2 * Public API and common code for kernel->userspace relay file support.
4 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
5 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
6 * Copyright (C) 2008 - Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
8 * Moved to kernel/relay.c by Paul Mundt, 2006.
9 * November 2006 - CPU hotplug support by Mathieu Desnoyers
10 * (mathieu.desnoyers@polymtl.ca)
12 * This file is released under the GPL.
14 //ust// #include <linux/errno.h>
15 //ust// #include <linux/stddef.h>
16 //ust// #include <linux/slab.h>
17 //ust// #include <linux/module.h>
18 //ust// #include <linux/string.h>
19 //ust// #include <linux/ltt-relay.h>
20 //ust// #include <linux/vmalloc.h>
21 //ust// #include <linux/mm.h>
22 //ust// #include <linux/cpu.h>
23 //ust// #include <linux/splice.h>
24 //ust// #include <linux/bitops.h>
25 #include "kernelcompat.h"
32 #include <kcompat/kref.h>
34 #include "tracercore.h"
37 /* list of open channels, for cpu hotplug */
38 static DEFINE_MUTEX(relay_channels_mutex
);
39 static LIST_HEAD(relay_channels
);
42 static struct dentry
*ltt_create_buf_file_callback(struct rchan_buf
*buf
);
45 * relay_alloc_buf - allocate a channel buffer
46 * @buf: the buffer struct
47 * @size: total size of the buffer
49 //ust// static int relay_alloc_buf(struct rchan_buf *buf, size_t *size)
51 //ust// unsigned int i, n_pages;
52 //ust// struct buf_page *buf_page, *n;
54 //ust// *size = PAGE_ALIGN(*size);
55 //ust// n_pages = *size >> PAGE_SHIFT;
57 //ust// INIT_LIST_HEAD(&buf->pages);
59 //ust// for (i = 0; i < n_pages; i++) {
60 //ust// buf_page = kmalloc_node(sizeof(*buf_page), GFP_KERNEL,
61 //ust// cpu_to_node(buf->cpu));
62 //ust// if (unlikely(!buf_page))
63 //ust// goto depopulate;
64 //ust// buf_page->page = alloc_pages_node(cpu_to_node(buf->cpu),
65 //ust// GFP_KERNEL | __GFP_ZERO, 0);
66 //ust// if (unlikely(!buf_page->page)) {
67 //ust// kfree(buf_page);
68 //ust// goto depopulate;
70 //ust// list_add_tail(&buf_page->list, &buf->pages);
71 //ust// buf_page->offset = (size_t)i << PAGE_SHIFT;
72 //ust// buf_page->buf = buf;
73 //ust// set_page_private(buf_page->page, (unsigned long)buf_page);
75 //ust// buf->wpage = buf_page;
76 //ust// buf->hpage[0] = buf_page;
77 //ust// buf->hpage[1] = buf_page;
78 //ust// buf->rpage = buf_page;
81 //ust// buf->page_count = n_pages;
85 //ust// list_for_each_entry_safe(buf_page, n, &buf->pages, list) {
86 //ust// list_del_init(&buf_page->list);
87 //ust// __free_page(buf_page->page);
88 //ust// kfree(buf_page);
90 //ust// return -ENOMEM;
93 static int relay_alloc_buf(struct rchan_buf
*buf
, size_t *size
)
95 //ust// unsigned int n_pages;
96 //ust// struct buf_page *buf_page, *n;
101 *size
= PAGE_ALIGN(*size
);
103 result
= buf
->shmid
= shmget(getpid(), *size
, IPC_CREAT
| IPC_EXCL
| 0700);
104 if(result
== -1 && errno
== EINVAL
) {
105 ERR("shmget() returned EINVAL; maybe /proc/sys/kernel/shmmax should be increased.");
108 else if(result
== -1) {
113 ptr
= shmat(buf
->shmid
, NULL
, 0);
114 if(ptr
== (void *) -1) {
119 /* Already mark the shared memory for destruction. This will occur only
120 * when all users have detached.
122 result
= shmctl(buf
->shmid
, IPC_RMID
, NULL
);
129 buf
->buf_size
= *size
;
134 result
= shmctl(buf
->shmid
, IPC_RMID
, NULL
);
143 * relay_create_buf - allocate and initialize a channel buffer
144 * @chan: the relay channel
145 * @cpu: cpu the buffer belongs to
147 * Returns channel buffer if successful, %NULL otherwise.
149 static struct rchan_buf
*relay_create_buf(struct rchan
*chan
)
152 struct rchan_buf
*buf
= kzalloc(sizeof(struct rchan_buf
), GFP_KERNEL
);
157 ret
= relay_alloc_buf(buf
, &chan
->alloc_size
);
162 kref_get(&buf
->chan
->kref
);
171 * relay_destroy_channel - free the channel struct
172 * @kref: target kernel reference that contains the relay channel
174 * Should only be called from kref_put().
176 static void relay_destroy_channel(struct kref
*kref
)
178 struct rchan
*chan
= container_of(kref
, struct rchan
, kref
);
183 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
184 * @buf: the buffer struct
186 static void relay_destroy_buf(struct rchan_buf
*buf
)
188 struct rchan
*chan
= buf
->chan
;
189 //ust// struct buf_page *buf_page;
192 result
= munmap(buf
->buf_data
, buf
->buf_size
);
197 //ust// chan->buf[buf->cpu] = NULL;
199 kref_put(&chan
->kref
, relay_destroy_channel
);
203 * relay_remove_buf - remove a channel buffer
204 * @kref: target kernel reference that contains the relay buffer
206 * Removes the file from the fileystem, which also frees the
207 * rchan_buf_struct and the channel buffer. Should only be called from
210 static void relay_remove_buf(struct kref
*kref
)
212 struct rchan_buf
*buf
= container_of(kref
, struct rchan_buf
, kref
);
213 //ust// buf->chan->cb->remove_buf_file(buf);
214 relay_destroy_buf(buf
);
218 * High-level relay kernel API and associated functions.
222 * rchan_callback implementations defining default channel behavior. Used
223 * in place of corresponding NULL values in client callback struct.
227 * create_buf_file_create() default callback. Does nothing.
229 //ust// static struct dentry *create_buf_file_default_callback(const char *filename,
230 //ust// struct dentry *parent,
232 //ust// struct rchan_buf *buf)
238 //ust// * remove_buf_file() default callback. Does nothing.
240 //ust// static int remove_buf_file_default_callback(struct dentry *dentry)
242 //ust// return -EINVAL;
246 * wakeup_readers - wake up readers waiting on a channel
247 * @data: contains the channel buffer
249 * This is the timer function used to defer reader waking.
251 //ust// static void wakeup_readers(unsigned long data)
253 //ust// struct rchan_buf *buf = (struct rchan_buf *)data;
254 //ust// wake_up_interruptible(&buf->read_wait);
258 * __relay_reset - reset a channel buffer
259 * @buf: the channel buffer
260 * @init: 1 if this is a first-time initialization
262 * See relay_reset() for description of effect.
264 static void __relay_reset(struct rchan_buf
*buf
, unsigned int init
)
267 //ust// init_waitqueue_head(&buf->read_wait);
268 kref_init(&buf
->kref
);
269 //ust// setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
271 //ust// del_timer_sync(&buf->timer);
277 * relay_open_buf - create a new relay channel buffer
279 * used by relay_open() and CPU hotplug.
281 static struct rchan_buf
*relay_open_buf(struct rchan
*chan
)
283 struct rchan_buf
*buf
= NULL
;
284 //ust// struct dentry *dentry;
285 //ust// char *tmpname;
287 //ust// tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
288 //ust// if (!tmpname)
290 //ust// snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
292 buf
= relay_create_buf(chan
);
296 __relay_reset(buf
, 1);
298 /* Create file in fs */
299 //ust// dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
302 ltt_create_buf_file_callback(buf
); // ust //
305 //ust// goto free_buf;
307 //ust// buf->dentry = dentry;
312 relay_destroy_buf(buf
);
315 //ust// kfree(tmpname);
321 * relay_close_buf - close a channel buffer
322 * @buf: channel buffer
324 * Marks the buffer finalized and restores the default callbacks.
325 * The channel buffer and channel buffer data structure are then freed
326 * automatically when the last reference is given up.
328 static void relay_close_buf(struct rchan_buf
*buf
)
330 //ust// del_timer_sync(&buf->timer);
331 kref_put(&buf
->kref
, relay_remove_buf
);
334 //ust// static void setup_callbacks(struct rchan *chan,
335 //ust// struct rchan_callbacks *cb)
338 //ust// chan->cb = &default_channel_callbacks;
342 //ust// if (!cb->create_buf_file)
343 //ust// cb->create_buf_file = create_buf_file_default_callback;
344 //ust// if (!cb->remove_buf_file)
345 //ust// cb->remove_buf_file = remove_buf_file_default_callback;
346 //ust// chan->cb = cb;
350 * relay_hotcpu_callback - CPU hotplug callback
351 * @nb: notifier block
352 * @action: hotplug action to take
355 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
357 //ust// static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
358 //ust// unsigned long action,
361 //ust// unsigned int hotcpu = (unsigned long)hcpu;
362 //ust// struct rchan *chan;
364 //ust// switch (action) {
365 //ust// case CPU_UP_PREPARE:
366 //ust// case CPU_UP_PREPARE_FROZEN:
367 //ust// mutex_lock(&relay_channels_mutex);
368 //ust// list_for_each_entry(chan, &relay_channels, list) {
369 //ust// if (chan->buf[hotcpu])
371 //ust// chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
372 //ust// if (!chan->buf[hotcpu]) {
373 //ust// printk(KERN_ERR
374 //ust// "relay_hotcpu_callback: cpu %d buffer "
375 //ust// "creation failed\n", hotcpu);
376 //ust// mutex_unlock(&relay_channels_mutex);
377 //ust// return NOTIFY_BAD;
380 //ust// mutex_unlock(&relay_channels_mutex);
382 //ust// case CPU_DEAD:
383 //ust// case CPU_DEAD_FROZEN:
384 //ust// /* No need to flush the cpu : will be flushed upon
385 //ust// * final relay_flush() call. */
388 //ust// return NOTIFY_OK;
392 * ltt_relay_open - create a new relay channel
393 * @base_filename: base name of files to create
394 * @parent: dentry of parent directory, %NULL for root directory
395 * @subbuf_size: size of sub-buffers
396 * @n_subbufs: number of sub-buffers
397 * @cb: client callback functions
398 * @private_data: user-defined data
400 * Returns channel pointer if successful, %NULL otherwise.
402 * Creates a channel buffer for each cpu using the sizes and
403 * attributes specified. The created channel buffer files
404 * will be named base_filename0...base_filenameN-1. File
405 * permissions will be %S_IRUSR.
407 struct rchan
*ltt_relay_open(const char *base_filename
,
408 struct dentry
*parent
,
413 //ust// unsigned int i;
415 //ust// if (!base_filename)
418 if (!(subbuf_size
&& n_subbufs
))
421 chan
= kzalloc(sizeof(struct rchan
), GFP_KERNEL
);
425 chan
->version
= LTT_RELAY_CHANNEL_VERSION
;
426 chan
->n_subbufs
= n_subbufs
;
427 chan
->subbuf_size
= subbuf_size
;
428 chan
->subbuf_size_order
= get_count_order(subbuf_size
);
429 chan
->alloc_size
= FIX_SIZE(subbuf_size
* n_subbufs
);
430 chan
->parent
= parent
;
431 chan
->private_data
= private_data
;
432 //ust// strlcpy(chan->base_filename, base_filename, NAME_MAX);
433 //ust// setup_callbacks(chan, cb);
434 kref_init(&chan
->kref
);
436 mutex_lock(&relay_channels_mutex
);
437 //ust// for_each_online_cpu(i) {
438 chan
->buf
= relay_open_buf(chan
);
442 list_add(&chan
->list
, &relay_channels
);
443 mutex_unlock(&relay_channels_mutex
);
448 //ust// for_each_possible_cpu(i) {
449 //ust// if (!chan->buf[i])
451 //ust// relay_close_buf(chan->buf[i]);
455 kref_put(&chan
->kref
, relay_destroy_channel
);
456 mutex_unlock(&relay_channels_mutex
);
459 //ust// EXPORT_SYMBOL_GPL(ltt_relay_open);
462 * ltt_relay_close - close the channel
465 * Closes all channel buffers and frees the channel.
467 void ltt_relay_close(struct rchan
*chan
)
469 //ust// unsigned int i;
474 mutex_lock(&relay_channels_mutex
);
475 //ust// for_each_possible_cpu(i)
477 relay_close_buf(chan
->buf
);
479 list_del(&chan
->list
);
480 kref_put(&chan
->kref
, relay_destroy_channel
);
481 mutex_unlock(&relay_channels_mutex
);
483 //ust// EXPORT_SYMBOL_GPL(ltt_relay_close);
486 * Start iteration at the previous element. Skip the real list head.
488 //ust// struct buf_page *ltt_relay_find_prev_page(struct rchan_buf *buf,
489 //ust// struct buf_page *page, size_t offset, ssize_t diff_offset)
491 //ust// struct buf_page *iter;
492 //ust// size_t orig_iter_off;
493 //ust// unsigned int i = 0;
495 //ust// orig_iter_off = page->offset;
496 //ust// list_for_each_entry_reverse(iter, &page->list, list) {
498 //ust// * Skip the real list head.
500 //ust// if (&iter->list == &buf->pages)
503 //ust// if (offset >= iter->offset
504 //ust// && offset < iter->offset + PAGE_SIZE) {
505 //ust// #ifdef CONFIG_LTT_RELAY_CHECK_RANDOM_ACCESS
507 //ust// printk(KERN_WARNING
508 //ust// "Backward random access detected in "
509 //ust// "ltt_relay. Iterations %u, "
510 //ust// "offset %zu, orig iter->off %zu, "
511 //ust// "iter->off %zu diff_offset %zd.\n", i,
512 //ust// offset, orig_iter_off, iter->offset,
513 //ust// diff_offset);
523 //ust// EXPORT_SYMBOL_GPL(ltt_relay_find_prev_page);
526 * Start iteration at the next element. Skip the real list head.
528 //ust// struct buf_page *ltt_relay_find_next_page(struct rchan_buf *buf,
529 //ust// struct buf_page *page, size_t offset, ssize_t diff_offset)
531 //ust// struct buf_page *iter;
532 //ust// unsigned int i = 0;
533 //ust// size_t orig_iter_off;
535 //ust// orig_iter_off = page->offset;
536 //ust// list_for_each_entry(iter, &page->list, list) {
538 //ust// * Skip the real list head.
540 //ust// if (&iter->list == &buf->pages)
543 //ust// if (offset >= iter->offset
544 //ust// && offset < iter->offset + PAGE_SIZE) {
545 //ust// #ifdef CONFIG_LTT_RELAY_CHECK_RANDOM_ACCESS
547 //ust// printk(KERN_WARNING
548 //ust// "Forward random access detected in "
549 //ust// "ltt_relay. Iterations %u, "
550 //ust// "offset %zu, orig iter->off %zu, "
551 //ust// "iter->off %zu diff_offset %zd.\n", i,
552 //ust// offset, orig_iter_off, iter->offset,
553 //ust// diff_offset);
563 //ust// EXPORT_SYMBOL_GPL(ltt_relay_find_next_page);
566 * ltt_relay_write - write data to a ltt_relay buffer.
568 * @offset : offset within the buffer
569 * @src : source address
570 * @len : length to write
571 * @page : cached buffer page
572 * @pagecpy : page size copied so far
574 void _ltt_relay_write(struct rchan_buf
*buf
, size_t offset
,
575 const void *src
, size_t len
, ssize_t cpy
)
582 * Underlying layer should never ask for writes across
585 WARN_ON(offset
>= buf
->buf_size
);
587 cpy
= min_t(size_t, len
, buf
->buf_size
- offset
);
588 ltt_relay_do_copy(buf
->buf_data
+ offset
, src
, cpy
);
589 } while (unlikely(len
!= cpy
));
591 //ust// EXPORT_SYMBOL_GPL(_ltt_relay_write);
594 * ltt_relay_read - read data from ltt_relay_buffer.
596 * @offset : offset within the buffer
597 * @dest : destination address
598 * @len : length to write
600 //ust// int ltt_relay_read(struct rchan_buf *buf, size_t offset,
601 //ust// void *dest, size_t len)
603 //ust// struct buf_page *page;
604 //ust// ssize_t pagecpy, orig_len;
606 //ust// orig_len = len;
607 //ust// offset &= buf->chan->alloc_size - 1;
608 //ust// page = buf->rpage;
609 //ust// if (unlikely(!len))
612 //ust// page = ltt_relay_cache_page(buf, &buf->rpage, page, offset);
613 //ust// pagecpy = min_t(size_t, len, PAGE_SIZE - (offset & ~PAGE_MASK));
614 //ust// memcpy(dest, page_address(page->page) + (offset & ~PAGE_MASK),
616 //ust// len -= pagecpy;
617 //ust// if (likely(!len))
619 //ust// dest += pagecpy;
620 //ust// offset += pagecpy;
622 //ust// * Underlying layer should never ask for reads across
623 //ust// * subbuffers.
625 //ust// WARN_ON(offset >= buf->chan->alloc_size);
627 //ust// return orig_len;
629 //ust// EXPORT_SYMBOL_GPL(ltt_relay_read);
632 * ltt_relay_read_get_page - Get a whole page to read from
634 * @offset : offset within the buffer
636 //ust// struct buf_page *ltt_relay_read_get_page(struct rchan_buf *buf, size_t offset)
638 //ust// struct buf_page *page;
640 //ust// offset &= buf->chan->alloc_size - 1;
641 //ust// page = buf->rpage;
642 //ust// page = ltt_relay_cache_page(buf, &buf->rpage, page, offset);
645 //ust// EXPORT_SYMBOL_GPL(ltt_relay_read_get_page);
648 * ltt_relay_offset_address - get address of a location within the buffer
650 * @offset : offset within the buffer.
652 * Return the address where a given offset is located.
653 * Should be used to get the current subbuffer header pointer. Given we know
654 * it's never on a page boundary, it's safe to write directly to this address,
655 * as long as the write is never bigger than a page size.
657 void *ltt_relay_offset_address(struct rchan_buf
*buf
, size_t offset
)
659 //ust// struct buf_page *page;
660 //ust// unsigned int odd;
662 //ust// offset &= buf->chan->alloc_size - 1;
663 //ust// odd = !!(offset & buf->chan->subbuf_size);
664 //ust// page = buf->hpage[odd];
665 //ust// if (offset < page->offset || offset >= page->offset + PAGE_SIZE)
666 //ust// buf->hpage[odd] = page = buf->wpage;
667 //ust// page = ltt_relay_cache_page(buf, &buf->hpage[odd], page, offset);
668 //ust// return page_address(page->page) + (offset & ~PAGE_MASK);
669 return ((char *)buf
->buf_data
)+offset
;
672 //ust// EXPORT_SYMBOL_GPL(ltt_relay_offset_address);
675 * relay_file_open - open file op for relay files
679 * Increments the channel buffer refcount.
681 //ust// static int relay_file_open(struct inode *inode, struct file *filp)
683 //ust// struct rchan_buf *buf = inode->i_private;
684 //ust// kref_get(&buf->kref);
685 //ust// filp->private_data = buf;
687 //ust// return nonseekable_open(inode, filp);
691 * relay_file_release - release file op for relay files
695 * Decrements the channel refcount, as the filesystem is
696 * no longer using it.
698 //ust// static int relay_file_release(struct inode *inode, struct file *filp)
700 //ust// struct rchan_buf *buf = filp->private_data;
701 //ust// kref_put(&buf->kref, relay_remove_buf);
706 //ust// const struct file_operations ltt_relay_file_operations = {
707 //ust// .open = relay_file_open,
708 //ust// .release = relay_file_release,
710 //ust// EXPORT_SYMBOL_GPL(ltt_relay_file_operations);
712 //ust// static __init int relay_init(void)
714 //ust// hotcpu_notifier(relay_hotcpu_callback, 5);
718 //ust// module_init(relay_init);
722 * (C) Copyright 2005-2008 - Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
724 * LTTng lockless buffer space management (reader/writer).
727 * Mathieu Desnoyers (mathieu.desnoyers@polymtl.ca)
729 * Inspired from LTT :
730 * Karim Yaghmour (karim@opersys.com)
731 * Tom Zanussi (zanussi@us.ibm.com)
732 * Bob Wisniewski (bob@watson.ibm.com)
734 * Bob Wisniewski (bob@watson.ibm.com)
738 * 19/10/05, Complete lockless mechanism.
739 * 27/05/05, Modular redesign and rewrite.
741 * Userspace reader semantic :
742 * while (poll fd != POLLHUP) {
743 * - ioctl RELAY_GET_SUBBUF_SIZE
746 * - splice 1 subbuffer worth of data to a pipe
747 * - splice the data from pipe to disk/network
748 * - ioctl PUT_SUBBUF, check error value
749 * if err val < 0, previous subbuffer was corrupted.
754 //ust// #include <linux/time.h>
755 //ust// #include <linux/ltt-tracer.h>
756 //ust// #include <linux/ltt-relay.h>
757 //ust// #include <linux/module.h>
758 //ust// #include <linux/string.h>
759 //ust// #include <linux/slab.h>
760 //ust// #include <linux/init.h>
761 //ust// #include <linux/rcupdate.h>
762 //ust// #include <linux/sched.h>
763 //ust// #include <linux/bitops.h>
764 //ust// #include <linux/fs.h>
765 //ust// #include <linux/smp_lock.h>
766 //ust// #include <linux/debugfs.h>
767 //ust// #include <linux/stat.h>
768 //ust// #include <linux/cpu.h>
769 //ust// #include <linux/pipe_fs_i.h>
770 //ust// #include <linux/splice.h>
771 //ust// #include <asm/atomic.h>
772 //ust// #include <asm/local.h>
775 #define printk_dbg(fmt, args...) printk(fmt, args)
777 #define printk_dbg(fmt, args...)
781 * Last TSC comparison functions. Check if the current TSC overflows
782 * LTT_TSC_BITS bits from the last TSC read. Reads and writes last_tsc
786 #if (BITS_PER_LONG == 32)
787 static inline void save_last_tsc(struct ltt_channel_buf_struct
*ltt_buf
,
790 ltt_buf
->last_tsc
= (unsigned long)(tsc
>> LTT_TSC_BITS
);
793 static inline int last_tsc_overflow(struct ltt_channel_buf_struct
*ltt_buf
,
796 unsigned long tsc_shifted
= (unsigned long)(tsc
>> LTT_TSC_BITS
);
798 if (unlikely((tsc_shifted
- ltt_buf
->last_tsc
)))
804 static inline void save_last_tsc(struct ltt_channel_buf_struct
*ltt_buf
,
807 ltt_buf
->last_tsc
= (unsigned long)tsc
;
810 static inline int last_tsc_overflow(struct ltt_channel_buf_struct
*ltt_buf
,
813 if (unlikely((tsc
- ltt_buf
->last_tsc
) >> LTT_TSC_BITS
))
820 //ust// static struct file_operations ltt_file_operations;
823 * A switch is done during tracing or as a final flush after tracing (so it
824 * won't write in the new sub-buffer).
826 enum force_switch_mode
{ FORCE_ACTIVE
, FORCE_FLUSH
};
828 static int ltt_relay_create_buffer(struct ltt_trace_struct
*trace
,
829 struct ltt_channel_struct
*ltt_chan
,
830 struct rchan_buf
*buf
,
831 unsigned int n_subbufs
);
833 static void ltt_relay_destroy_buffer(struct ltt_channel_struct
*ltt_chan
);
835 static void ltt_force_switch(struct rchan_buf
*buf
,
836 enum force_switch_mode mode
);
841 static void ltt_buffer_begin_callback(struct rchan_buf
*buf
,
842 u64 tsc
, unsigned int subbuf_idx
)
844 struct ltt_channel_struct
*channel
=
845 (struct ltt_channel_struct
*)buf
->chan
->private_data
;
846 struct ltt_subbuffer_header
*header
=
847 (struct ltt_subbuffer_header
*)
848 ltt_relay_offset_address(buf
,
849 subbuf_idx
* buf
->chan
->subbuf_size
);
851 header
->cycle_count_begin
= tsc
;
852 header
->lost_size
= 0xFFFFFFFF; /* for debugging */
853 header
->buf_size
= buf
->chan
->subbuf_size
;
854 ltt_write_trace_header(channel
->trace
, header
);
858 * offset is assumed to never be 0 here : never deliver a completely empty
859 * subbuffer. The lost size is between 0 and subbuf_size-1.
861 static notrace
void ltt_buffer_end_callback(struct rchan_buf
*buf
,
862 u64 tsc
, unsigned int offset
, unsigned int subbuf_idx
)
864 struct ltt_channel_struct
*channel
=
865 (struct ltt_channel_struct
*)buf
->chan
->private_data
;
866 struct ltt_channel_buf_struct
*ltt_buf
= channel
->buf
;
867 struct ltt_subbuffer_header
*header
=
868 (struct ltt_subbuffer_header
*)
869 ltt_relay_offset_address(buf
,
870 subbuf_idx
* buf
->chan
->subbuf_size
);
872 header
->lost_size
= SUBBUF_OFFSET((buf
->chan
->subbuf_size
- offset
),
874 header
->cycle_count_end
= tsc
;
875 header
->events_lost
= local_read(<t_buf
->events_lost
);
876 header
->subbuf_corrupt
= local_read(<t_buf
->corrupted_subbuffers
);
880 void (*wake_consumer
)(void *, int) = NULL
;
882 void relay_set_wake_consumer(void (*wake
)(void *, int))
884 wake_consumer
= wake
;
887 void relay_wake_consumer(void *arg
, int finished
)
890 wake_consumer(arg
, finished
);
893 static notrace
void ltt_deliver(struct rchan_buf
*buf
, unsigned int subbuf_idx
,
896 struct ltt_channel_struct
*channel
=
897 (struct ltt_channel_struct
*)buf
->chan
->private_data
;
898 struct ltt_channel_buf_struct
*ltt_buf
= channel
->buf
;
901 //ust// #ifdef CONFIG_LTT_VMCORE
902 local_set(<t_buf
->commit_seq
[subbuf_idx
], commit_count
);
905 /* wakeup consumer */
906 result
= write(ltt_buf
->data_ready_fd_write
, "1", 1);
908 PERROR("write (in ltt_relay_buffer_flush)");
909 ERR("this should never happen!");
911 //ust// atomic_set(<t_buf->wakeup_readers, 1);
914 static struct dentry
*ltt_create_buf_file_callback(struct rchan_buf
*buf
)
916 struct ltt_channel_struct
*ltt_chan
;
918 //ust// struct dentry *dentry;
920 ltt_chan
= buf
->chan
->private_data
;
921 err
= ltt_relay_create_buffer(ltt_chan
->trace
, ltt_chan
, buf
, buf
->chan
->n_subbufs
);
925 //ust// dentry = debugfs_create_file(filename, mode, parent, buf,
926 //ust// <t_file_operations);
929 //ust// return dentry;
932 ltt_relay_destroy_buffer(ltt_chan
);
936 //ust// static int ltt_remove_buf_file_callback(struct rchan_buf *buf)
938 //ust// //ust// struct rchan_buf *buf = dentry->d_inode->i_private;
939 //ust// struct ltt_channel_struct *ltt_chan = buf->chan->private_data;
941 //ust// //ust// debugfs_remove(dentry);
942 //ust// ltt_relay_destroy_buffer(ltt_chan);
950 * This must be done after the trace is removed from the RCU list so that there
951 * are no stalled writers.
953 //ust// static void ltt_relay_wake_writers(struct ltt_channel_buf_struct *ltt_buf)
956 //ust// if (waitqueue_active(<t_buf->write_wait))
957 //ust// wake_up_interruptible(<t_buf->write_wait);
961 * This function should not be called from NMI interrupt context
963 static notrace
void ltt_buf_unfull(struct rchan_buf
*buf
,
964 unsigned int subbuf_idx
,
967 //ust// struct ltt_channel_struct *ltt_channel =
968 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
969 //ust// struct ltt_channel_buf_struct *ltt_buf = ltt_channel->buf;
971 //ust// ltt_relay_wake_writers(ltt_buf);
975 * ltt_open - open file op for ltt files
976 * @inode: opened inode
979 * Open implementation. Makes sure only one open instance of a buffer is
980 * done at a given moment.
982 //ust// static int ltt_open(struct inode *inode, struct file *file)
984 //ust// struct rchan_buf *buf = inode->i_private;
985 //ust// struct ltt_channel_struct *ltt_channel =
986 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
987 //ust// struct ltt_channel_buf_struct *ltt_buf =
988 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
990 //ust// if (!atomic_long_add_unless(<t_buf->active_readers, 1, 1))
991 //ust// return -EBUSY;
992 //ust// return ltt_relay_file_operations.open(inode, file);
996 * ltt_release - release file op for ltt files
997 * @inode: opened inode
1000 * Release implementation.
1002 //ust// static int ltt_release(struct inode *inode, struct file *file)
1004 //ust// struct rchan_buf *buf = inode->i_private;
1005 //ust// struct ltt_channel_struct *ltt_channel =
1006 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1007 //ust// struct ltt_channel_buf_struct *ltt_buf =
1008 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1011 //ust// WARN_ON(atomic_long_read(<t_buf->active_readers) != 1);
1012 //ust// atomic_long_dec(<t_buf->active_readers);
1013 //ust// ret = ltt_relay_file_operations.release(inode, file);
1014 //ust// WARN_ON(ret);
1019 * ltt_poll - file op for ltt files
1023 * Poll implementation.
1025 //ust// static unsigned int ltt_poll(struct file *filp, poll_table *wait)
1027 //ust// unsigned int mask = 0;
1028 //ust// struct inode *inode = filp->f_dentry->d_inode;
1029 //ust// struct rchan_buf *buf = inode->i_private;
1030 //ust// struct ltt_channel_struct *ltt_channel =
1031 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1032 //ust// struct ltt_channel_buf_struct *ltt_buf =
1033 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1035 //ust// if (filp->f_mode & FMODE_READ) {
1036 //ust// poll_wait_set_exclusive(wait);
1037 //ust// poll_wait(filp, &buf->read_wait, wait);
1039 //ust// WARN_ON(atomic_long_read(<t_buf->active_readers) != 1);
1040 //ust// if (SUBBUF_TRUNC(local_read(<t_buf->offset),
1042 //ust// - SUBBUF_TRUNC(atomic_long_read(<t_buf->consumed),
1045 //ust// if (buf->finalized)
1046 //ust// return POLLHUP;
1050 //ust// struct rchan *rchan =
1051 //ust// ltt_channel->trans_channel_data;
1052 //ust// if (SUBBUF_TRUNC(local_read(<t_buf->offset),
1054 //ust// - SUBBUF_TRUNC(atomic_long_read(
1055 //ust// <t_buf->consumed),
1057 //ust// >= rchan->alloc_size)
1058 //ust// return POLLPRI | POLLRDBAND;
1060 //ust// return POLLIN | POLLRDNORM;
1063 //ust// return mask;
1066 int ltt_do_get_subbuf(struct rchan_buf
*buf
, struct ltt_channel_buf_struct
*ltt_buf
, long *pconsumed_old
)
1068 struct ltt_channel_struct
*ltt_channel
= (struct ltt_channel_struct
*)buf
->chan
->private_data
;
1069 long consumed_old
, consumed_idx
, commit_count
, write_offset
;
1070 consumed_old
= atomic_long_read(<t_buf
->consumed
);
1071 consumed_idx
= SUBBUF_INDEX(consumed_old
, buf
->chan
);
1072 commit_count
= local_read(<t_buf
->commit_count
[consumed_idx
]);
1074 * Make sure we read the commit count before reading the buffer
1075 * data and the write offset. Correct consumed offset ordering
1076 * wrt commit count is insured by the use of cmpxchg to update
1077 * the consumed offset.
1080 write_offset
= local_read(<t_buf
->offset
);
1082 * Check that the subbuffer we are trying to consume has been
1083 * already fully committed.
1085 if (((commit_count
- buf
->chan
->subbuf_size
)
1086 & ltt_channel
->commit_count_mask
)
1087 - (BUFFER_TRUNC(consumed_old
, buf
->chan
)
1088 >> ltt_channel
->n_subbufs_order
)
1093 * Check that we are not about to read the same subbuffer in
1094 * which the writer head is.
1096 if ((SUBBUF_TRUNC(write_offset
, buf
->chan
)
1097 - SUBBUF_TRUNC(consumed_old
, buf
->chan
))
1102 *pconsumed_old
= consumed_old
;
1106 int ltt_do_put_subbuf(struct rchan_buf
*buf
, struct ltt_channel_buf_struct
*ltt_buf
, u32 uconsumed_old
)
1108 long consumed_new
, consumed_old
;
1110 consumed_old
= atomic_long_read(<t_buf
->consumed
);
1111 consumed_old
= consumed_old
& (~0xFFFFFFFFL
);
1112 consumed_old
= consumed_old
| uconsumed_old
;
1113 consumed_new
= SUBBUF_ALIGN(consumed_old
, buf
->chan
);
1115 //ust// spin_lock(<t_buf->full_lock);
1116 if (atomic_long_cmpxchg(<t_buf
->consumed
, consumed_old
,
1119 /* We have been pushed by the writer : the last
1120 * buffer read _is_ corrupted! It can also
1121 * happen if this is a buffer we never got. */
1122 //ust// spin_unlock(<t_buf->full_lock);
1125 /* tell the client that buffer is now unfull */
1128 index
= SUBBUF_INDEX(consumed_old
, buf
->chan
);
1129 data
= BUFFER_OFFSET(consumed_old
, buf
->chan
);
1130 ltt_buf_unfull(buf
, index
, data
);
1131 //ust// spin_unlock(<t_buf->full_lock);
1137 * ltt_ioctl - control on the debugfs file
1144 * This ioctl implements three commands necessary for a minimal
1145 * producer/consumer implementation :
1147 * Get the next sub buffer that can be read. It never blocks.
1149 * Release the currently read sub-buffer. Parameter is the last
1150 * put subbuffer (returned by GET_SUBBUF).
1151 * RELAY_GET_N_BUBBUFS
1152 * returns the number of sub buffers in the per cpu channel.
1153 * RELAY_GET_SUBBUF_SIZE
1154 * returns the size of the sub buffers.
1156 //ust// static int ltt_ioctl(struct inode *inode, struct file *filp,
1157 //ust// unsigned int cmd, unsigned long arg)
1159 //ust// struct rchan_buf *buf = inode->i_private;
1160 //ust// struct ltt_channel_struct *ltt_channel =
1161 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1162 //ust// struct ltt_channel_buf_struct *ltt_buf =
1163 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1164 //ust// u32 __user *argp = (u32 __user *)arg;
1166 //ust// WARN_ON(atomic_long_read(<t_buf->active_readers) != 1);
1167 //ust// switch (cmd) {
1168 //ust// case RELAY_GET_SUBBUF:
1171 //ust// ret = ltt_do_get_subbuf(buf, ltt_buf, &consumed_old);
1174 //ust// return put_user((u32)consumed_old, argp);
1176 //ust// case RELAY_PUT_SUBBUF:
1179 //ust// u32 uconsumed_old;
1180 //ust// ret = get_user(uconsumed_old, argp);
1182 //ust// return ret; /* will return -EFAULT */
1183 //ust// return ltt_do_put_subbuf(buf, ltt_buf, uconsumed_old);
1185 //ust// case RELAY_GET_N_SUBBUFS:
1186 //ust// return put_user((u32)buf->chan->n_subbufs, argp);
1188 //ust// case RELAY_GET_SUBBUF_SIZE:
1189 //ust// return put_user((u32)buf->chan->subbuf_size, argp);
1192 //ust// return -ENOIOCTLCMD;
1197 //ust// #ifdef CONFIG_COMPAT
1198 //ust// static long ltt_compat_ioctl(struct file *file, unsigned int cmd,
1199 //ust// unsigned long arg)
1201 //ust// long ret = -ENOIOCTLCMD;
1203 //ust// lock_kernel();
1204 //ust// ret = ltt_ioctl(file->f_dentry->d_inode, file, cmd, arg);
1205 //ust// unlock_kernel();
1211 //ust// static void ltt_relay_pipe_buf_release(struct pipe_inode_info *pipe,
1212 //ust// struct pipe_buffer *pbuf)
1216 //ust// static struct pipe_buf_operations ltt_relay_pipe_buf_ops = {
1217 //ust// .can_merge = 0,
1218 //ust// .map = generic_pipe_buf_map,
1219 //ust// .unmap = generic_pipe_buf_unmap,
1220 //ust// .confirm = generic_pipe_buf_confirm,
1221 //ust// .release = ltt_relay_pipe_buf_release,
1222 //ust// .steal = generic_pipe_buf_steal,
1223 //ust// .get = generic_pipe_buf_get,
1226 //ust// static void ltt_relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1231 * subbuf_splice_actor - splice up to one subbuf's worth of data
1233 //ust// static int subbuf_splice_actor(struct file *in,
1234 //ust// loff_t *ppos,
1235 //ust// struct pipe_inode_info *pipe,
1237 //ust// unsigned int flags)
1239 //ust// struct rchan_buf *buf = in->private_data;
1240 //ust// struct ltt_channel_struct *ltt_channel =
1241 //ust// (struct ltt_channel_struct *)buf->chan->private_data;
1242 //ust// struct ltt_channel_buf_struct *ltt_buf =
1243 //ust// percpu_ptr(ltt_channel->buf, buf->cpu);
1244 //ust// unsigned int poff, subbuf_pages, nr_pages;
1245 //ust// struct page *pages[PIPE_BUFFERS];
1246 //ust// struct partial_page partial[PIPE_BUFFERS];
1247 //ust// struct splice_pipe_desc spd = {
1248 //ust// .pages = pages,
1249 //ust// .nr_pages = 0,
1250 //ust// .partial = partial,
1251 //ust// .flags = flags,
1252 //ust// .ops = <t_relay_pipe_buf_ops,
1253 //ust// .spd_release = ltt_relay_page_release,
1255 //ust// long consumed_old, consumed_idx, roffset;
1256 //ust// unsigned long bytes_avail;
1259 //ust// * Check that a GET_SUBBUF ioctl has been done before.
1261 //ust// WARN_ON(atomic_long_read(<t_buf->active_readers) != 1);
1262 //ust// consumed_old = atomic_long_read(<t_buf->consumed);
1263 //ust// consumed_old += *ppos;
1264 //ust// consumed_idx = SUBBUF_INDEX(consumed_old, buf->chan);
1267 //ust// * Adjust read len, if longer than what is available
1269 //ust// bytes_avail = SUBBUF_TRUNC(local_read(<t_buf->offset), buf->chan)
1270 //ust// - consumed_old;
1271 //ust// WARN_ON(bytes_avail > buf->chan->alloc_size);
1272 //ust// len = min_t(size_t, len, bytes_avail);
1273 //ust// subbuf_pages = bytes_avail >> PAGE_SHIFT;
1274 //ust// nr_pages = min_t(unsigned int, subbuf_pages, PIPE_BUFFERS);
1275 //ust// roffset = consumed_old & PAGE_MASK;
1276 //ust// poff = consumed_old & ~PAGE_MASK;
1277 //ust// printk_dbg(KERN_DEBUG "SPLICE actor len %zu pos %zd write_pos %ld\n",
1278 //ust// len, (ssize_t)*ppos, local_read(<t_buf->offset));
1280 //ust// for (; spd.nr_pages < nr_pages; spd.nr_pages++) {
1281 //ust// unsigned int this_len;
1282 //ust// struct buf_page *page;
1286 //ust// printk_dbg(KERN_DEBUG "SPLICE actor loop len %zu roffset %ld\n",
1287 //ust// len, roffset);
1289 //ust// this_len = PAGE_SIZE - poff;
1290 //ust// page = ltt_relay_read_get_page(buf, roffset);
1291 //ust// spd.pages[spd.nr_pages] = page->page;
1292 //ust// spd.partial[spd.nr_pages].offset = poff;
1293 //ust// spd.partial[spd.nr_pages].len = this_len;
1296 //ust// roffset += PAGE_SIZE;
1297 //ust// len -= this_len;
1300 //ust// if (!spd.nr_pages)
1303 //ust// return splice_to_pipe(pipe, &spd);
1306 //ust// static ssize_t ltt_relay_file_splice_read(struct file *in,
1307 //ust// loff_t *ppos,
1308 //ust// struct pipe_inode_info *pipe,
1310 //ust// unsigned int flags)
1312 //ust// ssize_t spliced;
1316 //ust// spliced = 0;
1318 //ust// printk_dbg(KERN_DEBUG "SPLICE read len %zu pos %zd\n",
1319 //ust// len, (ssize_t)*ppos);
1320 //ust// while (len && !spliced) {
1321 //ust// ret = subbuf_splice_actor(in, ppos, pipe, len, flags);
1322 //ust// printk_dbg(KERN_DEBUG "SPLICE read loop ret %d\n", ret);
1323 //ust// if (ret < 0)
1325 //ust// else if (!ret) {
1326 //ust// if (flags & SPLICE_F_NONBLOCK)
1327 //ust// ret = -EAGAIN;
1331 //ust// *ppos += ret;
1332 //ust// if (ret > len)
1336 //ust// spliced += ret;
1339 //ust// if (spliced)
1340 //ust// return spliced;
1345 static void ltt_relay_print_subbuffer_errors(
1346 struct ltt_channel_struct
*ltt_chan
,
1349 struct rchan
*rchan
= ltt_chan
->trans_channel_data
;
1350 struct ltt_channel_buf_struct
*ltt_buf
= ltt_chan
->buf
;
1351 long cons_idx
, commit_count
, write_offset
;
1353 cons_idx
= SUBBUF_INDEX(cons_off
, rchan
);
1354 commit_count
= local_read(<t_buf
->commit_count
[cons_idx
]);
1356 * No need to order commit_count and write_offset reads because we
1357 * execute after trace is stopped when there are no readers left.
1359 write_offset
= local_read(<t_buf
->offset
);
1361 "LTT : unread channel %s offset is %ld "
1362 "and cons_off : %ld\n",
1363 ltt_chan
->channel_name
, write_offset
, cons_off
);
1364 /* Check each sub-buffer for non filled commit count */
1365 if (((commit_count
- rchan
->subbuf_size
) & ltt_chan
->commit_count_mask
)
1366 - (BUFFER_TRUNC(cons_off
, rchan
) >> ltt_chan
->n_subbufs_order
)
1369 "LTT : %s : subbuffer %lu has non filled "
1370 "commit count %lu.\n",
1371 ltt_chan
->channel_name
, cons_idx
, commit_count
);
1372 printk(KERN_ALERT
"LTT : %s : commit count : %lu, subbuf size %zd\n",
1373 ltt_chan
->channel_name
, commit_count
,
1374 rchan
->subbuf_size
);
1377 static void ltt_relay_print_errors(struct ltt_trace_struct
*trace
,
1378 struct ltt_channel_struct
*ltt_chan
)
1380 struct rchan
*rchan
= ltt_chan
->trans_channel_data
;
1381 struct ltt_channel_buf_struct
*ltt_buf
= ltt_chan
->buf
;
1384 for (cons_off
= atomic_long_read(<t_buf
->consumed
);
1385 (SUBBUF_TRUNC(local_read(<t_buf
->offset
),
1388 cons_off
= SUBBUF_ALIGN(cons_off
, rchan
))
1389 ltt_relay_print_subbuffer_errors(ltt_chan
, cons_off
);
1392 static void ltt_relay_print_buffer_errors(struct ltt_channel_struct
*ltt_chan
)
1394 struct ltt_trace_struct
*trace
= ltt_chan
->trace
;
1395 struct ltt_channel_buf_struct
*ltt_buf
= ltt_chan
->buf
;
1397 if (local_read(<t_buf
->events_lost
))
1399 "LTT : %s : %ld events lost "
1401 ltt_chan
->channel_name
,
1402 local_read(<t_buf
->events_lost
),
1403 ltt_chan
->channel_name
);
1404 if (local_read(<t_buf
->corrupted_subbuffers
))
1406 "LTT : %s : %ld corrupted subbuffers "
1408 ltt_chan
->channel_name
,
1409 local_read(<t_buf
->corrupted_subbuffers
),
1410 ltt_chan
->channel_name
);
1412 ltt_relay_print_errors(trace
, ltt_chan
);
1415 static void ltt_relay_remove_dirs(struct ltt_trace_struct
*trace
)
1417 //ust// debugfs_remove(trace->dentry.trace_root);
1420 static void ltt_relay_release_channel(struct kref
*kref
)
1422 struct ltt_channel_struct
*ltt_chan
= container_of(kref
,
1423 struct ltt_channel_struct
, kref
);
1424 free(ltt_chan
->buf
);
1428 * Create ltt buffer.
1430 //ust// static int ltt_relay_create_buffer(struct ltt_trace_struct *trace,
1431 //ust// struct ltt_channel_struct *ltt_chan, struct rchan_buf *buf,
1432 //ust// unsigned int cpu, unsigned int n_subbufs)
1434 //ust// struct ltt_channel_buf_struct *ltt_buf =
1435 //ust// percpu_ptr(ltt_chan->buf, cpu);
1436 //ust// unsigned int j;
1438 //ust// ltt_buf->commit_count =
1439 //ust// kzalloc_node(sizeof(ltt_buf->commit_count) * n_subbufs,
1440 //ust// GFP_KERNEL, cpu_to_node(cpu));
1441 //ust// if (!ltt_buf->commit_count)
1442 //ust// return -ENOMEM;
1443 //ust// kref_get(&trace->kref);
1444 //ust// kref_get(&trace->ltt_transport_kref);
1445 //ust// kref_get(<t_chan->kref);
1446 //ust// local_set(<t_buf->offset, ltt_subbuffer_header_size());
1447 //ust// atomic_long_set(<t_buf->consumed, 0);
1448 //ust// atomic_long_set(<t_buf->active_readers, 0);
1449 //ust// for (j = 0; j < n_subbufs; j++)
1450 //ust// local_set(<t_buf->commit_count[j], 0);
1451 //ust// init_waitqueue_head(<t_buf->write_wait);
1452 //ust// atomic_set(<t_buf->wakeup_readers, 0);
1453 //ust// spin_lock_init(<t_buf->full_lock);
1455 //ust// ltt_buffer_begin_callback(buf, trace->start_tsc, 0);
1456 //ust// /* atomic_add made on local variable on data that belongs to
1457 //ust// * various CPUs : ok because tracing not started (for this cpu). */
1458 //ust// local_add(ltt_subbuffer_header_size(), <t_buf->commit_count[0]);
1460 //ust// local_set(<t_buf->events_lost, 0);
1461 //ust// local_set(<t_buf->corrupted_subbuffers, 0);
1466 static int ltt_relay_create_buffer(struct ltt_trace_struct
*trace
,
1467 struct ltt_channel_struct
*ltt_chan
, struct rchan_buf
*buf
,
1468 unsigned int n_subbufs
)
1470 struct ltt_channel_buf_struct
*ltt_buf
= ltt_chan
->buf
;
1475 ltt_buf
->commit_count
=
1476 zmalloc(sizeof(ltt_buf
->commit_count
) * n_subbufs
);
1477 if (!ltt_buf
->commit_count
)
1479 kref_get(&trace
->kref
);
1480 kref_get(&trace
->ltt_transport_kref
);
1481 kref_get(<t_chan
->kref
);
1482 local_set(<t_buf
->offset
, ltt_subbuffer_header_size());
1483 atomic_long_set(<t_buf
->consumed
, 0);
1484 atomic_long_set(<t_buf
->active_readers
, 0);
1485 for (j
= 0; j
< n_subbufs
; j
++)
1486 local_set(<t_buf
->commit_count
[j
], 0);
1487 //ust// init_waitqueue_head(<t_buf->write_wait);
1488 //ust// atomic_set(<t_buf->wakeup_readers, 0);
1489 //ust// spin_lock_init(<t_buf->full_lock);
1491 ltt_buffer_begin_callback(buf
, trace
->start_tsc
, 0);
1493 local_add(ltt_subbuffer_header_size(), <t_buf
->commit_count
[0]);
1495 local_set(<t_buf
->events_lost
, 0);
1496 local_set(<t_buf
->corrupted_subbuffers
, 0);
1503 ltt_buf
->data_ready_fd_read
= fds
[0];
1504 ltt_buf
->data_ready_fd_write
= fds
[1];
1506 //ust// ltt_buf->commit_seq = malloc(sizeof(ltt_buf->commit_seq) * n_subbufs);
1507 //ust// if(!ltt_buf->commit_seq) {
1511 /* FIXME: decrementally destroy on error */
1516 static void ltt_relay_destroy_buffer(struct ltt_channel_struct
*ltt_chan
)
1518 struct ltt_trace_struct
*trace
= ltt_chan
->trace
;
1519 struct ltt_channel_buf_struct
*ltt_buf
= ltt_chan
->buf
;
1521 kref_put(<t_chan
->trace
->ltt_transport_kref
,
1522 ltt_release_transport
);
1523 ltt_relay_print_buffer_errors(ltt_chan
);
1524 //ust// free(ltt_buf->commit_seq);
1525 kfree(ltt_buf
->commit_count
);
1526 ltt_buf
->commit_count
= NULL
;
1527 kref_put(<t_chan
->kref
, ltt_relay_release_channel
);
1528 kref_put(&trace
->kref
, ltt_release_trace
);
1529 //ust// wake_up_interruptible(&trace->kref_wq);
1532 static void ltt_chan_alloc_ltt_buf(struct ltt_channel_struct
*ltt_chan
)
1538 /* FIXME: increase size if we have a seq_commit array that overflows the page */
1539 size_t size
= PAGE_ALIGN(1);
1541 result
= ltt_chan
->buf_shmid
= shmget(getpid(), size
, IPC_CREAT
| IPC_EXCL
| 0700);
1542 if(ltt_chan
->buf_shmid
== -1) {
1547 ptr
= shmat(ltt_chan
->buf_shmid
, NULL
, 0);
1548 if(ptr
== (void *) -1) {
1553 /* Already mark the shared memory for destruction. This will occur only
1554 * when all users have detached.
1556 result
= shmctl(ltt_chan
->buf_shmid
, IPC_RMID
, NULL
);
1562 ltt_chan
->buf
= ptr
;
1567 result
= shmctl(ltt_chan
->buf_shmid
, IPC_RMID
, NULL
);
1578 static int ltt_relay_create_channel(const char *trace_name
,
1579 struct ltt_trace_struct
*trace
, struct dentry
*dir
,
1580 const char *channel_name
, struct ltt_channel_struct
*ltt_chan
,
1581 unsigned int subbuf_size
, unsigned int n_subbufs
,
1585 unsigned int tmpname_len
;
1588 tmpname
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1592 strncpy(tmpname
, LTT_FLIGHT_PREFIX
, PATH_MAX
-1);
1593 strncat(tmpname
, channel_name
,
1594 PATH_MAX
-1-sizeof(LTT_FLIGHT_PREFIX
));
1596 strncpy(tmpname
, channel_name
, PATH_MAX
-1);
1598 strncat(tmpname
, "_", PATH_MAX
-1-strlen(tmpname
));
1600 kref_init(<t_chan
->kref
);
1602 ltt_chan
->trace
= trace
;
1603 ltt_chan
->buffer_begin
= ltt_buffer_begin_callback
;
1604 ltt_chan
->buffer_end
= ltt_buffer_end_callback
;
1605 ltt_chan
->overwrite
= overwrite
;
1606 ltt_chan
->n_subbufs_order
= get_count_order(n_subbufs
);
1607 ltt_chan
->commit_count_mask
= (~0UL >> ltt_chan
->n_subbufs_order
);
1608 //ust// ltt_chan->buf = percpu_alloc_mask(sizeof(struct ltt_channel_buf_struct), GFP_KERNEL, cpu_possible_map);
1610 ltt_chan_alloc_ltt_buf(ltt_chan
);
1612 //ust// ltt_chan->buf = malloc(sizeof(struct ltt_channel_buf_struct));
1615 ltt_chan
->trans_channel_data
= ltt_relay_open(tmpname
,
1620 tmpname_len
= strlen(tmpname
);
1621 if (tmpname_len
> 0) {
1622 /* Remove final _ for pretty printing */
1623 tmpname
[tmpname_len
-1] = '\0';
1625 if (ltt_chan
->trans_channel_data
== NULL
) {
1626 printk(KERN_ERR
"LTT : Can't open %s channel for trace %s\n",
1627 tmpname
, trace_name
);
1628 goto relay_open_error
;
1635 //ust// percpu_free(ltt_chan->buf);
1643 static int ltt_relay_create_dirs(struct ltt_trace_struct
*new_trace
)
1645 //ust// new_trace->dentry.trace_root = debugfs_create_dir(new_trace->trace_name,
1646 //ust// get_ltt_root());
1647 //ust// if (new_trace->dentry.trace_root == NULL) {
1648 //ust// printk(KERN_ERR "LTT : Trace directory name %s already taken\n",
1649 //ust// new_trace->trace_name);
1650 //ust// return EEXIST;
1653 //ust// new_trace->callbacks.create_buf_file = ltt_create_buf_file_callback;
1654 //ust// new_trace->callbacks.remove_buf_file = ltt_remove_buf_file_callback;
1660 * LTTng channel flush function.
1662 * Must be called when no tracing is active in the channel, because of
1663 * accesses across CPUs.
1665 static notrace
void ltt_relay_buffer_flush(struct rchan_buf
*buf
)
1667 struct ltt_channel_struct
*channel
=
1668 (struct ltt_channel_struct
*)buf
->chan
->private_data
;
1669 struct ltt_channel_buf_struct
*ltt_buf
= channel
->buf
;
1673 ltt_force_switch(buf
, FORCE_FLUSH
);
1675 result
= write(ltt_buf
->data_ready_fd_write
, "1", 1);
1677 PERROR("write (in ltt_relay_buffer_flush)");
1678 ERR("this should never happen!");
1682 static void ltt_relay_async_wakeup_chan(struct ltt_channel_struct
*ltt_channel
)
1684 //ust// unsigned int i;
1685 //ust// struct rchan *rchan = ltt_channel->trans_channel_data;
1687 //ust// for_each_possible_cpu(i) {
1688 //ust// struct ltt_channel_buf_struct *ltt_buf =
1689 //ust// percpu_ptr(ltt_channel->buf, i);
1691 //ust// if (atomic_read(<t_buf->wakeup_readers) == 1) {
1692 //ust// atomic_set(<t_buf->wakeup_readers, 0);
1693 //ust// wake_up_interruptible(&rchan->buf[i]->read_wait);
1698 static void ltt_relay_finish_buffer(struct ltt_channel_struct
*ltt_channel
)
1700 struct rchan
*rchan
= ltt_channel
->trans_channel_data
;
1704 struct ltt_channel_buf_struct
*ltt_buf
= ltt_channel
->buf
;
1705 ltt_relay_buffer_flush(rchan
->buf
);
1706 //ust// ltt_relay_wake_writers(ltt_buf);
1707 /* closing the pipe tells the consumer the buffer is finished */
1709 //result = write(ltt_buf->data_ready_fd_write, "D", 1);
1710 //if(result == -1) {
1711 // PERROR("write (in ltt_relay_finish_buffer)");
1712 // ERR("this should never happen!");
1714 close(ltt_buf
->data_ready_fd_write
);
1719 static void ltt_relay_finish_channel(struct ltt_channel_struct
*ltt_channel
)
1721 //ust// unsigned int i;
1723 //ust// for_each_possible_cpu(i)
1724 ltt_relay_finish_buffer(ltt_channel
);
1727 static void ltt_relay_remove_channel(struct ltt_channel_struct
*channel
)
1729 struct rchan
*rchan
= channel
->trans_channel_data
;
1731 ltt_relay_close(rchan
);
1732 kref_put(&channel
->kref
, ltt_relay_release_channel
);
1735 struct ltt_reserve_switch_offsets
{
1736 long begin
, end
, old
;
1737 long begin_switch
, end_switch_current
, end_switch_old
;
1738 long commit_count
, reserve_commit_diff
;
1739 size_t before_hdr_pad
, size
;
1745 * !0 if execution must be aborted.
1747 static inline int ltt_relay_try_reserve(
1748 struct ltt_channel_struct
*ltt_channel
,
1749 struct ltt_channel_buf_struct
*ltt_buf
, struct rchan
*rchan
,
1750 struct rchan_buf
*buf
,
1751 struct ltt_reserve_switch_offsets
*offsets
, size_t data_size
,
1752 u64
*tsc
, unsigned int *rflags
, int largest_align
)
1754 offsets
->begin
= local_read(<t_buf
->offset
);
1755 offsets
->old
= offsets
->begin
;
1756 offsets
->begin_switch
= 0;
1757 offsets
->end_switch_current
= 0;
1758 offsets
->end_switch_old
= 0;
1760 *tsc
= trace_clock_read64();
1761 if (last_tsc_overflow(ltt_buf
, *tsc
))
1762 *rflags
= LTT_RFLAG_ID_SIZE_TSC
;
1764 if (SUBBUF_OFFSET(offsets
->begin
, buf
->chan
) == 0) {
1765 offsets
->begin_switch
= 1; /* For offsets->begin */
1767 offsets
->size
= ltt_get_header_size(ltt_channel
,
1768 offsets
->begin
, data_size
,
1769 &offsets
->before_hdr_pad
, *rflags
);
1770 offsets
->size
+= ltt_align(offsets
->begin
+ offsets
->size
,
1773 if ((SUBBUF_OFFSET(offsets
->begin
, buf
->chan
) + offsets
->size
)
1774 > buf
->chan
->subbuf_size
) {
1775 offsets
->end_switch_old
= 1; /* For offsets->old */
1776 offsets
->begin_switch
= 1; /* For offsets->begin */
1779 if (offsets
->begin_switch
) {
1782 if (offsets
->end_switch_old
)
1783 offsets
->begin
= SUBBUF_ALIGN(offsets
->begin
,
1785 offsets
->begin
= offsets
->begin
+ ltt_subbuffer_header_size();
1786 /* Test new buffer integrity */
1787 subbuf_index
= SUBBUF_INDEX(offsets
->begin
, buf
->chan
);
1788 offsets
->reserve_commit_diff
=
1789 (BUFFER_TRUNC(offsets
->begin
, buf
->chan
)
1790 >> ltt_channel
->n_subbufs_order
)
1791 - (local_read(<t_buf
->commit_count
[subbuf_index
])
1792 & ltt_channel
->commit_count_mask
);
1793 if (offsets
->reserve_commit_diff
== 0) {
1794 /* Next buffer not corrupted. */
1795 if (!ltt_channel
->overwrite
&&
1796 (SUBBUF_TRUNC(offsets
->begin
, buf
->chan
)
1797 - SUBBUF_TRUNC(atomic_long_read(
1798 <t_buf
->consumed
),
1800 >= rchan
->alloc_size
) {
1802 * We do not overwrite non consumed buffers
1803 * and we are full : event is lost.
1805 local_inc(<t_buf
->events_lost
);
1809 * next buffer not corrupted, we are either in
1810 * overwrite mode or the buffer is not full.
1811 * It's safe to write in this new subbuffer.
1816 * Next subbuffer corrupted. Force pushing reader even
1817 * in normal mode. It's safe to write in this new
1821 offsets
->size
= ltt_get_header_size(ltt_channel
,
1822 offsets
->begin
, data_size
,
1823 &offsets
->before_hdr_pad
, *rflags
);
1824 offsets
->size
+= ltt_align(offsets
->begin
+ offsets
->size
,
1827 if ((SUBBUF_OFFSET(offsets
->begin
, buf
->chan
) + offsets
->size
)
1828 > buf
->chan
->subbuf_size
) {
1830 * Event too big for subbuffers, report error, don't
1831 * complete the sub-buffer switch.
1833 local_inc(<t_buf
->events_lost
);
1837 * We just made a successful buffer switch and the event
1838 * fits in the new subbuffer. Let's write.
1843 * Event fits in the current buffer and we are not on a switch
1844 * boundary. It's safe to write.
1847 offsets
->end
= offsets
->begin
+ offsets
->size
;
1849 if ((SUBBUF_OFFSET(offsets
->end
, buf
->chan
)) == 0) {
1851 * The offset_end will fall at the very beginning of the next
1854 offsets
->end_switch_current
= 1; /* For offsets->begin */
1862 * !0 if execution must be aborted.
1864 static inline int ltt_relay_try_switch(
1865 enum force_switch_mode mode
,
1866 struct ltt_channel_struct
*ltt_channel
,
1867 struct ltt_channel_buf_struct
*ltt_buf
, struct rchan
*rchan
,
1868 struct rchan_buf
*buf
,
1869 struct ltt_reserve_switch_offsets
*offsets
,
1874 offsets
->begin
= local_read(<t_buf
->offset
);
1875 offsets
->old
= offsets
->begin
;
1876 offsets
->begin_switch
= 0;
1877 offsets
->end_switch_old
= 0;
1879 *tsc
= trace_clock_read64();
1881 if (SUBBUF_OFFSET(offsets
->begin
, buf
->chan
) != 0) {
1882 offsets
->begin
= SUBBUF_ALIGN(offsets
->begin
, buf
->chan
);
1883 offsets
->end_switch_old
= 1;
1885 /* we do not have to switch : buffer is empty */
1888 if (mode
== FORCE_ACTIVE
)
1889 offsets
->begin
+= ltt_subbuffer_header_size();
1891 * Always begin_switch in FORCE_ACTIVE mode.
1892 * Test new buffer integrity
1894 subbuf_index
= SUBBUF_INDEX(offsets
->begin
, buf
->chan
);
1895 offsets
->reserve_commit_diff
=
1896 (BUFFER_TRUNC(offsets
->begin
, buf
->chan
)
1897 >> ltt_channel
->n_subbufs_order
)
1898 - (local_read(<t_buf
->commit_count
[subbuf_index
])
1899 & ltt_channel
->commit_count_mask
);
1900 if (offsets
->reserve_commit_diff
== 0) {
1901 /* Next buffer not corrupted. */
1902 if (mode
== FORCE_ACTIVE
1903 && !ltt_channel
->overwrite
1904 && offsets
->begin
- atomic_long_read(<t_buf
->consumed
)
1905 >= rchan
->alloc_size
) {
1907 * We do not overwrite non consumed buffers and we are
1908 * full : ignore switch while tracing is active.
1914 * Next subbuffer corrupted. Force pushing reader even in normal
1918 offsets
->end
= offsets
->begin
;
1922 static inline void ltt_reserve_push_reader(
1923 struct ltt_channel_struct
*ltt_channel
,
1924 struct ltt_channel_buf_struct
*ltt_buf
,
1925 struct rchan
*rchan
,
1926 struct rchan_buf
*buf
,
1927 struct ltt_reserve_switch_offsets
*offsets
)
1929 long consumed_old
, consumed_new
;
1932 consumed_old
= atomic_long_read(<t_buf
->consumed
);
1934 * If buffer is in overwrite mode, push the reader consumed
1935 * count if the write position has reached it and we are not
1936 * at the first iteration (don't push the reader farther than
1937 * the writer). This operation can be done concurrently by many
1938 * writers in the same buffer, the writer being at the farthest
1939 * write position sub-buffer index in the buffer being the one
1940 * which will win this loop.
1941 * If the buffer is not in overwrite mode, pushing the reader
1942 * only happens if a sub-buffer is corrupted.
1944 if ((SUBBUF_TRUNC(offsets
->end
-1, buf
->chan
)
1945 - SUBBUF_TRUNC(consumed_old
, buf
->chan
))
1946 >= rchan
->alloc_size
)
1947 consumed_new
= SUBBUF_ALIGN(consumed_old
, buf
->chan
);
1949 consumed_new
= consumed_old
;
1952 } while (atomic_long_cmpxchg(<t_buf
->consumed
, consumed_old
,
1953 consumed_new
) != consumed_old
);
1955 if (consumed_old
!= consumed_new
) {
1957 * Reader pushed : we are the winner of the push, we can
1958 * therefore reequilibrate reserve and commit. Atomic increment
1959 * of the commit count permits other writers to play around
1960 * with this variable before us. We keep track of
1961 * corrupted_subbuffers even in overwrite mode :
1962 * we never want to write over a non completely committed
1963 * sub-buffer : possible causes : the buffer size is too low
1964 * compared to the unordered data input, or there is a writer
1965 * that died between the reserve and the commit.
1967 if (offsets
->reserve_commit_diff
) {
1969 * We have to alter the sub-buffer commit count.
1970 * We do not deliver the previous subbuffer, given it
1971 * was either corrupted or not consumed (overwrite
1974 local_add(offsets
->reserve_commit_diff
,
1975 <t_buf
->commit_count
[
1976 SUBBUF_INDEX(offsets
->begin
,
1978 if (!ltt_channel
->overwrite
1979 || offsets
->reserve_commit_diff
1980 != rchan
->subbuf_size
) {
1982 * The reserve commit diff was not subbuf_size :
1983 * it means the subbuffer was partly written to
1984 * and is therefore corrupted. If it is multiple
1985 * of subbuffer size and we are in flight
1986 * recorder mode, we are skipping over a whole
1989 local_inc(<t_buf
->corrupted_subbuffers
);
1997 * ltt_reserve_switch_old_subbuf: switch old subbuffer
1999 * Concurrency safe because we are the last and only thread to alter this
2000 * sub-buffer. As long as it is not delivered and read, no other thread can
2001 * alter the offset, alter the reserve_count or call the
2002 * client_buffer_end_callback on this sub-buffer.
2004 * The only remaining threads could be the ones with pending commits. They will
2005 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
2006 * We detect corrupted subbuffers with commit and reserve counts. We keep a
2007 * corrupted sub-buffers count and push the readers across these sub-buffers.
2009 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
2010 * switches in, finding out it's corrupted. The result will be than the old
2011 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
2012 * will be declared corrupted too because of the commit count adjustment.
2014 * Note : offset_old should never be 0 here.
2016 static inline void ltt_reserve_switch_old_subbuf(
2017 struct ltt_channel_struct
*ltt_channel
,
2018 struct ltt_channel_buf_struct
*ltt_buf
, struct rchan
*rchan
,
2019 struct rchan_buf
*buf
,
2020 struct ltt_reserve_switch_offsets
*offsets
, u64
*tsc
)
2022 long oldidx
= SUBBUF_INDEX(offsets
->old
- 1, rchan
);
2024 ltt_channel
->buffer_end(buf
, *tsc
, offsets
->old
, oldidx
);
2025 /* Must write buffer end before incrementing commit count */
2027 offsets
->commit_count
=
2028 local_add_return(rchan
->subbuf_size
2029 - (SUBBUF_OFFSET(offsets
->old
- 1, rchan
)
2031 <t_buf
->commit_count
[oldidx
]);
2032 if ((BUFFER_TRUNC(offsets
->old
- 1, rchan
)
2033 >> ltt_channel
->n_subbufs_order
)
2034 - ((offsets
->commit_count
- rchan
->subbuf_size
)
2035 & ltt_channel
->commit_count_mask
) == 0)
2036 ltt_deliver(buf
, oldidx
, offsets
->commit_count
);
2040 * ltt_reserve_switch_new_subbuf: Populate new subbuffer.
2042 * This code can be executed unordered : writers may already have written to the
2043 * sub-buffer before this code gets executed, caution. The commit makes sure
2044 * that this code is executed before the deliver of this sub-buffer.
2046 static /*inline*/ void ltt_reserve_switch_new_subbuf(
2047 struct ltt_channel_struct
*ltt_channel
,
2048 struct ltt_channel_buf_struct
*ltt_buf
, struct rchan
*rchan
,
2049 struct rchan_buf
*buf
,
2050 struct ltt_reserve_switch_offsets
*offsets
, u64
*tsc
)
2052 long beginidx
= SUBBUF_INDEX(offsets
->begin
, rchan
);
2054 ltt_channel
->buffer_begin(buf
, *tsc
, beginidx
);
2055 /* Must write buffer end before incrementing commit count */
2057 offsets
->commit_count
= local_add_return(ltt_subbuffer_header_size(),
2058 <t_buf
->commit_count
[beginidx
]);
2059 /* Check if the written buffer has to be delivered */
2060 if ((BUFFER_TRUNC(offsets
->begin
, rchan
)
2061 >> ltt_channel
->n_subbufs_order
)
2062 - ((offsets
->commit_count
- rchan
->subbuf_size
)
2063 & ltt_channel
->commit_count_mask
) == 0)
2064 ltt_deliver(buf
, beginidx
, offsets
->commit_count
);
2069 * ltt_reserve_end_switch_current: finish switching current subbuffer
2071 * Concurrency safe because we are the last and only thread to alter this
2072 * sub-buffer. As long as it is not delivered and read, no other thread can
2073 * alter the offset, alter the reserve_count or call the
2074 * client_buffer_end_callback on this sub-buffer.
2076 * The only remaining threads could be the ones with pending commits. They will
2077 * have to do the deliver themselves. Not concurrency safe in overwrite mode.
2078 * We detect corrupted subbuffers with commit and reserve counts. We keep a
2079 * corrupted sub-buffers count and push the readers across these sub-buffers.
2081 * Not concurrency safe if a writer is stalled in a subbuffer and another writer
2082 * switches in, finding out it's corrupted. The result will be than the old
2083 * (uncommited) subbuffer will be declared corrupted, and that the new subbuffer
2084 * will be declared corrupted too because of the commit count adjustment.
2086 static inline void ltt_reserve_end_switch_current(
2087 struct ltt_channel_struct
*ltt_channel
,
2088 struct ltt_channel_buf_struct
*ltt_buf
, struct rchan
*rchan
,
2089 struct rchan_buf
*buf
,
2090 struct ltt_reserve_switch_offsets
*offsets
, u64
*tsc
)
2092 long endidx
= SUBBUF_INDEX(offsets
->end
- 1, rchan
);
2094 ltt_channel
->buffer_end(buf
, *tsc
, offsets
->end
, endidx
);
2095 /* Must write buffer begin before incrementing commit count */
2097 offsets
->commit_count
=
2098 local_add_return(rchan
->subbuf_size
2099 - (SUBBUF_OFFSET(offsets
->end
- 1, rchan
)
2101 <t_buf
->commit_count
[endidx
]);
2102 if ((BUFFER_TRUNC(offsets
->end
- 1, rchan
)
2103 >> ltt_channel
->n_subbufs_order
)
2104 - ((offsets
->commit_count
- rchan
->subbuf_size
)
2105 & ltt_channel
->commit_count_mask
) == 0)
2106 ltt_deliver(buf
, endidx
, offsets
->commit_count
);
2110 * ltt_relay_reserve_slot - Atomic slot reservation in a LTTng buffer.
2111 * @trace: the trace structure to log to.
2112 * @ltt_channel: channel structure
2113 * @transport_data: data structure specific to ltt relay
2114 * @data_size: size of the variable length data to log.
2115 * @slot_size: pointer to total size of the slot (out)
2116 * @buf_offset : pointer to reserved buffer offset (out)
2117 * @tsc: pointer to the tsc at the slot reservation (out)
2120 * Return : -ENOSPC if not enough space, else returns 0.
2121 * It will take care of sub-buffer switching.
2123 static notrace
int ltt_relay_reserve_slot(struct ltt_trace_struct
*trace
,
2124 struct ltt_channel_struct
*ltt_channel
, void **transport_data
,
2125 size_t data_size
, size_t *slot_size
, long *buf_offset
, u64
*tsc
,
2126 unsigned int *rflags
, int largest_align
)
2128 struct rchan
*rchan
= ltt_channel
->trans_channel_data
;
2129 struct rchan_buf
*buf
= *transport_data
= rchan
->buf
;
2130 struct ltt_channel_buf_struct
*ltt_buf
= ltt_channel
->buf
;
2131 struct ltt_reserve_switch_offsets offsets
;
2133 offsets
.reserve_commit_diff
= 0;
2137 * Perform retryable operations.
2139 if (ltt_nesting
> 4) {
2140 local_inc(<t_buf
->events_lost
);
2144 if (ltt_relay_try_reserve(ltt_channel
, ltt_buf
,
2145 rchan
, buf
, &offsets
, data_size
, tsc
, rflags
,
2148 } while (local_cmpxchg(<t_buf
->offset
, offsets
.old
,
2149 offsets
.end
) != offsets
.old
);
2152 * Atomically update last_tsc. This update races against concurrent
2153 * atomic updates, but the race will always cause supplementary full TSC
2154 * events, never the opposite (missing a full TSC event when it would be
2157 save_last_tsc(ltt_buf
, *tsc
);
2160 * Push the reader if necessary
2162 ltt_reserve_push_reader(ltt_channel
, ltt_buf
, rchan
, buf
, &offsets
);
2165 * Switch old subbuffer if needed.
2167 if (offsets
.end_switch_old
)
2168 ltt_reserve_switch_old_subbuf(ltt_channel
, ltt_buf
, rchan
, buf
,
2172 * Populate new subbuffer.
2174 if (offsets
.begin_switch
)
2175 ltt_reserve_switch_new_subbuf(ltt_channel
, ltt_buf
, rchan
,
2176 buf
, &offsets
, tsc
);
2178 if (offsets
.end_switch_current
)
2179 ltt_reserve_end_switch_current(ltt_channel
, ltt_buf
, rchan
,
2180 buf
, &offsets
, tsc
);
2182 *slot_size
= offsets
.size
;
2183 *buf_offset
= offsets
.begin
+ offsets
.before_hdr_pad
;
2188 * Force a sub-buffer switch for a per-cpu buffer. This operation is
2189 * completely reentrant : can be called while tracing is active with
2190 * absolutely no lock held.
2192 * Note, however, that as a local_cmpxchg is used for some atomic
2193 * operations, this function must be called from the CPU which owns the buffer
2194 * for a ACTIVE flush.
2196 static notrace
void ltt_force_switch(struct rchan_buf
*buf
,
2197 enum force_switch_mode mode
)
2199 struct ltt_channel_struct
*ltt_channel
=
2200 (struct ltt_channel_struct
*)buf
->chan
->private_data
;
2201 struct ltt_channel_buf_struct
*ltt_buf
= ltt_channel
->buf
;
2202 struct rchan
*rchan
= ltt_channel
->trans_channel_data
;
2203 struct ltt_reserve_switch_offsets offsets
;
2206 offsets
.reserve_commit_diff
= 0;
2210 * Perform retryable operations.
2213 if (ltt_relay_try_switch(mode
, ltt_channel
, ltt_buf
,
2214 rchan
, buf
, &offsets
, &tsc
))
2216 } while (local_cmpxchg(<t_buf
->offset
, offsets
.old
,
2217 offsets
.end
) != offsets
.old
);
2220 * Atomically update last_tsc. This update races against concurrent
2221 * atomic updates, but the race will always cause supplementary full TSC
2222 * events, never the opposite (missing a full TSC event when it would be
2225 save_last_tsc(ltt_buf
, tsc
);
2228 * Push the reader if necessary
2230 if (mode
== FORCE_ACTIVE
)
2231 ltt_reserve_push_reader(ltt_channel
, ltt_buf
, rchan
,
2235 * Switch old subbuffer if needed.
2237 if (offsets
.end_switch_old
)
2238 ltt_reserve_switch_old_subbuf(ltt_channel
, ltt_buf
, rchan
, buf
,
2242 * Populate new subbuffer.
2244 if (mode
== FORCE_ACTIVE
)
2245 ltt_reserve_switch_new_subbuf(ltt_channel
,
2246 ltt_buf
, rchan
, buf
, &offsets
, &tsc
);
2250 * This is called with preemption disabled when user space has requested
2251 * blocking mode. If one of the active traces has free space below a
2252 * specific threshold value, we reenable preemption and block.
2254 static int ltt_relay_user_blocking(struct ltt_trace_struct
*trace
,
2255 unsigned int chan_index
, size_t data_size
,
2256 struct user_dbg_data
*dbg
)
2258 //ust// struct rchan *rchan;
2259 //ust// struct ltt_channel_buf_struct *ltt_buf;
2260 //ust// struct ltt_channel_struct *channel;
2261 //ust// struct rchan_buf *relay_buf;
2263 //ust// DECLARE_WAITQUEUE(wait, current);
2265 //ust// channel = &trace->channels[chan_index];
2266 //ust// rchan = channel->trans_channel_data;
2267 //ust// cpu = smp_processor_id();
2268 //ust// relay_buf = rchan->buf[cpu];
2269 //ust// ltt_buf = percpu_ptr(channel->buf, cpu);
2272 //ust// * Check if data is too big for the channel : do not
2273 //ust// * block for it.
2275 //ust// if (LTT_RESERVE_CRITICAL + data_size > relay_buf->chan->subbuf_size)
2279 //ust// * If free space too low, we block. We restart from the
2280 //ust// * beginning after we resume (cpu id may have changed
2281 //ust// * while preemption is active).
2283 //ust// spin_lock(<t_buf->full_lock);
2284 //ust// if (!channel->overwrite) {
2285 //ust// dbg->write = local_read(<t_buf->offset);
2286 //ust// dbg->read = atomic_long_read(<t_buf->consumed);
2287 //ust// dbg->avail_size = dbg->write + LTT_RESERVE_CRITICAL + data_size
2288 //ust// - SUBBUF_TRUNC(dbg->read,
2289 //ust// relay_buf->chan);
2290 //ust// if (dbg->avail_size > rchan->alloc_size) {
2291 //ust// __set_current_state(TASK_INTERRUPTIBLE);
2292 //ust// add_wait_queue(<t_buf->write_wait, &wait);
2293 //ust// spin_unlock(<t_buf->full_lock);
2294 //ust// preempt_enable();
2296 //ust// __set_current_state(TASK_RUNNING);
2297 //ust// remove_wait_queue(<t_buf->write_wait, &wait);
2298 //ust// if (signal_pending(current))
2299 //ust// return -ERESTARTSYS;
2300 //ust// preempt_disable();
2304 //ust// spin_unlock(<t_buf->full_lock);
2308 static void ltt_relay_print_user_errors(struct ltt_trace_struct
*trace
,
2309 unsigned int chan_index
, size_t data_size
,
2310 struct user_dbg_data
*dbg
)
2312 struct rchan
*rchan
;
2313 struct ltt_channel_buf_struct
*ltt_buf
;
2314 struct ltt_channel_struct
*channel
;
2315 struct rchan_buf
*relay_buf
;
2317 channel
= &trace
->channels
[chan_index
];
2318 rchan
= channel
->trans_channel_data
;
2319 relay_buf
= rchan
->buf
;
2320 ltt_buf
= channel
->buf
;
2322 printk(KERN_ERR
"Error in LTT usertrace : "
2323 "buffer full : event lost in blocking "
2324 "mode. Increase LTT_RESERVE_CRITICAL.\n");
2325 printk(KERN_ERR
"LTT nesting level is %u.\n", ltt_nesting
);
2326 printk(KERN_ERR
"LTT avail size %lu.\n",
2328 printk(KERN_ERR
"avai write : %lu, read : %lu\n",
2329 dbg
->write
, dbg
->read
);
2331 dbg
->write
= local_read(<t_buf
->offset
);
2332 dbg
->read
= atomic_long_read(<t_buf
->consumed
);
2334 printk(KERN_ERR
"LTT cur size %lu.\n",
2335 dbg
->write
+ LTT_RESERVE_CRITICAL
+ data_size
2336 - SUBBUF_TRUNC(dbg
->read
, relay_buf
->chan
));
2337 printk(KERN_ERR
"cur write : %lu, read : %lu\n",
2338 dbg
->write
, dbg
->read
);
2341 //ust// static struct ltt_transport ltt_relay_transport = {
2342 //ust// .name = "relay",
2343 //ust// .owner = THIS_MODULE,
2345 //ust// .create_dirs = ltt_relay_create_dirs,
2346 //ust// .remove_dirs = ltt_relay_remove_dirs,
2347 //ust// .create_channel = ltt_relay_create_channel,
2348 //ust// .finish_channel = ltt_relay_finish_channel,
2349 //ust// .remove_channel = ltt_relay_remove_channel,
2350 //ust// .wakeup_channel = ltt_relay_async_wakeup_chan,
2351 //ust// .commit_slot = ltt_relay_commit_slot,
2352 //ust// .reserve_slot = ltt_relay_reserve_slot,
2353 //ust// .user_blocking = ltt_relay_user_blocking,
2354 //ust// .user_errors = ltt_relay_print_user_errors,
2358 static struct ltt_transport ust_relay_transport
= {
2360 //ust// .owner = THIS_MODULE,
2362 .create_dirs
= ltt_relay_create_dirs
,
2363 .remove_dirs
= ltt_relay_remove_dirs
,
2364 .create_channel
= ltt_relay_create_channel
,
2365 .finish_channel
= ltt_relay_finish_channel
,
2366 .remove_channel
= ltt_relay_remove_channel
,
2367 .wakeup_channel
= ltt_relay_async_wakeup_chan
,
2368 // .commit_slot = ltt_relay_commit_slot,
2369 .reserve_slot
= ltt_relay_reserve_slot
,
2370 .user_blocking
= ltt_relay_user_blocking
,
2371 .user_errors
= ltt_relay_print_user_errors
,
2375 //ust// static int __init ltt_relay_init(void)
2377 //ust// printk(KERN_INFO "LTT : ltt-relay init\n");
2379 //ust// ltt_file_operations = ltt_relay_file_operations;
2380 //ust// ltt_file_operations.owner = THIS_MODULE;
2381 //ust// ltt_file_operations.open = ltt_open;
2382 //ust// ltt_file_operations.release = ltt_release;
2383 //ust// ltt_file_operations.poll = ltt_poll;
2384 //ust// ltt_file_operations.splice_read = ltt_relay_file_splice_read,
2385 //ust// ltt_file_operations.ioctl = ltt_ioctl;
2386 //ust//#ifdef CONFIG_COMPAT
2387 //ust// ltt_file_operations.compat_ioctl = ltt_compat_ioctl;
2390 //ust// ltt_transport_register(<t_relay_transport);
2396 * for flight recording. must be called after relay_commit.
2397 * This function decrements de subbuffer's lost_size each time the commit count
2398 * reaches back the reserve offset (module subbuffer size). It is useful for
2401 //ust// #ifdef CONFIG_LTT_VMCORE
2402 static /* inline */ void ltt_write_commit_counter(struct rchan_buf
*buf
,
2403 struct ltt_channel_buf_struct
*ltt_buf
,
2404 long idx
, long buf_offset
, long commit_count
, size_t data_size
)
2407 long commit_seq_old
;
2409 offset
= buf_offset
+ data_size
;
2412 * SUBBUF_OFFSET includes commit_count_mask. We can simply
2413 * compare the offsets within the subbuffer without caring about
2414 * buffer full/empty mismatch because offset is never zero here
2415 * (subbuffer header and event headers have non-zero length).
2417 if (unlikely(SUBBUF_OFFSET(offset
- commit_count
, buf
->chan
)))
2420 commit_seq_old
= local_read(<t_buf
->commit_seq
[idx
]);
2421 while (commit_seq_old
< commit_count
)
2422 commit_seq_old
= local_cmpxchg(<t_buf
->commit_seq
[idx
],
2423 commit_seq_old
, commit_count
);
2426 //ust// static inline void ltt_write_commit_counter(struct rchan_buf *buf,
2427 //ust// long buf_offset, size_t slot_size)
2433 * Atomic unordered slot commit. Increments the commit count in the
2434 * specified sub-buffer, and delivers it if necessary.
2438 * @ltt_channel : channel structure
2439 * @transport_data: transport-specific data
2440 * @buf_offset : offset following the event header.
2441 * @data_size : size of the event data.
2442 * @slot_size : size of the reserved slot.
2444 /* FIXME: make this function static inline in the .h! */
2445 /*static*/ /* inline */ notrace
void ltt_commit_slot(
2446 struct ltt_channel_struct
*ltt_channel
,
2447 void **transport_data
, long buf_offset
,
2448 size_t data_size
, size_t slot_size
)
2450 struct rchan_buf
*buf
= *transport_data
;
2451 struct ltt_channel_buf_struct
*ltt_buf
= ltt_channel
->buf
;
2452 struct rchan
*rchan
= buf
->chan
;
2453 long offset_end
= buf_offset
;
2454 long endidx
= SUBBUF_INDEX(offset_end
- 1, rchan
);
2457 /* Must write slot data before incrementing commit count */
2459 commit_count
= local_add_return(slot_size
,
2460 <t_buf
->commit_count
[endidx
]);
2461 /* Check if all commits have been done */
2462 if ((BUFFER_TRUNC(offset_end
- 1, rchan
)
2463 >> ltt_channel
->n_subbufs_order
)
2464 - ((commit_count
- rchan
->subbuf_size
)
2465 & ltt_channel
->commit_count_mask
) == 0)
2466 ltt_deliver(buf
, endidx
, commit_count
);
2468 * Update lost_size for each commit. It's needed only for extracting
2469 * ltt buffers from vmcore, after crash.
2471 ltt_write_commit_counter(buf
, ltt_buf
, endidx
,
2472 buf_offset
, commit_count
, data_size
);
2476 static char initialized
= 0;
2478 void __attribute__((constructor
)) init_ustrelay_transport(void)
2481 ltt_transport_register(&ust_relay_transport
);
2486 static void __attribute__((destructor
)) ltt_relay_exit(void)
2488 //ust// printk(KERN_INFO "LTT : ltt-relay exit\n");
2490 ltt_transport_unregister(&ust_relay_transport
);
2493 //ust// module_init(ltt_relay_init);
2494 //ust// module_exit(ltt_relay_exit);
2496 //ust// MODULE_LICENSE("GPL");
2497 //ust// MODULE_AUTHOR("Mathieu Desnoyers");
2498 //ust// MODULE_DESCRIPTION("Linux Trace Toolkit Next Generation Lockless Relay");