d6ed05f494ee625d7034cc338db5f0d44cd77f3f
[lttng-docs.git] / 2.9 / lttng-docs-2.9.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.9, 8 December 2016
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/welcome.txt[]
11
12
13 include::../common/audience.txt[]
14
15
16 [[chapters]]
17 === What's in this documentation?
18
19 The LTTng Documentation is divided into the following sections:
20
21 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24 +
25 You can skip this section if you’re familiar with software tracing and
26 with the LTTng project.
27
28 * **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31 +
32 You can skip this section if you already properly installed LTTng on
33 your target system.
34
35 * **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37 +
38 We recommend this section if you're new to LTTng or to software tracing
39 in general.
40 +
41 You can skip this section if you're not new to LTTng.
42
43 * **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45 +
46 It's a good idea to become familiar with the core concepts
47 before attempting to use the toolkit.
48
49 * **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52 * **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54 +
55 Instrumenting source code is essential to provide a meaningful
56 source of events.
57 +
58 You can skip this section if you do not have a programming background.
59
60 * **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63 * **<<reference,Reference>>** contains reference tables.
64 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68 include::../common/convention.txt[]
69
70
71 include::../common/acknowledgements.txt[]
72
73
74 [[whats-new]]
75 == What's new in LTTng {revision}?
76
77 LTTng{nbsp}{revision} bears the name _Joannès_. A Berliner Weisse style
78 beer from the http://letreflenoir.com/[Trèfle Noir] microbrewery in
79 https://en.wikipedia.org/wiki/Rouyn-Noranda[Rouyn-Noranda], the
80 https://www.beeradvocate.com/beer/profile/20537/238967/[_**Joannès**_]
81 is a tangy beer with a distinct pink dress and intense fruit flavor,
82 thanks to the presence of fresh blackcurrant grown in Témiscamingue.
83
84 New features and changes in LTTng{nbsp}{revision}:
85
86 * **Tracing control**:
87 ** You can override the name or the URL of a tracing session
88 configuration when you use man:lttng-load(1) thanks to the new
89 opt:lttng-load(1):--override-name and
90 opt:lttng-load(1):--override-url options.
91 ** The new `lttng regenerate` command replaces the now deprecated
92 `lttng metadata` command of LTTng 2.8. man:lttng-regenerate(1) can
93 also <<regenerate-statedump,generate the state dump event records>>
94 of a given tracing session on demand, a handy feature when
95 <<taking-a-snapshot,taking a snapshot>>.
96 ** You can add PMU counters by raw ID with man:lttng-add-context(1):
97 +
98 --
99 [role="term"]
100 ----
101 lttng add-context --kernel --type=perf:cpu:raw:r0013c:x86unhalted
102 ----
103 --
104 +
105 The format of the raw ID is the same as used with man:perf-record(1).
106 See <<adding-context,Add context fields to a channel>> for more
107 examples.
108
109 ** The LTTng <<lttng-relayd,relay daemon>> is now supported on
110 OS{nbsp}X and macOS for a smoother integration within a trace
111 analysis workflow, regardless of the platform used.
112
113 * **User space tracing**:
114 ** Improved performance (tested on x86-64 and ARMv7-A
115 (https://en.wikipedia.org/wiki/Cubieboard[Cubieboard])
116 architectures).
117 ** New helper library (`liblttng-ust-fd`) to help with
118 <<liblttng-ust-fd,applications which close file descriptors that
119 don't belong to them>>, for example, in a loop which closes file
120 descriptors after man:fork(2), or BSD's `closeall()`.
121 ** More accurate <<liblttng-ust-dl,dynamic linker instrumentation>> and
122 state dump event records, especially when a dynamically loaded
123 library manually loads its own dependencies.
124 ** New `ctf_*()` field definition macros (see man:lttng-ust(3)):
125 *** `ctf_array_hex()`
126 *** `ctf_array_network()`
127 *** `ctf_array_network_hex()`
128 *** `ctf_sequence_hex()`
129 *** `ctf_sequence_network()`
130 *** `ctf_sequence_network_hex()`
131 ** New `lttng_ust_loaded` weak symbol defined by `liblttng-ust` for
132 an application to know if the LTTng-UST shared library is loaded
133 or not:
134 +
135 --
136 [source,c]
137 ----
138 #include <stdio.h>
139
140 int lttng_ust_loaded __attribute__((weak));
141
142 int main(void)
143 {
144 if (lttng_ust_loaded) {
145 puts("LTTng-UST is loaded!");
146 } else {
147 puts("LTTng-UST is not loaded!");
148 }
149
150 return 0;
151 }
152 ----
153 --
154
155 ** LTTng-UST thread names have the `-ust` suffix.
156
157 * **Linux kernel tracing**:
158 ** Improved performance (tested on x86-64 and ARMv7-A
159 (https://en.wikipedia.org/wiki/Cubieboard[Cubieboard])
160 architectures).
161 ** New enumeration <<lttng-modules-tp-fields,field definition macros>>:
162 `ctf_enum()` and `ctf_user_enum()`.
163 ** IPv4, IPv6, and TCP header data is recorded in the event records
164 produced by tracepoints starting with `net_`.
165 ** Detailed system call event records: `select`, `pselect6`, `poll`,
166 `ppoll`, `epoll_wait`, `epoll_pwait`, and `epoll_ctl` on all
167 architectures supported by LTTng-modules, and `accept4` on x86-64.
168 ** New I²C instrumentation: the `extract_sensitive_payload` parameter
169 of the new `lttng-probe-i2c` LTTng module controls whether or not
170 the payloads of I²C messages are recorded in I²C event records, since
171 they may contain sensitive data (for example, keystrokes).
172 ** When the LTTng kernel modules are built into the Linux kernel image,
173 the `CONFIG_TRACEPOINTS` configuration option is automatically
174 selected.
175
176
177 [[nuts-and-bolts]]
178 == Nuts and bolts
179
180 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
181 generation_ is a modern toolkit for tracing Linux systems and
182 applications. So your first question might be:
183 **what is tracing?**
184
185
186 [[what-is-tracing]]
187 === What is tracing?
188
189 As the history of software engineering progressed and led to what
190 we now take for granted--complex, numerous and
191 interdependent software applications running in parallel on
192 sophisticated operating systems like Linux--the authors of such
193 components, software developers, began feeling a natural
194 urge to have tools that would ensure the robustness and good performance
195 of their masterpieces.
196
197 One major achievement in this field is, inarguably, the
198 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
199 an essential tool for developers to find and fix bugs. But even the best
200 debugger won't help make your software run faster, and nowadays, faster
201 software means either more work done by the same hardware, or cheaper
202 hardware for the same work.
203
204 A _profiler_ is often the tool of choice to identify performance
205 bottlenecks. Profiling is suitable to identify _where_ performance is
206 lost in a given software. The profiler outputs a profile, a statistical
207 summary of observed events, which you may use to discover which
208 functions took the most time to execute. However, a profiler won't
209 report _why_ some identified functions are the bottleneck. Bottlenecks
210 might only occur when specific conditions are met, conditions that are
211 sometimes impossible to capture by a statistical profiler, or impossible
212 to reproduce with an application altered by the overhead of an
213 event-based profiler. For a thorough investigation of software
214 performance issues, a history of execution is essential, with the
215 recorded values of variables and context fields you choose, and
216 with as little influence as possible on the instrumented software. This
217 is where tracing comes in handy.
218
219 _Tracing_ is a technique used to understand what goes on in a running
220 software system. The software used for tracing is called a _tracer_,
221 which is conceptually similar to a tape recorder. When recording,
222 specific instrumentation points placed in the software source code
223 generate events that are saved on a giant tape: a _trace_ file. You
224 can trace user applications and the operating system at the same time,
225 opening the possibility of resolving a wide range of problems that would
226 otherwise be extremely challenging.
227
228 Tracing is often compared to _logging_. However, tracers and loggers are
229 two different tools, serving two different purposes. Tracers are
230 designed to record much lower-level events that occur much more
231 frequently than log messages, often in the range of thousands per
232 second, with very little execution overhead. Logging is more appropriate
233 for a very high-level analysis of less frequent events: user accesses,
234 exceptional conditions (errors and warnings, for example), database
235 transactions, instant messaging communications, and such. Simply put,
236 logging is one of the many use cases that can be satisfied with tracing.
237
238 The list of recorded events inside a trace file can be read manually
239 like a log file for the maximum level of detail, but it is generally
240 much more interesting to perform application-specific analyses to
241 produce reduced statistics and graphs that are useful to resolve a
242 given problem. Trace viewers and analyzers are specialized tools
243 designed to do this.
244
245 In the end, this is what LTTng is: a powerful, open source set of
246 tools to trace the Linux kernel and user applications at the same time.
247 LTTng is composed of several components actively maintained and
248 developed by its link:/community/#where[community].
249
250
251 [[lttng-alternatives]]
252 === Alternatives to noch:{LTTng}
253
254 Excluding proprietary solutions, a few competing software tracers
255 exist for Linux:
256
257 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
258 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
259 user scripts and is responsible for loading code into the
260 Linux kernel for further execution and collecting the outputted data.
261 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
262 subsystem in the Linux kernel in which a virtual machine can execute
263 programs passed from the user space to the kernel. You can attach
264 such programs to tracepoints and KProbes thanks to a system call, and
265 they can output data to the user space when executed thanks to
266 different mechanisms (pipe, VM register values, and eBPF maps, to name
267 a few).
268 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
269 is the de facto function tracer of the Linux kernel. Its user
270 interface is a set of special files in sysfs.
271 * https://perf.wiki.kernel.org/[perf] is
272 a performance analyzing tool for Linux which supports hardware
273 performance counters, tracepoints, as well as other counters and
274 types of probes. perf's controlling utility is the cmd:perf command
275 line/curses tool.
276 * http://linux.die.net/man/1/strace[strace]
277 is a command-line utility which records system calls made by a
278 user process, as well as signal deliveries and changes of process
279 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
280 to fulfill its function.
281 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
282 analyze Linux kernel events. You write scripts, or _chisels_ in
283 sysdig's jargon, in Lua and sysdig executes them while the system is
284 being traced or afterwards. sysdig's interface is the cmd:sysdig
285 command-line tool as well as the curses-based cmd:csysdig tool.
286 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
287 user space tracer which uses custom user scripts to produce plain text
288 traces. SystemTap converts the scripts to the C language, and then
289 compiles them as Linux kernel modules which are loaded to produce
290 trace data. SystemTap's primary user interface is the cmd:stap
291 command-line tool.
292
293 The main distinctive features of LTTng is that it produces correlated
294 kernel and user space traces, as well as doing so with the lowest
295 overhead amongst other solutions. It produces trace files in the
296 http://diamon.org/ctf[CTF] format, a file format optimized
297 for the production and analyses of multi-gigabyte data.
298
299 LTTng is the result of more than 10 years of active open source
300 development by a community of passionate developers.
301 LTTng{nbsp}{revision} is currently available on major desktop and server
302 Linux distributions.
303
304 The main interface for tracing control is a single command-line tool
305 named cmd:lttng. The latter can create several tracing sessions, enable
306 and disable events on the fly, filter events efficiently with custom
307 user expressions, start and stop tracing, and much more. LTTng can
308 record the traces on the file system or send them over the network, and
309 keep them totally or partially. You can view the traces once tracing
310 becomes inactive or in real-time.
311
312 <<installing-lttng,Install LTTng now>> and
313 <<getting-started,start tracing>>!
314
315
316 [[installing-lttng]]
317 == Installation
318
319 **LTTng** is a set of software <<plumbing,components>> which interact to
320 <<instrumenting,instrument>> the Linux kernel and user applications, and
321 to <<controlling-tracing,control tracing>> (start and stop
322 tracing, enable and disable event rules, and the rest). Those
323 components are bundled into the following packages:
324
325 * **LTTng-tools**: Libraries and command-line interface to
326 control tracing.
327 * **LTTng-modules**: Linux kernel modules to instrument and
328 trace the kernel.
329 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
330 trace user applications.
331
332 Most distributions mark the LTTng-modules and LTTng-UST packages as
333 optional when installing LTTng-tools (which is always required). In the
334 following sections, we always provide the steps to install all three,
335 but note that:
336
337 * You only need to install LTTng-modules if you intend to trace the
338 Linux kernel.
339 * You only need to install LTTng-UST if you intend to trace user
340 applications.
341
342 [role="growable"]
343 .Availability of LTTng{nbsp}{revision} for major Linux distributions as of 2 December 2016.
344 |====
345 |Distribution |Available in releases |Alternatives
346
347 |https://www.ubuntu.com/[Ubuntu]
348 |Ubuntu{nbsp}14.04 _Trusty Tahr_ and Ubuntu{nbsp}16.04 _Xenial Xerus_:
349 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
350 |link:/docs/v2.8#doc-ubuntu[LTTng{nbsp}2.8 for Ubuntu{nbsp}16.10 _Yakkety Yak_].
351
352 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
353 other Ubuntu releases.
354
355 |https://getfedora.org/[Fedora]
356 |_Not available_
357 |<<building-from-source,Build LTTng-modules{nbsp}{revision} from
358 source>>.
359
360 |https://www.debian.org/[Debian]
361 |_Not available_
362 |<<building-from-source,Build LTTng-modules{nbsp}{revision} from
363 source>>.
364
365 |https://www.opensuse.org/[openSUSE]
366 |_Not available_
367 |<<building-from-source,Build LTTng-modules{nbsp}{revision} from
368 source>>.
369
370 |https://www.archlinux.org/[Arch Linux]
371 |<<arch-linux,Latest AUR packages>>.
372 |
373
374 |https://alpinelinux.org/[Alpine Linux]
375 |_Not available_
376 |link:/docs/v2.8#doc-alpine-linux[LTTng{nbsp}2.8 for Alpine Linux{nbsp}"edge"].
377
378 LTTng{nbsp}2.8 for Alpine Linux{nbsp}3.5 (not released yet).
379
380 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
381 other Alpine Linux releases.
382
383 |https://www.redhat.com/[RHEL] and https://www.suse.com/[SLES]
384 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
385 |
386
387 |https://buildroot.org/[Buildroot]
388 |_Not available_
389 |link:/docs/v2.8#doc-buildroot[LTTng{nbsp}2.8 for Buildroot{nbsp}2016.11].
390
391 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
392 other Buildroot releases.
393
394 |http://www.openembedded.org/wiki/Main_Page[OpenEmbedded] and
395 https://www.yoctoproject.org/[Yocto]
396 |_Not available_
397 |link:/docs/v2.8#doc-oe-yocto[LTTng{nbsp}2.8 for Yocto Project{nbsp}2.2 _Morty_]
398 (`openembedded-core` layer).
399
400 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
401 other OpenEmbedded releases.
402 |====
403
404
405 [[ubuntu]]
406 === [[ubuntu-official-repositories]]Ubuntu
407
408 [[ubuntu-ppa]]
409 ==== noch:{LTTng} Stable {revision} PPA
410
411 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
412 Stable{nbsp}{revision} PPA] offers the latest stable
413 LTTng{nbsp}{revision} packages for:
414
415 * Ubuntu{nbsp}14.04 _Trusty Tahr_
416 * Ubuntu{nbsp}16.04 _Xenial Xerus_
417
418 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
419
420 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
421 list of packages:
422 +
423 --
424 [role="term"]
425 ----
426 sudo apt-add-repository ppa:lttng/stable-2.9
427 sudo apt-get update
428 ----
429 --
430
431 . Install the main LTTng{nbsp}{revision} packages:
432 +
433 --
434 [role="term"]
435 ----
436 sudo apt-get install lttng-tools
437 sudo apt-get install lttng-modules-dkms
438 sudo apt-get install liblttng-ust-dev
439 ----
440 --
441
442 . **If you need to instrument and trace
443 <<java-application,Java applications>>**, install the LTTng-UST
444 Java agent:
445 +
446 --
447 [role="term"]
448 ----
449 sudo apt-get install liblttng-ust-agent-java
450 ----
451 --
452
453 . **If you need to instrument and trace
454 <<python-application,Python{nbsp}3 applications>>**, install the
455 LTTng-UST Python agent:
456 +
457 --
458 [role="term"]
459 ----
460 sudo apt-get install python3-lttngust
461 ----
462 --
463
464
465 [[arch-linux]]
466 === Arch Linux
467
468 To install LTTng{nbsp}{revision} on Arch Linux using
469 https://archlinux.fr/yaourt-en[Yaourt]:
470
471 . Install the main LTTng{nbsp}{revision} packages:
472 +
473 --
474 [role="term"]
475 ----
476 yaourt -S lttng-tools
477 yaourt -S lttng-ust
478 yaourt -S lttng-modules
479 ----
480 --
481
482 . **If you need to instrument and trace <<python-application,Python
483 applications>>**, install the LTTng-UST Python agent:
484 +
485 --
486 [role="term"]
487 ----
488 yaourt -S python-lttngust
489 yaourt -S python2-lttngust
490 ----
491 --
492
493
494 [[enterprise-distributions]]
495 === RHEL, SUSE, and other enterprise distributions
496
497 To install LTTng on enterprise Linux distributions, such as Red Hat
498 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
499 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
500
501
502 [[building-from-source]]
503 === Build from source
504
505 To build and install LTTng{nbsp}{revision} from source:
506
507 . Using your distribution's package manager, or from source, install
508 the following dependencies of LTTng-tools and LTTng-UST:
509 +
510 --
511 * https://sourceforge.net/projects/libuuid/[libuuid]
512 * http://directory.fsf.org/wiki/Popt[popt]
513 * http://liburcu.org/[Userspace RCU]
514 * http://www.xmlsoft.org/[libxml2]
515 --
516
517 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
518 +
519 --
520 [role="term"]
521 ----
522 cd $(mktemp -d) &&
523 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.9.tar.bz2 &&
524 tar -xf lttng-modules-latest-2.9.tar.bz2 &&
525 cd lttng-modules-2.9.* &&
526 make &&
527 sudo make modules_install &&
528 sudo depmod -a
529 ----
530 --
531
532 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
533 +
534 --
535 [role="term"]
536 ----
537 cd $(mktemp -d) &&
538 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.9.tar.bz2 &&
539 tar -xf lttng-ust-latest-2.9.tar.bz2 &&
540 cd lttng-ust-2.9.* &&
541 ./configure &&
542 make &&
543 sudo make install &&
544 sudo ldconfig
545 ----
546 --
547 +
548 --
549 [IMPORTANT]
550 .Java and Python application tracing
551 ====
552 If you need to instrument and trace <<java-application,Java
553 applications>>, pass the `--enable-java-agent-jul`,
554 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
555 `configure` script, depending on which Java logging framework you use.
556
557 If you need to instrument and trace <<python-application,Python
558 applications>>, pass the `--enable-python-agent` option to the
559 `configure` script. You can set the `PYTHON` environment variable to the
560 path to the Python interpreter for which to install the LTTng-UST Python
561 agent package.
562 ====
563 --
564 +
565 --
566 [NOTE]
567 ====
568 By default, LTTng-UST libraries are installed to
569 dir:{/usr/local/lib}, which is the de facto directory in which to
570 keep self-compiled and third-party libraries.
571
572 When <<building-tracepoint-providers-and-user-application,linking an
573 instrumented user application with `liblttng-ust`>>:
574
575 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
576 variable.
577 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
578 man:gcc(1), man:g++(1), or man:clang(1).
579 ====
580 --
581
582 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
583 +
584 --
585 [role="term"]
586 ----
587 cd $(mktemp -d) &&
588 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.9.tar.bz2 &&
589 tar -xf lttng-tools-latest-2.9.tar.bz2 &&
590 cd lttng-tools-2.9.* &&
591 ./configure &&
592 make &&
593 sudo make install &&
594 sudo ldconfig
595 ----
596 --
597
598 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
599 previous steps automatically for a given version of LTTng and confine
600 the installed files in a specific directory. This can be useful to test
601 LTTng without installing it on your system.
602
603
604 [[getting-started]]
605 == Quick start
606
607 This is a short guide to get started quickly with LTTng kernel and user
608 space tracing.
609
610 Before you follow this guide, make sure to <<installing-lttng,install>>
611 LTTng.
612
613 This tutorial walks you through the steps to:
614
615 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
616 . <<tracing-your-own-user-application,Trace a user application>> written
617 in C.
618 . <<viewing-and-analyzing-your-traces,View and analyze the
619 recorded events>>.
620
621
622 [[tracing-the-linux-kernel]]
623 === Trace the Linux kernel
624
625 The following command lines start with cmd:sudo because you need root
626 privileges to trace the Linux kernel. You can avoid using cmd:sudo if
627 your Unix user is a member of the <<tracing-group,tracing group>>.
628
629 . Create a <<tracing-session,tracing session>> which writes its traces
630 to dir:{/tmp/my-kernel-trace}:
631 +
632 --
633 [role="term"]
634 ----
635 sudo lttng create my-kernel-session --output=/tmp/my-kernel-trace
636 ----
637 --
638
639 . List the available kernel tracepoints and system calls:
640 +
641 --
642 [role="term"]
643 ----
644 lttng list --kernel
645 lttng list --kernel --syscall
646 ----
647 --
648
649 . Create <<event,event rules>> which match the desired instrumentation
650 point names, for example the `sched_switch` and `sched_process_fork`
651 tracepoints, and the man:open(2) and man:close(2) system calls:
652 +
653 --
654 [role="term"]
655 ----
656 sudo lttng enable-event --kernel sched_switch,sched_process_fork
657 sudo lttng enable-event --kernel --syscall open,close
658 ----
659 --
660 +
661 You can also create an event rule which matches _all_ the Linux kernel
662 tracepoints (this will generate a lot of data when tracing):
663 +
664 --
665 [role="term"]
666 ----
667 sudo lttng enable-event --kernel --all
668 ----
669 --
670
671 . <<basic-tracing-session-control,Start tracing>>:
672 +
673 --
674 [role="term"]
675 ----
676 sudo lttng start
677 ----
678 --
679
680 . Do some operation on your system for a few seconds. For example,
681 load a website, or list the files of a directory.
682 . <<basic-tracing-session-control,Stop tracing>> and destroy the
683 tracing session:
684 +
685 --
686 [role="term"]
687 ----
688 sudo lttng stop
689 sudo lttng destroy
690 ----
691 --
692 +
693 The man:lttng-destroy(1) command does not destroy the trace data; it
694 only destroys the state of the tracing session.
695
696 . For the sake of this example, make the recorded trace accessible to
697 the non-root users:
698 +
699 --
700 [role="term"]
701 ----
702 sudo chown -R $(whoami) /tmp/my-kernel-trace
703 ----
704 --
705
706 See <<viewing-and-analyzing-your-traces,View and analyze the
707 recorded events>> to view the recorded events.
708
709
710 [[tracing-your-own-user-application]]
711 === Trace a user application
712
713 This section steps you through a simple example to trace a
714 _Hello world_ program written in C.
715
716 To create the traceable user application:
717
718 . Create the tracepoint provider header file, which defines the
719 tracepoints and the events they can generate:
720 +
721 --
722 [source,c]
723 .path:{hello-tp.h}
724 ----
725 #undef TRACEPOINT_PROVIDER
726 #define TRACEPOINT_PROVIDER hello_world
727
728 #undef TRACEPOINT_INCLUDE
729 #define TRACEPOINT_INCLUDE "./hello-tp.h"
730
731 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
732 #define _HELLO_TP_H
733
734 #include <lttng/tracepoint.h>
735
736 TRACEPOINT_EVENT(
737 hello_world,
738 my_first_tracepoint,
739 TP_ARGS(
740 int, my_integer_arg,
741 char*, my_string_arg
742 ),
743 TP_FIELDS(
744 ctf_string(my_string_field, my_string_arg)
745 ctf_integer(int, my_integer_field, my_integer_arg)
746 )
747 )
748
749 #endif /* _HELLO_TP_H */
750
751 #include <lttng/tracepoint-event.h>
752 ----
753 --
754
755 . Create the tracepoint provider package source file:
756 +
757 --
758 [source,c]
759 .path:{hello-tp.c}
760 ----
761 #define TRACEPOINT_CREATE_PROBES
762 #define TRACEPOINT_DEFINE
763
764 #include "hello-tp.h"
765 ----
766 --
767
768 . Build the tracepoint provider package:
769 +
770 --
771 [role="term"]
772 ----
773 gcc -c -I. hello-tp.c
774 ----
775 --
776
777 . Create the _Hello World_ application source file:
778 +
779 --
780 [source,c]
781 .path:{hello.c}
782 ----
783 #include <stdio.h>
784 #include "hello-tp.h"
785
786 int main(int argc, char *argv[])
787 {
788 int x;
789
790 puts("Hello, World!\nPress Enter to continue...");
791
792 /*
793 * The following getchar() call is only placed here for the purpose
794 * of this demonstration, to pause the application in order for
795 * you to have time to list its tracepoints. It is not
796 * needed otherwise.
797 */
798 getchar();
799
800 /*
801 * A tracepoint() call.
802 *
803 * Arguments, as defined in hello-tp.h:
804 *
805 * 1. Tracepoint provider name (required)
806 * 2. Tracepoint name (required)
807 * 3. my_integer_arg (first user-defined argument)
808 * 4. my_string_arg (second user-defined argument)
809 *
810 * Notice the tracepoint provider and tracepoint names are
811 * NOT strings: they are in fact parts of variables that the
812 * macros in hello-tp.h create.
813 */
814 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
815
816 for (x = 0; x < argc; ++x) {
817 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
818 }
819
820 puts("Quitting now!");
821 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
822
823 return 0;
824 }
825 ----
826 --
827
828 . Build the application:
829 +
830 --
831 [role="term"]
832 ----
833 gcc -c hello.c
834 ----
835 --
836
837 . Link the application with the tracepoint provider package,
838 `liblttng-ust`, and `libdl`:
839 +
840 --
841 [role="term"]
842 ----
843 gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
844 ----
845 --
846
847 Here's the whole build process:
848
849 [role="img-100"]
850 .User space tracing tutorial's build steps.
851 image::ust-flow.png[]
852
853 To trace the user application:
854
855 . Run the application with a few arguments:
856 +
857 --
858 [role="term"]
859 ----
860 ./hello world and beyond
861 ----
862 --
863 +
864 You see:
865 +
866 --
867 ----
868 Hello, World!
869 Press Enter to continue...
870 ----
871 --
872
873 . Start an LTTng <<lttng-sessiond,session daemon>>:
874 +
875 --
876 [role="term"]
877 ----
878 lttng-sessiond --daemonize
879 ----
880 --
881 +
882 Note that a session daemon might already be running, for example as
883 a service that the distribution's service manager started.
884
885 . List the available user space tracepoints:
886 +
887 --
888 [role="term"]
889 ----
890 lttng list --userspace
891 ----
892 --
893 +
894 You see the `hello_world:my_first_tracepoint` tracepoint listed
895 under the `./hello` process.
896
897 . Create a <<tracing-session,tracing session>>:
898 +
899 --
900 [role="term"]
901 ----
902 lttng create my-user-space-session
903 ----
904 --
905
906 . Create an <<event,event rule>> which matches the
907 `hello_world:my_first_tracepoint` event name:
908 +
909 --
910 [role="term"]
911 ----
912 lttng enable-event --userspace hello_world:my_first_tracepoint
913 ----
914 --
915
916 . <<basic-tracing-session-control,Start tracing>>:
917 +
918 --
919 [role="term"]
920 ----
921 lttng start
922 ----
923 --
924
925 . Go back to the running `hello` application and press Enter. The
926 program executes all `tracepoint()` instrumentation points and exits.
927 . <<basic-tracing-session-control,Stop tracing>> and destroy the
928 tracing session:
929 +
930 --
931 [role="term"]
932 ----
933 sudo lttng stop
934 sudo lttng destroy
935 ----
936 --
937 +
938 The man:lttng-destroy(1) command does not destroy the trace data; it
939 only destroys the state of the tracing session.
940
941 By default, LTTng saves the traces in
942 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
943 where +__name__+ is the tracing session name. The
944 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
945
946 See <<viewing-and-analyzing-your-traces,View and analyze the
947 recorded events>> to view the recorded events.
948
949
950 [[viewing-and-analyzing-your-traces]]
951 === View and analyze the recorded events
952
953 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
954 kernel>> and <<tracing-your-own-user-application,Trace a user
955 application>> tutorials, you can inspect the recorded events.
956
957 Many tools are available to read LTTng traces:
958
959 * **cmd:babeltrace** is a command-line utility which converts trace
960 formats; it supports the format that LTTng produces, CTF, as well as a
961 basic text output which can be ++grep++ed. The cmd:babeltrace command
962 is part of the http://diamon.org/babeltrace[Babeltrace] project.
963 * Babeltrace also includes
964 **https://www.python.org/[Python] bindings** so
965 that you can easily open and read an LTTng trace with your own script,
966 benefiting from the power of Python.
967 * http://tracecompass.org/[**Trace Compass**]
968 is a graphical user interface for viewing and analyzing any type of
969 logs or traces, including LTTng's.
970 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
971 project which includes many high-level analyses of LTTng kernel
972 traces, like scheduling statistics, interrupt frequency distribution,
973 top CPU usage, and more.
974
975 NOTE: This section assumes that the traces recorded during the previous
976 tutorials were saved to their default location, in the
977 dir:{$LTTNG_HOME/lttng-traces} directory. The env:LTTNG_HOME
978 environment variable defaults to `$HOME` if not set.
979
980
981 [[viewing-and-analyzing-your-traces-bt]]
982 ==== Use the cmd:babeltrace command-line tool
983
984 The simplest way to list all the recorded events of a trace is to pass
985 its path to cmd:babeltrace with no options:
986
987 [role="term"]
988 ----
989 babeltrace ~/lttng-traces/my-user-space-session*
990 ----
991
992 cmd:babeltrace finds all traces recursively within the given path and
993 prints all their events, merging them in chronological order.
994
995 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
996 further filtering:
997
998 [role="term"]
999 ----
1000 babeltrace /tmp/my-kernel-trace | grep _switch
1001 ----
1002
1003 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
1004 count the recorded events:
1005
1006 [role="term"]
1007 ----
1008 babeltrace /tmp/my-kernel-trace | grep _open | wc --lines
1009 ----
1010
1011
1012 [[viewing-and-analyzing-your-traces-bt-python]]
1013 ==== Use the Babeltrace Python bindings
1014
1015 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
1016 is useful to isolate events by simple matching using man:grep(1) and
1017 similar utilities. However, more elaborate filters, such as keeping only
1018 event records with a field value falling within a specific range, are
1019 not trivial to write using a shell. Moreover, reductions and even the
1020 most basic computations involving multiple event records are virtually
1021 impossible to implement.
1022
1023 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
1024 to read the event records of an LTTng trace sequentially and compute the
1025 desired information.
1026
1027 The following script accepts an LTTng Linux kernel trace path as its
1028 first argument and prints the short names of the top 5 running processes
1029 on CPU 0 during the whole trace:
1030
1031 [source,python]
1032 .path:{top5proc.py}
1033 ----
1034 from collections import Counter
1035 import babeltrace
1036 import sys
1037
1038
1039 def top5proc():
1040 if len(sys.argv) != 2:
1041 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
1042 print(msg, file=sys.stderr)
1043 return False
1044
1045 # A trace collection contains one or more traces
1046 col = babeltrace.TraceCollection()
1047
1048 # Add the trace provided by the user (LTTng traces always have
1049 # the 'ctf' format)
1050 if col.add_trace(sys.argv[1], 'ctf') is None:
1051 raise RuntimeError('Cannot add trace')
1052
1053 # This counter dict contains execution times:
1054 #
1055 # task command name -> total execution time (ns)
1056 exec_times = Counter()
1057
1058 # This contains the last `sched_switch` timestamp
1059 last_ts = None
1060
1061 # Iterate on events
1062 for event in col.events:
1063 # Keep only `sched_switch` events
1064 if event.name != 'sched_switch':
1065 continue
1066
1067 # Keep only events which happened on CPU 0
1068 if event['cpu_id'] != 0:
1069 continue
1070
1071 # Event timestamp
1072 cur_ts = event.timestamp
1073
1074 if last_ts is None:
1075 # We start here
1076 last_ts = cur_ts
1077
1078 # Previous task command (short) name
1079 prev_comm = event['prev_comm']
1080
1081 # Initialize entry in our dict if not yet done
1082 if prev_comm not in exec_times:
1083 exec_times[prev_comm] = 0
1084
1085 # Compute previous command execution time
1086 diff = cur_ts - last_ts
1087
1088 # Update execution time of this command
1089 exec_times[prev_comm] += diff
1090
1091 # Update last timestamp
1092 last_ts = cur_ts
1093
1094 # Display top 5
1095 for name, ns in exec_times.most_common(5):
1096 s = ns / 1000000000
1097 print('{:20}{} s'.format(name, s))
1098
1099 return True
1100
1101
1102 if __name__ == '__main__':
1103 sys.exit(0 if top5proc() else 1)
1104 ----
1105
1106 Run this script:
1107
1108 [role="term"]
1109 ----
1110 python3 top5proc.py /tmp/my-kernel-trace/kernel
1111 ----
1112
1113 Output example:
1114
1115 ----
1116 swapper/0 48.607245889 s
1117 chromium 7.192738188 s
1118 pavucontrol 0.709894415 s
1119 Compositor 0.660867933 s
1120 Xorg.bin 0.616753786 s
1121 ----
1122
1123 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1124 weren't using the CPU that much when tracing, its first position in the
1125 list makes sense.
1126
1127
1128 [[core-concepts]]
1129 == [[understanding-lttng]]Core concepts
1130
1131 From a user's perspective, the LTTng system is built on a few concepts,
1132 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1133 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1134 Understanding how those objects relate to eachother is key in mastering
1135 the toolkit.
1136
1137 The core concepts are:
1138
1139 * <<tracing-session,Tracing session>>
1140 * <<domain,Tracing domain>>
1141 * <<channel,Channel and ring buffer>>
1142 * <<"event","Instrumentation point, event rule, event, and event record">>
1143
1144
1145 [[tracing-session]]
1146 === Tracing session
1147
1148 A _tracing session_ is a stateful dialogue between you and
1149 a <<lttng-sessiond,session daemon>>. You can
1150 <<creating-destroying-tracing-sessions,create a new tracing
1151 session>> with the `lttng create` command.
1152
1153 Anything that you do when you control LTTng tracers happens within a
1154 tracing session. In particular, a tracing session:
1155
1156 * Has its own name.
1157 * Has its own set of trace files.
1158 * Has its own state of activity (started or stopped).
1159 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1160 snapshot, or live).
1161 * Has its own <<channel,channels>> which have their own
1162 <<event,event rules>>.
1163
1164 [role="img-100"]
1165 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1166 image::concepts.png[]
1167
1168 Those attributes and objects are completely isolated between different
1169 tracing sessions.
1170
1171 A tracing session is analogous to a cash machine session:
1172 the operations you do on the banking system through the cash machine do
1173 not alter the data of other users of the same system. In the case of
1174 the cash machine, a session lasts as long as your bank card is inside.
1175 In the case of LTTng, a tracing session lasts from the `lttng create`
1176 command to the `lttng destroy` command.
1177
1178 [role="img-100"]
1179 .Each Unix user has its own set of tracing sessions.
1180 image::many-sessions.png[]
1181
1182
1183 [[tracing-session-mode]]
1184 ==== Tracing session mode
1185
1186 LTTng can send the generated trace data to different locations. The
1187 _tracing session mode_ dictates where to send it. The following modes
1188 are available in LTTng{nbsp}{revision}:
1189
1190 Local mode::
1191 LTTng writes the traces to the file system of the machine being traced
1192 (target system).
1193
1194 Network streaming mode::
1195 LTTng sends the traces over the network to a
1196 <<lttng-relayd,relay daemon>> running on a remote system.
1197
1198 Snapshot mode::
1199 LTTng does not write the traces by default. Instead, you can request
1200 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1201 current tracing buffers, and to write it to the target's file system
1202 or to send it over the network to a <<lttng-relayd,relay daemon>>
1203 running on a remote system.
1204
1205 Live mode::
1206 This mode is similar to the network streaming mode, but a live
1207 trace viewer can connect to the distant relay daemon to
1208 <<lttng-live,view event records as LTTng generates them>> by
1209 the tracers.
1210
1211
1212 [[domain]]
1213 === Tracing domain
1214
1215 A _tracing domain_ is a namespace for event sources. A tracing domain
1216 has its own properties and features.
1217
1218 There are currently five available tracing domains:
1219
1220 * Linux kernel
1221 * User space
1222 * `java.util.logging` (JUL)
1223 * log4j
1224 * Python
1225
1226 You must specify a tracing domain when using some commands to avoid
1227 ambiguity. For example, since all the domains support named tracepoints
1228 as event sources (instrumentation points that you manually insert in the
1229 source code), you need to specify a tracing domain when
1230 <<enabling-disabling-events,creating an event rule>> because all the
1231 tracing domains could have tracepoints with the same names.
1232
1233 Some features are reserved to specific tracing domains. Dynamic function
1234 entry and return instrumentation points, for example, are currently only
1235 supported in the Linux kernel tracing domain, but support for other
1236 tracing domains could be added in the future.
1237
1238 You can create <<channel,channels>> in the Linux kernel and user space
1239 tracing domains. The other tracing domains have a single default
1240 channel.
1241
1242
1243 [[channel]]
1244 === Channel and ring buffer
1245
1246 A _channel_ is an object which is responsible for a set of ring buffers.
1247 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1248 tracer emits an event, it can record it to one or more
1249 sub-buffers. The attributes of a channel determine what to do when
1250 there's no space left for a new event record because all sub-buffers
1251 are full, where to send a full sub-buffer, and other behaviours.
1252
1253 A channel is always associated to a <<domain,tracing domain>>. The
1254 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1255 a default channel which you cannot configure.
1256
1257 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1258 an event, it records it to the sub-buffers of all
1259 the enabled channels with a satisfied event rule, as long as those
1260 channels are part of active <<tracing-session,tracing sessions>>.
1261
1262
1263 [[channel-buffering-schemes]]
1264 ==== Per-user vs. per-process buffering schemes
1265
1266 A channel has at least one ring buffer _per CPU_. LTTng always
1267 records an event to the ring buffer associated to the CPU on which it
1268 occurred.
1269
1270 Two _buffering schemes_ are available when you
1271 <<enabling-disabling-channels,create a channel>> in the
1272 user space <<domain,tracing domain>>:
1273
1274 Per-user buffering::
1275 Allocate one set of ring buffers--one per CPU--shared by all the
1276 instrumented processes of each Unix user.
1277 +
1278 --
1279 [role="img-100"]
1280 .Per-user buffering scheme.
1281 image::per-user-buffering.png[]
1282 --
1283
1284 Per-process buffering::
1285 Allocate one set of ring buffers--one per CPU--for each
1286 instrumented process.
1287 +
1288 --
1289 [role="img-100"]
1290 .Per-process buffering scheme.
1291 image::per-process-buffering.png[]
1292 --
1293 +
1294 The per-process buffering scheme tends to consume more memory than the
1295 per-user option because systems generally have more instrumented
1296 processes than Unix users running instrumented processes. However, the
1297 per-process buffering scheme ensures that one process having a high
1298 event throughput won't fill all the shared sub-buffers of the same
1299 user, only its own.
1300
1301 The Linux kernel tracing domain has only one available buffering scheme
1302 which is to allocate a single set of ring buffers for the whole system.
1303 This scheme is similar to the per-user option, but with a single, global
1304 user "running" the kernel.
1305
1306
1307 [[channel-overwrite-mode-vs-discard-mode]]
1308 ==== Overwrite vs. discard event loss modes
1309
1310 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1311 arc in the following animation) of a specific channel's ring buffer.
1312 When there's no space left in a sub-buffer, the tracer marks it as
1313 consumable (red) and another, empty sub-buffer starts receiving the
1314 following event records. A <<lttng-consumerd,consumer daemon>>
1315 eventually consumes the marked sub-buffer (returns to white).
1316
1317 [NOTE]
1318 [role="docsvg-channel-subbuf-anim"]
1319 ====
1320 {note-no-anim}
1321 ====
1322
1323 In an ideal world, sub-buffers are consumed faster than they are filled,
1324 as is the case in the previous animation. In the real world,
1325 however, all sub-buffers can be full at some point, leaving no space to
1326 record the following events.
1327
1328 By design, LTTng is a _non-blocking_ tracer: when no empty sub-buffer is
1329 available, it is acceptable to lose event records when the alternative
1330 would be to cause substantial delays in the instrumented application's
1331 execution. LTTng privileges performance over integrity; it aims at
1332 perturbing the traced system as little as possible in order to make
1333 tracing of subtle race conditions and rare interrupt cascades possible.
1334
1335 When it comes to losing event records because no empty sub-buffer is
1336 available, the channel's _event loss mode_ determines what to do. The
1337 available event loss modes are:
1338
1339 Discard mode::
1340 Drop the newest event records until a the tracer
1341 releases a sub-buffer.
1342
1343 Overwrite mode::
1344 Clear the sub-buffer containing the oldest event records and start
1345 writing the newest event records there.
1346 +
1347 This mode is sometimes called _flight recorder mode_ because it's
1348 similar to a
1349 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1350 always keep a fixed amount of the latest data.
1351
1352 Which mechanism you should choose depends on your context: prioritize
1353 the newest or the oldest event records in the ring buffer?
1354
1355 Beware that, in overwrite mode, the tracer abandons a whole sub-buffer
1356 as soon as a there's no space left for a new event record, whereas in
1357 discard mode, the tracer only discards the event record that doesn't
1358 fit.
1359
1360 In discard mode, LTTng increments a count of lost event records when
1361 an event record is lost and saves this count to the trace. In
1362 overwrite mode, LTTng keeps no information when it overwrites a
1363 sub-buffer before consuming it.
1364
1365 There are a few ways to decrease your probability of losing event
1366 records.
1367 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1368 how you can fine-une the sub-buffer count and size of a channel to
1369 virtually stop losing event records, though at the cost of greater
1370 memory usage.
1371
1372
1373 [[channel-subbuf-size-vs-subbuf-count]]
1374 ==== Sub-buffer count and size
1375
1376 When you <<enabling-disabling-channels,create a channel>>, you can
1377 set its number of sub-buffers and their size.
1378
1379 Note that there is noticeable CPU overhead introduced when
1380 switching sub-buffers (marking a full one as consumable and switching
1381 to an empty one for the following events to be recorded). Knowing this,
1382 the following list presents a few practical situations along with how
1383 to configure the sub-buffer count and size for them:
1384
1385 * **High event throughput**: In general, prefer bigger sub-buffers to
1386 lower the risk of losing event records.
1387 +
1388 Having bigger sub-buffers also ensures a lower sub-buffer switching
1389 frequency.
1390 +
1391 The number of sub-buffers is only meaningful if you create the channel
1392 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1393 other sub-buffers are left unaltered.
1394
1395 * **Low event throughput**: In general, prefer smaller sub-buffers
1396 since the risk of losing event records is low.
1397 +
1398 Because events occur less frequently, the sub-buffer switching frequency
1399 should remain low and thus the tracer's overhead should not be a
1400 problem.
1401
1402 * **Low memory system**: If your target system has a low memory
1403 limit, prefer fewer first, then smaller sub-buffers.
1404 +
1405 Even if the system is limited in memory, you want to keep the
1406 sub-buffers as big as possible to avoid a high sub-buffer switching
1407 frequency.
1408
1409 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1410 which means event data is very compact. For example, the average
1411 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1412 sub-buffer size of 1{nbsp}MiB is considered big.
1413
1414 The previous situations highlight the major trade-off between a few big
1415 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1416 frequency vs. how much data is lost in overwrite mode. Assuming a
1417 constant event throughput and using the overwrite mode, the two
1418 following configurations have the same ring buffer total size:
1419
1420 [NOTE]
1421 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1422 ====
1423 {note-no-anim}
1424 ====
1425
1426 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1427 switching frequency, but if a sub-buffer overwrite happens, half of
1428 the event records so far (4{nbsp}MiB) are definitely lost.
1429 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1430 overhead as the previous configuration, but if a sub-buffer
1431 overwrite happens, only the eighth of event records so far are
1432 definitely lost.
1433
1434 In discard mode, the sub-buffers count parameter is pointless: use two
1435 sub-buffers and set their size according to the requirements of your
1436 situation.
1437
1438
1439 [[channel-switch-timer]]
1440 ==== Switch timer period
1441
1442 The _switch timer period_ is an important configurable attribute of
1443 a channel to ensure periodic sub-buffer flushing.
1444
1445 When the _switch timer_ expires, a sub-buffer switch happens. You can
1446 set the switch timer period attribute when you
1447 <<enabling-disabling-channels,create a channel>> to ensure that event
1448 data is consumed and committed to trace files or to a distant relay
1449 daemon periodically in case of a low event throughput.
1450
1451 [NOTE]
1452 [role="docsvg-channel-switch-timer"]
1453 ====
1454 {note-no-anim}
1455 ====
1456
1457 This attribute is also convenient when you use big sub-buffers to cope
1458 with a sporadic high event throughput, even if the throughput is
1459 normally low.
1460
1461
1462 [[channel-read-timer]]
1463 ==== Read timer period
1464
1465 By default, the LTTng tracers use a notification mechanism to signal a
1466 full sub-buffer so that a consumer daemon can consume it. When such
1467 notifications must be avoided, for example in real-time applications,
1468 you can use the channel's _read timer_ instead. When the read timer
1469 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1470 consumable sub-buffers.
1471
1472
1473 [[tracefile-rotation]]
1474 ==== Trace file count and size
1475
1476 By default, trace files can grow as large as needed. You can set the
1477 maximum size of each trace file that a channel writes when you
1478 <<enabling-disabling-channels,create a channel>>. When the size of
1479 a trace file reaches the channel's fixed maximum size, LTTng creates
1480 another file to contain the next event records. LTTng appends a file
1481 count to each trace file name in this case.
1482
1483 If you set the trace file size attribute when you create a channel, the
1484 maximum number of trace files that LTTng creates is _unlimited_ by
1485 default. To limit them, you can also set a maximum number of trace
1486 files. When the number of trace files reaches the channel's fixed
1487 maximum count, the oldest trace file is overwritten. This mechanism is
1488 called _trace file rotation_.
1489
1490
1491 [[event]]
1492 === Instrumentation point, event rule, event, and event record
1493
1494 An _event rule_ is a set of conditions which must be **all** satisfied
1495 for LTTng to record an occuring event.
1496
1497 You set the conditions when you <<enabling-disabling-events,create
1498 an event rule>>.
1499
1500 You always attach an event rule to <<channel,channel>> when you create
1501 it.
1502
1503 When an event passes the conditions of an event rule, LTTng records it
1504 in one of the attached channel's sub-buffers.
1505
1506 The available conditions, as of LTTng{nbsp}{revision}, are:
1507
1508 * The event rule _is enabled_.
1509 * The instrumentation point's type _is{nbsp}T_.
1510 * The instrumentation point's name (sometimes called _event name_)
1511 _matches{nbsp}N_, but _is not{nbsp}E_.
1512 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1513 _is exactly{nbsp}L_.
1514 * The fields of the event's payload _satisfy_ a filter
1515 expression{nbsp}__F__.
1516
1517 As you can see, all the conditions but the dynamic filter are related to
1518 the event rule's status or to the instrumentation point, not to the
1519 occurring events. This is why, without a filter, checking if an event
1520 passes an event rule is not a dynamic task: when you create or modify an
1521 event rule, all the tracers of its tracing domain enable or disable the
1522 instrumentation points themselves once. This is possible because the
1523 attributes of an instrumentation point (type, name, and log level) are
1524 defined statically. In other words, without a dynamic filter, the tracer
1525 _does not evaluate_ the arguments of an instrumentation point unless it
1526 matches an enabled event rule.
1527
1528 Note that, for LTTng to record an event, the <<channel,channel>> to
1529 which a matching event rule is attached must also be enabled, and the
1530 tracing session owning this channel must be active.
1531
1532 [role="img-100"]
1533 .Logical path from an instrumentation point to an event record.
1534 image::event-rule.png[]
1535
1536 .Event, event record, or event rule?
1537 ****
1538 With so many similar terms, it's easy to get confused.
1539
1540 An **event** is the consequence of the execution of an _instrumentation
1541 point_, like a tracepoint that you manually place in some source code,
1542 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1543 time. Different actions can be taken upon the occurance of an event,
1544 like record the event's payload to a buffer.
1545
1546 An **event record** is the representation of an event in a sub-buffer. A
1547 tracer is responsible for capturing the payload of an event, current
1548 context variables, the event's ID, and the event's timestamp. LTTng
1549 can append this sub-buffer to a trace file.
1550
1551 An **event rule** is a set of conditions which must all be satisfied for
1552 LTTng to record an occuring event. Events still occur without
1553 satisfying event rules, but LTTng does not record them.
1554 ****
1555
1556
1557 [[plumbing]]
1558 == Components of noch:{LTTng}
1559
1560 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1561 to call LTTng a simple _tool_ since it is composed of multiple
1562 interacting components. This section describes those components,
1563 explains their respective roles, and shows how they connect together to
1564 form the LTTng ecosystem.
1565
1566 The following diagram shows how the most important components of LTTng
1567 interact with user applications, the Linux kernel, and you:
1568
1569 [role="img-100"]
1570 .Control and trace data paths between LTTng components.
1571 image::plumbing.png[]
1572
1573 The LTTng project incorporates:
1574
1575 * **LTTng-tools**: Libraries and command-line interface to
1576 control tracing sessions.
1577 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1578 ** <<lttng-consumerd,Consumer daemon>> (man:lttng-consumerd(8)).
1579 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1580 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1581 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1582 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1583 applications.
1584 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1585 headers to instrument and trace any native user application.
1586 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1587 *** `liblttng-ust-libc-wrapper`
1588 *** `liblttng-ust-pthread-wrapper`
1589 *** `liblttng-ust-cyg-profile`
1590 *** `liblttng-ust-cyg-profile-fast`
1591 *** `liblttng-ust-dl`
1592 ** User space tracepoint provider source files generator command-line
1593 tool (man:lttng-gen-tp(1)).
1594 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1595 Java applications using `java.util.logging` or
1596 Apache log4j 1.2 logging.
1597 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1598 Python applications using the standard `logging` package.
1599 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1600 the kernel.
1601 ** LTTng kernel tracer module.
1602 ** Tracing ring buffer kernel modules.
1603 ** Probe kernel modules.
1604 ** LTTng logger kernel module.
1605
1606
1607 [[lttng-cli]]
1608 === Tracing control command-line interface
1609
1610 [role="img-100"]
1611 .The tracing control command-line interface.
1612 image::plumbing-lttng-cli.png[]
1613
1614 The _man:lttng(1) command-line tool_ is the standard user interface to
1615 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1616 is part of LTTng-tools.
1617
1618 The cmd:lttng tool is linked with
1619 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1620 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1621
1622 The cmd:lttng tool has a Git-like interface:
1623
1624 [role="term"]
1625 ----
1626 lttng <general options> <command> <command options>
1627 ----
1628
1629 The <<controlling-tracing,Tracing control>> section explores the
1630 available features of LTTng using the cmd:lttng tool.
1631
1632
1633 [[liblttng-ctl-lttng]]
1634 === Tracing control library
1635
1636 [role="img-100"]
1637 .The tracing control library.
1638 image::plumbing-liblttng-ctl.png[]
1639
1640 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1641 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1642 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1643
1644 The <<lttng-cli,cmd:lttng command-line tool>>
1645 is linked with `liblttng-ctl`.
1646
1647 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1648 "master" header:
1649
1650 [source,c]
1651 ----
1652 #include <lttng/lttng.h>
1653 ----
1654
1655 Some objects are referenced by name (C string), such as tracing
1656 sessions, but most of them require to create a handle first using
1657 `lttng_create_handle()`.
1658
1659 The best available developer documentation for `liblttng-ctl` is, as of
1660 LTTng{nbsp}{revision}, its installed header files. Every function and
1661 structure is thoroughly documented.
1662
1663
1664 [[lttng-ust]]
1665 === User space tracing library
1666
1667 [role="img-100"]
1668 .The user space tracing library.
1669 image::plumbing-liblttng-ust.png[]
1670
1671 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1672 is the LTTng user space tracer. It receives commands from a
1673 <<lttng-sessiond,session daemon>>, for example to
1674 enable and disable specific instrumentation points, and writes event
1675 records to ring buffers shared with a
1676 <<lttng-consumerd,consumer daemon>>.
1677 `liblttng-ust` is part of LTTng-UST.
1678
1679 Public C header files are installed beside `liblttng-ust` to
1680 instrument any <<c-application,C or $$C++$$ application>>.
1681
1682 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1683 packages, use their own library providing tracepoints which is
1684 linked with `liblttng-ust`.
1685
1686 An application or library does not have to initialize `liblttng-ust`
1687 manually: its constructor does the necessary tasks to properly register
1688 to a session daemon. The initialization phase also enables the
1689 instrumentation points matching the <<event,event rules>> that you
1690 already created.
1691
1692
1693 [[lttng-ust-agents]]
1694 === User space tracing agents
1695
1696 [role="img-100"]
1697 .The user space tracing agents.
1698 image::plumbing-lttng-ust-agents.png[]
1699
1700 The _LTTng-UST Java and Python agents_ are regular Java and Python
1701 packages which add LTTng tracing capabilities to the
1702 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1703
1704 In the case of Java, the
1705 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1706 core logging facilities] and
1707 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1708 Note that Apache Log4{nbsp}2 is not supported.
1709
1710 In the case of Python, the standard
1711 https://docs.python.org/3/library/logging.html[`logging`] package
1712 is supported. Both Python 2 and Python 3 modules can import the
1713 LTTng-UST Python agent package.
1714
1715 The applications using the LTTng-UST agents are in the
1716 `java.util.logging` (JUL),
1717 log4j, and Python <<domain,tracing domains>>.
1718
1719 Both agents use the same mechanism to trace the log statements. When an
1720 agent is initialized, it creates a log handler that attaches to the root
1721 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1722 When the application executes a log statement, it is passed to the
1723 agent's log handler by the root logger. The agent's log handler calls a
1724 native function in a tracepoint provider package shared library linked
1725 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1726 other fields, like its logger name and its log level. This native
1727 function contains a user space instrumentation point, hence tracing the
1728 log statement.
1729
1730 The log level condition of an
1731 <<event,event rule>> is considered when tracing
1732 a Java or a Python application, and it's compatible with the standard
1733 JUL, log4j, and Python log levels.
1734
1735
1736 [[lttng-modules]]
1737 === LTTng kernel modules
1738
1739 [role="img-100"]
1740 .The LTTng kernel modules.
1741 image::plumbing-lttng-modules.png[]
1742
1743 The _LTTng kernel modules_ are a set of Linux kernel modules
1744 which implement the kernel tracer of the LTTng project. The LTTng
1745 kernel modules are part of LTTng-modules.
1746
1747 The LTTng kernel modules include:
1748
1749 * A set of _probe_ modules.
1750 +
1751 Each module attaches to a specific subsystem
1752 of the Linux kernel using its tracepoint instrument points. There are
1753 also modules to attach to the entry and return points of the Linux
1754 system call functions.
1755
1756 * _Ring buffer_ modules.
1757 +
1758 A ring buffer implementation is provided as kernel modules. The LTTng
1759 kernel tracer writes to the ring buffer; a
1760 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1761
1762 * The _LTTng kernel tracer_ module.
1763 * The _LTTng logger_ module.
1764 +
1765 The LTTng logger module implements the special path:{/proc/lttng-logger}
1766 file so that any executable can generate LTTng events by opening and
1767 writing to this file.
1768 +
1769 See <<proc-lttng-logger-abi,LTTng logger>>.
1770
1771 Generally, you do not have to load the LTTng kernel modules manually
1772 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1773 daemon>> loads the necessary modules when starting. If you have extra
1774 probe modules, you can specify to load them to the session daemon on
1775 the command line.
1776
1777 The LTTng kernel modules are installed in
1778 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1779 the kernel release (see `uname --kernel-release`).
1780
1781
1782 [[lttng-sessiond]]
1783 === Session daemon
1784
1785 [role="img-100"]
1786 .The session daemon.
1787 image::plumbing-sessiond.png[]
1788
1789 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1790 managing tracing sessions and for controlling the various components of
1791 LTTng. The session daemon is part of LTTng-tools.
1792
1793 The session daemon sends control requests to and receives control
1794 responses from:
1795
1796 * The <<lttng-ust,user space tracing library>>.
1797 +
1798 Any instance of the user space tracing library first registers to
1799 a session daemon. Then, the session daemon can send requests to
1800 this instance, such as:
1801 +
1802 --
1803 ** Get the list of tracepoints.
1804 ** Share an <<event,event rule>> so that the user space tracing library
1805 can enable or disable tracepoints. Amongst the possible conditions
1806 of an event rule is a filter expression which `liblttng-ust` evalutes
1807 when an event occurs.
1808 ** Share <<channel,channel>> attributes and ring buffer locations.
1809 --
1810 +
1811 The session daemon and the user space tracing library use a Unix
1812 domain socket for their communication.
1813
1814 * The <<lttng-ust-agents,user space tracing agents>>.
1815 +
1816 Any instance of a user space tracing agent first registers to
1817 a session daemon. Then, the session daemon can send requests to
1818 this instance, such as:
1819 +
1820 --
1821 ** Get the list of loggers.
1822 ** Enable or disable a specific logger.
1823 --
1824 +
1825 The session daemon and the user space tracing agent use a TCP connection
1826 for their communication.
1827
1828 * The <<lttng-modules,LTTng kernel tracer>>.
1829 * The <<lttng-consumerd,consumer daemon>>.
1830 +
1831 The session daemon sends requests to the consumer daemon to instruct
1832 it where to send the trace data streams, amongst other information.
1833
1834 * The <<lttng-relayd,relay daemon>>.
1835
1836 The session daemon receives commands from the
1837 <<liblttng-ctl-lttng,tracing control library>>.
1838
1839 The root session daemon loads the appropriate
1840 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
1841 a <<lttng-consumerd,consumer daemon>> as soon as you create
1842 an <<event,event rule>>.
1843
1844 The session daemon does not send and receive trace data: this is the
1845 role of the <<lttng-consumerd,consumer daemon>> and
1846 <<lttng-relayd,relay daemon>>. It does, however, generate the
1847 http://diamon.org/ctf/[CTF] metadata stream.
1848
1849 Each Unix user can have its own session daemon instance. The
1850 tracing sessions managed by different session daemons are completely
1851 independent.
1852
1853 The root user's session daemon is the only one which is
1854 allowed to control the LTTng kernel tracer, and its spawned consumer
1855 daemon is the only one which is allowed to consume trace data from the
1856 LTTng kernel tracer. Note, however, that any Unix user which is a member
1857 of the <<tracing-group,tracing group>> is allowed
1858 to create <<channel,channels>> in the
1859 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
1860 kernel.
1861
1862 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
1863 session daemon when using its `create` command if none is currently
1864 running. You can also start the session daemon manually.
1865
1866
1867 [[lttng-consumerd]]
1868 === Consumer daemon
1869
1870 [role="img-100"]
1871 .The consumer daemon.
1872 image::plumbing-consumerd.png[]
1873
1874 The _consumer daemon_, man:lttng-consumerd(8), is a daemon which shares
1875 ring buffers with user applications or with the LTTng kernel modules to
1876 collect trace data and send it to some location (on disk or to a
1877 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
1878 is part of LTTng-tools.
1879
1880 You do not start a consumer daemon manually: a consumer daemon is always
1881 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
1882 <<event,event rule>>, that is, before you start tracing. When you kill
1883 its owner session daemon, the consumer daemon also exits because it is
1884 the session daemon's child process. Command-line options of
1885 man:lttng-sessiond(8) target the consumer daemon process.
1886
1887 There are up to two running consumer daemons per Unix user, whereas only
1888 one session daemon can run per user. This is because each process can be
1889 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
1890 and 64-bit processes, it is more efficient to have separate
1891 corresponding 32-bit and 64-bit consumer daemons. The root user is an
1892 exception: it can have up to _three_ running consumer daemons: 32-bit
1893 and 64-bit instances for its user applications, and one more
1894 reserved for collecting kernel trace data.
1895
1896
1897 [[lttng-relayd]]
1898 === Relay daemon
1899
1900 [role="img-100"]
1901 .The relay daemon.
1902 image::plumbing-relayd.png[]
1903
1904 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
1905 between remote session and consumer daemons, local trace files, and a
1906 remote live trace viewer. The relay daemon is part of LTTng-tools.
1907
1908 The main purpose of the relay daemon is to implement a receiver of
1909 <<sending-trace-data-over-the-network,trace data over the network>>.
1910 This is useful when the target system does not have much file system
1911 space to record trace files locally.
1912
1913 The relay daemon is also a server to which a
1914 <<lttng-live,live trace viewer>> can
1915 connect. The live trace viewer sends requests to the relay daemon to
1916 receive trace data as the target system emits events. The
1917 communication protocol is named _LTTng live_; it is used over TCP
1918 connections.
1919
1920 Note that you can start the relay daemon on the target system directly.
1921 This is the setup of choice when the use case is to view events as
1922 the target system emits them without the need of a remote system.
1923
1924
1925 [[instrumenting]]
1926 == [[using-lttng]]Instrumentation
1927
1928 There are many examples of tracing and monitoring in our everyday life:
1929
1930 * You have access to real-time and historical weather reports and
1931 forecasts thanks to weather stations installed around the country.
1932 * You know your heart is safe thanks to an electrocardiogram.
1933 * You make sure not to drive your car too fast and to have enough fuel
1934 to reach your destination thanks to gauges visible on your dashboard.
1935
1936 All the previous examples have something in common: they rely on
1937 **instruments**. Without the electrodes attached to the surface of your
1938 body's skin, cardiac monitoring is futile.
1939
1940 LTTng, as a tracer, is no different from those real life examples. If
1941 you're about to trace a software system or, in other words, record its
1942 history of execution, you better have **instrumentation points** in the
1943 subject you're tracing, that is, the actual software.
1944
1945 Various ways were developed to instrument a piece of software for LTTng
1946 tracing. The most straightforward one is to manually place
1947 instrumentation points, called _tracepoints_, in the software's source
1948 code. It is also possible to add instrumentation points dynamically in
1949 the Linux kernel <<domain,tracing domain>>.
1950
1951 If you're only interested in tracing the Linux kernel, your
1952 instrumentation needs are probably already covered by LTTng's built-in
1953 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
1954 user application which is already instrumented for LTTng tracing.
1955 In such cases, you can skip this whole section and read the topics of
1956 the <<controlling-tracing,Tracing control>> section.
1957
1958 Many methods are available to instrument a piece of software for LTTng
1959 tracing. They are:
1960
1961 * <<c-application,User space instrumentation for C and $$C++$$
1962 applications>>.
1963 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
1964 * <<java-application,User space Java agent>>.
1965 * <<python-application,User space Python agent>>.
1966 * <<proc-lttng-logger-abi,LTTng logger>>.
1967 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
1968
1969
1970 [[c-application]]
1971 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
1972
1973 The procedure to instrument a C or $$C++$$ user application with
1974 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
1975
1976 . <<tracepoint-provider,Create the source files of a tracepoint provider
1977 package>>.
1978 . <<probing-the-application-source-code,Add tracepoints to
1979 the application's source code>>.
1980 . <<building-tracepoint-providers-and-user-application,Build and link
1981 a tracepoint provider package and the user application>>.
1982
1983 If you need quick, man:printf(3)-like instrumentation, you can skip
1984 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
1985 instead.
1986
1987 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
1988 instrument a user application with `liblttng-ust`.
1989
1990
1991 [[tracepoint-provider]]
1992 ==== Create the source files of a tracepoint provider package
1993
1994 A _tracepoint provider_ is a set of compiled functions which provide
1995 **tracepoints** to an application, the type of instrumentation point
1996 supported by LTTng-UST. Those functions can emit events with
1997 user-defined fields and serialize those events as event records to one
1998 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
1999 macro, which you <<probing-the-application-source-code,insert in a user
2000 application's source code>>, calls those functions.
2001
2002 A _tracepoint provider package_ is an object file (`.o`) or a shared
2003 library (`.so`) which contains one or more tracepoint providers.
2004 Its source files are:
2005
2006 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
2007 * A <<tpp-source,tracepoint provider package source>> (`.c`).
2008
2009 A tracepoint provider package is dynamically linked with `liblttng-ust`,
2010 the LTTng user space tracer, at run time.
2011
2012 [role="img-100"]
2013 .User application linked with `liblttng-ust` and containing a tracepoint provider.
2014 image::ust-app.png[]
2015
2016 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
2017 skip creating and using a tracepoint provider and use
2018 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
2019
2020
2021 [[tpp-header]]
2022 ===== Create a tracepoint provider header file template
2023
2024 A _tracepoint provider header file_ contains the tracepoint
2025 definitions of a tracepoint provider.
2026
2027 To create a tracepoint provider header file:
2028
2029 . Start from this template:
2030 +
2031 --
2032 [source,c]
2033 .Tracepoint provider header file template (`.h` file extension).
2034 ----
2035 #undef TRACEPOINT_PROVIDER
2036 #define TRACEPOINT_PROVIDER provider_name
2037
2038 #undef TRACEPOINT_INCLUDE
2039 #define TRACEPOINT_INCLUDE "./tp.h"
2040
2041 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2042 #define _TP_H
2043
2044 #include <lttng/tracepoint.h>
2045
2046 /*
2047 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2048 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2049 */
2050
2051 #endif /* _TP_H */
2052
2053 #include <lttng/tracepoint-event.h>
2054 ----
2055 --
2056
2057 . Replace:
2058 +
2059 * `provider_name` with the name of your tracepoint provider.
2060 * `"tp.h"` with the name of your tracepoint provider header file.
2061
2062 . Below the `#include <lttng/tracepoint.h>` line, put your
2063 <<defining-tracepoints,tracepoint definitions>>.
2064
2065 Your tracepoint provider name must be unique amongst all the possible
2066 tracepoint provider names used on the same target system. We
2067 suggest to include the name of your project or company in the name,
2068 for example, `org_lttng_my_project_tpp`.
2069
2070 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2071 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2072 write are the <<defining-tracepoints,tracepoint definitions>>.
2073
2074
2075 [[defining-tracepoints]]
2076 ===== Create a tracepoint definition
2077
2078 A _tracepoint definition_ defines, for a given tracepoint:
2079
2080 * Its **input arguments**. They are the macro parameters that the
2081 `tracepoint()` macro accepts for this particular tracepoint
2082 in the user application's source code.
2083 * Its **output event fields**. They are the sources of event fields
2084 that form the payload of any event that the execution of the
2085 `tracepoint()` macro emits for this particular tracepoint.
2086
2087 You can create a tracepoint definition by using the
2088 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2089 line in the
2090 <<tpp-header,tracepoint provider header file template>>.
2091
2092 The syntax of the `TRACEPOINT_EVENT()` macro is:
2093
2094 [source,c]
2095 .`TRACEPOINT_EVENT()` macro syntax.
2096 ----
2097 TRACEPOINT_EVENT(
2098 /* Tracepoint provider name */
2099 provider_name,
2100
2101 /* Tracepoint name */
2102 tracepoint_name,
2103
2104 /* Input arguments */
2105 TP_ARGS(
2106 arguments
2107 ),
2108
2109 /* Output event fields */
2110 TP_FIELDS(
2111 fields
2112 )
2113 )
2114 ----
2115
2116 Replace:
2117
2118 * `provider_name` with your tracepoint provider name.
2119 * `tracepoint_name` with your tracepoint name.
2120 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2121 * `fields` with the <<tpp-def-output-fields,output event field>>
2122 definitions.
2123
2124 This tracepoint emits events named `provider_name:tracepoint_name`.
2125
2126 [IMPORTANT]
2127 .Event name's length limitation
2128 ====
2129 The concatenation of the tracepoint provider name and the
2130 tracepoint name must not exceed **254 characters**. If it does, the
2131 instrumented application compiles and runs, but LTTng throws multiple
2132 warnings and you could experience serious issues.
2133 ====
2134
2135 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2136
2137 [source,c]
2138 .`TP_ARGS()` macro syntax.
2139 ----
2140 TP_ARGS(
2141 type, arg_name
2142 )
2143 ----
2144
2145 Replace:
2146
2147 * `type` with the C type of the argument.
2148 * `arg_name` with the argument name.
2149
2150 You can repeat `type` and `arg_name` up to 10 times to have
2151 more than one argument.
2152
2153 .`TP_ARGS()` usage with three arguments.
2154 ====
2155 [source,c]
2156 ----
2157 TP_ARGS(
2158 int, count,
2159 float, ratio,
2160 const char*, query
2161 )
2162 ----
2163 ====
2164
2165 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2166 tracepoint definition with no input arguments.
2167
2168 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2169 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2170 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2171 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2172 one event field.
2173
2174 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2175 C expression that the tracer evalutes at the `tracepoint()` macro site
2176 in the application's source code. This expression provides a field's
2177 source of data. The argument expression can include input argument names
2178 listed in the `TP_ARGS()` macro.
2179
2180 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2181 must be unique within a given tracepoint definition.
2182
2183 Here's a complete tracepoint definition example:
2184
2185 .Tracepoint definition.
2186 ====
2187 The following tracepoint definition defines a tracepoint which takes
2188 three input arguments and has four output event fields.
2189
2190 [source,c]
2191 ----
2192 #include "my-custom-structure.h"
2193
2194 TRACEPOINT_EVENT(
2195 my_provider,
2196 my_tracepoint,
2197 TP_ARGS(
2198 const struct my_custom_structure*, my_custom_structure,
2199 float, ratio,
2200 const char*, query
2201 ),
2202 TP_FIELDS(
2203 ctf_string(query_field, query)
2204 ctf_float(double, ratio_field, ratio)
2205 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2206 ctf_integer(int, send_size, my_custom_structure->send_size)
2207 )
2208 )
2209 ----
2210
2211 You can refer to this tracepoint definition with the `tracepoint()`
2212 macro in your application's source code like this:
2213
2214 [source,c]
2215 ----
2216 tracepoint(my_provider, my_tracepoint,
2217 my_structure, some_ratio, the_query);
2218 ----
2219 ====
2220
2221 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2222 if they satisfy an enabled <<event,event rule>>.
2223
2224
2225 [[using-tracepoint-classes]]
2226 ===== Use a tracepoint class
2227
2228 A _tracepoint class_ is a class of tracepoints which share the same
2229 output event field definitions. A _tracepoint instance_ is one
2230 instance of such a defined tracepoint class, with its own tracepoint
2231 name.
2232
2233 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2234 shorthand which defines both a tracepoint class and a tracepoint
2235 instance at the same time.
2236
2237 When you build a tracepoint provider package, the C or $$C++$$ compiler
2238 creates one serialization function for each **tracepoint class**. A
2239 serialization function is responsible for serializing the event fields
2240 of a tracepoint to a sub-buffer when tracing.
2241
2242 For various performance reasons, when your situation requires multiple
2243 tracepoint definitions with different names, but with the same event
2244 fields, we recommend that you manually create a tracepoint class
2245 and instantiate as many tracepoint instances as needed. One positive
2246 effect of such a design, amongst other advantages, is that all
2247 tracepoint instances of the same tracepoint class reuse the same
2248 serialization function, thus reducing
2249 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2250
2251 .Use a tracepoint class and tracepoint instances.
2252 ====
2253 Consider the following three tracepoint definitions:
2254
2255 [source,c]
2256 ----
2257 TRACEPOINT_EVENT(
2258 my_app,
2259 get_account,
2260 TP_ARGS(
2261 int, userid,
2262 size_t, len
2263 ),
2264 TP_FIELDS(
2265 ctf_integer(int, userid, userid)
2266 ctf_integer(size_t, len, len)
2267 )
2268 )
2269
2270 TRACEPOINT_EVENT(
2271 my_app,
2272 get_settings,
2273 TP_ARGS(
2274 int, userid,
2275 size_t, len
2276 ),
2277 TP_FIELDS(
2278 ctf_integer(int, userid, userid)
2279 ctf_integer(size_t, len, len)
2280 )
2281 )
2282
2283 TRACEPOINT_EVENT(
2284 my_app,
2285 get_transaction,
2286 TP_ARGS(
2287 int, userid,
2288 size_t, len
2289 ),
2290 TP_FIELDS(
2291 ctf_integer(int, userid, userid)
2292 ctf_integer(size_t, len, len)
2293 )
2294 )
2295 ----
2296
2297 In this case, we create three tracepoint classes, with one implicit
2298 tracepoint instance for each of them: `get_account`, `get_settings`, and
2299 `get_transaction`. However, they all share the same event field names
2300 and types. Hence three identical, yet independent serialization
2301 functions are created when you build the tracepoint provider package.
2302
2303 A better design choice is to define a single tracepoint class and three
2304 tracepoint instances:
2305
2306 [source,c]
2307 ----
2308 /* The tracepoint class */
2309 TRACEPOINT_EVENT_CLASS(
2310 /* Tracepoint provider name */
2311 my_app,
2312
2313 /* Tracepoint class name */
2314 my_class,
2315
2316 /* Input arguments */
2317 TP_ARGS(
2318 int, userid,
2319 size_t, len
2320 ),
2321
2322 /* Output event fields */
2323 TP_FIELDS(
2324 ctf_integer(int, userid, userid)
2325 ctf_integer(size_t, len, len)
2326 )
2327 )
2328
2329 /* The tracepoint instances */
2330 TRACEPOINT_EVENT_INSTANCE(
2331 /* Tracepoint provider name */
2332 my_app,
2333
2334 /* Tracepoint class name */
2335 my_class,
2336
2337 /* Tracepoint name */
2338 get_account,
2339
2340 /* Input arguments */
2341 TP_ARGS(
2342 int, userid,
2343 size_t, len
2344 )
2345 )
2346 TRACEPOINT_EVENT_INSTANCE(
2347 my_app,
2348 my_class,
2349 get_settings,
2350 TP_ARGS(
2351 int, userid,
2352 size_t, len
2353 )
2354 )
2355 TRACEPOINT_EVENT_INSTANCE(
2356 my_app,
2357 my_class,
2358 get_transaction,
2359 TP_ARGS(
2360 int, userid,
2361 size_t, len
2362 )
2363 )
2364 ----
2365 ====
2366
2367
2368 [[assigning-log-levels]]
2369 ===== Assign a log level to a tracepoint definition
2370
2371 You can assign an optional _log level_ to a
2372 <<defining-tracepoints,tracepoint definition>>.
2373
2374 Assigning different levels of severity to tracepoint definitions can
2375 be useful: when you <<enabling-disabling-events,create an event rule>>,
2376 you can target tracepoints having a log level as severe as a specific
2377 value.
2378
2379 The concept of LTTng-UST log levels is similar to the levels found
2380 in typical logging frameworks:
2381
2382 * In a logging framework, the log level is given by the function
2383 or method name you use at the log statement site: `debug()`,
2384 `info()`, `warn()`, `error()`, and so on.
2385 * In LTTng-UST, you statically assign the log level to a tracepoint
2386 definition; any `tracepoint()` macro invocation which refers to
2387 this definition has this log level.
2388
2389 You can assign a log level to a tracepoint definition with the
2390 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2391 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2392 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2393 tracepoint.
2394
2395 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2396
2397 [source,c]
2398 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2399 ----
2400 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2401 ----
2402
2403 Replace:
2404
2405 * `provider_name` with the tracepoint provider name.
2406 * `tracepoint_name` with the tracepoint name.
2407 * `log_level` with the log level to assign to the tracepoint
2408 definition named `tracepoint_name` in the `provider_name`
2409 tracepoint provider.
2410 +
2411 See man:lttng-ust(3) for a list of available log level names.
2412
2413 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2414 ====
2415 [source,c]
2416 ----
2417 /* Tracepoint definition */
2418 TRACEPOINT_EVENT(
2419 my_app,
2420 get_transaction,
2421 TP_ARGS(
2422 int, userid,
2423 size_t, len
2424 ),
2425 TP_FIELDS(
2426 ctf_integer(int, userid, userid)
2427 ctf_integer(size_t, len, len)
2428 )
2429 )
2430
2431 /* Log level assignment */
2432 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2433 ----
2434 ====
2435
2436
2437 [[tpp-source]]
2438 ===== Create a tracepoint provider package source file
2439
2440 A _tracepoint provider package source file_ is a C source file which
2441 includes a <<tpp-header,tracepoint provider header file>> to expand its
2442 macros into event serialization and other functions.
2443
2444 You can always use the following tracepoint provider package source
2445 file template:
2446
2447 [source,c]
2448 .Tracepoint provider package source file template.
2449 ----
2450 #define TRACEPOINT_CREATE_PROBES
2451
2452 #include "tp.h"
2453 ----
2454
2455 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2456 header file>> name. You may also include more than one tracepoint
2457 provider header file here to create a tracepoint provider package
2458 holding more than one tracepoint providers.
2459
2460
2461 [[probing-the-application-source-code]]
2462 ==== Add tracepoints to an application's source code
2463
2464 Once you <<tpp-header,create a tracepoint provider header file>>, you
2465 can use the `tracepoint()` macro in your application's
2466 source code to insert the tracepoints that this header
2467 <<defining-tracepoints,defines>>.
2468
2469 The `tracepoint()` macro takes at least two parameters: the tracepoint
2470 provider name and the tracepoint name. The corresponding tracepoint
2471 definition defines the other parameters.
2472
2473 .`tracepoint()` usage.
2474 ====
2475 The following <<defining-tracepoints,tracepoint definition>> defines a
2476 tracepoint which takes two input arguments and has two output event
2477 fields.
2478
2479 [source,c]
2480 .Tracepoint provider header file.
2481 ----
2482 #include "my-custom-structure.h"
2483
2484 TRACEPOINT_EVENT(
2485 my_provider,
2486 my_tracepoint,
2487 TP_ARGS(
2488 int, argc,
2489 const char*, cmd_name
2490 ),
2491 TP_FIELDS(
2492 ctf_string(cmd_name, cmd_name)
2493 ctf_integer(int, number_of_args, argc)
2494 )
2495 )
2496 ----
2497
2498 You can refer to this tracepoint definition with the `tracepoint()`
2499 macro in your application's source code like this:
2500
2501 [source,c]
2502 .Application's source file.
2503 ----
2504 #include "tp.h"
2505
2506 int main(int argc, char* argv[])
2507 {
2508 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2509
2510 return 0;
2511 }
2512 ----
2513
2514 Note how the application's source code includes
2515 the tracepoint provider header file containing the tracepoint
2516 definitions to use, path:{tp.h}.
2517 ====
2518
2519 .`tracepoint()` usage with a complex tracepoint definition.
2520 ====
2521 Consider this complex tracepoint definition, where multiple event
2522 fields refer to the same input arguments in their argument expression
2523 parameter:
2524
2525 [source,c]
2526 .Tracepoint provider header file.
2527 ----
2528 /* For `struct stat` */
2529 #include <sys/types.h>
2530 #include <sys/stat.h>
2531 #include <unistd.h>
2532
2533 TRACEPOINT_EVENT(
2534 my_provider,
2535 my_tracepoint,
2536 TP_ARGS(
2537 int, my_int_arg,
2538 char*, my_str_arg,
2539 struct stat*, st
2540 ),
2541 TP_FIELDS(
2542 ctf_integer(int, my_constant_field, 23 + 17)
2543 ctf_integer(int, my_int_arg_field, my_int_arg)
2544 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2545 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2546 my_str_arg[2] + my_str_arg[3])
2547 ctf_string(my_str_arg_field, my_str_arg)
2548 ctf_integer_hex(off_t, size_field, st->st_size)
2549 ctf_float(double, size_dbl_field, (double) st->st_size)
2550 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2551 size_t, strlen(my_str_arg) / 2)
2552 )
2553 )
2554 ----
2555
2556 You can refer to this tracepoint definition with the `tracepoint()`
2557 macro in your application's source code like this:
2558
2559 [source,c]
2560 .Application's source file.
2561 ----
2562 #define TRACEPOINT_DEFINE
2563 #include "tp.h"
2564
2565 int main(void)
2566 {
2567 struct stat s;
2568
2569 stat("/etc/fstab", &s);
2570 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2571
2572 return 0;
2573 }
2574 ----
2575
2576 If you look at the event record that LTTng writes when tracing this
2577 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2578 it should look like this:
2579
2580 .Event record fields
2581 |====
2582 |Field's name |Field's value
2583 |`my_constant_field` |40
2584 |`my_int_arg_field` |23
2585 |`my_int_arg_field2` |529
2586 |`sum4_field` |389
2587 |`my_str_arg_field` |`Hello, World!`
2588 |`size_field` |0x12d
2589 |`size_dbl_field` |301.0
2590 |`half_my_str_arg_field` |`Hello,`
2591 |====
2592 ====
2593
2594 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2595 compute--they use the call stack, for example. To avoid this
2596 computation when the tracepoint is disabled, you can use the
2597 `tracepoint_enabled()` and `do_tracepoint()` macros.
2598
2599 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2600 is:
2601
2602 [source,c]
2603 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2604 ----
2605 tracepoint_enabled(provider_name, tracepoint_name)
2606 do_tracepoint(provider_name, tracepoint_name, ...)
2607 ----
2608
2609 Replace:
2610
2611 * `provider_name` with the tracepoint provider name.
2612 * `tracepoint_name` with the tracepoint name.
2613
2614 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2615 `tracepoint_name` from the provider named `provider_name` is enabled
2616 **at run time**.
2617
2618 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2619 if the tracepoint is enabled. Using `tracepoint()` with
2620 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2621 the `tracepoint_enabled()` check, thus a race condition is
2622 possible in this situation:
2623
2624 [source,c]
2625 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2626 ----
2627 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2628 stuff = prepare_stuff();
2629 }
2630
2631 tracepoint(my_provider, my_tracepoint, stuff);
2632 ----
2633
2634 If the tracepoint is enabled after the condition, then `stuff` is not
2635 prepared: the emitted event will either contain wrong data, or the whole
2636 application could crash (segmentation fault, for example).
2637
2638 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2639 `STAP_PROBEV()` call. If you need it, you must emit
2640 this call yourself.
2641
2642
2643 [[building-tracepoint-providers-and-user-application]]
2644 ==== Build and link a tracepoint provider package and an application
2645
2646 Once you have one or more <<tpp-header,tracepoint provider header
2647 files>> and a <<tpp-source,tracepoint provider package source file>>,
2648 you can create the tracepoint provider package by compiling its source
2649 file. From here, multiple build and run scenarios are possible. The
2650 following table shows common application and library configurations
2651 along with the required command lines to achieve them.
2652
2653 In the following diagrams, we use the following file names:
2654
2655 `app`::
2656 Executable application.
2657
2658 `app.o`::
2659 Application's object file.
2660
2661 `tpp.o`::
2662 Tracepoint provider package object file.
2663
2664 `tpp.a`::
2665 Tracepoint provider package archive file.
2666
2667 `libtpp.so`::
2668 Tracepoint provider package shared object file.
2669
2670 `emon.o`::
2671 User library object file.
2672
2673 `libemon.so`::
2674 User library shared object file.
2675
2676 We use the following symbols in the diagrams of table below:
2677
2678 [role="img-100"]
2679 .Symbols used in the build scenario diagrams.
2680 image::ust-sit-symbols.png[]
2681
2682 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2683 variable in the following instructions.
2684
2685 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2686 .Common tracepoint provider package scenarios.
2687 |====
2688 |Scenario |Instructions
2689
2690 |
2691 The instrumented application is statically linked with
2692 the tracepoint provider package object.
2693
2694 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2695
2696 |
2697 include::../common/ust-sit-step-tp-o.txt[]
2698
2699 To build the instrumented application:
2700
2701 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2702 +
2703 --
2704 [source,c]
2705 ----
2706 #define TRACEPOINT_DEFINE
2707 ----
2708 --
2709
2710 . Compile the application source file:
2711 +
2712 --
2713 [role="term"]
2714 ----
2715 gcc -c app.c
2716 ----
2717 --
2718
2719 . Build the application:
2720 +
2721 --
2722 [role="term"]
2723 ----
2724 gcc -o app app.o tpp.o -llttng-ust -ldl
2725 ----
2726 --
2727
2728 To run the instrumented application:
2729
2730 * Start the application:
2731 +
2732 --
2733 [role="term"]
2734 ----
2735 ./app
2736 ----
2737 --
2738
2739 |
2740 The instrumented application is statically linked with the
2741 tracepoint provider package archive file.
2742
2743 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2744
2745 |
2746 To create the tracepoint provider package archive file:
2747
2748 . Compile the <<tpp-source,tracepoint provider package source file>>:
2749 +
2750 --
2751 [role="term"]
2752 ----
2753 gcc -I. -c tpp.c
2754 ----
2755 --
2756
2757 . Create the tracepoint provider package archive file:
2758 +
2759 --
2760 [role="term"]
2761 ----
2762 ar rcs tpp.a tpp.o
2763 ----
2764 --
2765
2766 To build the instrumented application:
2767
2768 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2769 +
2770 --
2771 [source,c]
2772 ----
2773 #define TRACEPOINT_DEFINE
2774 ----
2775 --
2776
2777 . Compile the application source file:
2778 +
2779 --
2780 [role="term"]
2781 ----
2782 gcc -c app.c
2783 ----
2784 --
2785
2786 . Build the application:
2787 +
2788 --
2789 [role="term"]
2790 ----
2791 gcc -o app app.o tpp.a -llttng-ust -ldl
2792 ----
2793 --
2794
2795 To run the instrumented application:
2796
2797 * Start the application:
2798 +
2799 --
2800 [role="term"]
2801 ----
2802 ./app
2803 ----
2804 --
2805
2806 |
2807 The instrumented application is linked with the tracepoint provider
2808 package shared object.
2809
2810 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2811
2812 |
2813 include::../common/ust-sit-step-tp-so.txt[]
2814
2815 To build the instrumented application:
2816
2817 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2818 +
2819 --
2820 [source,c]
2821 ----
2822 #define TRACEPOINT_DEFINE
2823 ----
2824 --
2825
2826 . Compile the application source file:
2827 +
2828 --
2829 [role="term"]
2830 ----
2831 gcc -c app.c
2832 ----
2833 --
2834
2835 . Build the application:
2836 +
2837 --
2838 [role="term"]
2839 ----
2840 gcc -o app app.o -ldl -L. -ltpp
2841 ----
2842 --
2843
2844 To run the instrumented application:
2845
2846 * Start the application:
2847 +
2848 --
2849 [role="term"]
2850 ----
2851 ./app
2852 ----
2853 --
2854
2855 |
2856 The tracepoint provider package shared object is preloaded before the
2857 instrumented application starts.
2858
2859 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
2860
2861 |
2862 include::../common/ust-sit-step-tp-so.txt[]
2863
2864 To build the instrumented application:
2865
2866 . In path:{app.c}, before including path:{tpp.h}, add the
2867 following lines:
2868 +
2869 --
2870 [source,c]
2871 ----
2872 #define TRACEPOINT_DEFINE
2873 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2874 ----
2875 --
2876
2877 . Compile the application source file:
2878 +
2879 --
2880 [role="term"]
2881 ----
2882 gcc -c app.c
2883 ----
2884 --
2885
2886 . Build the application:
2887 +
2888 --
2889 [role="term"]
2890 ----
2891 gcc -o app app.o -ldl
2892 ----
2893 --
2894
2895 To run the instrumented application with tracing support:
2896
2897 * Preload the tracepoint provider package shared object and
2898 start the application:
2899 +
2900 --
2901 [role="term"]
2902 ----
2903 LD_PRELOAD=./libtpp.so ./app
2904 ----
2905 --
2906
2907 To run the instrumented application without tracing support:
2908
2909 * Start the application:
2910 +
2911 --
2912 [role="term"]
2913 ----
2914 ./app
2915 ----
2916 --
2917
2918 |
2919 The instrumented application dynamically loads the tracepoint provider
2920 package shared object.
2921
2922 See the <<dlclose-warning,warning about `dlclose()`>>.
2923
2924 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
2925
2926 |
2927 include::../common/ust-sit-step-tp-so.txt[]
2928
2929 To build the instrumented application:
2930
2931 . In path:{app.c}, before including path:{tpp.h}, add the
2932 following lines:
2933 +
2934 --
2935 [source,c]
2936 ----
2937 #define TRACEPOINT_DEFINE
2938 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2939 ----
2940 --
2941
2942 . Compile the application source file:
2943 +
2944 --
2945 [role="term"]
2946 ----
2947 gcc -c app.c
2948 ----
2949 --
2950
2951 . Build the application:
2952 +
2953 --
2954 [role="term"]
2955 ----
2956 gcc -o app app.o -ldl
2957 ----
2958 --
2959
2960 To run the instrumented application:
2961
2962 * Start the application:
2963 +
2964 --
2965 [role="term"]
2966 ----
2967 ./app
2968 ----
2969 --
2970
2971 |
2972 The application is linked with the instrumented user library.
2973
2974 The instrumented user library is statically linked with the tracepoint
2975 provider package object file.
2976
2977 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
2978
2979 |
2980 include::../common/ust-sit-step-tp-o-fpic.txt[]
2981
2982 To build the instrumented user library:
2983
2984 . In path:{emon.c}, before including path:{tpp.h}, add the
2985 following line:
2986 +
2987 --
2988 [source,c]
2989 ----
2990 #define TRACEPOINT_DEFINE
2991 ----
2992 --
2993
2994 . Compile the user library source file:
2995 +
2996 --
2997 [role="term"]
2998 ----
2999 gcc -I. -fpic -c emon.c
3000 ----
3001 --
3002
3003 . Build the user library shared object:
3004 +
3005 --
3006 [role="term"]
3007 ----
3008 gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
3009 ----
3010 --
3011
3012 To build the application:
3013
3014 . Compile the application source file:
3015 +
3016 --
3017 [role="term"]
3018 ----
3019 gcc -c app.c
3020 ----
3021 --
3022
3023 . Build the application:
3024 +
3025 --
3026 [role="term"]
3027 ----
3028 gcc -o app app.o -L. -lemon
3029 ----
3030 --
3031
3032 To run the application:
3033
3034 * Start the application:
3035 +
3036 --
3037 [role="term"]
3038 ----
3039 ./app
3040 ----
3041 --
3042
3043 |
3044 The application is linked with the instrumented user library.
3045
3046 The instrumented user library is linked with the tracepoint provider
3047 package shared object.
3048
3049 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3050
3051 |
3052 include::../common/ust-sit-step-tp-so.txt[]
3053
3054 To build the instrumented user library:
3055
3056 . In path:{emon.c}, before including path:{tpp.h}, add the
3057 following line:
3058 +
3059 --
3060 [source,c]
3061 ----
3062 #define TRACEPOINT_DEFINE
3063 ----
3064 --
3065
3066 . Compile the user library source file:
3067 +
3068 --
3069 [role="term"]
3070 ----
3071 gcc -I. -fpic -c emon.c
3072 ----
3073 --
3074
3075 . Build the user library shared object:
3076 +
3077 --
3078 [role="term"]
3079 ----
3080 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3081 ----
3082 --
3083
3084 To build the application:
3085
3086 . Compile the application source file:
3087 +
3088 --
3089 [role="term"]
3090 ----
3091 gcc -c app.c
3092 ----
3093 --
3094
3095 . Build the application:
3096 +
3097 --
3098 [role="term"]
3099 ----
3100 gcc -o app app.o -L. -lemon
3101 ----
3102 --
3103
3104 To run the application:
3105
3106 * Start the application:
3107 +
3108 --
3109 [role="term"]
3110 ----
3111 ./app
3112 ----
3113 --
3114
3115 |
3116 The tracepoint provider package shared object is preloaded before the
3117 application starts.
3118
3119 The application is linked with the instrumented user library.
3120
3121 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3122
3123 |
3124 include::../common/ust-sit-step-tp-so.txt[]
3125
3126 To build the instrumented user library:
3127
3128 . In path:{emon.c}, before including path:{tpp.h}, add the
3129 following lines:
3130 +
3131 --
3132 [source,c]
3133 ----
3134 #define TRACEPOINT_DEFINE
3135 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3136 ----
3137 --
3138
3139 . Compile the user library source file:
3140 +
3141 --
3142 [role="term"]
3143 ----
3144 gcc -I. -fpic -c emon.c
3145 ----
3146 --
3147
3148 . Build the user library shared object:
3149 +
3150 --
3151 [role="term"]
3152 ----
3153 gcc -shared -o libemon.so emon.o -ldl
3154 ----
3155 --
3156
3157 To build the application:
3158
3159 . Compile the application source file:
3160 +
3161 --
3162 [role="term"]
3163 ----
3164 gcc -c app.c
3165 ----
3166 --
3167
3168 . Build the application:
3169 +
3170 --
3171 [role="term"]
3172 ----
3173 gcc -o app app.o -L. -lemon
3174 ----
3175 --
3176
3177 To run the application with tracing support:
3178
3179 * Preload the tracepoint provider package shared object and
3180 start the application:
3181 +
3182 --
3183 [role="term"]
3184 ----
3185 LD_PRELOAD=./libtpp.so ./app
3186 ----
3187 --
3188
3189 To run the application without tracing support:
3190
3191 * Start the application:
3192 +
3193 --
3194 [role="term"]
3195 ----
3196 ./app
3197 ----
3198 --
3199
3200 |
3201 The application is linked with the instrumented user library.
3202
3203 The instrumented user library dynamically loads the tracepoint provider
3204 package shared object.
3205
3206 See the <<dlclose-warning,warning about `dlclose()`>>.
3207
3208 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3209
3210 |
3211 include::../common/ust-sit-step-tp-so.txt[]
3212
3213 To build the instrumented user library:
3214
3215 . In path:{emon.c}, before including path:{tpp.h}, add the
3216 following lines:
3217 +
3218 --
3219 [source,c]
3220 ----
3221 #define TRACEPOINT_DEFINE
3222 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3223 ----
3224 --
3225
3226 . Compile the user library source file:
3227 +
3228 --
3229 [role="term"]
3230 ----
3231 gcc -I. -fpic -c emon.c
3232 ----
3233 --
3234
3235 . Build the user library shared object:
3236 +
3237 --
3238 [role="term"]
3239 ----
3240 gcc -shared -o libemon.so emon.o -ldl
3241 ----
3242 --
3243
3244 To build the application:
3245
3246 . Compile the application source file:
3247 +
3248 --
3249 [role="term"]
3250 ----
3251 gcc -c app.c
3252 ----
3253 --
3254
3255 . Build the application:
3256 +
3257 --
3258 [role="term"]
3259 ----
3260 gcc -o app app.o -L. -lemon
3261 ----
3262 --
3263
3264 To run the application:
3265
3266 * Start the application:
3267 +
3268 --
3269 [role="term"]
3270 ----
3271 ./app
3272 ----
3273 --
3274
3275 |
3276 The application dynamically loads the instrumented user library.
3277
3278 The instrumented user library is linked with the tracepoint provider
3279 package shared object.
3280
3281 See the <<dlclose-warning,warning about `dlclose()`>>.
3282
3283 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3284
3285 |
3286 include::../common/ust-sit-step-tp-so.txt[]
3287
3288 To build the instrumented user library:
3289
3290 . In path:{emon.c}, before including path:{tpp.h}, add the
3291 following line:
3292 +
3293 --
3294 [source,c]
3295 ----
3296 #define TRACEPOINT_DEFINE
3297 ----
3298 --
3299
3300 . Compile the user library source file:
3301 +
3302 --
3303 [role="term"]
3304 ----
3305 gcc -I. -fpic -c emon.c
3306 ----
3307 --
3308
3309 . Build the user library shared object:
3310 +
3311 --
3312 [role="term"]
3313 ----
3314 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3315 ----
3316 --
3317
3318 To build the application:
3319
3320 . Compile the application source file:
3321 +
3322 --
3323 [role="term"]
3324 ----
3325 gcc -c app.c
3326 ----
3327 --
3328
3329 . Build the application:
3330 +
3331 --
3332 [role="term"]
3333 ----
3334 gcc -o app app.o -ldl -L. -lemon
3335 ----
3336 --
3337
3338 To run the application:
3339
3340 * Start the application:
3341 +
3342 --
3343 [role="term"]
3344 ----
3345 ./app
3346 ----
3347 --
3348
3349 |
3350 The application dynamically loads the instrumented user library.
3351
3352 The instrumented user library dynamically loads the tracepoint provider
3353 package shared object.
3354
3355 See the <<dlclose-warning,warning about `dlclose()`>>.
3356
3357 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3358
3359 |
3360 include::../common/ust-sit-step-tp-so.txt[]
3361
3362 To build the instrumented user library:
3363
3364 . In path:{emon.c}, before including path:{tpp.h}, add the
3365 following lines:
3366 +
3367 --
3368 [source,c]
3369 ----
3370 #define TRACEPOINT_DEFINE
3371 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3372 ----
3373 --
3374
3375 . Compile the user library source file:
3376 +
3377 --
3378 [role="term"]
3379 ----
3380 gcc -I. -fpic -c emon.c
3381 ----
3382 --
3383
3384 . Build the user library shared object:
3385 +
3386 --
3387 [role="term"]
3388 ----
3389 gcc -shared -o libemon.so emon.o -ldl
3390 ----
3391 --
3392
3393 To build the application:
3394
3395 . Compile the application source file:
3396 +
3397 --
3398 [role="term"]
3399 ----
3400 gcc -c app.c
3401 ----
3402 --
3403
3404 . Build the application:
3405 +
3406 --
3407 [role="term"]
3408 ----
3409 gcc -o app app.o -ldl -L. -lemon
3410 ----
3411 --
3412
3413 To run the application:
3414
3415 * Start the application:
3416 +
3417 --
3418 [role="term"]
3419 ----
3420 ./app
3421 ----
3422 --
3423
3424 |
3425 The tracepoint provider package shared object is preloaded before the
3426 application starts.
3427
3428 The application dynamically loads the instrumented user library.
3429
3430 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3431
3432 |
3433 include::../common/ust-sit-step-tp-so.txt[]
3434
3435 To build the instrumented user library:
3436
3437 . In path:{emon.c}, before including path:{tpp.h}, add the
3438 following lines:
3439 +
3440 --
3441 [source,c]
3442 ----
3443 #define TRACEPOINT_DEFINE
3444 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3445 ----
3446 --
3447
3448 . Compile the user library source file:
3449 +
3450 --
3451 [role="term"]
3452 ----
3453 gcc -I. -fpic -c emon.c
3454 ----
3455 --
3456
3457 . Build the user library shared object:
3458 +
3459 --
3460 [role="term"]
3461 ----
3462 gcc -shared -o libemon.so emon.o -ldl
3463 ----
3464 --
3465
3466 To build the application:
3467
3468 . Compile the application source file:
3469 +
3470 --
3471 [role="term"]
3472 ----
3473 gcc -c app.c
3474 ----
3475 --
3476
3477 . Build the application:
3478 +
3479 --
3480 [role="term"]
3481 ----
3482 gcc -o app app.o -L. -lemon
3483 ----
3484 --
3485
3486 To run the application with tracing support:
3487
3488 * Preload the tracepoint provider package shared object and
3489 start the application:
3490 +
3491 --
3492 [role="term"]
3493 ----
3494 LD_PRELOAD=./libtpp.so ./app
3495 ----
3496 --
3497
3498 To run the application without tracing support:
3499
3500 * Start the application:
3501 +
3502 --
3503 [role="term"]
3504 ----
3505 ./app
3506 ----
3507 --
3508
3509 |
3510 The application is statically linked with the tracepoint provider
3511 package object file.
3512
3513 The application is linked with the instrumented user library.
3514
3515 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3516
3517 |
3518 include::../common/ust-sit-step-tp-o.txt[]
3519
3520 To build the instrumented user library:
3521
3522 . In path:{emon.c}, before including path:{tpp.h}, add the
3523 following line:
3524 +
3525 --
3526 [source,c]
3527 ----
3528 #define TRACEPOINT_DEFINE
3529 ----
3530 --
3531
3532 . Compile the user library source file:
3533 +
3534 --
3535 [role="term"]
3536 ----
3537 gcc -I. -fpic -c emon.c
3538 ----
3539 --
3540
3541 . Build the user library shared object:
3542 +
3543 --
3544 [role="term"]
3545 ----
3546 gcc -shared -o libemon.so emon.o
3547 ----
3548 --
3549
3550 To build the application:
3551
3552 . Compile the application source file:
3553 +
3554 --
3555 [role="term"]
3556 ----
3557 gcc -c app.c
3558 ----
3559 --
3560
3561 . Build the application:
3562 +
3563 --
3564 [role="term"]
3565 ----
3566 gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3567 ----
3568 --
3569
3570 To run the instrumented application:
3571
3572 * Start the application:
3573 +
3574 --
3575 [role="term"]
3576 ----
3577 ./app
3578 ----
3579 --
3580
3581 |
3582 The application is statically linked with the tracepoint provider
3583 package object file.
3584
3585 The application dynamically loads the instrumented user library.
3586
3587 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3588
3589 |
3590 include::../common/ust-sit-step-tp-o.txt[]
3591
3592 To build the application:
3593
3594 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3595 +
3596 --
3597 [source,c]
3598 ----
3599 #define TRACEPOINT_DEFINE
3600 ----
3601 --
3602
3603 . Compile the application source file:
3604 +
3605 --
3606 [role="term"]
3607 ----
3608 gcc -c app.c
3609 ----
3610 --
3611
3612 . Build the application:
3613 +
3614 --
3615 [role="term"]
3616 ----
3617 gcc -Wl,--export-dynamic -o app app.o tpp.o \
3618 -llttng-ust -ldl
3619 ----
3620 --
3621 +
3622 The `--export-dynamic` option passed to the linker is necessary for the
3623 dynamically loaded library to ``see'' the tracepoint symbols defined in
3624 the application.
3625
3626 To build the instrumented user library:
3627
3628 . Compile the user library source file:
3629 +
3630 --
3631 [role="term"]
3632 ----
3633 gcc -I. -fpic -c emon.c
3634 ----
3635 --
3636
3637 . Build the user library shared object:
3638 +
3639 --
3640 [role="term"]
3641 ----
3642 gcc -shared -o libemon.so emon.o
3643 ----
3644 --
3645
3646 To run the application:
3647
3648 * Start the application:
3649 +
3650 --
3651 [role="term"]
3652 ----
3653 ./app
3654 ----
3655 --
3656 |====
3657
3658 [[dlclose-warning]]
3659 [IMPORTANT]
3660 .Do not use man:dlclose(3) on a tracepoint provider package
3661 ====
3662 Never use man:dlclose(3) on any shared object which:
3663
3664 * Is linked with, statically or dynamically, a tracepoint provider
3665 package.
3666 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3667 package shared object.
3668
3669 This is currently considered **unsafe** due to a lack of reference
3670 counting from LTTng-UST to the shared object.
3671
3672 A known workaround (available since glibc 2.2) is to use the
3673 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3674 effect of not unloading the loaded shared object, even if man:dlclose(3)
3675 is called.
3676
3677 You can also preload the tracepoint provider package shared object with
3678 the env:LD_PRELOAD environment variable to overcome this limitation.
3679 ====
3680
3681
3682 [[using-lttng-ust-with-daemons]]
3683 ===== Use noch:{LTTng-UST} with daemons
3684
3685 If your instrumented application calls man:fork(2), man:clone(2),
3686 or BSD's man:rfork(2), without a following man:exec(3)-family
3687 system call, you must preload the path:{liblttng-ust-fork.so} shared
3688 object when you start the application.
3689
3690 [role="term"]
3691 ----
3692 LD_PRELOAD=liblttng-ust-fork.so ./my-app
3693 ----
3694
3695 If your tracepoint provider package is
3696 a shared library which you also preload, you must put both
3697 shared objects in env:LD_PRELOAD:
3698
3699 [role="term"]
3700 ----
3701 LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3702 ----
3703
3704
3705 [role="since-2.9"]
3706 [[liblttng-ust-fd]]
3707 ===== Use noch:{LTTng-UST} with applications which close file descriptors that don't belong to them
3708
3709 If your instrumented application closes one or more file descriptors
3710 which it did not open itself, you must preload the
3711 path:{liblttng-ust-fd.so} shared object when you start the application:
3712
3713 [role="term"]
3714 ----
3715 LD_PRELOAD=liblttng-ust-fd.so ./my-app
3716 ----
3717
3718 Typical use cases include closing all the file descriptors after
3719 man:fork(2) or man:rfork(2) and buggy applications doing
3720 ``double closes''.
3721
3722
3723 [[lttng-ust-pkg-config]]
3724 ===== Use noch:{pkg-config}
3725
3726 On some distributions, LTTng-UST ships with a
3727 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3728 metadata file. If this is your case, then you can use cmd:pkg-config to
3729 build an application on the command line:
3730
3731 [role="term"]
3732 ----
3733 gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3734 ----
3735
3736
3737 [[instrumenting-32-bit-app-on-64-bit-system]]
3738 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3739
3740 In order to trace a 32-bit application running on a 64-bit system,
3741 LTTng must use a dedicated 32-bit
3742 <<lttng-consumerd,consumer daemon>>.
3743
3744 The following steps show how to build and install a 32-bit consumer
3745 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3746 build and install the 32-bit LTTng-UST libraries, and how to build and
3747 link an instrumented 32-bit application in that context.
3748
3749 To build a 32-bit instrumented application for a 64-bit target system,
3750 assuming you have a fresh target system with no installed Userspace RCU
3751 or LTTng packages:
3752
3753 . Download, build, and install a 32-bit version of Userspace RCU:
3754 +
3755 --
3756 [role="term"]
3757 ----
3758 cd $(mktemp -d) &&
3759 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3760 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3761 cd userspace-rcu-0.9.* &&
3762 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3763 make &&
3764 sudo make install &&
3765 sudo ldconfig
3766 ----
3767 --
3768
3769 . Using your distribution's package manager, or from source, install
3770 the following 32-bit versions of the following dependencies of
3771 LTTng-tools and LTTng-UST:
3772 +
3773 --
3774 * https://sourceforge.net/projects/libuuid/[libuuid]
3775 * http://directory.fsf.org/wiki/Popt[popt]
3776 * http://www.xmlsoft.org/[libxml2]
3777 --
3778
3779 . Download, build, and install a 32-bit version of the latest
3780 LTTng-UST{nbsp}{revision}:
3781 +
3782 --
3783 [role="term"]
3784 ----
3785 cd $(mktemp -d) &&
3786 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.9.tar.bz2 &&
3787 tar -xf lttng-ust-latest-2.9.tar.bz2 &&
3788 cd lttng-ust-2.9.* &&
3789 ./configure --libdir=/usr/local/lib32 \
3790 CFLAGS=-m32 CXXFLAGS=-m32 \
3791 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3792 make &&
3793 sudo make install &&
3794 sudo ldconfig
3795 ----
3796 --
3797 +
3798 [NOTE]
3799 ====
3800 Depending on your distribution,
3801 32-bit libraries could be installed at a different location than
3802 `/usr/lib32`. For example, Debian is known to install
3803 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3804
3805 In this case, make sure to set `LDFLAGS` to all the
3806 relevant 32-bit library paths, for example:
3807
3808 [role="term"]
3809 ----
3810 LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3811 ----
3812 ====
3813
3814 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3815 the 32-bit consumer daemon:
3816 +
3817 --
3818 [role="term"]
3819 ----
3820 cd $(mktemp -d) &&
3821 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.9.tar.bz2 &&
3822 tar -xf lttng-tools-latest-2.9.tar.bz2 &&
3823 cd lttng-tools-2.9.* &&
3824 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3825 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3826 make &&
3827 cd src/bin/lttng-consumerd &&
3828 sudo make install &&
3829 sudo ldconfig
3830 ----
3831 --
3832
3833 . From your distribution or from source,
3834 <<installing-lttng,install>> the 64-bit versions of
3835 LTTng-UST and Userspace RCU.
3836 . Download, build, and install the 64-bit version of the
3837 latest LTTng-tools{nbsp}{revision}:
3838 +
3839 --
3840 [role="term"]
3841 ----
3842 cd $(mktemp -d) &&
3843 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.9.tar.bz2 &&
3844 tar -xf lttng-tools-latest-2.9.tar.bz2 &&
3845 cd lttng-tools-2.9.* &&
3846 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
3847 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
3848 make &&
3849 sudo make install &&
3850 sudo ldconfig
3851 ----
3852 --
3853
3854 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
3855 when linking your 32-bit application:
3856 +
3857 ----
3858 -m32 -L/usr/lib32 -L/usr/local/lib32 \
3859 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
3860 ----
3861 +
3862 For example, let's rebuild the quick start example in
3863 <<tracing-your-own-user-application,Trace a user application>> as an
3864 instrumented 32-bit application:
3865 +
3866 --
3867 [role="term"]
3868 ----
3869 gcc -m32 -c -I. hello-tp.c
3870 gcc -m32 -c hello.c
3871 gcc -m32 -o hello hello.o hello-tp.o \
3872 -L/usr/lib32 -L/usr/local/lib32 \
3873 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
3874 -llttng-ust -ldl
3875 ----
3876 --
3877
3878 No special action is required to execute the 32-bit application and
3879 to trace it: use the command-line man:lttng(1) tool as usual.
3880
3881
3882 [role="since-2.5"]
3883 [[tracef]]
3884 ==== Use `tracef()`
3885
3886 man:tracef(3) is a small LTTng-UST API designed for quick,
3887 man:printf(3)-like instrumentation without the burden of
3888 <<tracepoint-provider,creating>> and
3889 <<building-tracepoint-providers-and-user-application,building>>
3890 a tracepoint provider package.
3891
3892 To use `tracef()` in your application:
3893
3894 . In the C or C++ source files where you need to use `tracef()`,
3895 include `<lttng/tracef.h>`:
3896 +
3897 --
3898 [source,c]
3899 ----
3900 #include <lttng/tracef.h>
3901 ----
3902 --
3903
3904 . In the application's source code, use `tracef()` like you would use
3905 man:printf(3):
3906 +
3907 --
3908 [source,c]
3909 ----
3910 /* ... */
3911
3912 tracef("my message: %d (%s)", my_integer, my_string);
3913
3914 /* ... */
3915 ----
3916 --
3917
3918 . Link your application with `liblttng-ust`:
3919 +
3920 --
3921 [role="term"]
3922 ----
3923 gcc -o app app.c -llttng-ust
3924 ----
3925 --
3926
3927 To trace the events that `tracef()` calls emit:
3928
3929 * <<enabling-disabling-events,Create an event rule>> which matches the
3930 `lttng_ust_tracef:*` event name:
3931 +
3932 --
3933 [role="term"]
3934 ----
3935 lttng enable-event --userspace 'lttng_ust_tracef:*'
3936 ----
3937 --
3938
3939 [IMPORTANT]
3940 .Limitations of `tracef()`
3941 ====
3942 The `tracef()` utility function was developed to make user space tracing
3943 super simple, albeit with notable disadvantages compared to
3944 <<defining-tracepoints,user-defined tracepoints>>:
3945
3946 * All the emitted events have the same tracepoint provider and
3947 tracepoint names, respectively `lttng_ust_tracef` and `event`.
3948 * There is no static type checking.
3949 * The only event record field you actually get, named `msg`, is a string
3950 potentially containing the values you passed to `tracef()`
3951 using your own format string. This also means that you cannot filter
3952 events with a custom expression at run time because there are no
3953 isolated fields.
3954 * Since `tracef()` uses the C standard library's man:vasprintf(3)
3955 function behind the scenes to format the strings at run time, its
3956 expected performance is lower than with user-defined tracepoints,
3957 which do not require a conversion to a string.
3958
3959 Taking this into consideration, `tracef()` is useful for some quick
3960 prototyping and debugging, but you should not consider it for any
3961 permanent and serious applicative instrumentation.
3962 ====
3963
3964
3965 [role="since-2.7"]
3966 [[tracelog]]
3967 ==== Use `tracelog()`
3968
3969 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
3970 the difference that it accepts an additional log level parameter.
3971
3972 The goal of `tracelog()` is to ease the migration from logging to
3973 tracing.
3974
3975 To use `tracelog()` in your application:
3976
3977 . In the C or C++ source files where you need to use `tracelog()`,
3978 include `<lttng/tracelog.h>`:
3979 +
3980 --
3981 [source,c]
3982 ----
3983 #include <lttng/tracelog.h>
3984 ----
3985 --
3986
3987 . In the application's source code, use `tracelog()` like you would use
3988 man:printf(3), except for the first parameter which is the log
3989 level:
3990 +
3991 --
3992 [source,c]
3993 ----
3994 /* ... */
3995
3996 tracelog(TRACE_WARNING, "my message: %d (%s)",
3997 my_integer, my_string);
3998
3999 /* ... */
4000 ----
4001 --
4002 +
4003 See man:lttng-ust(3) for a list of available log level names.
4004
4005 . Link your application with `liblttng-ust`:
4006 +
4007 --
4008 [role="term"]
4009 ----
4010 gcc -o app app.c -llttng-ust
4011 ----
4012 --
4013
4014 To trace the events that `tracelog()` calls emit with a log level
4015 _as severe as_ a specific log level:
4016
4017 * <<enabling-disabling-events,Create an event rule>> which matches the
4018 `lttng_ust_tracelog:*` event name and a minimum level
4019 of severity:
4020 +
4021 --
4022 [role="term"]
4023 ----
4024 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4025 --loglevel=TRACE_WARNING
4026 ----
4027 --
4028
4029 To trace the events that `tracelog()` calls emit with a
4030 _specific log level_:
4031
4032 * Create an event rule which matches the `lttng_ust_tracelog:*`
4033 event name and a specific log level:
4034 +
4035 --
4036 [role="term"]
4037 ----
4038 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4039 --loglevel-only=TRACE_INFO
4040 ----
4041 --
4042
4043
4044 [[prebuilt-ust-helpers]]
4045 === Prebuilt user space tracing helpers
4046
4047 The LTTng-UST package provides a few helpers in the form or preloadable
4048 shared objects which automatically instrument system functions and
4049 calls.
4050
4051 The helper shared objects are normally found in dir:{/usr/lib}. If you
4052 built LTTng-UST <<building-from-source,from source>>, they are probably
4053 located in dir:{/usr/local/lib}.
4054
4055 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4056 are:
4057
4058 path:{liblttng-ust-libc-wrapper.so}::
4059 path:{liblttng-ust-pthread-wrapper.so}::
4060 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4061 memory and POSIX threads function tracing>>.
4062
4063 path:{liblttng-ust-cyg-profile.so}::
4064 path:{liblttng-ust-cyg-profile-fast.so}::
4065 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4066
4067 path:{liblttng-ust-dl.so}::
4068 <<liblttng-ust-dl,Dynamic linker tracing>>.
4069
4070 To use a user space tracing helper with any user application:
4071
4072 * Preload the helper shared object when you start the application:
4073 +
4074 --
4075 [role="term"]
4076 ----
4077 LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4078 ----
4079 --
4080 +
4081 You can preload more than one helper:
4082 +
4083 --
4084 [role="term"]
4085 ----
4086 LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4087 ----
4088 --
4089
4090
4091 [role="since-2.3"]
4092 [[liblttng-ust-libc-pthread-wrapper]]
4093 ==== Instrument C standard library memory and POSIX threads functions
4094
4095 The path:{liblttng-ust-libc-wrapper.so} and
4096 path:{liblttng-ust-pthread-wrapper.so} helpers
4097 add instrumentation to some C standard library and POSIX
4098 threads functions.
4099
4100 [role="growable"]
4101 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4102 |====
4103 |TP provider name |TP name |Instrumented function
4104
4105 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4106 |`calloc` |man:calloc(3)
4107 |`realloc` |man:realloc(3)
4108 |`free` |man:free(3)
4109 |`memalign` |man:memalign(3)
4110 |`posix_memalign` |man:posix_memalign(3)
4111 |====
4112
4113 [role="growable"]
4114 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4115 |====
4116 |TP provider name |TP name |Instrumented function
4117
4118 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4119 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4120 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4121 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4122 |====
4123
4124 When you preload the shared object, it replaces the functions listed
4125 in the previous tables by wrappers which contain tracepoints and call
4126 the replaced functions.
4127
4128
4129 [[liblttng-ust-cyg-profile]]
4130 ==== Instrument function entry and exit
4131
4132 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4133 to the entry and exit points of functions.
4134
4135 man:gcc(1) and man:clang(1) have an option named
4136 https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html[`-finstrument-functions`]
4137 which generates instrumentation calls for entry and exit to functions.
4138 The LTTng-UST function tracing helpers,
4139 path:{liblttng-ust-cyg-profile.so} and
4140 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4141 to add tracepoints to the two generated functions (which contain
4142 `cyg_profile` in their names, hence the helper's name).
4143
4144 To use the LTTng-UST function tracing helper, the source files to
4145 instrument must be built using the `-finstrument-functions` compiler
4146 flag.
4147
4148 There are two versions of the LTTng-UST function tracing helper:
4149
4150 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4151 that you should only use when it can be _guaranteed_ that the
4152 complete event stream is recorded without any lost event record.
4153 Any kind of duplicate information is left out.
4154 +
4155 Assuming no event record is lost, having only the function addresses on
4156 entry is enough to create a call graph, since an event record always
4157 contains the ID of the CPU that generated it.
4158 +
4159 You can use a tool like man:addr2line(1) to convert function addresses
4160 back to source file names and line numbers.
4161
4162 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4163 which also works in use cases where event records might get discarded or
4164 not recorded from application startup.
4165 In these cases, the trace analyzer needs more information to be
4166 able to reconstruct the program flow.
4167
4168 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4169 points of this helper.
4170
4171 All the tracepoints that this helper provides have the
4172 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4173
4174 TIP: It's sometimes a good idea to limit the number of source files that
4175 you compile with the `-finstrument-functions` option to prevent LTTng
4176 from writing an excessive amount of trace data at run time. When using
4177 man:gcc(1), you can use the
4178 `-finstrument-functions-exclude-function-list` option to avoid
4179 instrument entries and exits of specific function names.
4180
4181
4182 [role="since-2.4"]
4183 [[liblttng-ust-dl]]
4184 ==== Instrument the dynamic linker
4185
4186 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4187 man:dlopen(3) and man:dlclose(3) function calls.
4188
4189 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4190 of this helper.
4191
4192
4193 [role="since-2.4"]
4194 [[java-application]]
4195 === User space Java agent
4196
4197 You can instrument any Java application which uses one of the following
4198 logging frameworks:
4199
4200 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4201 (JUL) core logging facilities.
4202 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4203 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4204
4205 [role="img-100"]
4206 .LTTng-UST Java agent imported by a Java application.
4207 image::java-app.png[]
4208
4209 Note that the methods described below are new in LTTng{nbsp}{revision}.
4210 Previous LTTng versions use another technique.
4211
4212 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4213 and https://ci.lttng.org/[continuous integration], thus this version is
4214 directly supported. However, the LTTng-UST Java agent is also tested
4215 with OpenJDK{nbsp}7.
4216
4217
4218 [role="since-2.8"]
4219 [[jul]]
4220 ==== Use the LTTng-UST Java agent for `java.util.logging`
4221
4222 To use the LTTng-UST Java agent in a Java application which uses
4223 `java.util.logging` (JUL):
4224
4225 . In the Java application's source code, import the LTTng-UST
4226 log handler package for `java.util.logging`:
4227 +
4228 --
4229 [source,java]
4230 ----
4231 import org.lttng.ust.agent.jul.LttngLogHandler;
4232 ----
4233 --
4234
4235 . Create an LTTng-UST JUL log handler:
4236 +
4237 --
4238 [source,java]
4239 ----
4240 Handler lttngUstLogHandler = new LttngLogHandler();
4241 ----
4242 --
4243
4244 . Add this handler to the JUL loggers which should emit LTTng events:
4245 +
4246 --
4247 [source,java]
4248 ----
4249 Logger myLogger = Logger.getLogger("some-logger");
4250
4251 myLogger.addHandler(lttngUstLogHandler);
4252 ----
4253 --
4254
4255 . Use `java.util.logging` log statements and configuration as usual.
4256 The loggers with an attached LTTng-UST log handler can emit
4257 LTTng events.
4258
4259 . Before exiting the application, remove the LTTng-UST log handler from
4260 the loggers attached to it and call its `close()` method:
4261 +
4262 --
4263 [source,java]
4264 ----
4265 myLogger.removeHandler(lttngUstLogHandler);
4266 lttngUstLogHandler.close();
4267 ----
4268 --
4269 +
4270 This is not strictly necessary, but it is recommended for a clean
4271 disposal of the handler's resources.
4272
4273 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4274 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4275 in the
4276 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4277 path] when you build the Java application.
4278 +
4279 The JAR files are typically located in dir:{/usr/share/java}.
4280 +
4281 IMPORTANT: The LTTng-UST Java agent must be
4282 <<installing-lttng,installed>> for the logging framework your
4283 application uses.
4284
4285 .Use the LTTng-UST Java agent for `java.util.logging`.
4286 ====
4287 [source,java]
4288 .path:{Test.java}
4289 ----
4290 import java.io.IOException;
4291 import java.util.logging.Handler;
4292 import java.util.logging.Logger;
4293 import org.lttng.ust.agent.jul.LttngLogHandler;
4294
4295 public class Test
4296 {
4297 private static final int answer = 42;
4298
4299 public static void main(String[] argv) throws Exception
4300 {
4301 // Create a logger
4302 Logger logger = Logger.getLogger("jello");
4303
4304 // Create an LTTng-UST log handler
4305 Handler lttngUstLogHandler = new LttngLogHandler();
4306
4307 // Add the LTTng-UST log handler to our logger
4308 logger.addHandler(lttngUstLogHandler);
4309
4310 // Log at will!
4311 logger.info("some info");
4312 logger.warning("some warning");
4313 Thread.sleep(500);
4314 logger.finer("finer information; the answer is " + answer);
4315 Thread.sleep(123);
4316 logger.severe("error!");
4317
4318 // Not mandatory, but cleaner
4319 logger.removeHandler(lttngUstLogHandler);
4320 lttngUstLogHandler.close();
4321 }
4322 }
4323 ----
4324
4325 Build this example:
4326
4327 [role="term"]
4328 ----
4329 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4330 ----
4331
4332 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4333 <<enabling-disabling-events,create an event rule>> matching the
4334 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4335
4336 [role="term"]
4337 ----
4338 lttng create
4339 lttng enable-event --jul jello
4340 lttng start
4341 ----
4342
4343 Run the compiled class:
4344
4345 [role="term"]
4346 ----
4347 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4348 ----
4349
4350 <<basic-tracing-session-control,Stop tracing>> and inspect the
4351 recorded events:
4352
4353 [role="term"]
4354 ----
4355 lttng stop
4356 lttng view
4357 ----
4358 ====
4359
4360 In the resulting trace, an <<event,event record>> generated by a Java
4361 application using `java.util.logging` is named `lttng_jul:event` and
4362 has the following fields:
4363
4364 `msg`::
4365 Log record's message.
4366
4367 `logger_name`::
4368 Logger name.
4369
4370 `class_name`::
4371 Name of the class in which the log statement was executed.
4372
4373 `method_name`::
4374 Name of the method in which the log statement was executed.
4375
4376 `long_millis`::
4377 Logging time (timestamp in milliseconds).
4378
4379 `int_loglevel`::
4380 Log level integer value.
4381
4382 `int_threadid`::
4383 ID of the thread in which the log statement was executed.
4384
4385 You can use the opt:lttng-enable-event(1):--loglevel or
4386 opt:lttng-enable-event(1):--loglevel-only option of the
4387 man:lttng-enable-event(1) command to target a range of JUL log levels
4388 or a specific JUL log level.
4389
4390
4391 [role="since-2.8"]
4392 [[log4j]]
4393 ==== Use the LTTng-UST Java agent for Apache log4j
4394
4395 To use the LTTng-UST Java agent in a Java application which uses
4396 Apache log4j 1.2:
4397
4398 . In the Java application's source code, import the LTTng-UST
4399 log appender package for Apache log4j:
4400 +
4401 --
4402 [source,java]
4403 ----
4404 import org.lttng.ust.agent.log4j.LttngLogAppender;
4405 ----
4406 --
4407
4408 . Create an LTTng-UST log4j log appender:
4409 +
4410 --
4411 [source,java]
4412 ----
4413 Appender lttngUstLogAppender = new LttngLogAppender();
4414 ----
4415 --
4416
4417 . Add this appender to the log4j loggers which should emit LTTng events:
4418 +
4419 --
4420 [source,java]
4421 ----
4422 Logger myLogger = Logger.getLogger("some-logger");
4423
4424 myLogger.addAppender(lttngUstLogAppender);
4425 ----
4426 --
4427
4428 . Use Apache log4j log statements and configuration as usual. The
4429 loggers with an attached LTTng-UST log appender can emit LTTng events.
4430
4431 . Before exiting the application, remove the LTTng-UST log appender from
4432 the loggers attached to it and call its `close()` method:
4433 +
4434 --
4435 [source,java]
4436 ----
4437 myLogger.removeAppender(lttngUstLogAppender);
4438 lttngUstLogAppender.close();
4439 ----
4440 --
4441 +
4442 This is not strictly necessary, but it is recommended for a clean
4443 disposal of the appender's resources.
4444
4445 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4446 files, path:{lttng-ust-agent-common.jar} and
4447 path:{lttng-ust-agent-log4j.jar}, in the
4448 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4449 path] when you build the Java application.
4450 +
4451 The JAR files are typically located in dir:{/usr/share/java}.
4452 +
4453 IMPORTANT: The LTTng-UST Java agent must be
4454 <<installing-lttng,installed>> for the logging framework your
4455 application uses.
4456
4457 .Use the LTTng-UST Java agent for Apache log4j.
4458 ====
4459 [source,java]
4460 .path:{Test.java}
4461 ----
4462 import org.apache.log4j.Appender;
4463 import org.apache.log4j.Logger;
4464 import org.lttng.ust.agent.log4j.LttngLogAppender;
4465
4466 public class Test
4467 {
4468 private static final int answer = 42;
4469
4470 public static void main(String[] argv) throws Exception
4471 {
4472 // Create a logger
4473 Logger logger = Logger.getLogger("jello");
4474
4475 // Create an LTTng-UST log appender
4476 Appender lttngUstLogAppender = new LttngLogAppender();
4477
4478 // Add the LTTng-UST log appender to our logger
4479 logger.addAppender(lttngUstLogAppender);
4480
4481 // Log at will!
4482 logger.info("some info");
4483 logger.warn("some warning");
4484 Thread.sleep(500);
4485 logger.debug("debug information; the answer is " + answer);
4486 Thread.sleep(123);
4487 logger.fatal("error!");
4488
4489 // Not mandatory, but cleaner
4490 logger.removeAppender(lttngUstLogAppender);
4491 lttngUstLogAppender.close();
4492 }
4493 }
4494
4495 ----
4496
4497 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4498 file):
4499
4500 [role="term"]
4501 ----
4502 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4503 ----
4504
4505 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4506 <<enabling-disabling-events,create an event rule>> matching the
4507 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4508
4509 [role="term"]
4510 ----
4511 lttng create
4512 lttng enable-event --log4j jello
4513 lttng start
4514 ----
4515
4516 Run the compiled class:
4517
4518 [role="term"]
4519 ----
4520 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4521 ----
4522
4523 <<basic-tracing-session-control,Stop tracing>> and inspect the
4524 recorded events:
4525
4526 [role="term"]
4527 ----
4528 lttng stop
4529 lttng view
4530 ----
4531 ====
4532
4533 In the resulting trace, an <<event,event record>> generated by a Java
4534 application using log4j is named `lttng_log4j:event` and
4535 has the following fields:
4536
4537 `msg`::
4538 Log record's message.
4539
4540 `logger_name`::
4541 Logger name.
4542
4543 `class_name`::
4544 Name of the class in which the log statement was executed.
4545
4546 `method_name`::
4547 Name of the method in which the log statement was executed.
4548
4549 `filename`::
4550 Name of the file in which the executed log statement is located.
4551
4552 `line_number`::
4553 Line number at which the log statement was executed.
4554
4555 `timestamp`::
4556 Logging timestamp.
4557
4558 `int_loglevel`::
4559 Log level integer value.
4560
4561 `thread_name`::
4562 Name of the Java thread in which the log statement was executed.
4563
4564 You can use the opt:lttng-enable-event(1):--loglevel or
4565 opt:lttng-enable-event(1):--loglevel-only option of the
4566 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4567 or a specific log4j log level.
4568
4569
4570 [role="since-2.8"]
4571 [[java-application-context]]
4572 ==== Provide application-specific context fields in a Java application
4573
4574 A Java application-specific context field is a piece of state provided
4575 by the application which <<adding-context,you can add>>, using the
4576 man:lttng-add-context(1) command, to each <<event,event record>>
4577 produced by the log statements of this application.
4578
4579 For example, a given object might have a current request ID variable.
4580 You can create a context information retriever for this object and
4581 assign a name to this current request ID. You can then, using the
4582 man:lttng-add-context(1) command, add this context field by name to
4583 the JUL or log4j <<channel,channel>>.
4584
4585 To provide application-specific context fields in a Java application:
4586
4587 . In the Java application's source code, import the LTTng-UST
4588 Java agent context classes and interfaces:
4589 +
4590 --
4591 [source,java]
4592 ----
4593 import org.lttng.ust.agent.context.ContextInfoManager;
4594 import org.lttng.ust.agent.context.IContextInfoRetriever;
4595 ----
4596 --
4597
4598 . Create a context information retriever class, that is, a class which
4599 implements the `IContextInfoRetriever` interface:
4600 +
4601 --
4602 [source,java]
4603 ----
4604 class MyContextInfoRetriever implements IContextInfoRetriever
4605 {
4606 @Override
4607 public Object retrieveContextInfo(String key)
4608 {
4609 if (key.equals("intCtx")) {
4610 return (short) 17;
4611 } else if (key.equals("strContext")) {
4612 return "context value!";
4613 } else {
4614 return null;
4615 }
4616 }
4617 }
4618 ----
4619 --
4620 +
4621 This `retrieveContextInfo()` method is the only member of the
4622 `IContextInfoRetriever` interface. Its role is to return the current
4623 value of a state by name to create a context field. The names of the
4624 context fields and which state variables they return depends on your
4625 specific scenario.
4626 +
4627 All primitive types and objects are supported as context fields.
4628 When `retrieveContextInfo()` returns an object, the context field
4629 serializer calls its `toString()` method to add a string field to
4630 event records. The method can also return `null`, which means that
4631 no context field is available for the required name.
4632
4633 . Register an instance of your context information retriever class to
4634 the context information manager singleton:
4635 +
4636 --
4637 [source,java]
4638 ----
4639 IContextInfoRetriever cir = new MyContextInfoRetriever();
4640 ContextInfoManager cim = ContextInfoManager.getInstance();
4641 cim.registerContextInfoRetriever("retrieverName", cir);
4642 ----
4643 --
4644
4645 . Before exiting the application, remove your context information
4646 retriever from the context information manager singleton:
4647 +
4648 --
4649 [source,java]
4650 ----
4651 ContextInfoManager cim = ContextInfoManager.getInstance();
4652 cim.unregisterContextInfoRetriever("retrieverName");
4653 ----
4654 --
4655 +
4656 This is not strictly necessary, but it is recommended for a clean
4657 disposal of some manager's resources.
4658
4659 . Build your Java application with LTTng-UST Java agent support as
4660 usual, following the procedure for either the <<jul,JUL>> or
4661 <<log4j,Apache log4j>> framework.
4662
4663
4664 .Provide application-specific context fields in a Java application.
4665 ====
4666 [source,java]
4667 .path:{Test.java}
4668 ----
4669 import java.util.logging.Handler;
4670 import java.util.logging.Logger;
4671 import org.lttng.ust.agent.jul.LttngLogHandler;
4672 import org.lttng.ust.agent.context.ContextInfoManager;
4673 import org.lttng.ust.agent.context.IContextInfoRetriever;
4674
4675 public class Test
4676 {
4677 // Our context information retriever class
4678 private static class MyContextInfoRetriever
4679 implements IContextInfoRetriever
4680 {
4681 @Override
4682 public Object retrieveContextInfo(String key) {
4683 if (key.equals("intCtx")) {
4684 return (short) 17;
4685 } else if (key.equals("strContext")) {
4686 return "context value!";
4687 } else {
4688 return null;
4689 }
4690 }
4691 }
4692
4693 private static final int answer = 42;
4694
4695 public static void main(String args[]) throws Exception
4696 {
4697 // Get the context information manager instance
4698 ContextInfoManager cim = ContextInfoManager.getInstance();
4699
4700 // Create and register our context information retriever
4701 IContextInfoRetriever cir = new MyContextInfoRetriever();
4702 cim.registerContextInfoRetriever("myRetriever", cir);
4703
4704 // Create a logger
4705 Logger logger = Logger.getLogger("jello");
4706
4707 // Create an LTTng-UST log handler
4708 Handler lttngUstLogHandler = new LttngLogHandler();
4709
4710 // Add the LTTng-UST log handler to our logger
4711 logger.addHandler(lttngUstLogHandler);
4712
4713 // Log at will!
4714 logger.info("some info");
4715 logger.warning("some warning");
4716 Thread.sleep(500);
4717 logger.finer("finer information; the answer is " + answer);
4718 Thread.sleep(123);
4719 logger.severe("error!");
4720
4721 // Not mandatory, but cleaner
4722 logger.removeHandler(lttngUstLogHandler);
4723 lttngUstLogHandler.close();
4724 cim.unregisterContextInfoRetriever("myRetriever");
4725 }
4726 }
4727 ----
4728
4729 Build this example:
4730
4731 [role="term"]
4732 ----
4733 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4734 ----
4735
4736 <<creating-destroying-tracing-sessions,Create a tracing session>>
4737 and <<enabling-disabling-events,create an event rule>> matching the
4738 `jello` JUL logger:
4739
4740 [role="term"]
4741 ----
4742 lttng create
4743 lttng enable-event --jul jello
4744 ----
4745
4746 <<adding-context,Add the application-specific context fields>> to the
4747 JUL channel:
4748
4749 [role="term"]
4750 ----
4751 lttng add-context --jul --type='$app.myRetriever:intCtx'
4752 lttng add-context --jul --type='$app.myRetriever:strContext'
4753 ----
4754
4755 <<basic-tracing-session-control,Start tracing>>:
4756
4757 [role="term"]
4758 ----
4759 lttng start
4760 ----
4761
4762 Run the compiled class:
4763
4764 [role="term"]
4765 ----
4766 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4767 ----
4768
4769 <<basic-tracing-session-control,Stop tracing>> and inspect the
4770 recorded events:
4771
4772 [role="term"]
4773 ----
4774 lttng stop
4775 lttng view
4776 ----
4777 ====
4778
4779
4780 [role="since-2.7"]
4781 [[python-application]]
4782 === User space Python agent
4783
4784 You can instrument a Python 2 or Python 3 application which uses the
4785 standard https://docs.python.org/3/library/logging.html[`logging`]
4786 package.
4787
4788 Each log statement emits an LTTng event once the
4789 application module imports the
4790 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4791
4792 [role="img-100"]
4793 .A Python application importing the LTTng-UST Python agent.
4794 image::python-app.png[]
4795
4796 To use the LTTng-UST Python agent:
4797
4798 . In the Python application's source code, import the LTTng-UST Python
4799 agent:
4800 +
4801 --
4802 [source,python]
4803 ----
4804 import lttngust
4805 ----
4806 --
4807 +
4808 The LTTng-UST Python agent automatically adds its logging handler to the
4809 root logger at import time.
4810 +
4811 Any log statement that the application executes before this import does
4812 not emit an LTTng event.
4813 +
4814 IMPORTANT: The LTTng-UST Python agent must be
4815 <<installing-lttng,installed>>.
4816
4817 . Use log statements and logging configuration as usual.
4818 Since the LTTng-UST Python agent adds a handler to the _root_
4819 logger, you can trace any log statement from any logger.
4820
4821 .Use the LTTng-UST Python agent.
4822 ====
4823 [source,python]
4824 .path:{test.py}
4825 ----
4826 import lttngust
4827 import logging
4828 import time
4829
4830
4831 def example():
4832 logging.basicConfig()
4833 logger = logging.getLogger('my-logger')
4834
4835 while True:
4836 logger.debug('debug message')
4837 logger.info('info message')
4838 logger.warn('warn message')
4839 logger.error('error message')
4840 logger.critical('critical message')
4841 time.sleep(1)
4842
4843
4844 if __name__ == '__main__':
4845 example()
4846 ----
4847
4848 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
4849 logging handler which prints to the standard error stream, is not
4850 strictly required for LTTng-UST tracing to work, but in versions of
4851 Python preceding 3.2, you could see a warning message which indicates
4852 that no handler exists for the logger `my-logger`.
4853
4854 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4855 <<enabling-disabling-events,create an event rule>> matching the
4856 `my-logger` Python logger, and <<basic-tracing-session-control,start
4857 tracing>>:
4858
4859 [role="term"]
4860 ----
4861 lttng create
4862 lttng enable-event --python my-logger
4863 lttng start
4864 ----
4865
4866 Run the Python script:
4867
4868 [role="term"]
4869 ----
4870 python test.py
4871 ----
4872
4873 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4874 events:
4875
4876 [role="term"]
4877 ----
4878 lttng stop
4879 lttng view
4880 ----
4881 ====
4882
4883 In the resulting trace, an <<event,event record>> generated by a Python
4884 application is named `lttng_python:event` and has the following fields:
4885
4886 `asctime`::
4887 Logging time (string).
4888
4889 `msg`::
4890 Log record's message.
4891
4892 `logger_name`::
4893 Logger name.
4894
4895 `funcName`::
4896 Name of the function in which the log statement was executed.
4897
4898 `lineno`::
4899 Line number at which the log statement was executed.
4900
4901 `int_loglevel`::
4902 Log level integer value.
4903
4904 `thread`::
4905 ID of the Python thread in which the log statement was executed.
4906
4907 `threadName`::
4908 Name of the Python thread in which the log statement was executed.
4909
4910 You can use the opt:lttng-enable-event(1):--loglevel or
4911 opt:lttng-enable-event(1):--loglevel-only option of the
4912 man:lttng-enable-event(1) command to target a range of Python log levels
4913 or a specific Python log level.
4914
4915 When an application imports the LTTng-UST Python agent, the agent tries
4916 to register to a <<lttng-sessiond,session daemon>>. Note that you must
4917 <<start-sessiond,start the session daemon>> _before_ you run the Python
4918 application. If a session daemon is found, the agent tries to register
4919 to it during 5{nbsp}seconds, after which the application continues
4920 without LTTng tracing support. You can override this timeout value with
4921 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
4922 (milliseconds).
4923
4924 If the session daemon stops while a Python application with an imported
4925 LTTng-UST Python agent runs, the agent retries to connect and to
4926 register to a session daemon every 3{nbsp}seconds. You can override this
4927 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
4928 variable.
4929
4930
4931 [role="since-2.5"]
4932 [[proc-lttng-logger-abi]]
4933 === LTTng logger
4934
4935 The `lttng-tracer` Linux kernel module, part of
4936 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
4937 path:{/proc/lttng-logger} when it's loaded. Any application can write
4938 text data to this file to emit an LTTng event.
4939
4940 [role="img-100"]
4941 .An application writes to the LTTng logger file to emit an LTTng event.
4942 image::lttng-logger.png[]
4943
4944 The LTTng logger is the quickest method--not the most efficient,
4945 however--to add instrumentation to an application. It is designed
4946 mostly to instrument shell scripts:
4947
4948 [role="term"]
4949 ----
4950 echo "Some message, some $variable" > /proc/lttng-logger
4951 ----
4952
4953 Any event that the LTTng logger emits is named `lttng_logger` and
4954 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
4955 other instrumentation points in the kernel tracing domain, **any Unix
4956 user** can <<enabling-disabling-events,create an event rule>> which
4957 matches its event name, not only the root user or users in the
4958 <<tracing-group,tracing group>>.
4959
4960 To use the LTTng logger:
4961
4962 * From any application, write text data to the path:{/proc/lttng-logger}
4963 file.
4964
4965 The `msg` field of `lttng_logger` event records contains the
4966 recorded message.
4967
4968 NOTE: The maximum message length of an LTTng logger event is
4969 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
4970 than one event to contain the remaining data.
4971
4972 You should not use the LTTng logger to trace a user application which
4973 can be instrumented in a more efficient way, namely:
4974
4975 * <<c-application,C and $$C++$$ applications>>.
4976 * <<java-application,Java applications>>.
4977 * <<python-application,Python applications>>.
4978
4979 .Use the LTTng logger.
4980 ====
4981 [source,bash]
4982 .path:{test.bash}
4983 ----
4984 echo 'Hello, World!' > /proc/lttng-logger
4985 sleep 2
4986 df --human-readable --print-type / > /proc/lttng-logger
4987 ----
4988
4989 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4990 <<enabling-disabling-events,create an event rule>> matching the
4991 `lttng_logger` Linux kernel tracepoint, and
4992 <<basic-tracing-session-control,start tracing>>:
4993
4994 [role="term"]
4995 ----
4996 lttng create
4997 lttng enable-event --kernel lttng_logger
4998 lttng start
4999 ----
5000
5001 Run the Bash script:
5002
5003 [role="term"]
5004 ----
5005 bash test.bash
5006 ----
5007
5008 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5009 events:
5010
5011 [role="term"]
5012 ----
5013 lttng stop
5014 lttng view
5015 ----
5016 ====
5017
5018
5019 [[instrumenting-linux-kernel]]
5020 === LTTng kernel tracepoints
5021
5022 NOTE: This section shows how to _add_ instrumentation points to the
5023 Linux kernel. The kernel's subsystems are already thoroughly
5024 instrumented at strategic places for LTTng when you
5025 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
5026 package.
5027
5028 ////
5029 There are two methods to instrument the Linux kernel:
5030
5031 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
5032 tracepoint which uses the `TRACE_EVENT()` API.
5033 +
5034 Choose this if you want to instrumentation a Linux kernel tree with an
5035 instrumentation point compatible with ftrace, perf, and SystemTap.
5036
5037 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
5038 instrument an out-of-tree kernel module.
5039 +
5040 Choose this if you don't need ftrace, perf, or SystemTap support.
5041 ////
5042
5043
5044 [[linux-add-lttng-layer]]
5045 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
5046
5047 This section shows how to add an LTTng layer to existing ftrace
5048 instrumentation using the `TRACE_EVENT()` API.
5049
5050 This section does not document the `TRACE_EVENT()` macro. You can
5051 read the following articles to learn more about this API:
5052
5053 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
5054 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
5055 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
5056
5057 The following procedure assumes that your ftrace tracepoints are
5058 correctly defined in their own header and that they are created in
5059 one source file using the `CREATE_TRACE_POINTS` definition.
5060
5061 To add an LTTng layer over an existing ftrace tracepoint:
5062
5063 . Make sure the following kernel configuration options are
5064 enabled:
5065 +
5066 --
5067 * `CONFIG_MODULES`
5068 * `CONFIG_KALLSYMS`
5069 * `CONFIG_HIGH_RES_TIMERS`
5070 * `CONFIG_TRACEPOINTS`
5071 --
5072
5073 . Build the Linux source tree with your custom ftrace tracepoints.
5074 . Boot the resulting Linux image on your target system.
5075 +
5076 Confirm that the tracepoints exist by looking for their names in the
5077 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5078 is your subsystem's name.
5079
5080 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5081 +
5082 --
5083 [role="term"]
5084 ----
5085 cd $(mktemp -d) &&
5086 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.9.tar.bz2 &&
5087 tar -xf lttng-modules-latest-2.9.tar.bz2 &&
5088 cd lttng-modules-2.9.*
5089 ----
5090 --
5091
5092 . In dir:{instrumentation/events/lttng-module}, relative to the root
5093 of the LTTng-modules source tree, create a header file named
5094 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5095 LTTng-modules tracepoint definitions using the LTTng-modules
5096 macros in it.
5097 +
5098 Start with this template:
5099 +
5100 --
5101 [source,c]
5102 .path:{instrumentation/events/lttng-module/my_subsys.h}
5103 ----
5104 #undef TRACE_SYSTEM
5105 #define TRACE_SYSTEM my_subsys
5106
5107 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5108 #define _LTTNG_MY_SUBSYS_H
5109
5110 #include "../../../probes/lttng-tracepoint-event.h"
5111 #include <linux/tracepoint.h>
5112
5113 LTTNG_TRACEPOINT_EVENT(
5114 /*
5115 * Format is identical to TRACE_EVENT()'s version for the three
5116 * following macro parameters:
5117 */
5118 my_subsys_my_event,
5119 TP_PROTO(int my_int, const char *my_string),
5120 TP_ARGS(my_int, my_string),
5121
5122 /* LTTng-modules specific macros */
5123 TP_FIELDS(
5124 ctf_integer(int, my_int_field, my_int)
5125 ctf_string(my_bar_field, my_bar)
5126 )
5127 )
5128
5129 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5130
5131 #include "../../../probes/define_trace.h"
5132 ----
5133 --
5134 +
5135 The entries in the `TP_FIELDS()` section are the list of fields for the
5136 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5137 ftrace's `TRACE_EVENT()` macro.
5138 +
5139 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5140 complete description of the available `ctf_*()` macros.
5141
5142 . Create the LTTng-modules probe's kernel module C source file,
5143 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5144 subsystem name:
5145 +
5146 --
5147 [source,c]
5148 .path:{probes/lttng-probe-my-subsys.c}
5149 ----
5150 #include <linux/module.h>
5151 #include "../lttng-tracer.h"
5152
5153 /*
5154 * Build-time verification of mismatch between mainline
5155 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5156 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5157 */
5158 #include <trace/events/my_subsys.h>
5159
5160 /* Create LTTng tracepoint probes */
5161 #define LTTNG_PACKAGE_BUILD
5162 #define CREATE_TRACE_POINTS
5163 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5164
5165 #include "../instrumentation/events/lttng-module/my_subsys.h"
5166
5167 MODULE_LICENSE("GPL and additional rights");
5168 MODULE_AUTHOR("Your name <your-email>");
5169 MODULE_DESCRIPTION("LTTng my_subsys probes");
5170 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5171 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5172 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5173 LTTNG_MODULES_EXTRAVERSION);
5174 ----
5175 --
5176
5177 . Edit path:{probes/Makefile} and add your new kernel module object
5178 next to the existing ones:
5179 +
5180 --
5181 [source,make]
5182 .path:{probes/Makefile}
5183 ----
5184 # ...
5185
5186 obj-m += lttng-probe-module.o
5187 obj-m += lttng-probe-power.o
5188
5189 obj-m += lttng-probe-my-subsys.o
5190
5191 # ...
5192 ----
5193 --
5194
5195 . Build and install the LTTng kernel modules:
5196 +
5197 --
5198 [role="term"]
5199 ----
5200 make KERNELDIR=/path/to/linux
5201 sudo make modules_install
5202 ----
5203 --
5204 +
5205 Replace `/path/to/linux` with the path to the Linux source tree where
5206 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5207
5208 Note that you can also use the
5209 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5210 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5211 C code that need to be executed before the event fields are recorded.
5212
5213 The best way to learn how to use the previous LTTng-modules macros is to
5214 inspect the existing LTTng-modules tracepoint definitions in the
5215 dir:{instrumentation/events/lttng-module} header files. Compare them
5216 with the Linux kernel mainline versions in the
5217 dir:{include/trace/events} directory of the Linux source tree.
5218
5219
5220 [role="since-2.7"]
5221 [[lttng-tracepoint-event-code]]
5222 ===== Use custom C code to access the data for tracepoint fields
5223
5224 Although we recommended to always use the
5225 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5226 the arguments and fields of an LTTng-modules tracepoint when possible,
5227 sometimes you need a more complex process to access the data that the
5228 tracer records as event record fields. In other words, you need local
5229 variables and multiple C{nbsp}statements instead of simple
5230 argument-based expressions that you pass to the
5231 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5232
5233 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5234 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5235 a block of C{nbsp}code to be executed before LTTng records the fields.
5236 The structure of this macro is:
5237
5238 [source,c]
5239 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5240 ----
5241 LTTNG_TRACEPOINT_EVENT_CODE(
5242 /*
5243 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5244 * version for the following three macro parameters:
5245 */
5246 my_subsys_my_event,
5247 TP_PROTO(int my_int, const char *my_string),
5248 TP_ARGS(my_int, my_string),
5249
5250 /* Declarations of custom local variables */
5251 TP_locvar(
5252 int a = 0;
5253 unsigned long b = 0;
5254 const char *name = "(undefined)";
5255 struct my_struct *my_struct;
5256 ),
5257
5258 /*
5259 * Custom code which uses both tracepoint arguments
5260 * (in TP_ARGS()) and local variables (in TP_locvar()).
5261 *
5262 * Local variables are actually members of a structure pointed
5263 * to by the special variable tp_locvar.
5264 */
5265 TP_code(
5266 if (my_int) {
5267 tp_locvar->a = my_int + 17;
5268 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5269 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5270 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5271 put_my_struct(tp_locvar->my_struct);
5272
5273 if (tp_locvar->b) {
5274 tp_locvar->a = 1;
5275 }
5276 }
5277 ),
5278
5279 /*
5280 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5281 * version for this, except that tp_locvar members can be
5282 * used in the argument expression parameters of
5283 * the ctf_*() macros.
5284 */
5285 TP_FIELDS(
5286 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5287 ctf_integer(int, my_struct_a, tp_locvar->a)
5288 ctf_string(my_string_field, my_string)
5289 ctf_string(my_struct_name, tp_locvar->name)
5290 )
5291 )
5292 ----
5293
5294 IMPORTANT: The C code defined in `TP_code()` must not have any side
5295 effects when executed. In particular, the code must not allocate
5296 memory or get resources without deallocating this memory or putting
5297 those resources afterwards.
5298
5299
5300 [[instrumenting-linux-kernel-tracing]]
5301 ==== Load and unload a custom probe kernel module
5302
5303 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5304 kernel module>> in the kernel before it can emit LTTng events.
5305
5306 To load the default probe kernel modules and a custom probe kernel
5307 module:
5308
5309 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5310 probe modules to load when starting a root <<lttng-sessiond,session
5311 daemon>>:
5312 +
5313 --
5314 .Load the `my_subsys`, `usb`, and the default probe modules.
5315 ====
5316 [role="term"]
5317 ----
5318 sudo lttng-sessiond --extra-kmod-probes=my_subsys,usb
5319 ----
5320 ====
5321 --
5322 +
5323 You only need to pass the subsystem name, not the whole kernel module
5324 name.
5325
5326 To load _only_ a given custom probe kernel module:
5327
5328 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5329 modules to load when starting a root session daemon:
5330 +
5331 --
5332 .Load only the `my_subsys` and `usb` probe modules.
5333 ====
5334 [role="term"]
5335 ----
5336 sudo lttng-sessiond --kmod-probes=my_subsys,usb
5337 ----
5338 ====
5339 --
5340
5341 To confirm that a probe module is loaded:
5342
5343 * Use man:lsmod(8):
5344 +
5345 --
5346 [role="term"]
5347 ----
5348 lsmod | grep lttng_probe_usb
5349 ----
5350 --
5351
5352 To unload the loaded probe modules:
5353
5354 * Kill the session daemon with `SIGTERM`:
5355 +
5356 --
5357 [role="term"]
5358 ----
5359 sudo pkill lttng-sessiond
5360 ----
5361 --
5362 +
5363 You can also use man:modprobe(8)'s `--remove` option if the session
5364 daemon terminates abnormally.
5365
5366
5367 [[controlling-tracing]]
5368 == Tracing control
5369
5370 Once an application or a Linux kernel is
5371 <<instrumenting,instrumented>> for LTTng tracing,
5372 you can _trace_ it.
5373
5374 This section is divided in topics on how to use the various
5375 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5376 command-line tool>>, to _control_ the LTTng daemons and tracers.
5377
5378 NOTE: In the following subsections, we refer to an man:lttng(1) command
5379 using its man page name. For example, instead of _Run the `create`
5380 command to..._, we use _Run the man:lttng-create(1) command to..._.
5381
5382
5383 [[start-sessiond]]
5384 === Start a session daemon
5385
5386 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5387 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5388 command-line tool.
5389
5390 You will see the following error when you run a command while no session
5391 daemon is running:
5392
5393 ----
5394 Error: No session daemon is available
5395 ----
5396
5397 The only command that automatically runs a session daemon is
5398 man:lttng-create(1), which you use to
5399 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5400 this is most of the time the first operation that you do, sometimes it's
5401 not. Some examples are:
5402
5403 * <<list-instrumentation-points,List the available instrumentation points>>.
5404 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5405
5406 [[tracing-group]] Each Unix user must have its own running session
5407 daemon to trace user applications. The session daemon that the root user
5408 starts is the only one allowed to control the LTTng kernel tracer. Users
5409 that are part of the _tracing group_ can control the root session
5410 daemon. The default tracing group name is `tracing`; you can set it to
5411 something else with the opt:lttng-sessiond(8):--group option when you
5412 start the root session daemon.
5413
5414 To start a user session daemon:
5415
5416 * Run man:lttng-sessiond(8):
5417 +
5418 --
5419 [role="term"]
5420 ----
5421 lttng-sessiond --daemonize
5422 ----
5423 --
5424
5425 To start the root session daemon:
5426
5427 * Run man:lttng-sessiond(8) as the root user:
5428 +
5429 --
5430 [role="term"]
5431 ----
5432 sudo lttng-sessiond --daemonize
5433 ----
5434 --
5435
5436 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5437 start the session daemon in foreground.
5438
5439 To stop a session daemon, use man:kill(1) on its process ID (standard
5440 `TERM` signal).
5441
5442 Note that some Linux distributions could manage the LTTng session daemon
5443 as a service. In this case, you should use the service manager to
5444 start, restart, and stop session daemons.
5445
5446
5447 [[creating-destroying-tracing-sessions]]
5448 === Create and destroy a tracing session
5449
5450 Almost all the LTTng control operations happen in the scope of
5451 a <<tracing-session,tracing session>>, which is the dialogue between the
5452 <<lttng-sessiond,session daemon>> and you.
5453
5454 To create a tracing session with a generated name:
5455
5456 * Use the man:lttng-create(1) command:
5457 +
5458 --
5459 [role="term"]
5460 ----
5461 lttng create
5462 ----
5463 --
5464
5465 The created tracing session's name is `auto` followed by the
5466 creation date.
5467
5468 To create a tracing session with a specific name:
5469
5470 * Use the optional argument of the man:lttng-create(1) command:
5471 +
5472 --
5473 [role="term"]
5474 ----
5475 lttng create my-session
5476 ----
5477 --
5478 +
5479 Replace `my-session` with the specific tracing session name.
5480
5481 LTTng appends the creation date to the created tracing session's name.
5482
5483 LTTng writes the traces of a tracing session in
5484 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5485 name of the tracing session. Note that the env:LTTNG_HOME environment
5486 variable defaults to `$HOME` if not set.
5487
5488 To output LTTng traces to a non-default location:
5489
5490 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5491 +
5492 --
5493 [role="term"]
5494 ----
5495 lttng create --output=/tmp/some-directory my-session
5496 ----
5497 --
5498
5499 You may create as many tracing sessions as you wish.
5500
5501 To list all the existing tracing sessions for your Unix user:
5502
5503 * Use the man:lttng-list(1) command:
5504 +
5505 --
5506 [role="term"]
5507 ----
5508 lttng list
5509 ----
5510 --
5511
5512 When you create a tracing session, it is set as the _current tracing
5513 session_. The following man:lttng(1) commands operate on the current
5514 tracing session when you don't specify one:
5515
5516 [role="list-3-cols"]
5517 * `add-context`
5518 * `destroy`
5519 * `disable-channel`
5520 * `disable-event`
5521 * `enable-channel`
5522 * `enable-event`
5523 * `load`
5524 * `regenerate`
5525 * `save`
5526 * `snapshot`
5527 * `start`
5528 * `stop`
5529 * `track`
5530 * `untrack`
5531 * `view`
5532
5533 To change the current tracing session:
5534
5535 * Use the man:lttng-set-session(1) command:
5536 +
5537 --
5538 [role="term"]
5539 ----
5540 lttng set-session new-session
5541 ----
5542 --
5543 +
5544 Replace `new-session` by the name of the new current tracing session.
5545
5546 When you are done tracing in a given tracing session, you can destroy
5547 it. This operation frees the resources taken by the tracing session
5548 to destroy; it does not destroy the trace data that LTTng wrote for
5549 this tracing session.
5550
5551 To destroy the current tracing session:
5552
5553 * Use the man:lttng-destroy(1) command:
5554 +
5555 --
5556 [role="term"]
5557 ----
5558 lttng destroy
5559 ----
5560 --
5561
5562
5563 [[list-instrumentation-points]]
5564 === List the available instrumentation points
5565
5566 The <<lttng-sessiond,session daemon>> can query the running instrumented
5567 user applications and the Linux kernel to get a list of available
5568 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5569 they are tracepoints and system calls. For the user space tracing
5570 domain, they are tracepoints. For the other tracing domains, they are
5571 logger names.
5572
5573 To list the available instrumentation points:
5574
5575 * Use the man:lttng-list(1) command with the requested tracing domain's
5576 option amongst:
5577 +
5578 --
5579 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5580 must be a root user, or it must be a member of the
5581 <<tracing-group,tracing group>>).
5582 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5583 kernel system calls (your Unix user must be a root user, or it must be
5584 a member of the tracing group).
5585 * opt:lttng-list(1):--userspace: user space tracepoints.
5586 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5587 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5588 * opt:lttng-list(1):--python: Python loggers.
5589 --
5590
5591 .List the available user space tracepoints.
5592 ====
5593 [role="term"]
5594 ----
5595 lttng list --userspace
5596 ----
5597 ====
5598
5599 .List the available Linux kernel system call tracepoints.
5600 ====
5601 [role="term"]
5602 ----
5603 lttng list --kernel --syscall
5604 ----
5605 ====
5606
5607
5608 [[enabling-disabling-events]]
5609 === Create and enable an event rule
5610
5611 Once you <<creating-destroying-tracing-sessions,create a tracing
5612 session>>, you can create <<event,event rules>> with the
5613 man:lttng-enable-event(1) command.
5614
5615 You specify each condition with a command-line option. The available
5616 condition options are shown in the following table.
5617
5618 [role="growable",cols="asciidoc,asciidoc,default"]
5619 .Condition command-line options for the man:lttng-enable-event(1) command.
5620 |====
5621 |Option |Description |Applicable tracing domains
5622
5623 |
5624 One of:
5625
5626 . `--syscall`
5627 . +--probe=__ADDR__+
5628 . +--function=__ADDR__+
5629
5630 |
5631 Instead of using the default _tracepoint_ instrumentation type, use:
5632
5633 . A Linux system call.
5634 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5635 . The entry and return points of a Linux function (symbol or address).
5636
5637 |Linux kernel.
5638
5639 |First positional argument.
5640
5641 |
5642 Tracepoint or system call name. In the case of a Linux KProbe or
5643 function, this is a custom name given to the event rule. With the
5644 JUL, log4j, and Python domains, this is a logger name.
5645
5646 With a tracepoint, logger, or system call name, the last character
5647 can be `*` to match anything that remains.
5648
5649 |All.
5650
5651 |
5652 One of:
5653
5654 . +--loglevel=__LEVEL__+
5655 . +--loglevel-only=__LEVEL__+
5656
5657 |
5658 . Match only tracepoints or log statements with a logging level at
5659 least as severe as +__LEVEL__+.
5660 . Match only tracepoints or log statements with a logging level
5661 equal to +__LEVEL__+.
5662
5663 See man:lttng-enable-event(1) for the list of available logging level
5664 names.
5665
5666 |User space, JUL, log4j, and Python.
5667
5668 |+--exclude=__EXCLUSIONS__+
5669
5670 |
5671 When you use a `*` character at the end of the tracepoint or logger
5672 name (first positional argument), exclude the specific names in the
5673 comma-delimited list +__EXCLUSIONS__+.
5674
5675 |
5676 User space, JUL, log4j, and Python.
5677
5678 |+--filter=__EXPR__+
5679
5680 |
5681 Match only events which satisfy the expression +__EXPR__+.
5682
5683 See man:lttng-enable-event(1) to learn more about the syntax of a
5684 filter expression.
5685
5686 |All.
5687
5688 |====
5689
5690 You attach an event rule to a <<channel,channel>> on creation. If you do
5691 not specify the channel with the opt:lttng-enable-event(1):--channel
5692 option, and if the event rule to create is the first in its
5693 <<domain,tracing domain>> for a given tracing session, then LTTng
5694 creates a _default channel_ for you. This default channel is reused in
5695 subsequent invocations of the man:lttng-enable-event(1) command for the
5696 same tracing domain.
5697
5698 An event rule is always enabled at creation time.
5699
5700 The following examples show how you can combine the previous
5701 command-line options to create simple to more complex event rules.
5702
5703 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5704 ====
5705 [role="term"]
5706 ----
5707 lttng enable-event --kernel sched_switch
5708 ----
5709 ====
5710
5711 .Create an event rule matching four Linux kernel system calls (default channel).
5712 ====
5713 [role="term"]
5714 ----
5715 lttng enable-event --kernel --syscall open,write,read,close
5716 ----
5717 ====
5718
5719 .Create event rules matching tracepoints with filter expressions (default channel).
5720 ====
5721 [role="term"]
5722 ----
5723 lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5724 ----
5725
5726 [role="term"]
5727 ----
5728 lttng enable-event --kernel --all \
5729 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5730 ----
5731
5732 [role="term"]
5733 ----
5734 lttng enable-event --jul my_logger \
5735 --filter='$app.retriever:cur_msg_id > 3'
5736 ----
5737
5738 IMPORTANT: Make sure to always quote the filter string when you
5739 use man:lttng(1) from a shell.
5740 ====
5741
5742 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5743 ====
5744 [role="term"]
5745 ----
5746 lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5747 ----
5748
5749 IMPORTANT: Make sure to always quote the wildcard character when you
5750 use man:lttng(1) from a shell.
5751 ====
5752
5753 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5754 ====
5755 [role="term"]
5756 ----
5757 lttng enable-event --python my-app.'*' \
5758 --exclude='my-app.module,my-app.hello'
5759 ----
5760 ====
5761
5762 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5763 ====
5764 [role="term"]
5765 ----
5766 lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5767 ----
5768 ====
5769
5770 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5771 ====
5772 [role="term"]
5773 ----
5774 lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5775 ----
5776 ====
5777
5778 The event rules of a given channel form a whitelist: as soon as an
5779 emitted event passes one of them, LTTng can record the event. For
5780 example, an event named `my_app:my_tracepoint` emitted from a user space
5781 tracepoint with a `TRACE_ERROR` log level passes both of the following
5782 rules:
5783
5784 [role="term"]
5785 ----
5786 lttng enable-event --userspace my_app:my_tracepoint
5787 lttng enable-event --userspace my_app:my_tracepoint \
5788 --loglevel=TRACE_INFO
5789 ----
5790
5791 The second event rule is redundant: the first one includes
5792 the second one.
5793
5794
5795 [[disable-event-rule]]
5796 === Disable an event rule
5797
5798 To disable an event rule that you <<enabling-disabling-events,created>>
5799 previously, use the man:lttng-disable-event(1) command. This command
5800 disables _all_ the event rules (of a given tracing domain and channel)
5801 which match an instrumentation point. The other conditions are not
5802 supported as of LTTng{nbsp}{revision}.
5803
5804 The LTTng tracer does not record an emitted event which passes
5805 a _disabled_ event rule.
5806
5807 .Disable an event rule matching a Python logger (default channel).
5808 ====
5809 [role="term"]
5810 ----
5811 lttng disable-event --python my-logger
5812 ----
5813 ====
5814
5815 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5816 ====
5817 [role="term"]
5818 ----
5819 lttng disable-event --jul '*'
5820 ----
5821 ====
5822
5823 .Disable _all_ the event rules of the default channel.
5824 ====
5825 The opt:lttng-disable-event(1):--all-events option is not, like the
5826 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5827 equivalent of the event name `*` (wildcard): it disables _all_ the event
5828 rules of a given channel.
5829
5830 [role="term"]
5831 ----
5832 lttng disable-event --jul --all-events
5833 ----
5834 ====
5835
5836 NOTE: You cannot delete an event rule once you create it.
5837
5838
5839 [[status]]
5840 === Get the status of a tracing session
5841
5842 To get the status of the current tracing session, that is, its
5843 parameters, its channels, event rules, and their attributes:
5844
5845 * Use the man:lttng-status(1) command:
5846 +
5847 --
5848 [role="term"]
5849 ----
5850 lttng status
5851 ----
5852 --
5853 +
5854
5855 To get the status of any tracing session:
5856
5857 * Use the man:lttng-list(1) command with the tracing session's name:
5858 +
5859 --
5860 [role="term"]
5861 ----
5862 lttng list my-session
5863 ----
5864 --
5865 +
5866 Replace `my-session` with the desired tracing session's name.
5867
5868
5869 [[basic-tracing-session-control]]
5870 === Start and stop a tracing session
5871
5872 Once you <<creating-destroying-tracing-sessions,create a tracing
5873 session>> and
5874 <<enabling-disabling-events,create one or more event rules>>,
5875 you can start and stop the tracers for this tracing session.
5876
5877 To start tracing in the current tracing session:
5878
5879 * Use the man:lttng-start(1) command:
5880 +
5881 --
5882 [role="term"]
5883 ----
5884 lttng start
5885 ----
5886 --
5887
5888 LTTng is very flexible: you can launch user applications before
5889 or after the you start the tracers. The tracers only record the events
5890 if they pass enabled event rules and if they occur while the tracers are
5891 started.
5892
5893 To stop tracing in the current tracing session:
5894
5895 * Use the man:lttng-stop(1) command:
5896 +
5897 --
5898 [role="term"]
5899 ----
5900 lttng stop
5901 ----
5902 --
5903 +
5904 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
5905 records>> or lost sub-buffers since the last time you ran
5906 man:lttng-start(1), warnings are printed when you run the
5907 man:lttng-stop(1) command.
5908
5909
5910 [[enabling-disabling-channels]]
5911 === Create a channel
5912
5913 Once you create a tracing session, you can create a <<channel,channel>>
5914 with the man:lttng-enable-channel(1) command.
5915
5916 Note that LTTng automatically creates a default channel when, for a
5917 given <<domain,tracing domain>>, no channels exist and you
5918 <<enabling-disabling-events,create>> the first event rule. This default
5919 channel is named `channel0` and its attributes are set to reasonable
5920 values. Therefore, you only need to create a channel when you need
5921 non-default attributes.
5922
5923 You specify each non-default channel attribute with a command-line
5924 option when you use the man:lttng-enable-channel(1) command. The
5925 available command-line options are:
5926
5927 [role="growable",cols="asciidoc,asciidoc"]
5928 .Command-line options for the man:lttng-enable-channel(1) command.
5929 |====
5930 |Option |Description
5931
5932 |`--overwrite`
5933
5934 |
5935 Use the _overwrite_
5936 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
5937 the default _discard_ mode.
5938
5939 |`--buffers-pid` (user space tracing domain only)
5940
5941 |
5942 Use the per-process <<channel-buffering-schemes,buffering scheme>>
5943 instead of the default per-user buffering scheme.
5944
5945 |+--subbuf-size=__SIZE__+
5946
5947 |
5948 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
5949 either for each Unix user (default), or for each instrumented process.
5950
5951 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5952
5953 |+--num-subbuf=__COUNT__+
5954
5955 |
5956 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
5957 for each Unix user (default), or for each instrumented process.
5958
5959 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5960
5961 |+--tracefile-size=__SIZE__+
5962
5963 |
5964 Set the maximum size of each trace file that this channel writes within
5965 a stream to +__SIZE__+ bytes instead of no maximum.
5966
5967 See <<tracefile-rotation,Trace file count and size>>.
5968
5969 |+--tracefile-count=__COUNT__+
5970
5971 |
5972 Limit the number of trace files that this channel creates to
5973 +__COUNT__+ channels instead of no limit.
5974
5975 See <<tracefile-rotation,Trace file count and size>>.
5976
5977 |+--switch-timer=__PERIODUS__+
5978
5979 |
5980 Set the <<channel-switch-timer,switch timer period>>
5981 to +__PERIODUS__+{nbsp}µs.
5982
5983 |+--read-timer=__PERIODUS__+
5984
5985 |
5986 Set the <<channel-read-timer,read timer period>>
5987 to +__PERIODUS__+{nbsp}µs.
5988
5989 |+--output=__TYPE__+ (Linux kernel tracing domain only)
5990
5991 |
5992 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
5993
5994 |====
5995
5996 You can only create a channel in the Linux kernel and user space
5997 <<domain,tracing domains>>: other tracing domains have their own channel
5998 created on the fly when <<enabling-disabling-events,creating event
5999 rules>>.
6000
6001 [IMPORTANT]
6002 ====
6003 Because of a current LTTng limitation, you must create all channels
6004 _before_ you <<basic-tracing-session-control,start tracing>> in a given
6005 tracing session, that is, before the first time you run
6006 man:lttng-start(1).
6007
6008 Since LTTng automatically creates a default channel when you use the
6009 man:lttng-enable-event(1) command with a specific tracing domain, you
6010 cannot, for example, create a Linux kernel event rule, start tracing,
6011 and then create a user space event rule, because no user space channel
6012 exists yet and it's too late to create one.
6013
6014 For this reason, make sure to configure your channels properly
6015 before starting the tracers for the first time!
6016 ====
6017
6018 The following examples show how you can combine the previous
6019 command-line options to create simple to more complex channels.
6020
6021 .Create a Linux kernel channel with default attributes.
6022 ====
6023 [role="term"]
6024 ----
6025 lttng enable-channel --kernel my-channel
6026 ----
6027 ====
6028
6029 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6030 ====
6031 [role="term"]
6032 ----
6033 lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6034 --buffers-pid my-channel
6035 ----
6036 ====
6037
6038 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
6039 ====
6040 [role="term"]
6041 ----
6042 lttng enable-channel --kernel --tracefile-count=8 \
6043 --tracefile-size=4194304 my-channel
6044 ----
6045 ====
6046
6047 .Create a user space channel in overwrite (or _flight recorder_) mode.
6048 ====
6049 [role="term"]
6050 ----
6051 lttng enable-channel --userspace --overwrite my-channel
6052 ----
6053 ====
6054
6055 You can <<enabling-disabling-events,create>> the same event rule in
6056 two different channels:
6057
6058 [role="term"]
6059 ----
6060 lttng enable-event --userspace --channel=my-channel app:tp
6061 lttng enable-event --userspace --channel=other-channel app:tp
6062 ----
6063
6064 If both channels are enabled, when a tracepoint named `app:tp` is
6065 reached, LTTng records two events, one for each channel.
6066
6067
6068 [[disable-channel]]
6069 === Disable a channel
6070
6071 To disable a specific channel that you <<enabling-disabling-channels,created>>
6072 previously, use the man:lttng-disable-channel(1) command.
6073
6074 .Disable a specific Linux kernel channel.
6075 ====
6076 [role="term"]
6077 ----
6078 lttng disable-channel --kernel my-channel
6079 ----
6080 ====
6081
6082 The state of a channel precedes the individual states of event rules
6083 attached to it: event rules which belong to a disabled channel, even if
6084 they are enabled, are also considered disabled.
6085
6086
6087 [[adding-context]]
6088 === Add context fields to a channel
6089
6090 Event record fields in trace files provide important information about
6091 events that occured previously, but sometimes some external context may
6092 help you solve a problem faster. Examples of context fields are:
6093
6094 * The **process ID**, **thread ID**, **process name**, and
6095 **process priority** of the thread in which the event occurs.
6096 * The **hostname** of the system on which the event occurs.
6097 * The current values of many possible **performance counters** using
6098 perf, for example:
6099 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6100 ** Cache misses.
6101 ** Branch instructions, misses, and loads.
6102 ** CPU faults.
6103 * Any context defined at the application level (supported for the
6104 JUL and log4j <<domain,tracing domains>>).
6105
6106 To get the full list of available context fields, see
6107 `lttng add-context --list`. Some context fields are reserved for a
6108 specific <<domain,tracing domain>> (Linux kernel or user space).
6109
6110 You add context fields to <<channel,channels>>. All the events
6111 that a channel with added context fields records contain those fields.
6112
6113 To add context fields to one or all the channels of a given tracing
6114 session:
6115
6116 * Use the man:lttng-add-context(1) command.
6117
6118 .Add context fields to all the channels of the current tracing session.
6119 ====
6120 The following command line adds the virtual process identifier and
6121 the per-thread CPU cycles count fields to all the user space channels
6122 of the current tracing session.
6123
6124 [role="term"]
6125 ----
6126 lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6127 ----
6128 ====
6129
6130 .Add performance counter context fields by raw ID
6131 ====
6132 See man:lttng-add-context(1) for the exact format of the context field
6133 type, which is partly compatible with the format used in
6134 man:perf-record(1).
6135
6136 [role="term"]
6137 ----
6138 lttng add-context --userspace --type=perf:thread:raw:r0110:test
6139 lttng add-context --kernel --type=perf:cpu:raw:r0013c:x86unhalted
6140 ----
6141 ====
6142
6143 .Add a context field to a specific channel.
6144 ====
6145 The following command line adds the thread identifier context field
6146 to the Linux kernel channel named `my-channel` in the current
6147 tracing session.
6148
6149 [role="term"]
6150 ----
6151 lttng add-context --kernel --channel=my-channel --type=tid
6152 ----
6153 ====
6154
6155 .Add an application-specific context field to a specific channel.
6156 ====
6157 The following command line adds the `cur_msg_id` context field of the
6158 `retriever` context retriever for all the instrumented
6159 <<java-application,Java applications>> recording <<event,event records>>
6160 in the channel named `my-channel`:
6161
6162 [role="term"]
6163 ----
6164 lttng add-context --kernel --channel=my-channel \
6165 --type='$app:retriever:cur_msg_id'
6166 ----
6167
6168 IMPORTANT: Make sure to always quote the `$` character when you
6169 use man:lttng-add-context(1) from a shell.
6170 ====
6171
6172 NOTE: You cannot remove context fields from a channel once you add it.
6173
6174
6175 [role="since-2.7"]
6176 [[pid-tracking]]
6177 === Track process IDs
6178
6179 It's often useful to allow only specific process IDs (PIDs) to emit
6180 events. For example, you may wish to record all the system calls made by
6181 a given process (à la http://linux.die.net/man/1/strace[strace]).
6182
6183 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6184 purpose. Both commands operate on a whitelist of process IDs. You _add_
6185 entries to this whitelist with the man:lttng-track(1) command and remove
6186 entries with the man:lttng-untrack(1) command. Any process which has one
6187 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6188 an enabled <<event,event rule>>.
6189
6190 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6191 process with a given tracked ID exit and another process be given this
6192 ID, then the latter would also be allowed to emit events.
6193
6194 .Track and untrack process IDs.
6195 ====
6196 For the sake of the following example, assume the target system has 16
6197 possible PIDs.
6198
6199 When you
6200 <<creating-destroying-tracing-sessions,create a tracing session>>,
6201 the whitelist contains all the possible PIDs:
6202
6203 [role="img-100"]
6204 .All PIDs are tracked.
6205 image::track-all.png[]
6206
6207 When the whitelist is full and you use the man:lttng-track(1) command to
6208 specify some PIDs to track, LTTng first clears the whitelist, then it
6209 tracks the specific PIDs. After:
6210
6211 [role="term"]
6212 ----
6213 lttng track --pid=3,4,7,10,13
6214 ----
6215
6216 the whitelist is:
6217
6218 [role="img-100"]
6219 .PIDs 3, 4, 7, 10, and 13 are tracked.
6220 image::track-3-4-7-10-13.png[]
6221
6222 You can add more PIDs to the whitelist afterwards:
6223
6224 [role="term"]
6225 ----
6226 lttng track --pid=1,15,16
6227 ----
6228
6229 The result is:
6230
6231 [role="img-100"]
6232 .PIDs 1, 15, and 16 are added to the whitelist.
6233 image::track-1-3-4-7-10-13-15-16.png[]
6234
6235 The man:lttng-untrack(1) command removes entries from the PID tracker's
6236 whitelist. Given the previous example, the following command:
6237
6238 [role="term"]
6239 ----
6240 lttng untrack --pid=3,7,10,13
6241 ----
6242
6243 leads to this whitelist:
6244
6245 [role="img-100"]
6246 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6247 image::track-1-4-15-16.png[]
6248
6249 LTTng can track all possible PIDs again using the opt:track(1):--all
6250 option:
6251
6252 [role="term"]
6253 ----
6254 lttng track --pid --all
6255 ----
6256
6257 The result is, again:
6258
6259 [role="img-100"]
6260 .All PIDs are tracked.
6261 image::track-all.png[]
6262 ====
6263
6264 .Track only specific PIDs
6265 ====
6266 A very typical use case with PID tracking is to start with an empty
6267 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6268 then add PIDs manually while tracers are active. You can accomplish this
6269 by using the opt:lttng-untrack(1):--all option of the
6270 man:lttng-untrack(1) command to clear the whitelist after you
6271 <<creating-destroying-tracing-sessions,create a tracing session>>:
6272
6273 [role="term"]
6274 ----
6275 lttng untrack --pid --all
6276 ----
6277
6278 gives:
6279
6280 [role="img-100"]
6281 .No PIDs are tracked.
6282 image::untrack-all.png[]
6283
6284 If you trace with this whitelist configuration, the tracer records no
6285 events for this <<domain,tracing domain>> because no processes are
6286 tracked. You can use the man:lttng-track(1) command as usual to track
6287 specific PIDs, for example:
6288
6289 [role="term"]
6290 ----
6291 lttng track --pid=6,11
6292 ----
6293
6294 Result:
6295
6296 [role="img-100"]
6297 .PIDs 6 and 11 are tracked.
6298 image::track-6-11.png[]
6299 ====
6300
6301
6302 [role="since-2.5"]
6303 [[saving-loading-tracing-session]]
6304 === Save and load tracing session configurations
6305
6306 Configuring a <<tracing-session,tracing session>> can be long. Some of
6307 the tasks involved are:
6308
6309 * <<enabling-disabling-channels,Create channels>> with
6310 specific attributes.
6311 * <<adding-context,Add context fields>> to specific channels.
6312 * <<enabling-disabling-events,Create event rules>> with specific log
6313 level and filter conditions.
6314
6315 If you use LTTng to solve real world problems, chances are you have to
6316 record events using the same tracing session setup over and over,
6317 modifying a few variables each time in your instrumented program
6318 or environment. To avoid constant tracing session reconfiguration,
6319 the man:lttng(1) command-line tool can save and load tracing session
6320 configurations to/from XML files.
6321
6322 To save a given tracing session configuration:
6323
6324 * Use the man:lttng-save(1) command:
6325 +
6326 --
6327 [role="term"]
6328 ----
6329 lttng save my-session
6330 ----
6331 --
6332 +
6333 Replace `my-session` with the name of the tracing session to save.
6334
6335 LTTng saves tracing session configurations to
6336 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6337 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6338 the opt:lttng-save(1):--output-path option to change this destination
6339 directory.
6340
6341 LTTng saves all configuration parameters, for example:
6342
6343 * The tracing session name.
6344 * The trace data output path.
6345 * The channels with their state and all their attributes.
6346 * The context fields you added to channels.
6347 * The event rules with their state, log level and filter conditions.
6348
6349 To load a tracing session:
6350
6351 * Use the man:lttng-load(1) command:
6352 +
6353 --
6354 [role="term"]
6355 ----
6356 lttng load my-session
6357 ----
6358 --
6359 +
6360 Replace `my-session` with the name of the tracing session to load.
6361
6362 When LTTng loads a configuration, it restores your saved tracing session
6363 as if you just configured it manually.
6364
6365 See man:lttng(1) for the complete list of command-line options. You
6366 can also save and load all many sessions at a time, and decide in which
6367 directory to output the XML files.
6368
6369
6370 [[sending-trace-data-over-the-network]]
6371 === Send trace data over the network
6372
6373 LTTng can send the recorded trace data to a remote system over the
6374 network instead of writing it to the local file system.
6375
6376 To send the trace data over the network:
6377
6378 . On the _remote_ system (which can also be the target system),
6379 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6380 +
6381 --
6382 [role="term"]
6383 ----
6384 lttng-relayd
6385 ----
6386 --
6387
6388 . On the _target_ system, create a tracing session configured to
6389 send trace data over the network:
6390 +
6391 --
6392 [role="term"]
6393 ----
6394 lttng create my-session --set-url=net://remote-system
6395 ----
6396 --
6397 +
6398 Replace `remote-system` by the host name or IP address of the
6399 remote system. See man:lttng-create(1) for the exact URL format.
6400
6401 . On the target system, use the man:lttng(1) command-line tool as usual.
6402 When tracing is active, the target's consumer daemon sends sub-buffers
6403 to the relay daemon running on the remote system intead of flushing
6404 them to the local file system. The relay daemon writes the received
6405 packets to the local file system.
6406
6407 The relay daemon writes trace files to
6408 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6409 +__hostname__+ is the host name of the target system and +__session__+
6410 is the tracing session name. Note that the env:LTTNG_HOME environment
6411 variable defaults to `$HOME` if not set. Use the
6412 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6413 trace files to another base directory.
6414
6415
6416 [role="since-2.4"]
6417 [[lttng-live]]
6418 === View events as LTTng emits them (noch:{LTTng} live)
6419
6420 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6421 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6422 display events as LTTng emits them on the target system while tracing is
6423 active.
6424
6425 The relay daemon creates a _tee_: it forwards the trace data to both
6426 the local file system and to connected live viewers:
6427
6428 [role="img-90"]
6429 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6430 image::live.png[]
6431
6432 To use LTTng live:
6433
6434 . On the _target system_, create a <<tracing-session,tracing session>>
6435 in _live mode_:
6436 +
6437 --
6438 [role="term"]
6439 ----
6440 lttng create --live my-session
6441 ----
6442 --
6443 +
6444 This spawns a local relay daemon.
6445
6446 . Start the live viewer and configure it to connect to the relay
6447 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6448 +
6449 --
6450 [role="term"]
6451 ----
6452 babeltrace --input-format=lttng-live net://localhost/host/hostname/my-session
6453 ----
6454 --
6455 +
6456 Replace:
6457 +
6458 --
6459 * `hostname` with the host name of the target system.
6460 * `my-session` with the name of the tracing session to view.
6461 --
6462
6463 . Configure the tracing session as usual with the man:lttng(1)
6464 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6465
6466 You can list the available live tracing sessions with Babeltrace:
6467
6468 [role="term"]
6469 ----
6470 babeltrace --input-format=lttng-live net://localhost
6471 ----
6472
6473 You can start the relay daemon on another system. In this case, you need
6474 to specify the relay daemon's URL when you create the tracing session
6475 with the opt:lttng-create(1):--set-url option. You also need to replace
6476 `localhost` in the procedure above with the host name of the system on
6477 which the relay daemon is running.
6478
6479 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6480 command-line options.
6481
6482
6483 [role="since-2.3"]
6484 [[taking-a-snapshot]]
6485 === Take a snapshot of the current sub-buffers of a tracing session
6486
6487 The normal behavior of LTTng is to append full sub-buffers to growing
6488 trace data files. This is ideal to keep a full history of the events
6489 that occurred on the target system, but it can
6490 represent too much data in some situations. For example, you may wish
6491 to trace your application continuously until some critical situation
6492 happens, in which case you only need the latest few recorded
6493 events to perform the desired analysis, not multi-gigabyte trace files.
6494
6495 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6496 current sub-buffers of a given <<tracing-session,tracing session>>.
6497 LTTng can write the snapshot to the local file system or send it over
6498 the network.
6499
6500 To take a snapshot:
6501
6502 . Create a tracing session in _snapshot mode_:
6503 +
6504 --
6505 [role="term"]
6506 ----
6507 lttng create --snapshot my-session
6508 ----
6509 --
6510 +
6511 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6512 <<channel,channels>> created in this mode is automatically set to
6513 _overwrite_ (flight recorder mode).
6514
6515 . Configure the tracing session as usual with the man:lttng(1)
6516 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6517
6518 . **Optional**: When you need to take a snapshot,
6519 <<basic-tracing-session-control,stop tracing>>.
6520 +
6521 You can take a snapshot when the tracers are active, but if you stop
6522 them first, you are sure that the data in the sub-buffers does not
6523 change before you actually take the snapshot.
6524
6525 . Take a snapshot:
6526 +
6527 --
6528 [role="term"]
6529 ----
6530 lttng snapshot record --name=my-first-snapshot
6531 ----
6532 --
6533 +
6534 LTTng writes the current sub-buffers of all the current tracing
6535 session's channels to trace files on the local file system. Those trace
6536 files have `my-first-snapshot` in their name.
6537
6538 There is no difference between the format of a normal trace file and the
6539 format of a snapshot: viewers of LTTng traces also support LTTng
6540 snapshots.
6541
6542 By default, LTTng writes snapshot files to the path shown by
6543 `lttng snapshot list-output`. You can change this path or decide to send
6544 snapshots over the network using either:
6545
6546 . An output path or URL that you specify when you create the
6547 tracing session.
6548 . An snapshot output path or URL that you add using
6549 `lttng snapshot add-output`
6550 . An output path or URL that you provide directly to the
6551 `lttng snapshot record` command.
6552
6553 Method 3 overrides method 2, which overrides method 1. When you
6554 specify a URL, a relay daemon must listen on a remote system (see
6555 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6556
6557
6558 [role="since-2.6"]
6559 [[mi]]
6560 === Use the machine interface
6561
6562 With any command of the man:lttng(1) command-line tool, you can set the
6563 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6564 XML machine interface output, for example:
6565
6566 [role="term"]
6567 ----
6568 lttng --mi=xml enable-event --kernel --syscall open
6569 ----
6570
6571 A schema definition (XSD) is
6572 https://github.com/lttng/lttng-tools/blob/stable-2.9/src/common/mi-lttng-3.0.xsd[available]
6573 to ease the integration with external tools as much as possible.
6574
6575
6576 [role="since-2.8"]
6577 [[metadata-regenerate]]
6578 === Regenerate the metadata of an LTTng trace
6579
6580 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6581 data stream files and a metadata file. This metadata file contains,
6582 amongst other things, information about the offset of the clock sources
6583 used to timestamp <<event,event records>> when tracing.
6584
6585 If, once a <<tracing-session,tracing session>> is
6586 <<basic-tracing-session-control,started>>, a major
6587 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6588 happens, the trace's clock offset also needs to be updated. You
6589 can use the `metadata` item of the man:lttng-regenerate(1) command
6590 to do so.
6591
6592 The main use case of this command is to allow a system to boot with
6593 an incorrect wall time and trace it with LTTng before its wall time
6594 is corrected. Once the system is known to be in a state where its
6595 wall time is correct, it can run `lttng regenerate metadata`.
6596
6597 To regenerate the metadata of an LTTng trace:
6598
6599 * Use the `metadata` item of the man:lttng-regenerate(1) command:
6600 +
6601 --
6602 [role="term"]
6603 ----
6604 lttng regenerate metadata
6605 ----
6606 --
6607
6608 [IMPORTANT]
6609 ====
6610 `lttng regenerate metadata` has the following limitations:
6611
6612 * Tracing session <<creating-destroying-tracing-sessions,created>>
6613 in non-live mode.
6614 * User space <<channel,channels>>, if any, are using
6615 <<channel-buffering-schemes,per-user buffering>>.
6616 ====
6617
6618
6619 [role="since-2.9"]
6620 [[regenerate-statedump]]
6621 === Regenerate the state dump of a tracing session
6622
6623 The LTTng kernel and user space tracers generate state dump
6624 <<event,event records>> when the application starts or when you
6625 <<basic-tracing-session-control,start a tracing session>>. An analysis
6626 can use the state dump event records to set an initial state before it
6627 builds the rest of the state from the following event records.
6628 http://tracecompass.org/[Trace Compass] is a notable example of an
6629 application which uses the state dump of an LTTng trace.
6630
6631 When you <<taking-a-snapshot,take a snapshot>>, it's possible that the
6632 state dump event records are not included in the snapshot because they
6633 were recorded to a sub-buffer that has been consumed or overwritten
6634 already.
6635
6636 You can use the `lttng regenerate statedump` command to emit the state
6637 dump event records again.
6638
6639 To regenerate the state dump of the current tracing session, provided
6640 create it in snapshot mode, before you take a snapshot:
6641
6642 . Use the `statedump` item of the man:lttng-regenerate(1) command:
6643 +
6644 --
6645 [role="term"]
6646 ----
6647 lttng regenerate statedump
6648 ----
6649 --
6650
6651 . <<basic-tracing-session-control,Stop the tracing session>>:
6652 +
6653 --
6654 [role="term"]
6655 ----
6656 lttng stop
6657 ----
6658 --
6659
6660 . <<taking-a-snapshot,Take a snapshot>>:
6661 +
6662 --
6663 [role="term"]
6664 ----
6665 lttng snapshot record --name=my-snapshot
6666 ----
6667 --
6668
6669 Depending on the event throughput, you should run steps 1 and 2
6670 as closely as possible.
6671
6672 NOTE: To record the state dump events, you need to
6673 <<enabling-disabling-events,create event rules>> which enable them.
6674 LTTng-UST state dump tracepoints start with `lttng_ust_statedump:`.
6675 LTTng-modules state dump tracepoints start with `lttng_statedump_`.
6676
6677
6678 [role="since-2.7"]
6679 [[persistent-memory-file-systems]]
6680 === Record trace data on persistent memory file systems
6681
6682 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6683 (NVRAM) is random-access memory that retains its information when power
6684 is turned off (non-volatile). Systems with such memory can store data
6685 structures in RAM and retrieve them after a reboot, without flushing
6686 to typical _storage_.
6687
6688 Linux supports NVRAM file systems thanks to either
6689 http://pramfs.sourceforge.net/[PRAMFS] or
6690 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6691 (requires Linux 4.1+).
6692
6693 This section does not describe how to operate such file systems;
6694 we assume that you have a working persistent memory file system.
6695
6696 When you create a <<tracing-session,tracing session>>, you can specify
6697 the path of the shared memory holding the sub-buffers. If you specify a
6698 location on an NVRAM file system, then you can retrieve the latest
6699 recorded trace data when the system reboots after a crash.
6700
6701 To record trace data on a persistent memory file system and retrieve the
6702 trace data after a system crash:
6703
6704 . Create a tracing session with a sub-buffer shared memory path located
6705 on an NVRAM file system:
6706 +
6707 --
6708 [role="term"]
6709 ----
6710 lttng create --shm-path=/path/to/shm
6711 ----
6712 --
6713
6714 . Configure the tracing session as usual with the man:lttng(1)
6715 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6716
6717 . After a system crash, use the man:lttng-crash(1) command-line tool to
6718 view the trace data recorded on the NVRAM file system:
6719 +
6720 --
6721 [role="term"]
6722 ----
6723 lttng-crash /path/to/shm
6724 ----
6725 --
6726
6727 The binary layout of the ring buffer files is not exactly the same as
6728 the trace files layout. This is why you need to use man:lttng-crash(1)
6729 instead of your preferred trace viewer directly.
6730
6731 To convert the ring buffer files to LTTng trace files:
6732
6733 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6734 +
6735 --
6736 [role="term"]
6737 ----
6738 lttng-crash --extract=/path/to/trace /path/to/shm
6739 ----
6740 --
6741
6742
6743 [[reference]]
6744 == Reference
6745
6746 [[lttng-modules-ref]]
6747 === noch:{LTTng-modules}
6748
6749
6750 [role="since-2.9"]
6751 [[lttng-tracepoint-enum]]
6752 ==== `LTTNG_TRACEPOINT_ENUM()` usage
6753
6754 Use the `LTTNG_TRACEPOINT_ENUM()` macro to define an enumeration:
6755
6756 [source,c]
6757 ----
6758 LTTNG_TRACEPOINT_ENUM(name, TP_ENUM_VALUES(entries))
6759 ----
6760
6761 Replace:
6762
6763 * `name` with the name of the enumeration (C identifier, unique
6764 amongst all the defined enumerations).
6765 * `entries` with a list of enumeration entries.
6766
6767 The available enumeration entry macros are:
6768
6769 +ctf_enum_value(__name__, __value__)+::
6770 Entry named +__name__+ mapped to the integral value +__value__+.
6771
6772 +ctf_enum_range(__name__, __begin__, __end__)+::
6773 Entry named +__name__+ mapped to the range of integral values between
6774 +__begin__+ (included) and +__end__+ (included).
6775
6776 +ctf_enum_auto(__name__)+::
6777 Entry named +__name__+ mapped to the integral value following the
6778 last mapping's value.
6779 +
6780 The last value of a `ctf_enum_value()` entry is its +__value__+
6781 parameter.
6782 +
6783 The last value of a `ctf_enum_range()` entry is its +__end__+ parameter.
6784 +
6785 If `ctf_enum_auto()` is the first entry in the list, its integral
6786 value is 0.
6787
6788 Use the `ctf_enum()` <<lttng-modules-tp-fields,field definition macro>>
6789 to use a defined enumeration as a tracepoint field.
6790
6791 .Define an enumeration with `LTTNG_TRACEPOINT_ENUM()`.
6792 ====
6793 [source,c]
6794 ----
6795 LTTNG_TRACEPOINT_ENUM(
6796 my_enum,
6797 TP_ENUM_VALUES(
6798 ctf_enum_auto("AUTO: EXPECT 0")
6799 ctf_enum_value("VALUE: 23", 23)
6800 ctf_enum_value("VALUE: 27", 27)
6801 ctf_enum_auto("AUTO: EXPECT 28")
6802 ctf_enum_range("RANGE: 101 TO 303", 101, 303)
6803 ctf_enum_auto("AUTO: EXPECT 304")
6804 )
6805 )
6806 ----
6807 ====
6808
6809
6810 [role="since-2.7"]
6811 [[lttng-modules-tp-fields]]
6812 ==== Tracepoint fields macros (for `TP_FIELDS()`)
6813
6814 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
6815 tracepoint fields, which must be listed within `TP_FIELDS()` in
6816 `LTTNG_TRACEPOINT_EVENT()`, are:
6817
6818 [role="func-desc growable",cols="asciidoc,asciidoc"]
6819 .Available macros to define LTTng-modules tracepoint fields
6820 |====
6821 |Macro |Description and parameters
6822
6823 |
6824 +ctf_integer(__t__, __n__, __e__)+
6825
6826 +ctf_integer_nowrite(__t__, __n__, __e__)+
6827
6828 +ctf_user_integer(__t__, __n__, __e__)+
6829
6830 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
6831 |
6832 Standard integer, displayed in base 10.
6833
6834 +__t__+::
6835 Integer C type (`int`, `long`, `size_t`, ...).
6836
6837 +__n__+::
6838 Field name.
6839
6840 +__e__+::
6841 Argument expression.
6842
6843 |
6844 +ctf_integer_hex(__t__, __n__, __e__)+
6845
6846 +ctf_user_integer_hex(__t__, __n__, __e__)+
6847 |
6848 Standard integer, displayed in base 16.
6849
6850 +__t__+::
6851 Integer C type.
6852
6853 +__n__+::
6854 Field name.
6855
6856 +__e__+::
6857 Argument expression.
6858
6859 |+ctf_integer_oct(__t__, __n__, __e__)+
6860 |
6861 Standard integer, displayed in base 8.
6862
6863 +__t__+::
6864 Integer C type.
6865
6866 +__n__+::
6867 Field name.
6868
6869 +__e__+::
6870 Argument expression.
6871
6872 |
6873 +ctf_integer_network(__t__, __n__, __e__)+
6874
6875 +ctf_user_integer_network(__t__, __n__, __e__)+
6876 |
6877 Integer in network byte order (big-endian), displayed in base 10.
6878
6879 +__t__+::
6880 Integer C type.
6881
6882 +__n__+::
6883 Field name.
6884
6885 +__e__+::
6886 Argument expression.
6887
6888 |
6889 +ctf_integer_network_hex(__t__, __n__, __e__)+
6890
6891 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
6892 |
6893 Integer in network byte order, displayed in base 16.
6894
6895 +__t__+::
6896 Integer C type.
6897
6898 +__n__+::
6899 Field name.
6900
6901 +__e__+::
6902 Argument expression.
6903
6904 |
6905 +ctf_enum(__N__, __t__, __n__, __e__)+
6906
6907 +ctf_enum_nowrite(__N__, __t__, __n__, __e__)+
6908
6909 +ctf_user_enum(__N__, __t__, __n__, __e__)+
6910
6911 +ctf_user_enum_nowrite(__N__, __t__, __n__, __e__)+
6912 |
6913 Enumeration.
6914
6915 +__N__+::
6916 Name of a <<lttng-tracepoint-enum,previously defined enumeration>>.
6917
6918 +__t__+::
6919 Integer C type (`int`, `long`, `size_t`, ...).
6920
6921 +__n__+::
6922 Field name.
6923
6924 +__e__+::
6925 Argument expression.
6926
6927 |
6928 +ctf_string(__n__, __e__)+
6929
6930 +ctf_string_nowrite(__n__, __e__)+
6931
6932 +ctf_user_string(__n__, __e__)+
6933
6934 +ctf_user_string_nowrite(__n__, __e__)+
6935 |
6936 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
6937
6938 +__n__+::
6939 Field name.
6940
6941 +__e__+::
6942 Argument expression.
6943
6944 |
6945 +ctf_array(__t__, __n__, __e__, __s__)+
6946
6947 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
6948
6949 +ctf_user_array(__t__, __n__, __e__, __s__)+
6950
6951 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
6952 |
6953 Statically-sized array of integers.
6954
6955 +__t__+::
6956 Array element C type.
6957
6958 +__n__+::
6959 Field name.
6960
6961 +__e__+::
6962 Argument expression.
6963
6964 +__s__+::
6965 Number of elements.
6966
6967 |
6968 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
6969
6970 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6971
6972 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
6973
6974 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6975 |
6976 Statically-sized array of bits.
6977
6978 The type of +__e__+ must be an integer type. +__s__+ is the number
6979 of elements of such type in +__e__+, not the number of bits.
6980
6981 +__t__+::
6982 Array element C type.
6983
6984 +__n__+::
6985 Field name.
6986
6987 +__e__+::
6988 Argument expression.
6989
6990 +__s__+::
6991 Number of elements.
6992
6993 |
6994 +ctf_array_text(__t__, __n__, __e__, __s__)+
6995
6996 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
6997
6998 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
6999
7000 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
7001 |
7002 Statically-sized array, printed as text.
7003
7004 The string does not need to be null-terminated.
7005
7006 +__t__+::
7007 Array element C type (always `char`).
7008
7009 +__n__+::
7010 Field name.
7011
7012 +__e__+::
7013 Argument expression.
7014
7015 +__s__+::
7016 Number of elements.
7017
7018 |
7019 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
7020
7021 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7022
7023 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
7024
7025 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7026 |
7027 Dynamically-sized array of integers.
7028
7029 The type of +__E__+ must be unsigned.
7030
7031 +__t__+::
7032 Array element C type.
7033
7034 +__n__+::
7035 Field name.
7036
7037 +__e__+::
7038 Argument expression.
7039
7040 +__T__+::
7041 Length expression C type.
7042
7043 +__E__+::
7044 Length expression.
7045
7046 |
7047 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7048
7049 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7050 |
7051 Dynamically-sized array of integers, displayed in base 16.
7052
7053 The type of +__E__+ must be unsigned.
7054
7055 +__t__+::
7056 Array element C type.
7057
7058 +__n__+::
7059 Field name.
7060
7061 +__e__+::
7062 Argument expression.
7063
7064 +__T__+::
7065 Length expression C type.
7066
7067 +__E__+::
7068 Length expression.
7069
7070 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
7071 |
7072 Dynamically-sized array of integers in network byte order (big-endian),
7073 displayed in base 10.
7074
7075 The type of +__E__+ must be unsigned.
7076
7077 +__t__+::
7078 Array element C type.
7079
7080 +__n__+::
7081 Field name.
7082
7083 +__e__+::
7084 Argument expression.
7085
7086 +__T__+::
7087 Length expression C type.
7088
7089 +__E__+::
7090 Length expression.
7091
7092 |
7093 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7094
7095 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7096
7097 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7098
7099 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7100 |
7101 Dynamically-sized array of bits.
7102
7103 The type of +__e__+ must be an integer type. +__s__+ is the number
7104 of elements of such type in +__e__+, not the number of bits.
7105
7106 The type of +__E__+ must be unsigned.
7107
7108 +__t__+::
7109 Array element C type.
7110
7111 +__n__+::
7112 Field name.
7113
7114 +__e__+::
7115 Argument expression.
7116
7117 +__T__+::
7118 Length expression C type.
7119
7120 +__E__+::
7121 Length expression.
7122
7123 |
7124 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7125
7126 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7127
7128 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7129
7130 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7131 |
7132 Dynamically-sized array, displayed as text.
7133
7134 The string does not need to be null-terminated.
7135
7136 The type of +__E__+ must be unsigned.
7137
7138 The behaviour is undefined if +__e__+ is `NULL`.
7139
7140 +__t__+::
7141 Sequence element C type (always `char`).
7142
7143 +__n__+::
7144 Field name.
7145
7146 +__e__+::
7147 Argument expression.
7148
7149 +__T__+::
7150 Length expression C type.
7151
7152 +__E__+::
7153 Length expression.
7154 |====
7155
7156 Use the `_user` versions when the argument expression, `e`, is
7157 a user space address. In the cases of `ctf_user_integer*()` and
7158 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7159 be addressable.
7160
7161 The `_nowrite` versions omit themselves from the session trace, but are
7162 otherwise identical. This means the `_nowrite` fields won't be written
7163 in the recorded trace. Their primary purpose is to make some
7164 of the event context available to the
7165 <<enabling-disabling-events,event filters>> without having to
7166 commit the data to sub-buffers.
7167
7168
7169 [[glossary]]
7170 == Glossary
7171
7172 Terms related to LTTng and to tracing in general:
7173
7174 Babeltrace::
7175 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7176 the cmd:babeltrace command, some libraries, and Python bindings.
7177
7178 <<channel-buffering-schemes,buffering scheme>>::
7179 A layout of sub-buffers applied to a given channel.
7180
7181 <<channel,channel>>::
7182 An entity which is responsible for a set of ring buffers.
7183 +
7184 <<event,Event rules>> are always attached to a specific channel.
7185
7186 clock::
7187 A reference of time for a tracer.
7188
7189 <<lttng-consumerd,consumer daemon>>::
7190 A process which is responsible for consuming the full sub-buffers
7191 and write them to a file system or send them over the network.
7192
7193 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7194 mode in which the tracer _discards_ new event records when there's no
7195 sub-buffer space left to store them.
7196
7197 event::
7198 The consequence of the execution of an instrumentation
7199 point, like a tracepoint that you manually place in some source code,
7200 or a Linux kernel KProbe.
7201 +
7202 An event is said to _occur_ at a specific time. Different actions can
7203 be taken upon the occurance of an event, like record the event's payload
7204 to a sub-buffer.
7205
7206 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7207 The mechanism by which event records of a given channel are lost
7208 (not recorded) when there is no sub-buffer space left to store them.
7209
7210 [[def-event-name]]event name::
7211 The name of an event, which is also the name of the event record.
7212 This is also called the _instrumentation point name_.
7213
7214 event record::
7215 A record, in a trace, of the payload of an event which occured.
7216
7217 <<event,event rule>>::
7218 Set of conditions which must be satisfied for one or more occuring
7219 events to be recorded.
7220
7221 `java.util.logging`::
7222 Java platform's
7223 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7224
7225 <<instrumenting,instrumentation>>::
7226 The use of LTTng probes to make a piece of software traceable.
7227
7228 instrumentation point::
7229 A point in the execution path of a piece of software that, when
7230 reached by this execution, can emit an event.
7231
7232 instrumentation point name::
7233 See _<<def-event-name,event name>>_.
7234
7235 log4j::
7236 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7237 developed by the Apache Software Foundation.
7238
7239 log level::
7240 Level of severity of a log statement or user space
7241 instrumentation point.
7242
7243 LTTng::
7244 The _Linux Trace Toolkit: next generation_ project.
7245
7246 <<lttng-cli,cmd:lttng>>::
7247 A command-line tool provided by the LTTng-tools project which you
7248 can use to send and receive control messages to and from a
7249 session daemon.
7250
7251 LTTng analyses::
7252 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7253 which is a set of analyzing programs that are used to obtain a
7254 higher level view of an LTTng trace.
7255
7256 cmd:lttng-consumerd::
7257 The name of the consumer daemon program.
7258
7259 cmd:lttng-crash::
7260 A utility provided by the LTTng-tools project which can convert
7261 ring buffer files (usually
7262 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7263 to trace files.
7264
7265 LTTng Documentation::
7266 This document.
7267
7268 <<lttng-live,LTTng live>>::
7269 A communication protocol between the relay daemon and live viewers
7270 which makes it possible to see events "live", as they are received by
7271 the relay daemon.
7272
7273 <<lttng-modules,LTTng-modules>>::
7274 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7275 which contains the Linux kernel modules to make the Linux kernel
7276 instrumentation points available for LTTng tracing.
7277
7278 cmd:lttng-relayd::
7279 The name of the relay daemon program.
7280
7281 cmd:lttng-sessiond::
7282 The name of the session daemon program.
7283
7284 LTTng-tools::
7285 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7286 contains the various programs and libraries used to
7287 <<controlling-tracing,control tracing>>.
7288
7289 <<lttng-ust,LTTng-UST>>::
7290 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7291 contains libraries to instrument user applications.
7292
7293 <<lttng-ust-agents,LTTng-UST Java agent>>::
7294 A Java package provided by the LTTng-UST project to allow the
7295 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7296 logging statements.
7297
7298 <<lttng-ust-agents,LTTng-UST Python agent>>::
7299 A Python package provided by the LTTng-UST project to allow the
7300 LTTng instrumentation of Python logging statements.
7301
7302 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7303 The event loss mode in which new event records overwrite older
7304 event records when there's no sub-buffer space left to store them.
7305
7306 <<channel-buffering-schemes,per-process buffering>>::
7307 A buffering scheme in which each instrumented process has its own
7308 sub-buffers for a given user space channel.
7309
7310 <<channel-buffering-schemes,per-user buffering>>::
7311 A buffering scheme in which all the processes of a Unix user share the
7312 same sub-buffer for a given user space channel.
7313
7314 <<lttng-relayd,relay daemon>>::
7315 A process which is responsible for receiving the trace data sent by
7316 a distant consumer daemon.
7317
7318 ring buffer::
7319 A set of sub-buffers.
7320
7321 <<lttng-sessiond,session daemon>>::
7322 A process which receives control commands from you and orchestrates
7323 the tracers and various LTTng daemons.
7324
7325 <<taking-a-snapshot,snapshot>>::
7326 A copy of the current data of all the sub-buffers of a given tracing
7327 session, saved as trace files.
7328
7329 sub-buffer::
7330 One part of an LTTng ring buffer which contains event records.
7331
7332 timestamp::
7333 The time information attached to an event when it is emitted.
7334
7335 trace (_noun_)::
7336 A set of files which are the concatenations of one or more
7337 flushed sub-buffers.
7338
7339 trace (_verb_)::
7340 The action of recording the events emitted by an application
7341 or by a system, or to initiate such recording by controlling
7342 a tracer.
7343
7344 Trace Compass::
7345 The http://tracecompass.org[Trace Compass] project and application.
7346
7347 tracepoint::
7348 An instrumentation point using the tracepoint mechanism of the Linux
7349 kernel or of LTTng-UST.
7350
7351 tracepoint definition::
7352 The definition of a single tracepoint.
7353
7354 tracepoint name::
7355 The name of a tracepoint.
7356
7357 tracepoint provider::
7358 A set of functions providing tracepoints to an instrumented user
7359 application.
7360 +
7361 Not to be confused with a _tracepoint provider package_: many tracepoint
7362 providers can exist within a tracepoint provider package.
7363
7364 tracepoint provider package::
7365 One or more tracepoint providers compiled as an object file or as
7366 a shared library.
7367
7368 tracer::
7369 A software which records emitted events.
7370
7371 <<domain,tracing domain>>::
7372 A namespace for event sources.
7373
7374 <<tracing-group,tracing group>>::
7375 The Unix group in which a Unix user can be to be allowed to trace the
7376 Linux kernel.
7377
7378 <<tracing-session,tracing session>>::
7379 A stateful dialogue between you and a <<lttng-sessiond,session
7380 daemon>>.
7381
7382 user application::
7383 An application running in user space, as opposed to a Linux kernel
7384 module, for example.
This page took 0.326231 seconds and 3 git commands to generate.