67ecffc0 246 *
1475579c
MD
247 * order bits reverse
248 * 0 0 000 000
0adc36a8
LJ
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
f6fdd688 251 * | | | 3 011 110 | <- |
1475579c
MD
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
e753ff5a
MD
256 */
257
2ed95849
MD
258#define _LGPL_SOURCE
259#include <stdlib.h>
e0ba718a
MD
260#include <errno.h>
261#include <assert.h>
262#include <stdio.h>
abc490a1 263#include <stdint.h>
f000907d 264#include <string.h>
125f41db 265#include <sched.h>
95747f9e 266#include <unistd.h>
e0ba718a 267
a47dd11c 268#include "compat-getcpu.h"
6cd23d47
MD
269#include <urcu/pointer.h>
270#include <urcu/call-rcu.h>
271#include <urcu/flavor.h>
a42cc659
MD
272#include <urcu/arch.h>
273#include <urcu/uatomic.h>
a42cc659 274#include <urcu/compiler.h>
abc490a1 275#include <urcu/rculfhash.h>
1a990de3 276#include <urcu/static/urcu-signal-nr.h>
0b6aa001 277#include <rculfhash-internal.h>
5e28c532 278#include <stdio.h>
464a1ec9 279#include <pthread.h>
d0ec0ed2
MD
280#include <signal.h>
281#include "workqueue.h"
282#include "urcu-die.h"
83e334d0 283#include "urcu-utils.h"
44395fb7 284
f8994aee 285/*
4c42f1b8 286 * Split-counters lazily update the global counter each 1024
f8994aee
MD
287 * addition/removal. It automatically keeps track of resize required.
288 * We use the bucket length as indicator for need to expand for small
ffa11a18 289 * tables and machines lacking per-cpu data support.
f8994aee
MD
290 */
291#define COUNT_COMMIT_ORDER 10
4ddbb355 292#define DEFAULT_SPLIT_COUNT_MASK 0xFUL
6ea6bc67
MD
293#define CHAIN_LEN_TARGET 1
294#define CHAIN_LEN_RESIZE_THRESHOLD 3
2ed95849 295
cd95516d 296/*
76a73da8 297 * Define the minimum table size.
cd95516d 298 */
d0d8f9aa
LJ
299#define MIN_TABLE_ORDER 0
300#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
cd95516d 301
b7d619b0 302/*
1ee8f000 303 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
b7d619b0 304 */
6083a889
MD
305#define MIN_PARTITION_PER_THREAD_ORDER 12
306#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
b7d619b0 307
d95bd160
MD
308/*
309 * The removed flag needs to be updated atomically with the pointer.
48ed1c18 310 * It indicates that no node must attach to the node scheduled for
b198f0fd 311 * removal, and that node garbage collection must be performed.
1ee8f000 312 * The bucket flag does not require to be updated atomically with the
d95bd160 313 * pointer, but it is added as a pointer low bit flag to save space.
1f67ba50
MD
314 * The "removal owner" flag is used to detect which of the "del"
315 * operation that has set the "removed flag" gets to return the removed
316 * node to its caller. Note that the replace operation does not need to
317 * iteract with the "removal owner" flag, because it validates that
318 * the "removed" flag is not set before performing its cmpxchg.
d95bd160 319 */
d37166c6 320#define REMOVED_FLAG (1UL << 0)
1ee8f000 321#define BUCKET_FLAG (1UL << 1)
db00ccc3
MD
322#define REMOVAL_OWNER_FLAG (1UL << 2)
323#define FLAGS_MASK ((1UL << 3) - 1)
d37166c6 324
bb7b2f26 325/* Value of the end pointer. Should not interact with flags. */
f9c80341 326#define END_VALUE NULL
bb7b2f26 327
7f52427b
MD
328/*
329 * ht_items_count: Split-counters counting the number of node addition
330 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
331 * is set at hash table creation.
332 *
333 * These are free-running counters, never reset to zero. They count the
334 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
335 * operations to update the global counter. We choose a power-of-2 value
336 * for the trigger to deal with 32 or 64-bit overflow of the counter.
337 */
df44348d 338struct ht_items_count {
860d07e8 339 unsigned long add, del;
df44348d
MD
340} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
341
7f52427b 342/*
d0ec0ed2 343 * resize_work: Contains arguments passed to worker thread
7f52427b
MD
344 * responsible for performing lazy resize.
345 */
d0ec0ed2
MD
346struct resize_work {
347 struct urcu_work work;
14044b37 348 struct cds_lfht *ht;
abc490a1 349};
2ed95849 350
7f52427b
MD
351/*
352 * partition_resize_work: Contains arguments passed to worker threads
353 * executing the hash table resize on partitions of the hash table
354 * assigned to each processor's worker thread.
355 */
b7d619b0 356struct partition_resize_work {
1af6e26e 357 pthread_t thread_id;
b7d619b0
MD
358 struct cds_lfht *ht;
359 unsigned long i, start, len;
360 void (*fct)(struct cds_lfht *ht, unsigned long i,
361 unsigned long start, unsigned long len);
362};
363
d0ec0ed2
MD
364static struct urcu_workqueue *cds_lfht_workqueue;
365static unsigned long cds_lfht_workqueue_user_count;
366
367/*
368 * Mutex ensuring mutual exclusion between workqueue initialization and
369 * fork handlers. cds_lfht_fork_mutex nests inside call_rcu_mutex.
370 */
371static pthread_mutex_t cds_lfht_fork_mutex = PTHREAD_MUTEX_INITIALIZER;
372
373static struct urcu_atfork cds_lfht_atfork;
374
375/*
376 * atfork handler nesting counters. Handle being registered to many urcu
377 * flavors, thus being possibly invoked more than once in the
378 * pthread_atfork list of callbacks.
379 */
380static int cds_lfht_workqueue_atfork_nesting;
381
382static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor);
383static void cds_lfht_fini_worker(const struct rcu_flavor_struct *flavor);
384
d7c76f85
MD
385#ifdef CONFIG_CDS_LFHT_ITER_DEBUG
386
387static
388void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht, struct cds_lfht_iter *iter)
389{
390 iter->lfht = ht;
391}
392
393#define cds_lfht_iter_debug_assert(...) assert(__VA_ARGS__)
394
395#else
396
397static
398void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht, struct cds_lfht_iter *iter)
399{
400}
401
402#define cds_lfht_iter_debug_assert(...)
403
404#endif
405
abc490a1
MD
406/*
407 * Algorithm to reverse bits in a word by lookup table, extended to
408 * 64-bit words.
f9830efd 409 * Source:
abc490a1 410 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
f9830efd 411 * Originally from Public Domain.
abc490a1
MD
412 */
413
67ecffc0 414static const uint8_t BitReverseTable256[256] =
2ed95849 415{
abc490a1
MD
416#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
417#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
418#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
419 R6(0), R6(2), R6(1), R6(3)
420};
421#undef R2
422#undef R4
423#undef R6
2ed95849 424
abc490a1
MD
425static
426uint8_t bit_reverse_u8(uint8_t v)
427{
428 return BitReverseTable256[v];
429}
ab7d5fc6 430
95bc7fb9
MD
431#if (CAA_BITS_PER_LONG == 32)
432static
abc490a1
MD
433uint32_t bit_reverse_u32(uint32_t v)
434{
67ecffc0
MD
435 return ((uint32_t) bit_reverse_u8(v) << 24) |
436 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
437 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
abc490a1 438 ((uint32_t) bit_reverse_u8(v >> 24));
2ed95849 439}
95bc7fb9
MD
440#else
441static
abc490a1 442uint64_t bit_reverse_u64(uint64_t v)
2ed95849 443{
67ecffc0
MD
444 return ((uint64_t) bit_reverse_u8(v) << 56) |
445 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
abc490a1
MD
446 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
447 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
67ecffc0
MD
448 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
449 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
abc490a1
MD
450 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
451 ((uint64_t) bit_reverse_u8(v >> 56));
452}
95bc7fb9 453#endif
abc490a1
MD
454
455static
456unsigned long bit_reverse_ulong(unsigned long v)
457{
458#if (CAA_BITS_PER_LONG == 32)
459 return bit_reverse_u32(v);
460#else
461 return bit_reverse_u64(v);
462#endif
463}
464
f9830efd 465/*
24365af7
MD
466 * fls: returns the position of the most significant bit.
467 * Returns 0 if no bit is set, else returns the position of the most
468 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
f9830efd 469 */
0b1e236d 470#if defined(URCU_ARCH_X86)
24365af7
MD
471static inline
472unsigned int fls_u32(uint32_t x)
f9830efd 473{
24365af7
MD
474 int r;
475
e1789ce2 476 __asm__ ("bsrl %1,%0\n\t"
24365af7
MD
477 "jnz 1f\n\t"
478 "movl $-1,%0\n\t"
479 "1:\n\t"
480 : "=r" (r) : "rm" (x));
481 return r + 1;
482}
483#define HAS_FLS_U32
484#endif
485
0b1e236d 486#if defined(URCU_ARCH_AMD64)
24365af7
MD
487static inline
488unsigned int fls_u64(uint64_t x)
489{
490 long r;
491
e1789ce2 492 __asm__ ("bsrq %1,%0\n\t"
24365af7
MD
493 "jnz 1f\n\t"
494 "movq $-1,%0\n\t"
495 "1:\n\t"
496 : "=r" (r) : "rm" (x));
497 return r + 1;
498}
499#define HAS_FLS_U64
500#endif
501
502#ifndef HAS_FLS_U64
503static __attribute__((unused))
504unsigned int fls_u64(uint64_t x)
505{
506 unsigned int r = 64;
507
508 if (!x)
509 return 0;
510
511 if (!(x & 0xFFFFFFFF00000000ULL)) {
512 x <<= 32;
513 r -= 32;
514 }
515 if (!(x & 0xFFFF000000000000ULL)) {
516 x <<= 16;
517 r -= 16;
518 }
519 if (!(x & 0xFF00000000000000ULL)) {
520 x <<= 8;
521 r -= 8;
522 }
523 if (!(x & 0xF000000000000000ULL)) {
524 x <<= 4;
525 r -= 4;
526 }
527 if (!(x & 0xC000000000000000ULL)) {
528 x <<= 2;
529 r -= 2;
530 }
531 if (!(x & 0x8000000000000000ULL)) {
532 x <<= 1;
533 r -= 1;
534 }
535 return r;
536}
537#endif
538
539#ifndef HAS_FLS_U32
540static __attribute__((unused))
541unsigned int fls_u32(uint32_t x)
542{
543 unsigned int r = 32;
f9830efd 544
24365af7
MD
545 if (!x)
546 return 0;
547 if (!(x & 0xFFFF0000U)) {
548 x <<= 16;
549 r -= 16;
550 }
551 if (!(x & 0xFF000000U)) {
552 x <<= 8;
553 r -= 8;
554 }
555 if (!(x & 0xF0000000U)) {
556 x <<= 4;
557 r -= 4;
558 }
559 if (!(x & 0xC0000000U)) {
560 x <<= 2;
561 r -= 2;
562 }
563 if (!(x & 0x80000000U)) {
564 x <<= 1;
565 r -= 1;
566 }
567 return r;
568}
569#endif
570
5bc6b66f 571unsigned int cds_lfht_fls_ulong(unsigned long x)
f9830efd 572{
6887cc5e 573#if (CAA_BITS_PER_LONG == 32)
24365af7
MD
574 return fls_u32(x);
575#else
576 return fls_u64(x);
577#endif
578}
f9830efd 579
920f8ef6
LJ
580/*
581 * Return the minimum order for which x <= (1UL << order).
582 * Return -1 if x is 0.
583 */
61c3fb60 584static
5bc6b66f 585int cds_lfht_get_count_order_u32(uint32_t x)
24365af7 586{
920f8ef6
LJ
587 if (!x)
588 return -1;
24365af7 589
920f8ef6 590 return fls_u32(x - 1);
24365af7
MD
591}
592
920f8ef6
LJ
593/*
594 * Return the minimum order for which x <= (1UL << order).
595 * Return -1 if x is 0.
596 */
5bc6b66f 597int cds_lfht_get_count_order_ulong(unsigned long x)
24365af7 598{
920f8ef6
LJ
599 if (!x)
600 return -1;
24365af7 601
5bc6b66f 602 return cds_lfht_fls_ulong(x - 1);
f9830efd
MD
603}
604
605static
ab65b890 606void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
f9830efd 607
f8994aee 608static
4105056a 609void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
f8994aee
MD
610 unsigned long count);
611
5ffcaeef
MD
612static void mutex_lock(pthread_mutex_t *mutex)
613{
614 int ret;
615
616#ifndef DISTRUST_SIGNALS_EXTREME
617 ret = pthread_mutex_lock(mutex);
618 if (ret)
619 urcu_die(ret);
620#else /* #ifndef DISTRUST_SIGNALS_EXTREME */
621 while ((ret = pthread_mutex_trylock(mutex)) != 0) {
622 if (ret != EBUSY && ret != EINTR)
623 urcu_die(ret);
624 if (CMM_LOAD_SHARED(URCU_TLS(rcu_reader).need_mb)) {
625 cmm_smp_mb();
626 _CMM_STORE_SHARED(URCU_TLS(rcu_reader).need_mb, 0);
627 cmm_smp_mb();
628 }
629 (void) poll(NULL, 0, 10);
630 }
631#endif /* #else #ifndef DISTRUST_SIGNALS_EXTREME */
632}
633
634static void mutex_unlock(pthread_mutex_t *mutex)
635{
636 int ret;
637
638 ret = pthread_mutex_unlock(mutex);
639 if (ret)
640 urcu_die(ret);
641}
642
df44348d 643static long nr_cpus_mask = -1;
4c42f1b8 644static long split_count_mask = -1;
e53ab1eb 645static int split_count_order = -1;
4c42f1b8 646
4ddbb355 647#if defined(HAVE_SYSCONF)
4c42f1b8
LJ
648static void ht_init_nr_cpus_mask(void)
649{
650 long maxcpus;
651
652 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
653 if (maxcpus <= 0) {
654 nr_cpus_mask = -2;
655 return;
656 }
657 /*
658 * round up number of CPUs to next power of two, so we
659 * can use & for modulo.
660 */
5bc6b66f 661 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
4c42f1b8
LJ
662 nr_cpus_mask = maxcpus - 1;
663}
4ddbb355
LJ
664#else /* #if defined(HAVE_SYSCONF) */
665static void ht_init_nr_cpus_mask(void)
666{
667 nr_cpus_mask = -2;
668}
669#endif /* #else #if defined(HAVE_SYSCONF) */
df44348d
MD
670
671static
5afadd12 672void alloc_split_items_count(struct cds_lfht *ht)
df44348d 673{
4c42f1b8
LJ
674 if (nr_cpus_mask == -1) {
675 ht_init_nr_cpus_mask();
4ddbb355
LJ
676 if (nr_cpus_mask < 0)
677 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
678 else
679 split_count_mask = nr_cpus_mask;
e53ab1eb
MD
680 split_count_order =
681 cds_lfht_get_count_order_ulong(split_count_mask + 1);
df44348d 682 }
4c42f1b8 683
4ddbb355 684 assert(split_count_mask >= 0);
5afadd12
LJ
685
686 if (ht->flags & CDS_LFHT_ACCOUNTING) {
95bc7fb9
MD
687 ht->split_count = calloc(split_count_mask + 1,
688 sizeof(struct ht_items_count));
5afadd12
LJ
689 assert(ht->split_count);
690 } else {
691 ht->split_count = NULL;
692 }
df44348d
MD
693}
694
695static
5afadd12 696void free_split_items_count(struct cds_lfht *ht)
df44348d 697{
5afadd12 698 poison_free(ht->split_count);
df44348d
MD
699}
700
701static
14360f1c 702int ht_get_split_count_index(unsigned long hash)
df44348d
MD
703{
704 int cpu;
705
4c42f1b8 706 assert(split_count_mask >= 0);
a47dd11c 707 cpu = urcu_sched_getcpu();
8ed51e04 708 if (caa_unlikely(cpu < 0))
14360f1c 709 return hash & split_count_mask;
df44348d 710 else
4c42f1b8 711 return cpu & split_count_mask;
df44348d
MD
712}
713
714static
14360f1c 715void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 716{
83e334d0 717 unsigned long split_count, count;
4c42f1b8 718 int index;
df44348d 719
8ed51e04 720 if (caa_unlikely(!ht->split_count))
3171717f 721 return;
14360f1c 722 index = ht_get_split_count_index(hash);
4c42f1b8 723 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
314558bf
MD
724 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
725 return;
726 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
727
728 dbg_printf("add split count %lu\n", split_count);
729 count = uatomic_add_return(&ht->count,
730 1UL << COUNT_COMMIT_ORDER);
4c299dcb 731 if (caa_likely(count & (count - 1)))
314558bf
MD
732 return;
733 /* Only if global count is power of 2 */
734
735 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
736 return;
83e334d0 737 dbg_printf("add set global %lu\n", count);
314558bf
MD
738 cds_lfht_resize_lazy_count(ht, size,
739 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
740}
741
742static
14360f1c 743void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 744{
83e334d0 745 unsigned long split_count, count;
4c42f1b8 746 int index;
df44348d 747
8ed51e04 748 if (caa_unlikely(!ht->split_count))
3171717f 749 return;
14360f1c 750 index = ht_get_split_count_index(hash);
4c42f1b8 751 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
314558bf
MD
752 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
753 return;
754 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
755
756 dbg_printf("del split count %lu\n", split_count);
757 count = uatomic_add_return(&ht->count,
758 -(1UL << COUNT_COMMIT_ORDER));
4c299dcb 759 if (caa_likely(count & (count - 1)))
314558bf
MD
760 return;
761 /* Only if global count is power of 2 */
762
763 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
764 return;
765 dbg_printf("del set global %ld\n", count);
766 /*
767 * Don't shrink table if the number of nodes is below a
768 * certain threshold.
769 */
770 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
771 return;
772 cds_lfht_resize_lazy_count(ht, size,
773 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
774}
775
f9830efd 776static
4105056a 777void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
f9830efd 778{
f8994aee
MD
779 unsigned long count;
780
b8af5011
MD
781 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
782 return;
f8994aee
MD
783 count = uatomic_read(&ht->count);
784 /*
785 * Use bucket-local length for small table expand and for
786 * environments lacking per-cpu data support.
787 */
e53ab1eb 788 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
f8994aee 789 return;
24365af7 790 if (chain_len > 100)
f0c29ed7 791 dbg_printf("WARNING: large chain length: %u.\n",
24365af7 792 chain_len);
e53ab1eb
MD
793 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
794 int growth;
795
796 /*
797 * Ideal growth calculated based on chain length.
798 */
799 growth = cds_lfht_get_count_order_u32(chain_len
800 - (CHAIN_LEN_TARGET - 1));
801 if ((ht->flags & CDS_LFHT_ACCOUNTING)
802 && (size << growth)
803 >= (1UL << (COUNT_COMMIT_ORDER
804 + split_count_order))) {
805 /*
806 * If ideal growth expands the hash table size
807 * beyond the "small hash table" sizes, use the
808 * maximum small hash table size to attempt
809 * expanding the hash table. This only applies
810 * when node accounting is available, otherwise
811 * the chain length is used to expand the hash
812 * table in every case.
813 */
814 growth = COUNT_COMMIT_ORDER + split_count_order
815 - cds_lfht_get_count_order_ulong(size);
816 if (growth <= 0)
817 return;
818 }
819 cds_lfht_resize_lazy_grow(ht, size, growth);
820 }
f9830efd
MD
821}
822
abc490a1 823static
14044b37 824struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
abc490a1 825{
14044b37 826 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
abc490a1
MD
827}
828
829static
afa5940d 830int is_removed(const struct cds_lfht_node *node)
abc490a1 831{
d37166c6 832 return ((unsigned long) node) & REMOVED_FLAG;
abc490a1
MD
833}
834
f5596c94 835static
1ee8f000 836int is_bucket(struct cds_lfht_node *node)
f5596c94 837{
1ee8f000 838 return ((unsigned long) node) & BUCKET_FLAG;
f5596c94
MD
839}
840
841static
1ee8f000 842struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
f5596c94 843{
1ee8f000 844 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
f5596c94 845}
bb7b2f26 846
db00ccc3
MD
847static
848int is_removal_owner(struct cds_lfht_node *node)
849{
850 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
851}
852
853static
854struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
855{
856 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
857}
858
71bb3aca
MD
859static
860struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
861{
862 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
863}
864
bb7b2f26
MD
865static
866struct cds_lfht_node *get_end(void)
867{
868 return (struct cds_lfht_node *) END_VALUE;
869}
870
871static
872int is_end(struct cds_lfht_node *node)
873{
874 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
875}
876
abc490a1 877static
ab65b890
LJ
878unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
879 unsigned long v)
abc490a1
MD
880{
881 unsigned long old1, old2;
882
883 old1 = uatomic_read(ptr);
884 do {
885 old2 = old1;
886 if (old2 >= v)
f9830efd 887 return old2;
abc490a1 888 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
ab65b890 889 return old2;
abc490a1
MD
890}
891
48f1b16d
LJ
892static
893void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
894{
0b6aa001 895 return ht->mm->alloc_bucket_table(ht, order);
48f1b16d
LJ
896}
897
898/*
899 * cds_lfht_free_bucket_table() should be called with decreasing order.
900 * When cds_lfht_free_bucket_table(0) is called, it means the whole
901 * lfht is destroyed.
902 */
903static
904void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
905{
0b6aa001 906 return ht->mm->free_bucket_table(ht, order);
48f1b16d
LJ
907}
908
9d72a73f
LJ
909static inline
910struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
f4a9cc0b 911{
0b6aa001 912 return ht->bucket_at(ht, index);
f4a9cc0b
LJ
913}
914
9d72a73f
LJ
915static inline
916struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
917 unsigned long hash)
918{
919 assert(size > 0);
920 return bucket_at(ht, hash & (size - 1));
921}
922
273399de
MD
923/*
924 * Remove all logically deleted nodes from a bucket up to a certain node key.
925 */
926static
1ee8f000 927void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
273399de 928{
14044b37 929 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
273399de 930
1ee8f000
LJ
931 assert(!is_bucket(bucket));
932 assert(!is_removed(bucket));
2f943cd7 933 assert(!is_removal_owner(bucket));
1ee8f000 934 assert(!is_bucket(node));
c90201ac 935 assert(!is_removed(node));
2f943cd7 936 assert(!is_removal_owner(node));
273399de 937 for (;;) {
1ee8f000
LJ
938 iter_prev = bucket;
939 /* We can always skip the bucket node initially */
04db56f8 940 iter = rcu_dereference(iter_prev->next);
b4cb483f 941 assert(!is_removed(iter));
2f943cd7 942 assert(!is_removal_owner(iter));
04db56f8 943 assert(iter_prev->reverse_hash <= node->reverse_hash);
bd4db153 944 /*
1ee8f000 945 * We should never be called with bucket (start of chain)
bd4db153
MD
946 * and logically removed node (end of path compression
947 * marker) being the actual same node. This would be a
948 * bug in the algorithm implementation.
949 */
1ee8f000 950 assert(bucket != node);
273399de 951 for (;;) {
8ed51e04 952 if (caa_unlikely(is_end(iter)))
f9c80341 953 return;
04db56f8 954 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
f9c80341 955 return;
04db56f8 956 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 957 if (caa_likely(is_removed(next)))
273399de 958 break;
b453eae1 959 iter_prev = clear_flag(iter);
273399de
MD
960 iter = next;
961 }
b198f0fd 962 assert(!is_removed(iter));
2f943cd7 963 assert(!is_removal_owner(iter));
1ee8f000
LJ
964 if (is_bucket(iter))
965 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
966 else
967 new_next = clear_flag(next);
04db56f8 968 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de
MD
969 }
970}
971
9357c415
MD
972static
973int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
974 struct cds_lfht_node *old_node,
3fb86f26 975 struct cds_lfht_node *old_next,
9357c415
MD
976 struct cds_lfht_node *new_node)
977{
04db56f8 978 struct cds_lfht_node *bucket, *ret_next;
9357c415
MD
979
980 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
7801dadd 981 return -ENOENT;
9357c415
MD
982
983 assert(!is_removed(old_node));
2f943cd7 984 assert(!is_removal_owner(old_node));
1ee8f000 985 assert(!is_bucket(old_node));
9357c415 986 assert(!is_removed(new_node));
2f943cd7 987 assert(!is_removal_owner(new_node));
1ee8f000 988 assert(!is_bucket(new_node));
9357c415 989 assert(new_node != old_node);
3fb86f26 990 for (;;) {
9357c415 991 /* Insert after node to be replaced */
9357c415
MD
992 if (is_removed(old_next)) {
993 /*
994 * Too late, the old node has been removed under us
995 * between lookup and replace. Fail.
996 */
7801dadd 997 return -ENOENT;
9357c415 998 }
feda2722
LJ
999 assert(old_next == clear_flag(old_next));
1000 assert(new_node != old_next);
71bb3aca
MD
1001 /*
1002 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
1003 * flag. It is either set atomically at the same time
1004 * (replace) or after (del).
1005 */
1006 assert(!is_removal_owner(old_next));
feda2722 1007 new_node->next = old_next;
9357c415
MD
1008 /*
1009 * Here is the whole trick for lock-free replace: we add
1010 * the replacement node _after_ the node we want to
1011 * replace by atomically setting its next pointer at the
1012 * same time we set its removal flag. Given that
1013 * the lookups/get next use an iterator aware of the
1014 * next pointer, they will either skip the old node due
1015 * to the removal flag and see the new node, or use
1016 * the old node, but will not see the new one.
db00ccc3
MD
1017 * This is a replacement of a node with another node
1018 * that has the same value: we are therefore not
71bb3aca
MD
1019 * removing a value from the hash table. We set both the
1020 * REMOVED and REMOVAL_OWNER flags atomically so we own
1021 * the node after successful cmpxchg.
9357c415 1022 */
04db56f8 1023 ret_next = uatomic_cmpxchg(&old_node->next,
71bb3aca 1024 old_next, flag_removed_or_removal_owner(new_node));
3fb86f26 1025 if (ret_next == old_next)
7801dadd 1026 break; /* We performed the replacement. */
3fb86f26
LJ
1027 old_next = ret_next;
1028 }
9357c415 1029
9357c415
MD
1030 /*
1031 * Ensure that the old node is not visible to readers anymore:
1032 * lookup for the node, and remove it (along with any other
1033 * logically removed node) if found.
1034 */
04db56f8
LJ
1035 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
1036 _cds_lfht_gc_bucket(bucket, new_node);
7801dadd 1037
a85eff52 1038 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
7801dadd 1039 return 0;
9357c415
MD
1040}
1041
83beee94
MD
1042/*
1043 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
1044 * mode. A NULL unique_ret allows creation of duplicate keys.
1045 */
abc490a1 1046static
83beee94 1047void _cds_lfht_add(struct cds_lfht *ht,
91a75cc5 1048 unsigned long hash,
0422d92c 1049 cds_lfht_match_fct match,
996ff57c 1050 const void *key,
83beee94
MD
1051 unsigned long size,
1052 struct cds_lfht_node *node,
1053 struct cds_lfht_iter *unique_ret,
1ee8f000 1054 int bucket_flag)
abc490a1 1055{
14044b37 1056 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
960c9e4f 1057 *return_node;
04db56f8 1058 struct cds_lfht_node *bucket;
abc490a1 1059
1ee8f000 1060 assert(!is_bucket(node));
c90201ac 1061 assert(!is_removed(node));
2f943cd7 1062 assert(!is_removal_owner(node));
91a75cc5 1063 bucket = lookup_bucket(ht, size, hash);
abc490a1 1064 for (;;) {
adc0de68 1065 uint32_t chain_len = 0;
abc490a1 1066
11519af6
MD
1067 /*
1068 * iter_prev points to the non-removed node prior to the
1069 * insert location.
11519af6 1070 */
04db56f8 1071 iter_prev = bucket;
1ee8f000 1072 /* We can always skip the bucket node initially */
04db56f8
LJ
1073 iter = rcu_dereference(iter_prev->next);
1074 assert(iter_prev->reverse_hash <= node->reverse_hash);
abc490a1 1075 for (;;) {
8ed51e04 1076 if (caa_unlikely(is_end(iter)))
273399de 1077 goto insert;
04db56f8 1078 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
273399de 1079 goto insert;
238cc06e 1080
1ee8f000
LJ
1081 /* bucket node is the first node of the identical-hash-value chain */
1082 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
194fdbd1 1083 goto insert;
238cc06e 1084
04db56f8 1085 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 1086 if (caa_unlikely(is_removed(next)))
9dba85be 1087 goto gc_node;
238cc06e
LJ
1088
1089 /* uniquely add */
83beee94 1090 if (unique_ret
1ee8f000 1091 && !is_bucket(next)
04db56f8 1092 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
d7c76f85
MD
1093 struct cds_lfht_iter d_iter = {
1094 .node = node,
1095 .next = iter,
1096#ifdef CONFIG_CDS_LFHT_ITER_DEBUG
1097 .lfht = ht,
1098#endif
1099 };
238cc06e
LJ
1100
1101 /*
1102 * uniquely adding inserts the node as the first
1103 * node of the identical-hash-value node chain.
1104 *
1105 * This semantic ensures no duplicated keys
1106 * should ever be observable in the table
1f67ba50
MD
1107 * (including traversing the table node by
1108 * node by forward iterations)
238cc06e 1109 */
04db56f8 1110 cds_lfht_next_duplicate(ht, match, key, &d_iter);
238cc06e
LJ
1111 if (!d_iter.node)
1112 goto insert;
1113
1114 *unique_ret = d_iter;
83beee94 1115 return;
48ed1c18 1116 }
238cc06e 1117
11519af6 1118 /* Only account for identical reverse hash once */
04db56f8 1119 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1ee8f000 1120 && !is_bucket(next))
4105056a 1121 check_resize(ht, size, ++chain_len);
11519af6 1122 iter_prev = clear_flag(iter);
273399de 1123 iter = next;
abc490a1 1124 }
48ed1c18 1125
273399de 1126 insert:
7ec59d3b 1127 assert(node != clear_flag(iter));
11519af6 1128 assert(!is_removed(iter_prev));
2f943cd7 1129 assert(!is_removal_owner(iter_prev));
c90201ac 1130 assert(!is_removed(iter));
2f943cd7 1131 assert(!is_removal_owner(iter));
f000907d 1132 assert(iter_prev != node);
1ee8f000 1133 if (!bucket_flag)
04db56f8 1134 node->next = clear_flag(iter);
f9c80341 1135 else
1ee8f000
LJ
1136 node->next = flag_bucket(clear_flag(iter));
1137 if (is_bucket(iter))
1138 new_node = flag_bucket(node);
f5596c94
MD
1139 else
1140 new_node = node;
04db56f8 1141 if (uatomic_cmpxchg(&iter_prev->next, iter,
48ed1c18 1142 new_node) != iter) {
273399de 1143 continue; /* retry */
48ed1c18 1144 } else {
83beee94 1145 return_node = node;
960c9e4f 1146 goto end;
48ed1c18
MD
1147 }
1148
9dba85be
MD
1149 gc_node:
1150 assert(!is_removed(iter));
2f943cd7 1151 assert(!is_removal_owner(iter));
1ee8f000
LJ
1152 if (is_bucket(iter))
1153 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
1154 else
1155 new_next = clear_flag(next);
04db56f8 1156 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de 1157 /* retry */
464a1ec9 1158 }
9357c415 1159end:
83beee94
MD
1160 if (unique_ret) {
1161 unique_ret->node = return_node;
1162 /* unique_ret->next left unset, never used. */
1163 }
abc490a1 1164}
464a1ec9 1165
abc490a1 1166static
860d07e8 1167int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
b65ec430 1168 struct cds_lfht_node *node)
abc490a1 1169{
db00ccc3 1170 struct cds_lfht_node *bucket, *next;
5e28c532 1171
9357c415 1172 if (!node) /* Return -ENOENT if asked to delete NULL node */
743f9143 1173 return -ENOENT;
9357c415 1174
7ec59d3b 1175 /* logically delete the node */
1ee8f000 1176 assert(!is_bucket(node));
c90201ac 1177 assert(!is_removed(node));
db00ccc3 1178 assert(!is_removal_owner(node));
48ed1c18 1179
db00ccc3
MD
1180 /*
1181 * We are first checking if the node had previously been
1182 * logically removed (this check is not atomic with setting the
1183 * logical removal flag). Return -ENOENT if the node had
1184 * previously been removed.
1185 */
a85eff52 1186 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
db00ccc3
MD
1187 if (caa_unlikely(is_removed(next)))
1188 return -ENOENT;
b65ec430 1189 assert(!is_bucket(next));
196f4fab
MD
1190 /*
1191 * The del operation semantic guarantees a full memory barrier
1192 * before the uatomic_or atomic commit of the deletion flag.
1193 */
1194 cmm_smp_mb__before_uatomic_or();
db00ccc3
MD
1195 /*
1196 * We set the REMOVED_FLAG unconditionally. Note that there may
1197 * be more than one concurrent thread setting this flag.
1198 * Knowing which wins the race will be known after the garbage
1199 * collection phase, stay tuned!
1200 */
1201 uatomic_or(&node->next, REMOVED_FLAG);
7ec59d3b 1202 /* We performed the (logical) deletion. */
7ec59d3b
MD
1203
1204 /*
1205 * Ensure that the node is not visible to readers anymore: lookup for
273399de
MD
1206 * the node, and remove it (along with any other logically removed node)
1207 * if found.
11519af6 1208 */
04db56f8
LJ
1209 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1210 _cds_lfht_gc_bucket(bucket, node);
743f9143 1211
a85eff52 1212 assert(is_removed(CMM_LOAD_SHARED(node->next)));
db00ccc3
MD
1213 /*
1214 * Last phase: atomically exchange node->next with a version
1215 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1216 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1217 * the node and win the removal race.
1218 * It is interesting to note that all "add" paths are forbidden
1219 * to change the next pointer starting from the point where the
1220 * REMOVED_FLAG is set, so here using a read, followed by a
1221 * xchg() suffice to guarantee that the xchg() will ever only
1222 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1223 * was already set).
1224 */
1225 if (!is_removal_owner(uatomic_xchg(&node->next,
1226 flag_removal_owner(node->next))))
1227 return 0;
1228 else
1229 return -ENOENT;
abc490a1 1230}
2ed95849 1231
b7d619b0
MD
1232static
1233void *partition_resize_thread(void *arg)
1234{
1235 struct partition_resize_work *work = arg;
1236
7b17c13e 1237 work->ht->flavor->register_thread();
b7d619b0 1238 work->fct(work->ht, work->i, work->start, work->len);
7b17c13e 1239 work->ht->flavor->unregister_thread();
b7d619b0
MD
1240 return NULL;
1241}
1242
1243static
1244void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1245 unsigned long len,
1246 void (*fct)(struct cds_lfht *ht, unsigned long i,
1247 unsigned long start, unsigned long len))
1248{
e54ec2f5 1249 unsigned long partition_len, start = 0;
b7d619b0 1250 struct partition_resize_work *work;
83e334d0
MJ
1251 int ret;
1252 unsigned long thread, nr_threads;
b7d619b0 1253
d7f3ba4c
EW
1254 assert(nr_cpus_mask != -1);
1255 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD)
1256 goto fallback;
1257
6083a889
MD
1258 /*
1259 * Note: nr_cpus_mask + 1 is always power of 2.
1260 * We spawn just the number of threads we need to satisfy the minimum
1261 * partition size, up to the number of CPUs in the system.
1262 */
91452a6a 1263 if (nr_cpus_mask > 0) {
83e334d0 1264 nr_threads = min_t(unsigned long, nr_cpus_mask + 1,
91452a6a
MD
1265 len >> MIN_PARTITION_PER_THREAD_ORDER);
1266 } else {
1267 nr_threads = 1;
1268 }
5bc6b66f 1269 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
6083a889 1270 work = calloc(nr_threads, sizeof(*work));
7c75d498
EW
1271 if (!work) {
1272 dbg_printf("error allocating for resize, single-threading\n");
1273 goto fallback;
1274 }
6083a889
MD
1275 for (thread = 0; thread < nr_threads; thread++) {
1276 work[thread].ht = ht;
1277 work[thread].i = i;
1278 work[thread].len = partition_len;
1279 work[thread].start = thread * partition_len;
1280 work[thread].fct = fct;
1af6e26e 1281 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
6083a889 1282 partition_resize_thread, &work[thread]);
e54ec2f5
EW
1283 if (ret == EAGAIN) {
1284 /*
1285 * Out of resources: wait and join the threads
1286 * we've created, then handle leftovers.
1287 */
1288 dbg_printf("error spawning for resize, single-threading\n");
1289 start = work[thread].start;
1290 len -= start;
1291 nr_threads = thread;
1292 break;
1293 }
b7d619b0
MD
1294 assert(!ret);
1295 }
6083a889 1296 for (thread = 0; thread < nr_threads; thread++) {
1af6e26e 1297 ret = pthread_join(work[thread].thread_id, NULL);
b7d619b0
MD
1298 assert(!ret);
1299 }
1300 free(work);
e54ec2f5
EW
1301
1302 /*
1303 * A pthread_create failure above will either lead in us having
1304 * no threads to join or starting at a non-zero offset,
1305 * fallback to single thread processing of leftovers.
1306 */
1307 if (start == 0 && nr_threads > 0)
1308 return;
7c75d498 1309fallback:
e54ec2f5 1310 fct(ht, i, start, len);
b7d619b0
MD
1311}
1312
e8de508e
MD
1313/*
1314 * Holding RCU read lock to protect _cds_lfht_add against memory
d0ec0ed2 1315 * reclaim that could be performed by other worker threads (ABA
e8de508e 1316 * problem).
9ee0fc9a 1317 *
b7d619b0 1318 * When we reach a certain length, we can split this population phase over
9ee0fc9a
MD
1319 * many worker threads, based on the number of CPUs available in the system.
1320 * This should therefore take care of not having the expand lagging behind too
1321 * many concurrent insertion threads by using the scheduler's ability to
1ee8f000 1322 * schedule bucket node population fairly with insertions.
e8de508e 1323 */
4105056a 1324static
b7d619b0
MD
1325void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1326 unsigned long start, unsigned long len)
4105056a 1327{
9d72a73f 1328 unsigned long j, size = 1UL << (i - 1);
4105056a 1329
d0d8f9aa 1330 assert(i > MIN_TABLE_ORDER);
7b17c13e 1331 ht->flavor->read_lock();
9d72a73f
LJ
1332 for (j = size + start; j < size + start + len; j++) {
1333 struct cds_lfht_node *new_node = bucket_at(ht, j);
1334
1335 assert(j >= size && j < (size << 1));
1336 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1337 i, j, j);
1338 new_node->reverse_hash = bit_reverse_ulong(j);
91a75cc5 1339 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
4105056a 1340 }
7b17c13e 1341 ht->flavor->read_unlock();
b7d619b0
MD
1342}
1343
1344static
1345void init_table_populate(struct cds_lfht *ht, unsigned long i,
1346 unsigned long len)
1347{
b7d619b0 1348 partition_resize_helper(ht, i, len, init_table_populate_partition);
4105056a
MD
1349}
1350
abc490a1 1351static
4105056a 1352void init_table(struct cds_lfht *ht,
93d46c39 1353 unsigned long first_order, unsigned long last_order)
24365af7 1354{
93d46c39 1355 unsigned long i;
24365af7 1356
93d46c39
LJ
1357 dbg_printf("init table: first_order %lu last_order %lu\n",
1358 first_order, last_order);
d0d8f9aa 1359 assert(first_order > MIN_TABLE_ORDER);
93d46c39 1360 for (i = first_order; i <= last_order; i++) {
4105056a 1361 unsigned long len;
24365af7 1362
4f6e90b7 1363 len = 1UL << (i - 1);
f0c29ed7 1364 dbg_printf("init order %lu len: %lu\n", i, len);
4d676753
MD
1365
1366 /* Stop expand if the resize target changes under us */
7b3893e4 1367 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
4d676753
MD
1368 break;
1369
48f1b16d 1370 cds_lfht_alloc_bucket_table(ht, i);
4105056a 1371
4105056a 1372 /*
1ee8f000
LJ
1373 * Set all bucket nodes reverse hash values for a level and
1374 * link all bucket nodes into the table.
4105056a 1375 */
dc1da8f6 1376 init_table_populate(ht, i, len);
4105056a 1377
f9c80341
MD
1378 /*
1379 * Update table size.
1380 */
1381 cmm_smp_wmb(); /* populate data before RCU size */
7b3893e4 1382 CMM_STORE_SHARED(ht->size, 1UL << i);
f9c80341 1383
4f6e90b7 1384 dbg_printf("init new size: %lu\n", 1UL << i);
4105056a
MD
1385 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1386 break;
1387 }
1388}
1389
e8de508e
MD
1390/*
1391 * Holding RCU read lock to protect _cds_lfht_remove against memory
d0ec0ed2 1392 * reclaim that could be performed by other worker threads (ABA
e8de508e
MD
1393 * problem).
1394 * For a single level, we logically remove and garbage collect each node.
1395 *
1396 * As a design choice, we perform logical removal and garbage collection on a
1397 * node-per-node basis to simplify this algorithm. We also assume keeping good
1398 * cache locality of the operation would overweight possible performance gain
1399 * that could be achieved by batching garbage collection for multiple levels.
1400 * However, this would have to be justified by benchmarks.
1401 *
1402 * Concurrent removal and add operations are helping us perform garbage
1403 * collection of logically removed nodes. We guarantee that all logically
d0ec0ed2
MD
1404 * removed nodes have been garbage-collected (unlinked) before work
1405 * enqueue is invoked to free a hole level of bucket nodes (after a
1406 * grace period).
e8de508e 1407 *
1f67ba50
MD
1408 * Logical removal and garbage collection can therefore be done in batch
1409 * or on a node-per-node basis, as long as the guarantee above holds.
9ee0fc9a 1410 *
b7d619b0
MD
1411 * When we reach a certain length, we can split this removal over many worker
1412 * threads, based on the number of CPUs available in the system. This should
1413 * take care of not letting resize process lag behind too many concurrent
9ee0fc9a 1414 * updater threads actively inserting into the hash table.
e8de508e 1415 */
4105056a 1416static
b7d619b0
MD
1417void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1418 unsigned long start, unsigned long len)
4105056a 1419{
9d72a73f 1420 unsigned long j, size = 1UL << (i - 1);
4105056a 1421
d0d8f9aa 1422 assert(i > MIN_TABLE_ORDER);
7b17c13e 1423 ht->flavor->read_lock();
9d72a73f 1424 for (j = size + start; j < size + start + len; j++) {
2e2ce1e9
LJ
1425 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1426 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
9d72a73f
LJ
1427
1428 assert(j >= size && j < (size << 1));
1429 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1430 i, j, j);
2e2ce1e9
LJ
1431 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1432 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1433 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
abc490a1 1434 }
7b17c13e 1435 ht->flavor->read_unlock();
b7d619b0
MD
1436}
1437
1438static
1439void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1440{
b7d619b0 1441 partition_resize_helper(ht, i, len, remove_table_partition);
2ed95849
MD
1442}
1443
61adb337
MD
1444/*
1445 * fini_table() is never called for first_order == 0, which is why
1446 * free_by_rcu_order == 0 can be used as criterion to know if free must
1447 * be called.
1448 */
1475579c 1449static
4105056a 1450void fini_table(struct cds_lfht *ht,
93d46c39 1451 unsigned long first_order, unsigned long last_order)
1475579c 1452{
83e334d0 1453 unsigned long free_by_rcu_order = 0, i;
1475579c 1454
93d46c39
LJ
1455 dbg_printf("fini table: first_order %lu last_order %lu\n",
1456 first_order, last_order);
d0d8f9aa 1457 assert(first_order > MIN_TABLE_ORDER);
93d46c39 1458 for (i = last_order; i >= first_order; i--) {
4105056a 1459 unsigned long len;
1475579c 1460
4f6e90b7 1461 len = 1UL << (i - 1);
e15df1cc 1462 dbg_printf("fini order %ld len: %lu\n", i, len);
4105056a 1463
4d676753 1464 /* Stop shrink if the resize target changes under us */
7b3893e4 1465 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
4d676753
MD
1466 break;
1467
1468 cmm_smp_wmb(); /* populate data before RCU size */
7b3893e4 1469 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
4d676753
MD
1470
1471 /*
1472 * We need to wait for all add operations to reach Q.S. (and
1473 * thus use the new table for lookups) before we can start
1ee8f000 1474 * releasing the old bucket nodes. Otherwise their lookup will
4d676753
MD
1475 * return a logically removed node as insert position.
1476 */
7b17c13e 1477 ht->flavor->update_synchronize_rcu();
48f1b16d
LJ
1478 if (free_by_rcu_order)
1479 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
4d676753 1480
21263e21 1481 /*
1ee8f000
LJ
1482 * Set "removed" flag in bucket nodes about to be removed.
1483 * Unlink all now-logically-removed bucket node pointers.
4105056a
MD
1484 * Concurrent add/remove operation are helping us doing
1485 * the gc.
21263e21 1486 */
4105056a
MD
1487 remove_table(ht, i, len);
1488
48f1b16d 1489 free_by_rcu_order = i;
4105056a
MD
1490
1491 dbg_printf("fini new size: %lu\n", 1UL << i);
1475579c
MD
1492 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1493 break;
1494 }
0d14ceb2 1495
48f1b16d 1496 if (free_by_rcu_order) {
7b17c13e 1497 ht->flavor->update_synchronize_rcu();
48f1b16d 1498 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
0d14ceb2 1499 }
1475579c
MD
1500}
1501
83e334d0
MJ
1502/*
1503 * Never called with size < 1.
1504 */
ff0d69de 1505static
1ee8f000 1506void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
ff0d69de 1507{
04db56f8 1508 struct cds_lfht_node *prev, *node;
9d72a73f 1509 unsigned long order, len, i;
83e334d0 1510 int bucket_order;
ff0d69de 1511
48f1b16d 1512 cds_lfht_alloc_bucket_table(ht, 0);
ff0d69de 1513
9d72a73f
LJ
1514 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1515 node = bucket_at(ht, 0);
1516 node->next = flag_bucket(get_end());
1517 node->reverse_hash = 0;
ff0d69de 1518
83e334d0
MJ
1519 bucket_order = cds_lfht_get_count_order_ulong(size);
1520 assert(bucket_order >= 0);
1521
1522 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
ff0d69de 1523 len = 1UL << (order - 1);
48f1b16d 1524 cds_lfht_alloc_bucket_table(ht, order);
ff0d69de 1525
9d72a73f
LJ
1526 for (i = 0; i < len; i++) {
1527 /*
1528 * Now, we are trying to init the node with the
1529 * hash=(len+i) (which is also a bucket with the
1530 * index=(len+i)) and insert it into the hash table,
1531 * so this node has to be inserted after the bucket
1532 * with the index=(len+i)&(len-1)=i. And because there
1533 * is no other non-bucket node nor bucket node with
1534 * larger index/hash inserted, so the bucket node
1535 * being inserted should be inserted directly linked
1536 * after the bucket node with index=i.
1537 */
1538 prev = bucket_at(ht, i);
1539 node = bucket_at(ht, len + i);
ff0d69de 1540
1ee8f000 1541 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
9d72a73f
LJ
1542 order, len + i, len + i);
1543 node->reverse_hash = bit_reverse_ulong(len + i);
1544
1545 /* insert after prev */
1546 assert(is_bucket(prev->next));
ff0d69de 1547 node->next = prev->next;
1ee8f000 1548 prev->next = flag_bucket(node);
ff0d69de
LJ
1549 }
1550 }
1551}
1552
99ab1528
MJ
1553#if (CAA_BITS_PER_LONG > 32)
1554/*
1555 * For 64-bit architectures, with max number of buckets small enough not to
1556 * use the entire 64-bit memory mapping space (and allowing a fair number of
1557 * hash table instances), use the mmap allocator, which is faster. Otherwise,
1558 * fallback to the order allocator.
1559 */
1560static
1561const struct cds_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1562{
1563 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
1564 return &cds_lfht_mm_mmap;
1565 else
1566 return &cds_lfht_mm_order;
1567}
1568#else
1569/*
1570 * For 32-bit architectures, use the order allocator.
1571 */
1572static
1573const struct cds_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1574{
1575 return &cds_lfht_mm_order;
1576}
1577#endif
1578
0422d92c 1579struct cds_lfht *_cds_lfht_new(unsigned long init_size,
0722081a 1580 unsigned long min_nr_alloc_buckets,
747d725c 1581 unsigned long max_nr_buckets,
b8af5011 1582 int flags,
0b6aa001 1583 const struct cds_lfht_mm_type *mm,
7b17c13e 1584 const struct rcu_flavor_struct *flavor,
b7d619b0 1585 pthread_attr_t *attr)
abc490a1 1586{
14044b37 1587 struct cds_lfht *ht;
24365af7 1588 unsigned long order;
abc490a1 1589
0722081a
LJ
1590 /* min_nr_alloc_buckets must be power of two */
1591 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
5488222b 1592 return NULL;
747d725c 1593
8129be4e 1594 /* init_size must be power of two */
5488222b 1595 if (!init_size || (init_size & (init_size - 1)))
8129be4e 1596 return NULL;
747d725c 1597
c1888f3a
MD
1598 /*
1599 * Memory management plugin default.
1600 */
99ab1528
MJ
1601 if (!mm)
1602 mm = get_mm_type(max_nr_buckets);
c1888f3a 1603
0b6aa001
LJ
1604 /* max_nr_buckets == 0 for order based mm means infinite */
1605 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
747d725c
LJ
1606 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1607
1608 /* max_nr_buckets must be power of two */
1609 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1610 return NULL;
1611
d0ec0ed2
MD
1612 if (flags & CDS_LFHT_AUTO_RESIZE)
1613 cds_lfht_init_worker(flavor);
1614
0722081a 1615 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
d0d8f9aa 1616 init_size = max(init_size, MIN_TABLE_SIZE);
747d725c
LJ
1617 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1618 init_size = min(init_size, max_nr_buckets);
0b6aa001
LJ
1619
1620 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
b7d619b0 1621 assert(ht);
0b6aa001
LJ
1622 assert(ht->mm == mm);
1623 assert(ht->bucket_at == mm->bucket_at);
1624
b5d6b20f 1625 ht->flags = flags;
7b17c13e 1626 ht->flavor = flavor;
b7d619b0 1627 ht->resize_attr = attr;
5afadd12 1628 alloc_split_items_count(ht);
abc490a1
MD
1629 /* this mutex should not nest in read-side C.S. */
1630 pthread_mutex_init(&ht->resize_mutex, NULL);
5bc6b66f 1631 order = cds_lfht_get_count_order_ulong(init_size);
7b3893e4 1632 ht->resize_target = 1UL << order;
1ee8f000 1633 cds_lfht_create_bucket(ht, 1UL << order);
7b3893e4 1634 ht->size = 1UL << order;
abc490a1
MD
1635 return ht;
1636}
1637
6f554439 1638void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
996ff57c 1639 cds_lfht_match_fct match, const void *key,
6f554439 1640 struct cds_lfht_iter *iter)
2ed95849 1641{
04db56f8 1642 struct cds_lfht_node *node, *next, *bucket;
0422d92c 1643 unsigned long reverse_hash, size;
2ed95849 1644
d7c76f85
MD
1645 cds_lfht_iter_debug_set_ht(ht, iter);
1646
abc490a1 1647 reverse_hash = bit_reverse_ulong(hash);
464a1ec9 1648
7b3893e4 1649 size = rcu_dereference(ht->size);
04db56f8 1650 bucket = lookup_bucket(ht, size, hash);
1ee8f000 1651 /* We can always skip the bucket node initially */
04db56f8 1652 node = rcu_dereference(bucket->next);
bb7b2f26 1653 node = clear_flag(node);
2ed95849 1654 for (;;) {
8ed51e04 1655 if (caa_unlikely(is_end(node))) {
96ad1112 1656 node = next = NULL;
abc490a1 1657 break;
bb7b2f26 1658 }
04db56f8 1659 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1660 node = next = NULL;
abc490a1 1661 break;
2ed95849 1662 }
04db56f8 1663 next = rcu_dereference(node->next);
7f52427b 1664 assert(node == clear_flag(node));
8ed51e04 1665 if (caa_likely(!is_removed(next))
1ee8f000 1666 && !is_bucket(next)
04db56f8 1667 && node->reverse_hash == reverse_hash
0422d92c 1668 && caa_likely(match(node, key))) {
273399de 1669 break;
2ed95849 1670 }
1b81fe1a 1671 node = clear_flag(next);
2ed95849 1672 }
a85eff52 1673 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
adc0de68
MD
1674 iter->node = node;
1675 iter->next = next;
abc490a1 1676}
e0ba718a 1677
0422d92c 1678void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
996ff57c 1679 const void *key, struct cds_lfht_iter *iter)
a481e5ff 1680{
adc0de68 1681 struct cds_lfht_node *node, *next;
a481e5ff 1682 unsigned long reverse_hash;
a481e5ff 1683
d7c76f85 1684 cds_lfht_iter_debug_assert(ht == iter->lfht);
adc0de68 1685 node = iter->node;
04db56f8 1686 reverse_hash = node->reverse_hash;
adc0de68 1687 next = iter->next;
a481e5ff
MD
1688 node = clear_flag(next);
1689
1690 for (;;) {
8ed51e04 1691 if (caa_unlikely(is_end(node))) {
96ad1112 1692 node = next = NULL;
a481e5ff 1693 break;
bb7b2f26 1694 }
04db56f8 1695 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1696 node = next = NULL;
a481e5ff
MD
1697 break;
1698 }
04db56f8 1699 next = rcu_dereference(node->next);
8ed51e04 1700 if (caa_likely(!is_removed(next))
1ee8f000 1701 && !is_bucket(next)
04db56f8 1702 && caa_likely(match(node, key))) {
a481e5ff
MD
1703 break;
1704 }
1705 node = clear_flag(next);
1706 }
a85eff52 1707 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
adc0de68
MD
1708 iter->node = node;
1709 iter->next = next;
a481e5ff
MD
1710}
1711
4e9b9fbf
MD
1712void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1713{
1714 struct cds_lfht_node *node, *next;
1715
d7c76f85 1716 cds_lfht_iter_debug_assert(ht == iter->lfht);
853395e1 1717 node = clear_flag(iter->next);
4e9b9fbf 1718 for (;;) {
8ed51e04 1719 if (caa_unlikely(is_end(node))) {
4e9b9fbf
MD
1720 node = next = NULL;
1721 break;
1722 }
04db56f8 1723 next = rcu_dereference(node->next);
8ed51e04 1724 if (caa_likely(!is_removed(next))
1ee8f000 1725 && !is_bucket(next)) {
4e9b9fbf
MD
1726 break;
1727 }
1728 node = clear_flag(next);
1729 }
a85eff52 1730 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
4e9b9fbf
MD
1731 iter->node = node;
1732 iter->next = next;
1733}
1734
1735void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1736{
d7c76f85 1737 cds_lfht_iter_debug_set_ht(ht, iter);
4e9b9fbf 1738 /*
1ee8f000 1739 * Get next after first bucket node. The first bucket node is the
4e9b9fbf
MD
1740 * first node of the linked list.
1741 */
9d72a73f 1742 iter->next = bucket_at(ht, 0)->next;
4e9b9fbf
MD
1743 cds_lfht_next(ht, iter);
1744}
1745
0422d92c
MD
1746void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1747 struct cds_lfht_node *node)
abc490a1 1748{
0422d92c 1749 unsigned long size;
ab7d5fc6 1750
709bacf9 1751 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1752 size = rcu_dereference(ht->size);
91a75cc5 1753 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
14360f1c 1754 ht_count_add(ht, size, hash);
3eca1b8c
MD
1755}
1756
14044b37 1757struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
6f554439 1758 unsigned long hash,
0422d92c 1759 cds_lfht_match_fct match,
996ff57c 1760 const void *key,
48ed1c18 1761 struct cds_lfht_node *node)
3eca1b8c 1762{
0422d92c 1763 unsigned long size;
83beee94 1764 struct cds_lfht_iter iter;
3eca1b8c 1765
709bacf9 1766 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1767 size = rcu_dereference(ht->size);
91a75cc5 1768 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1769 if (iter.node == node)
14360f1c 1770 ht_count_add(ht, size, hash);
83beee94 1771 return iter.node;
2ed95849
MD
1772}
1773
9357c415 1774struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
6f554439 1775 unsigned long hash,
0422d92c 1776 cds_lfht_match_fct match,
996ff57c 1777 const void *key,
48ed1c18
MD
1778 struct cds_lfht_node *node)
1779{
0422d92c 1780 unsigned long size;
83beee94 1781 struct cds_lfht_iter iter;
48ed1c18 1782
709bacf9 1783 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1784 size = rcu_dereference(ht->size);
83beee94 1785 for (;;) {
91a75cc5 1786 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1787 if (iter.node == node) {
14360f1c 1788 ht_count_add(ht, size, hash);
83beee94
MD
1789 return NULL;
1790 }
1791
1792 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1793 return iter.node;
1794 }
48ed1c18
MD
1795}
1796
2e79c445
MD
1797int cds_lfht_replace(struct cds_lfht *ht,
1798 struct cds_lfht_iter *old_iter,
1799 unsigned long hash,
1800 cds_lfht_match_fct match,
1801 const void *key,
9357c415
MD
1802 struct cds_lfht_node *new_node)
1803{
1804 unsigned long size;
1805
709bacf9 1806 new_node->reverse_hash = bit_reverse_ulong(hash);
2e79c445
MD
1807 if (!old_iter->node)
1808 return -ENOENT;
1809 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1810 return -EINVAL;
1811 if (caa_unlikely(!match(old_iter->node, key)))
1812 return -EINVAL;
7b3893e4 1813 size = rcu_dereference(ht->size);
9357c415
MD
1814 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1815 new_node);
1816}
1817
bc8c3c74 1818int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
2ed95849 1819{
95bc7fb9 1820 unsigned long size;
df44348d 1821 int ret;
abc490a1 1822
7b3893e4 1823 size = rcu_dereference(ht->size);
bc8c3c74 1824 ret = _cds_lfht_del(ht, size, node);
14360f1c 1825 if (!ret) {
95bc7fb9
MD
1826 unsigned long hash;
1827
bc8c3c74 1828 hash = bit_reverse_ulong(node->reverse_hash);
14360f1c
LJ
1829 ht_count_del(ht, size, hash);
1830 }
df44348d 1831 return ret;
2ed95849 1832}
ab7d5fc6 1833
afa5940d 1834int cds_lfht_is_node_deleted(const struct cds_lfht_node *node)
df55172a 1835{
a85eff52 1836 return is_removed(CMM_LOAD_SHARED(node->next));
df55172a
MD
1837}
1838
abc490a1 1839static
1ee8f000 1840int cds_lfht_delete_bucket(struct cds_lfht *ht)
674f7a69 1841{
14044b37 1842 struct cds_lfht_node *node;
4105056a 1843 unsigned long order, i, size;
674f7a69 1844
abc490a1 1845 /* Check that the table is empty */
9d72a73f 1846 node = bucket_at(ht, 0);
abc490a1 1847 do {
04db56f8 1848 node = clear_flag(node)->next;
1ee8f000 1849 if (!is_bucket(node))
abc490a1 1850 return -EPERM;
273399de 1851 assert(!is_removed(node));
2f943cd7 1852 assert(!is_removal_owner(node));
bb7b2f26 1853 } while (!is_end(node));
4105056a
MD
1854 /*
1855 * size accessed without rcu_dereference because hash table is
1856 * being destroyed.
1857 */
7b3893e4 1858 size = ht->size;
1f67ba50 1859 /* Internal sanity check: all nodes left should be buckets */
48f1b16d
LJ
1860 for (i = 0; i < size; i++) {
1861 node = bucket_at(ht, i);
1862 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1863 i, i, bit_reverse_ulong(node->reverse_hash));
1864 assert(is_bucket(node->next));
1865 }
24365af7 1866
5bc6b66f 1867 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
48f1b16d 1868 cds_lfht_free_bucket_table(ht, order);
5488222b 1869
abc490a1 1870 return 0;
674f7a69
MD
1871}
1872
1873/*
1874 * Should only be called when no more concurrent readers nor writers can
1875 * possibly access the table.
1876 */
b7d619b0 1877int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
674f7a69 1878{
d0ec0ed2
MD
1879 int ret;
1880
1881 if (ht->flags & CDS_LFHT_AUTO_RESIZE) {
1882 /* Cancel ongoing resize operations. */
1883 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1884 /* Wait for in-flight resize operations to complete */
1885 urcu_workqueue_flush_queued_work(cds_lfht_workqueue);
10e68472 1886 }
1ee8f000 1887 ret = cds_lfht_delete_bucket(ht);
abc490a1
MD
1888 if (ret)
1889 return ret;
5afadd12 1890 free_split_items_count(ht);
b7d619b0
MD
1891 if (attr)
1892 *attr = ht->resize_attr;
59629f09
MD
1893 ret = pthread_mutex_destroy(&ht->resize_mutex);
1894 if (ret)
1895 ret = -EBUSY;
d0ec0ed2
MD
1896 if (ht->flags & CDS_LFHT_AUTO_RESIZE)
1897 cds_lfht_fini_worker(ht->flavor);
98808fb1 1898 poison_free(ht);
5e28c532 1899 return ret;
674f7a69
MD
1900}
1901
14044b37 1902void cds_lfht_count_nodes(struct cds_lfht *ht,
d933dd0e 1903 long *approx_before,
273399de 1904 unsigned long *count,
d933dd0e 1905 long *approx_after)
273399de 1906{
14044b37 1907 struct cds_lfht_node *node, *next;
caf3653d 1908 unsigned long nr_bucket = 0, nr_removed = 0;
273399de 1909
7ed7682f 1910 *approx_before = 0;
5afadd12 1911 if (ht->split_count) {
973e5e1b
MD
1912 int i;
1913
4c42f1b8
LJ
1914 for (i = 0; i < split_count_mask + 1; i++) {
1915 *approx_before += uatomic_read(&ht->split_count[i].add);
1916 *approx_before -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
1917 }
1918 }
1919
273399de 1920 *count = 0;
273399de 1921
1ee8f000 1922 /* Count non-bucket nodes in the table */
9d72a73f 1923 node = bucket_at(ht, 0);
273399de 1924 do {
04db56f8 1925 next = rcu_dereference(node->next);
b198f0fd 1926 if (is_removed(next)) {
1ee8f000 1927 if (!is_bucket(next))
caf3653d 1928 (nr_removed)++;
973e5e1b 1929 else
1ee8f000
LJ
1930 (nr_bucket)++;
1931 } else if (!is_bucket(next))
273399de 1932 (*count)++;
24365af7 1933 else
1ee8f000 1934 (nr_bucket)++;
273399de 1935 node = clear_flag(next);
bb7b2f26 1936 } while (!is_end(node));
caf3653d 1937 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1ee8f000 1938 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
7ed7682f 1939 *approx_after = 0;
5afadd12 1940 if (ht->split_count) {
973e5e1b
MD
1941 int i;
1942
4c42f1b8
LJ
1943 for (i = 0; i < split_count_mask + 1; i++) {
1944 *approx_after += uatomic_read(&ht->split_count[i].add);
1945 *approx_after -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
1946 }
1947 }
273399de
MD
1948}
1949
1475579c 1950/* called with resize mutex held */
abc490a1 1951static
4105056a 1952void _do_cds_lfht_grow(struct cds_lfht *ht,
1475579c 1953 unsigned long old_size, unsigned long new_size)
abc490a1 1954{
1475579c 1955 unsigned long old_order, new_order;
1475579c 1956
5bc6b66f
MD
1957 old_order = cds_lfht_get_count_order_ulong(old_size);
1958 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
1959 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1960 old_size, old_order, new_size, new_order);
1475579c 1961 assert(new_size > old_size);
93d46c39 1962 init_table(ht, old_order + 1, new_order);
abc490a1
MD
1963}
1964
1965/* called with resize mutex held */
1966static
4105056a 1967void _do_cds_lfht_shrink(struct cds_lfht *ht,
1475579c 1968 unsigned long old_size, unsigned long new_size)
464a1ec9 1969{
1475579c 1970 unsigned long old_order, new_order;
464a1ec9 1971
d0d8f9aa 1972 new_size = max(new_size, MIN_TABLE_SIZE);
5bc6b66f
MD
1973 old_order = cds_lfht_get_count_order_ulong(old_size);
1974 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
1975 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1976 old_size, old_order, new_size, new_order);
1475579c 1977 assert(new_size < old_size);
1475579c 1978
1ee8f000 1979 /* Remove and unlink all bucket nodes to remove. */
93d46c39 1980 fini_table(ht, new_order + 1, old_order);
464a1ec9
MD
1981}
1982
1475579c
MD
1983
1984/* called with resize mutex held */
1985static
1986void _do_cds_lfht_resize(struct cds_lfht *ht)
1987{
1988 unsigned long new_size, old_size;
4105056a
MD
1989
1990 /*
1991 * Resize table, re-do if the target size has changed under us.
1992 */
1993 do {
d2be3620
MD
1994 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1995 break;
7b3893e4
LJ
1996 ht->resize_initiated = 1;
1997 old_size = ht->size;
1998 new_size = CMM_LOAD_SHARED(ht->resize_target);
4105056a
MD
1999 if (old_size < new_size)
2000 _do_cds_lfht_grow(ht, old_size, new_size);
2001 else if (old_size > new_size)
2002 _do_cds_lfht_shrink(ht, old_size, new_size);
7b3893e4 2003 ht->resize_initiated = 0;
4105056a
MD
2004 /* write resize_initiated before read resize_target */
2005 cmm_smp_mb();
7b3893e4 2006 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1475579c
MD
2007}
2008
abc490a1 2009static
ab65b890 2010unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 2011{
7b3893e4 2012 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
464a1ec9
MD
2013}
2014
1475579c 2015static
4105056a 2016void resize_target_update_count(struct cds_lfht *ht,
b8af5011 2017 unsigned long count)
1475579c 2018{
d0d8f9aa 2019 count = max(count, MIN_TABLE_SIZE);
747d725c 2020 count = min(count, ht->max_nr_buckets);
7b3893e4 2021 uatomic_set(&ht->resize_target, count);
1475579c
MD
2022}
2023
2024void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 2025{
10e68472
MD
2026 resize_target_update_count(ht, new_size);
2027 CMM_STORE_SHARED(ht->resize_initiated, 1);
5ffcaeef 2028 mutex_lock(&ht->resize_mutex);
1475579c 2029 _do_cds_lfht_resize(ht);
5ffcaeef 2030 mutex_unlock(&ht->resize_mutex);
abc490a1 2031}
464a1ec9 2032
abc490a1 2033static
d0ec0ed2 2034void do_resize_cb(struct urcu_work *work)
abc490a1 2035{
d0ec0ed2
MD
2036 struct resize_work *resize_work =
2037 caa_container_of(work, struct resize_work, work);
2038 struct cds_lfht *ht = resize_work->ht;
abc490a1 2039
d0ec0ed2 2040 ht->flavor->register_thread();
5ffcaeef 2041 mutex_lock(&ht->resize_mutex);
14044b37 2042 _do_cds_lfht_resize(ht);
5ffcaeef 2043 mutex_unlock(&ht->resize_mutex);
d0ec0ed2 2044 ht->flavor->unregister_thread();
98808fb1 2045 poison_free(work);
464a1ec9
MD
2046}
2047
abc490a1 2048static
f1f119ee 2049void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
ab7d5fc6 2050{
d0ec0ed2 2051 struct resize_work *work;
abc490a1 2052
4105056a
MD
2053 /* Store resize_target before read resize_initiated */
2054 cmm_smp_mb();
7b3893e4 2055 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
ed35e6d8 2056 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
59290e9d 2057 return;
ed35e6d8 2058 }
f9830efd 2059 work = malloc(sizeof(*work));
741f378e
MD
2060 if (work == NULL) {
2061 dbg_printf("error allocating resize work, bailing out\n");
741f378e
MD
2062 return;
2063 }
f9830efd 2064 work->ht = ht;
d0ec0ed2
MD
2065 urcu_workqueue_queue_work(cds_lfht_workqueue,
2066 &work->work, do_resize_cb);
7b3893e4 2067 CMM_STORE_SHARED(ht->resize_initiated, 1);
f9830efd 2068 }
ab7d5fc6 2069}
3171717f 2070
f1f119ee
LJ
2071static
2072void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
2073{
2074 unsigned long target_size = size << growth;
2075
747d725c 2076 target_size = min(target_size, ht->max_nr_buckets);
f1f119ee
LJ
2077 if (resize_target_grow(ht, target_size) >= target_size)
2078 return;
2079
2080 __cds_lfht_resize_lazy_launch(ht);
2081}
2082
89bb121d
LJ
2083/*
2084 * We favor grow operations over shrink. A shrink operation never occurs
2085 * if a grow operation is queued for lazy execution. A grow operation
2086 * cancels any pending shrink lazy execution.
2087 */
3171717f 2088static
4105056a 2089void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
3171717f
MD
2090 unsigned long count)
2091{
b8af5011
MD
2092 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
2093 return;
d0d8f9aa 2094 count = max(count, MIN_TABLE_SIZE);
747d725c 2095 count = min(count, ht->max_nr_buckets);
89bb121d
LJ
2096 if (count == size)
2097 return; /* Already the right size, no resize needed */
2098 if (count > size) { /* lazy grow */
2099 if (resize_target_grow(ht, count) >= count)
2100 return;
2101 } else { /* lazy shrink */
2102 for (;;) {
2103 unsigned long s;
2104
7b3893e4 2105 s = uatomic_cmpxchg(&ht->resize_target, size, count);
89bb121d
LJ
2106 if (s == size)
2107 break; /* no resize needed */
2108 if (s > size)
2109 return; /* growing is/(was just) in progress */
2110 if (s <= count)
2111 return; /* some other thread do shrink */
2112 size = s;
2113 }
2114 }
f1f119ee 2115 __cds_lfht_resize_lazy_launch(ht);
3171717f 2116}
d0ec0ed2 2117
d0ec0ed2
MD
2118static void cds_lfht_before_fork(void *priv)
2119{
2120 if (cds_lfht_workqueue_atfork_nesting++)
2121 return;
2122 mutex_lock(&cds_lfht_fork_mutex);
2123 if (!cds_lfht_workqueue)
2124 return;
2125 urcu_workqueue_pause_worker(cds_lfht_workqueue);
2126}
2127
2128static void cds_lfht_after_fork_parent(void *priv)
2129{
2130 if (--cds_lfht_workqueue_atfork_nesting)
2131 return;
2132 if (!cds_lfht_workqueue)
2133 goto end;
2134 urcu_workqueue_resume_worker(cds_lfht_workqueue);
2135end:
2136 mutex_unlock(&cds_lfht_fork_mutex);
2137}
2138
2139static void cds_lfht_after_fork_child(void *priv)
2140{
2141 if (--cds_lfht_workqueue_atfork_nesting)
2142 return;
2143 if (!cds_lfht_workqueue)
2144 goto end;
2145 urcu_workqueue_create_worker(cds_lfht_workqueue);
2146end:
2147 mutex_unlock(&cds_lfht_fork_mutex);
2148}
2149
2150static struct urcu_atfork cds_lfht_atfork = {
2151 .before_fork = cds_lfht_before_fork,
2152 .after_fork_parent = cds_lfht_after_fork_parent,
2153 .after_fork_child = cds_lfht_after_fork_child,
2154};
2155
1a990de3 2156/*
2157 * Block all signals for the workqueue worker thread to ensure we don't
2158 * disturb the application. The SIGRCU signal needs to be unblocked for
2159 * the urcu-signal flavor.
2160 */
d0ec0ed2
MD
2161static void cds_lfht_worker_init(struct urcu_workqueue *workqueue,
2162 void *priv)
2163{
2164 int ret;
2165 sigset_t mask;
2166
d0ec0ed2
MD
2167 ret = sigfillset(&mask);
2168 if (ret)
2169 urcu_die(errno);
1a990de3 2170 ret = sigdelset(&mask, SIGRCU);
2171 if (ret)
9fd30396 2172 urcu_die(errno);
1a990de3 2173 ret = pthread_sigmask(SIG_SETMASK, &mask, NULL);
d0ec0ed2
MD
2174 if (ret)
2175 urcu_die(ret);
2176}
2177
2178static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor)
2179{
2180 flavor->register_rculfhash_atfork(&cds_lfht_atfork);
2181
2182 mutex_lock(&cds_lfht_fork_mutex);
2183 if (cds_lfht_workqueue_user_count++)
2184 goto end;
2185 cds_lfht_workqueue = urcu_workqueue_create(0, -1, NULL,
2186 NULL, cds_lfht_worker_init, NULL, NULL, NULL, NULL, NULL);
2187end:
2188 mutex_unlock(&cds_lfht_fork_mutex);
2189}
2190
2191static void cds_lfht_fini_worker(const struct rcu_flavor_struct *flavor)
2192{
2193 mutex_lock(&cds_lfht_fork_mutex);
2194 if (--cds_lfht_workqueue_user_count)
2195 goto end;
2196 urcu_workqueue_destroy(cds_lfht_workqueue);
2197 cds_lfht_workqueue = NULL;
2198end:
2199 mutex_unlock(&cds_lfht_fork_mutex);
2200
2201 flavor->unregister_rculfhash_atfork(&cds_lfht_atfork);
2202}
This page took 0.175001 seconds and 4 git commands to generate.