uatomic/x86: Remove redundant memory barriers
[urcu.git] / src / rculfhash.c
CommitLineData
acdb82a2
MJ
1// SPDX-FileCopyrightText: 2010-2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
2// SPDX-FileCopyrightText: 2011 Lai Jiangshan <laijs@cn.fujitsu.com>
3//
4// SPDX-License-Identifier: LGPL-2.1-or-later
5
5e28c532 6/*
1475579c 7 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5e28c532
MD
8 */
9
e753ff5a
MD
10/*
11 * Based on the following articles:
12 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
13 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
14 * - Michael, M. M. High performance dynamic lock-free hash tables
15 * and list-based sets. In Proceedings of the fourteenth annual ACM
16 * symposium on Parallel algorithms and architectures, ACM Press,
17 * (2002), 73-82.
18 *
1475579c 19 * Some specificities of this Lock-Free Resizable RCU Hash Table
e753ff5a
MD
20 * implementation:
21 *
22 * - RCU read-side critical section allows readers to perform hash
1f67ba50
MD
23 * table lookups, as well as traversals, and use the returned objects
24 * safely by allowing memory reclaim to take place only after a grace
25 * period.
e753ff5a
MD
26 * - Add and remove operations are lock-free, and do not need to
27 * allocate memory. They need to be executed within RCU read-side
28 * critical section to ensure the objects they read are valid and to
29 * deal with the cmpxchg ABA problem.
30 * - add and add_unique operations are supported. add_unique checks if
1f67ba50
MD
31 * the node key already exists in the hash table. It ensures not to
32 * populate a duplicate key if the node key already exists in the hash
33 * table.
34 * - The resize operation executes concurrently with
35 * add/add_unique/add_replace/remove/lookup/traversal.
e753ff5a
MD
36 * - Hash table nodes are contained within a split-ordered list. This
37 * list is ordered by incrementing reversed-bits-hash value.
1ee8f000 38 * - An index of bucket nodes is kept. These bucket nodes are the hash
1f67ba50
MD
39 * table "buckets". These buckets are internal nodes that allow to
40 * perform a fast hash lookup, similarly to a skip list. These
41 * buckets are chained together in the split-ordered list, which
42 * allows recursive expansion by inserting new buckets between the
43 * existing buckets. The split-ordered list allows adding new buckets
44 * between existing buckets as the table needs to grow.
45 * - The resize operation for small tables only allows expanding the
46 * hash table. It is triggered automatically by detecting long chains
47 * in the add operation.
1475579c
MD
48 * - The resize operation for larger tables (and available through an
49 * API) allows both expanding and shrinking the hash table.
4c42f1b8 50 * - Split-counters are used to keep track of the number of
1475579c 51 * nodes within the hash table for automatic resize triggering.
e753ff5a 52 * - Resize operation initiated by long chain detection is executed by a
d0ec0ed2 53 * worker thread, which keeps lock-freedom of add and remove.
e753ff5a
MD
54 * - Resize operations are protected by a mutex.
55 * - The removal operation is split in two parts: first, a "removed"
56 * flag is set in the next pointer within the node to remove. Then,
57 * a "garbage collection" is performed in the bucket containing the
58 * removed node (from the start of the bucket up to the removed node).
59 * All encountered nodes with "removed" flag set in their next
60 * pointers are removed from the linked-list. If the cmpxchg used for
61 * removal fails (due to concurrent garbage-collection or concurrent
62 * add), we retry from the beginning of the bucket. This ensures that
63 * the node with "removed" flag set is removed from the hash table
64 * (not visible to lookups anymore) before the RCU read-side critical
65 * section held across removal ends. Furthermore, this ensures that
66 * the node with "removed" flag set is removed from the linked-list
5c4ca589
MD
67 * before its memory is reclaimed. After setting the "removal" flag,
68 * only the thread which removal is the first to set the "removal
69 * owner" flag (with an xchg) into a node's next pointer is considered
70 * to have succeeded its removal (and thus owns the node to reclaim).
71 * Because we garbage-collect starting from an invariant node (the
72 * start-of-bucket bucket node) up to the "removed" node (or find a
73 * reverse-hash that is higher), we are sure that a successful
74 * traversal of the chain leads to a chain that is present in the
1f67ba50 75 * linked-list (the start node is never removed) and that it does not
5c4ca589
MD
76 * contain the "removed" node anymore, even if concurrent delete/add
77 * operations are changing the structure of the list concurrently.
1f67ba50
MD
78 * - The add operations perform garbage collection of buckets if they
79 * encounter nodes with removed flag set in the bucket where they want
80 * to add their new node. This ensures lock-freedom of add operation by
29e669f6
MD
81 * helping the remover unlink nodes from the list rather than to wait
82 * for it do to so.
1f67ba50
MD
83 * - There are three memory backends for the hash table buckets: the
84 * "order table", the "chunks", and the "mmap".
85 * - These bucket containers contain a compact version of the hash table
86 * nodes.
87 * - The RCU "order table":
88 * - has a first level table indexed by log2(hash index) which is
89 * copied and expanded by the resize operation. This order table
90 * allows finding the "bucket node" tables.
91 * - There is one bucket node table per hash index order. The size of
92 * each bucket node table is half the number of hashes contained in
93 * this order (except for order 0).
94 * - The RCU "chunks" is best suited for close interaction with a page
95 * allocator. It uses a linear array as index to "chunks" containing
96 * each the same number of buckets.
97 * - The RCU "mmap" memory backend uses a single memory map to hold
98 * all buckets.
5f177b1c 99 * - synchronize_rcu is used to garbage-collect the old bucket node table.
93d46c39 100 *
7f949215 101 * Ordering Guarantees:
0f5543cb 102 *
7f949215
MD
103 * To discuss these guarantees, we first define "read" operation as any
104 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
105 * cds_lfht_first, cds_lfht_next operation, as well as
67ecffc0 106 * cds_lfht_add_unique (failure).
7f949215
MD
107 *
108 * We define "read traversal" operation as any of the following
109 * group of operations
0f5543cb 110 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
7f949215
MD
111 * (and/or cds_lfht_next, although less common).
112 * - cds_lfht_add_unique (failure) followed by iteration with
113 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
114 * common).
115 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
116 * cds_lfht_next_duplicate, although less common).
0f5543cb 117 *
bf09adc7 118 * We define "write" operations as any of cds_lfht_add, cds_lfht_replace,
7f949215
MD
119 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
120 *
121 * When cds_lfht_add_unique succeeds (returns the node passed as
122 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
123 * fails (returns a node different from the one passed as parameter), it
124 * acts as a "read" operation. A cds_lfht_add_unique failure is a
125 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
126 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
127 * (failure).
128 *
129 * We define "prior" and "later" node as nodes observable by reads and
130 * read traversals respectively before and after a write or sequence of
131 * write operations.
132 *
133 * Hash-table operations are often cascaded, for example, the pointer
134 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
135 * whose return value might in turn be passed to another hash-table
136 * operation. This entire cascaded series of operations must be enclosed
137 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
138 * operations.
139 *
140 * The following ordering guarantees are offered by this hash table:
141 *
142 * A.1) "read" after "write": if there is ordering between a write and a
143 * later read, then the read is guaranteed to see the write or some
144 * later write.
145 * A.2) "read traversal" after "write": given that there is dependency
146 * ordering between reads in a "read traversal", if there is
147 * ordering between a write and the first read of the traversal,
148 * then the "read traversal" is guaranteed to see the write or
149 * some later write.
150 * B.1) "write" after "read": if there is ordering between a read and a
151 * later write, then the read will never see the write.
152 * B.2) "write" after "read traversal": given that there is dependency
153 * ordering between reads in a "read traversal", if there is
154 * ordering between the last read of the traversal and a later
155 * write, then the "read traversal" will never see the write.
156 * C) "write" while "read traversal": if a write occurs during a "read
157 * traversal", the traversal may, or may not, see the write.
158 * D.1) "write" after "write": if there is ordering between a write and
159 * a later write, then the later write is guaranteed to see the
160 * effects of the first write.
161 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
162 * order to any pair of concurrent conflicting writes.
163 * Non-conflicting writes (for example, to different keys) are
164 * unordered.
165 * E) If a grace period separates a "del" or "replace" operation
166 * and a subsequent operation, then that subsequent operation is
167 * guaranteed not to see the removed item.
168 * F) Uniqueness guarantee: given a hash table that does not contain
169 * duplicate items for a given key, there will only be one item in
170 * the hash table after an arbitrary sequence of add_unique and/or
171 * add_replace operations. Note, however, that a pair of
172 * concurrent read operations might well access two different items
173 * with that key.
174 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
175 * memory barrier), then the second lookup will return the same
176 * node as the previous lookup, or some later node.
177 * G.2) A "read traversal" that starts after the end of a prior "read
178 * traversal" (ordered by memory barriers) is guaranteed to see the
179 * same nodes as the previous traversal, or some later nodes.
180 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
181 * example, if a pair of reads to the same key run concurrently
182 * with an insertion of that same key, the reads remain unordered
183 * regardless of their return values. In other words, you cannot
184 * rely on the values returned by the reads to deduce ordering.
185 *
186 * Progress guarantees:
187 *
188 * * Reads are wait-free. These operations always move forward in the
189 * hash table linked list, and this list has no loop.
190 * * Writes are lock-free. Any retry loop performed by a write operation
191 * is triggered by progress made within another update operation.
0f5543cb 192 *
1ee8f000 193 * Bucket node tables:
93d46c39 194 *
1ee8f000
LJ
195 * hash table hash table the last all bucket node tables
196 * order size bucket node 0 1 2 3 4 5 6(index)
93d46c39
LJ
197 * table size
198 * 0 1 1 1
199 * 1 2 1 1 1
200 * 2 4 2 1 1 2
201 * 3 8 4 1 1 2 4
202 * 4 16 8 1 1 2 4 8
203 * 5 32 16 1 1 2 4 8 16
204 * 6 64 32 1 1 2 4 8 16 32
205 *
1ee8f000 206 * When growing/shrinking, we only focus on the last bucket node table
93d46c39
LJ
207 * which size is (!order ? 1 : (1 << (order -1))).
208 *
209 * Example for growing/shrinking:
1ee8f000
LJ
210 * grow hash table from order 5 to 6: init the index=6 bucket node table
211 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
93d46c39 212 *
1475579c 213 * A bit of ascii art explanation:
67ecffc0 214 *
1f67ba50
MD
215 * The order index is the off-by-one compared to the actual power of 2
216 * because we use index 0 to deal with the 0 special-case.
67ecffc0 217 *
1475579c 218 * This shows the nodes for a small table ordered by reversed bits:
67ecffc0 219 *
1475579c
MD
220 * bits reverse
221 * 0 000 000
222 * 4 100 001
223 * 2 010 010
224 * 6 110 011
225 * 1 001 100
226 * 5 101 101
227 * 3 011 110
228 * 7 111 111
67ecffc0
MD
229 *
230 * This shows the nodes in order of non-reversed bits, linked by
1475579c 231 * reversed-bit order.
67ecffc0 232 *
1475579c
MD
233 * order bits reverse
234 * 0 0 000 000
0adc36a8
LJ
235 * 1 | 1 001 100 <-
236 * 2 | | 2 010 010 <- |
f6fdd688 237 * | | | 3 011 110 | <- |
1475579c
MD
238 * 3 -> | | | 4 100 001 | |
239 * -> | | 5 101 101 |
240 * -> | 6 110 011
241 * -> 7 111 111
e753ff5a
MD
242 */
243
2ed95849
MD
244#define _LGPL_SOURCE
245#include <stdlib.h>
e0ba718a 246#include <errno.h>
e0ba718a 247#include <stdio.h>
abc490a1 248#include <stdint.h>
f000907d 249#include <string.h>
125f41db 250#include <sched.h>
95747f9e 251#include <unistd.h>
ac735254 252#include <stdlib.h>
e0ba718a 253
a47dd11c 254#include "compat-getcpu.h"
01477510 255#include <urcu/assert.h>
6cd23d47
MD
256#include <urcu/pointer.h>
257#include <urcu/call-rcu.h>
258#include <urcu/flavor.h>
a42cc659
MD
259#include <urcu/arch.h>
260#include <urcu/uatomic.h>
a42cc659 261#include <urcu/compiler.h>
abc490a1 262#include <urcu/rculfhash.h>
5e28c532 263#include <stdio.h>
464a1ec9 264#include <pthread.h>
d0ec0ed2 265#include <signal.h>
0d0409b1 266#include "rculfhash-internal.h"
d0ec0ed2
MD
267#include "workqueue.h"
268#include "urcu-die.h"
83e334d0 269#include "urcu-utils.h"
5cfe81b7 270#include "compat-smp.h"
44395fb7 271
f8994aee 272/*
4c42f1b8 273 * Split-counters lazily update the global counter each 1024
f8994aee
MD
274 * addition/removal. It automatically keeps track of resize required.
275 * We use the bucket length as indicator for need to expand for small
ffa11a18 276 * tables and machines lacking per-cpu data support.
f8994aee
MD
277 */
278#define COUNT_COMMIT_ORDER 10
4ddbb355 279#define DEFAULT_SPLIT_COUNT_MASK 0xFUL
6ea6bc67
MD
280#define CHAIN_LEN_TARGET 1
281#define CHAIN_LEN_RESIZE_THRESHOLD 3
2ed95849 282
cd95516d 283/*
76a73da8 284 * Define the minimum table size.
cd95516d 285 */
d0d8f9aa
LJ
286#define MIN_TABLE_ORDER 0
287#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
cd95516d 288
b7d619b0 289/*
1ee8f000 290 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
b7d619b0 291 */
6083a889
MD
292#define MIN_PARTITION_PER_THREAD_ORDER 12
293#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
b7d619b0 294
d95bd160
MD
295/*
296 * The removed flag needs to be updated atomically with the pointer.
48ed1c18 297 * It indicates that no node must attach to the node scheduled for
b198f0fd 298 * removal, and that node garbage collection must be performed.
1ee8f000 299 * The bucket flag does not require to be updated atomically with the
d95bd160 300 * pointer, but it is added as a pointer low bit flag to save space.
1f67ba50
MD
301 * The "removal owner" flag is used to detect which of the "del"
302 * operation that has set the "removed flag" gets to return the removed
303 * node to its caller. Note that the replace operation does not need to
304 * iteract with the "removal owner" flag, because it validates that
305 * the "removed" flag is not set before performing its cmpxchg.
d95bd160 306 */
d37166c6 307#define REMOVED_FLAG (1UL << 0)
1ee8f000 308#define BUCKET_FLAG (1UL << 1)
db00ccc3
MD
309#define REMOVAL_OWNER_FLAG (1UL << 2)
310#define FLAGS_MASK ((1UL << 3) - 1)
d37166c6 311
bb7b2f26 312/* Value of the end pointer. Should not interact with flags. */
f9c80341 313#define END_VALUE NULL
bb7b2f26 314
7f52427b
MD
315/*
316 * ht_items_count: Split-counters counting the number of node addition
317 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
318 * is set at hash table creation.
319 *
320 * These are free-running counters, never reset to zero. They count the
321 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
322 * operations to update the global counter. We choose a power-of-2 value
323 * for the trigger to deal with 32 or 64-bit overflow of the counter.
324 */
df44348d 325struct ht_items_count {
860d07e8 326 unsigned long add, del;
df44348d
MD
327} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
328
7f52427b 329/*
d0ec0ed2 330 * resize_work: Contains arguments passed to worker thread
7f52427b
MD
331 * responsible for performing lazy resize.
332 */
d0ec0ed2
MD
333struct resize_work {
334 struct urcu_work work;
14044b37 335 struct cds_lfht *ht;
abc490a1 336};
2ed95849 337
7f52427b
MD
338/*
339 * partition_resize_work: Contains arguments passed to worker threads
340 * executing the hash table resize on partitions of the hash table
341 * assigned to each processor's worker thread.
342 */
b7d619b0 343struct partition_resize_work {
1af6e26e 344 pthread_t thread_id;
b7d619b0
MD
345 struct cds_lfht *ht;
346 unsigned long i, start, len;
347 void (*fct)(struct cds_lfht *ht, unsigned long i,
348 unsigned long start, unsigned long len);
349};
350
008a71ef
MJ
351enum nr_cpus_mask_state {
352 NR_CPUS_MASK_INIT_FAILED = -2,
353 NR_CPUS_MASK_UNINITIALIZED = -1,
354};
355
d0ec0ed2 356static struct urcu_workqueue *cds_lfht_workqueue;
d0ec0ed2
MD
357
358/*
359 * Mutex ensuring mutual exclusion between workqueue initialization and
360 * fork handlers. cds_lfht_fork_mutex nests inside call_rcu_mutex.
361 */
362static pthread_mutex_t cds_lfht_fork_mutex = PTHREAD_MUTEX_INITIALIZER;
363
364static struct urcu_atfork cds_lfht_atfork;
365
366/*
367 * atfork handler nesting counters. Handle being registered to many urcu
368 * flavors, thus being possibly invoked more than once in the
369 * pthread_atfork list of callbacks.
370 */
371static int cds_lfht_workqueue_atfork_nesting;
372
b047e7a7 373static void __attribute__((destructor)) cds_lfht_exit(void);
d0ec0ed2 374static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor);
d0ec0ed2 375
d7c76f85
MD
376#ifdef CONFIG_CDS_LFHT_ITER_DEBUG
377
378static
379void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht, struct cds_lfht_iter *iter)
380{
381 iter->lfht = ht;
382}
383
01477510 384#define cds_lfht_iter_debug_assert(...) urcu_posix_assert(__VA_ARGS__)
d7c76f85
MD
385
386#else
387
388static
70469b43
MJ
389void cds_lfht_iter_debug_set_ht(struct cds_lfht *ht __attribute__((unused)),
390 struct cds_lfht_iter *iter __attribute__((unused)))
d7c76f85
MD
391{
392}
393
394#define cds_lfht_iter_debug_assert(...)
395
396#endif
397
abc490a1
MD
398/*
399 * Algorithm to reverse bits in a word by lookup table, extended to
400 * 64-bit words.
f9830efd 401 * Source:
abc490a1 402 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
f9830efd 403 * Originally from Public Domain.
abc490a1
MD
404 */
405
67ecffc0 406static const uint8_t BitReverseTable256[256] =
2ed95849 407{
abc490a1
MD
408#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
409#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
410#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
411 R6(0), R6(2), R6(1), R6(3)
412};
413#undef R2
414#undef R4
415#undef R6
2ed95849 416
abc490a1
MD
417static
418uint8_t bit_reverse_u8(uint8_t v)
419{
420 return BitReverseTable256[v];
421}
ab7d5fc6 422
95bc7fb9
MD
423#if (CAA_BITS_PER_LONG == 32)
424static
abc490a1
MD
425uint32_t bit_reverse_u32(uint32_t v)
426{
67ecffc0
MD
427 return ((uint32_t) bit_reverse_u8(v) << 24) |
428 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
429 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
abc490a1 430 ((uint32_t) bit_reverse_u8(v >> 24));
2ed95849 431}
95bc7fb9
MD
432#else
433static
abc490a1 434uint64_t bit_reverse_u64(uint64_t v)
2ed95849 435{
67ecffc0
MD
436 return ((uint64_t) bit_reverse_u8(v) << 56) |
437 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
abc490a1
MD
438 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
439 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
67ecffc0
MD
440 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
441 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
abc490a1
MD
442 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
443 ((uint64_t) bit_reverse_u8(v >> 56));
444}
95bc7fb9 445#endif
abc490a1
MD
446
447static
448unsigned long bit_reverse_ulong(unsigned long v)
449{
450#if (CAA_BITS_PER_LONG == 32)
451 return bit_reverse_u32(v);
452#else
453 return bit_reverse_u64(v);
454#endif
455}
456
f9830efd 457/*
24365af7
MD
458 * fls: returns the position of the most significant bit.
459 * Returns 0 if no bit is set, else returns the position of the most
460 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
f9830efd 461 */
0b1e236d 462#if defined(URCU_ARCH_X86)
24365af7
MD
463static inline
464unsigned int fls_u32(uint32_t x)
f9830efd 465{
24365af7
MD
466 int r;
467
e1789ce2 468 __asm__ ("bsrl %1,%0\n\t"
24365af7
MD
469 "jnz 1f\n\t"
470 "movl $-1,%0\n\t"
471 "1:\n\t"
472 : "=r" (r) : "rm" (x));
473 return r + 1;
474}
475#define HAS_FLS_U32
476#endif
477
0b1e236d 478#if defined(URCU_ARCH_AMD64)
24365af7
MD
479static inline
480unsigned int fls_u64(uint64_t x)
481{
482 long r;
483
e1789ce2 484 __asm__ ("bsrq %1,%0\n\t"
24365af7
MD
485 "jnz 1f\n\t"
486 "movq $-1,%0\n\t"
487 "1:\n\t"
488 : "=r" (r) : "rm" (x));
489 return r + 1;
490}
491#define HAS_FLS_U64
492#endif
493
494#ifndef HAS_FLS_U64
495static __attribute__((unused))
496unsigned int fls_u64(uint64_t x)
497{
498 unsigned int r = 64;
499
500 if (!x)
501 return 0;
502
503 if (!(x & 0xFFFFFFFF00000000ULL)) {
504 x <<= 32;
505 r -= 32;
506 }
507 if (!(x & 0xFFFF000000000000ULL)) {
508 x <<= 16;
509 r -= 16;
510 }
511 if (!(x & 0xFF00000000000000ULL)) {
512 x <<= 8;
513 r -= 8;
514 }
515 if (!(x & 0xF000000000000000ULL)) {
516 x <<= 4;
517 r -= 4;
518 }
519 if (!(x & 0xC000000000000000ULL)) {
520 x <<= 2;
521 r -= 2;
522 }
523 if (!(x & 0x8000000000000000ULL)) {
524 x <<= 1;
525 r -= 1;
526 }
527 return r;
528}
529#endif
530
531#ifndef HAS_FLS_U32
532static __attribute__((unused))
533unsigned int fls_u32(uint32_t x)
534{
535 unsigned int r = 32;
f9830efd 536
24365af7
MD
537 if (!x)
538 return 0;
539 if (!(x & 0xFFFF0000U)) {
540 x <<= 16;
541 r -= 16;
542 }
543 if (!(x & 0xFF000000U)) {
544 x <<= 8;
545 r -= 8;
546 }
547 if (!(x & 0xF0000000U)) {
548 x <<= 4;
549 r -= 4;
550 }
551 if (!(x & 0xC0000000U)) {
552 x <<= 2;
553 r -= 2;
554 }
555 if (!(x & 0x80000000U)) {
556 x <<= 1;
557 r -= 1;
558 }
559 return r;
560}
561#endif
562
5bc6b66f 563unsigned int cds_lfht_fls_ulong(unsigned long x)
f9830efd 564{
6887cc5e 565#if (CAA_BITS_PER_LONG == 32)
24365af7
MD
566 return fls_u32(x);
567#else
568 return fls_u64(x);
569#endif
570}
f9830efd 571
ac735254
XF
572static void *cds_lfht_malloc(void *state __attribute__((unused)),
573 size_t size)
574{
575 return malloc(size);
576}
577
578static void *cds_lfht_calloc(void *state __attribute__((unused)),
579 size_t nmemb, size_t size)
580{
581 return calloc(nmemb, size);
582}
583
584static void *cds_lfht_realloc(void *state __attribute__((unused)),
585 void *ptr, size_t size)
586{
587 return realloc(ptr, size);
588}
589
590static void *cds_lfht_aligned_alloc(void *state __attribute__((unused)),
591 size_t alignment, size_t size)
592{
593 void *ptr;
594
595 if (posix_memalign(&ptr, alignment, size))
596 return NULL;
597 return ptr;
598}
599
600static void cds_lfht_free(void *state __attribute__((unused)), void *ptr)
601{
602 free(ptr);
603}
604
605
606/* Default memory allocator */
607static struct cds_lfht_alloc cds_lfht_default_alloc = {
608 .malloc = cds_lfht_malloc,
609 .calloc = cds_lfht_calloc,
610 .realloc = cds_lfht_realloc,
611 .aligned_alloc = cds_lfht_aligned_alloc,
612 .free = cds_lfht_free,
613 .state = NULL,
614};
615
920f8ef6
LJ
616/*
617 * Return the minimum order for which x <= (1UL << order).
618 * Return -1 if x is 0.
619 */
61c3fb60 620static
5bc6b66f 621int cds_lfht_get_count_order_u32(uint32_t x)
24365af7 622{
920f8ef6
LJ
623 if (!x)
624 return -1;
24365af7 625
920f8ef6 626 return fls_u32(x - 1);
24365af7
MD
627}
628
920f8ef6
LJ
629/*
630 * Return the minimum order for which x <= (1UL << order).
631 * Return -1 if x is 0.
632 */
5bc6b66f 633int cds_lfht_get_count_order_ulong(unsigned long x)
24365af7 634{
920f8ef6
LJ
635 if (!x)
636 return -1;
24365af7 637
5bc6b66f 638 return cds_lfht_fls_ulong(x - 1);
f9830efd
MD
639}
640
641static
ab65b890 642void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
f9830efd 643
f8994aee 644static
4105056a 645void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
f8994aee
MD
646 unsigned long count);
647
5ffcaeef
MD
648static void mutex_lock(pthread_mutex_t *mutex)
649{
650 int ret;
651
652#ifndef DISTRUST_SIGNALS_EXTREME
653 ret = pthread_mutex_lock(mutex);
654 if (ret)
655 urcu_die(ret);
656#else /* #ifndef DISTRUST_SIGNALS_EXTREME */
657 while ((ret = pthread_mutex_trylock(mutex)) != 0) {
658 if (ret != EBUSY && ret != EINTR)
659 urcu_die(ret);
660 if (CMM_LOAD_SHARED(URCU_TLS(rcu_reader).need_mb)) {
601922a8 661 uatomic_store(&URCU_TLS(rcu_reader).need_mb, 0, CMM_SEQ_CST);
5ffcaeef
MD
662 }
663 (void) poll(NULL, 0, 10);
664 }
665#endif /* #else #ifndef DISTRUST_SIGNALS_EXTREME */
666}
667
668static void mutex_unlock(pthread_mutex_t *mutex)
669{
670 int ret;
671
672 ret = pthread_mutex_unlock(mutex);
673 if (ret)
674 urcu_die(ret);
675}
676
008a71ef 677static long nr_cpus_mask = NR_CPUS_MASK_UNINITIALIZED;
4c42f1b8 678static long split_count_mask = -1;
e53ab1eb 679static int split_count_order = -1;
4c42f1b8
LJ
680
681static void ht_init_nr_cpus_mask(void)
682{
683 long maxcpus;
684
5cfe81b7 685 maxcpus = get_possible_cpus_array_len();
4c42f1b8 686 if (maxcpus <= 0) {
008a71ef 687 nr_cpus_mask = NR_CPUS_MASK_INIT_FAILED;
4c42f1b8
LJ
688 return;
689 }
690 /*
691 * round up number of CPUs to next power of two, so we
692 * can use & for modulo.
693 */
5bc6b66f 694 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
4c42f1b8
LJ
695 nr_cpus_mask = maxcpus - 1;
696}
df44348d
MD
697
698static
5afadd12 699void alloc_split_items_count(struct cds_lfht *ht)
df44348d 700{
008a71ef 701 if (nr_cpus_mask == NR_CPUS_MASK_UNINITIALIZED) {
4c42f1b8 702 ht_init_nr_cpus_mask();
4ddbb355
LJ
703 if (nr_cpus_mask < 0)
704 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
705 else
706 split_count_mask = nr_cpus_mask;
e53ab1eb
MD
707 split_count_order =
708 cds_lfht_get_count_order_ulong(split_count_mask + 1);
df44348d 709 }
4c42f1b8 710
01477510 711 urcu_posix_assert(split_count_mask >= 0);
5afadd12
LJ
712
713 if (ht->flags & CDS_LFHT_ACCOUNTING) {
ac735254 714 ht->split_count = ht->alloc->calloc(ht->alloc->state, split_count_mask + 1,
95bc7fb9 715 sizeof(struct ht_items_count));
01477510 716 urcu_posix_assert(ht->split_count);
5afadd12
LJ
717 } else {
718 ht->split_count = NULL;
719 }
df44348d
MD
720}
721
722static
5afadd12 723void free_split_items_count(struct cds_lfht *ht)
df44348d 724{
ac735254 725 poison_free(ht->alloc, ht->split_count);
df44348d
MD
726}
727
728static
14360f1c 729int ht_get_split_count_index(unsigned long hash)
df44348d
MD
730{
731 int cpu;
732
01477510 733 urcu_posix_assert(split_count_mask >= 0);
a47dd11c 734 cpu = urcu_sched_getcpu();
8ed51e04 735 if (caa_unlikely(cpu < 0))
14360f1c 736 return hash & split_count_mask;
df44348d 737 else
4c42f1b8 738 return cpu & split_count_mask;
df44348d
MD
739}
740
741static
14360f1c 742void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 743{
83e334d0 744 unsigned long split_count, count;
4c42f1b8 745 int index;
df44348d 746
8ed51e04 747 if (caa_unlikely(!ht->split_count))
3171717f 748 return;
14360f1c 749 index = ht_get_split_count_index(hash);
4c42f1b8 750 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
314558bf
MD
751 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
752 return;
753 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
754
755 dbg_printf("add split count %lu\n", split_count);
756 count = uatomic_add_return(&ht->count,
757 1UL << COUNT_COMMIT_ORDER);
4c299dcb 758 if (caa_likely(count & (count - 1)))
314558bf
MD
759 return;
760 /* Only if global count is power of 2 */
761
762 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
763 return;
83e334d0 764 dbg_printf("add set global %lu\n", count);
314558bf
MD
765 cds_lfht_resize_lazy_count(ht, size,
766 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
767}
768
769static
14360f1c 770void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 771{
83e334d0 772 unsigned long split_count, count;
4c42f1b8 773 int index;
df44348d 774
8ed51e04 775 if (caa_unlikely(!ht->split_count))
3171717f 776 return;
14360f1c 777 index = ht_get_split_count_index(hash);
4c42f1b8 778 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
314558bf
MD
779 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
780 return;
781 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
782
783 dbg_printf("del split count %lu\n", split_count);
784 count = uatomic_add_return(&ht->count,
785 -(1UL << COUNT_COMMIT_ORDER));
4c299dcb 786 if (caa_likely(count & (count - 1)))
314558bf
MD
787 return;
788 /* Only if global count is power of 2 */
789
790 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
791 return;
59b6b14f 792 dbg_printf("del set global %lu\n", count);
314558bf
MD
793 /*
794 * Don't shrink table if the number of nodes is below a
795 * certain threshold.
796 */
797 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
798 return;
799 cds_lfht_resize_lazy_count(ht, size,
800 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
801}
802
f9830efd 803static
4105056a 804void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
f9830efd 805{
f8994aee
MD
806 unsigned long count;
807
b8af5011
MD
808 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
809 return;
f8994aee
MD
810 count = uatomic_read(&ht->count);
811 /*
812 * Use bucket-local length for small table expand and for
813 * environments lacking per-cpu data support.
814 */
e53ab1eb 815 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
f8994aee 816 return;
24365af7 817 if (chain_len > 100)
f0c29ed7 818 dbg_printf("WARNING: large chain length: %u.\n",
24365af7 819 chain_len);
e53ab1eb
MD
820 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
821 int growth;
822
823 /*
824 * Ideal growth calculated based on chain length.
825 */
826 growth = cds_lfht_get_count_order_u32(chain_len
827 - (CHAIN_LEN_TARGET - 1));
828 if ((ht->flags & CDS_LFHT_ACCOUNTING)
829 && (size << growth)
830 >= (1UL << (COUNT_COMMIT_ORDER
831 + split_count_order))) {
832 /*
833 * If ideal growth expands the hash table size
834 * beyond the "small hash table" sizes, use the
835 * maximum small hash table size to attempt
836 * expanding the hash table. This only applies
837 * when node accounting is available, otherwise
838 * the chain length is used to expand the hash
839 * table in every case.
840 */
841 growth = COUNT_COMMIT_ORDER + split_count_order
842 - cds_lfht_get_count_order_ulong(size);
843 if (growth <= 0)
844 return;
845 }
846 cds_lfht_resize_lazy_grow(ht, size, growth);
847 }
f9830efd
MD
848}
849
abc490a1 850static
14044b37 851struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
abc490a1 852{
14044b37 853 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
abc490a1
MD
854}
855
856static
afa5940d 857int is_removed(const struct cds_lfht_node *node)
abc490a1 858{
d37166c6 859 return ((unsigned long) node) & REMOVED_FLAG;
abc490a1
MD
860}
861
f5596c94 862static
1ee8f000 863int is_bucket(struct cds_lfht_node *node)
f5596c94 864{
1ee8f000 865 return ((unsigned long) node) & BUCKET_FLAG;
f5596c94
MD
866}
867
868static
1ee8f000 869struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
f5596c94 870{
1ee8f000 871 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
f5596c94 872}
bb7b2f26 873
db00ccc3
MD
874static
875int is_removal_owner(struct cds_lfht_node *node)
876{
877 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
878}
879
4c10e9af
MD
880static
881struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
882{
883 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
884}
885
db00ccc3
MD
886static
887struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
888{
889 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
890}
891
71bb3aca
MD
892static
893struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
894{
895 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
896}
897
bb7b2f26
MD
898static
899struct cds_lfht_node *get_end(void)
900{
901 return (struct cds_lfht_node *) END_VALUE;
902}
903
904static
905int is_end(struct cds_lfht_node *node)
906{
907 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
908}
909
abc490a1 910static
ab65b890
LJ
911unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
912 unsigned long v)
abc490a1
MD
913{
914 unsigned long old1, old2;
915
916 old1 = uatomic_read(ptr);
917 do {
918 old2 = old1;
601922a8
OD
919 if (old2 >= v) {
920 cmm_smp_mb();
f9830efd 921 return old2;
601922a8 922 }
abc490a1 923 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
ab65b890 924 return old2;
abc490a1
MD
925}
926
48f1b16d
LJ
927static
928void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
929{
0b6aa001 930 return ht->mm->alloc_bucket_table(ht, order);
48f1b16d
LJ
931}
932
933/*
934 * cds_lfht_free_bucket_table() should be called with decreasing order.
935 * When cds_lfht_free_bucket_table(0) is called, it means the whole
936 * lfht is destroyed.
937 */
938static
939void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
940{
0b6aa001 941 return ht->mm->free_bucket_table(ht, order);
48f1b16d
LJ
942}
943
9d72a73f
LJ
944static inline
945struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
f4a9cc0b 946{
0b6aa001 947 return ht->bucket_at(ht, index);
f4a9cc0b
LJ
948}
949
9d72a73f
LJ
950static inline
951struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
952 unsigned long hash)
953{
01477510 954 urcu_posix_assert(size > 0);
9d72a73f
LJ
955 return bucket_at(ht, hash & (size - 1));
956}
957
273399de
MD
958/*
959 * Remove all logically deleted nodes from a bucket up to a certain node key.
960 */
961static
1ee8f000 962void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
273399de 963{
14044b37 964 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
273399de 965
01477510
FD
966 urcu_posix_assert(!is_bucket(bucket));
967 urcu_posix_assert(!is_removed(bucket));
968 urcu_posix_assert(!is_removal_owner(bucket));
969 urcu_posix_assert(!is_bucket(node));
970 urcu_posix_assert(!is_removed(node));
971 urcu_posix_assert(!is_removal_owner(node));
273399de 972 for (;;) {
1ee8f000
LJ
973 iter_prev = bucket;
974 /* We can always skip the bucket node initially */
04db56f8 975 iter = rcu_dereference(iter_prev->next);
01477510
FD
976 urcu_posix_assert(!is_removed(iter));
977 urcu_posix_assert(!is_removal_owner(iter));
978 urcu_posix_assert(iter_prev->reverse_hash <= node->reverse_hash);
bd4db153 979 /*
1ee8f000 980 * We should never be called with bucket (start of chain)
bd4db153
MD
981 * and logically removed node (end of path compression
982 * marker) being the actual same node. This would be a
983 * bug in the algorithm implementation.
984 */
01477510 985 urcu_posix_assert(bucket != node);
273399de 986 for (;;) {
8ed51e04 987 if (caa_unlikely(is_end(iter)))
f9c80341 988 return;
04db56f8 989 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
f9c80341 990 return;
04db56f8 991 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 992 if (caa_likely(is_removed(next)))
273399de 993 break;
b453eae1 994 iter_prev = clear_flag(iter);
273399de
MD
995 iter = next;
996 }
01477510
FD
997 urcu_posix_assert(!is_removed(iter));
998 urcu_posix_assert(!is_removal_owner(iter));
1ee8f000
LJ
999 if (is_bucket(iter))
1000 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
1001 else
1002 new_next = clear_flag(next);
04db56f8 1003 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de
MD
1004 }
1005}
1006
9357c415
MD
1007static
1008int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
1009 struct cds_lfht_node *old_node,
3fb86f26 1010 struct cds_lfht_node *old_next,
9357c415
MD
1011 struct cds_lfht_node *new_node)
1012{
04db56f8 1013 struct cds_lfht_node *bucket, *ret_next;
9357c415
MD
1014
1015 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
7801dadd 1016 return -ENOENT;
9357c415 1017
01477510
FD
1018 urcu_posix_assert(!is_removed(old_node));
1019 urcu_posix_assert(!is_removal_owner(old_node));
1020 urcu_posix_assert(!is_bucket(old_node));
1021 urcu_posix_assert(!is_removed(new_node));
1022 urcu_posix_assert(!is_removal_owner(new_node));
1023 urcu_posix_assert(!is_bucket(new_node));
1024 urcu_posix_assert(new_node != old_node);
3fb86f26 1025 for (;;) {
9357c415 1026 /* Insert after node to be replaced */
9357c415
MD
1027 if (is_removed(old_next)) {
1028 /*
1029 * Too late, the old node has been removed under us
1030 * between lookup and replace. Fail.
1031 */
7801dadd 1032 return -ENOENT;
9357c415 1033 }
01477510
FD
1034 urcu_posix_assert(old_next == clear_flag(old_next));
1035 urcu_posix_assert(new_node != old_next);
71bb3aca
MD
1036 /*
1037 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
1038 * flag. It is either set atomically at the same time
1039 * (replace) or after (del).
1040 */
01477510 1041 urcu_posix_assert(!is_removal_owner(old_next));
feda2722 1042 new_node->next = old_next;
9357c415
MD
1043 /*
1044 * Here is the whole trick for lock-free replace: we add
1045 * the replacement node _after_ the node we want to
1046 * replace by atomically setting its next pointer at the
1047 * same time we set its removal flag. Given that
1048 * the lookups/get next use an iterator aware of the
1049 * next pointer, they will either skip the old node due
1050 * to the removal flag and see the new node, or use
1051 * the old node, but will not see the new one.
db00ccc3
MD
1052 * This is a replacement of a node with another node
1053 * that has the same value: we are therefore not
71bb3aca
MD
1054 * removing a value from the hash table. We set both the
1055 * REMOVED and REMOVAL_OWNER flags atomically so we own
1056 * the node after successful cmpxchg.
9357c415 1057 */
04db56f8 1058 ret_next = uatomic_cmpxchg(&old_node->next,
71bb3aca 1059 old_next, flag_removed_or_removal_owner(new_node));
3fb86f26 1060 if (ret_next == old_next)
7801dadd 1061 break; /* We performed the replacement. */
3fb86f26
LJ
1062 old_next = ret_next;
1063 }
9357c415 1064
9357c415
MD
1065 /*
1066 * Ensure that the old node is not visible to readers anymore:
1067 * lookup for the node, and remove it (along with any other
1068 * logically removed node) if found.
1069 */
04db56f8
LJ
1070 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
1071 _cds_lfht_gc_bucket(bucket, new_node);
7801dadd 1072
01477510 1073 urcu_posix_assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
7801dadd 1074 return 0;
9357c415
MD
1075}
1076
83beee94
MD
1077/*
1078 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
1079 * mode. A NULL unique_ret allows creation of duplicate keys.
1080 */
abc490a1 1081static
83beee94 1082void _cds_lfht_add(struct cds_lfht *ht,
91a75cc5 1083 unsigned long hash,
0422d92c 1084 cds_lfht_match_fct match,
996ff57c 1085 const void *key,
83beee94
MD
1086 unsigned long size,
1087 struct cds_lfht_node *node,
1088 struct cds_lfht_iter *unique_ret,
1ee8f000 1089 int bucket_flag)
abc490a1 1090{
14044b37 1091 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
960c9e4f 1092 *return_node;
04db56f8 1093 struct cds_lfht_node *bucket;
abc490a1 1094
01477510
FD
1095 urcu_posix_assert(!is_bucket(node));
1096 urcu_posix_assert(!is_removed(node));
1097 urcu_posix_assert(!is_removal_owner(node));
91a75cc5 1098 bucket = lookup_bucket(ht, size, hash);
abc490a1 1099 for (;;) {
adc0de68 1100 uint32_t chain_len = 0;
abc490a1 1101
11519af6
MD
1102 /*
1103 * iter_prev points to the non-removed node prior to the
1104 * insert location.
11519af6 1105 */
04db56f8 1106 iter_prev = bucket;
1ee8f000 1107 /* We can always skip the bucket node initially */
04db56f8 1108 iter = rcu_dereference(iter_prev->next);
01477510 1109 urcu_posix_assert(iter_prev->reverse_hash <= node->reverse_hash);
abc490a1 1110 for (;;) {
8ed51e04 1111 if (caa_unlikely(is_end(iter)))
273399de 1112 goto insert;
04db56f8 1113 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
273399de 1114 goto insert;
238cc06e 1115
1ee8f000
LJ
1116 /* bucket node is the first node of the identical-hash-value chain */
1117 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
194fdbd1 1118 goto insert;
238cc06e 1119
04db56f8 1120 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 1121 if (caa_unlikely(is_removed(next)))
9dba85be 1122 goto gc_node;
238cc06e
LJ
1123
1124 /* uniquely add */
83beee94 1125 if (unique_ret
1ee8f000 1126 && !is_bucket(next)
04db56f8 1127 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
d7c76f85
MD
1128 struct cds_lfht_iter d_iter = {
1129 .node = node,
1130 .next = iter,
1131#ifdef CONFIG_CDS_LFHT_ITER_DEBUG
1132 .lfht = ht,
1133#endif
1134 };
238cc06e
LJ
1135
1136 /*
1137 * uniquely adding inserts the node as the first
1138 * node of the identical-hash-value node chain.
1139 *
1140 * This semantic ensures no duplicated keys
1141 * should ever be observable in the table
1f67ba50
MD
1142 * (including traversing the table node by
1143 * node by forward iterations)
238cc06e 1144 */
04db56f8 1145 cds_lfht_next_duplicate(ht, match, key, &d_iter);
238cc06e
LJ
1146 if (!d_iter.node)
1147 goto insert;
1148
1149 *unique_ret = d_iter;
83beee94 1150 return;
48ed1c18 1151 }
238cc06e 1152
11519af6 1153 /* Only account for identical reverse hash once */
04db56f8 1154 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1ee8f000 1155 && !is_bucket(next))
4105056a 1156 check_resize(ht, size, ++chain_len);
11519af6 1157 iter_prev = clear_flag(iter);
273399de 1158 iter = next;
abc490a1 1159 }
48ed1c18 1160
273399de 1161 insert:
01477510
FD
1162 urcu_posix_assert(node != clear_flag(iter));
1163 urcu_posix_assert(!is_removed(iter_prev));
1164 urcu_posix_assert(!is_removal_owner(iter_prev));
1165 urcu_posix_assert(!is_removed(iter));
1166 urcu_posix_assert(!is_removal_owner(iter));
1167 urcu_posix_assert(iter_prev != node);
1ee8f000 1168 if (!bucket_flag)
04db56f8 1169 node->next = clear_flag(iter);
f9c80341 1170 else
1ee8f000
LJ
1171 node->next = flag_bucket(clear_flag(iter));
1172 if (is_bucket(iter))
1173 new_node = flag_bucket(node);
f5596c94
MD
1174 else
1175 new_node = node;
04db56f8 1176 if (uatomic_cmpxchg(&iter_prev->next, iter,
48ed1c18 1177 new_node) != iter) {
273399de 1178 continue; /* retry */
48ed1c18 1179 } else {
83beee94 1180 return_node = node;
960c9e4f 1181 goto end;
48ed1c18
MD
1182 }
1183
9dba85be 1184 gc_node:
01477510
FD
1185 urcu_posix_assert(!is_removed(iter));
1186 urcu_posix_assert(!is_removal_owner(iter));
1ee8f000
LJ
1187 if (is_bucket(iter))
1188 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
1189 else
1190 new_next = clear_flag(next);
04db56f8 1191 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de 1192 /* retry */
464a1ec9 1193 }
9357c415 1194end:
83beee94
MD
1195 if (unique_ret) {
1196 unique_ret->node = return_node;
1197 /* unique_ret->next left unset, never used. */
1198 }
abc490a1 1199}
464a1ec9 1200
abc490a1 1201static
860d07e8 1202int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
b65ec430 1203 struct cds_lfht_node *node)
abc490a1 1204{
db00ccc3 1205 struct cds_lfht_node *bucket, *next;
dad4e6b7 1206 uintptr_t *node_next;
5e28c532 1207
9357c415 1208 if (!node) /* Return -ENOENT if asked to delete NULL node */
743f9143 1209 return -ENOENT;
9357c415 1210
7ec59d3b 1211 /* logically delete the node */
01477510
FD
1212 urcu_posix_assert(!is_bucket(node));
1213 urcu_posix_assert(!is_removed(node));
1214 urcu_posix_assert(!is_removal_owner(node));
48ed1c18 1215
db00ccc3
MD
1216 /*
1217 * We are first checking if the node had previously been
1218 * logically removed (this check is not atomic with setting the
1219 * logical removal flag). Return -ENOENT if the node had
1220 * previously been removed.
1221 */
a85eff52 1222 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
db00ccc3
MD
1223 if (caa_unlikely(is_removed(next)))
1224 return -ENOENT;
01477510 1225 urcu_posix_assert(!is_bucket(next));
196f4fab
MD
1226 /*
1227 * The del operation semantic guarantees a full memory barrier
1228 * before the uatomic_or atomic commit of the deletion flag.
601922a8 1229 *
db00ccc3
MD
1230 * We set the REMOVED_FLAG unconditionally. Note that there may
1231 * be more than one concurrent thread setting this flag.
1232 * Knowing which wins the race will be known after the garbage
1233 * collection phase, stay tuned!
601922a8
OD
1234 *
1235 * NOTE: The node_next variable is present to avoid breaking
1236 * strict-aliasing rules.
db00ccc3 1237 */
dad4e6b7 1238 node_next = (uintptr_t*)&node->next;
601922a8
OD
1239 uatomic_or_mo(node_next, REMOVED_FLAG, CMM_RELEASE);
1240
7ec59d3b 1241 /* We performed the (logical) deletion. */
7ec59d3b
MD
1242
1243 /*
1244 * Ensure that the node is not visible to readers anymore: lookup for
273399de
MD
1245 * the node, and remove it (along with any other logically removed node)
1246 * if found.
11519af6 1247 */
04db56f8
LJ
1248 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1249 _cds_lfht_gc_bucket(bucket, node);
743f9143 1250
01477510 1251 urcu_posix_assert(is_removed(CMM_LOAD_SHARED(node->next)));
db00ccc3
MD
1252 /*
1253 * Last phase: atomically exchange node->next with a version
1254 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1255 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1256 * the node and win the removal race.
1257 * It is interesting to note that all "add" paths are forbidden
1258 * to change the next pointer starting from the point where the
1259 * REMOVED_FLAG is set, so here using a read, followed by a
1260 * xchg() suffice to guarantee that the xchg() will ever only
1261 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1262 * was already set).
1263 */
1264 if (!is_removal_owner(uatomic_xchg(&node->next,
601922a8 1265 flag_removal_owner(uatomic_load(&node->next, CMM_RELAXED)))))
db00ccc3
MD
1266 return 0;
1267 else
1268 return -ENOENT;
abc490a1 1269}
2ed95849 1270
b7d619b0
MD
1271static
1272void *partition_resize_thread(void *arg)
1273{
1274 struct partition_resize_work *work = arg;
1275
7b17c13e 1276 work->ht->flavor->register_thread();
b7d619b0 1277 work->fct(work->ht, work->i, work->start, work->len);
7b17c13e 1278 work->ht->flavor->unregister_thread();
b7d619b0
MD
1279 return NULL;
1280}
1281
1282static
1283void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1284 unsigned long len,
1285 void (*fct)(struct cds_lfht *ht, unsigned long i,
1286 unsigned long start, unsigned long len))
1287{
e54ec2f5 1288 unsigned long partition_len, start = 0;
b7d619b0 1289 struct partition_resize_work *work;
83e334d0
MJ
1290 int ret;
1291 unsigned long thread, nr_threads;
ea3a28a3 1292 sigset_t newmask, oldmask;
b7d619b0 1293
008a71ef 1294 urcu_posix_assert(nr_cpus_mask != NR_CPUS_MASK_UNINITIALIZED);
d7f3ba4c
EW
1295 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD)
1296 goto fallback;
1297
6083a889
MD
1298 /*
1299 * Note: nr_cpus_mask + 1 is always power of 2.
1300 * We spawn just the number of threads we need to satisfy the minimum
1301 * partition size, up to the number of CPUs in the system.
1302 */
91452a6a 1303 if (nr_cpus_mask > 0) {
83e334d0 1304 nr_threads = min_t(unsigned long, nr_cpus_mask + 1,
91452a6a
MD
1305 len >> MIN_PARTITION_PER_THREAD_ORDER);
1306 } else {
1307 nr_threads = 1;
1308 }
5bc6b66f 1309 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
ac735254 1310 work = ht->alloc->calloc(ht->alloc->state, nr_threads, sizeof(*work));
7c75d498
EW
1311 if (!work) {
1312 dbg_printf("error allocating for resize, single-threading\n");
1313 goto fallback;
1314 }
ea3a28a3
MD
1315
1316 ret = sigfillset(&newmask);
1317 urcu_posix_assert(!ret);
1318 ret = pthread_sigmask(SIG_BLOCK, &newmask, &oldmask);
1319 urcu_posix_assert(!ret);
1320
6083a889
MD
1321 for (thread = 0; thread < nr_threads; thread++) {
1322 work[thread].ht = ht;
1323 work[thread].i = i;
1324 work[thread].len = partition_len;
1325 work[thread].start = thread * partition_len;
1326 work[thread].fct = fct;
b047e7a7
MD
1327 ret = pthread_create(&(work[thread].thread_id),
1328 ht->caller_resize_attr ? &ht->resize_attr : NULL,
6083a889 1329 partition_resize_thread, &work[thread]);
e54ec2f5
EW
1330 if (ret == EAGAIN) {
1331 /*
1332 * Out of resources: wait and join the threads
1333 * we've created, then handle leftovers.
1334 */
1335 dbg_printf("error spawning for resize, single-threading\n");
1336 start = work[thread].start;
1337 len -= start;
1338 nr_threads = thread;
1339 break;
1340 }
01477510 1341 urcu_posix_assert(!ret);
b7d619b0 1342 }
ea3a28a3
MD
1343
1344 ret = pthread_sigmask(SIG_SETMASK, &oldmask, NULL);
1345 urcu_posix_assert(!ret);
1346
6083a889 1347 for (thread = 0; thread < nr_threads; thread++) {
1af6e26e 1348 ret = pthread_join(work[thread].thread_id, NULL);
01477510 1349 urcu_posix_assert(!ret);
b7d619b0 1350 }
ac735254 1351 ht->alloc->free(ht->alloc->state, work);
e54ec2f5
EW
1352
1353 /*
1354 * A pthread_create failure above will either lead in us having
1355 * no threads to join or starting at a non-zero offset,
1356 * fallback to single thread processing of leftovers.
1357 */
1358 if (start == 0 && nr_threads > 0)
1359 return;
7c75d498 1360fallback:
e54ec2f5 1361 fct(ht, i, start, len);
b7d619b0
MD
1362}
1363
e8de508e
MD
1364/*
1365 * Holding RCU read lock to protect _cds_lfht_add against memory
d0ec0ed2 1366 * reclaim that could be performed by other worker threads (ABA
e8de508e 1367 * problem).
9ee0fc9a 1368 *
b7d619b0 1369 * When we reach a certain length, we can split this population phase over
9ee0fc9a
MD
1370 * many worker threads, based on the number of CPUs available in the system.
1371 * This should therefore take care of not having the expand lagging behind too
1372 * many concurrent insertion threads by using the scheduler's ability to
1ee8f000 1373 * schedule bucket node population fairly with insertions.
e8de508e 1374 */
4105056a 1375static
b7d619b0
MD
1376void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1377 unsigned long start, unsigned long len)
4105056a 1378{
9d72a73f 1379 unsigned long j, size = 1UL << (i - 1);
4105056a 1380
01477510 1381 urcu_posix_assert(i > MIN_TABLE_ORDER);
7b17c13e 1382 ht->flavor->read_lock();
9d72a73f
LJ
1383 for (j = size + start; j < size + start + len; j++) {
1384 struct cds_lfht_node *new_node = bucket_at(ht, j);
1385
01477510 1386 urcu_posix_assert(j >= size && j < (size << 1));
9d72a73f
LJ
1387 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1388 i, j, j);
1389 new_node->reverse_hash = bit_reverse_ulong(j);
91a75cc5 1390 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
4105056a 1391 }
7b17c13e 1392 ht->flavor->read_unlock();
b7d619b0
MD
1393}
1394
1395static
1396void init_table_populate(struct cds_lfht *ht, unsigned long i,
1397 unsigned long len)
1398{
b7d619b0 1399 partition_resize_helper(ht, i, len, init_table_populate_partition);
4105056a
MD
1400}
1401
abc490a1 1402static
4105056a 1403void init_table(struct cds_lfht *ht,
93d46c39 1404 unsigned long first_order, unsigned long last_order)
24365af7 1405{
93d46c39 1406 unsigned long i;
24365af7 1407
93d46c39
LJ
1408 dbg_printf("init table: first_order %lu last_order %lu\n",
1409 first_order, last_order);
01477510 1410 urcu_posix_assert(first_order > MIN_TABLE_ORDER);
93d46c39 1411 for (i = first_order; i <= last_order; i++) {
4105056a 1412 unsigned long len;
24365af7 1413
4f6e90b7 1414 len = 1UL << (i - 1);
f0c29ed7 1415 dbg_printf("init order %lu len: %lu\n", i, len);
4d676753
MD
1416
1417 /* Stop expand if the resize target changes under us */
7b3893e4 1418 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
4d676753
MD
1419 break;
1420
48f1b16d 1421 cds_lfht_alloc_bucket_table(ht, i);
4105056a 1422
4105056a 1423 /*
1ee8f000
LJ
1424 * Set all bucket nodes reverse hash values for a level and
1425 * link all bucket nodes into the table.
4105056a 1426 */
dc1da8f6 1427 init_table_populate(ht, i, len);
4105056a 1428
f9c80341
MD
1429 /*
1430 * Update table size.
601922a8
OD
1431 *
1432 * Populate data before RCU size.
f9c80341 1433 */
601922a8 1434 uatomic_store(&ht->size, 1UL << i, CMM_RELEASE);
f9c80341 1435
4f6e90b7 1436 dbg_printf("init new size: %lu\n", 1UL << i);
4105056a
MD
1437 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1438 break;
1439 }
1440}
1441
e8de508e
MD
1442/*
1443 * Holding RCU read lock to protect _cds_lfht_remove against memory
d0ec0ed2 1444 * reclaim that could be performed by other worker threads (ABA
e8de508e
MD
1445 * problem).
1446 * For a single level, we logically remove and garbage collect each node.
1447 *
1448 * As a design choice, we perform logical removal and garbage collection on a
1449 * node-per-node basis to simplify this algorithm. We also assume keeping good
1450 * cache locality of the operation would overweight possible performance gain
1451 * that could be achieved by batching garbage collection for multiple levels.
1452 * However, this would have to be justified by benchmarks.
1453 *
1454 * Concurrent removal and add operations are helping us perform garbage
1455 * collection of logically removed nodes. We guarantee that all logically
d0ec0ed2
MD
1456 * removed nodes have been garbage-collected (unlinked) before work
1457 * enqueue is invoked to free a hole level of bucket nodes (after a
1458 * grace period).
e8de508e 1459 *
1f67ba50
MD
1460 * Logical removal and garbage collection can therefore be done in batch
1461 * or on a node-per-node basis, as long as the guarantee above holds.
9ee0fc9a 1462 *
b7d619b0
MD
1463 * When we reach a certain length, we can split this removal over many worker
1464 * threads, based on the number of CPUs available in the system. This should
1465 * take care of not letting resize process lag behind too many concurrent
9ee0fc9a 1466 * updater threads actively inserting into the hash table.
e8de508e 1467 */
4105056a 1468static
b7d619b0
MD
1469void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1470 unsigned long start, unsigned long len)
4105056a 1471{
9d72a73f 1472 unsigned long j, size = 1UL << (i - 1);
4105056a 1473
01477510 1474 urcu_posix_assert(i > MIN_TABLE_ORDER);
7b17c13e 1475 ht->flavor->read_lock();
9d72a73f 1476 for (j = size + start; j < size + start + len; j++) {
2e2ce1e9
LJ
1477 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1478 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
dad4e6b7 1479 uintptr_t *fini_bucket_next;
9d72a73f 1480
01477510 1481 urcu_posix_assert(j >= size && j < (size << 1));
9d72a73f
LJ
1482 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1483 i, j, j);
601922a8
OD
1484 /* Set the REMOVED_FLAG to freeze the ->next for gc.
1485 *
1486 * NOTE: The fini_bucket_next variable is present to
1487 * avoid breaking strict-aliasing rules.
1488 */
dad4e6b7 1489 fini_bucket_next = (uintptr_t*)&fini_bucket->next;
601922a8 1490 uatomic_or(fini_bucket_next, REMOVED_FLAG);
2e2ce1e9 1491 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
abc490a1 1492 }
7b17c13e 1493 ht->flavor->read_unlock();
b7d619b0
MD
1494}
1495
1496static
1497void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1498{
b7d619b0 1499 partition_resize_helper(ht, i, len, remove_table_partition);
2ed95849
MD
1500}
1501
61adb337
MD
1502/*
1503 * fini_table() is never called for first_order == 0, which is why
1504 * free_by_rcu_order == 0 can be used as criterion to know if free must
1505 * be called.
1506 */
1475579c 1507static
4105056a 1508void fini_table(struct cds_lfht *ht,
93d46c39 1509 unsigned long first_order, unsigned long last_order)
1475579c 1510{
83e334d0 1511 unsigned long free_by_rcu_order = 0, i;
1475579c 1512
93d46c39
LJ
1513 dbg_printf("fini table: first_order %lu last_order %lu\n",
1514 first_order, last_order);
01477510 1515 urcu_posix_assert(first_order > MIN_TABLE_ORDER);
93d46c39 1516 for (i = last_order; i >= first_order; i--) {
4105056a 1517 unsigned long len;
1475579c 1518
4f6e90b7 1519 len = 1UL << (i - 1);
e15df1cc 1520 dbg_printf("fini order %ld len: %lu\n", i, len);
4105056a 1521
4d676753 1522 /* Stop shrink if the resize target changes under us */
7b3893e4 1523 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
4d676753
MD
1524 break;
1525
1526 cmm_smp_wmb(); /* populate data before RCU size */
7b3893e4 1527 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
4d676753
MD
1528
1529 /*
1530 * We need to wait for all add operations to reach Q.S. (and
1531 * thus use the new table for lookups) before we can start
1ee8f000 1532 * releasing the old bucket nodes. Otherwise their lookup will
4d676753
MD
1533 * return a logically removed node as insert position.
1534 */
7b17c13e 1535 ht->flavor->update_synchronize_rcu();
48f1b16d
LJ
1536 if (free_by_rcu_order)
1537 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
4d676753 1538
21263e21 1539 /*
1ee8f000
LJ
1540 * Set "removed" flag in bucket nodes about to be removed.
1541 * Unlink all now-logically-removed bucket node pointers.
4105056a
MD
1542 * Concurrent add/remove operation are helping us doing
1543 * the gc.
21263e21 1544 */
4105056a
MD
1545 remove_table(ht, i, len);
1546
48f1b16d 1547 free_by_rcu_order = i;
4105056a
MD
1548
1549 dbg_printf("fini new size: %lu\n", 1UL << i);
1475579c
MD
1550 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1551 break;
1552 }
0d14ceb2 1553
48f1b16d 1554 if (free_by_rcu_order) {
7b17c13e 1555 ht->flavor->update_synchronize_rcu();
48f1b16d 1556 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
0d14ceb2 1557 }
1475579c
MD
1558}
1559
83e334d0
MJ
1560/*
1561 * Never called with size < 1.
1562 */
ff0d69de 1563static
1ee8f000 1564void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
ff0d69de 1565{
04db56f8 1566 struct cds_lfht_node *prev, *node;
9d72a73f 1567 unsigned long order, len, i;
83e334d0 1568 int bucket_order;
ff0d69de 1569
48f1b16d 1570 cds_lfht_alloc_bucket_table(ht, 0);
ff0d69de 1571
9d72a73f
LJ
1572 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1573 node = bucket_at(ht, 0);
1574 node->next = flag_bucket(get_end());
1575 node->reverse_hash = 0;
ff0d69de 1576
83e334d0 1577 bucket_order = cds_lfht_get_count_order_ulong(size);
01477510 1578 urcu_posix_assert(bucket_order >= 0);
83e334d0
MJ
1579
1580 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
ff0d69de 1581 len = 1UL << (order - 1);
48f1b16d 1582 cds_lfht_alloc_bucket_table(ht, order);
ff0d69de 1583
9d72a73f
LJ
1584 for (i = 0; i < len; i++) {
1585 /*
1586 * Now, we are trying to init the node with the
1587 * hash=(len+i) (which is also a bucket with the
1588 * index=(len+i)) and insert it into the hash table,
1589 * so this node has to be inserted after the bucket
1590 * with the index=(len+i)&(len-1)=i. And because there
1591 * is no other non-bucket node nor bucket node with
1592 * larger index/hash inserted, so the bucket node
1593 * being inserted should be inserted directly linked
1594 * after the bucket node with index=i.
1595 */
1596 prev = bucket_at(ht, i);
1597 node = bucket_at(ht, len + i);
ff0d69de 1598
1ee8f000 1599 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
9d72a73f
LJ
1600 order, len + i, len + i);
1601 node->reverse_hash = bit_reverse_ulong(len + i);
1602
1603 /* insert after prev */
01477510 1604 urcu_posix_assert(is_bucket(prev->next));
ff0d69de 1605 node->next = prev->next;
1ee8f000 1606 prev->next = flag_bucket(node);
ff0d69de
LJ
1607 }
1608 }
1609}
1610
99ab1528
MJ
1611#if (CAA_BITS_PER_LONG > 32)
1612/*
1613 * For 64-bit architectures, with max number of buckets small enough not to
1614 * use the entire 64-bit memory mapping space (and allowing a fair number of
1615 * hash table instances), use the mmap allocator, which is faster. Otherwise,
1616 * fallback to the order allocator.
1617 */
1618static
1619const struct cds_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1620{
1621 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
1622 return &cds_lfht_mm_mmap;
1623 else
1624 return &cds_lfht_mm_order;
1625}
1626#else
1627/*
1628 * For 32-bit architectures, use the order allocator.
1629 */
1630static
70469b43
MJ
1631const struct cds_lfht_mm_type *get_mm_type(
1632 unsigned long max_nr_buckets __attribute__((unused)))
99ab1528
MJ
1633{
1634 return &cds_lfht_mm_order;
1635}
1636#endif
1637
4c10e9af
MD
1638void cds_lfht_node_init_deleted(struct cds_lfht_node *node)
1639{
1640 cds_lfht_node_init(node);
1641 node->next = flag_removed(NULL);
1642}
1643
ac735254 1644struct cds_lfht *_cds_lfht_new_with_alloc(unsigned long init_size,
0722081a 1645 unsigned long min_nr_alloc_buckets,
747d725c 1646 unsigned long max_nr_buckets,
b8af5011 1647 int flags,
0b6aa001 1648 const struct cds_lfht_mm_type *mm,
7b17c13e 1649 const struct rcu_flavor_struct *flavor,
8c5aef69 1650 const struct cds_lfht_alloc *alloc,
b7d619b0 1651 pthread_attr_t *attr)
abc490a1 1652{
14044b37 1653 struct cds_lfht *ht;
24365af7 1654 unsigned long order;
abc490a1 1655
0722081a
LJ
1656 /* min_nr_alloc_buckets must be power of two */
1657 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
5488222b 1658 return NULL;
747d725c 1659
8129be4e 1660 /* init_size must be power of two */
5488222b 1661 if (!init_size || (init_size & (init_size - 1)))
8129be4e 1662 return NULL;
747d725c 1663
c1888f3a
MD
1664 /*
1665 * Memory management plugin default.
1666 */
99ab1528
MJ
1667 if (!mm)
1668 mm = get_mm_type(max_nr_buckets);
c1888f3a 1669
0b6aa001
LJ
1670 /* max_nr_buckets == 0 for order based mm means infinite */
1671 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
747d725c
LJ
1672 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1673
1674 /* max_nr_buckets must be power of two */
1675 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1676 return NULL;
1677
d0ec0ed2
MD
1678 if (flags & CDS_LFHT_AUTO_RESIZE)
1679 cds_lfht_init_worker(flavor);
1680
0722081a 1681 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
d0d8f9aa 1682 init_size = max(init_size, MIN_TABLE_SIZE);
747d725c
LJ
1683 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1684 init_size = min(init_size, max_nr_buckets);
0b6aa001 1685
ac735254
XF
1686 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets, alloc ? : &cds_lfht_default_alloc);
1687
01477510
FD
1688 urcu_posix_assert(ht);
1689 urcu_posix_assert(ht->mm == mm);
1690 urcu_posix_assert(ht->bucket_at == mm->bucket_at);
0b6aa001 1691
b5d6b20f 1692 ht->flags = flags;
7b17c13e 1693 ht->flavor = flavor;
b047e7a7
MD
1694 ht->caller_resize_attr = attr;
1695 if (attr)
1696 ht->resize_attr = *attr;
5afadd12 1697 alloc_split_items_count(ht);
abc490a1
MD
1698 /* this mutex should not nest in read-side C.S. */
1699 pthread_mutex_init(&ht->resize_mutex, NULL);
5bc6b66f 1700 order = cds_lfht_get_count_order_ulong(init_size);
7b3893e4 1701 ht->resize_target = 1UL << order;
1ee8f000 1702 cds_lfht_create_bucket(ht, 1UL << order);
7b3893e4 1703 ht->size = 1UL << order;
abc490a1
MD
1704 return ht;
1705}
1706
ac735254
XF
1707struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1708 unsigned long min_nr_alloc_buckets,
1709 unsigned long max_nr_buckets,
1710 int flags,
1711 const struct cds_lfht_mm_type *mm,
1712 const struct rcu_flavor_struct *flavor,
1713 pthread_attr_t *attr)
1714{
1715 return _cds_lfht_new_with_alloc(init_size,
1716 min_nr_alloc_buckets, max_nr_buckets,
8c5aef69 1717 flags, mm, flavor, NULL, attr);
ac735254
XF
1718}
1719
6f554439 1720void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
996ff57c 1721 cds_lfht_match_fct match, const void *key,
6f554439 1722 struct cds_lfht_iter *iter)
2ed95849 1723{
04db56f8 1724 struct cds_lfht_node *node, *next, *bucket;
0422d92c 1725 unsigned long reverse_hash, size;
2ed95849 1726
d7c76f85
MD
1727 cds_lfht_iter_debug_set_ht(ht, iter);
1728
abc490a1 1729 reverse_hash = bit_reverse_ulong(hash);
464a1ec9 1730
601922a8
OD
1731 /*
1732 * Use load acquire instead of rcu_dereference because there is no
1733 * dependency between the table size and the dereference of the bucket
1734 * content.
1735 *
1736 * This acquire is paired with the store release in init_table().
1737 */
1738 size = uatomic_load(&ht->size, CMM_ACQUIRE);
04db56f8 1739 bucket = lookup_bucket(ht, size, hash);
1ee8f000 1740 /* We can always skip the bucket node initially */
04db56f8 1741 node = rcu_dereference(bucket->next);
bb7b2f26 1742 node = clear_flag(node);
2ed95849 1743 for (;;) {
8ed51e04 1744 if (caa_unlikely(is_end(node))) {
96ad1112 1745 node = next = NULL;
abc490a1 1746 break;
bb7b2f26 1747 }
04db56f8 1748 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1749 node = next = NULL;
abc490a1 1750 break;
2ed95849 1751 }
04db56f8 1752 next = rcu_dereference(node->next);
01477510 1753 urcu_posix_assert(node == clear_flag(node));
8ed51e04 1754 if (caa_likely(!is_removed(next))
1ee8f000 1755 && !is_bucket(next)
04db56f8 1756 && node->reverse_hash == reverse_hash
0422d92c 1757 && caa_likely(match(node, key))) {
273399de 1758 break;
2ed95849 1759 }
1b81fe1a 1760 node = clear_flag(next);
2ed95849 1761 }
01477510 1762 urcu_posix_assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
adc0de68
MD
1763 iter->node = node;
1764 iter->next = next;
abc490a1 1765}
e0ba718a 1766
70469b43
MJ
1767void cds_lfht_next_duplicate(struct cds_lfht *ht __attribute__((unused)),
1768 cds_lfht_match_fct match,
996ff57c 1769 const void *key, struct cds_lfht_iter *iter)
a481e5ff 1770{
adc0de68 1771 struct cds_lfht_node *node, *next;
a481e5ff 1772 unsigned long reverse_hash;
a481e5ff 1773
d7c76f85 1774 cds_lfht_iter_debug_assert(ht == iter->lfht);
adc0de68 1775 node = iter->node;
04db56f8 1776 reverse_hash = node->reverse_hash;
adc0de68 1777 next = iter->next;
a481e5ff
MD
1778 node = clear_flag(next);
1779
1780 for (;;) {
8ed51e04 1781 if (caa_unlikely(is_end(node))) {
96ad1112 1782 node = next = NULL;
a481e5ff 1783 break;
bb7b2f26 1784 }
04db56f8 1785 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1786 node = next = NULL;
a481e5ff
MD
1787 break;
1788 }
04db56f8 1789 next = rcu_dereference(node->next);
8ed51e04 1790 if (caa_likely(!is_removed(next))
1ee8f000 1791 && !is_bucket(next)
04db56f8 1792 && caa_likely(match(node, key))) {
a481e5ff
MD
1793 break;
1794 }
1795 node = clear_flag(next);
1796 }
601922a8 1797 urcu_posix_assert(!node || !is_bucket(uatomic_load(&node->next, CMM_RELAXED)));
adc0de68
MD
1798 iter->node = node;
1799 iter->next = next;
a481e5ff
MD
1800}
1801
70469b43
MJ
1802void cds_lfht_next(struct cds_lfht *ht __attribute__((unused)),
1803 struct cds_lfht_iter *iter)
4e9b9fbf
MD
1804{
1805 struct cds_lfht_node *node, *next;
1806
d7c76f85 1807 cds_lfht_iter_debug_assert(ht == iter->lfht);
853395e1 1808 node = clear_flag(iter->next);
4e9b9fbf 1809 for (;;) {
8ed51e04 1810 if (caa_unlikely(is_end(node))) {
4e9b9fbf
MD
1811 node = next = NULL;
1812 break;
1813 }
04db56f8 1814 next = rcu_dereference(node->next);
8ed51e04 1815 if (caa_likely(!is_removed(next))
1ee8f000 1816 && !is_bucket(next)) {
4e9b9fbf
MD
1817 break;
1818 }
1819 node = clear_flag(next);
1820 }
601922a8 1821 urcu_posix_assert(!node || !is_bucket(uatomic_load(&node->next, CMM_RELAXED)));
4e9b9fbf
MD
1822 iter->node = node;
1823 iter->next = next;
1824}
1825
1826void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1827{
d7c76f85 1828 cds_lfht_iter_debug_set_ht(ht, iter);
4e9b9fbf 1829 /*
1ee8f000 1830 * Get next after first bucket node. The first bucket node is the
4e9b9fbf
MD
1831 * first node of the linked list.
1832 */
601922a8 1833 iter->next = uatomic_load(&bucket_at(ht, 0)->next, CMM_CONSUME);
4e9b9fbf
MD
1834 cds_lfht_next(ht, iter);
1835}
1836
0422d92c
MD
1837void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1838 struct cds_lfht_node *node)
abc490a1 1839{
0422d92c 1840 unsigned long size;
ab7d5fc6 1841
709bacf9 1842 node->reverse_hash = bit_reverse_ulong(hash);
601922a8 1843 size = uatomic_load(&ht->size, CMM_ACQUIRE);
91a75cc5 1844 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
14360f1c 1845 ht_count_add(ht, size, hash);
3eca1b8c
MD
1846}
1847
14044b37 1848struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
6f554439 1849 unsigned long hash,
0422d92c 1850 cds_lfht_match_fct match,
996ff57c 1851 const void *key,
48ed1c18 1852 struct cds_lfht_node *node)
3eca1b8c 1853{
0422d92c 1854 unsigned long size;
83beee94 1855 struct cds_lfht_iter iter;
3eca1b8c 1856
709bacf9 1857 node->reverse_hash = bit_reverse_ulong(hash);
601922a8 1858 size = uatomic_load(&ht->size, CMM_ACQUIRE);
91a75cc5 1859 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1860 if (iter.node == node)
14360f1c 1861 ht_count_add(ht, size, hash);
83beee94 1862 return iter.node;
2ed95849
MD
1863}
1864
9357c415 1865struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
6f554439 1866 unsigned long hash,
0422d92c 1867 cds_lfht_match_fct match,
996ff57c 1868 const void *key,
48ed1c18
MD
1869 struct cds_lfht_node *node)
1870{
0422d92c 1871 unsigned long size;
83beee94 1872 struct cds_lfht_iter iter;
48ed1c18 1873
709bacf9 1874 node->reverse_hash = bit_reverse_ulong(hash);
601922a8 1875 size = uatomic_load(&ht->size, CMM_ACQUIRE);
83beee94 1876 for (;;) {
91a75cc5 1877 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1878 if (iter.node == node) {
14360f1c 1879 ht_count_add(ht, size, hash);
83beee94
MD
1880 return NULL;
1881 }
1882
1883 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1884 return iter.node;
1885 }
48ed1c18
MD
1886}
1887
2e79c445
MD
1888int cds_lfht_replace(struct cds_lfht *ht,
1889 struct cds_lfht_iter *old_iter,
1890 unsigned long hash,
1891 cds_lfht_match_fct match,
1892 const void *key,
9357c415
MD
1893 struct cds_lfht_node *new_node)
1894{
1895 unsigned long size;
1896
709bacf9 1897 new_node->reverse_hash = bit_reverse_ulong(hash);
2e79c445
MD
1898 if (!old_iter->node)
1899 return -ENOENT;
1900 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1901 return -EINVAL;
1902 if (caa_unlikely(!match(old_iter->node, key)))
1903 return -EINVAL;
601922a8 1904 size = uatomic_load(&ht->size, CMM_ACQUIRE);
9357c415
MD
1905 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1906 new_node);
1907}
1908
bc8c3c74 1909int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
2ed95849 1910{
95bc7fb9 1911 unsigned long size;
df44348d 1912 int ret;
abc490a1 1913
601922a8 1914 size = uatomic_load(&ht->size, CMM_ACQUIRE);
bc8c3c74 1915 ret = _cds_lfht_del(ht, size, node);
14360f1c 1916 if (!ret) {
95bc7fb9
MD
1917 unsigned long hash;
1918
bc8c3c74 1919 hash = bit_reverse_ulong(node->reverse_hash);
14360f1c
LJ
1920 ht_count_del(ht, size, hash);
1921 }
df44348d 1922 return ret;
2ed95849 1923}
ab7d5fc6 1924
afa5940d 1925int cds_lfht_is_node_deleted(const struct cds_lfht_node *node)
df55172a 1926{
a85eff52 1927 return is_removed(CMM_LOAD_SHARED(node->next));
df55172a
MD
1928}
1929
b047e7a7
MD
1930static
1931bool cds_lfht_is_empty(struct cds_lfht *ht)
1932{
1933 struct cds_lfht_node *node, *next;
1934 bool empty = true;
1935 bool was_online;
1936
1937 was_online = ht->flavor->read_ongoing();
1938 if (!was_online) {
1939 ht->flavor->thread_online();
1940 ht->flavor->read_lock();
1941 }
1942 /* Check that the table is empty */
1943 node = bucket_at(ht, 0);
1944 do {
1945 next = rcu_dereference(node->next);
1946 if (!is_bucket(next)) {
1947 empty = false;
1948 break;
1949 }
1950 node = clear_flag(next);
1951 } while (!is_end(node));
1952 if (!was_online) {
1953 ht->flavor->read_unlock();
1954 ht->flavor->thread_offline();
1955 }
1956 return empty;
1957}
1958
abc490a1 1959static
1ee8f000 1960int cds_lfht_delete_bucket(struct cds_lfht *ht)
674f7a69 1961{
14044b37 1962 struct cds_lfht_node *node;
4105056a 1963 unsigned long order, i, size;
674f7a69 1964
abc490a1 1965 /* Check that the table is empty */
9d72a73f 1966 node = bucket_at(ht, 0);
abc490a1 1967 do {
04db56f8 1968 node = clear_flag(node)->next;
1ee8f000 1969 if (!is_bucket(node))
abc490a1 1970 return -EPERM;
01477510
FD
1971 urcu_posix_assert(!is_removed(node));
1972 urcu_posix_assert(!is_removal_owner(node));
bb7b2f26 1973 } while (!is_end(node));
4105056a
MD
1974 /*
1975 * size accessed without rcu_dereference because hash table is
1976 * being destroyed.
1977 */
7b3893e4 1978 size = ht->size;
1f67ba50 1979 /* Internal sanity check: all nodes left should be buckets */
48f1b16d
LJ
1980 for (i = 0; i < size; i++) {
1981 node = bucket_at(ht, i);
1982 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1983 i, i, bit_reverse_ulong(node->reverse_hash));
01477510 1984 urcu_posix_assert(is_bucket(node->next));
48f1b16d 1985 }
24365af7 1986
5bc6b66f 1987 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
48f1b16d 1988 cds_lfht_free_bucket_table(ht, order);
5488222b 1989
abc490a1 1990 return 0;
674f7a69
MD
1991}
1992
b047e7a7
MD
1993static
1994void do_auto_resize_destroy_cb(struct urcu_work *work)
1995{
1996 struct cds_lfht *ht = caa_container_of(work, struct cds_lfht, destroy_work);
1997 int ret;
1998
1999 ht->flavor->register_thread();
2000 ret = cds_lfht_delete_bucket(ht);
2001 if (ret)
a51018da 2002 urcu_die(-ret);
b047e7a7
MD
2003 free_split_items_count(ht);
2004 ret = pthread_mutex_destroy(&ht->resize_mutex);
2005 if (ret)
2006 urcu_die(ret);
2007 ht->flavor->unregister_thread();
ac735254 2008 poison_free(ht->alloc, ht);
b047e7a7
MD
2009}
2010
674f7a69
MD
2011/*
2012 * Should only be called when no more concurrent readers nor writers can
2013 * possibly access the table.
2014 */
b7d619b0 2015int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
674f7a69 2016{
d0ec0ed2
MD
2017 int ret;
2018
2019 if (ht->flags & CDS_LFHT_AUTO_RESIZE) {
b047e7a7
MD
2020 /*
2021 * Perform error-checking for emptiness before queuing
2022 * work, so we can return error to the caller. This runs
2023 * concurrently with ongoing resize.
2024 */
2025 if (!cds_lfht_is_empty(ht))
2026 return -EPERM;
d0ec0ed2 2027 /* Cancel ongoing resize operations. */
601922a8 2028 uatomic_store(&ht->in_progress_destroy, 1, CMM_RELAXED);
b047e7a7
MD
2029 if (attr) {
2030 *attr = ht->caller_resize_attr;
2031 ht->caller_resize_attr = NULL;
2032 }
2033 /*
2034 * Queue destroy work after prior queued resize
2035 * operations. Given there are no concurrent writers
2036 * accessing the hash table at this point, no resize
2037 * operations can be queued after this destroy work.
2038 */
2039 urcu_workqueue_queue_work(cds_lfht_workqueue,
2040 &ht->destroy_work, do_auto_resize_destroy_cb);
2041 return 0;
10e68472 2042 }
1ee8f000 2043 ret = cds_lfht_delete_bucket(ht);
abc490a1
MD
2044 if (ret)
2045 return ret;
5afadd12 2046 free_split_items_count(ht);
b7d619b0 2047 if (attr)
b047e7a7 2048 *attr = ht->caller_resize_attr;
59629f09
MD
2049 ret = pthread_mutex_destroy(&ht->resize_mutex);
2050 if (ret)
2051 ret = -EBUSY;
ac735254 2052 poison_free(ht->alloc, ht);
5e28c532 2053 return ret;
674f7a69
MD
2054}
2055
14044b37 2056void cds_lfht_count_nodes(struct cds_lfht *ht,
d933dd0e 2057 long *approx_before,
273399de 2058 unsigned long *count,
d933dd0e 2059 long *approx_after)
273399de 2060{
14044b37 2061 struct cds_lfht_node *node, *next;
caf3653d 2062 unsigned long nr_bucket = 0, nr_removed = 0;
273399de 2063
7ed7682f 2064 *approx_before = 0;
5afadd12 2065 if (ht->split_count) {
973e5e1b
MD
2066 int i;
2067
4c42f1b8
LJ
2068 for (i = 0; i < split_count_mask + 1; i++) {
2069 *approx_before += uatomic_read(&ht->split_count[i].add);
2070 *approx_before -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
2071 }
2072 }
2073
273399de 2074 *count = 0;
273399de 2075
1ee8f000 2076 /* Count non-bucket nodes in the table */
9d72a73f 2077 node = bucket_at(ht, 0);
273399de 2078 do {
04db56f8 2079 next = rcu_dereference(node->next);
b198f0fd 2080 if (is_removed(next)) {
1ee8f000 2081 if (!is_bucket(next))
caf3653d 2082 (nr_removed)++;
973e5e1b 2083 else
1ee8f000
LJ
2084 (nr_bucket)++;
2085 } else if (!is_bucket(next))
273399de 2086 (*count)++;
24365af7 2087 else
1ee8f000 2088 (nr_bucket)++;
273399de 2089 node = clear_flag(next);
bb7b2f26 2090 } while (!is_end(node));
caf3653d 2091 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1ee8f000 2092 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
7ed7682f 2093 *approx_after = 0;
5afadd12 2094 if (ht->split_count) {
973e5e1b
MD
2095 int i;
2096
4c42f1b8
LJ
2097 for (i = 0; i < split_count_mask + 1; i++) {
2098 *approx_after += uatomic_read(&ht->split_count[i].add);
2099 *approx_after -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
2100 }
2101 }
273399de
MD
2102}
2103
1475579c 2104/* called with resize mutex held */
abc490a1 2105static
4105056a 2106void _do_cds_lfht_grow(struct cds_lfht *ht,
1475579c 2107 unsigned long old_size, unsigned long new_size)
abc490a1 2108{
1475579c 2109 unsigned long old_order, new_order;
1475579c 2110
5bc6b66f
MD
2111 old_order = cds_lfht_get_count_order_ulong(old_size);
2112 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
2113 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2114 old_size, old_order, new_size, new_order);
01477510 2115 urcu_posix_assert(new_size > old_size);
93d46c39 2116 init_table(ht, old_order + 1, new_order);
abc490a1
MD
2117}
2118
2119/* called with resize mutex held */
2120static
4105056a 2121void _do_cds_lfht_shrink(struct cds_lfht *ht,
1475579c 2122 unsigned long old_size, unsigned long new_size)
464a1ec9 2123{
1475579c 2124 unsigned long old_order, new_order;
464a1ec9 2125
d0d8f9aa 2126 new_size = max(new_size, MIN_TABLE_SIZE);
5bc6b66f
MD
2127 old_order = cds_lfht_get_count_order_ulong(old_size);
2128 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
2129 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
2130 old_size, old_order, new_size, new_order);
01477510 2131 urcu_posix_assert(new_size < old_size);
1475579c 2132
1ee8f000 2133 /* Remove and unlink all bucket nodes to remove. */
93d46c39 2134 fini_table(ht, new_order + 1, old_order);
464a1ec9
MD
2135}
2136
1475579c
MD
2137
2138/* called with resize mutex held */
2139static
2140void _do_cds_lfht_resize(struct cds_lfht *ht)
2141{
2142 unsigned long new_size, old_size;
4105056a
MD
2143
2144 /*
2145 * Resize table, re-do if the target size has changed under us.
2146 */
2147 do {
601922a8 2148 if (uatomic_load(&ht->in_progress_destroy, CMM_RELAXED))
d2be3620 2149 break;
601922a8
OD
2150
2151 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
2152
7b3893e4 2153 old_size = ht->size;
601922a8 2154 new_size = uatomic_load(&ht->resize_target, CMM_RELAXED);
4105056a
MD
2155 if (old_size < new_size)
2156 _do_cds_lfht_grow(ht, old_size, new_size);
2157 else if (old_size > new_size)
2158 _do_cds_lfht_shrink(ht, old_size, new_size);
601922a8
OD
2159
2160 uatomic_store(&ht->resize_initiated, 0, CMM_RELAXED);
4105056a
MD
2161 /* write resize_initiated before read resize_target */
2162 cmm_smp_mb();
601922a8 2163 } while (ht->size != uatomic_load(&ht->resize_target, CMM_RELAXED));
1475579c
MD
2164}
2165
abc490a1 2166static
ab65b890 2167unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 2168{
7b3893e4 2169 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
464a1ec9
MD
2170}
2171
1475579c 2172static
4105056a 2173void resize_target_update_count(struct cds_lfht *ht,
b8af5011 2174 unsigned long count)
1475579c 2175{
d0d8f9aa 2176 count = max(count, MIN_TABLE_SIZE);
747d725c 2177 count = min(count, ht->max_nr_buckets);
7b3893e4 2178 uatomic_set(&ht->resize_target, count);
1475579c
MD
2179}
2180
2181void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 2182{
10e68472 2183 resize_target_update_count(ht, new_size);
601922a8
OD
2184
2185 /*
2186 * Set flags has early as possible even in contention case.
2187 */
2188 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
2189
5ffcaeef 2190 mutex_lock(&ht->resize_mutex);
1475579c 2191 _do_cds_lfht_resize(ht);
5ffcaeef 2192 mutex_unlock(&ht->resize_mutex);
abc490a1 2193}
464a1ec9 2194
abc490a1 2195static
d0ec0ed2 2196void do_resize_cb(struct urcu_work *work)
abc490a1 2197{
d0ec0ed2
MD
2198 struct resize_work *resize_work =
2199 caa_container_of(work, struct resize_work, work);
2200 struct cds_lfht *ht = resize_work->ht;
abc490a1 2201
d0ec0ed2 2202 ht->flavor->register_thread();
5ffcaeef 2203 mutex_lock(&ht->resize_mutex);
14044b37 2204 _do_cds_lfht_resize(ht);
5ffcaeef 2205 mutex_unlock(&ht->resize_mutex);
d0ec0ed2 2206 ht->flavor->unregister_thread();
ac735254 2207 poison_free(ht->alloc, work);
464a1ec9
MD
2208}
2209
abc490a1 2210static
f1f119ee 2211void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
ab7d5fc6 2212{
d0ec0ed2 2213 struct resize_work *work;
abc490a1 2214
601922a8
OD
2215 /*
2216 * Store to resize_target is before read resize_initiated as guaranteed
2217 * by either cmpxchg or _uatomic_xchg_monotonic_increase.
2218 */
2219 if (!uatomic_load(&ht->resize_initiated, CMM_RELAXED)) {
2220 if (uatomic_load(&ht->in_progress_destroy, CMM_RELAXED)) {
59290e9d 2221 return;
ed35e6d8 2222 }
ac735254 2223 work = ht->alloc->malloc(ht->alloc->state, sizeof(*work));
741f378e
MD
2224 if (work == NULL) {
2225 dbg_printf("error allocating resize work, bailing out\n");
741f378e
MD
2226 return;
2227 }
f9830efd 2228 work->ht = ht;
d0ec0ed2
MD
2229 urcu_workqueue_queue_work(cds_lfht_workqueue,
2230 &work->work, do_resize_cb);
601922a8 2231 uatomic_store(&ht->resize_initiated, 1, CMM_RELAXED);
f9830efd 2232 }
ab7d5fc6 2233}
3171717f 2234
f1f119ee
LJ
2235static
2236void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
2237{
2238 unsigned long target_size = size << growth;
2239
747d725c 2240 target_size = min(target_size, ht->max_nr_buckets);
f1f119ee
LJ
2241 if (resize_target_grow(ht, target_size) >= target_size)
2242 return;
2243
2244 __cds_lfht_resize_lazy_launch(ht);
2245}
2246
89bb121d
LJ
2247/*
2248 * We favor grow operations over shrink. A shrink operation never occurs
2249 * if a grow operation is queued for lazy execution. A grow operation
2250 * cancels any pending shrink lazy execution.
2251 */
3171717f 2252static
4105056a 2253void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
3171717f
MD
2254 unsigned long count)
2255{
b8af5011
MD
2256 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
2257 return;
d0d8f9aa 2258 count = max(count, MIN_TABLE_SIZE);
747d725c 2259 count = min(count, ht->max_nr_buckets);
89bb121d
LJ
2260 if (count == size)
2261 return; /* Already the right size, no resize needed */
2262 if (count > size) { /* lazy grow */
2263 if (resize_target_grow(ht, count) >= count)
2264 return;
2265 } else { /* lazy shrink */
2266 for (;;) {
2267 unsigned long s;
2268
7b3893e4 2269 s = uatomic_cmpxchg(&ht->resize_target, size, count);
89bb121d
LJ
2270 if (s == size)
2271 break; /* no resize needed */
2272 if (s > size)
2273 return; /* growing is/(was just) in progress */
2274 if (s <= count)
2275 return; /* some other thread do shrink */
2276 size = s;
2277 }
2278 }
f1f119ee 2279 __cds_lfht_resize_lazy_launch(ht);
3171717f 2280}
d0ec0ed2 2281
70469b43 2282static void cds_lfht_before_fork(void *priv __attribute__((unused)))
d0ec0ed2
MD
2283{
2284 if (cds_lfht_workqueue_atfork_nesting++)
2285 return;
2286 mutex_lock(&cds_lfht_fork_mutex);
2287 if (!cds_lfht_workqueue)
2288 return;
2289 urcu_workqueue_pause_worker(cds_lfht_workqueue);
2290}
2291
70469b43 2292static void cds_lfht_after_fork_parent(void *priv __attribute__((unused)))
d0ec0ed2
MD
2293{
2294 if (--cds_lfht_workqueue_atfork_nesting)
2295 return;
2296 if (!cds_lfht_workqueue)
2297 goto end;
2298 urcu_workqueue_resume_worker(cds_lfht_workqueue);
2299end:
2300 mutex_unlock(&cds_lfht_fork_mutex);
2301}
2302
70469b43 2303static void cds_lfht_after_fork_child(void *priv __attribute__((unused)))
d0ec0ed2
MD
2304{
2305 if (--cds_lfht_workqueue_atfork_nesting)
2306 return;
2307 if (!cds_lfht_workqueue)
2308 goto end;
2309 urcu_workqueue_create_worker(cds_lfht_workqueue);
2310end:
2311 mutex_unlock(&cds_lfht_fork_mutex);
2312}
2313
2314static struct urcu_atfork cds_lfht_atfork = {
2315 .before_fork = cds_lfht_before_fork,
2316 .after_fork_parent = cds_lfht_after_fork_parent,
2317 .after_fork_child = cds_lfht_after_fork_child,
2318};
2319
d0ec0ed2
MD
2320static void cds_lfht_init_worker(const struct rcu_flavor_struct *flavor)
2321{
2322 flavor->register_rculfhash_atfork(&cds_lfht_atfork);
2323
2324 mutex_lock(&cds_lfht_fork_mutex);
b047e7a7
MD
2325 if (!cds_lfht_workqueue)
2326 cds_lfht_workqueue = urcu_workqueue_create(0, -1, NULL,
2327 NULL, NULL, NULL, NULL, NULL, NULL, NULL);
d0ec0ed2
MD
2328 mutex_unlock(&cds_lfht_fork_mutex);
2329}
2330
b047e7a7 2331static void cds_lfht_exit(void)
d0ec0ed2
MD
2332{
2333 mutex_lock(&cds_lfht_fork_mutex);
b047e7a7
MD
2334 if (cds_lfht_workqueue) {
2335 urcu_workqueue_flush_queued_work(cds_lfht_workqueue);
2336 urcu_workqueue_destroy(cds_lfht_workqueue);
2337 cds_lfht_workqueue = NULL;
2338 }
d0ec0ed2 2339 mutex_unlock(&cds_lfht_fork_mutex);
d0ec0ed2 2340}
This page took 0.19138 seconds and 4 git commands to generate.