2.8, 2.9: getting-started: fix and update procedures
[lttng-docs.git] / 2.9 / lttng-docs-2.9.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.9, 2 December 2016
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/welcome.txt[]
11
12
13 include::../common/audience.txt[]
14
15
16 [[chapters]]
17 === What's in this documentation?
18
19 The LTTng Documentation is divided into the following sections:
20
21 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24 +
25 You can skip this section if you’re familiar with software tracing and
26 with the LTTng project.
27
28 * **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31 +
32 You can skip this section if you already properly installed LTTng on
33 your target system.
34
35 * **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37 +
38 We recommend this section if you're new to LTTng or to software tracing
39 in general.
40 +
41 You can skip this section if you're not new to LTTng.
42
43 * **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45 +
46 It's a good idea to become familiar with the core concepts
47 before attempting to use the toolkit.
48
49 * **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52 * **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54 +
55 Instrumenting source code is essential to provide a meaningful
56 source of events.
57 +
58 You can skip this section if you do not have a programming background.
59
60 * **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63 * **<<reference,Reference>>** contains reference tables.
64 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68 include::../common/convention.txt[]
69
70
71 include::../common/acknowledgements.txt[]
72
73
74 [[whats-new]]
75 == What's new in LTTng {revision}?
76
77 * **Tracing control**:
78 ** You can override the name or the URL of a tracing session
79 configuration when you use man:lttng-load(1) thanks to the new
80 opt:lttng-load(1):--override-name and
81 opt:lttng-load(1):--override-url options.
82 ** The new `lttng regenerate` command replaces the now deprecated
83 `lttng metadata` command of LTTng 2.8. man:lttng-regenerate(1) can
84 also <<regenerate-statedump,generate the state dump event records>>
85 of a given tracing session on demand, a handy feature when
86 <<taking-a-snapshot,taking a snapshot>>.
87 ** You can add PMU counters by raw ID with man:lttng-add-context(1):
88 +
89 --
90 [role="term"]
91 ----
92 lttng add-context --kernel --type=perf:cpu:raw:r0013c:x86unhalted
93 ----
94 --
95 +
96 The format of the raw ID is the same as used with man:perf-record(1).
97 See <<adding-context,Add context fields to a channel>> for more
98 examples.
99
100 ** The LTTng <<lttng-relayd,relay daemon>> is now supported on
101 OS{nbsp}X and macOS for a smoother integration within a trace
102 analysis workflow, regardless of the platform used.
103
104 * **User space tracing**:
105 ** Improved performance (tested on x86-64 and ARMv7-A
106 (https://en.wikipedia.org/wiki/Cubieboard[Cubieboard])
107 architectures).
108 ** New helper library (`liblttng-ust-fd`) to help with
109 <<liblttng-ust-fd,applications which close file descriptors that
110 don't belong to them>>, for example, in a loop which closes file
111 descriptors after man:fork(2), or BSD's `closeall()`.
112 ** More accurate <<liblttng-ust-dl,dynamic linker instrumentation>> and
113 state dump event records, especially when a dynamically loaded
114 library manually loads its own dependencies.
115 ** New `ctf_*()` field definition macros (see man:lttng-ust(3)):
116 *** `ctf_array_hex()`
117 *** `ctf_array_network()`
118 *** `ctf_array_network_hex()`
119 *** `ctf_sequence_hex()`
120 *** `ctf_sequence_network()`
121 *** `ctf_sequence_network_hex()`
122 ** New `lttng_ust_loaded` weak symbol defined by `liblttng-ust` for
123 an application to know if the LTTng-UST shared library is loaded
124 or not:
125 +
126 --
127 [source,c]
128 ----
129 #include <stdio.h>
130
131 int lttng_ust_loaded __attribute__((weak));
132
133 int main(void)
134 {
135 if (lttng_ust_loaded) {
136 puts("LTTng-UST is loaded!");
137 } else {
138 puts("LTTng-UST is not loaded!");
139 }
140
141 return 0;
142 }
143 ----
144 --
145
146 ** LTTng-UST thread names have the `-ust` suffix.
147
148 * **Linux kernel tracing**:
149 ** Improved performance (tested on x86-64 and ARMv7-A
150 (https://en.wikipedia.org/wiki/Cubieboard[Cubieboard])
151 architectures).
152 ** New enumeration <<lttng-modules-tp-fields,field definition macros>>:
153 `ctf_enum()` and `ctf_user_enum()`.
154 ** IPv4, IPv6, and TCP header data is recorded in the event records
155 produced by tracepoints starting with `net_`.
156 ** Detailed system call event records: `select`, `pselect6`, `poll`,
157 `ppoll`, `epoll_wait`, `epoll_pwait`, and `epoll_ctl` on all
158 architectures supported by LTTng-modules, and `accept4` on x86-64.
159 ** New I²C instrumentation: the `extract_sensitive_payload` parameter
160 of the new `lttng-probe-i2c` LTTng module controls whether or not
161 the payloads of I²C messages are recorded in I²C event records, since
162 they may contain sensitive data (for example, keystrokes).
163 ** When the LTTng kernel modules are built into the Linux kernel image,
164 the `CONFIG_TRACEPOINTS` configuration option is automatically
165 selected.
166
167
168 [[nuts-and-bolts]]
169 == Nuts and bolts
170
171 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
172 generation_ is a modern toolkit for tracing Linux systems and
173 applications. So your first question might be:
174 **what is tracing?**
175
176
177 [[what-is-tracing]]
178 === What is tracing?
179
180 As the history of software engineering progressed and led to what
181 we now take for granted--complex, numerous and
182 interdependent software applications running in parallel on
183 sophisticated operating systems like Linux--the authors of such
184 components, software developers, began feeling a natural
185 urge to have tools that would ensure the robustness and good performance
186 of their masterpieces.
187
188 One major achievement in this field is, inarguably, the
189 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
190 an essential tool for developers to find and fix bugs. But even the best
191 debugger won't help make your software run faster, and nowadays, faster
192 software means either more work done by the same hardware, or cheaper
193 hardware for the same work.
194
195 A _profiler_ is often the tool of choice to identify performance
196 bottlenecks. Profiling is suitable to identify _where_ performance is
197 lost in a given software. The profiler outputs a profile, a statistical
198 summary of observed events, which you may use to discover which
199 functions took the most time to execute. However, a profiler won't
200 report _why_ some identified functions are the bottleneck. Bottlenecks
201 might only occur when specific conditions are met, conditions that are
202 sometimes impossible to capture by a statistical profiler, or impossible
203 to reproduce with an application altered by the overhead of an
204 event-based profiler. For a thorough investigation of software
205 performance issues, a history of execution is essential, with the
206 recorded values of variables and context fields you choose, and
207 with as little influence as possible on the instrumented software. This
208 is where tracing comes in handy.
209
210 _Tracing_ is a technique used to understand what goes on in a running
211 software system. The software used for tracing is called a _tracer_,
212 which is conceptually similar to a tape recorder. When recording,
213 specific instrumentation points placed in the software source code
214 generate events that are saved on a giant tape: a _trace_ file. You
215 can trace user applications and the operating system at the same time,
216 opening the possibility of resolving a wide range of problems that would
217 otherwise be extremely challenging.
218
219 Tracing is often compared to _logging_. However, tracers and loggers are
220 two different tools, serving two different purposes. Tracers are
221 designed to record much lower-level events that occur much more
222 frequently than log messages, often in the range of thousands per
223 second, with very little execution overhead. Logging is more appropriate
224 for a very high-level analysis of less frequent events: user accesses,
225 exceptional conditions (errors and warnings, for example), database
226 transactions, instant messaging communications, and such. Simply put,
227 logging is one of the many use cases that can be satisfied with tracing.
228
229 The list of recorded events inside a trace file can be read manually
230 like a log file for the maximum level of detail, but it is generally
231 much more interesting to perform application-specific analyses to
232 produce reduced statistics and graphs that are useful to resolve a
233 given problem. Trace viewers and analyzers are specialized tools
234 designed to do this.
235
236 In the end, this is what LTTng is: a powerful, open source set of
237 tools to trace the Linux kernel and user applications at the same time.
238 LTTng is composed of several components actively maintained and
239 developed by its link:/community/#where[community].
240
241
242 [[lttng-alternatives]]
243 === Alternatives to noch:{LTTng}
244
245 Excluding proprietary solutions, a few competing software tracers
246 exist for Linux:
247
248 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
249 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
250 user scripts and is responsible for loading code into the
251 Linux kernel for further execution and collecting the outputted data.
252 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
253 subsystem in the Linux kernel in which a virtual machine can execute
254 programs passed from the user space to the kernel. You can attach
255 such programs to tracepoints and KProbes thanks to a system call, and
256 they can output data to the user space when executed thanks to
257 different mechanisms (pipe, VM register values, and eBPF maps, to name
258 a few).
259 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
260 is the de facto function tracer of the Linux kernel. Its user
261 interface is a set of special files in sysfs.
262 * https://perf.wiki.kernel.org/[perf] is
263 a performance analyzing tool for Linux which supports hardware
264 performance counters, tracepoints, as well as other counters and
265 types of probes. perf's controlling utility is the cmd:perf command
266 line/curses tool.
267 * http://linux.die.net/man/1/strace[strace]
268 is a command-line utility which records system calls made by a
269 user process, as well as signal deliveries and changes of process
270 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
271 to fulfill its function.
272 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
273 analyze Linux kernel events. You write scripts, or _chisels_ in
274 sysdig's jargon, in Lua and sysdig executes them while the system is
275 being traced or afterwards. sysdig's interface is the cmd:sysdig
276 command-line tool as well as the curses-based cmd:csysdig tool.
277 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
278 user space tracer which uses custom user scripts to produce plain text
279 traces. SystemTap converts the scripts to the C language, and then
280 compiles them as Linux kernel modules which are loaded to produce
281 trace data. SystemTap's primary user interface is the cmd:stap
282 command-line tool.
283
284 The main distinctive features of LTTng is that it produces correlated
285 kernel and user space traces, as well as doing so with the lowest
286 overhead amongst other solutions. It produces trace files in the
287 http://diamon.org/ctf[CTF] format, a file format optimized
288 for the production and analyses of multi-gigabyte data.
289
290 LTTng is the result of more than 10 years of active open source
291 development by a community of passionate developers.
292 LTTng{nbsp}{revision} is currently available on major desktop and server
293 Linux distributions.
294
295 The main interface for tracing control is a single command-line tool
296 named cmd:lttng. The latter can create several tracing sessions, enable
297 and disable events on the fly, filter events efficiently with custom
298 user expressions, start and stop tracing, and much more. LTTng can
299 record the traces on the file system or send them over the network, and
300 keep them totally or partially. You can view the traces once tracing
301 becomes inactive or in real-time.
302
303 <<installing-lttng,Install LTTng now>> and
304 <<getting-started,start tracing>>!
305
306
307 [[installing-lttng]]
308 == Installation
309
310 **LTTng** is a set of software <<plumbing,components>> which interact to
311 <<instrumenting,instrument>> the Linux kernel and user applications, and
312 to <<controlling-tracing,control tracing>> (start and stop
313 tracing, enable and disable event rules, and the rest). Those
314 components are bundled into the following packages:
315
316 * **LTTng-tools**: Libraries and command-line interface to
317 control tracing.
318 * **LTTng-modules**: Linux kernel modules to instrument and
319 trace the kernel.
320 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
321 trace user applications.
322
323 Most distributions mark the LTTng-modules and LTTng-UST packages as
324 optional when installing LTTng-tools (which is always required). In the
325 following sections, we always provide the steps to install all three,
326 but note that:
327
328 * You only need to install LTTng-modules if you intend to trace the
329 Linux kernel.
330 * You only need to install LTTng-UST if you intend to trace user
331 applications.
332
333 [role="growable"]
334 .Availability of LTTng{nbsp}{revision} for major Linux distributions as of 2 December 2016.
335 |====
336 |Distribution |Available in releases |Alternatives
337
338 |https://www.ubuntu.com/[Ubuntu]
339 |Ubuntu{nbsp}14.04 _Trusty Tahr_ and Ubuntu{nbsp}16.04 _Xenial Xerus_:
340 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
341 |link:/docs/v2.8#doc-ubuntu[LTTng{nbsp}2.8 for Ubuntu{nbsp}16.10 _Yakkety Yak_].
342
343 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
344 other Ubuntu releases.
345
346 |https://getfedora.org/[Fedora]
347 |_Not available_
348 |<<building-from-source,Build LTTng-modules{nbsp}{revision} from
349 source>>.
350
351 |https://www.debian.org/[Debian]
352 |_Not available_
353 |<<building-from-source,Build LTTng-modules{nbsp}{revision} from
354 source>>.
355
356 |https://www.opensuse.org/[openSUSE]
357 |_Not available_
358 |<<building-from-source,Build LTTng-modules{nbsp}{revision} from
359 source>>.
360
361 |https://www.archlinux.org/[Arch Linux]
362 |<<arch-linux,Latest AUR packages>>.
363 |
364
365 |https://alpinelinux.org/[Alpine Linux]
366 |_Not available_
367 |link:/docs/v2.8#doc-alpine-linux[LTTng{nbsp}2.8 for Alpine Linux{nbsp}"edge"].
368
369 LTTng{nbsp}2.8 for Alpine Linux{nbsp}3.5 (not released yet).
370
371 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
372 other Alpine Linux releases.
373
374 |https://www.redhat.com/[RHEL] and https://www.suse.com/[SLES]
375 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
376 |
377
378 |https://buildroot.org/[Buildroot]
379 |_Not available_
380 |link:/docs/v2.8#doc-buildroot[LTTng{nbsp}2.8 for Buildroot{nbsp}2016.11].
381
382 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
383 other Buildroot releases.
384
385 |http://www.openembedded.org/wiki/Main_Page[OpenEmbedded] and
386 https://www.yoctoproject.org/[Yocto]
387 |_Not available_
388 |link:/docs/v2.8#doc-oe-yocto[LTTng{nbsp}2.8 for Yocto Project{nbsp}2.2 _Morty_]
389 (`openembedded-core` layer).
390
391 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
392 other OpenEmbedded releases.
393 |====
394
395
396 [[ubuntu]]
397 === [[ubuntu-official-repositories]]Ubuntu
398
399 [[ubuntu-ppa]]
400 ==== noch:{LTTng} Stable {revision} PPA
401
402 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
403 Stable{nbsp}{revision} PPA] offers the latest stable
404 LTTng{nbsp}{revision} packages for:
405
406 * Ubuntu{nbsp}14.04 _Trusty Tahr_
407 * Ubuntu{nbsp}16.04 _Xenial Xerus_
408
409 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
410
411 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
412 list of packages:
413 +
414 --
415 [role="term"]
416 ----
417 sudo apt-add-repository ppa:lttng/stable-2.9
418 sudo apt-get update
419 ----
420 --
421
422 . Install the main LTTng{nbsp}{revision} packages:
423 +
424 --
425 [role="term"]
426 ----
427 sudo apt-get install lttng-tools
428 sudo apt-get install lttng-modules-dkms
429 sudo apt-get install liblttng-ust-dev
430 ----
431 --
432
433 . **If you need to instrument and trace
434 <<java-application,Java applications>>**, install the LTTng-UST
435 Java agent:
436 +
437 --
438 [role="term"]
439 ----
440 sudo apt-get install liblttng-ust-agent-java
441 ----
442 --
443
444 . **If you need to instrument and trace
445 <<python-application,Python{nbsp}3 applications>>**, install the
446 LTTng-UST Python agent:
447 +
448 --
449 [role="term"]
450 ----
451 sudo apt-get install python3-lttngust
452 ----
453 --
454
455
456 [[arch-linux]]
457 === Arch Linux
458
459 To install LTTng{nbsp}{revision} on Arch Linux using
460 https://archlinux.fr/yaourt-en[Yaourt]:
461
462 . Install the main LTTng{nbsp}{revision} packages:
463 +
464 --
465 [role="term"]
466 ----
467 yaourt -S lttng-tools
468 yaourt -S lttng-ust
469 yaourt -S lttng-modules
470 ----
471 --
472
473 . **If you need to instrument and trace <<python-application,Python
474 applications>>**, install the LTTng-UST Python agent:
475 +
476 --
477 [role="term"]
478 ----
479 yaourt -S python-lttngust
480 yaourt -S python2-lttngust
481 ----
482 --
483
484
485 [[enterprise-distributions]]
486 === RHEL, SUSE, and other enterprise distributions
487
488 To install LTTng on enterprise Linux distributions, such as Red Hat
489 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
490 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
491
492
493 [[building-from-source]]
494 === Build from source
495
496 To build and install LTTng{nbsp}{revision} from source:
497
498 . Using your distribution's package manager, or from source, install
499 the following dependencies of LTTng-tools and LTTng-UST:
500 +
501 --
502 * https://sourceforge.net/projects/libuuid/[libuuid]
503 * http://directory.fsf.org/wiki/Popt[popt]
504 * http://liburcu.org/[Userspace RCU]
505 * http://www.xmlsoft.org/[libxml2]
506 --
507
508 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
509 +
510 --
511 [role="term"]
512 ----
513 cd $(mktemp -d) &&
514 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.9.tar.bz2 &&
515 tar -xf lttng-modules-latest-2.9.tar.bz2 &&
516 cd lttng-modules-2.9.* &&
517 make &&
518 sudo make modules_install &&
519 sudo depmod -a
520 ----
521 --
522
523 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
524 +
525 --
526 [role="term"]
527 ----
528 cd $(mktemp -d) &&
529 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.9.tar.bz2 &&
530 tar -xf lttng-ust-latest-2.9.tar.bz2 &&
531 cd lttng-ust-2.9.* &&
532 ./configure &&
533 make &&
534 sudo make install &&
535 sudo ldconfig
536 ----
537 --
538 +
539 --
540 [IMPORTANT]
541 .Java and Python application tracing
542 ====
543 If you need to instrument and trace <<java-application,Java
544 applications>>, pass the `--enable-java-agent-jul`,
545 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
546 `configure` script, depending on which Java logging framework you use.
547
548 If you need to instrument and trace <<python-application,Python
549 applications>>, pass the `--enable-python-agent` option to the
550 `configure` script. You can set the `PYTHON` environment variable to the
551 path to the Python interpreter for which to install the LTTng-UST Python
552 agent package.
553 ====
554 --
555 +
556 --
557 [NOTE]
558 ====
559 By default, LTTng-UST libraries are installed to
560 dir:{/usr/local/lib}, which is the de facto directory in which to
561 keep self-compiled and third-party libraries.
562
563 When <<building-tracepoint-providers-and-user-application,linking an
564 instrumented user application with `liblttng-ust`>>:
565
566 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
567 variable.
568 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
569 man:gcc(1), man:g++(1), or man:clang(1).
570 ====
571 --
572
573 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
574 +
575 --
576 [role="term"]
577 ----
578 cd $(mktemp -d) &&
579 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.9.tar.bz2 &&
580 tar -xf lttng-tools-latest-2.9.tar.bz2 &&
581 cd lttng-tools-2.9.* &&
582 ./configure &&
583 make &&
584 sudo make install &&
585 sudo ldconfig
586 ----
587 --
588
589 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
590 previous steps automatically for a given version of LTTng and confine
591 the installed files in a specific directory. This can be useful to test
592 LTTng without installing it on your system.
593
594
595 [[getting-started]]
596 == Quick start
597
598 This is a short guide to get started quickly with LTTng kernel and user
599 space tracing.
600
601 Before you follow this guide, make sure to <<installing-lttng,install>>
602 LTTng.
603
604 This tutorial walks you through the steps to:
605
606 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
607 . <<tracing-your-own-user-application,Trace a user application>> written
608 in C.
609 . <<viewing-and-analyzing-your-traces,View and analyze the
610 recorded events>>.
611
612
613 [[tracing-the-linux-kernel]]
614 === Trace the Linux kernel
615
616 The following command lines start with cmd:sudo because you need root
617 privileges to trace the Linux kernel. You can avoid using cmd:sudo if
618 your Unix user is a member of the <<tracing-group,tracing group>>.
619
620 . Create a <<tracing-session,tracing session>> which writes its traces
621 to dir:{/tmp/my-kernel-trace}:
622 +
623 --
624 [role="term"]
625 ----
626 sudo lttng create my-kernel-session --output=/tmp/my-kernel-trace
627 ----
628 --
629
630 . List the available kernel tracepoints and system calls:
631 +
632 --
633 [role="term"]
634 ----
635 lttng list --kernel
636 lttng list --kernel --syscall
637 ----
638 --
639
640 . Create <<event,event rules>> which match the desired instrumentation
641 point names, for example the `sched_switch` and `sched_process_fork`
642 tracepoints, and the man:open(2) and man:close(2) system calls:
643 +
644 --
645 [role="term"]
646 ----
647 sudo lttng enable-event --kernel sched_switch,sched_process_fork
648 sudo lttng enable-event --kernel --syscall open,close
649 ----
650 --
651 +
652 You can also create an event rule which matches _all_ the Linux kernel
653 tracepoints (this will generate a lot of data when tracing):
654 +
655 --
656 [role="term"]
657 ----
658 sudo lttng enable-event --kernel --all
659 ----
660 --
661
662 . <<basic-tracing-session-control,Start tracing>>:
663 +
664 --
665 [role="term"]
666 ----
667 sudo lttng start
668 ----
669 --
670
671 . Do some operation on your system for a few seconds. For example,
672 load a website, or list the files of a directory.
673 . <<basic-tracing-session-control,Stop tracing>> and destroy the
674 tracing session:
675 +
676 --
677 [role="term"]
678 ----
679 sudo lttng stop
680 sudo lttng destroy
681 ----
682 --
683 +
684 The man:lttng-destroy(1) command does not destroy the trace data; it
685 only destroys the state of the tracing session.
686
687 . For the sake of this example, make the recorded trace accessible to
688 the non-root users:
689 +
690 --
691 [role="term"]
692 ----
693 sudo chown -R $(whoami) /tmp/my-kernel-trace
694 ----
695 --
696
697 See <<viewing-and-analyzing-your-traces,View and analyze the
698 recorded events>> to view the recorded events.
699
700
701 [[tracing-your-own-user-application]]
702 === Trace a user application
703
704 This section steps you through a simple example to trace a
705 _Hello world_ program written in C.
706
707 To create the traceable user application:
708
709 . Create the tracepoint provider header file, which defines the
710 tracepoints and the events they can generate:
711 +
712 --
713 [source,c]
714 .path:{hello-tp.h}
715 ----
716 #undef TRACEPOINT_PROVIDER
717 #define TRACEPOINT_PROVIDER hello_world
718
719 #undef TRACEPOINT_INCLUDE
720 #define TRACEPOINT_INCLUDE "./hello-tp.h"
721
722 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
723 #define _HELLO_TP_H
724
725 #include <lttng/tracepoint.h>
726
727 TRACEPOINT_EVENT(
728 hello_world,
729 my_first_tracepoint,
730 TP_ARGS(
731 int, my_integer_arg,
732 char*, my_string_arg
733 ),
734 TP_FIELDS(
735 ctf_string(my_string_field, my_string_arg)
736 ctf_integer(int, my_integer_field, my_integer_arg)
737 )
738 )
739
740 #endif /* _HELLO_TP_H */
741
742 #include <lttng/tracepoint-event.h>
743 ----
744 --
745
746 . Create the tracepoint provider package source file:
747 +
748 --
749 [source,c]
750 .path:{hello-tp.c}
751 ----
752 #define TRACEPOINT_CREATE_PROBES
753 #define TRACEPOINT_DEFINE
754
755 #include "hello-tp.h"
756 ----
757 --
758
759 . Build the tracepoint provider package:
760 +
761 --
762 [role="term"]
763 ----
764 gcc -c -I. hello-tp.c
765 ----
766 --
767
768 . Create the _Hello World_ application source file:
769 +
770 --
771 [source,c]
772 .path:{hello.c}
773 ----
774 #include <stdio.h>
775 #include "hello-tp.h"
776
777 int main(int argc, char *argv[])
778 {
779 int x;
780
781 puts("Hello, World!\nPress Enter to continue...");
782
783 /*
784 * The following getchar() call is only placed here for the purpose
785 * of this demonstration, to pause the application in order for
786 * you to have time to list its tracepoints. It is not
787 * needed otherwise.
788 */
789 getchar();
790
791 /*
792 * A tracepoint() call.
793 *
794 * Arguments, as defined in hello-tp.h:
795 *
796 * 1. Tracepoint provider name (required)
797 * 2. Tracepoint name (required)
798 * 3. my_integer_arg (first user-defined argument)
799 * 4. my_string_arg (second user-defined argument)
800 *
801 * Notice the tracepoint provider and tracepoint names are
802 * NOT strings: they are in fact parts of variables that the
803 * macros in hello-tp.h create.
804 */
805 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
806
807 for (x = 0; x < argc; ++x) {
808 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
809 }
810
811 puts("Quitting now!");
812 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
813
814 return 0;
815 }
816 ----
817 --
818
819 . Build the application:
820 +
821 --
822 [role="term"]
823 ----
824 gcc -c hello.c
825 ----
826 --
827
828 . Link the application with the tracepoint provider package,
829 `liblttng-ust`, and `libdl`:
830 +
831 --
832 [role="term"]
833 ----
834 gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
835 ----
836 --
837
838 Here's the whole build process:
839
840 [role="img-100"]
841 .User space tracing tutorial's build steps.
842 image::ust-flow.png[]
843
844 To trace the user application:
845
846 . Run the application with a few arguments:
847 +
848 --
849 [role="term"]
850 ----
851 ./hello world and beyond
852 ----
853 --
854 +
855 You see:
856 +
857 --
858 ----
859 Hello, World!
860 Press Enter to continue...
861 ----
862 --
863
864 . Start an LTTng <<lttng-sessiond,session daemon>>:
865 +
866 --
867 [role="term"]
868 ----
869 lttng-sessiond --daemonize
870 ----
871 --
872 +
873 Note that a session daemon might already be running, for example as
874 a service that the distribution's service manager started.
875
876 . List the available user space tracepoints:
877 +
878 --
879 [role="term"]
880 ----
881 lttng list --userspace
882 ----
883 --
884 +
885 You see the `hello_world:my_first_tracepoint` tracepoint listed
886 under the `./hello` process.
887
888 . Create a <<tracing-session,tracing session>>:
889 +
890 --
891 [role="term"]
892 ----
893 lttng create my-user-space-session
894 ----
895 --
896
897 . Create an <<event,event rule>> which matches the
898 `hello_world:my_first_tracepoint` event name:
899 +
900 --
901 [role="term"]
902 ----
903 lttng enable-event --userspace hello_world:my_first_tracepoint
904 ----
905 --
906
907 . <<basic-tracing-session-control,Start tracing>>:
908 +
909 --
910 [role="term"]
911 ----
912 lttng start
913 ----
914 --
915
916 . Go back to the running `hello` application and press Enter. The
917 program executes all `tracepoint()` instrumentation points and exits.
918 . <<basic-tracing-session-control,Stop tracing>> and destroy the
919 tracing session:
920 +
921 --
922 [role="term"]
923 ----
924 sudo lttng stop
925 sudo lttng destroy
926 ----
927 --
928 +
929 The man:lttng-destroy(1) command does not destroy the trace data; it
930 only destroys the state of the tracing session.
931
932 By default, LTTng saves the traces in
933 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
934 where +__name__+ is the tracing session name. The
935 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
936
937 See <<viewing-and-analyzing-your-traces,View and analyze the
938 recorded events>> to view the recorded events.
939
940
941 [[viewing-and-analyzing-your-traces]]
942 === View and analyze the recorded events
943
944 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
945 kernel>> and <<tracing-your-own-user-application,Trace a user
946 application>> tutorials, you can inspect the recorded events.
947
948 Many tools are available to read LTTng traces:
949
950 * **cmd:babeltrace** is a command-line utility which converts trace
951 formats; it supports the format that LTTng produces, CTF, as well as a
952 basic text output which can be ++grep++ed. The cmd:babeltrace command
953 is part of the http://diamon.org/babeltrace[Babeltrace] project.
954 * Babeltrace also includes
955 **https://www.python.org/[Python] bindings** so
956 that you can easily open and read an LTTng trace with your own script,
957 benefiting from the power of Python.
958 * http://tracecompass.org/[**Trace Compass**]
959 is a graphical user interface for viewing and analyzing any type of
960 logs or traces, including LTTng's.
961 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
962 project which includes many high-level analyses of LTTng kernel
963 traces, like scheduling statistics, interrupt frequency distribution,
964 top CPU usage, and more.
965
966 NOTE: This section assumes that the traces recorded during the previous
967 tutorials were saved to their default location, in the
968 dir:{$LTTNG_HOME/lttng-traces} directory. The env:LTTNG_HOME
969 environment variable defaults to `$HOME` if not set.
970
971
972 [[viewing-and-analyzing-your-traces-bt]]
973 ==== Use the cmd:babeltrace command-line tool
974
975 The simplest way to list all the recorded events of a trace is to pass
976 its path to cmd:babeltrace with no options:
977
978 [role="term"]
979 ----
980 babeltrace ~/lttng-traces/my-user-space-session*
981 ----
982
983 cmd:babeltrace finds all traces recursively within the given path and
984 prints all their events, merging them in chronological order.
985
986 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
987 further filtering:
988
989 [role="term"]
990 ----
991 babeltrace /tmp/my-kernel-trace | grep _switch
992 ----
993
994 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
995 count the recorded events:
996
997 [role="term"]
998 ----
999 babeltrace /tmp/my-kernel-trace | grep _open | wc --lines
1000 ----
1001
1002
1003 [[viewing-and-analyzing-your-traces-bt-python]]
1004 ==== Use the Babeltrace Python bindings
1005
1006 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
1007 is useful to isolate events by simple matching using man:grep(1) and
1008 similar utilities. However, more elaborate filters, such as keeping only
1009 event records with a field value falling within a specific range, are
1010 not trivial to write using a shell. Moreover, reductions and even the
1011 most basic computations involving multiple event records are virtually
1012 impossible to implement.
1013
1014 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
1015 to read the event records of an LTTng trace sequentially and compute the
1016 desired information.
1017
1018 The following script accepts an LTTng Linux kernel trace path as its
1019 first argument and prints the short names of the top 5 running processes
1020 on CPU 0 during the whole trace:
1021
1022 [source,python]
1023 .path:{top5proc.py}
1024 ----
1025 from collections import Counter
1026 import babeltrace
1027 import sys
1028
1029
1030 def top5proc():
1031 if len(sys.argv) != 2:
1032 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
1033 print(msg, file=sys.stderr)
1034 return False
1035
1036 # A trace collection contains one or more traces
1037 col = babeltrace.TraceCollection()
1038
1039 # Add the trace provided by the user (LTTng traces always have
1040 # the 'ctf' format)
1041 if col.add_trace(sys.argv[1], 'ctf') is None:
1042 raise RuntimeError('Cannot add trace')
1043
1044 # This counter dict contains execution times:
1045 #
1046 # task command name -> total execution time (ns)
1047 exec_times = Counter()
1048
1049 # This contains the last `sched_switch` timestamp
1050 last_ts = None
1051
1052 # Iterate on events
1053 for event in col.events:
1054 # Keep only `sched_switch` events
1055 if event.name != 'sched_switch':
1056 continue
1057
1058 # Keep only events which happened on CPU 0
1059 if event['cpu_id'] != 0:
1060 continue
1061
1062 # Event timestamp
1063 cur_ts = event.timestamp
1064
1065 if last_ts is None:
1066 # We start here
1067 last_ts = cur_ts
1068
1069 # Previous task command (short) name
1070 prev_comm = event['prev_comm']
1071
1072 # Initialize entry in our dict if not yet done
1073 if prev_comm not in exec_times:
1074 exec_times[prev_comm] = 0
1075
1076 # Compute previous command execution time
1077 diff = cur_ts - last_ts
1078
1079 # Update execution time of this command
1080 exec_times[prev_comm] += diff
1081
1082 # Update last timestamp
1083 last_ts = cur_ts
1084
1085 # Display top 5
1086 for name, ns in exec_times.most_common(5):
1087 s = ns / 1000000000
1088 print('{:20}{} s'.format(name, s))
1089
1090 return True
1091
1092
1093 if __name__ == '__main__':
1094 sys.exit(0 if top5proc() else 1)
1095 ----
1096
1097 Run this script:
1098
1099 [role="term"]
1100 ----
1101 python3 top5proc.py /tmp/my-kernel-trace/kernel
1102 ----
1103
1104 Output example:
1105
1106 ----
1107 swapper/0 48.607245889 s
1108 chromium 7.192738188 s
1109 pavucontrol 0.709894415 s
1110 Compositor 0.660867933 s
1111 Xorg.bin 0.616753786 s
1112 ----
1113
1114 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1115 weren't using the CPU that much when tracing, its first position in the
1116 list makes sense.
1117
1118
1119 [[core-concepts]]
1120 == [[understanding-lttng]]Core concepts
1121
1122 From a user's perspective, the LTTng system is built on a few concepts,
1123 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1124 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1125 Understanding how those objects relate to eachother is key in mastering
1126 the toolkit.
1127
1128 The core concepts are:
1129
1130 * <<tracing-session,Tracing session>>
1131 * <<domain,Tracing domain>>
1132 * <<channel,Channel and ring buffer>>
1133 * <<"event","Instrumentation point, event rule, event, and event record">>
1134
1135
1136 [[tracing-session]]
1137 === Tracing session
1138
1139 A _tracing session_ is a stateful dialogue between you and
1140 a <<lttng-sessiond,session daemon>>. You can
1141 <<creating-destroying-tracing-sessions,create a new tracing
1142 session>> with the `lttng create` command.
1143
1144 Anything that you do when you control LTTng tracers happens within a
1145 tracing session. In particular, a tracing session:
1146
1147 * Has its own name.
1148 * Has its own set of trace files.
1149 * Has its own state of activity (started or stopped).
1150 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1151 snapshot, or live).
1152 * Has its own <<channel,channels>> which have their own
1153 <<event,event rules>>.
1154
1155 [role="img-100"]
1156 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1157 image::concepts.png[]
1158
1159 Those attributes and objects are completely isolated between different
1160 tracing sessions.
1161
1162 A tracing session is analogous to a cash machine session:
1163 the operations you do on the banking system through the cash machine do
1164 not alter the data of other users of the same system. In the case of
1165 the cash machine, a session lasts as long as your bank card is inside.
1166 In the case of LTTng, a tracing session lasts from the `lttng create`
1167 command to the `lttng destroy` command.
1168
1169 [role="img-100"]
1170 .Each Unix user has its own set of tracing sessions.
1171 image::many-sessions.png[]
1172
1173
1174 [[tracing-session-mode]]
1175 ==== Tracing session mode
1176
1177 LTTng can send the generated trace data to different locations. The
1178 _tracing session mode_ dictates where to send it. The following modes
1179 are available in LTTng{nbsp}{revision}:
1180
1181 Local mode::
1182 LTTng writes the traces to the file system of the machine being traced
1183 (target system).
1184
1185 Network streaming mode::
1186 LTTng sends the traces over the network to a
1187 <<lttng-relayd,relay daemon>> running on a remote system.
1188
1189 Snapshot mode::
1190 LTTng does not write the traces by default. Instead, you can request
1191 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1192 current tracing buffers, and to write it to the target's file system
1193 or to send it over the network to a <<lttng-relayd,relay daemon>>
1194 running on a remote system.
1195
1196 Live mode::
1197 This mode is similar to the network streaming mode, but a live
1198 trace viewer can connect to the distant relay daemon to
1199 <<lttng-live,view event records as LTTng generates them>> by
1200 the tracers.
1201
1202
1203 [[domain]]
1204 === Tracing domain
1205
1206 A _tracing domain_ is a namespace for event sources. A tracing domain
1207 has its own properties and features.
1208
1209 There are currently five available tracing domains:
1210
1211 * Linux kernel
1212 * User space
1213 * `java.util.logging` (JUL)
1214 * log4j
1215 * Python
1216
1217 You must specify a tracing domain when using some commands to avoid
1218 ambiguity. For example, since all the domains support named tracepoints
1219 as event sources (instrumentation points that you manually insert in the
1220 source code), you need to specify a tracing domain when
1221 <<enabling-disabling-events,creating an event rule>> because all the
1222 tracing domains could have tracepoints with the same names.
1223
1224 Some features are reserved to specific tracing domains. Dynamic function
1225 entry and return instrumentation points, for example, are currently only
1226 supported in the Linux kernel tracing domain, but support for other
1227 tracing domains could be added in the future.
1228
1229 You can create <<channel,channels>> in the Linux kernel and user space
1230 tracing domains. The other tracing domains have a single default
1231 channel.
1232
1233
1234 [[channel]]
1235 === Channel and ring buffer
1236
1237 A _channel_ is an object which is responsible for a set of ring buffers.
1238 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1239 tracer emits an event, it can record it to one or more
1240 sub-buffers. The attributes of a channel determine what to do when
1241 there's no space left for a new event record because all sub-buffers
1242 are full, where to send a full sub-buffer, and other behaviours.
1243
1244 A channel is always associated to a <<domain,tracing domain>>. The
1245 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1246 a default channel which you cannot configure.
1247
1248 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1249 an event, it records it to the sub-buffers of all
1250 the enabled channels with a satisfied event rule, as long as those
1251 channels are part of active <<tracing-session,tracing sessions>>.
1252
1253
1254 [[channel-buffering-schemes]]
1255 ==== Per-user vs. per-process buffering schemes
1256
1257 A channel has at least one ring buffer _per CPU_. LTTng always
1258 records an event to the ring buffer associated to the CPU on which it
1259 occurred.
1260
1261 Two _buffering schemes_ are available when you
1262 <<enabling-disabling-channels,create a channel>> in the
1263 user space <<domain,tracing domain>>:
1264
1265 Per-user buffering::
1266 Allocate one set of ring buffers--one per CPU--shared by all the
1267 instrumented processes of each Unix user.
1268 +
1269 --
1270 [role="img-100"]
1271 .Per-user buffering scheme.
1272 image::per-user-buffering.png[]
1273 --
1274
1275 Per-process buffering::
1276 Allocate one set of ring buffers--one per CPU--for each
1277 instrumented process.
1278 +
1279 --
1280 [role="img-100"]
1281 .Per-process buffering scheme.
1282 image::per-process-buffering.png[]
1283 --
1284 +
1285 The per-process buffering scheme tends to consume more memory than the
1286 per-user option because systems generally have more instrumented
1287 processes than Unix users running instrumented processes. However, the
1288 per-process buffering scheme ensures that one process having a high
1289 event throughput won't fill all the shared sub-buffers of the same
1290 user, only its own.
1291
1292 The Linux kernel tracing domain has only one available buffering scheme
1293 which is to allocate a single set of ring buffers for the whole system.
1294 This scheme is similar to the per-user option, but with a single, global
1295 user "running" the kernel.
1296
1297
1298 [[channel-overwrite-mode-vs-discard-mode]]
1299 ==== Overwrite vs. discard event loss modes
1300
1301 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1302 arc in the following animation) of a specific channel's ring buffer.
1303 When there's no space left in a sub-buffer, the tracer marks it as
1304 consumable (red) and another, empty sub-buffer starts receiving the
1305 following event records. A <<lttng-consumerd,consumer daemon>>
1306 eventually consumes the marked sub-buffer (returns to white).
1307
1308 [NOTE]
1309 [role="docsvg-channel-subbuf-anim"]
1310 ====
1311 {note-no-anim}
1312 ====
1313
1314 In an ideal world, sub-buffers are consumed faster than they are filled,
1315 as is the case in the previous animation. In the real world,
1316 however, all sub-buffers can be full at some point, leaving no space to
1317 record the following events.
1318
1319 By design, LTTng is a _non-blocking_ tracer: when no empty sub-buffer is
1320 available, it is acceptable to lose event records when the alternative
1321 would be to cause substantial delays in the instrumented application's
1322 execution. LTTng privileges performance over integrity; it aims at
1323 perturbing the traced system as little as possible in order to make
1324 tracing of subtle race conditions and rare interrupt cascades possible.
1325
1326 When it comes to losing event records because no empty sub-buffer is
1327 available, the channel's _event loss mode_ determines what to do. The
1328 available event loss modes are:
1329
1330 Discard mode::
1331 Drop the newest event records until a the tracer
1332 releases a sub-buffer.
1333
1334 Overwrite mode::
1335 Clear the sub-buffer containing the oldest event records and start
1336 writing the newest event records there.
1337 +
1338 This mode is sometimes called _flight recorder mode_ because it's
1339 similar to a
1340 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1341 always keep a fixed amount of the latest data.
1342
1343 Which mechanism you should choose depends on your context: prioritize
1344 the newest or the oldest event records in the ring buffer?
1345
1346 Beware that, in overwrite mode, the tracer abandons a whole sub-buffer
1347 as soon as a there's no space left for a new event record, whereas in
1348 discard mode, the tracer only discards the event record that doesn't
1349 fit.
1350
1351 In discard mode, LTTng increments a count of lost event records when
1352 an event record is lost and saves this count to the trace. In
1353 overwrite mode, LTTng keeps no information when it overwrites a
1354 sub-buffer before consuming it.
1355
1356 There are a few ways to decrease your probability of losing event
1357 records.
1358 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1359 how you can fine-une the sub-buffer count and size of a channel to
1360 virtually stop losing event records, though at the cost of greater
1361 memory usage.
1362
1363
1364 [[channel-subbuf-size-vs-subbuf-count]]
1365 ==== Sub-buffer count and size
1366
1367 When you <<enabling-disabling-channels,create a channel>>, you can
1368 set its number of sub-buffers and their size.
1369
1370 Note that there is noticeable CPU overhead introduced when
1371 switching sub-buffers (marking a full one as consumable and switching
1372 to an empty one for the following events to be recorded). Knowing this,
1373 the following list presents a few practical situations along with how
1374 to configure the sub-buffer count and size for them:
1375
1376 * **High event throughput**: In general, prefer bigger sub-buffers to
1377 lower the risk of losing event records.
1378 +
1379 Having bigger sub-buffers also ensures a lower sub-buffer switching
1380 frequency.
1381 +
1382 The number of sub-buffers is only meaningful if you create the channel
1383 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1384 other sub-buffers are left unaltered.
1385
1386 * **Low event throughput**: In general, prefer smaller sub-buffers
1387 since the risk of losing event records is low.
1388 +
1389 Because events occur less frequently, the sub-buffer switching frequency
1390 should remain low and thus the tracer's overhead should not be a
1391 problem.
1392
1393 * **Low memory system**: If your target system has a low memory
1394 limit, prefer fewer first, then smaller sub-buffers.
1395 +
1396 Even if the system is limited in memory, you want to keep the
1397 sub-buffers as big as possible to avoid a high sub-buffer switching
1398 frequency.
1399
1400 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1401 which means event data is very compact. For example, the average
1402 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1403 sub-buffer size of 1{nbsp}MiB is considered big.
1404
1405 The previous situations highlight the major trade-off between a few big
1406 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1407 frequency vs. how much data is lost in overwrite mode. Assuming a
1408 constant event throughput and using the overwrite mode, the two
1409 following configurations have the same ring buffer total size:
1410
1411 [NOTE]
1412 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1413 ====
1414 {note-no-anim}
1415 ====
1416
1417 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1418 switching frequency, but if a sub-buffer overwrite happens, half of
1419 the event records so far (4{nbsp}MiB) are definitely lost.
1420 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1421 overhead as the previous configuration, but if a sub-buffer
1422 overwrite happens, only the eighth of event records so far are
1423 definitely lost.
1424
1425 In discard mode, the sub-buffers count parameter is pointless: use two
1426 sub-buffers and set their size according to the requirements of your
1427 situation.
1428
1429
1430 [[channel-switch-timer]]
1431 ==== Switch timer period
1432
1433 The _switch timer period_ is an important configurable attribute of
1434 a channel to ensure periodic sub-buffer flushing.
1435
1436 When the _switch timer_ expires, a sub-buffer switch happens. You can
1437 set the switch timer period attribute when you
1438 <<enabling-disabling-channels,create a channel>> to ensure that event
1439 data is consumed and committed to trace files or to a distant relay
1440 daemon periodically in case of a low event throughput.
1441
1442 [NOTE]
1443 [role="docsvg-channel-switch-timer"]
1444 ====
1445 {note-no-anim}
1446 ====
1447
1448 This attribute is also convenient when you use big sub-buffers to cope
1449 with a sporadic high event throughput, even if the throughput is
1450 normally low.
1451
1452
1453 [[channel-read-timer]]
1454 ==== Read timer period
1455
1456 By default, the LTTng tracers use a notification mechanism to signal a
1457 full sub-buffer so that a consumer daemon can consume it. When such
1458 notifications must be avoided, for example in real-time applications,
1459 you can use the channel's _read timer_ instead. When the read timer
1460 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1461 consumable sub-buffers.
1462
1463
1464 [[tracefile-rotation]]
1465 ==== Trace file count and size
1466
1467 By default, trace files can grow as large as needed. You can set the
1468 maximum size of each trace file that a channel writes when you
1469 <<enabling-disabling-channels,create a channel>>. When the size of
1470 a trace file reaches the channel's fixed maximum size, LTTng creates
1471 another file to contain the next event records. LTTng appends a file
1472 count to each trace file name in this case.
1473
1474 If you set the trace file size attribute when you create a channel, the
1475 maximum number of trace files that LTTng creates is _unlimited_ by
1476 default. To limit them, you can also set a maximum number of trace
1477 files. When the number of trace files reaches the channel's fixed
1478 maximum count, the oldest trace file is overwritten. This mechanism is
1479 called _trace file rotation_.
1480
1481
1482 [[event]]
1483 === Instrumentation point, event rule, event, and event record
1484
1485 An _event rule_ is a set of conditions which must be **all** satisfied
1486 for LTTng to record an occuring event.
1487
1488 You set the conditions when you <<enabling-disabling-events,create
1489 an event rule>>.
1490
1491 You always attach an event rule to <<channel,channel>> when you create
1492 it.
1493
1494 When an event passes the conditions of an event rule, LTTng records it
1495 in one of the attached channel's sub-buffers.
1496
1497 The available conditions, as of LTTng{nbsp}{revision}, are:
1498
1499 * The event rule _is enabled_.
1500 * The instrumentation point's type _is{nbsp}T_.
1501 * The instrumentation point's name (sometimes called _event name_)
1502 _matches{nbsp}N_, but _is not{nbsp}E_.
1503 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1504 _is exactly{nbsp}L_.
1505 * The fields of the event's payload _satisfy_ a filter
1506 expression{nbsp}__F__.
1507
1508 As you can see, all the conditions but the dynamic filter are related to
1509 the event rule's status or to the instrumentation point, not to the
1510 occurring events. This is why, without a filter, checking if an event
1511 passes an event rule is not a dynamic task: when you create or modify an
1512 event rule, all the tracers of its tracing domain enable or disable the
1513 instrumentation points themselves once. This is possible because the
1514 attributes of an instrumentation point (type, name, and log level) are
1515 defined statically. In other words, without a dynamic filter, the tracer
1516 _does not evaluate_ the arguments of an instrumentation point unless it
1517 matches an enabled event rule.
1518
1519 Note that, for LTTng to record an event, the <<channel,channel>> to
1520 which a matching event rule is attached must also be enabled, and the
1521 tracing session owning this channel must be active.
1522
1523 [role="img-100"]
1524 .Logical path from an instrumentation point to an event record.
1525 image::event-rule.png[]
1526
1527 .Event, event record, or event rule?
1528 ****
1529 With so many similar terms, it's easy to get confused.
1530
1531 An **event** is the consequence of the execution of an _instrumentation
1532 point_, like a tracepoint that you manually place in some source code,
1533 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1534 time. Different actions can be taken upon the occurance of an event,
1535 like record the event's payload to a buffer.
1536
1537 An **event record** is the representation of an event in a sub-buffer. A
1538 tracer is responsible for capturing the payload of an event, current
1539 context variables, the event's ID, and the event's timestamp. LTTng
1540 can append this sub-buffer to a trace file.
1541
1542 An **event rule** is a set of conditions which must all be satisfied for
1543 LTTng to record an occuring event. Events still occur without
1544 satisfying event rules, but LTTng does not record them.
1545 ****
1546
1547
1548 [[plumbing]]
1549 == Components of noch:{LTTng}
1550
1551 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1552 to call LTTng a simple _tool_ since it is composed of multiple
1553 interacting components. This section describes those components,
1554 explains their respective roles, and shows how they connect together to
1555 form the LTTng ecosystem.
1556
1557 The following diagram shows how the most important components of LTTng
1558 interact with user applications, the Linux kernel, and you:
1559
1560 [role="img-100"]
1561 .Control and trace data paths between LTTng components.
1562 image::plumbing.png[]
1563
1564 The LTTng project incorporates:
1565
1566 * **LTTng-tools**: Libraries and command-line interface to
1567 control tracing sessions.
1568 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1569 ** <<lttng-consumerd,Consumer daemon>> (man:lttng-consumerd(8)).
1570 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1571 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1572 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1573 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1574 applications.
1575 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1576 headers to instrument and trace any native user application.
1577 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1578 *** `liblttng-ust-libc-wrapper`
1579 *** `liblttng-ust-pthread-wrapper`
1580 *** `liblttng-ust-cyg-profile`
1581 *** `liblttng-ust-cyg-profile-fast`
1582 *** `liblttng-ust-dl`
1583 ** User space tracepoint provider source files generator command-line
1584 tool (man:lttng-gen-tp(1)).
1585 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1586 Java applications using `java.util.logging` or
1587 Apache log4j 1.2 logging.
1588 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1589 Python applications using the standard `logging` package.
1590 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1591 the kernel.
1592 ** LTTng kernel tracer module.
1593 ** Tracing ring buffer kernel modules.
1594 ** Probe kernel modules.
1595 ** LTTng logger kernel module.
1596
1597
1598 [[lttng-cli]]
1599 === Tracing control command-line interface
1600
1601 [role="img-100"]
1602 .The tracing control command-line interface.
1603 image::plumbing-lttng-cli.png[]
1604
1605 The _man:lttng(1) command-line tool_ is the standard user interface to
1606 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1607 is part of LTTng-tools.
1608
1609 The cmd:lttng tool is linked with
1610 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1611 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1612
1613 The cmd:lttng tool has a Git-like interface:
1614
1615 [role="term"]
1616 ----
1617 lttng <general options> <command> <command options>
1618 ----
1619
1620 The <<controlling-tracing,Tracing control>> section explores the
1621 available features of LTTng using the cmd:lttng tool.
1622
1623
1624 [[liblttng-ctl-lttng]]
1625 === Tracing control library
1626
1627 [role="img-100"]
1628 .The tracing control library.
1629 image::plumbing-liblttng-ctl.png[]
1630
1631 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1632 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1633 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1634
1635 The <<lttng-cli,cmd:lttng command-line tool>>
1636 is linked with `liblttng-ctl`.
1637
1638 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1639 "master" header:
1640
1641 [source,c]
1642 ----
1643 #include <lttng/lttng.h>
1644 ----
1645
1646 Some objects are referenced by name (C string), such as tracing
1647 sessions, but most of them require to create a handle first using
1648 `lttng_create_handle()`.
1649
1650 The best available developer documentation for `liblttng-ctl` is, as of
1651 LTTng{nbsp}{revision}, its installed header files. Every function and
1652 structure is thoroughly documented.
1653
1654
1655 [[lttng-ust]]
1656 === User space tracing library
1657
1658 [role="img-100"]
1659 .The user space tracing library.
1660 image::plumbing-liblttng-ust.png[]
1661
1662 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1663 is the LTTng user space tracer. It receives commands from a
1664 <<lttng-sessiond,session daemon>>, for example to
1665 enable and disable specific instrumentation points, and writes event
1666 records to ring buffers shared with a
1667 <<lttng-consumerd,consumer daemon>>.
1668 `liblttng-ust` is part of LTTng-UST.
1669
1670 Public C header files are installed beside `liblttng-ust` to
1671 instrument any <<c-application,C or $$C++$$ application>>.
1672
1673 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1674 packages, use their own library providing tracepoints which is
1675 linked with `liblttng-ust`.
1676
1677 An application or library does not have to initialize `liblttng-ust`
1678 manually: its constructor does the necessary tasks to properly register
1679 to a session daemon. The initialization phase also enables the
1680 instrumentation points matching the <<event,event rules>> that you
1681 already created.
1682
1683
1684 [[lttng-ust-agents]]
1685 === User space tracing agents
1686
1687 [role="img-100"]
1688 .The user space tracing agents.
1689 image::plumbing-lttng-ust-agents.png[]
1690
1691 The _LTTng-UST Java and Python agents_ are regular Java and Python
1692 packages which add LTTng tracing capabilities to the
1693 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1694
1695 In the case of Java, the
1696 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1697 core logging facilities] and
1698 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1699 Note that Apache Log4{nbsp}2 is not supported.
1700
1701 In the case of Python, the standard
1702 https://docs.python.org/3/library/logging.html[`logging`] package
1703 is supported. Both Python 2 and Python 3 modules can import the
1704 LTTng-UST Python agent package.
1705
1706 The applications using the LTTng-UST agents are in the
1707 `java.util.logging` (JUL),
1708 log4j, and Python <<domain,tracing domains>>.
1709
1710 Both agents use the same mechanism to trace the log statements. When an
1711 agent is initialized, it creates a log handler that attaches to the root
1712 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1713 When the application executes a log statement, it is passed to the
1714 agent's log handler by the root logger. The agent's log handler calls a
1715 native function in a tracepoint provider package shared library linked
1716 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1717 other fields, like its logger name and its log level. This native
1718 function contains a user space instrumentation point, hence tracing the
1719 log statement.
1720
1721 The log level condition of an
1722 <<event,event rule>> is considered when tracing
1723 a Java or a Python application, and it's compatible with the standard
1724 JUL, log4j, and Python log levels.
1725
1726
1727 [[lttng-modules]]
1728 === LTTng kernel modules
1729
1730 [role="img-100"]
1731 .The LTTng kernel modules.
1732 image::plumbing-lttng-modules.png[]
1733
1734 The _LTTng kernel modules_ are a set of Linux kernel modules
1735 which implement the kernel tracer of the LTTng project. The LTTng
1736 kernel modules are part of LTTng-modules.
1737
1738 The LTTng kernel modules include:
1739
1740 * A set of _probe_ modules.
1741 +
1742 Each module attaches to a specific subsystem
1743 of the Linux kernel using its tracepoint instrument points. There are
1744 also modules to attach to the entry and return points of the Linux
1745 system call functions.
1746
1747 * _Ring buffer_ modules.
1748 +
1749 A ring buffer implementation is provided as kernel modules. The LTTng
1750 kernel tracer writes to the ring buffer; a
1751 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1752
1753 * The _LTTng kernel tracer_ module.
1754 * The _LTTng logger_ module.
1755 +
1756 The LTTng logger module implements the special path:{/proc/lttng-logger}
1757 file so that any executable can generate LTTng events by opening and
1758 writing to this file.
1759 +
1760 See <<proc-lttng-logger-abi,LTTng logger>>.
1761
1762 Generally, you do not have to load the LTTng kernel modules manually
1763 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1764 daemon>> loads the necessary modules when starting. If you have extra
1765 probe modules, you can specify to load them to the session daemon on
1766 the command line.
1767
1768 The LTTng kernel modules are installed in
1769 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1770 the kernel release (see `uname --kernel-release`).
1771
1772
1773 [[lttng-sessiond]]
1774 === Session daemon
1775
1776 [role="img-100"]
1777 .The session daemon.
1778 image::plumbing-sessiond.png[]
1779
1780 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1781 managing tracing sessions and for controlling the various components of
1782 LTTng. The session daemon is part of LTTng-tools.
1783
1784 The session daemon sends control requests to and receives control
1785 responses from:
1786
1787 * The <<lttng-ust,user space tracing library>>.
1788 +
1789 Any instance of the user space tracing library first registers to
1790 a session daemon. Then, the session daemon can send requests to
1791 this instance, such as:
1792 +
1793 --
1794 ** Get the list of tracepoints.
1795 ** Share an <<event,event rule>> so that the user space tracing library
1796 can enable or disable tracepoints. Amongst the possible conditions
1797 of an event rule is a filter expression which `liblttng-ust` evalutes
1798 when an event occurs.
1799 ** Share <<channel,channel>> attributes and ring buffer locations.
1800 --
1801 +
1802 The session daemon and the user space tracing library use a Unix
1803 domain socket for their communication.
1804
1805 * The <<lttng-ust-agents,user space tracing agents>>.
1806 +
1807 Any instance of a user space tracing agent first registers to
1808 a session daemon. Then, the session daemon can send requests to
1809 this instance, such as:
1810 +
1811 --
1812 ** Get the list of loggers.
1813 ** Enable or disable a specific logger.
1814 --
1815 +
1816 The session daemon and the user space tracing agent use a TCP connection
1817 for their communication.
1818
1819 * The <<lttng-modules,LTTng kernel tracer>>.
1820 * The <<lttng-consumerd,consumer daemon>>.
1821 +
1822 The session daemon sends requests to the consumer daemon to instruct
1823 it where to send the trace data streams, amongst other information.
1824
1825 * The <<lttng-relayd,relay daemon>>.
1826
1827 The session daemon receives commands from the
1828 <<liblttng-ctl-lttng,tracing control library>>.
1829
1830 The root session daemon loads the appropriate
1831 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
1832 a <<lttng-consumerd,consumer daemon>> as soon as you create
1833 an <<event,event rule>>.
1834
1835 The session daemon does not send and receive trace data: this is the
1836 role of the <<lttng-consumerd,consumer daemon>> and
1837 <<lttng-relayd,relay daemon>>. It does, however, generate the
1838 http://diamon.org/ctf/[CTF] metadata stream.
1839
1840 Each Unix user can have its own session daemon instance. The
1841 tracing sessions managed by different session daemons are completely
1842 independent.
1843
1844 The root user's session daemon is the only one which is
1845 allowed to control the LTTng kernel tracer, and its spawned consumer
1846 daemon is the only one which is allowed to consume trace data from the
1847 LTTng kernel tracer. Note, however, that any Unix user which is a member
1848 of the <<tracing-group,tracing group>> is allowed
1849 to create <<channel,channels>> in the
1850 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
1851 kernel.
1852
1853 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
1854 session daemon when using its `create` command if none is currently
1855 running. You can also start the session daemon manually.
1856
1857
1858 [[lttng-consumerd]]
1859 === Consumer daemon
1860
1861 [role="img-100"]
1862 .The consumer daemon.
1863 image::plumbing-consumerd.png[]
1864
1865 The _consumer daemon_, man:lttng-consumerd(8), is a daemon which shares
1866 ring buffers with user applications or with the LTTng kernel modules to
1867 collect trace data and send it to some location (on disk or to a
1868 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
1869 is part of LTTng-tools.
1870
1871 You do not start a consumer daemon manually: a consumer daemon is always
1872 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
1873 <<event,event rule>>, that is, before you start tracing. When you kill
1874 its owner session daemon, the consumer daemon also exits because it is
1875 the session daemon's child process. Command-line options of
1876 man:lttng-sessiond(8) target the consumer daemon process.
1877
1878 There are up to two running consumer daemons per Unix user, whereas only
1879 one session daemon can run per user. This is because each process can be
1880 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
1881 and 64-bit processes, it is more efficient to have separate
1882 corresponding 32-bit and 64-bit consumer daemons. The root user is an
1883 exception: it can have up to _three_ running consumer daemons: 32-bit
1884 and 64-bit instances for its user applications, and one more
1885 reserved for collecting kernel trace data.
1886
1887
1888 [[lttng-relayd]]
1889 === Relay daemon
1890
1891 [role="img-100"]
1892 .The relay daemon.
1893 image::plumbing-relayd.png[]
1894
1895 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
1896 between remote session and consumer daemons, local trace files, and a
1897 remote live trace viewer. The relay daemon is part of LTTng-tools.
1898
1899 The main purpose of the relay daemon is to implement a receiver of
1900 <<sending-trace-data-over-the-network,trace data over the network>>.
1901 This is useful when the target system does not have much file system
1902 space to record trace files locally.
1903
1904 The relay daemon is also a server to which a
1905 <<lttng-live,live trace viewer>> can
1906 connect. The live trace viewer sends requests to the relay daemon to
1907 receive trace data as the target system emits events. The
1908 communication protocol is named _LTTng live_; it is used over TCP
1909 connections.
1910
1911 Note that you can start the relay daemon on the target system directly.
1912 This is the setup of choice when the use case is to view events as
1913 the target system emits them without the need of a remote system.
1914
1915
1916 [[instrumenting]]
1917 == [[using-lttng]]Instrumentation
1918
1919 There are many examples of tracing and monitoring in our everyday life:
1920
1921 * You have access to real-time and historical weather reports and
1922 forecasts thanks to weather stations installed around the country.
1923 * You know your heart is safe thanks to an electrocardiogram.
1924 * You make sure not to drive your car too fast and to have enough fuel
1925 to reach your destination thanks to gauges visible on your dashboard.
1926
1927 All the previous examples have something in common: they rely on
1928 **instruments**. Without the electrodes attached to the surface of your
1929 body's skin, cardiac monitoring is futile.
1930
1931 LTTng, as a tracer, is no different from those real life examples. If
1932 you're about to trace a software system or, in other words, record its
1933 history of execution, you better have **instrumentation points** in the
1934 subject you're tracing, that is, the actual software.
1935
1936 Various ways were developed to instrument a piece of software for LTTng
1937 tracing. The most straightforward one is to manually place
1938 instrumentation points, called _tracepoints_, in the software's source
1939 code. It is also possible to add instrumentation points dynamically in
1940 the Linux kernel <<domain,tracing domain>>.
1941
1942 If you're only interested in tracing the Linux kernel, your
1943 instrumentation needs are probably already covered by LTTng's built-in
1944 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
1945 user application which is already instrumented for LTTng tracing.
1946 In such cases, you can skip this whole section and read the topics of
1947 the <<controlling-tracing,Tracing control>> section.
1948
1949 Many methods are available to instrument a piece of software for LTTng
1950 tracing. They are:
1951
1952 * <<c-application,User space instrumentation for C and $$C++$$
1953 applications>>.
1954 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
1955 * <<java-application,User space Java agent>>.
1956 * <<python-application,User space Python agent>>.
1957 * <<proc-lttng-logger-abi,LTTng logger>>.
1958 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
1959
1960
1961 [[c-application]]
1962 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
1963
1964 The procedure to instrument a C or $$C++$$ user application with
1965 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
1966
1967 . <<tracepoint-provider,Create the source files of a tracepoint provider
1968 package>>.
1969 . <<probing-the-application-source-code,Add tracepoints to
1970 the application's source code>>.
1971 . <<building-tracepoint-providers-and-user-application,Build and link
1972 a tracepoint provider package and the user application>>.
1973
1974 If you need quick, man:printf(3)-like instrumentation, you can skip
1975 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
1976 instead.
1977
1978 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
1979 instrument a user application with `liblttng-ust`.
1980
1981
1982 [[tracepoint-provider]]
1983 ==== Create the source files of a tracepoint provider package
1984
1985 A _tracepoint provider_ is a set of compiled functions which provide
1986 **tracepoints** to an application, the type of instrumentation point
1987 supported by LTTng-UST. Those functions can emit events with
1988 user-defined fields and serialize those events as event records to one
1989 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
1990 macro, which you <<probing-the-application-source-code,insert in a user
1991 application's source code>>, calls those functions.
1992
1993 A _tracepoint provider package_ is an object file (`.o`) or a shared
1994 library (`.so`) which contains one or more tracepoint providers.
1995 Its source files are:
1996
1997 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
1998 * A <<tpp-source,tracepoint provider package source>> (`.c`).
1999
2000 A tracepoint provider package is dynamically linked with `liblttng-ust`,
2001 the LTTng user space tracer, at run time.
2002
2003 [role="img-100"]
2004 .User application linked with `liblttng-ust` and containing a tracepoint provider.
2005 image::ust-app.png[]
2006
2007 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
2008 skip creating and using a tracepoint provider and use
2009 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
2010
2011
2012 [[tpp-header]]
2013 ===== Create a tracepoint provider header file template
2014
2015 A _tracepoint provider header file_ contains the tracepoint
2016 definitions of a tracepoint provider.
2017
2018 To create a tracepoint provider header file:
2019
2020 . Start from this template:
2021 +
2022 --
2023 [source,c]
2024 .Tracepoint provider header file template (`.h` file extension).
2025 ----
2026 #undef TRACEPOINT_PROVIDER
2027 #define TRACEPOINT_PROVIDER provider_name
2028
2029 #undef TRACEPOINT_INCLUDE
2030 #define TRACEPOINT_INCLUDE "./tp.h"
2031
2032 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2033 #define _TP_H
2034
2035 #include <lttng/tracepoint.h>
2036
2037 /*
2038 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2039 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2040 */
2041
2042 #endif /* _TP_H */
2043
2044 #include <lttng/tracepoint-event.h>
2045 ----
2046 --
2047
2048 . Replace:
2049 +
2050 * `provider_name` with the name of your tracepoint provider.
2051 * `"tp.h"` with the name of your tracepoint provider header file.
2052
2053 . Below the `#include <lttng/tracepoint.h>` line, put your
2054 <<defining-tracepoints,tracepoint definitions>>.
2055
2056 Your tracepoint provider name must be unique amongst all the possible
2057 tracepoint provider names used on the same target system. We
2058 suggest to include the name of your project or company in the name,
2059 for example, `org_lttng_my_project_tpp`.
2060
2061 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2062 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2063 write are the <<defining-tracepoints,tracepoint definitions>>.
2064
2065
2066 [[defining-tracepoints]]
2067 ===== Create a tracepoint definition
2068
2069 A _tracepoint definition_ defines, for a given tracepoint:
2070
2071 * Its **input arguments**. They are the macro parameters that the
2072 `tracepoint()` macro accepts for this particular tracepoint
2073 in the user application's source code.
2074 * Its **output event fields**. They are the sources of event fields
2075 that form the payload of any event that the execution of the
2076 `tracepoint()` macro emits for this particular tracepoint.
2077
2078 You can create a tracepoint definition by using the
2079 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2080 line in the
2081 <<tpp-header,tracepoint provider header file template>>.
2082
2083 The syntax of the `TRACEPOINT_EVENT()` macro is:
2084
2085 [source,c]
2086 .`TRACEPOINT_EVENT()` macro syntax.
2087 ----
2088 TRACEPOINT_EVENT(
2089 /* Tracepoint provider name */
2090 provider_name,
2091
2092 /* Tracepoint name */
2093 tracepoint_name,
2094
2095 /* Input arguments */
2096 TP_ARGS(
2097 arguments
2098 ),
2099
2100 /* Output event fields */
2101 TP_FIELDS(
2102 fields
2103 )
2104 )
2105 ----
2106
2107 Replace:
2108
2109 * `provider_name` with your tracepoint provider name.
2110 * `tracepoint_name` with your tracepoint name.
2111 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2112 * `fields` with the <<tpp-def-output-fields,output event field>>
2113 definitions.
2114
2115 This tracepoint emits events named `provider_name:tracepoint_name`.
2116
2117 [IMPORTANT]
2118 .Event name's length limitation
2119 ====
2120 The concatenation of the tracepoint provider name and the
2121 tracepoint name must not exceed **254 characters**. If it does, the
2122 instrumented application compiles and runs, but LTTng throws multiple
2123 warnings and you could experience serious issues.
2124 ====
2125
2126 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2127
2128 [source,c]
2129 .`TP_ARGS()` macro syntax.
2130 ----
2131 TP_ARGS(
2132 type, arg_name
2133 )
2134 ----
2135
2136 Replace:
2137
2138 * `type` with the C type of the argument.
2139 * `arg_name` with the argument name.
2140
2141 You can repeat `type` and `arg_name` up to 10 times to have
2142 more than one argument.
2143
2144 .`TP_ARGS()` usage with three arguments.
2145 ====
2146 [source,c]
2147 ----
2148 TP_ARGS(
2149 int, count,
2150 float, ratio,
2151 const char*, query
2152 )
2153 ----
2154 ====
2155
2156 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2157 tracepoint definition with no input arguments.
2158
2159 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2160 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2161 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2162 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2163 one event field.
2164
2165 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2166 C expression that the tracer evalutes at the `tracepoint()` macro site
2167 in the application's source code. This expression provides a field's
2168 source of data. The argument expression can include input argument names
2169 listed in the `TP_ARGS()` macro.
2170
2171 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2172 must be unique within a given tracepoint definition.
2173
2174 Here's a complete tracepoint definition example:
2175
2176 .Tracepoint definition.
2177 ====
2178 The following tracepoint definition defines a tracepoint which takes
2179 three input arguments and has four output event fields.
2180
2181 [source,c]
2182 ----
2183 #include "my-custom-structure.h"
2184
2185 TRACEPOINT_EVENT(
2186 my_provider,
2187 my_tracepoint,
2188 TP_ARGS(
2189 const struct my_custom_structure*, my_custom_structure,
2190 float, ratio,
2191 const char*, query
2192 ),
2193 TP_FIELDS(
2194 ctf_string(query_field, query)
2195 ctf_float(double, ratio_field, ratio)
2196 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2197 ctf_integer(int, send_size, my_custom_structure->send_size)
2198 )
2199 )
2200 ----
2201
2202 You can refer to this tracepoint definition with the `tracepoint()`
2203 macro in your application's source code like this:
2204
2205 [source,c]
2206 ----
2207 tracepoint(my_provider, my_tracepoint,
2208 my_structure, some_ratio, the_query);
2209 ----
2210 ====
2211
2212 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2213 if they satisfy an enabled <<event,event rule>>.
2214
2215
2216 [[using-tracepoint-classes]]
2217 ===== Use a tracepoint class
2218
2219 A _tracepoint class_ is a class of tracepoints which share the same
2220 output event field definitions. A _tracepoint instance_ is one
2221 instance of such a defined tracepoint class, with its own tracepoint
2222 name.
2223
2224 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2225 shorthand which defines both a tracepoint class and a tracepoint
2226 instance at the same time.
2227
2228 When you build a tracepoint provider package, the C or $$C++$$ compiler
2229 creates one serialization function for each **tracepoint class**. A
2230 serialization function is responsible for serializing the event fields
2231 of a tracepoint to a sub-buffer when tracing.
2232
2233 For various performance reasons, when your situation requires multiple
2234 tracepoint definitions with different names, but with the same event
2235 fields, we recommend that you manually create a tracepoint class
2236 and instantiate as many tracepoint instances as needed. One positive
2237 effect of such a design, amongst other advantages, is that all
2238 tracepoint instances of the same tracepoint class reuse the same
2239 serialization function, thus reducing
2240 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2241
2242 .Use a tracepoint class and tracepoint instances.
2243 ====
2244 Consider the following three tracepoint definitions:
2245
2246 [source,c]
2247 ----
2248 TRACEPOINT_EVENT(
2249 my_app,
2250 get_account,
2251 TP_ARGS(
2252 int, userid,
2253 size_t, len
2254 ),
2255 TP_FIELDS(
2256 ctf_integer(int, userid, userid)
2257 ctf_integer(size_t, len, len)
2258 )
2259 )
2260
2261 TRACEPOINT_EVENT(
2262 my_app,
2263 get_settings,
2264 TP_ARGS(
2265 int, userid,
2266 size_t, len
2267 ),
2268 TP_FIELDS(
2269 ctf_integer(int, userid, userid)
2270 ctf_integer(size_t, len, len)
2271 )
2272 )
2273
2274 TRACEPOINT_EVENT(
2275 my_app,
2276 get_transaction,
2277 TP_ARGS(
2278 int, userid,
2279 size_t, len
2280 ),
2281 TP_FIELDS(
2282 ctf_integer(int, userid, userid)
2283 ctf_integer(size_t, len, len)
2284 )
2285 )
2286 ----
2287
2288 In this case, we create three tracepoint classes, with one implicit
2289 tracepoint instance for each of them: `get_account`, `get_settings`, and
2290 `get_transaction`. However, they all share the same event field names
2291 and types. Hence three identical, yet independent serialization
2292 functions are created when you build the tracepoint provider package.
2293
2294 A better design choice is to define a single tracepoint class and three
2295 tracepoint instances:
2296
2297 [source,c]
2298 ----
2299 /* The tracepoint class */
2300 TRACEPOINT_EVENT_CLASS(
2301 /* Tracepoint provider name */
2302 my_app,
2303
2304 /* Tracepoint class name */
2305 my_class,
2306
2307 /* Input arguments */
2308 TP_ARGS(
2309 int, userid,
2310 size_t, len
2311 ),
2312
2313 /* Output event fields */
2314 TP_FIELDS(
2315 ctf_integer(int, userid, userid)
2316 ctf_integer(size_t, len, len)
2317 )
2318 )
2319
2320 /* The tracepoint instances */
2321 TRACEPOINT_EVENT_INSTANCE(
2322 /* Tracepoint provider name */
2323 my_app,
2324
2325 /* Tracepoint class name */
2326 my_class,
2327
2328 /* Tracepoint name */
2329 get_account,
2330
2331 /* Input arguments */
2332 TP_ARGS(
2333 int, userid,
2334 size_t, len
2335 )
2336 )
2337 TRACEPOINT_EVENT_INSTANCE(
2338 my_app,
2339 my_class,
2340 get_settings,
2341 TP_ARGS(
2342 int, userid,
2343 size_t, len
2344 )
2345 )
2346 TRACEPOINT_EVENT_INSTANCE(
2347 my_app,
2348 my_class,
2349 get_transaction,
2350 TP_ARGS(
2351 int, userid,
2352 size_t, len
2353 )
2354 )
2355 ----
2356 ====
2357
2358
2359 [[assigning-log-levels]]
2360 ===== Assign a log level to a tracepoint definition
2361
2362 You can assign an optional _log level_ to a
2363 <<defining-tracepoints,tracepoint definition>>.
2364
2365 Assigning different levels of severity to tracepoint definitions can
2366 be useful: when you <<enabling-disabling-events,create an event rule>>,
2367 you can target tracepoints having a log level as severe as a specific
2368 value.
2369
2370 The concept of LTTng-UST log levels is similar to the levels found
2371 in typical logging frameworks:
2372
2373 * In a logging framework, the log level is given by the function
2374 or method name you use at the log statement site: `debug()`,
2375 `info()`, `warn()`, `error()`, and so on.
2376 * In LTTng-UST, you statically assign the log level to a tracepoint
2377 definition; any `tracepoint()` macro invocation which refers to
2378 this definition has this log level.
2379
2380 You can assign a log level to a tracepoint definition with the
2381 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2382 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2383 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2384 tracepoint.
2385
2386 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2387
2388 [source,c]
2389 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2390 ----
2391 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2392 ----
2393
2394 Replace:
2395
2396 * `provider_name` with the tracepoint provider name.
2397 * `tracepoint_name` with the tracepoint name.
2398 * `log_level` with the log level to assign to the tracepoint
2399 definition named `tracepoint_name` in the `provider_name`
2400 tracepoint provider.
2401 +
2402 See man:lttng-ust(3) for a list of available log level names.
2403
2404 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2405 ====
2406 [source,c]
2407 ----
2408 /* Tracepoint definition */
2409 TRACEPOINT_EVENT(
2410 my_app,
2411 get_transaction,
2412 TP_ARGS(
2413 int, userid,
2414 size_t, len
2415 ),
2416 TP_FIELDS(
2417 ctf_integer(int, userid, userid)
2418 ctf_integer(size_t, len, len)
2419 )
2420 )
2421
2422 /* Log level assignment */
2423 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2424 ----
2425 ====
2426
2427
2428 [[tpp-source]]
2429 ===== Create a tracepoint provider package source file
2430
2431 A _tracepoint provider package source file_ is a C source file which
2432 includes a <<tpp-header,tracepoint provider header file>> to expand its
2433 macros into event serialization and other functions.
2434
2435 You can always use the following tracepoint provider package source
2436 file template:
2437
2438 [source,c]
2439 .Tracepoint provider package source file template.
2440 ----
2441 #define TRACEPOINT_CREATE_PROBES
2442
2443 #include "tp.h"
2444 ----
2445
2446 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2447 header file>> name. You may also include more than one tracepoint
2448 provider header file here to create a tracepoint provider package
2449 holding more than one tracepoint providers.
2450
2451
2452 [[probing-the-application-source-code]]
2453 ==== Add tracepoints to an application's source code
2454
2455 Once you <<tpp-header,create a tracepoint provider header file>>, you
2456 can use the `tracepoint()` macro in your application's
2457 source code to insert the tracepoints that this header
2458 <<defining-tracepoints,defines>>.
2459
2460 The `tracepoint()` macro takes at least two parameters: the tracepoint
2461 provider name and the tracepoint name. The corresponding tracepoint
2462 definition defines the other parameters.
2463
2464 .`tracepoint()` usage.
2465 ====
2466 The following <<defining-tracepoints,tracepoint definition>> defines a
2467 tracepoint which takes two input arguments and has two output event
2468 fields.
2469
2470 [source,c]
2471 .Tracepoint provider header file.
2472 ----
2473 #include "my-custom-structure.h"
2474
2475 TRACEPOINT_EVENT(
2476 my_provider,
2477 my_tracepoint,
2478 TP_ARGS(
2479 int, argc,
2480 const char*, cmd_name
2481 ),
2482 TP_FIELDS(
2483 ctf_string(cmd_name, cmd_name)
2484 ctf_integer(int, number_of_args, argc)
2485 )
2486 )
2487 ----
2488
2489 You can refer to this tracepoint definition with the `tracepoint()`
2490 macro in your application's source code like this:
2491
2492 [source,c]
2493 .Application's source file.
2494 ----
2495 #include "tp.h"
2496
2497 int main(int argc, char* argv[])
2498 {
2499 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2500
2501 return 0;
2502 }
2503 ----
2504
2505 Note how the application's source code includes
2506 the tracepoint provider header file containing the tracepoint
2507 definitions to use, path:{tp.h}.
2508 ====
2509
2510 .`tracepoint()` usage with a complex tracepoint definition.
2511 ====
2512 Consider this complex tracepoint definition, where multiple event
2513 fields refer to the same input arguments in their argument expression
2514 parameter:
2515
2516 [source,c]
2517 .Tracepoint provider header file.
2518 ----
2519 /* For `struct stat` */
2520 #include <sys/types.h>
2521 #include <sys/stat.h>
2522 #include <unistd.h>
2523
2524 TRACEPOINT_EVENT(
2525 my_provider,
2526 my_tracepoint,
2527 TP_ARGS(
2528 int, my_int_arg,
2529 char*, my_str_arg,
2530 struct stat*, st
2531 ),
2532 TP_FIELDS(
2533 ctf_integer(int, my_constant_field, 23 + 17)
2534 ctf_integer(int, my_int_arg_field, my_int_arg)
2535 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2536 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2537 my_str_arg[2] + my_str_arg[3])
2538 ctf_string(my_str_arg_field, my_str_arg)
2539 ctf_integer_hex(off_t, size_field, st->st_size)
2540 ctf_float(double, size_dbl_field, (double) st->st_size)
2541 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2542 size_t, strlen(my_str_arg) / 2)
2543 )
2544 )
2545 ----
2546
2547 You can refer to this tracepoint definition with the `tracepoint()`
2548 macro in your application's source code like this:
2549
2550 [source,c]
2551 .Application's source file.
2552 ----
2553 #define TRACEPOINT_DEFINE
2554 #include "tp.h"
2555
2556 int main(void)
2557 {
2558 struct stat s;
2559
2560 stat("/etc/fstab", &s);
2561 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2562
2563 return 0;
2564 }
2565 ----
2566
2567 If you look at the event record that LTTng writes when tracing this
2568 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2569 it should look like this:
2570
2571 .Event record fields
2572 |====
2573 |Field's name |Field's value
2574 |`my_constant_field` |40
2575 |`my_int_arg_field` |23
2576 |`my_int_arg_field2` |529
2577 |`sum4_field` |389
2578 |`my_str_arg_field` |`Hello, World!`
2579 |`size_field` |0x12d
2580 |`size_dbl_field` |301.0
2581 |`half_my_str_arg_field` |`Hello,`
2582 |====
2583 ====
2584
2585 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2586 compute--they use the call stack, for example. To avoid this
2587 computation when the tracepoint is disabled, you can use the
2588 `tracepoint_enabled()` and `do_tracepoint()` macros.
2589
2590 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2591 is:
2592
2593 [source,c]
2594 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2595 ----
2596 tracepoint_enabled(provider_name, tracepoint_name)
2597 do_tracepoint(provider_name, tracepoint_name, ...)
2598 ----
2599
2600 Replace:
2601
2602 * `provider_name` with the tracepoint provider name.
2603 * `tracepoint_name` with the tracepoint name.
2604
2605 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2606 `tracepoint_name` from the provider named `provider_name` is enabled
2607 **at run time**.
2608
2609 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2610 if the tracepoint is enabled. Using `tracepoint()` with
2611 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2612 the `tracepoint_enabled()` check, thus a race condition is
2613 possible in this situation:
2614
2615 [source,c]
2616 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2617 ----
2618 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2619 stuff = prepare_stuff();
2620 }
2621
2622 tracepoint(my_provider, my_tracepoint, stuff);
2623 ----
2624
2625 If the tracepoint is enabled after the condition, then `stuff` is not
2626 prepared: the emitted event will either contain wrong data, or the whole
2627 application could crash (segmentation fault, for example).
2628
2629 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2630 `STAP_PROBEV()` call. If you need it, you must emit
2631 this call yourself.
2632
2633
2634 [[building-tracepoint-providers-and-user-application]]
2635 ==== Build and link a tracepoint provider package and an application
2636
2637 Once you have one or more <<tpp-header,tracepoint provider header
2638 files>> and a <<tpp-source,tracepoint provider package source file>>,
2639 you can create the tracepoint provider package by compiling its source
2640 file. From here, multiple build and run scenarios are possible. The
2641 following table shows common application and library configurations
2642 along with the required command lines to achieve them.
2643
2644 In the following diagrams, we use the following file names:
2645
2646 `app`::
2647 Executable application.
2648
2649 `app.o`::
2650 Application's object file.
2651
2652 `tpp.o`::
2653 Tracepoint provider package object file.
2654
2655 `tpp.a`::
2656 Tracepoint provider package archive file.
2657
2658 `libtpp.so`::
2659 Tracepoint provider package shared object file.
2660
2661 `emon.o`::
2662 User library object file.
2663
2664 `libemon.so`::
2665 User library shared object file.
2666
2667 We use the following symbols in the diagrams of table below:
2668
2669 [role="img-100"]
2670 .Symbols used in the build scenario diagrams.
2671 image::ust-sit-symbols.png[]
2672
2673 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2674 variable in the following instructions.
2675
2676 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2677 .Common tracepoint provider package scenarios.
2678 |====
2679 |Scenario |Instructions
2680
2681 |
2682 The instrumented application is statically linked with
2683 the tracepoint provider package object.
2684
2685 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2686
2687 |
2688 include::../common/ust-sit-step-tp-o.txt[]
2689
2690 To build the instrumented application:
2691
2692 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2693 +
2694 --
2695 [source,c]
2696 ----
2697 #define TRACEPOINT_DEFINE
2698 ----
2699 --
2700
2701 . Compile the application source file:
2702 +
2703 --
2704 [role="term"]
2705 ----
2706 gcc -c app.c
2707 ----
2708 --
2709
2710 . Build the application:
2711 +
2712 --
2713 [role="term"]
2714 ----
2715 gcc -o app app.o tpp.o -llttng-ust -ldl
2716 ----
2717 --
2718
2719 To run the instrumented application:
2720
2721 * Start the application:
2722 +
2723 --
2724 [role="term"]
2725 ----
2726 ./app
2727 ----
2728 --
2729
2730 |
2731 The instrumented application is statically linked with the
2732 tracepoint provider package archive file.
2733
2734 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2735
2736 |
2737 To create the tracepoint provider package archive file:
2738
2739 . Compile the <<tpp-source,tracepoint provider package source file>>:
2740 +
2741 --
2742 [role="term"]
2743 ----
2744 gcc -I. -c tpp.c
2745 ----
2746 --
2747
2748 . Create the tracepoint provider package archive file:
2749 +
2750 --
2751 [role="term"]
2752 ----
2753 ar rcs tpp.a tpp.o
2754 ----
2755 --
2756
2757 To build the instrumented application:
2758
2759 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2760 +
2761 --
2762 [source,c]
2763 ----
2764 #define TRACEPOINT_DEFINE
2765 ----
2766 --
2767
2768 . Compile the application source file:
2769 +
2770 --
2771 [role="term"]
2772 ----
2773 gcc -c app.c
2774 ----
2775 --
2776
2777 . Build the application:
2778 +
2779 --
2780 [role="term"]
2781 ----
2782 gcc -o app app.o tpp.a -llttng-ust -ldl
2783 ----
2784 --
2785
2786 To run the instrumented application:
2787
2788 * Start the application:
2789 +
2790 --
2791 [role="term"]
2792 ----
2793 ./app
2794 ----
2795 --
2796
2797 |
2798 The instrumented application is linked with the tracepoint provider
2799 package shared object.
2800
2801 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2802
2803 |
2804 include::../common/ust-sit-step-tp-so.txt[]
2805
2806 To build the instrumented application:
2807
2808 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2809 +
2810 --
2811 [source,c]
2812 ----
2813 #define TRACEPOINT_DEFINE
2814 ----
2815 --
2816
2817 . Compile the application source file:
2818 +
2819 --
2820 [role="term"]
2821 ----
2822 gcc -c app.c
2823 ----
2824 --
2825
2826 . Build the application:
2827 +
2828 --
2829 [role="term"]
2830 ----
2831 gcc -o app app.o -ldl -L. -ltpp
2832 ----
2833 --
2834
2835 To run the instrumented application:
2836
2837 * Start the application:
2838 +
2839 --
2840 [role="term"]
2841 ----
2842 ./app
2843 ----
2844 --
2845
2846 |
2847 The tracepoint provider package shared object is preloaded before the
2848 instrumented application starts.
2849
2850 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
2851
2852 |
2853 include::../common/ust-sit-step-tp-so.txt[]
2854
2855 To build the instrumented application:
2856
2857 . In path:{app.c}, before including path:{tpp.h}, add the
2858 following lines:
2859 +
2860 --
2861 [source,c]
2862 ----
2863 #define TRACEPOINT_DEFINE
2864 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2865 ----
2866 --
2867
2868 . Compile the application source file:
2869 +
2870 --
2871 [role="term"]
2872 ----
2873 gcc -c app.c
2874 ----
2875 --
2876
2877 . Build the application:
2878 +
2879 --
2880 [role="term"]
2881 ----
2882 gcc -o app app.o -ldl
2883 ----
2884 --
2885
2886 To run the instrumented application with tracing support:
2887
2888 * Preload the tracepoint provider package shared object and
2889 start the application:
2890 +
2891 --
2892 [role="term"]
2893 ----
2894 LD_PRELOAD=./libtpp.so ./app
2895 ----
2896 --
2897
2898 To run the instrumented application without tracing support:
2899
2900 * Start the application:
2901 +
2902 --
2903 [role="term"]
2904 ----
2905 ./app
2906 ----
2907 --
2908
2909 |
2910 The instrumented application dynamically loads the tracepoint provider
2911 package shared object.
2912
2913 See the <<dlclose-warning,warning about `dlclose()`>>.
2914
2915 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
2916
2917 |
2918 include::../common/ust-sit-step-tp-so.txt[]
2919
2920 To build the instrumented application:
2921
2922 . In path:{app.c}, before including path:{tpp.h}, add the
2923 following lines:
2924 +
2925 --
2926 [source,c]
2927 ----
2928 #define TRACEPOINT_DEFINE
2929 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2930 ----
2931 --
2932
2933 . Compile the application source file:
2934 +
2935 --
2936 [role="term"]
2937 ----
2938 gcc -c app.c
2939 ----
2940 --
2941
2942 . Build the application:
2943 +
2944 --
2945 [role="term"]
2946 ----
2947 gcc -o app app.o -ldl
2948 ----
2949 --
2950
2951 To run the instrumented application:
2952
2953 * Start the application:
2954 +
2955 --
2956 [role="term"]
2957 ----
2958 ./app
2959 ----
2960 --
2961
2962 |
2963 The application is linked with the instrumented user library.
2964
2965 The instrumented user library is statically linked with the tracepoint
2966 provider package object file.
2967
2968 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
2969
2970 |
2971 include::../common/ust-sit-step-tp-o-fpic.txt[]
2972
2973 To build the instrumented user library:
2974
2975 . In path:{emon.c}, before including path:{tpp.h}, add the
2976 following line:
2977 +
2978 --
2979 [source,c]
2980 ----
2981 #define TRACEPOINT_DEFINE
2982 ----
2983 --
2984
2985 . Compile the user library source file:
2986 +
2987 --
2988 [role="term"]
2989 ----
2990 gcc -I. -fpic -c emon.c
2991 ----
2992 --
2993
2994 . Build the user library shared object:
2995 +
2996 --
2997 [role="term"]
2998 ----
2999 gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
3000 ----
3001 --
3002
3003 To build the application:
3004
3005 . Compile the application source file:
3006 +
3007 --
3008 [role="term"]
3009 ----
3010 gcc -c app.c
3011 ----
3012 --
3013
3014 . Build the application:
3015 +
3016 --
3017 [role="term"]
3018 ----
3019 gcc -o app app.o -L. -lemon
3020 ----
3021 --
3022
3023 To run the application:
3024
3025 * Start the application:
3026 +
3027 --
3028 [role="term"]
3029 ----
3030 ./app
3031 ----
3032 --
3033
3034 |
3035 The application is linked with the instrumented user library.
3036
3037 The instrumented user library is linked with the tracepoint provider
3038 package shared object.
3039
3040 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3041
3042 |
3043 include::../common/ust-sit-step-tp-so.txt[]
3044
3045 To build the instrumented user library:
3046
3047 . In path:{emon.c}, before including path:{tpp.h}, add the
3048 following line:
3049 +
3050 --
3051 [source,c]
3052 ----
3053 #define TRACEPOINT_DEFINE
3054 ----
3055 --
3056
3057 . Compile the user library source file:
3058 +
3059 --
3060 [role="term"]
3061 ----
3062 gcc -I. -fpic -c emon.c
3063 ----
3064 --
3065
3066 . Build the user library shared object:
3067 +
3068 --
3069 [role="term"]
3070 ----
3071 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3072 ----
3073 --
3074
3075 To build the application:
3076
3077 . Compile the application source file:
3078 +
3079 --
3080 [role="term"]
3081 ----
3082 gcc -c app.c
3083 ----
3084 --
3085
3086 . Build the application:
3087 +
3088 --
3089 [role="term"]
3090 ----
3091 gcc -o app app.o -L. -lemon
3092 ----
3093 --
3094
3095 To run the application:
3096
3097 * Start the application:
3098 +
3099 --
3100 [role="term"]
3101 ----
3102 ./app
3103 ----
3104 --
3105
3106 |
3107 The tracepoint provider package shared object is preloaded before the
3108 application starts.
3109
3110 The application is linked with the instrumented user library.
3111
3112 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3113
3114 |
3115 include::../common/ust-sit-step-tp-so.txt[]
3116
3117 To build the instrumented user library:
3118
3119 . In path:{emon.c}, before including path:{tpp.h}, add the
3120 following lines:
3121 +
3122 --
3123 [source,c]
3124 ----
3125 #define TRACEPOINT_DEFINE
3126 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3127 ----
3128 --
3129
3130 . Compile the user library source file:
3131 +
3132 --
3133 [role="term"]
3134 ----
3135 gcc -I. -fpic -c emon.c
3136 ----
3137 --
3138
3139 . Build the user library shared object:
3140 +
3141 --
3142 [role="term"]
3143 ----
3144 gcc -shared -o libemon.so emon.o -ldl
3145 ----
3146 --
3147
3148 To build the application:
3149
3150 . Compile the application source file:
3151 +
3152 --
3153 [role="term"]
3154 ----
3155 gcc -c app.c
3156 ----
3157 --
3158
3159 . Build the application:
3160 +
3161 --
3162 [role="term"]
3163 ----
3164 gcc -o app app.o -L. -lemon
3165 ----
3166 --
3167
3168 To run the application with tracing support:
3169
3170 * Preload the tracepoint provider package shared object and
3171 start the application:
3172 +
3173 --
3174 [role="term"]
3175 ----
3176 LD_PRELOAD=./libtpp.so ./app
3177 ----
3178 --
3179
3180 To run the application without tracing support:
3181
3182 * Start the application:
3183 +
3184 --
3185 [role="term"]
3186 ----
3187 ./app
3188 ----
3189 --
3190
3191 |
3192 The application is linked with the instrumented user library.
3193
3194 The instrumented user library dynamically loads the tracepoint provider
3195 package shared object.
3196
3197 See the <<dlclose-warning,warning about `dlclose()`>>.
3198
3199 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3200
3201 |
3202 include::../common/ust-sit-step-tp-so.txt[]
3203
3204 To build the instrumented user library:
3205
3206 . In path:{emon.c}, before including path:{tpp.h}, add the
3207 following lines:
3208 +
3209 --
3210 [source,c]
3211 ----
3212 #define TRACEPOINT_DEFINE
3213 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3214 ----
3215 --
3216
3217 . Compile the user library source file:
3218 +
3219 --
3220 [role="term"]
3221 ----
3222 gcc -I. -fpic -c emon.c
3223 ----
3224 --
3225
3226 . Build the user library shared object:
3227 +
3228 --
3229 [role="term"]
3230 ----
3231 gcc -shared -o libemon.so emon.o -ldl
3232 ----
3233 --
3234
3235 To build the application:
3236
3237 . Compile the application source file:
3238 +
3239 --
3240 [role="term"]
3241 ----
3242 gcc -c app.c
3243 ----
3244 --
3245
3246 . Build the application:
3247 +
3248 --
3249 [role="term"]
3250 ----
3251 gcc -o app app.o -L. -lemon
3252 ----
3253 --
3254
3255 To run the application:
3256
3257 * Start the application:
3258 +
3259 --
3260 [role="term"]
3261 ----
3262 ./app
3263 ----
3264 --
3265
3266 |
3267 The application dynamically loads the instrumented user library.
3268
3269 The instrumented user library is linked with the tracepoint provider
3270 package shared object.
3271
3272 See the <<dlclose-warning,warning about `dlclose()`>>.
3273
3274 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3275
3276 |
3277 include::../common/ust-sit-step-tp-so.txt[]
3278
3279 To build the instrumented user library:
3280
3281 . In path:{emon.c}, before including path:{tpp.h}, add the
3282 following line:
3283 +
3284 --
3285 [source,c]
3286 ----
3287 #define TRACEPOINT_DEFINE
3288 ----
3289 --
3290
3291 . Compile the user library source file:
3292 +
3293 --
3294 [role="term"]
3295 ----
3296 gcc -I. -fpic -c emon.c
3297 ----
3298 --
3299
3300 . Build the user library shared object:
3301 +
3302 --
3303 [role="term"]
3304 ----
3305 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3306 ----
3307 --
3308
3309 To build the application:
3310
3311 . Compile the application source file:
3312 +
3313 --
3314 [role="term"]
3315 ----
3316 gcc -c app.c
3317 ----
3318 --
3319
3320 . Build the application:
3321 +
3322 --
3323 [role="term"]
3324 ----
3325 gcc -o app app.o -ldl -L. -lemon
3326 ----
3327 --
3328
3329 To run the application:
3330
3331 * Start the application:
3332 +
3333 --
3334 [role="term"]
3335 ----
3336 ./app
3337 ----
3338 --
3339
3340 |
3341 The application dynamically loads the instrumented user library.
3342
3343 The instrumented user library dynamically loads the tracepoint provider
3344 package shared object.
3345
3346 See the <<dlclose-warning,warning about `dlclose()`>>.
3347
3348 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3349
3350 |
3351 include::../common/ust-sit-step-tp-so.txt[]
3352
3353 To build the instrumented user library:
3354
3355 . In path:{emon.c}, before including path:{tpp.h}, add the
3356 following lines:
3357 +
3358 --
3359 [source,c]
3360 ----
3361 #define TRACEPOINT_DEFINE
3362 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3363 ----
3364 --
3365
3366 . Compile the user library source file:
3367 +
3368 --
3369 [role="term"]
3370 ----
3371 gcc -I. -fpic -c emon.c
3372 ----
3373 --
3374
3375 . Build the user library shared object:
3376 +
3377 --
3378 [role="term"]
3379 ----
3380 gcc -shared -o libemon.so emon.o -ldl
3381 ----
3382 --
3383
3384 To build the application:
3385
3386 . Compile the application source file:
3387 +
3388 --
3389 [role="term"]
3390 ----
3391 gcc -c app.c
3392 ----
3393 --
3394
3395 . Build the application:
3396 +
3397 --
3398 [role="term"]
3399 ----
3400 gcc -o app app.o -ldl -L. -lemon
3401 ----
3402 --
3403
3404 To run the application:
3405
3406 * Start the application:
3407 +
3408 --
3409 [role="term"]
3410 ----
3411 ./app
3412 ----
3413 --
3414
3415 |
3416 The tracepoint provider package shared object is preloaded before the
3417 application starts.
3418
3419 The application dynamically loads the instrumented user library.
3420
3421 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3422
3423 |
3424 include::../common/ust-sit-step-tp-so.txt[]
3425
3426 To build the instrumented user library:
3427
3428 . In path:{emon.c}, before including path:{tpp.h}, add the
3429 following lines:
3430 +
3431 --
3432 [source,c]
3433 ----
3434 #define TRACEPOINT_DEFINE
3435 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3436 ----
3437 --
3438
3439 . Compile the user library source file:
3440 +
3441 --
3442 [role="term"]
3443 ----
3444 gcc -I. -fpic -c emon.c
3445 ----
3446 --
3447
3448 . Build the user library shared object:
3449 +
3450 --
3451 [role="term"]
3452 ----
3453 gcc -shared -o libemon.so emon.o -ldl
3454 ----
3455 --
3456
3457 To build the application:
3458
3459 . Compile the application source file:
3460 +
3461 --
3462 [role="term"]
3463 ----
3464 gcc -c app.c
3465 ----
3466 --
3467
3468 . Build the application:
3469 +
3470 --
3471 [role="term"]
3472 ----
3473 gcc -o app app.o -L. -lemon
3474 ----
3475 --
3476
3477 To run the application with tracing support:
3478
3479 * Preload the tracepoint provider package shared object and
3480 start the application:
3481 +
3482 --
3483 [role="term"]
3484 ----
3485 LD_PRELOAD=./libtpp.so ./app
3486 ----
3487 --
3488
3489 To run the application without tracing support:
3490
3491 * Start the application:
3492 +
3493 --
3494 [role="term"]
3495 ----
3496 ./app
3497 ----
3498 --
3499
3500 |
3501 The application is statically linked with the tracepoint provider
3502 package object file.
3503
3504 The application is linked with the instrumented user library.
3505
3506 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3507
3508 |
3509 include::../common/ust-sit-step-tp-o.txt[]
3510
3511 To build the instrumented user library:
3512
3513 . In path:{emon.c}, before including path:{tpp.h}, add the
3514 following line:
3515 +
3516 --
3517 [source,c]
3518 ----
3519 #define TRACEPOINT_DEFINE
3520 ----
3521 --
3522
3523 . Compile the user library source file:
3524 +
3525 --
3526 [role="term"]
3527 ----
3528 gcc -I. -fpic -c emon.c
3529 ----
3530 --
3531
3532 . Build the user library shared object:
3533 +
3534 --
3535 [role="term"]
3536 ----
3537 gcc -shared -o libemon.so emon.o
3538 ----
3539 --
3540
3541 To build the application:
3542
3543 . Compile the application source file:
3544 +
3545 --
3546 [role="term"]
3547 ----
3548 gcc -c app.c
3549 ----
3550 --
3551
3552 . Build the application:
3553 +
3554 --
3555 [role="term"]
3556 ----
3557 gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3558 ----
3559 --
3560
3561 To run the instrumented application:
3562
3563 * Start the application:
3564 +
3565 --
3566 [role="term"]
3567 ----
3568 ./app
3569 ----
3570 --
3571
3572 |
3573 The application is statically linked with the tracepoint provider
3574 package object file.
3575
3576 The application dynamically loads the instrumented user library.
3577
3578 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3579
3580 |
3581 include::../common/ust-sit-step-tp-o.txt[]
3582
3583 To build the application:
3584
3585 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3586 +
3587 --
3588 [source,c]
3589 ----
3590 #define TRACEPOINT_DEFINE
3591 ----
3592 --
3593
3594 . Compile the application source file:
3595 +
3596 --
3597 [role="term"]
3598 ----
3599 gcc -c app.c
3600 ----
3601 --
3602
3603 . Build the application:
3604 +
3605 --
3606 [role="term"]
3607 ----
3608 gcc -Wl,--export-dynamic -o app app.o tpp.o \
3609 -llttng-ust -ldl
3610 ----
3611 --
3612 +
3613 The `--export-dynamic` option passed to the linker is necessary for the
3614 dynamically loaded library to ``see'' the tracepoint symbols defined in
3615 the application.
3616
3617 To build the instrumented user library:
3618
3619 . Compile the user library source file:
3620 +
3621 --
3622 [role="term"]
3623 ----
3624 gcc -I. -fpic -c emon.c
3625 ----
3626 --
3627
3628 . Build the user library shared object:
3629 +
3630 --
3631 [role="term"]
3632 ----
3633 gcc -shared -o libemon.so emon.o
3634 ----
3635 --
3636
3637 To run the application:
3638
3639 * Start the application:
3640 +
3641 --
3642 [role="term"]
3643 ----
3644 ./app
3645 ----
3646 --
3647 |====
3648
3649 [[dlclose-warning]]
3650 [IMPORTANT]
3651 .Do not use man:dlclose(3) on a tracepoint provider package
3652 ====
3653 Never use man:dlclose(3) on any shared object which:
3654
3655 * Is linked with, statically or dynamically, a tracepoint provider
3656 package.
3657 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3658 package shared object.
3659
3660 This is currently considered **unsafe** due to a lack of reference
3661 counting from LTTng-UST to the shared object.
3662
3663 A known workaround (available since glibc 2.2) is to use the
3664 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3665 effect of not unloading the loaded shared object, even if man:dlclose(3)
3666 is called.
3667
3668 You can also preload the tracepoint provider package shared object with
3669 the env:LD_PRELOAD environment variable to overcome this limitation.
3670 ====
3671
3672
3673 [[using-lttng-ust-with-daemons]]
3674 ===== Use noch:{LTTng-UST} with daemons
3675
3676 If your instrumented application calls man:fork(2), man:clone(2),
3677 or BSD's man:rfork(2), without a following man:exec(3)-family
3678 system call, you must preload the path:{liblttng-ust-fork.so} shared
3679 object when you start the application.
3680
3681 [role="term"]
3682 ----
3683 LD_PRELOAD=liblttng-ust-fork.so ./my-app
3684 ----
3685
3686 If your tracepoint provider package is
3687 a shared library which you also preload, you must put both
3688 shared objects in env:LD_PRELOAD:
3689
3690 [role="term"]
3691 ----
3692 LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3693 ----
3694
3695
3696 [role="since-2.9"]
3697 [[liblttng-ust-fd]]
3698 ===== Use noch:{LTTng-UST} with applications which close file descriptors that don't belong to them
3699
3700 If your instrumented application closes one or more file descriptors
3701 which it did not open itself, you must preload the
3702 path:{liblttng-ust-fd.so} shared object when you start the application:
3703
3704 [role="term"]
3705 ----
3706 LD_PRELOAD=liblttng-ust-fd.so ./my-app
3707 ----
3708
3709 Typical use cases include closing all the file descriptors after
3710 man:fork(2) or man:rfork(2) and buggy applications doing
3711 ``double closes''.
3712
3713
3714 [[lttng-ust-pkg-config]]
3715 ===== Use noch:{pkg-config}
3716
3717 On some distributions, LTTng-UST ships with a
3718 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3719 metadata file. If this is your case, then you can use cmd:pkg-config to
3720 build an application on the command line:
3721
3722 [role="term"]
3723 ----
3724 gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3725 ----
3726
3727
3728 [[instrumenting-32-bit-app-on-64-bit-system]]
3729 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3730
3731 In order to trace a 32-bit application running on a 64-bit system,
3732 LTTng must use a dedicated 32-bit
3733 <<lttng-consumerd,consumer daemon>>.
3734
3735 The following steps show how to build and install a 32-bit consumer
3736 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3737 build and install the 32-bit LTTng-UST libraries, and how to build and
3738 link an instrumented 32-bit application in that context.
3739
3740 To build a 32-bit instrumented application for a 64-bit target system,
3741 assuming you have a fresh target system with no installed Userspace RCU
3742 or LTTng packages:
3743
3744 . Download, build, and install a 32-bit version of Userspace RCU:
3745 +
3746 --
3747 [role="term"]
3748 ----
3749 cd $(mktemp -d) &&
3750 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3751 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3752 cd userspace-rcu-0.9.* &&
3753 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3754 make &&
3755 sudo make install &&
3756 sudo ldconfig
3757 ----
3758 --
3759
3760 . Using your distribution's package manager, or from source, install
3761 the following 32-bit versions of the following dependencies of
3762 LTTng-tools and LTTng-UST:
3763 +
3764 --
3765 * https://sourceforge.net/projects/libuuid/[libuuid]
3766 * http://directory.fsf.org/wiki/Popt[popt]
3767 * http://www.xmlsoft.org/[libxml2]
3768 --
3769
3770 . Download, build, and install a 32-bit version of the latest
3771 LTTng-UST{nbsp}{revision}:
3772 +
3773 --
3774 [role="term"]
3775 ----
3776 cd $(mktemp -d) &&
3777 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.9.tar.bz2 &&
3778 tar -xf lttng-ust-latest-2.9.tar.bz2 &&
3779 cd lttng-ust-2.9.* &&
3780 ./configure --libdir=/usr/local/lib32 \
3781 CFLAGS=-m32 CXXFLAGS=-m32 \
3782 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3783 make &&
3784 sudo make install &&
3785 sudo ldconfig
3786 ----
3787 --
3788 +
3789 [NOTE]
3790 ====
3791 Depending on your distribution,
3792 32-bit libraries could be installed at a different location than
3793 `/usr/lib32`. For example, Debian is known to install
3794 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3795
3796 In this case, make sure to set `LDFLAGS` to all the
3797 relevant 32-bit library paths, for example:
3798
3799 [role="term"]
3800 ----
3801 LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3802 ----
3803 ====
3804
3805 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3806 the 32-bit consumer daemon:
3807 +
3808 --
3809 [role="term"]
3810 ----
3811 cd $(mktemp -d) &&
3812 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.9.tar.bz2 &&
3813 tar -xf lttng-tools-latest-2.9.tar.bz2 &&
3814 cd lttng-tools-2.9.* &&
3815 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3816 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3817 make &&
3818 cd src/bin/lttng-consumerd &&
3819 sudo make install &&
3820 sudo ldconfig
3821 ----
3822 --
3823
3824 . From your distribution or from source,
3825 <<installing-lttng,install>> the 64-bit versions of
3826 LTTng-UST and Userspace RCU.
3827 . Download, build, and install the 64-bit version of the
3828 latest LTTng-tools{nbsp}{revision}:
3829 +
3830 --
3831 [role="term"]
3832 ----
3833 cd $(mktemp -d) &&
3834 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.9.tar.bz2 &&
3835 tar -xf lttng-tools-latest-2.9.tar.bz2 &&
3836 cd lttng-tools-2.9.* &&
3837 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
3838 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
3839 make &&
3840 sudo make install &&
3841 sudo ldconfig
3842 ----
3843 --
3844
3845 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
3846 when linking your 32-bit application:
3847 +
3848 ----
3849 -m32 -L/usr/lib32 -L/usr/local/lib32 \
3850 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
3851 ----
3852 +
3853 For example, let's rebuild the quick start example in
3854 <<tracing-your-own-user-application,Trace a user application>> as an
3855 instrumented 32-bit application:
3856 +
3857 --
3858 [role="term"]
3859 ----
3860 gcc -m32 -c -I. hello-tp.c
3861 gcc -m32 -c hello.c
3862 gcc -m32 -o hello hello.o hello-tp.o \
3863 -L/usr/lib32 -L/usr/local/lib32 \
3864 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
3865 -llttng-ust -ldl
3866 ----
3867 --
3868
3869 No special action is required to execute the 32-bit application and
3870 to trace it: use the command-line man:lttng(1) tool as usual.
3871
3872
3873 [role="since-2.5"]
3874 [[tracef]]
3875 ==== Use `tracef()`
3876
3877 man:tracef(3) is a small LTTng-UST API designed for quick,
3878 man:printf(3)-like instrumentation without the burden of
3879 <<tracepoint-provider,creating>> and
3880 <<building-tracepoint-providers-and-user-application,building>>
3881 a tracepoint provider package.
3882
3883 To use `tracef()` in your application:
3884
3885 . In the C or C++ source files where you need to use `tracef()`,
3886 include `<lttng/tracef.h>`:
3887 +
3888 --
3889 [source,c]
3890 ----
3891 #include <lttng/tracef.h>
3892 ----
3893 --
3894
3895 . In the application's source code, use `tracef()` like you would use
3896 man:printf(3):
3897 +
3898 --
3899 [source,c]
3900 ----
3901 /* ... */
3902
3903 tracef("my message: %d (%s)", my_integer, my_string);
3904
3905 /* ... */
3906 ----
3907 --
3908
3909 . Link your application with `liblttng-ust`:
3910 +
3911 --
3912 [role="term"]
3913 ----
3914 gcc -o app app.c -llttng-ust
3915 ----
3916 --
3917
3918 To trace the events that `tracef()` calls emit:
3919
3920 * <<enabling-disabling-events,Create an event rule>> which matches the
3921 `lttng_ust_tracef:*` event name:
3922 +
3923 --
3924 [role="term"]
3925 ----
3926 lttng enable-event --userspace 'lttng_ust_tracef:*'
3927 ----
3928 --
3929
3930 [IMPORTANT]
3931 .Limitations of `tracef()`
3932 ====
3933 The `tracef()` utility function was developed to make user space tracing
3934 super simple, albeit with notable disadvantages compared to
3935 <<defining-tracepoints,user-defined tracepoints>>:
3936
3937 * All the emitted events have the same tracepoint provider and
3938 tracepoint names, respectively `lttng_ust_tracef` and `event`.
3939 * There is no static type checking.
3940 * The only event record field you actually get, named `msg`, is a string
3941 potentially containing the values you passed to `tracef()`
3942 using your own format string. This also means that you cannot filter
3943 events with a custom expression at run time because there are no
3944 isolated fields.
3945 * Since `tracef()` uses the C standard library's man:vasprintf(3)
3946 function behind the scenes to format the strings at run time, its
3947 expected performance is lower than with user-defined tracepoints,
3948 which do not require a conversion to a string.
3949
3950 Taking this into consideration, `tracef()` is useful for some quick
3951 prototyping and debugging, but you should not consider it for any
3952 permanent and serious applicative instrumentation.
3953 ====
3954
3955
3956 [role="since-2.7"]
3957 [[tracelog]]
3958 ==== Use `tracelog()`
3959
3960 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
3961 the difference that it accepts an additional log level parameter.
3962
3963 The goal of `tracelog()` is to ease the migration from logging to
3964 tracing.
3965
3966 To use `tracelog()` in your application:
3967
3968 . In the C or C++ source files where you need to use `tracelog()`,
3969 include `<lttng/tracelog.h>`:
3970 +
3971 --
3972 [source,c]
3973 ----
3974 #include <lttng/tracelog.h>
3975 ----
3976 --
3977
3978 . In the application's source code, use `tracelog()` like you would use
3979 man:printf(3), except for the first parameter which is the log
3980 level:
3981 +
3982 --
3983 [source,c]
3984 ----
3985 /* ... */
3986
3987 tracelog(TRACE_WARNING, "my message: %d (%s)",
3988 my_integer, my_string);
3989
3990 /* ... */
3991 ----
3992 --
3993 +
3994 See man:lttng-ust(3) for a list of available log level names.
3995
3996 . Link your application with `liblttng-ust`:
3997 +
3998 --
3999 [role="term"]
4000 ----
4001 gcc -o app app.c -llttng-ust
4002 ----
4003 --
4004
4005 To trace the events that `tracelog()` calls emit with a log level
4006 _as severe as_ a specific log level:
4007
4008 * <<enabling-disabling-events,Create an event rule>> which matches the
4009 `lttng_ust_tracelog:*` event name and a minimum level
4010 of severity:
4011 +
4012 --
4013 [role="term"]
4014 ----
4015 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4016 --loglevel=TRACE_WARNING
4017 ----
4018 --
4019
4020 To trace the events that `tracelog()` calls emit with a
4021 _specific log level_:
4022
4023 * Create an event rule which matches the `lttng_ust_tracelog:*`
4024 event name and a specific log level:
4025 +
4026 --
4027 [role="term"]
4028 ----
4029 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4030 --loglevel-only=TRACE_INFO
4031 ----
4032 --
4033
4034
4035 [[prebuilt-ust-helpers]]
4036 === Prebuilt user space tracing helpers
4037
4038 The LTTng-UST package provides a few helpers in the form or preloadable
4039 shared objects which automatically instrument system functions and
4040 calls.
4041
4042 The helper shared objects are normally found in dir:{/usr/lib}. If you
4043 built LTTng-UST <<building-from-source,from source>>, they are probably
4044 located in dir:{/usr/local/lib}.
4045
4046 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4047 are:
4048
4049 path:{liblttng-ust-libc-wrapper.so}::
4050 path:{liblttng-ust-pthread-wrapper.so}::
4051 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4052 memory and POSIX threads function tracing>>.
4053
4054 path:{liblttng-ust-cyg-profile.so}::
4055 path:{liblttng-ust-cyg-profile-fast.so}::
4056 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4057
4058 path:{liblttng-ust-dl.so}::
4059 <<liblttng-ust-dl,Dynamic linker tracing>>.
4060
4061 To use a user space tracing helper with any user application:
4062
4063 * Preload the helper shared object when you start the application:
4064 +
4065 --
4066 [role="term"]
4067 ----
4068 LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4069 ----
4070 --
4071 +
4072 You can preload more than one helper:
4073 +
4074 --
4075 [role="term"]
4076 ----
4077 LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4078 ----
4079 --
4080
4081
4082 [role="since-2.3"]
4083 [[liblttng-ust-libc-pthread-wrapper]]
4084 ==== Instrument C standard library memory and POSIX threads functions
4085
4086 The path:{liblttng-ust-libc-wrapper.so} and
4087 path:{liblttng-ust-pthread-wrapper.so} helpers
4088 add instrumentation to some C standard library and POSIX
4089 threads functions.
4090
4091 [role="growable"]
4092 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4093 |====
4094 |TP provider name |TP name |Instrumented function
4095
4096 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4097 |`calloc` |man:calloc(3)
4098 |`realloc` |man:realloc(3)
4099 |`free` |man:free(3)
4100 |`memalign` |man:memalign(3)
4101 |`posix_memalign` |man:posix_memalign(3)
4102 |====
4103
4104 [role="growable"]
4105 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4106 |====
4107 |TP provider name |TP name |Instrumented function
4108
4109 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4110 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4111 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4112 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4113 |====
4114
4115 When you preload the shared object, it replaces the functions listed
4116 in the previous tables by wrappers which contain tracepoints and call
4117 the replaced functions.
4118
4119
4120 [[liblttng-ust-cyg-profile]]
4121 ==== Instrument function entry and exit
4122
4123 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4124 to the entry and exit points of functions.
4125
4126 man:gcc(1) and man:clang(1) have an option named
4127 https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html[`-finstrument-functions`]
4128 which generates instrumentation calls for entry and exit to functions.
4129 The LTTng-UST function tracing helpers,
4130 path:{liblttng-ust-cyg-profile.so} and
4131 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4132 to add tracepoints to the two generated functions (which contain
4133 `cyg_profile` in their names, hence the helper's name).
4134
4135 To use the LTTng-UST function tracing helper, the source files to
4136 instrument must be built using the `-finstrument-functions` compiler
4137 flag.
4138
4139 There are two versions of the LTTng-UST function tracing helper:
4140
4141 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4142 that you should only use when it can be _guaranteed_ that the
4143 complete event stream is recorded without any lost event record.
4144 Any kind of duplicate information is left out.
4145 +
4146 Assuming no event record is lost, having only the function addresses on
4147 entry is enough to create a call graph, since an event record always
4148 contains the ID of the CPU that generated it.
4149 +
4150 You can use a tool like man:addr2line(1) to convert function addresses
4151 back to source file names and line numbers.
4152
4153 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4154 which also works in use cases where event records might get discarded or
4155 not recorded from application startup.
4156 In these cases, the trace analyzer needs more information to be
4157 able to reconstruct the program flow.
4158
4159 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4160 points of this helper.
4161
4162 All the tracepoints that this helper provides have the
4163 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4164
4165 TIP: It's sometimes a good idea to limit the number of source files that
4166 you compile with the `-finstrument-functions` option to prevent LTTng
4167 from writing an excessive amount of trace data at run time. When using
4168 man:gcc(1), you can use the
4169 `-finstrument-functions-exclude-function-list` option to avoid
4170 instrument entries and exits of specific function names.
4171
4172
4173 [role="since-2.4"]
4174 [[liblttng-ust-dl]]
4175 ==== Instrument the dynamic linker
4176
4177 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4178 man:dlopen(3) and man:dlclose(3) function calls.
4179
4180 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4181 of this helper.
4182
4183
4184 [role="since-2.4"]
4185 [[java-application]]
4186 === User space Java agent
4187
4188 You can instrument any Java application which uses one of the following
4189 logging frameworks:
4190
4191 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4192 (JUL) core logging facilities.
4193 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4194 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4195
4196 [role="img-100"]
4197 .LTTng-UST Java agent imported by a Java application.
4198 image::java-app.png[]
4199
4200 Note that the methods described below are new in LTTng{nbsp}{revision}.
4201 Previous LTTng versions use another technique.
4202
4203 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4204 and https://ci.lttng.org/[continuous integration], thus this version is
4205 directly supported. However, the LTTng-UST Java agent is also tested
4206 with OpenJDK{nbsp}7.
4207
4208
4209 [role="since-2.8"]
4210 [[jul]]
4211 ==== Use the LTTng-UST Java agent for `java.util.logging`
4212
4213 To use the LTTng-UST Java agent in a Java application which uses
4214 `java.util.logging` (JUL):
4215
4216 . In the Java application's source code, import the LTTng-UST
4217 log handler package for `java.util.logging`:
4218 +
4219 --
4220 [source,java]
4221 ----
4222 import org.lttng.ust.agent.jul.LttngLogHandler;
4223 ----
4224 --
4225
4226 . Create an LTTng-UST JUL log handler:
4227 +
4228 --
4229 [source,java]
4230 ----
4231 Handler lttngUstLogHandler = new LttngLogHandler();
4232 ----
4233 --
4234
4235 . Add this handler to the JUL loggers which should emit LTTng events:
4236 +
4237 --
4238 [source,java]
4239 ----
4240 Logger myLogger = Logger.getLogger("some-logger");
4241
4242 myLogger.addHandler(lttngUstLogHandler);
4243 ----
4244 --
4245
4246 . Use `java.util.logging` log statements and configuration as usual.
4247 The loggers with an attached LTTng-UST log handler can emit
4248 LTTng events.
4249
4250 . Before exiting the application, remove the LTTng-UST log handler from
4251 the loggers attached to it and call its `close()` method:
4252 +
4253 --
4254 [source,java]
4255 ----
4256 myLogger.removeHandler(lttngUstLogHandler);
4257 lttngUstLogHandler.close();
4258 ----
4259 --
4260 +
4261 This is not strictly necessary, but it is recommended for a clean
4262 disposal of the handler's resources.
4263
4264 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4265 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4266 in the
4267 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4268 path] when you build the Java application.
4269 +
4270 The JAR files are typically located in dir:{/usr/share/java}.
4271 +
4272 IMPORTANT: The LTTng-UST Java agent must be
4273 <<installing-lttng,installed>> for the logging framework your
4274 application uses.
4275
4276 .Use the LTTng-UST Java agent for `java.util.logging`.
4277 ====
4278 [source,java]
4279 .path:{Test.java}
4280 ----
4281 import java.io.IOException;
4282 import java.util.logging.Handler;
4283 import java.util.logging.Logger;
4284 import org.lttng.ust.agent.jul.LttngLogHandler;
4285
4286 public class Test
4287 {
4288 private static final int answer = 42;
4289
4290 public static void main(String[] argv) throws Exception
4291 {
4292 // Create a logger
4293 Logger logger = Logger.getLogger("jello");
4294
4295 // Create an LTTng-UST log handler
4296 Handler lttngUstLogHandler = new LttngLogHandler();
4297
4298 // Add the LTTng-UST log handler to our logger
4299 logger.addHandler(lttngUstLogHandler);
4300
4301 // Log at will!
4302 logger.info("some info");
4303 logger.warning("some warning");
4304 Thread.sleep(500);
4305 logger.finer("finer information; the answer is " + answer);
4306 Thread.sleep(123);
4307 logger.severe("error!");
4308
4309 // Not mandatory, but cleaner
4310 logger.removeHandler(lttngUstLogHandler);
4311 lttngUstLogHandler.close();
4312 }
4313 }
4314 ----
4315
4316 Build this example:
4317
4318 [role="term"]
4319 ----
4320 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4321 ----
4322
4323 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4324 <<enabling-disabling-events,create an event rule>> matching the
4325 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4326
4327 [role="term"]
4328 ----
4329 lttng create
4330 lttng enable-event --jul jello
4331 lttng start
4332 ----
4333
4334 Run the compiled class:
4335
4336 [role="term"]
4337 ----
4338 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4339 ----
4340
4341 <<basic-tracing-session-control,Stop tracing>> and inspect the
4342 recorded events:
4343
4344 [role="term"]
4345 ----
4346 lttng stop
4347 lttng view
4348 ----
4349 ====
4350
4351 You can use the opt:lttng-enable-event(1):--loglevel or
4352 opt:lttng-enable-event(1):--loglevel-only option of the
4353 man:lttng-enable-event(1) command to target a range of JUL log levels
4354 or a specific JUL log level.
4355
4356
4357 [role="since-2.8"]
4358 [[log4j]]
4359 ==== Use the LTTng-UST Java agent for Apache log4j
4360
4361 To use the LTTng-UST Java agent in a Java application which uses
4362 Apache log4j 1.2:
4363
4364 . In the Java application's source code, import the LTTng-UST
4365 log appender package for Apache log4j:
4366 +
4367 --
4368 [source,java]
4369 ----
4370 import org.lttng.ust.agent.log4j.LttngLogAppender;
4371 ----
4372 --
4373
4374 . Create an LTTng-UST log4j log appender:
4375 +
4376 --
4377 [source,java]
4378 ----
4379 Appender lttngUstLogAppender = new LttngLogAppender();
4380 ----
4381 --
4382
4383 . Add this appender to the log4j loggers which should emit LTTng events:
4384 +
4385 --
4386 [source,java]
4387 ----
4388 Logger myLogger = Logger.getLogger("some-logger");
4389
4390 myLogger.addAppender(lttngUstLogAppender);
4391 ----
4392 --
4393
4394 . Use Apache log4j log statements and configuration as usual. The
4395 loggers with an attached LTTng-UST log appender can emit LTTng events.
4396
4397 . Before exiting the application, remove the LTTng-UST log appender from
4398 the loggers attached to it and call its `close()` method:
4399 +
4400 --
4401 [source,java]
4402 ----
4403 myLogger.removeAppender(lttngUstLogAppender);
4404 lttngUstLogAppender.close();
4405 ----
4406 --
4407 +
4408 This is not strictly necessary, but it is recommended for a clean
4409 disposal of the appender's resources.
4410
4411 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4412 files, path:{lttng-ust-agent-common.jar} and
4413 path:{lttng-ust-agent-log4j.jar}, in the
4414 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4415 path] when you build the Java application.
4416 +
4417 The JAR files are typically located in dir:{/usr/share/java}.
4418 +
4419 IMPORTANT: The LTTng-UST Java agent must be
4420 <<installing-lttng,installed>> for the logging framework your
4421 application uses.
4422
4423 .Use the LTTng-UST Java agent for Apache log4j.
4424 ====
4425 [source,java]
4426 .path:{Test.java}
4427 ----
4428 import org.apache.log4j.Appender;
4429 import org.apache.log4j.Logger;
4430 import org.lttng.ust.agent.log4j.LttngLogAppender;
4431
4432 public class Test
4433 {
4434 private static final int answer = 42;
4435
4436 public static void main(String[] argv) throws Exception
4437 {
4438 // Create a logger
4439 Logger logger = Logger.getLogger("jello");
4440
4441 // Create an LTTng-UST log appender
4442 Appender lttngUstLogAppender = new LttngLogAppender();
4443
4444 // Add the LTTng-UST log appender to our logger
4445 logger.addAppender(lttngUstLogAppender);
4446
4447 // Log at will!
4448 logger.info("some info");
4449 logger.warn("some warning");
4450 Thread.sleep(500);
4451 logger.debug("debug information; the answer is " + answer);
4452 Thread.sleep(123);
4453 logger.fatal("error!");
4454
4455 // Not mandatory, but cleaner
4456 logger.removeAppender(lttngUstLogAppender);
4457 lttngUstLogAppender.close();
4458 }
4459 }
4460
4461 ----
4462
4463 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4464 file):
4465
4466 [role="term"]
4467 ----
4468 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4469 ----
4470
4471 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4472 <<enabling-disabling-events,create an event rule>> matching the
4473 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4474
4475 [role="term"]
4476 ----
4477 lttng create
4478 lttng enable-event --log4j jello
4479 lttng start
4480 ----
4481
4482 Run the compiled class:
4483
4484 [role="term"]
4485 ----
4486 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4487 ----
4488
4489 <<basic-tracing-session-control,Stop tracing>> and inspect the
4490 recorded events:
4491
4492 [role="term"]
4493 ----
4494 lttng stop
4495 lttng view
4496 ----
4497 ====
4498
4499 You can use the opt:lttng-enable-event(1):--loglevel or
4500 opt:lttng-enable-event(1):--loglevel-only option of the
4501 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4502 or a specific log4j log level.
4503
4504
4505 [role="since-2.8"]
4506 [[java-application-context]]
4507 ==== Provide application-specific context fields in a Java application
4508
4509 A Java application-specific context field is a piece of state provided
4510 by the application which <<adding-context,you can add>>, using the
4511 man:lttng-add-context(1) command, to each <<event,event record>>
4512 produced by the log statements of this application.
4513
4514 For example, a given object might have a current request ID variable.
4515 You can create a context information retriever for this object and
4516 assign a name to this current request ID. You can then, using the
4517 man:lttng-add-context(1) command, add this context field by name to
4518 the JUL or log4j <<channel,channel>>.
4519
4520 To provide application-specific context fields in a Java application:
4521
4522 . In the Java application's source code, import the LTTng-UST
4523 Java agent context classes and interfaces:
4524 +
4525 --
4526 [source,java]
4527 ----
4528 import org.lttng.ust.agent.context.ContextInfoManager;
4529 import org.lttng.ust.agent.context.IContextInfoRetriever;
4530 ----
4531 --
4532
4533 . Create a context information retriever class, that is, a class which
4534 implements the `IContextInfoRetriever` interface:
4535 +
4536 --
4537 [source,java]
4538 ----
4539 class MyContextInfoRetriever implements IContextInfoRetriever
4540 {
4541 @Override
4542 public Object retrieveContextInfo(String key)
4543 {
4544 if (key.equals("intCtx")) {
4545 return (short) 17;
4546 } else if (key.equals("strContext")) {
4547 return "context value!";
4548 } else {
4549 return null;
4550 }
4551 }
4552 }
4553 ----
4554 --
4555 +
4556 This `retrieveContextInfo()` method is the only member of the
4557 `IContextInfoRetriever` interface. Its role is to return the current
4558 value of a state by name to create a context field. The names of the
4559 context fields and which state variables they return depends on your
4560 specific scenario.
4561 +
4562 All primitive types and objects are supported as context fields.
4563 When `retrieveContextInfo()` returns an object, the context field
4564 serializer calls its `toString()` method to add a string field to
4565 event records. The method can also return `null`, which means that
4566 no context field is available for the required name.
4567
4568 . Register an instance of your context information retriever class to
4569 the context information manager singleton:
4570 +
4571 --
4572 [source,java]
4573 ----
4574 IContextInfoRetriever cir = new MyContextInfoRetriever();
4575 ContextInfoManager cim = ContextInfoManager.getInstance();
4576 cim.registerContextInfoRetriever("retrieverName", cir);
4577 ----
4578 --
4579
4580 . Before exiting the application, remove your context information
4581 retriever from the context information manager singleton:
4582 +
4583 --
4584 [source,java]
4585 ----
4586 ContextInfoManager cim = ContextInfoManager.getInstance();
4587 cim.unregisterContextInfoRetriever("retrieverName");
4588 ----
4589 --
4590 +
4591 This is not strictly necessary, but it is recommended for a clean
4592 disposal of some manager's resources.
4593
4594 . Build your Java application with LTTng-UST Java agent support as
4595 usual, following the procedure for either the <<jul,JUL>> or
4596 <<log4j,Apache log4j>> framework.
4597
4598
4599 .Provide application-specific context fields in a Java application.
4600 ====
4601 [source,java]
4602 .path:{Test.java}
4603 ----
4604 import java.util.logging.Handler;
4605 import java.util.logging.Logger;
4606 import org.lttng.ust.agent.jul.LttngLogHandler;
4607 import org.lttng.ust.agent.context.ContextInfoManager;
4608 import org.lttng.ust.agent.context.IContextInfoRetriever;
4609
4610 public class Test
4611 {
4612 // Our context information retriever class
4613 private static class MyContextInfoRetriever
4614 implements IContextInfoRetriever
4615 {
4616 @Override
4617 public Object retrieveContextInfo(String key) {
4618 if (key.equals("intCtx")) {
4619 return (short) 17;
4620 } else if (key.equals("strContext")) {
4621 return "context value!";
4622 } else {
4623 return null;
4624 }
4625 }
4626 }
4627
4628 private static final int answer = 42;
4629
4630 public static void main(String args[]) throws Exception
4631 {
4632 // Get the context information manager instance
4633 ContextInfoManager cim = ContextInfoManager.getInstance();
4634
4635 // Create and register our context information retriever
4636 IContextInfoRetriever cir = new MyContextInfoRetriever();
4637 cim.registerContextInfoRetriever("myRetriever", cir);
4638
4639 // Create a logger
4640 Logger logger = Logger.getLogger("jello");
4641
4642 // Create an LTTng-UST log handler
4643 Handler lttngUstLogHandler = new LttngLogHandler();
4644
4645 // Add the LTTng-UST log handler to our logger
4646 logger.addHandler(lttngUstLogHandler);
4647
4648 // Log at will!
4649 logger.info("some info");
4650 logger.warning("some warning");
4651 Thread.sleep(500);
4652 logger.finer("finer information; the answer is " + answer);
4653 Thread.sleep(123);
4654 logger.severe("error!");
4655
4656 // Not mandatory, but cleaner
4657 logger.removeHandler(lttngUstLogHandler);
4658 lttngUstLogHandler.close();
4659 cim.unregisterContextInfoRetriever("myRetriever");
4660 }
4661 }
4662 ----
4663
4664 Build this example:
4665
4666 [role="term"]
4667 ----
4668 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4669 ----
4670
4671 <<creating-destroying-tracing-sessions,Create a tracing session>>
4672 and <<enabling-disabling-events,create an event rule>> matching the
4673 `jello` JUL logger:
4674
4675 [role="term"]
4676 ----
4677 lttng create
4678 lttng enable-event --jul jello
4679 ----
4680
4681 <<adding-context,Add the application-specific context fields>> to the
4682 JUL channel:
4683
4684 [role="term"]
4685 ----
4686 lttng add-context --jul --type='$app.myRetriever:intCtx'
4687 lttng add-context --jul --type='$app.myRetriever:strContext'
4688 ----
4689
4690 <<basic-tracing-session-control,Start tracing>>:
4691
4692 [role="term"]
4693 ----
4694 lttng start
4695 ----
4696
4697 Run the compiled class:
4698
4699 [role="term"]
4700 ----
4701 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4702 ----
4703
4704 <<basic-tracing-session-control,Stop tracing>> and inspect the
4705 recorded events:
4706
4707 [role="term"]
4708 ----
4709 lttng stop
4710 lttng view
4711 ----
4712 ====
4713
4714
4715 [role="since-2.7"]
4716 [[python-application]]
4717 === User space Python agent
4718
4719 You can instrument a Python 2 or Python 3 application which uses the
4720 standard https://docs.python.org/3/library/logging.html[`logging`]
4721 package.
4722
4723 Each log statement emits an LTTng event once the
4724 application module imports the
4725 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4726
4727 [role="img-100"]
4728 .A Python application importing the LTTng-UST Python agent.
4729 image::python-app.png[]
4730
4731 To use the LTTng-UST Python agent:
4732
4733 . In the Python application's source code, import the LTTng-UST Python
4734 agent:
4735 +
4736 --
4737 [source,python]
4738 ----
4739 import lttngust
4740 ----
4741 --
4742 +
4743 The LTTng-UST Python agent automatically adds its logging handler to the
4744 root logger at import time.
4745 +
4746 Any log statement that the application executes before this import does
4747 not emit an LTTng event.
4748 +
4749 IMPORTANT: The LTTng-UST Python agent must be
4750 <<installing-lttng,installed>>.
4751
4752 . Use log statements and logging configuration as usual.
4753 Since the LTTng-UST Python agent adds a handler to the _root_
4754 logger, you can trace any log statement from any logger.
4755
4756 .Use the LTTng-UST Python agent.
4757 ====
4758 [source,python]
4759 .path:{test.py}
4760 ----
4761 import lttngust
4762 import logging
4763 import time
4764
4765
4766 def example():
4767 logging.basicConfig()
4768 logger = logging.getLogger('my-logger')
4769
4770 while True:
4771 logger.debug('debug message')
4772 logger.info('info message')
4773 logger.warn('warn message')
4774 logger.error('error message')
4775 logger.critical('critical message')
4776 time.sleep(1)
4777
4778
4779 if __name__ == '__main__':
4780 example()
4781 ----
4782
4783 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
4784 logging handler which prints to the standard error stream, is not
4785 strictly required for LTTng-UST tracing to work, but in versions of
4786 Python preceding 3.2, you could see a warning message which indicates
4787 that no handler exists for the logger `my-logger`.
4788
4789 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4790 <<enabling-disabling-events,create an event rule>> matching the
4791 `my-logger` Python logger, and <<basic-tracing-session-control,start
4792 tracing>>:
4793
4794 [role="term"]
4795 ----
4796 lttng create
4797 lttng enable-event --python my-logger
4798 lttng start
4799 ----
4800
4801 Run the Python script:
4802
4803 [role="term"]
4804 ----
4805 python test.py
4806 ----
4807
4808 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4809 events:
4810
4811 [role="term"]
4812 ----
4813 lttng stop
4814 lttng view
4815 ----
4816 ====
4817
4818 You can use the opt:lttng-enable-event(1):--loglevel or
4819 opt:lttng-enable-event(1):--loglevel-only option of the
4820 man:lttng-enable-event(1) command to target a range of Python log levels
4821 or a specific Python log level.
4822
4823 When an application imports the LTTng-UST Python agent, the agent tries
4824 to register to a <<lttng-sessiond,session daemon>>. Note that you must
4825 <<start-sessiond,start the session daemon>> _before_ you run the Python
4826 application. If a session daemon is found, the agent tries to register
4827 to it during 5{nbsp}seconds, after which the application continues
4828 without LTTng tracing support. You can override this timeout value with
4829 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
4830 (milliseconds).
4831
4832 If the session daemon stops while a Python application with an imported
4833 LTTng-UST Python agent runs, the agent retries to connect and to
4834 register to a session daemon every 3{nbsp}seconds. You can override this
4835 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
4836 variable.
4837
4838
4839 [role="since-2.5"]
4840 [[proc-lttng-logger-abi]]
4841 === LTTng logger
4842
4843 The `lttng-tracer` Linux kernel module, part of
4844 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
4845 path:{/proc/lttng-logger} when it's loaded. Any application can write
4846 text data to this file to emit an LTTng event.
4847
4848 [role="img-100"]
4849 .An application writes to the LTTng logger file to emit an LTTng event.
4850 image::lttng-logger.png[]
4851
4852 The LTTng logger is the quickest method--not the most efficient,
4853 however--to add instrumentation to an application. It is designed
4854 mostly to instrument shell scripts:
4855
4856 [role="term"]
4857 ----
4858 echo "Some message, some $variable" > /proc/lttng-logger
4859 ----
4860
4861 Any event that the LTTng logger emits is named `lttng_logger` and
4862 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
4863 other instrumentation points in the kernel tracing domain, **any Unix
4864 user** can <<enabling-disabling-events,create an event rule>> which
4865 matches its event name, not only the root user or users in the
4866 <<tracing-group,tracing group>>.
4867
4868 To use the LTTng logger:
4869
4870 * From any application, write text data to the path:{/proc/lttng-logger}
4871 file.
4872
4873 The `msg` field of `lttng_logger` event records contains the
4874 recorded message.
4875
4876 NOTE: The maximum message length of an LTTng logger event is
4877 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
4878 than one event to contain the remaining data.
4879
4880 You should not use the LTTng logger to trace a user application which
4881 can be instrumented in a more efficient way, namely:
4882
4883 * <<c-application,C and $$C++$$ applications>>.
4884 * <<java-application,Java applications>>.
4885 * <<python-application,Python applications>>.
4886
4887 .Use the LTTng logger.
4888 ====
4889 [source,bash]
4890 .path:{test.bash}
4891 ----
4892 echo 'Hello, World!' > /proc/lttng-logger
4893 sleep 2
4894 df --human-readable --print-type / > /proc/lttng-logger
4895 ----
4896
4897 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4898 <<enabling-disabling-events,create an event rule>> matching the
4899 `lttng_logger` Linux kernel tracepoint, and
4900 <<basic-tracing-session-control,start tracing>>:
4901
4902 [role="term"]
4903 ----
4904 lttng create
4905 lttng enable-event --kernel lttng_logger
4906 lttng start
4907 ----
4908
4909 Run the Bash script:
4910
4911 [role="term"]
4912 ----
4913 bash test.bash
4914 ----
4915
4916 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4917 events:
4918
4919 [role="term"]
4920 ----
4921 lttng stop
4922 lttng view
4923 ----
4924 ====
4925
4926
4927 [[instrumenting-linux-kernel]]
4928 === LTTng kernel tracepoints
4929
4930 NOTE: This section shows how to _add_ instrumentation points to the
4931 Linux kernel. The kernel's subsystems are already thoroughly
4932 instrumented at strategic places for LTTng when you
4933 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
4934 package.
4935
4936 ////
4937 There are two methods to instrument the Linux kernel:
4938
4939 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
4940 tracepoint which uses the `TRACE_EVENT()` API.
4941 +
4942 Choose this if you want to instrumentation a Linux kernel tree with an
4943 instrumentation point compatible with ftrace, perf, and SystemTap.
4944
4945 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
4946 instrument an out-of-tree kernel module.
4947 +
4948 Choose this if you don't need ftrace, perf, or SystemTap support.
4949 ////
4950
4951
4952 [[linux-add-lttng-layer]]
4953 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
4954
4955 This section shows how to add an LTTng layer to existing ftrace
4956 instrumentation using the `TRACE_EVENT()` API.
4957
4958 This section does not document the `TRACE_EVENT()` macro. You can
4959 read the following articles to learn more about this API:
4960
4961 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
4962 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
4963 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
4964
4965 The following procedure assumes that your ftrace tracepoints are
4966 correctly defined in their own header and that they are created in
4967 one source file using the `CREATE_TRACE_POINTS` definition.
4968
4969 To add an LTTng layer over an existing ftrace tracepoint:
4970
4971 . Make sure the following kernel configuration options are
4972 enabled:
4973 +
4974 --
4975 * `CONFIG_MODULES`
4976 * `CONFIG_KALLSYMS`
4977 * `CONFIG_HIGH_RES_TIMERS`
4978 * `CONFIG_TRACEPOINTS`
4979 --
4980
4981 . Build the Linux source tree with your custom ftrace tracepoints.
4982 . Boot the resulting Linux image on your target system.
4983 +
4984 Confirm that the tracepoints exist by looking for their names in the
4985 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
4986 is your subsystem's name.
4987
4988 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
4989 +
4990 --
4991 [role="term"]
4992 ----
4993 cd $(mktemp -d) &&
4994 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.9.tar.bz2 &&
4995 tar -xf lttng-modules-latest-2.9.tar.bz2 &&
4996 cd lttng-modules-2.9.*
4997 ----
4998 --
4999
5000 . In dir:{instrumentation/events/lttng-module}, relative to the root
5001 of the LTTng-modules source tree, create a header file named
5002 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5003 LTTng-modules tracepoint definitions using the LTTng-modules
5004 macros in it.
5005 +
5006 Start with this template:
5007 +
5008 --
5009 [source,c]
5010 .path:{instrumentation/events/lttng-module/my_subsys.h}
5011 ----
5012 #undef TRACE_SYSTEM
5013 #define TRACE_SYSTEM my_subsys
5014
5015 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5016 #define _LTTNG_MY_SUBSYS_H
5017
5018 #include "../../../probes/lttng-tracepoint-event.h"
5019 #include <linux/tracepoint.h>
5020
5021 LTTNG_TRACEPOINT_EVENT(
5022 /*
5023 * Format is identical to TRACE_EVENT()'s version for the three
5024 * following macro parameters:
5025 */
5026 my_subsys_my_event,
5027 TP_PROTO(int my_int, const char *my_string),
5028 TP_ARGS(my_int, my_string),
5029
5030 /* LTTng-modules specific macros */
5031 TP_FIELDS(
5032 ctf_integer(int, my_int_field, my_int)
5033 ctf_string(my_bar_field, my_bar)
5034 )
5035 )
5036
5037 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5038
5039 #include "../../../probes/define_trace.h"
5040 ----
5041 --
5042 +
5043 The entries in the `TP_FIELDS()` section are the list of fields for the
5044 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5045 ftrace's `TRACE_EVENT()` macro.
5046 +
5047 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5048 complete description of the available `ctf_*()` macros.
5049
5050 . Create the LTTng-modules probe's kernel module C source file,
5051 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5052 subsystem name:
5053 +
5054 --
5055 [source,c]
5056 .path:{probes/lttng-probe-my-subsys.c}
5057 ----
5058 #include <linux/module.h>
5059 #include "../lttng-tracer.h"
5060
5061 /*
5062 * Build-time verification of mismatch between mainline
5063 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5064 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5065 */
5066 #include <trace/events/my_subsys.h>
5067
5068 /* Create LTTng tracepoint probes */
5069 #define LTTNG_PACKAGE_BUILD
5070 #define CREATE_TRACE_POINTS
5071 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5072
5073 #include "../instrumentation/events/lttng-module/my_subsys.h"
5074
5075 MODULE_LICENSE("GPL and additional rights");
5076 MODULE_AUTHOR("Your name <your-email>");
5077 MODULE_DESCRIPTION("LTTng my_subsys probes");
5078 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5079 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5080 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5081 LTTNG_MODULES_EXTRAVERSION);
5082 ----
5083 --
5084
5085 . Edit path:{probes/Makefile} and add your new kernel module object
5086 next to the existing ones:
5087 +
5088 --
5089 [source,make]
5090 .path:{probes/Makefile}
5091 ----
5092 # ...
5093
5094 obj-m += lttng-probe-module.o
5095 obj-m += lttng-probe-power.o
5096
5097 obj-m += lttng-probe-my-subsys.o
5098
5099 # ...
5100 ----
5101 --
5102
5103 . Build and install the LTTng kernel modules:
5104 +
5105 --
5106 [role="term"]
5107 ----
5108 make KERNELDIR=/path/to/linux
5109 sudo make modules_install
5110 ----
5111 --
5112 +
5113 Replace `/path/to/linux` with the path to the Linux source tree where
5114 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5115
5116 Note that you can also use the
5117 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5118 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5119 C code that need to be executed before the event fields are recorded.
5120
5121 The best way to learn how to use the previous LTTng-modules macros is to
5122 inspect the existing LTTng-modules tracepoint definitions in the
5123 dir:{instrumentation/events/lttng-module} header files. Compare them
5124 with the Linux kernel mainline versions in the
5125 dir:{include/trace/events} directory of the Linux source tree.
5126
5127
5128 [role="since-2.7"]
5129 [[lttng-tracepoint-event-code]]
5130 ===== Use custom C code to access the data for tracepoint fields
5131
5132 Although we recommended to always use the
5133 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5134 the arguments and fields of an LTTng-modules tracepoint when possible,
5135 sometimes you need a more complex process to access the data that the
5136 tracer records as event record fields. In other words, you need local
5137 variables and multiple C{nbsp}statements instead of simple
5138 argument-based expressions that you pass to the
5139 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5140
5141 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5142 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5143 a block of C{nbsp}code to be executed before LTTng records the fields.
5144 The structure of this macro is:
5145
5146 [source,c]
5147 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5148 ----
5149 LTTNG_TRACEPOINT_EVENT_CODE(
5150 /*
5151 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5152 * version for the following three macro parameters:
5153 */
5154 my_subsys_my_event,
5155 TP_PROTO(int my_int, const char *my_string),
5156 TP_ARGS(my_int, my_string),
5157
5158 /* Declarations of custom local variables */
5159 TP_locvar(
5160 int a = 0;
5161 unsigned long b = 0;
5162 const char *name = "(undefined)";
5163 struct my_struct *my_struct;
5164 ),
5165
5166 /*
5167 * Custom code which uses both tracepoint arguments
5168 * (in TP_ARGS()) and local variables (in TP_locvar()).
5169 *
5170 * Local variables are actually members of a structure pointed
5171 * to by the special variable tp_locvar.
5172 */
5173 TP_code(
5174 if (my_int) {
5175 tp_locvar->a = my_int + 17;
5176 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5177 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5178 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5179 put_my_struct(tp_locvar->my_struct);
5180
5181 if (tp_locvar->b) {
5182 tp_locvar->a = 1;
5183 }
5184 }
5185 ),
5186
5187 /*
5188 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5189 * version for this, except that tp_locvar members can be
5190 * used in the argument expression parameters of
5191 * the ctf_*() macros.
5192 */
5193 TP_FIELDS(
5194 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5195 ctf_integer(int, my_struct_a, tp_locvar->a)
5196 ctf_string(my_string_field, my_string)
5197 ctf_string(my_struct_name, tp_locvar->name)
5198 )
5199 )
5200 ----
5201
5202 IMPORTANT: The C code defined in `TP_code()` must not have any side
5203 effects when executed. In particular, the code must not allocate
5204 memory or get resources without deallocating this memory or putting
5205 those resources afterwards.
5206
5207
5208 [[instrumenting-linux-kernel-tracing]]
5209 ==== Load and unload a custom probe kernel module
5210
5211 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5212 kernel module>> in the kernel before it can emit LTTng events.
5213
5214 To load the default probe kernel modules and a custom probe kernel
5215 module:
5216
5217 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5218 probe modules to load when starting a root <<lttng-sessiond,session
5219 daemon>>:
5220 +
5221 --
5222 .Load the `my_subsys`, `usb`, and the default probe modules.
5223 ====
5224 [role="term"]
5225 ----
5226 sudo lttng-sessiond --extra-kmod-probes=my_subsys,usb
5227 ----
5228 ====
5229 --
5230 +
5231 You only need to pass the subsystem name, not the whole kernel module
5232 name.
5233
5234 To load _only_ a given custom probe kernel module:
5235
5236 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5237 modules to load when starting a root session daemon:
5238 +
5239 --
5240 .Load only the `my_subsys` and `usb` probe modules.
5241 ====
5242 [role="term"]
5243 ----
5244 sudo lttng-sessiond --kmod-probes=my_subsys,usb
5245 ----
5246 ====
5247 --
5248
5249 To confirm that a probe module is loaded:
5250
5251 * Use man:lsmod(8):
5252 +
5253 --
5254 [role="term"]
5255 ----
5256 lsmod | grep lttng_probe_usb
5257 ----
5258 --
5259
5260 To unload the loaded probe modules:
5261
5262 * Kill the session daemon with `SIGTERM`:
5263 +
5264 --
5265 [role="term"]
5266 ----
5267 sudo pkill lttng-sessiond
5268 ----
5269 --
5270 +
5271 You can also use man:modprobe(8)'s `--remove` option if the session
5272 daemon terminates abnormally.
5273
5274
5275 [[controlling-tracing]]
5276 == Tracing control
5277
5278 Once an application or a Linux kernel is
5279 <<instrumenting,instrumented>> for LTTng tracing,
5280 you can _trace_ it.
5281
5282 This section is divided in topics on how to use the various
5283 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5284 command-line tool>>, to _control_ the LTTng daemons and tracers.
5285
5286 NOTE: In the following subsections, we refer to an man:lttng(1) command
5287 using its man page name. For example, instead of _Run the `create`
5288 command to..._, we use _Run the man:lttng-create(1) command to..._.
5289
5290
5291 [[start-sessiond]]
5292 === Start a session daemon
5293
5294 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5295 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5296 command-line tool.
5297
5298 You will see the following error when you run a command while no session
5299 daemon is running:
5300
5301 ----
5302 Error: No session daemon is available
5303 ----
5304
5305 The only command that automatically runs a session daemon is
5306 man:lttng-create(1), which you use to
5307 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5308 this is most of the time the first operation that you do, sometimes it's
5309 not. Some examples are:
5310
5311 * <<list-instrumentation-points,List the available instrumentation points>>.
5312 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5313
5314 [[tracing-group]] Each Unix user must have its own running session
5315 daemon to trace user applications. The session daemon that the root user
5316 starts is the only one allowed to control the LTTng kernel tracer. Users
5317 that are part of the _tracing group_ can control the root session
5318 daemon. The default tracing group name is `tracing`; you can set it to
5319 something else with the opt:lttng-sessiond(8):--group option when you
5320 start the root session daemon.
5321
5322 To start a user session daemon:
5323
5324 * Run man:lttng-sessiond(8):
5325 +
5326 --
5327 [role="term"]
5328 ----
5329 lttng-sessiond --daemonize
5330 ----
5331 --
5332
5333 To start the root session daemon:
5334
5335 * Run man:lttng-sessiond(8) as the root user:
5336 +
5337 --
5338 [role="term"]
5339 ----
5340 sudo lttng-sessiond --daemonize
5341 ----
5342 --
5343
5344 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5345 start the session daemon in foreground.
5346
5347 To stop a session daemon, use man:kill(1) on its process ID (standard
5348 `TERM` signal).
5349
5350 Note that some Linux distributions could manage the LTTng session daemon
5351 as a service. In this case, you should use the service manager to
5352 start, restart, and stop session daemons.
5353
5354
5355 [[creating-destroying-tracing-sessions]]
5356 === Create and destroy a tracing session
5357
5358 Almost all the LTTng control operations happen in the scope of
5359 a <<tracing-session,tracing session>>, which is the dialogue between the
5360 <<lttng-sessiond,session daemon>> and you.
5361
5362 To create a tracing session with a generated name:
5363
5364 * Use the man:lttng-create(1) command:
5365 +
5366 --
5367 [role="term"]
5368 ----
5369 lttng create
5370 ----
5371 --
5372
5373 The created tracing session's name is `auto` followed by the
5374 creation date.
5375
5376 To create a tracing session with a specific name:
5377
5378 * Use the optional argument of the man:lttng-create(1) command:
5379 +
5380 --
5381 [role="term"]
5382 ----
5383 lttng create my-session
5384 ----
5385 --
5386 +
5387 Replace `my-session` with the specific tracing session name.
5388
5389 LTTng appends the creation date to the created tracing session's name.
5390
5391 LTTng writes the traces of a tracing session in
5392 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5393 name of the tracing session. Note that the env:LTTNG_HOME environment
5394 variable defaults to `$HOME` if not set.
5395
5396 To output LTTng traces to a non-default location:
5397
5398 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5399 +
5400 --
5401 [role="term"]
5402 ----
5403 lttng create --output=/tmp/some-directory my-session
5404 ----
5405 --
5406
5407 You may create as many tracing sessions as you wish.
5408
5409 To list all the existing tracing sessions for your Unix user:
5410
5411 * Use the man:lttng-list(1) command:
5412 +
5413 --
5414 [role="term"]
5415 ----
5416 lttng list
5417 ----
5418 --
5419
5420 When you create a tracing session, it is set as the _current tracing
5421 session_. The following man:lttng(1) commands operate on the current
5422 tracing session when you don't specify one:
5423
5424 [role="list-3-cols"]
5425 * `add-context`
5426 * `destroy`
5427 * `disable-channel`
5428 * `disable-event`
5429 * `enable-channel`
5430 * `enable-event`
5431 * `load`
5432 * `regenerate`
5433 * `save`
5434 * `snapshot`
5435 * `start`
5436 * `stop`
5437 * `track`
5438 * `untrack`
5439 * `view`
5440
5441 To change the current tracing session:
5442
5443 * Use the man:lttng-set-session(1) command:
5444 +
5445 --
5446 [role="term"]
5447 ----
5448 lttng set-session new-session
5449 ----
5450 --
5451 +
5452 Replace `new-session` by the name of the new current tracing session.
5453
5454 When you are done tracing in a given tracing session, you can destroy
5455 it. This operation frees the resources taken by the tracing session
5456 to destroy; it does not destroy the trace data that LTTng wrote for
5457 this tracing session.
5458
5459 To destroy the current tracing session:
5460
5461 * Use the man:lttng-destroy(1) command:
5462 +
5463 --
5464 [role="term"]
5465 ----
5466 lttng destroy
5467 ----
5468 --
5469
5470
5471 [[list-instrumentation-points]]
5472 === List the available instrumentation points
5473
5474 The <<lttng-sessiond,session daemon>> can query the running instrumented
5475 user applications and the Linux kernel to get a list of available
5476 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5477 they are tracepoints and system calls. For the user space tracing
5478 domain, they are tracepoints. For the other tracing domains, they are
5479 logger names.
5480
5481 To list the available instrumentation points:
5482
5483 * Use the man:lttng-list(1) command with the requested tracing domain's
5484 option amongst:
5485 +
5486 --
5487 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5488 must be a root user, or it must be a member of the
5489 <<tracing-group,tracing group>>).
5490 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5491 kernel system calls (your Unix user must be a root user, or it must be
5492 a member of the tracing group).
5493 * opt:lttng-list(1):--userspace: user space tracepoints.
5494 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5495 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5496 * opt:lttng-list(1):--python: Python loggers.
5497 --
5498
5499 .List the available user space tracepoints.
5500 ====
5501 [role="term"]
5502 ----
5503 lttng list --userspace
5504 ----
5505 ====
5506
5507 .List the available Linux kernel system call tracepoints.
5508 ====
5509 [role="term"]
5510 ----
5511 lttng list --kernel --syscall
5512 ----
5513 ====
5514
5515
5516 [[enabling-disabling-events]]
5517 === Create and enable an event rule
5518
5519 Once you <<creating-destroying-tracing-sessions,create a tracing
5520 session>>, you can create <<event,event rules>> with the
5521 man:lttng-enable-event(1) command.
5522
5523 You specify each condition with a command-line option. The available
5524 condition options are shown in the following table.
5525
5526 [role="growable",cols="asciidoc,asciidoc,default"]
5527 .Condition command-line options for the man:lttng-enable-event(1) command.
5528 |====
5529 |Option |Description |Applicable tracing domains
5530
5531 |
5532 One of:
5533
5534 . `--syscall`
5535 . +--probe=__ADDR__+
5536 . +--function=__ADDR__+
5537
5538 |
5539 Instead of using the default _tracepoint_ instrumentation type, use:
5540
5541 . A Linux system call.
5542 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5543 . The entry and return points of a Linux function (symbol or address).
5544
5545 |Linux kernel.
5546
5547 |First positional argument.
5548
5549 |
5550 Tracepoint or system call name. In the case of a Linux KProbe or
5551 function, this is a custom name given to the event rule. With the
5552 JUL, log4j, and Python domains, this is a logger name.
5553
5554 With a tracepoint, logger, or system call name, the last character
5555 can be `*` to match anything that remains.
5556
5557 |All.
5558
5559 |
5560 One of:
5561
5562 . +--loglevel=__LEVEL__+
5563 . +--loglevel-only=__LEVEL__+
5564
5565 |
5566 . Match only tracepoints or log statements with a logging level at
5567 least as severe as +__LEVEL__+.
5568 . Match only tracepoints or log statements with a logging level
5569 equal to +__LEVEL__+.
5570
5571 See man:lttng-enable-event(1) for the list of available logging level
5572 names.
5573
5574 |User space, JUL, log4j, and Python.
5575
5576 |+--exclude=__EXCLUSIONS__+
5577
5578 |
5579 When you use a `*` character at the end of the tracepoint or logger
5580 name (first positional argument), exclude the specific names in the
5581 comma-delimited list +__EXCLUSIONS__+.
5582
5583 |
5584 User space, JUL, log4j, and Python.
5585
5586 |+--filter=__EXPR__+
5587
5588 |
5589 Match only events which satisfy the expression +__EXPR__+.
5590
5591 See man:lttng-enable-event(1) to learn more about the syntax of a
5592 filter expression.
5593
5594 |All.
5595
5596 |====
5597
5598 You attach an event rule to a <<channel,channel>> on creation. If you do
5599 not specify the channel with the opt:lttng-enable-event(1):--channel
5600 option, and if the event rule to create is the first in its
5601 <<domain,tracing domain>> for a given tracing session, then LTTng
5602 creates a _default channel_ for you. This default channel is reused in
5603 subsequent invocations of the man:lttng-enable-event(1) command for the
5604 same tracing domain.
5605
5606 An event rule is always enabled at creation time.
5607
5608 The following examples show how you can combine the previous
5609 command-line options to create simple to more complex event rules.
5610
5611 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5612 ====
5613 [role="term"]
5614 ----
5615 lttng enable-event --kernel sched_switch
5616 ----
5617 ====
5618
5619 .Create an event rule matching four Linux kernel system calls (default channel).
5620 ====
5621 [role="term"]
5622 ----
5623 lttng enable-event --kernel --syscall open,write,read,close
5624 ----
5625 ====
5626
5627 .Create event rules matching tracepoints with filter expressions (default channel).
5628 ====
5629 [role="term"]
5630 ----
5631 lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5632 ----
5633
5634 [role="term"]
5635 ----
5636 lttng enable-event --kernel --all \
5637 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5638 ----
5639
5640 [role="term"]
5641 ----
5642 lttng enable-event --jul my_logger \
5643 --filter='$app.retriever:cur_msg_id > 3'
5644 ----
5645
5646 IMPORTANT: Make sure to always quote the filter string when you
5647 use man:lttng(1) from a shell.
5648 ====
5649
5650 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5651 ====
5652 [role="term"]
5653 ----
5654 lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5655 ----
5656
5657 IMPORTANT: Make sure to always quote the wildcard character when you
5658 use man:lttng(1) from a shell.
5659 ====
5660
5661 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5662 ====
5663 [role="term"]
5664 ----
5665 lttng enable-event --python my-app.'*' \
5666 --exclude='my-app.module,my-app.hello'
5667 ----
5668 ====
5669
5670 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5671 ====
5672 [role="term"]
5673 ----
5674 lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5675 ----
5676 ====
5677
5678 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5679 ====
5680 [role="term"]
5681 ----
5682 lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5683 ----
5684 ====
5685
5686 The event rules of a given channel form a whitelist: as soon as an
5687 emitted event passes one of them, LTTng can record the event. For
5688 example, an event named `my_app:my_tracepoint` emitted from a user space
5689 tracepoint with a `TRACE_ERROR` log level passes both of the following
5690 rules:
5691
5692 [role="term"]
5693 ----
5694 lttng enable-event --userspace my_app:my_tracepoint
5695 lttng enable-event --userspace my_app:my_tracepoint \
5696 --loglevel=TRACE_INFO
5697 ----
5698
5699 The second event rule is redundant: the first one includes
5700 the second one.
5701
5702
5703 [[disable-event-rule]]
5704 === Disable an event rule
5705
5706 To disable an event rule that you <<enabling-disabling-events,created>>
5707 previously, use the man:lttng-disable-event(1) command. This command
5708 disables _all_ the event rules (of a given tracing domain and channel)
5709 which match an instrumentation point. The other conditions are not
5710 supported as of LTTng{nbsp}{revision}.
5711
5712 The LTTng tracer does not record an emitted event which passes
5713 a _disabled_ event rule.
5714
5715 .Disable an event rule matching a Python logger (default channel).
5716 ====
5717 [role="term"]
5718 ----
5719 lttng disable-event --python my-logger
5720 ----
5721 ====
5722
5723 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5724 ====
5725 [role="term"]
5726 ----
5727 lttng disable-event --jul '*'
5728 ----
5729 ====
5730
5731 .Disable _all_ the event rules of the default channel.
5732 ====
5733 The opt:lttng-disable-event(1):--all-events option is not, like the
5734 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5735 equivalent of the event name `*` (wildcard): it disables _all_ the event
5736 rules of a given channel.
5737
5738 [role="term"]
5739 ----
5740 lttng disable-event --jul --all-events
5741 ----
5742 ====
5743
5744 NOTE: You cannot delete an event rule once you create it.
5745
5746
5747 [[status]]
5748 === Get the status of a tracing session
5749
5750 To get the status of the current tracing session, that is, its
5751 parameters, its channels, event rules, and their attributes:
5752
5753 * Use the man:lttng-status(1) command:
5754 +
5755 --
5756 [role="term"]
5757 ----
5758 lttng status
5759 ----
5760 --
5761 +
5762
5763 To get the status of any tracing session:
5764
5765 * Use the man:lttng-list(1) command with the tracing session's name:
5766 +
5767 --
5768 [role="term"]
5769 ----
5770 lttng list my-session
5771 ----
5772 --
5773 +
5774 Replace `my-session` with the desired tracing session's name.
5775
5776
5777 [[basic-tracing-session-control]]
5778 === Start and stop a tracing session
5779
5780 Once you <<creating-destroying-tracing-sessions,create a tracing
5781 session>> and
5782 <<enabling-disabling-events,create one or more event rules>>,
5783 you can start and stop the tracers for this tracing session.
5784
5785 To start tracing in the current tracing session:
5786
5787 * Use the man:lttng-start(1) command:
5788 +
5789 --
5790 [role="term"]
5791 ----
5792 lttng start
5793 ----
5794 --
5795
5796 LTTng is very flexible: you can launch user applications before
5797 or after the you start the tracers. The tracers only record the events
5798 if they pass enabled event rules and if they occur while the tracers are
5799 started.
5800
5801 To stop tracing in the current tracing session:
5802
5803 * Use the man:lttng-stop(1) command:
5804 +
5805 --
5806 [role="term"]
5807 ----
5808 lttng stop
5809 ----
5810 --
5811 +
5812 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
5813 records>> or lost sub-buffers since the last time you ran
5814 man:lttng-start(1), warnings are printed when you run the
5815 man:lttng-stop(1) command.
5816
5817
5818 [[enabling-disabling-channels]]
5819 === Create a channel
5820
5821 Once you create a tracing session, you can create a <<channel,channel>>
5822 with the man:lttng-enable-channel(1) command.
5823
5824 Note that LTTng automatically creates a default channel when, for a
5825 given <<domain,tracing domain>>, no channels exist and you
5826 <<enabling-disabling-events,create>> the first event rule. This default
5827 channel is named `channel0` and its attributes are set to reasonable
5828 values. Therefore, you only need to create a channel when you need
5829 non-default attributes.
5830
5831 You specify each non-default channel attribute with a command-line
5832 option when you use the man:lttng-enable-channel(1) command. The
5833 available command-line options are:
5834
5835 [role="growable",cols="asciidoc,asciidoc"]
5836 .Command-line options for the man:lttng-enable-channel(1) command.
5837 |====
5838 |Option |Description
5839
5840 |`--overwrite`
5841
5842 |
5843 Use the _overwrite_
5844 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
5845 the default _discard_ mode.
5846
5847 |`--buffers-pid` (user space tracing domain only)
5848
5849 |
5850 Use the per-process <<channel-buffering-schemes,buffering scheme>>
5851 instead of the default per-user buffering scheme.
5852
5853 |+--subbuf-size=__SIZE__+
5854
5855 |
5856 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
5857 either for each Unix user (default), or for each instrumented process.
5858
5859 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5860
5861 |+--num-subbuf=__COUNT__+
5862
5863 |
5864 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
5865 for each Unix user (default), or for each instrumented process.
5866
5867 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5868
5869 |+--tracefile-size=__SIZE__+
5870
5871 |
5872 Set the maximum size of each trace file that this channel writes within
5873 a stream to +__SIZE__+ bytes instead of no maximum.
5874
5875 See <<tracefile-rotation,Trace file count and size>>.
5876
5877 |+--tracefile-count=__COUNT__+
5878
5879 |
5880 Limit the number of trace files that this channel creates to
5881 +__COUNT__+ channels instead of no limit.
5882
5883 See <<tracefile-rotation,Trace file count and size>>.
5884
5885 |+--switch-timer=__PERIODUS__+
5886
5887 |
5888 Set the <<channel-switch-timer,switch timer period>>
5889 to +__PERIODUS__+{nbsp}µs.
5890
5891 |+--read-timer=__PERIODUS__+
5892
5893 |
5894 Set the <<channel-read-timer,read timer period>>
5895 to +__PERIODUS__+{nbsp}µs.
5896
5897 |+--output=__TYPE__+ (Linux kernel tracing domain only)
5898
5899 |
5900 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
5901
5902 |====
5903
5904 You can only create a channel in the Linux kernel and user space
5905 <<domain,tracing domains>>: other tracing domains have their own channel
5906 created on the fly when <<enabling-disabling-events,creating event
5907 rules>>.
5908
5909 [IMPORTANT]
5910 ====
5911 Because of a current LTTng limitation, you must create all channels
5912 _before_ you <<basic-tracing-session-control,start tracing>> in a given
5913 tracing session, that is, before the first time you run
5914 man:lttng-start(1).
5915
5916 Since LTTng automatically creates a default channel when you use the
5917 man:lttng-enable-event(1) command with a specific tracing domain, you
5918 cannot, for example, create a Linux kernel event rule, start tracing,
5919 and then create a user space event rule, because no user space channel
5920 exists yet and it's too late to create one.
5921
5922 For this reason, make sure to configure your channels properly
5923 before starting the tracers for the first time!
5924 ====
5925
5926 The following examples show how you can combine the previous
5927 command-line options to create simple to more complex channels.
5928
5929 .Create a Linux kernel channel with default attributes.
5930 ====
5931 [role="term"]
5932 ----
5933 lttng enable-channel --kernel my-channel
5934 ----
5935 ====
5936
5937 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
5938 ====
5939 [role="term"]
5940 ----
5941 lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
5942 --buffers-pid my-channel
5943 ----
5944 ====
5945
5946 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
5947 ====
5948 [role="term"]
5949 ----
5950 lttng enable-channel --kernel --tracefile-count=8 \
5951 --tracefile-size=4194304 my-channel
5952 ----
5953 ====
5954
5955 .Create a user space channel in overwrite (or _flight recorder_) mode.
5956 ====
5957 [role="term"]
5958 ----
5959 lttng enable-channel --userspace --overwrite my-channel
5960 ----
5961 ====
5962
5963 You can <<enabling-disabling-events,create>> the same event rule in
5964 two different channels:
5965
5966 [role="term"]
5967 ----
5968 lttng enable-event --userspace --channel=my-channel app:tp
5969 lttng enable-event --userspace --channel=other-channel app:tp
5970 ----
5971
5972 If both channels are enabled, when a tracepoint named `app:tp` is
5973 reached, LTTng records two events, one for each channel.
5974
5975
5976 [[disable-channel]]
5977 === Disable a channel
5978
5979 To disable a specific channel that you <<enabling-disabling-channels,created>>
5980 previously, use the man:lttng-disable-channel(1) command.
5981
5982 .Disable a specific Linux kernel channel.
5983 ====
5984 [role="term"]
5985 ----
5986 lttng disable-channel --kernel my-channel
5987 ----
5988 ====
5989
5990 The state of a channel precedes the individual states of event rules
5991 attached to it: event rules which belong to a disabled channel, even if
5992 they are enabled, are also considered disabled.
5993
5994
5995 [[adding-context]]
5996 === Add context fields to a channel
5997
5998 Event record fields in trace files provide important information about
5999 events that occured previously, but sometimes some external context may
6000 help you solve a problem faster. Examples of context fields are:
6001
6002 * The **process ID**, **thread ID**, **process name**, and
6003 **process priority** of the thread in which the event occurs.
6004 * The **hostname** of the system on which the event occurs.
6005 * The current values of many possible **performance counters** using
6006 perf, for example:
6007 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6008 ** Cache misses.
6009 ** Branch instructions, misses, and loads.
6010 ** CPU faults.
6011 * Any context defined at the application level (supported for the
6012 JUL and log4j <<domain,tracing domains>>).
6013
6014 To get the full list of available context fields, see
6015 `lttng add-context --list`. Some context fields are reserved for a
6016 specific <<domain,tracing domain>> (Linux kernel or user space).
6017
6018 You add context fields to <<channel,channels>>. All the events
6019 that a channel with added context fields records contain those fields.
6020
6021 To add context fields to one or all the channels of a given tracing
6022 session:
6023
6024 * Use the man:lttng-add-context(1) command.
6025
6026 .Add context fields to all the channels of the current tracing session.
6027 ====
6028 The following command line adds the virtual process identifier and
6029 the per-thread CPU cycles count fields to all the user space channels
6030 of the current tracing session.
6031
6032 [role="term"]
6033 ----
6034 lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6035 ----
6036 ====
6037
6038 .Add performance counter context fields by raw ID
6039 ====
6040 See man:lttng-add-context(1) for the exact format of the context field
6041 type, which is partly compatible with the format used in
6042 man:perf-record(1).
6043
6044 [role="term"]
6045 ----
6046 lttng add-context --userspace --type=perf:thread:raw:r0110:test
6047 lttng add-context --kernel --type=perf:cpu:raw:r0013c:x86unhalted
6048 ----
6049 ====
6050
6051 .Add a context field to a specific channel.
6052 ====
6053 The following command line adds the thread identifier context field
6054 to the Linux kernel channel named `my-channel` in the current
6055 tracing session.
6056
6057 [role="term"]
6058 ----
6059 lttng add-context --kernel --channel=my-channel --type=tid
6060 ----
6061 ====
6062
6063 .Add an application-specific context field to a specific channel.
6064 ====
6065 The following command line adds the `cur_msg_id` context field of the
6066 `retriever` context retriever for all the instrumented
6067 <<java-application,Java applications>> recording <<event,event records>>
6068 in the channel named `my-channel`:
6069
6070 [role="term"]
6071 ----
6072 lttng add-context --kernel --channel=my-channel \
6073 --type='$app:retriever:cur_msg_id'
6074 ----
6075
6076 IMPORTANT: Make sure to always quote the `$` character when you
6077 use man:lttng-add-context(1) from a shell.
6078 ====
6079
6080 NOTE: You cannot remove context fields from a channel once you add it.
6081
6082
6083 [role="since-2.7"]
6084 [[pid-tracking]]
6085 === Track process IDs
6086
6087 It's often useful to allow only specific process IDs (PIDs) to emit
6088 events. For example, you may wish to record all the system calls made by
6089 a given process (à la http://linux.die.net/man/1/strace[strace]).
6090
6091 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6092 purpose. Both commands operate on a whitelist of process IDs. You _add_
6093 entries to this whitelist with the man:lttng-track(1) command and remove
6094 entries with the man:lttng-untrack(1) command. Any process which has one
6095 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6096 an enabled <<event,event rule>>.
6097
6098 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6099 process with a given tracked ID exit and another process be given this
6100 ID, then the latter would also be allowed to emit events.
6101
6102 .Track and untrack process IDs.
6103 ====
6104 For the sake of the following example, assume the target system has 16
6105 possible PIDs.
6106
6107 When you
6108 <<creating-destroying-tracing-sessions,create a tracing session>>,
6109 the whitelist contains all the possible PIDs:
6110
6111 [role="img-100"]
6112 .All PIDs are tracked.
6113 image::track-all.png[]
6114
6115 When the whitelist is full and you use the man:lttng-track(1) command to
6116 specify some PIDs to track, LTTng first clears the whitelist, then it
6117 tracks the specific PIDs. After:
6118
6119 [role="term"]
6120 ----
6121 lttng track --pid=3,4,7,10,13
6122 ----
6123
6124 the whitelist is:
6125
6126 [role="img-100"]
6127 .PIDs 3, 4, 7, 10, and 13 are tracked.
6128 image::track-3-4-7-10-13.png[]
6129
6130 You can add more PIDs to the whitelist afterwards:
6131
6132 [role="term"]
6133 ----
6134 lttng track --pid=1,15,16
6135 ----
6136
6137 The result is:
6138
6139 [role="img-100"]
6140 .PIDs 1, 15, and 16 are added to the whitelist.
6141 image::track-1-3-4-7-10-13-15-16.png[]
6142
6143 The man:lttng-untrack(1) command removes entries from the PID tracker's
6144 whitelist. Given the previous example, the following command:
6145
6146 [role="term"]
6147 ----
6148 lttng untrack --pid=3,7,10,13
6149 ----
6150
6151 leads to this whitelist:
6152
6153 [role="img-100"]
6154 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6155 image::track-1-4-15-16.png[]
6156
6157 LTTng can track all possible PIDs again using the opt:track(1):--all
6158 option:
6159
6160 [role="term"]
6161 ----
6162 lttng track --pid --all
6163 ----
6164
6165 The result is, again:
6166
6167 [role="img-100"]
6168 .All PIDs are tracked.
6169 image::track-all.png[]
6170 ====
6171
6172 .Track only specific PIDs
6173 ====
6174 A very typical use case with PID tracking is to start with an empty
6175 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6176 then add PIDs manually while tracers are active. You can accomplish this
6177 by using the opt:lttng-untrack(1):--all option of the
6178 man:lttng-untrack(1) command to clear the whitelist after you
6179 <<creating-destroying-tracing-sessions,create a tracing session>>:
6180
6181 [role="term"]
6182 ----
6183 lttng untrack --pid --all
6184 ----
6185
6186 gives:
6187
6188 [role="img-100"]
6189 .No PIDs are tracked.
6190 image::untrack-all.png[]
6191
6192 If you trace with this whitelist configuration, the tracer records no
6193 events for this <<domain,tracing domain>> because no processes are
6194 tracked. You can use the man:lttng-track(1) command as usual to track
6195 specific PIDs, for example:
6196
6197 [role="term"]
6198 ----
6199 lttng track --pid=6,11
6200 ----
6201
6202 Result:
6203
6204 [role="img-100"]
6205 .PIDs 6 and 11 are tracked.
6206 image::track-6-11.png[]
6207 ====
6208
6209
6210 [role="since-2.5"]
6211 [[saving-loading-tracing-session]]
6212 === Save and load tracing session configurations
6213
6214 Configuring a <<tracing-session,tracing session>> can be long. Some of
6215 the tasks involved are:
6216
6217 * <<enabling-disabling-channels,Create channels>> with
6218 specific attributes.
6219 * <<adding-context,Add context fields>> to specific channels.
6220 * <<enabling-disabling-events,Create event rules>> with specific log
6221 level and filter conditions.
6222
6223 If you use LTTng to solve real world problems, chances are you have to
6224 record events using the same tracing session setup over and over,
6225 modifying a few variables each time in your instrumented program
6226 or environment. To avoid constant tracing session reconfiguration,
6227 the man:lttng(1) command-line tool can save and load tracing session
6228 configurations to/from XML files.
6229
6230 To save a given tracing session configuration:
6231
6232 * Use the man:lttng-save(1) command:
6233 +
6234 --
6235 [role="term"]
6236 ----
6237 lttng save my-session
6238 ----
6239 --
6240 +
6241 Replace `my-session` with the name of the tracing session to save.
6242
6243 LTTng saves tracing session configurations to
6244 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6245 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6246 the opt:lttng-save(1):--output-path option to change this destination
6247 directory.
6248
6249 LTTng saves all configuration parameters, for example:
6250
6251 * The tracing session name.
6252 * The trace data output path.
6253 * The channels with their state and all their attributes.
6254 * The context fields you added to channels.
6255 * The event rules with their state, log level and filter conditions.
6256
6257 To load a tracing session:
6258
6259 * Use the man:lttng-load(1) command:
6260 +
6261 --
6262 [role="term"]
6263 ----
6264 lttng load my-session
6265 ----
6266 --
6267 +
6268 Replace `my-session` with the name of the tracing session to load.
6269
6270 When LTTng loads a configuration, it restores your saved tracing session
6271 as if you just configured it manually.
6272
6273 See man:lttng(1) for the complete list of command-line options. You
6274 can also save and load all many sessions at a time, and decide in which
6275 directory to output the XML files.
6276
6277
6278 [[sending-trace-data-over-the-network]]
6279 === Send trace data over the network
6280
6281 LTTng can send the recorded trace data to a remote system over the
6282 network instead of writing it to the local file system.
6283
6284 To send the trace data over the network:
6285
6286 . On the _remote_ system (which can also be the target system),
6287 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6288 +
6289 --
6290 [role="term"]
6291 ----
6292 lttng-relayd
6293 ----
6294 --
6295
6296 . On the _target_ system, create a tracing session configured to
6297 send trace data over the network:
6298 +
6299 --
6300 [role="term"]
6301 ----
6302 lttng create my-session --set-url=net://remote-system
6303 ----
6304 --
6305 +
6306 Replace `remote-system` by the host name or IP address of the
6307 remote system. See man:lttng-create(1) for the exact URL format.
6308
6309 . On the target system, use the man:lttng(1) command-line tool as usual.
6310 When tracing is active, the target's consumer daemon sends sub-buffers
6311 to the relay daemon running on the remote system intead of flushing
6312 them to the local file system. The relay daemon writes the received
6313 packets to the local file system.
6314
6315 The relay daemon writes trace files to
6316 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6317 +__hostname__+ is the host name of the target system and +__session__+
6318 is the tracing session name. Note that the env:LTTNG_HOME environment
6319 variable defaults to `$HOME` if not set. Use the
6320 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6321 trace files to another base directory.
6322
6323
6324 [role="since-2.4"]
6325 [[lttng-live]]
6326 === View events as LTTng emits them (noch:{LTTng} live)
6327
6328 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6329 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6330 display events as LTTng emits them on the target system while tracing is
6331 active.
6332
6333 The relay daemon creates a _tee_: it forwards the trace data to both
6334 the local file system and to connected live viewers:
6335
6336 [role="img-90"]
6337 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6338 image::live.png[]
6339
6340 To use LTTng live:
6341
6342 . On the _target system_, create a <<tracing-session,tracing session>>
6343 in _live mode_:
6344 +
6345 --
6346 [role="term"]
6347 ----
6348 lttng create --live my-session
6349 ----
6350 --
6351 +
6352 This spawns a local relay daemon.
6353
6354 . Start the live viewer and configure it to connect to the relay
6355 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6356 +
6357 --
6358 [role="term"]
6359 ----
6360 babeltrace --input-format=lttng-live net://localhost/host/hostname/my-session
6361 ----
6362 --
6363 +
6364 Replace:
6365 +
6366 --
6367 * `hostname` with the host name of the target system.
6368 * `my-session` with the name of the tracing session to view.
6369 --
6370
6371 . Configure the tracing session as usual with the man:lttng(1)
6372 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6373
6374 You can list the available live tracing sessions with Babeltrace:
6375
6376 [role="term"]
6377 ----
6378 babeltrace --input-format=lttng-live net://localhost
6379 ----
6380
6381 You can start the relay daemon on another system. In this case, you need
6382 to specify the relay daemon's URL when you create the tracing session
6383 with the opt:lttng-create(1):--set-url option. You also need to replace
6384 `localhost` in the procedure above with the host name of the system on
6385 which the relay daemon is running.
6386
6387 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6388 command-line options.
6389
6390
6391 [role="since-2.3"]
6392 [[taking-a-snapshot]]
6393 === Take a snapshot of the current sub-buffers of a tracing session
6394
6395 The normal behavior of LTTng is to append full sub-buffers to growing
6396 trace data files. This is ideal to keep a full history of the events
6397 that occurred on the target system, but it can
6398 represent too much data in some situations. For example, you may wish
6399 to trace your application continuously until some critical situation
6400 happens, in which case you only need the latest few recorded
6401 events to perform the desired analysis, not multi-gigabyte trace files.
6402
6403 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6404 current sub-buffers of a given <<tracing-session,tracing session>>.
6405 LTTng can write the snapshot to the local file system or send it over
6406 the network.
6407
6408 To take a snapshot:
6409
6410 . Create a tracing session in _snapshot mode_:
6411 +
6412 --
6413 [role="term"]
6414 ----
6415 lttng create --snapshot my-session
6416 ----
6417 --
6418 +
6419 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6420 <<channel,channels>> created in this mode is automatically set to
6421 _overwrite_ (flight recorder mode).
6422
6423 . Configure the tracing session as usual with the man:lttng(1)
6424 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6425
6426 . **Optional**: When you need to take a snapshot,
6427 <<basic-tracing-session-control,stop tracing>>.
6428 +
6429 You can take a snapshot when the tracers are active, but if you stop
6430 them first, you are sure that the data in the sub-buffers does not
6431 change before you actually take the snapshot.
6432
6433 . Take a snapshot:
6434 +
6435 --
6436 [role="term"]
6437 ----
6438 lttng snapshot record --name=my-first-snapshot
6439 ----
6440 --
6441 +
6442 LTTng writes the current sub-buffers of all the current tracing
6443 session's channels to trace files on the local file system. Those trace
6444 files have `my-first-snapshot` in their name.
6445
6446 There is no difference between the format of a normal trace file and the
6447 format of a snapshot: viewers of LTTng traces also support LTTng
6448 snapshots.
6449
6450 By default, LTTng writes snapshot files to the path shown by
6451 `lttng snapshot list-output`. You can change this path or decide to send
6452 snapshots over the network using either:
6453
6454 . An output path or URL that you specify when you create the
6455 tracing session.
6456 . An snapshot output path or URL that you add using
6457 `lttng snapshot add-output`
6458 . An output path or URL that you provide directly to the
6459 `lttng snapshot record` command.
6460
6461 Method 3 overrides method 2, which overrides method 1. When you
6462 specify a URL, a relay daemon must listen on a remote system (see
6463 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6464
6465
6466 [role="since-2.6"]
6467 [[mi]]
6468 === Use the machine interface
6469
6470 With any command of the man:lttng(1) command-line tool, you can set the
6471 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6472 XML machine interface output, for example:
6473
6474 [role="term"]
6475 ----
6476 lttng --mi=xml enable-event --kernel --syscall open
6477 ----
6478
6479 A schema definition (XSD) is
6480 https://github.com/lttng/lttng-tools/blob/stable-2.9/src/common/mi-lttng-3.0.xsd[available]
6481 to ease the integration with external tools as much as possible.
6482
6483
6484 [role="since-2.8"]
6485 [[metadata-regenerate]]
6486 === Regenerate the metadata of an LTTng trace
6487
6488 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6489 data stream files and a metadata file. This metadata file contains,
6490 amongst other things, information about the offset of the clock sources
6491 used to timestamp <<event,event records>> when tracing.
6492
6493 If, once a <<tracing-session,tracing session>> is
6494 <<basic-tracing-session-control,started>>, a major
6495 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6496 happens, the trace's clock offset also needs to be updated. You
6497 can use the `metadata` item of the man:lttng-regenerate(1) command
6498 to do so.
6499
6500 The main use case of this command is to allow a system to boot with
6501 an incorrect wall time and trace it with LTTng before its wall time
6502 is corrected. Once the system is known to be in a state where its
6503 wall time is correct, it can run `lttng regenerate metadata`.
6504
6505 To regenerate the metadata of an LTTng trace:
6506
6507 * Use the `metadata` item of the man:lttng-regenerate(1) command:
6508 +
6509 --
6510 [role="term"]
6511 ----
6512 lttng regenerate metadata
6513 ----
6514 --
6515
6516 [IMPORTANT]
6517 ====
6518 `lttng regenerate metadata` has the following limitations:
6519
6520 * Tracing session <<creating-destroying-tracing-sessions,created>>
6521 in non-live mode.
6522 * User space <<channel,channels>>, if any, are using
6523 <<channel-buffering-schemes,per-user buffering>>.
6524 ====
6525
6526
6527 [role="since-2.9"]
6528 [[regenerate-statedump]]
6529 === Regenerate the state dump of a tracing session
6530
6531 The LTTng kernel and user space tracers generate state dump
6532 <<event,event records>> when the application starts or when you
6533 <<basic-tracing-session-control,start a tracing session>>. An analysis
6534 can use the state dump event records to set an initial state before it
6535 builds the rest of the state from the following event records.
6536 http://tracecompass.org/[Trace Compass] is a notable example of an
6537 application which uses the state dump of an LTTng trace.
6538
6539 When you <<taking-a-snapshot,take a snapshot>>, it's possible that the
6540 state dump event records are not included in the snapshot because they
6541 were recorded to a sub-buffer that has been consumed or overwritten
6542 already.
6543
6544 You can use the `lttng regenerate statedump` command to emit the state
6545 dump event records again.
6546
6547 To regenerate the state dump of the current tracing session, provided
6548 create it in snapshot mode, before you take a snapshot:
6549
6550 . Use the `statedump` item of the man:lttng-regenerate(1) command:
6551 +
6552 --
6553 [role="term"]
6554 ----
6555 lttng regenerate statedump
6556 ----
6557 --
6558
6559 . <<basic-tracing-session-control,Stop the tracing session>>:
6560 +
6561 --
6562 [role="term"]
6563 ----
6564 lttng stop
6565 ----
6566 --
6567
6568 . <<taking-a-snapshot,Take a snapshot>>:
6569 +
6570 --
6571 [role="term"]
6572 ----
6573 lttng snapshot record --name=my-snapshot
6574 ----
6575 --
6576
6577 Depending on the event throughput, you should run steps 1 and 2
6578 as closely as possible.
6579
6580 NOTE: To record the state dump events, you need to
6581 <<enabling-disabling-events,create event rules>> which enable them.
6582 LTTng-UST state dump tracepoints start with `lttng_ust_statedump:`.
6583 LTTng-modules state dump tracepoints start with `lttng_statedump_`.
6584
6585
6586 [role="since-2.7"]
6587 [[persistent-memory-file-systems]]
6588 === Record trace data on persistent memory file systems
6589
6590 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6591 (NVRAM) is random-access memory that retains its information when power
6592 is turned off (non-volatile). Systems with such memory can store data
6593 structures in RAM and retrieve them after a reboot, without flushing
6594 to typical _storage_.
6595
6596 Linux supports NVRAM file systems thanks to either
6597 http://pramfs.sourceforge.net/[PRAMFS] or
6598 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6599 (requires Linux 4.1+).
6600
6601 This section does not describe how to operate such file systems;
6602 we assume that you have a working persistent memory file system.
6603
6604 When you create a <<tracing-session,tracing session>>, you can specify
6605 the path of the shared memory holding the sub-buffers. If you specify a
6606 location on an NVRAM file system, then you can retrieve the latest
6607 recorded trace data when the system reboots after a crash.
6608
6609 To record trace data on a persistent memory file system and retrieve the
6610 trace data after a system crash:
6611
6612 . Create a tracing session with a sub-buffer shared memory path located
6613 on an NVRAM file system:
6614 +
6615 --
6616 [role="term"]
6617 ----
6618 lttng create --shm-path=/path/to/shm
6619 ----
6620 --
6621
6622 . Configure the tracing session as usual with the man:lttng(1)
6623 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6624
6625 . After a system crash, use the man:lttng-crash(1) command-line tool to
6626 view the trace data recorded on the NVRAM file system:
6627 +
6628 --
6629 [role="term"]
6630 ----
6631 lttng-crash /path/to/shm
6632 ----
6633 --
6634
6635 The binary layout of the ring buffer files is not exactly the same as
6636 the trace files layout. This is why you need to use man:lttng-crash(1)
6637 instead of your preferred trace viewer directly.
6638
6639 To convert the ring buffer files to LTTng trace files:
6640
6641 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6642 +
6643 --
6644 [role="term"]
6645 ----
6646 lttng-crash --extract=/path/to/trace /path/to/shm
6647 ----
6648 --
6649
6650
6651 [[reference]]
6652 == Reference
6653
6654 [[lttng-modules-ref]]
6655 === noch:{LTTng-modules}
6656
6657
6658 [role="since-2.9"]
6659 [[lttng-tracepoint-enum]]
6660 ==== `LTTNG_TRACEPOINT_ENUM()` usage
6661
6662 Use the `LTTNG_TRACEPOINT_ENUM()` macro to define an enumeration:
6663
6664 [source,c]
6665 ----
6666 LTTNG_TRACEPOINT_ENUM(name, TP_ENUM_VALUES(entries))
6667 ----
6668
6669 Replace:
6670
6671 * `name` with the name of the enumeration (C identifier, unique
6672 amongst all the defined enumerations).
6673 * `entries` with a list of enumeration entries.
6674
6675 The available enumeration entry macros are:
6676
6677 +ctf_enum_value(__name__, __value__)+::
6678 Entry named +__name__+ mapped to the integral value +__value__+.
6679
6680 +ctf_enum_range(__name__, __begin__, __end__)+::
6681 Entry named +__name__+ mapped to the range of integral values between
6682 +__begin__+ (included) and +__end__+ (included).
6683
6684 +ctf_enum_auto(__name__)+::
6685 Entry named +__name__+ mapped to the integral value following the
6686 last mapping's value.
6687 +
6688 The last value of a `ctf_enum_value()` entry is its +__value__+
6689 parameter.
6690 +
6691 The last value of a `ctf_enum_range()` entry is its +__end__+ parameter.
6692 +
6693 If `ctf_enum_auto()` is the first entry in the list, its integral
6694 value is 0.
6695
6696 Use the `ctf_enum()` <<lttng-modules-tp-fields,field definition macro>>
6697 to use a defined enumeration as a tracepoint field.
6698
6699 .Define an enumeration with `LTTNG_TRACEPOINT_ENUM()`.
6700 ====
6701 [source,c]
6702 ----
6703 LTTNG_TRACEPOINT_ENUM(
6704 my_enum,
6705 TP_ENUM_VALUES(
6706 ctf_enum_auto("AUTO: EXPECT 0")
6707 ctf_enum_value("VALUE: 23", 23)
6708 ctf_enum_value("VALUE: 27", 27)
6709 ctf_enum_auto("AUTO: EXPECT 28")
6710 ctf_enum_range("RANGE: 101 TO 303", 101, 303)
6711 ctf_enum_auto("AUTO: EXPECT 304")
6712 )
6713 )
6714 ----
6715 ====
6716
6717
6718 [role="since-2.7"]
6719 [[lttng-modules-tp-fields]]
6720 ==== Tracepoint fields macros (for `TP_FIELDS()`)
6721
6722 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
6723 tracepoint fields, which must be listed within `TP_FIELDS()` in
6724 `LTTNG_TRACEPOINT_EVENT()`, are:
6725
6726 [role="func-desc growable",cols="asciidoc,asciidoc"]
6727 .Available macros to define LTTng-modules tracepoint fields
6728 |====
6729 |Macro |Description and parameters
6730
6731 |
6732 +ctf_integer(__t__, __n__, __e__)+
6733
6734 +ctf_integer_nowrite(__t__, __n__, __e__)+
6735
6736 +ctf_user_integer(__t__, __n__, __e__)+
6737
6738 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
6739 |
6740 Standard integer, displayed in base 10.
6741
6742 +__t__+::
6743 Integer C type (`int`, `long`, `size_t`, ...).
6744
6745 +__n__+::
6746 Field name.
6747
6748 +__e__+::
6749 Argument expression.
6750
6751 |
6752 +ctf_integer_hex(__t__, __n__, __e__)+
6753
6754 +ctf_user_integer_hex(__t__, __n__, __e__)+
6755 |
6756 Standard integer, displayed in base 16.
6757
6758 +__t__+::
6759 Integer C type.
6760
6761 +__n__+::
6762 Field name.
6763
6764 +__e__+::
6765 Argument expression.
6766
6767 |+ctf_integer_oct(__t__, __n__, __e__)+
6768 |
6769 Standard integer, displayed in base 8.
6770
6771 +__t__+::
6772 Integer C type.
6773
6774 +__n__+::
6775 Field name.
6776
6777 +__e__+::
6778 Argument expression.
6779
6780 |
6781 +ctf_integer_network(__t__, __n__, __e__)+
6782
6783 +ctf_user_integer_network(__t__, __n__, __e__)+
6784 |
6785 Integer in network byte order (big-endian), displayed in base 10.
6786
6787 +__t__+::
6788 Integer C type.
6789
6790 +__n__+::
6791 Field name.
6792
6793 +__e__+::
6794 Argument expression.
6795
6796 |
6797 +ctf_integer_network_hex(__t__, __n__, __e__)+
6798
6799 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
6800 |
6801 Integer in network byte order, displayed in base 16.
6802
6803 +__t__+::
6804 Integer C type.
6805
6806 +__n__+::
6807 Field name.
6808
6809 +__e__+::
6810 Argument expression.
6811
6812 |
6813 +ctf_enum(__N__, __t__, __n__, __e__)+
6814
6815 +ctf_enum_nowrite(__N__, __t__, __n__, __e__)+
6816
6817 +ctf_user_enum(__N__, __t__, __n__, __e__)+
6818
6819 +ctf_user_enum_nowrite(__N__, __t__, __n__, __e__)+
6820 |
6821 Enumeration.
6822
6823 +__N__+::
6824 Name of a <<lttng-tracepoint-enum,previously defined enumeration>>.
6825
6826 +__t__+::
6827 Integer C type (`int`, `long`, `size_t`, ...).
6828
6829 +__n__+::
6830 Field name.
6831
6832 +__e__+::
6833 Argument expression.
6834
6835 |
6836 +ctf_string(__n__, __e__)+
6837
6838 +ctf_string_nowrite(__n__, __e__)+
6839
6840 +ctf_user_string(__n__, __e__)+
6841
6842 +ctf_user_string_nowrite(__n__, __e__)+
6843 |
6844 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
6845
6846 +__n__+::
6847 Field name.
6848
6849 +__e__+::
6850 Argument expression.
6851
6852 |
6853 +ctf_array(__t__, __n__, __e__, __s__)+
6854
6855 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
6856
6857 +ctf_user_array(__t__, __n__, __e__, __s__)+
6858
6859 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
6860 |
6861 Statically-sized array of integers.
6862
6863 +__t__+::
6864 Array element C type.
6865
6866 +__n__+::
6867 Field name.
6868
6869 +__e__+::
6870 Argument expression.
6871
6872 +__s__+::
6873 Number of elements.
6874
6875 |
6876 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
6877
6878 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6879
6880 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
6881
6882 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6883 |
6884 Statically-sized array of bits.
6885
6886 The type of +__e__+ must be an integer type. +__s__+ is the number
6887 of elements of such type in +__e__+, not the number of bits.
6888
6889 +__t__+::
6890 Array element C type.
6891
6892 +__n__+::
6893 Field name.
6894
6895 +__e__+::
6896 Argument expression.
6897
6898 +__s__+::
6899 Number of elements.
6900
6901 |
6902 +ctf_array_text(__t__, __n__, __e__, __s__)+
6903
6904 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
6905
6906 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
6907
6908 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
6909 |
6910 Statically-sized array, printed as text.
6911
6912 The string does not need to be null-terminated.
6913
6914 +__t__+::
6915 Array element C type (always `char`).
6916
6917 +__n__+::
6918 Field name.
6919
6920 +__e__+::
6921 Argument expression.
6922
6923 +__s__+::
6924 Number of elements.
6925
6926 |
6927 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
6928
6929 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
6930
6931 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
6932
6933 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
6934 |
6935 Dynamically-sized array of integers.
6936
6937 The type of +__E__+ must be unsigned.
6938
6939 +__t__+::
6940 Array element C type.
6941
6942 +__n__+::
6943 Field name.
6944
6945 +__e__+::
6946 Argument expression.
6947
6948 +__T__+::
6949 Length expression C type.
6950
6951 +__E__+::
6952 Length expression.
6953
6954 |
6955 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
6956
6957 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
6958 |
6959 Dynamically-sized array of integers, displayed in base 16.
6960
6961 The type of +__E__+ must be unsigned.
6962
6963 +__t__+::
6964 Array element C type.
6965
6966 +__n__+::
6967 Field name.
6968
6969 +__e__+::
6970 Argument expression.
6971
6972 +__T__+::
6973 Length expression C type.
6974
6975 +__E__+::
6976 Length expression.
6977
6978 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
6979 |
6980 Dynamically-sized array of integers in network byte order (big-endian),
6981 displayed in base 10.
6982
6983 The type of +__E__+ must be unsigned.
6984
6985 +__t__+::
6986 Array element C type.
6987
6988 +__n__+::
6989 Field name.
6990
6991 +__e__+::
6992 Argument expression.
6993
6994 +__T__+::
6995 Length expression C type.
6996
6997 +__E__+::
6998 Length expression.
6999
7000 |
7001 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7002
7003 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7004
7005 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7006
7007 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7008 |
7009 Dynamically-sized array of bits.
7010
7011 The type of +__e__+ must be an integer type. +__s__+ is the number
7012 of elements of such type in +__e__+, not the number of bits.
7013
7014 The type of +__E__+ must be unsigned.
7015
7016 +__t__+::
7017 Array element C type.
7018
7019 +__n__+::
7020 Field name.
7021
7022 +__e__+::
7023 Argument expression.
7024
7025 +__T__+::
7026 Length expression C type.
7027
7028 +__E__+::
7029 Length expression.
7030
7031 |
7032 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7033
7034 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7035
7036 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7037
7038 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7039 |
7040 Dynamically-sized array, displayed as text.
7041
7042 The string does not need to be null-terminated.
7043
7044 The type of +__E__+ must be unsigned.
7045
7046 The behaviour is undefined if +__e__+ is `NULL`.
7047
7048 +__t__+::
7049 Sequence element C type (always `char`).
7050
7051 +__n__+::
7052 Field name.
7053
7054 +__e__+::
7055 Argument expression.
7056
7057 +__T__+::
7058 Length expression C type.
7059
7060 +__E__+::
7061 Length expression.
7062 |====
7063
7064 Use the `_user` versions when the argument expression, `e`, is
7065 a user space address. In the cases of `ctf_user_integer*()` and
7066 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7067 be addressable.
7068
7069 The `_nowrite` versions omit themselves from the session trace, but are
7070 otherwise identical. This means the `_nowrite` fields won't be written
7071 in the recorded trace. Their primary purpose is to make some
7072 of the event context available to the
7073 <<enabling-disabling-events,event filters>> without having to
7074 commit the data to sub-buffers.
7075
7076
7077 [[glossary]]
7078 == Glossary
7079
7080 Terms related to LTTng and to tracing in general:
7081
7082 Babeltrace::
7083 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7084 the cmd:babeltrace command, some libraries, and Python bindings.
7085
7086 <<channel-buffering-schemes,buffering scheme>>::
7087 A layout of sub-buffers applied to a given channel.
7088
7089 <<channel,channel>>::
7090 An entity which is responsible for a set of ring buffers.
7091 +
7092 <<event,Event rules>> are always attached to a specific channel.
7093
7094 clock::
7095 A reference of time for a tracer.
7096
7097 <<lttng-consumerd,consumer daemon>>::
7098 A process which is responsible for consuming the full sub-buffers
7099 and write them to a file system or send them over the network.
7100
7101 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7102 mode in which the tracer _discards_ new event records when there's no
7103 sub-buffer space left to store them.
7104
7105 event::
7106 The consequence of the execution of an instrumentation
7107 point, like a tracepoint that you manually place in some source code,
7108 or a Linux kernel KProbe.
7109 +
7110 An event is said to _occur_ at a specific time. Different actions can
7111 be taken upon the occurance of an event, like record the event's payload
7112 to a sub-buffer.
7113
7114 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7115 The mechanism by which event records of a given channel are lost
7116 (not recorded) when there is no sub-buffer space left to store them.
7117
7118 [[def-event-name]]event name::
7119 The name of an event, which is also the name of the event record.
7120 This is also called the _instrumentation point name_.
7121
7122 event record::
7123 A record, in a trace, of the payload of an event which occured.
7124
7125 <<event,event rule>>::
7126 Set of conditions which must be satisfied for one or more occuring
7127 events to be recorded.
7128
7129 `java.util.logging`::
7130 Java platform's
7131 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7132
7133 <<instrumenting,instrumentation>>::
7134 The use of LTTng probes to make a piece of software traceable.
7135
7136 instrumentation point::
7137 A point in the execution path of a piece of software that, when
7138 reached by this execution, can emit an event.
7139
7140 instrumentation point name::
7141 See _<<def-event-name,event name>>_.
7142
7143 log4j::
7144 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7145 developed by the Apache Software Foundation.
7146
7147 log level::
7148 Level of severity of a log statement or user space
7149 instrumentation point.
7150
7151 LTTng::
7152 The _Linux Trace Toolkit: next generation_ project.
7153
7154 <<lttng-cli,cmd:lttng>>::
7155 A command-line tool provided by the LTTng-tools project which you
7156 can use to send and receive control messages to and from a
7157 session daemon.
7158
7159 LTTng analyses::
7160 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7161 which is a set of analyzing programs that are used to obtain a
7162 higher level view of an LTTng trace.
7163
7164 cmd:lttng-consumerd::
7165 The name of the consumer daemon program.
7166
7167 cmd:lttng-crash::
7168 A utility provided by the LTTng-tools project which can convert
7169 ring buffer files (usually
7170 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7171 to trace files.
7172
7173 LTTng Documentation::
7174 This document.
7175
7176 <<lttng-live,LTTng live>>::
7177 A communication protocol between the relay daemon and live viewers
7178 which makes it possible to see events "live", as they are received by
7179 the relay daemon.
7180
7181 <<lttng-modules,LTTng-modules>>::
7182 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7183 which contains the Linux kernel modules to make the Linux kernel
7184 instrumentation points available for LTTng tracing.
7185
7186 cmd:lttng-relayd::
7187 The name of the relay daemon program.
7188
7189 cmd:lttng-sessiond::
7190 The name of the session daemon program.
7191
7192 LTTng-tools::
7193 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7194 contains the various programs and libraries used to
7195 <<controlling-tracing,control tracing>>.
7196
7197 <<lttng-ust,LTTng-UST>>::
7198 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7199 contains libraries to instrument user applications.
7200
7201 <<lttng-ust-agents,LTTng-UST Java agent>>::
7202 A Java package provided by the LTTng-UST project to allow the
7203 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7204 logging statements.
7205
7206 <<lttng-ust-agents,LTTng-UST Python agent>>::
7207 A Python package provided by the LTTng-UST project to allow the
7208 LTTng instrumentation of Python logging statements.
7209
7210 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7211 The event loss mode in which new event records overwrite older
7212 event records when there's no sub-buffer space left to store them.
7213
7214 <<channel-buffering-schemes,per-process buffering>>::
7215 A buffering scheme in which each instrumented process has its own
7216 sub-buffers for a given user space channel.
7217
7218 <<channel-buffering-schemes,per-user buffering>>::
7219 A buffering scheme in which all the processes of a Unix user share the
7220 same sub-buffer for a given user space channel.
7221
7222 <<lttng-relayd,relay daemon>>::
7223 A process which is responsible for receiving the trace data sent by
7224 a distant consumer daemon.
7225
7226 ring buffer::
7227 A set of sub-buffers.
7228
7229 <<lttng-sessiond,session daemon>>::
7230 A process which receives control commands from you and orchestrates
7231 the tracers and various LTTng daemons.
7232
7233 <<taking-a-snapshot,snapshot>>::
7234 A copy of the current data of all the sub-buffers of a given tracing
7235 session, saved as trace files.
7236
7237 sub-buffer::
7238 One part of an LTTng ring buffer which contains event records.
7239
7240 timestamp::
7241 The time information attached to an event when it is emitted.
7242
7243 trace (_noun_)::
7244 A set of files which are the concatenations of one or more
7245 flushed sub-buffers.
7246
7247 trace (_verb_)::
7248 The action of recording the events emitted by an application
7249 or by a system, or to initiate such recording by controlling
7250 a tracer.
7251
7252 Trace Compass::
7253 The http://tracecompass.org[Trace Compass] project and application.
7254
7255 tracepoint::
7256 An instrumentation point using the tracepoint mechanism of the Linux
7257 kernel or of LTTng-UST.
7258
7259 tracepoint definition::
7260 The definition of a single tracepoint.
7261
7262 tracepoint name::
7263 The name of a tracepoint.
7264
7265 tracepoint provider::
7266 A set of functions providing tracepoints to an instrumented user
7267 application.
7268 +
7269 Not to be confused with a _tracepoint provider package_: many tracepoint
7270 providers can exist within a tracepoint provider package.
7271
7272 tracepoint provider package::
7273 One or more tracepoint providers compiled as an object file or as
7274 a shared library.
7275
7276 tracer::
7277 A software which records emitted events.
7278
7279 <<domain,tracing domain>>::
7280 A namespace for event sources.
7281
7282 <<tracing-group,tracing group>>::
7283 The Unix group in which a Unix user can be to be allowed to trace the
7284 Linux kernel.
7285
7286 <<tracing-session,tracing session>>::
7287 A stateful dialogue between you and a <<lttng-sessiond,session
7288 daemon>>.
7289
7290 user application::
7291 An application running in user space, as opposed to a Linux kernel
7292 module, for example.
This page took 0.236503 seconds and 4 git commands to generate.