2.10: not maintained anymore
[lttng-docs.git] / 2.10 / lttng-docs-2.10.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.10, 18 October 2019
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/warning-not-maintained.txt[]
11
12
13 include::../common/welcome.txt[]
14
15
16 include::../common/audience.txt[]
17
18
19 [[chapters]]
20 === What's in this documentation?
21
22 The LTTng Documentation is divided into the following sections:
23
24 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
25 rudiments of software tracing and the rationale behind the
26 LTTng project.
27 +
28 You can skip this section if you’re familiar with software tracing and
29 with the LTTng project.
30
31 * **<<installing-lttng,Installation>>** describes the steps to
32 install the LTTng packages on common Linux distributions and from
33 their sources.
34 +
35 You can skip this section if you already properly installed LTTng on
36 your target system.
37
38 * **<<getting-started,Quick start>>** is a concise guide to
39 getting started quickly with LTTng kernel and user space tracing.
40 +
41 We recommend this section if you're new to LTTng or to software tracing
42 in general.
43 +
44 You can skip this section if you're not new to LTTng.
45
46 * **<<core-concepts,Core concepts>>** explains the concepts at
47 the heart of LTTng.
48 +
49 It's a good idea to become familiar with the core concepts
50 before attempting to use the toolkit.
51
52 * **<<plumbing,Components of LTTng>>** describes the various components
53 of the LTTng machinery, like the daemons, the libraries, and the
54 command-line interface.
55 * **<<instrumenting,Instrumentation>>** shows different ways to
56 instrument user applications and the Linux kernel.
57 +
58 Instrumenting source code is essential to provide a meaningful
59 source of events.
60 +
61 You can skip this section if you do not have a programming background.
62
63 * **<<controlling-tracing,Tracing control>>** is divided into topics
64 which demonstrate how to use the vast array of features that
65 LTTng{nbsp}{revision} offers.
66 * **<<reference,Reference>>** contains reference tables.
67 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
68 to LTTng or to the field of software tracing.
69
70
71 include::../common/convention.txt[]
72
73
74 include::../common/acknowledgements.txt[]
75
76
77 [[whats-new]]
78 == What's new in LTTng {revision}?
79
80 LTTng{nbsp}{revision} bears the name _KeKriek_. From
81 http://brasseriedunham.com/[Brasserie Dunham], the _**KeKriek**_ is a
82 sour mashed golden wheat ale fermented with local sour cherries from
83 Tougas orchards. Fresh sweet cherry notes with some tartness, lively
84 carbonation with a dry finish.
85
86 New features and changes in LTTng{nbsp}{revision}:
87
88 * **Tracing control**:
89 ** You can put more than one wildcard special character (`*`), and not
90 only at the end, when you <<enabling-disabling-events,create an event
91 rule>>, in both the instrumentation point name and the literal
92 strings of
93 link:/man/1/lttng-enable-event/v{revision}/#doc-filter-syntax[filter expressions]:
94 +
95 --
96 [role="term"]
97 ----
98 # lttng enable-event --kernel 'x86_*_local_timer_*' \
99 --filter='name == "*a*b*c*d*e" && count >= 23'
100 ----
101 --
102 +
103 --
104 [role="term"]
105 ----
106 $ lttng enable-event --userspace '*_my_org:*msg*'
107 ----
108 --
109
110 ** New trigger and notification API for
111 <<liblttng-ctl-lttng,`liblttng-ctl`>>. This new subsystem allows you
112 to register triggers which emit a notification when a given
113 condition is satisfied. As of LTTng{nbsp}{revision}, only
114 <<channel,channel>> buffer usage conditions are available.
115 Documentation is available in the
116 https://github.com/lttng/lttng-tools/tree/stable-{revision}/include/lttng[`liblttng-ctl`
117 header files] and in
118 <<notif-trigger-api,Get notified when a channel's buffer usage is too
119 high or too low>>.
120
121 ** You can now embed the whole textual LTTng-tools man pages into the
122 executables at build time with the `--enable-embedded-help`
123 configuration option. Thanks to this option, you don't need the
124 http://www.methods.co.nz/asciidoc/[AsciiDoc] and
125 https://directory.fsf.org/wiki/Xmlto[xmlto] tools at build time, and
126 a manual pager at run time, to get access to this documentation.
127
128 * **User space tracing**:
129 ** New blocking mode: an LTTng-UST tracepoint can now block until
130 <<channel,sub-buffer>> space is available instead of discarding event
131 records in <<channel-overwrite-mode-vs-discard-mode,discard mode>>.
132 With this feature, you can be sure that no event records are
133 discarded during your application's execution at the expense of
134 performance.
135 +
136 For example, the following command lines create a user space tracing
137 channel with an infinite blocking timeout and run an application
138 instrumented with LTTng-UST which is explicitly allowed to block:
139 +
140 --
141 [role="term"]
142 ----
143 $ lttng create
144 $ lttng enable-channel --userspace --blocking-timeout=inf blocking-channel
145 $ lttng enable-event --userspace --channel=blocking-channel --all
146 $ lttng start
147 $ LTTNG_UST_ALLOW_BLOCKING=1 my-app
148 ----
149 --
150 +
151 See the complete <<blocking-timeout-example,blocking timeout example>>.
152
153 * **Linux kernel tracing**:
154 ** Linux 4.10, 4.11, and 4.12 support.
155 ** The thread state dump events recorded by LTTng-modules now contain
156 the task's CPU identifier. This improves the precision of the
157 scheduler model for analyses.
158 ** Extended man:socketpair(2) system call tracing data.
159
160
161 [[nuts-and-bolts]]
162 == Nuts and bolts
163
164 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
165 generation_ is a modern toolkit for tracing Linux systems and
166 applications. So your first question might be:
167 **what is tracing?**
168
169
170 [[what-is-tracing]]
171 === What is tracing?
172
173 As the history of software engineering progressed and led to what
174 we now take for granted--complex, numerous and
175 interdependent software applications running in parallel on
176 sophisticated operating systems like Linux--the authors of such
177 components, software developers, began feeling a natural
178 urge to have tools that would ensure the robustness and good performance
179 of their masterpieces.
180
181 One major achievement in this field is, inarguably, the
182 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
183 an essential tool for developers to find and fix bugs. But even the best
184 debugger won't help make your software run faster, and nowadays, faster
185 software means either more work done by the same hardware, or cheaper
186 hardware for the same work.
187
188 A _profiler_ is often the tool of choice to identify performance
189 bottlenecks. Profiling is suitable to identify _where_ performance is
190 lost in a given software. The profiler outputs a profile, a statistical
191 summary of observed events, which you may use to discover which
192 functions took the most time to execute. However, a profiler won't
193 report _why_ some identified functions are the bottleneck. Bottlenecks
194 might only occur when specific conditions are met, conditions that are
195 sometimes impossible to capture by a statistical profiler, or impossible
196 to reproduce with an application altered by the overhead of an
197 event-based profiler. For a thorough investigation of software
198 performance issues, a history of execution is essential, with the
199 recorded values of variables and context fields you choose, and
200 with as little influence as possible on the instrumented software. This
201 is where tracing comes in handy.
202
203 _Tracing_ is a technique used to understand what goes on in a running
204 software system. The software used for tracing is called a _tracer_,
205 which is conceptually similar to a tape recorder. When recording,
206 specific instrumentation points placed in the software source code
207 generate events that are saved on a giant tape: a _trace_ file. You
208 can trace user applications and the operating system at the same time,
209 opening the possibility of resolving a wide range of problems that would
210 otherwise be extremely challenging.
211
212 Tracing is often compared to _logging_. However, tracers and loggers are
213 two different tools, serving two different purposes. Tracers are
214 designed to record much lower-level events that occur much more
215 frequently than log messages, often in the range of thousands per
216 second, with very little execution overhead. Logging is more appropriate
217 for a very high-level analysis of less frequent events: user accesses,
218 exceptional conditions (errors and warnings, for example), database
219 transactions, instant messaging communications, and such. Simply put,
220 logging is one of the many use cases that can be satisfied with tracing.
221
222 The list of recorded events inside a trace file can be read manually
223 like a log file for the maximum level of detail, but it is generally
224 much more interesting to perform application-specific analyses to
225 produce reduced statistics and graphs that are useful to resolve a
226 given problem. Trace viewers and analyzers are specialized tools
227 designed to do this.
228
229 In the end, this is what LTTng is: a powerful, open source set of
230 tools to trace the Linux kernel and user applications at the same time.
231 LTTng is composed of several components actively maintained and
232 developed by its link:/community/#where[community].
233
234
235 [[lttng-alternatives]]
236 === Alternatives to noch:{LTTng}
237
238 Excluding proprietary solutions, a few competing software tracers
239 exist for Linux:
240
241 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
242 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
243 user scripts and is responsible for loading code into the
244 Linux kernel for further execution and collecting the outputted data.
245 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
246 subsystem in the Linux kernel in which a virtual machine can execute
247 programs passed from the user space to the kernel. You can attach
248 such programs to tracepoints and KProbes thanks to a system call, and
249 they can output data to the user space when executed thanks to
250 different mechanisms (pipe, VM register values, and eBPF maps, to name
251 a few).
252 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
253 is the de facto function tracer of the Linux kernel. Its user
254 interface is a set of special files in sysfs.
255 * https://perf.wiki.kernel.org/[perf] is
256 a performance analyzing tool for Linux which supports hardware
257 performance counters, tracepoints, as well as other counters and
258 types of probes. perf's controlling utility is the cmd:perf command
259 line/curses tool.
260 * http://linux.die.net/man/1/strace[strace]
261 is a command-line utility which records system calls made by a
262 user process, as well as signal deliveries and changes of process
263 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
264 to fulfill its function.
265 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
266 analyze Linux kernel events. You write scripts, or _chisels_ in
267 sysdig's jargon, in Lua and sysdig executes them while the system is
268 being traced or afterwards. sysdig's interface is the cmd:sysdig
269 command-line tool as well as the curses-based cmd:csysdig tool.
270 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
271 user space tracer which uses custom user scripts to produce plain text
272 traces. SystemTap converts the scripts to the C language, and then
273 compiles them as Linux kernel modules which are loaded to produce
274 trace data. SystemTap's primary user interface is the cmd:stap
275 command-line tool.
276
277 The main distinctive features of LTTng is that it produces correlated
278 kernel and user space traces, as well as doing so with the lowest
279 overhead amongst other solutions. It produces trace files in the
280 http://diamon.org/ctf[CTF] format, a file format optimized
281 for the production and analyses of multi-gigabyte data.
282
283 LTTng is the result of more than 10 years of active open source
284 development by a community of passionate developers.
285 LTTng{nbsp}{revision} is currently available on major desktop and server
286 Linux distributions.
287
288 The main interface for tracing control is a single command-line tool
289 named cmd:lttng. The latter can create several tracing sessions, enable
290 and disable events on the fly, filter events efficiently with custom
291 user expressions, start and stop tracing, and much more. LTTng can
292 record the traces on the file system or send them over the network, and
293 keep them totally or partially. You can view the traces once tracing
294 becomes inactive or in real-time.
295
296 <<installing-lttng,Install LTTng now>> and
297 <<getting-started,start tracing>>!
298
299
300 [[installing-lttng]]
301 == Installation
302
303 **LTTng** is a set of software <<plumbing,components>> which interact to
304 <<instrumenting,instrument>> the Linux kernel and user applications, and
305 to <<controlling-tracing,control tracing>> (start and stop
306 tracing, enable and disable event rules, and the rest). Those
307 components are bundled into the following packages:
308
309 * **LTTng-tools**: Libraries and command-line interface to
310 control tracing.
311 * **LTTng-modules**: Linux kernel modules to instrument and
312 trace the kernel.
313 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
314 trace user applications.
315
316 Most distributions mark the LTTng-modules and LTTng-UST packages as
317 optional when installing LTTng-tools (which is always required). In the
318 following sections, we always provide the steps to install all three,
319 but note that:
320
321 * You only need to install LTTng-modules if you intend to trace the
322 Linux kernel.
323 * You only need to install LTTng-UST if you intend to trace user
324 applications.
325
326 [role="growable"]
327 .Availability of LTTng{nbsp}{revision} for major Linux distributions as of 18 October 2019.
328 |====
329 |Distribution |Available in releases
330
331 |https://www.ubuntu.com/[Ubuntu]
332 |xref:ubuntu[Ubuntu{nbsp}18.04 _Bionic Beaver_,
333 Ubuntu{nbsp}19.04 _Disco Dingo_, and
334 Ubuntu{nbsp}19.10 _Eoan Ermine_].
335
336 Ubuntu{nbsp}16.04 _Xenial Xerus_:
337 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
338
339 |https://getfedora.org/[Fedora]
340 |xref:fedora[Fedora{nbsp}29, Fedora{nbsp}30, Fedora{nbsp}31,
341 and Fedora{nbsp}32].
342
343 |https://www.debian.org/[Debian]
344 |<<debian,Debian "buster" (stable) and Debian "bullseye" (testing)>>.
345
346 |https://alpinelinux.org/[Alpine Linux]
347 |xref:alpine-linux[Alpine Linux{nbsp}3.7, Alpine Linux{nbsp}3.8,
348 Alpine Linux{nbsp}3.9, and Alpine Linux{nbsp}3.10].
349
350 |https://www.opensuse.org/[openSUSE]
351 |<<opensuse,openSUSE Leap{nbsp}15.1>>.
352
353 |https://www.redhat.com/[RHEL] and https://www.suse.com/[SLES]
354 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
355
356 |https://buildroot.org/[Buildroot]
357 |xref:buildroot[Buildroot{nbsp}2018.02, Buildroot{nbsp}2018.05,
358 Buildroot{nbsp}2018.08, Buildroot{nbsp}2018.11, Buildroot{nbsp}2019.02,
359 Buildroot{nbsp}2018.05, Buildroot{nbsp}2018.08, and
360 Buildroot{nbsp}2018.11].
361
362 |http://www.openembedded.org/wiki/Main_Page[OpenEmbedded] and
363 https://www.yoctoproject.org/[Yocto]
364 |<<oe-yocto,Yocto Project{nbsp}2.7 _Warrior_ and
365 Yocto Project{nbsp}3.0 _Zeus_>>.
366 |====
367
368
369 [[ubuntu]]
370 === [[ubuntu-official-repositories]]Ubuntu
371
372 LTTng{nbsp}{revision} is available on:
373
374 * Ubuntu{nbsp}18.04 _Bionic Beaver_
375 * Ubuntu{nbsp}19.04 _Disco Dingo_
376 * Ubuntu{nbsp}19.10 _Eoan Ermine_
377
378 For other releases of Ubuntu, <<ubuntu-ppa,use the LTTng
379 Stable{nbsp}{revision} PPA>>.
380
381 To install LTTng{nbsp}{revision} on Ubuntu{nbsp}18.04 _Bionic Beaver_,
382 Ubuntu{nbsp}19.04 _Disco Dingo_, or
383 Ubuntu{nbsp}19.10 _Eoan Ermine_:
384
385 . Install the main LTTng{nbsp}{revision} packages:
386 +
387 --
388 [role="term"]
389 ----
390 # apt-get install lttng-tools
391 # apt-get install lttng-modules-dkms
392 # apt-get install liblttng-ust-dev
393 ----
394 --
395
396 . **If you need to instrument and trace
397 <<java-application,Java applications>>**, install the LTTng-UST
398 Java agent:
399 +
400 --
401 [role="term"]
402 ----
403 # apt-get install liblttng-ust-agent-java
404 ----
405 --
406
407 . **If you need to instrument and trace
408 <<python-application,Python{nbsp}3 applications>>**, install the
409 LTTng-UST Python agent:
410 +
411 --
412 [role="term"]
413 ----
414 # apt-get install python3-lttngust
415 ----
416 --
417
418
419 [[ubuntu-ppa]]
420 ==== noch:{LTTng} Stable {revision} PPA
421
422 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
423 Stable{nbsp}{revision} PPA] offers the latest stable
424 LTTng{nbsp}{revision} packages for Ubuntu{nbsp}18.04 _Bionic Beaver_.
425
426 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
427
428 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
429 list of packages:
430 +
431 --
432 [role="term"]
433 ----
434 # apt-add-repository ppa:lttng/stable-2.10
435 # apt-get update
436 ----
437 --
438
439 . Install the main LTTng{nbsp}{revision} packages:
440 +
441 --
442 [role="term"]
443 ----
444 # apt-get install lttng-tools
445 # apt-get install lttng-modules-dkms
446 # apt-get install liblttng-ust-dev
447 ----
448 --
449
450 . **If you need to instrument and trace
451 <<java-application,Java applications>>**, install the LTTng-UST
452 Java agent:
453 +
454 --
455 [role="term"]
456 ----
457 # apt-get install liblttng-ust-agent-java
458 ----
459 --
460
461 . **If you need to instrument and trace
462 <<python-application,Python{nbsp}3 applications>>**, install the
463 LTTng-UST Python agent:
464 +
465 --
466 [role="term"]
467 ----
468 # apt-get install python3-lttngust
469 ----
470 --
471
472
473 [[fedora]]
474 === Fedora
475
476 To install LTTng{nbsp}{revision} on Fedora{nbsp}29, Fedora{nbsp}30,
477 Fedora{nbsp}31, or Fedora{nbsp}32:
478
479 . Install the LTTng-tools{nbsp}{revision} and LTTng-UST{nbsp}{revision}
480 packages:
481 +
482 --
483 [role="term"]
484 ----
485 # yum install lttng-tools
486 # yum install lttng-ust
487 ----
488 --
489
490 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
491 +
492 --
493 [role="term"]
494 ----
495 $ cd $(mktemp -d) &&
496 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
497 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
498 cd lttng-modules-2.10.* &&
499 make &&
500 sudo make modules_install &&
501 sudo depmod -a
502 ----
503 --
504
505 [IMPORTANT]
506 .Java and Python application instrumentation and tracing
507 ====
508 If you need to instrument and trace <<java-application,Java
509 applications>> on Fedora, you need to build and install
510 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
511 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
512 `--enable-java-agent-all` options to the `configure` script, depending
513 on which Java logging framework you use.
514
515 If you need to instrument and trace <<python-application,Python
516 applications>> on Fedora, you need to build and install
517 LTTng-UST{nbsp}{revision} from source and pass the
518 `--enable-python-agent` option to the `configure` script.
519 ====
520
521
522 [[debian]]
523 === Debian
524
525 To install LTTng{nbsp}{revision} on Debian "buster" (stable) or
526 Debian "bullseye" (testing):
527
528 . Install the main LTTng{nbsp}{revision} packages:
529 +
530 --
531 [role="term"]
532 ----
533 # apt-get install lttng-modules-dkms
534 # apt-get install liblttng-ust-dev
535 # apt-get install lttng-tools
536 ----
537 --
538
539 . **If you need to instrument and trace <<java-application,Java
540 applications>>**, install the LTTng-UST Java agent:
541 +
542 --
543 [role="term"]
544 ----
545 # apt-get install liblttng-ust-agent-java
546 ----
547 --
548
549 . **If you need to instrument and trace <<python-application,Python
550 applications>>**, install the LTTng-UST Python agent:
551 +
552 --
553 [role="term"]
554 ----
555 # apt-get install python3-lttngust
556 ----
557 --
558
559
560 [[alpine-linux]]
561 === Alpine Linux
562
563 To install LTTng-tools{nbsp}{revision} and LTTng-UST{nbsp}{revision} on
564 Alpine Linux{nbsp}3.7, Alpine Linux{nbsp}3.8, Alpine Linux{nbsp}3.9, or
565 Alpine Linux{nbsp}3.10:
566
567 . Add the LTTng packages:
568 +
569 --
570 [role="term"]
571 ----
572 # apk add lttng-tools
573 # apk add lttng-ust-dev
574 ----
575 --
576
577 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
578 +
579 --
580 [role="term"]
581 ----
582 $ cd $(mktemp -d) &&
583 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
584 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
585 cd lttng-modules-2.10.* &&
586 make &&
587 sudo make modules_install &&
588 sudo depmod -a
589 ----
590 --
591
592
593 [[opensuse]]
594 === noch:{openSUSE}
595
596 To install LTTng{nbsp}{revision} on openSUSE Leap{nbsp}15.1:
597
598 * Install the main LTTng{nbsp}{revision} packages:
599 +
600 --
601 [role="term"]
602 ----
603 sudo zypper install lttng-tools
604 sudo zypper install lttng-modules
605 sudo zypper install lttng-ust-devel
606 ----
607 --
608
609 [IMPORTANT]
610 .Java and Python application instrumentation and tracing
611 ====
612 If you need to instrument and trace <<java-application,Java
613 applications>> on openSUSE, you need to build and install
614 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
615 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
616 `--enable-java-agent-all` options to the `configure` script, depending
617 on which Java logging framework you use.
618
619 If you need to instrument and trace <<python-application,Python
620 applications>> on openSUSE, you need to build and install
621 LTTng-UST{nbsp}{revision} from source and pass the
622 `--enable-python-agent` option to the `configure` script.
623 ====
624
625
626 [[enterprise-distributions]]
627 === RHEL, SUSE, and other enterprise distributions
628
629 To install LTTng on enterprise Linux distributions, such as Red Hat
630 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
631 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
632
633
634 [[buildroot]]
635 === Buildroot
636
637 To install LTTng{nbsp}{revision} on Buildroot{nbsp}2018.02,
638 Buildroot{nbsp}2018.05, Buildroot{nbsp}2018.08,
639 Buildroot{nbsp}2018.11, Buildroot{nbsp}2019.02,
640 Buildroot{nbsp}2019.05, Buildroot{nbsp}2019.08, or
641 Buildroot{nbsp}2019.11:
642
643 . Launch the Buildroot configuration tool:
644 +
645 --
646 [role="term"]
647 ----
648 $ make menuconfig
649 ----
650 --
651
652 . In **Kernel**, check **Linux kernel**.
653 . In **Toolchain**, check **Enable WCHAR support**.
654 . In **Target packages**{nbsp}&#8594; **Debugging, profiling and benchmark**,
655 check **lttng-modules** and **lttng-tools**.
656 . In **Target packages**{nbsp}&#8594; **Libraries**{nbsp}&#8594;
657 **Other**, check **lttng-libust**.
658
659
660 [[oe-yocto]]
661 === OpenEmbedded and Yocto
662
663 LTTng{nbsp}{revision} recipes are available in the
664 http://layers.openembedded.org/layerindex/branch/master/layer/openembedded-core/[`openembedded-core`]
665 layer for Yocto Project{nbsp}2.7 _Warrior_ and
666 Yocto Project{nbsp}3.0 _Zeus_ under the following names:
667
668 * `lttng-tools`
669 * `lttng-modules`
670 * `lttng-ust`
671
672 With BitBake, the simplest way to include LTTng recipes in your target
673 image is to add them to `IMAGE_INSTALL_append` in path:{conf/local.conf}:
674
675 ----
676 IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"
677 ----
678
679 If you use Hob:
680
681 . Select a machine and an image recipe.
682 . Click **Edit image recipe**.
683 . Under the **All recipes** tab, search for **lttng**.
684 . Check the desired LTTng recipes.
685
686 [IMPORTANT]
687 .Java and Python application instrumentation and tracing
688 ====
689 If you need to instrument and trace <<java-application,Java
690 applications>> on Yocto/OpenEmbedded, you need to build and install
691 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
692 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
693 `--enable-java-agent-all` options to the `configure` script, depending
694 on which Java logging framework you use.
695
696 If you need to instrument and trace <<python-application,Python
697 applications>> on Yocto/OpenEmbedded, you need to build and install
698 LTTng-UST{nbsp}{revision} from source and pass the
699 `--enable-python-agent` option to the `configure` script.
700 ====
701
702
703 [[building-from-source]]
704 === Build from source
705
706 To build and install LTTng{nbsp}{revision} from source:
707
708 . Using your distribution's package manager, or from source, install
709 the following dependencies of LTTng-tools and LTTng-UST:
710 +
711 --
712 * https://sourceforge.net/projects/libuuid/[libuuid]
713 * http://directory.fsf.org/wiki/Popt[popt]
714 * http://liburcu.org/[Userspace RCU]
715 * http://www.xmlsoft.org/[libxml2]
716 --
717
718 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
719 +
720 --
721 [role="term"]
722 ----
723 $ cd $(mktemp -d) &&
724 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
725 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
726 cd lttng-modules-2.10.* &&
727 make &&
728 sudo make modules_install &&
729 sudo depmod -a
730 ----
731 --
732
733 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
734 +
735 --
736 [role="term"]
737 ----
738 $ cd $(mktemp -d) &&
739 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.10.tar.bz2 &&
740 tar -xf lttng-ust-latest-2.10.tar.bz2 &&
741 cd lttng-ust-2.10.* &&
742 ./configure &&
743 make &&
744 sudo make install &&
745 sudo ldconfig
746 ----
747 --
748 +
749 --
750 [IMPORTANT]
751 .Java and Python application tracing
752 ====
753 If you need to instrument and trace <<java-application,Java
754 applications>>, pass the `--enable-java-agent-jul`,
755 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
756 `configure` script, depending on which Java logging framework you use.
757
758 If you need to instrument and trace <<python-application,Python
759 applications>>, pass the `--enable-python-agent` option to the
760 `configure` script. You can set the `PYTHON` environment variable to the
761 path to the Python interpreter for which to install the LTTng-UST Python
762 agent package.
763 ====
764 --
765 +
766 --
767 [NOTE]
768 ====
769 By default, LTTng-UST libraries are installed to
770 dir:{/usr/local/lib}, which is the de facto directory in which to
771 keep self-compiled and third-party libraries.
772
773 When <<building-tracepoint-providers-and-user-application,linking an
774 instrumented user application with `liblttng-ust`>>:
775
776 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
777 variable.
778 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
779 man:gcc(1), man:g++(1), or man:clang(1).
780 ====
781 --
782
783 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
784 +
785 --
786 [role="term"]
787 ----
788 $ cd $(mktemp -d) &&
789 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
790 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
791 cd lttng-tools-2.10.* &&
792 ./configure &&
793 make &&
794 sudo make install &&
795 sudo ldconfig
796 ----
797 --
798
799 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
800 previous steps automatically for a given version of LTTng and confine
801 the installed files in a specific directory. This can be useful to test
802 LTTng without installing it on your system.
803
804
805 [[getting-started]]
806 == Quick start
807
808 This is a short guide to get started quickly with LTTng kernel and user
809 space tracing.
810
811 Before you follow this guide, make sure to <<installing-lttng,install>>
812 LTTng.
813
814 This tutorial walks you through the steps to:
815
816 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
817 . <<tracing-your-own-user-application,Trace a user application>> written
818 in C.
819 . <<viewing-and-analyzing-your-traces,View and analyze the
820 recorded events>>.
821
822
823 [[tracing-the-linux-kernel]]
824 === Trace the Linux kernel
825
826 The following command lines start with the `#` prompt because you need
827 root privileges to trace the Linux kernel. You can also trace the kernel
828 as a regular user if your Unix user is a member of the
829 <<tracing-group,tracing group>>.
830
831 . Create a <<tracing-session,tracing session>> which writes its traces
832 to dir:{/tmp/my-kernel-trace}:
833 +
834 --
835 [role="term"]
836 ----
837 # lttng create my-kernel-session --output=/tmp/my-kernel-trace
838 ----
839 --
840
841 . List the available kernel tracepoints and system calls:
842 +
843 --
844 [role="term"]
845 ----
846 # lttng list --kernel
847 # lttng list --kernel --syscall
848 ----
849 --
850
851 . Create <<event,event rules>> which match the desired instrumentation
852 point names, for example the `sched_switch` and `sched_process_fork`
853 tracepoints, and the man:open(2) and man:close(2) system calls:
854 +
855 --
856 [role="term"]
857 ----
858 # lttng enable-event --kernel sched_switch,sched_process_fork
859 # lttng enable-event --kernel --syscall open,close
860 ----
861 --
862 +
863 You can also create an event rule which matches _all_ the Linux kernel
864 tracepoints (this will generate a lot of data when tracing):
865 +
866 --
867 [role="term"]
868 ----
869 # lttng enable-event --kernel --all
870 ----
871 --
872
873 . <<basic-tracing-session-control,Start tracing>>:
874 +
875 --
876 [role="term"]
877 ----
878 # lttng start
879 ----
880 --
881
882 . Do some operation on your system for a few seconds. For example,
883 load a website, or list the files of a directory.
884 . <<creating-destroying-tracing-sessions,Destroy>> the current
885 tracing session:
886 +
887 --
888 [role="term"]
889 ----
890 # lttng destroy
891 ----
892 --
893 +
894 The man:lttng-destroy(1) command does not destroy the trace data; it
895 only destroys the state of the tracing session.
896 +
897 The man:lttng-destroy(1) command also runs the man:lttng-stop(1) command
898 implicitly (see <<basic-tracing-session-control,Start and stop a tracing
899 session>>). You need to stop tracing to make LTTng flush the remaining
900 trace data and make the trace readable.
901
902 . For the sake of this example, make the recorded trace accessible to
903 the non-root users:
904 +
905 --
906 [role="term"]
907 ----
908 # chown -R $(whoami) /tmp/my-kernel-trace
909 ----
910 --
911
912 See <<viewing-and-analyzing-your-traces,View and analyze the
913 recorded events>> to view the recorded events.
914
915
916 [[tracing-your-own-user-application]]
917 === Trace a user application
918
919 This section steps you through a simple example to trace a
920 _Hello world_ program written in C.
921
922 To create the traceable user application:
923
924 . Create the tracepoint provider header file, which defines the
925 tracepoints and the events they can generate:
926 +
927 --
928 [source,c]
929 .path:{hello-tp.h}
930 ----
931 #undef TRACEPOINT_PROVIDER
932 #define TRACEPOINT_PROVIDER hello_world
933
934 #undef TRACEPOINT_INCLUDE
935 #define TRACEPOINT_INCLUDE "./hello-tp.h"
936
937 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
938 #define _HELLO_TP_H
939
940 #include <lttng/tracepoint.h>
941
942 TRACEPOINT_EVENT(
943 hello_world,
944 my_first_tracepoint,
945 TP_ARGS(
946 int, my_integer_arg,
947 char*, my_string_arg
948 ),
949 TP_FIELDS(
950 ctf_string(my_string_field, my_string_arg)
951 ctf_integer(int, my_integer_field, my_integer_arg)
952 )
953 )
954
955 #endif /* _HELLO_TP_H */
956
957 #include <lttng/tracepoint-event.h>
958 ----
959 --
960
961 . Create the tracepoint provider package source file:
962 +
963 --
964 [source,c]
965 .path:{hello-tp.c}
966 ----
967 #define TRACEPOINT_CREATE_PROBES
968 #define TRACEPOINT_DEFINE
969
970 #include "hello-tp.h"
971 ----
972 --
973
974 . Build the tracepoint provider package:
975 +
976 --
977 [role="term"]
978 ----
979 $ gcc -c -I. hello-tp.c
980 ----
981 --
982
983 . Create the _Hello World_ application source file:
984 +
985 --
986 [source,c]
987 .path:{hello.c}
988 ----
989 #include <stdio.h>
990 #include "hello-tp.h"
991
992 int main(int argc, char *argv[])
993 {
994 int x;
995
996 puts("Hello, World!\nPress Enter to continue...");
997
998 /*
999 * The following getchar() call is only placed here for the purpose
1000 * of this demonstration, to pause the application in order for
1001 * you to have time to list its tracepoints. It is not
1002 * needed otherwise.
1003 */
1004 getchar();
1005
1006 /*
1007 * A tracepoint() call.
1008 *
1009 * Arguments, as defined in hello-tp.h:
1010 *
1011 * 1. Tracepoint provider name (required)
1012 * 2. Tracepoint name (required)
1013 * 3. my_integer_arg (first user-defined argument)
1014 * 4. my_string_arg (second user-defined argument)
1015 *
1016 * Notice the tracepoint provider and tracepoint names are
1017 * NOT strings: they are in fact parts of variables that the
1018 * macros in hello-tp.h create.
1019 */
1020 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
1021
1022 for (x = 0; x < argc; ++x) {
1023 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
1024 }
1025
1026 puts("Quitting now!");
1027 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
1028
1029 return 0;
1030 }
1031 ----
1032 --
1033
1034 . Build the application:
1035 +
1036 --
1037 [role="term"]
1038 ----
1039 $ gcc -c hello.c
1040 ----
1041 --
1042
1043 . Link the application with the tracepoint provider package,
1044 `liblttng-ust`, and `libdl`:
1045 +
1046 --
1047 [role="term"]
1048 ----
1049 $ gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
1050 ----
1051 --
1052
1053 Here's the whole build process:
1054
1055 [role="img-100"]
1056 .User space tracing tutorial's build steps.
1057 image::ust-flow.png[]
1058
1059 To trace the user application:
1060
1061 . Run the application with a few arguments:
1062 +
1063 --
1064 [role="term"]
1065 ----
1066 $ ./hello world and beyond
1067 ----
1068 --
1069 +
1070 You see:
1071 +
1072 --
1073 ----
1074 Hello, World!
1075 Press Enter to continue...
1076 ----
1077 --
1078
1079 . Start an LTTng <<lttng-sessiond,session daemon>>:
1080 +
1081 --
1082 [role="term"]
1083 ----
1084 $ lttng-sessiond --daemonize
1085 ----
1086 --
1087 +
1088 Note that a session daemon might already be running, for example as
1089 a service that the distribution's service manager started.
1090
1091 . List the available user space tracepoints:
1092 +
1093 --
1094 [role="term"]
1095 ----
1096 $ lttng list --userspace
1097 ----
1098 --
1099 +
1100 You see the `hello_world:my_first_tracepoint` tracepoint listed
1101 under the `./hello` process.
1102
1103 . Create a <<tracing-session,tracing session>>:
1104 +
1105 --
1106 [role="term"]
1107 ----
1108 $ lttng create my-user-space-session
1109 ----
1110 --
1111
1112 . Create an <<event,event rule>> which matches the
1113 `hello_world:my_first_tracepoint` event name:
1114 +
1115 --
1116 [role="term"]
1117 ----
1118 $ lttng enable-event --userspace hello_world:my_first_tracepoint
1119 ----
1120 --
1121
1122 . <<basic-tracing-session-control,Start tracing>>:
1123 +
1124 --
1125 [role="term"]
1126 ----
1127 $ lttng start
1128 ----
1129 --
1130
1131 . Go back to the running `hello` application and press Enter. The
1132 program executes all `tracepoint()` instrumentation points and exits.
1133 . <<creating-destroying-tracing-sessions,Destroy>> the current
1134 tracing session:
1135 +
1136 --
1137 [role="term"]
1138 ----
1139 $ lttng destroy
1140 ----
1141 --
1142 +
1143 The man:lttng-destroy(1) command does not destroy the trace data; it
1144 only destroys the state of the tracing session.
1145 +
1146 The man:lttng-destroy(1) command also runs the man:lttng-stop(1) command
1147 implicitly (see <<basic-tracing-session-control,Start and stop a tracing
1148 session>>). You need to stop tracing to make LTTng flush the remaining
1149 trace data and make the trace readable.
1150
1151 By default, LTTng saves the traces in
1152 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
1153 where +__name__+ is the tracing session name. The
1154 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
1155
1156 See <<viewing-and-analyzing-your-traces,View and analyze the
1157 recorded events>> to view the recorded events.
1158
1159
1160 [[viewing-and-analyzing-your-traces]]
1161 === View and analyze the recorded events
1162
1163 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
1164 kernel>> and <<tracing-your-own-user-application,Trace a user
1165 application>> tutorials, you can inspect the recorded events.
1166
1167 Many tools are available to read LTTng traces:
1168
1169 * **cmd:babeltrace** is a command-line utility which converts trace
1170 formats; it supports the format that LTTng produces, CTF, as well as a
1171 basic text output which can be ++grep++ed. The cmd:babeltrace command
1172 is part of the http://diamon.org/babeltrace[Babeltrace] project.
1173 * Babeltrace also includes
1174 **https://www.python.org/[Python] bindings** so
1175 that you can easily open and read an LTTng trace with your own script,
1176 benefiting from the power of Python.
1177 * http://tracecompass.org/[**Trace Compass**]
1178 is a graphical user interface for viewing and analyzing any type of
1179 logs or traces, including LTTng's.
1180 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
1181 project which includes many high-level analyses of LTTng kernel
1182 traces, like scheduling statistics, interrupt frequency distribution,
1183 top CPU usage, and more.
1184
1185 NOTE: This section assumes that the traces recorded during the previous
1186 tutorials were saved to their default location, in the
1187 dir:{$LTTNG_HOME/lttng-traces} directory. The env:LTTNG_HOME
1188 environment variable defaults to `$HOME` if not set.
1189
1190
1191 [[viewing-and-analyzing-your-traces-bt]]
1192 ==== Use the cmd:babeltrace command-line tool
1193
1194 The simplest way to list all the recorded events of a trace is to pass
1195 its path to cmd:babeltrace with no options:
1196
1197 [role="term"]
1198 ----
1199 $ babeltrace ~/lttng-traces/my-user-space-session*
1200 ----
1201
1202 cmd:babeltrace finds all traces recursively within the given path and
1203 prints all their events, merging them in chronological order.
1204
1205 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
1206 further filtering:
1207
1208 [role="term"]
1209 ----
1210 $ babeltrace /tmp/my-kernel-trace | grep _switch
1211 ----
1212
1213 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
1214 count the recorded events:
1215
1216 [role="term"]
1217 ----
1218 $ babeltrace /tmp/my-kernel-trace | grep _open | wc --lines
1219 ----
1220
1221
1222 [[viewing-and-analyzing-your-traces-bt-python]]
1223 ==== Use the Babeltrace Python bindings
1224
1225 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
1226 is useful to isolate events by simple matching using man:grep(1) and
1227 similar utilities. However, more elaborate filters, such as keeping only
1228 event records with a field value falling within a specific range, are
1229 not trivial to write using a shell. Moreover, reductions and even the
1230 most basic computations involving multiple event records are virtually
1231 impossible to implement.
1232
1233 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
1234 to read the event records of an LTTng trace sequentially and compute the
1235 desired information.
1236
1237 The following script accepts an LTTng Linux kernel trace path as its
1238 first argument and prints the short names of the top 5 running processes
1239 on CPU 0 during the whole trace:
1240
1241 [source,python]
1242 .path:{top5proc.py}
1243 ----
1244 from collections import Counter
1245 import babeltrace
1246 import sys
1247
1248
1249 def top5proc():
1250 if len(sys.argv) != 2:
1251 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
1252 print(msg, file=sys.stderr)
1253 return False
1254
1255 # A trace collection contains one or more traces
1256 col = babeltrace.TraceCollection()
1257
1258 # Add the trace provided by the user (LTTng traces always have
1259 # the 'ctf' format)
1260 if col.add_trace(sys.argv[1], 'ctf') is None:
1261 raise RuntimeError('Cannot add trace')
1262
1263 # This counter dict contains execution times:
1264 #
1265 # task command name -> total execution time (ns)
1266 exec_times = Counter()
1267
1268 # This contains the last `sched_switch` timestamp
1269 last_ts = None
1270
1271 # Iterate on events
1272 for event in col.events:
1273 # Keep only `sched_switch` events
1274 if event.name != 'sched_switch':
1275 continue
1276
1277 # Keep only events which happened on CPU 0
1278 if event['cpu_id'] != 0:
1279 continue
1280
1281 # Event timestamp
1282 cur_ts = event.timestamp
1283
1284 if last_ts is None:
1285 # We start here
1286 last_ts = cur_ts
1287
1288 # Previous task command (short) name
1289 prev_comm = event['prev_comm']
1290
1291 # Initialize entry in our dict if not yet done
1292 if prev_comm not in exec_times:
1293 exec_times[prev_comm] = 0
1294
1295 # Compute previous command execution time
1296 diff = cur_ts - last_ts
1297
1298 # Update execution time of this command
1299 exec_times[prev_comm] += diff
1300
1301 # Update last timestamp
1302 last_ts = cur_ts
1303
1304 # Display top 5
1305 for name, ns in exec_times.most_common(5):
1306 s = ns / 1000000000
1307 print('{:20}{} s'.format(name, s))
1308
1309 return True
1310
1311
1312 if __name__ == '__main__':
1313 sys.exit(0 if top5proc() else 1)
1314 ----
1315
1316 Run this script:
1317
1318 [role="term"]
1319 ----
1320 $ python3 top5proc.py /tmp/my-kernel-trace/kernel
1321 ----
1322
1323 Output example:
1324
1325 ----
1326 swapper/0 48.607245889 s
1327 chromium 7.192738188 s
1328 pavucontrol 0.709894415 s
1329 Compositor 0.660867933 s
1330 Xorg.bin 0.616753786 s
1331 ----
1332
1333 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1334 weren't using the CPU that much when tracing, its first position in the
1335 list makes sense.
1336
1337
1338 [[core-concepts]]
1339 == [[understanding-lttng]]Core concepts
1340
1341 From a user's perspective, the LTTng system is built on a few concepts,
1342 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1343 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1344 Understanding how those objects relate to eachother is key in mastering
1345 the toolkit.
1346
1347 The core concepts are:
1348
1349 * <<tracing-session,Tracing session>>
1350 * <<domain,Tracing domain>>
1351 * <<channel,Channel and ring buffer>>
1352 * <<"event","Instrumentation point, event rule, event, and event record">>
1353
1354
1355 [[tracing-session]]
1356 === Tracing session
1357
1358 A _tracing session_ is a stateful dialogue between you and
1359 a <<lttng-sessiond,session daemon>>. You can
1360 <<creating-destroying-tracing-sessions,create a new tracing
1361 session>> with the `lttng create` command.
1362
1363 Anything that you do when you control LTTng tracers happens within a
1364 tracing session. In particular, a tracing session:
1365
1366 * Has its own name.
1367 * Has its own set of trace files.
1368 * Has its own state of activity (started or stopped).
1369 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1370 snapshot, or live).
1371 * Has its own <<channel,channels>> which have their own
1372 <<event,event rules>>.
1373
1374 [role="img-100"]
1375 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1376 image::concepts.png[]
1377
1378 Those attributes and objects are completely isolated between different
1379 tracing sessions.
1380
1381 A tracing session is analogous to a cash machine session:
1382 the operations you do on the banking system through the cash machine do
1383 not alter the data of other users of the same system. In the case of
1384 the cash machine, a session lasts as long as your bank card is inside.
1385 In the case of LTTng, a tracing session lasts from the `lttng create`
1386 command to the `lttng destroy` command.
1387
1388 [role="img-100"]
1389 .Each Unix user has its own set of tracing sessions.
1390 image::many-sessions.png[]
1391
1392
1393 [[tracing-session-mode]]
1394 ==== Tracing session mode
1395
1396 LTTng can send the generated trace data to different locations. The
1397 _tracing session mode_ dictates where to send it. The following modes
1398 are available in LTTng{nbsp}{revision}:
1399
1400 Local mode::
1401 LTTng writes the traces to the file system of the machine being traced
1402 (target system).
1403
1404 Network streaming mode::
1405 LTTng sends the traces over the network to a
1406 <<lttng-relayd,relay daemon>> running on a remote system.
1407
1408 Snapshot mode::
1409 LTTng does not write the traces by default. Instead, you can request
1410 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1411 current tracing buffers, and to write it to the target's file system
1412 or to send it over the network to a <<lttng-relayd,relay daemon>>
1413 running on a remote system.
1414
1415 Live mode::
1416 This mode is similar to the network streaming mode, but a live
1417 trace viewer can connect to the distant relay daemon to
1418 <<lttng-live,view event records as LTTng generates them>> by
1419 the tracers.
1420
1421
1422 [[domain]]
1423 === Tracing domain
1424
1425 A _tracing domain_ is a namespace for event sources. A tracing domain
1426 has its own properties and features.
1427
1428 There are currently five available tracing domains:
1429
1430 * Linux kernel
1431 * User space
1432 * `java.util.logging` (JUL)
1433 * log4j
1434 * Python
1435
1436 You must specify a tracing domain when using some commands to avoid
1437 ambiguity. For example, since all the domains support named tracepoints
1438 as event sources (instrumentation points that you manually insert in the
1439 source code), you need to specify a tracing domain when
1440 <<enabling-disabling-events,creating an event rule>> because all the
1441 tracing domains could have tracepoints with the same names.
1442
1443 Some features are reserved to specific tracing domains. Dynamic function
1444 entry and return instrumentation points, for example, are currently only
1445 supported in the Linux kernel tracing domain, but support for other
1446 tracing domains could be added in the future.
1447
1448 You can create <<channel,channels>> in the Linux kernel and user space
1449 tracing domains. The other tracing domains have a single default
1450 channel.
1451
1452
1453 [[channel]]
1454 === Channel and ring buffer
1455
1456 A _channel_ is an object which is responsible for a set of ring buffers.
1457 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1458 tracer emits an event, it can record it to one or more
1459 sub-buffers. The attributes of a channel determine what to do when
1460 there's no space left for a new event record because all sub-buffers
1461 are full, where to send a full sub-buffer, and other behaviours.
1462
1463 A channel is always associated to a <<domain,tracing domain>>. The
1464 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1465 a default channel which you cannot configure.
1466
1467 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1468 an event, it records it to the sub-buffers of all
1469 the enabled channels with a satisfied event rule, as long as those
1470 channels are part of active <<tracing-session,tracing sessions>>.
1471
1472
1473 [[channel-buffering-schemes]]
1474 ==== Per-user vs. per-process buffering schemes
1475
1476 A channel has at least one ring buffer _per CPU_. LTTng always
1477 records an event to the ring buffer associated to the CPU on which it
1478 occurred.
1479
1480 Two _buffering schemes_ are available when you
1481 <<enabling-disabling-channels,create a channel>> in the
1482 user space <<domain,tracing domain>>:
1483
1484 Per-user buffering::
1485 Allocate one set of ring buffers--one per CPU--shared by all the
1486 instrumented processes of each Unix user.
1487 +
1488 --
1489 [role="img-100"]
1490 .Per-user buffering scheme.
1491 image::per-user-buffering.png[]
1492 --
1493
1494 Per-process buffering::
1495 Allocate one set of ring buffers--one per CPU--for each
1496 instrumented process.
1497 +
1498 --
1499 [role="img-100"]
1500 .Per-process buffering scheme.
1501 image::per-process-buffering.png[]
1502 --
1503 +
1504 The per-process buffering scheme tends to consume more memory than the
1505 per-user option because systems generally have more instrumented
1506 processes than Unix users running instrumented processes. However, the
1507 per-process buffering scheme ensures that one process having a high
1508 event throughput won't fill all the shared sub-buffers of the same
1509 user, only its own.
1510
1511 The Linux kernel tracing domain has only one available buffering scheme
1512 which is to allocate a single set of ring buffers for the whole system.
1513 This scheme is similar to the per-user option, but with a single, global
1514 user "running" the kernel.
1515
1516
1517 [[channel-overwrite-mode-vs-discard-mode]]
1518 ==== Overwrite vs. discard event loss modes
1519
1520 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1521 arc in the following animation) of a specific channel's ring buffer.
1522 When there's no space left in a sub-buffer, the tracer marks it as
1523 consumable (red) and another, empty sub-buffer starts receiving the
1524 following event records. A <<lttng-consumerd,consumer daemon>>
1525 eventually consumes the marked sub-buffer (returns to white).
1526
1527 [NOTE]
1528 [role="docsvg-channel-subbuf-anim"]
1529 ====
1530 {note-no-anim}
1531 ====
1532
1533 In an ideal world, sub-buffers are consumed faster than they are filled,
1534 as is the case in the previous animation. In the real world,
1535 however, all sub-buffers can be full at some point, leaving no space to
1536 record the following events.
1537
1538 By default, LTTng-modules and LTTng-UST are _non-blocking_ tracers: when
1539 no empty sub-buffer is available, it is acceptable to lose event records
1540 when the alternative would be to cause substantial delays in the
1541 instrumented application's execution. LTTng privileges performance over
1542 integrity; it aims at perturbing the traced system as little as possible
1543 in order to make tracing of subtle race conditions and rare interrupt
1544 cascades possible.
1545
1546 Starting from LTTng{nbsp}2.10, the LTTng user space tracer, LTTng-UST,
1547 supports a _blocking mode_. See the <<blocking-timeout-example,blocking
1548 timeout example>> to learn how to use the blocking mode.
1549
1550 When it comes to losing event records because no empty sub-buffer is
1551 available, or because the <<opt-blocking-timeout,blocking timeout>> is
1552 reached, the channel's _event loss mode_ determines what to do. The
1553 available event loss modes are:
1554
1555 Discard mode::
1556 Drop the newest event records until a the tracer releases a
1557 sub-buffer.
1558 +
1559 This is the only available mode when you specify a
1560 <<opt-blocking-timeout,blocking timeout>>.
1561
1562 Overwrite mode::
1563 Clear the sub-buffer containing the oldest event records and start
1564 writing the newest event records there.
1565 +
1566 This mode is sometimes called _flight recorder mode_ because it's
1567 similar to a
1568 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1569 always keep a fixed amount of the latest data.
1570
1571 Which mechanism you should choose depends on your context: prioritize
1572 the newest or the oldest event records in the ring buffer?
1573
1574 Beware that, in overwrite mode, the tracer abandons a _whole sub-buffer_
1575 as soon as a there's no space left for a new event record, whereas in
1576 discard mode, the tracer only discards the event record that doesn't
1577 fit.
1578
1579 In discard mode, LTTng increments a count of lost event records when an
1580 event record is lost and saves this count to the trace. In overwrite
1581 mode, since LTTng 2.8, LTTng increments a count of lost sub-buffers when
1582 a sub-buffer is lost and saves this count to the trace. In this mode,
1583 the exact number of lost event records in those lost sub-buffers is not
1584 saved to the trace. Trace analyses can use the trace's saved discarded
1585 event record and sub-buffer counts to decide whether or not to perform
1586 the analyses even if trace data is known to be missing.
1587
1588 There are a few ways to decrease your probability of losing event
1589 records.
1590 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1591 how you can fine-tune the sub-buffer count and size of a channel to
1592 virtually stop losing event records, though at the cost of greater
1593 memory usage.
1594
1595
1596 [[channel-subbuf-size-vs-subbuf-count]]
1597 ==== Sub-buffer count and size
1598
1599 When you <<enabling-disabling-channels,create a channel>>, you can
1600 set its number of sub-buffers and their size.
1601
1602 Note that there is noticeable CPU overhead introduced when
1603 switching sub-buffers (marking a full one as consumable and switching
1604 to an empty one for the following events to be recorded). Knowing this,
1605 the following list presents a few practical situations along with how
1606 to configure the sub-buffer count and size for them:
1607
1608 * **High event throughput**: In general, prefer bigger sub-buffers to
1609 lower the risk of losing event records.
1610 +
1611 Having bigger sub-buffers also ensures a lower
1612 <<channel-switch-timer,sub-buffer switching frequency>>.
1613 +
1614 The number of sub-buffers is only meaningful if you create the channel
1615 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1616 other sub-buffers are left unaltered.
1617
1618 * **Low event throughput**: In general, prefer smaller sub-buffers
1619 since the risk of losing event records is low.
1620 +
1621 Because events occur less frequently, the sub-buffer switching frequency
1622 should remain low and thus the tracer's overhead should not be a
1623 problem.
1624
1625 * **Low memory system**: If your target system has a low memory
1626 limit, prefer fewer first, then smaller sub-buffers.
1627 +
1628 Even if the system is limited in memory, you want to keep the
1629 sub-buffers as big as possible to avoid a high sub-buffer switching
1630 frequency.
1631
1632 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1633 which means event data is very compact. For example, the average
1634 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1635 sub-buffer size of 1{nbsp}MiB is considered big.
1636
1637 The previous situations highlight the major trade-off between a few big
1638 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1639 frequency vs. how much data is lost in overwrite mode. Assuming a
1640 constant event throughput and using the overwrite mode, the two
1641 following configurations have the same ring buffer total size:
1642
1643 [NOTE]
1644 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1645 ====
1646 {note-no-anim}
1647 ====
1648
1649 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1650 switching frequency, but if a sub-buffer overwrite happens, half of
1651 the event records so far (4{nbsp}MiB) are definitely lost.
1652 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1653 overhead as the previous configuration, but if a sub-buffer
1654 overwrite happens, only the eighth of event records so far are
1655 definitely lost.
1656
1657 In discard mode, the sub-buffers count parameter is pointless: use two
1658 sub-buffers and set their size according to the requirements of your
1659 situation.
1660
1661
1662 [[channel-switch-timer]]
1663 ==== Switch timer period
1664
1665 The _switch timer period_ is an important configurable attribute of
1666 a channel to ensure periodic sub-buffer flushing.
1667
1668 When the _switch timer_ expires, a sub-buffer switch happens. You can
1669 set the switch timer period attribute when you
1670 <<enabling-disabling-channels,create a channel>> to ensure that event
1671 data is consumed and committed to trace files or to a distant relay
1672 daemon periodically in case of a low event throughput.
1673
1674 [NOTE]
1675 [role="docsvg-channel-switch-timer"]
1676 ====
1677 {note-no-anim}
1678 ====
1679
1680 This attribute is also convenient when you use big sub-buffers to cope
1681 with a sporadic high event throughput, even if the throughput is
1682 normally low.
1683
1684
1685 [[channel-read-timer]]
1686 ==== Read timer period
1687
1688 By default, the LTTng tracers use a notification mechanism to signal a
1689 full sub-buffer so that a consumer daemon can consume it. When such
1690 notifications must be avoided, for example in real-time applications,
1691 you can use the channel's _read timer_ instead. When the read timer
1692 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1693 consumable sub-buffers.
1694
1695
1696 [[tracefile-rotation]]
1697 ==== Trace file count and size
1698
1699 By default, trace files can grow as large as needed. You can set the
1700 maximum size of each trace file that a channel writes when you
1701 <<enabling-disabling-channels,create a channel>>. When the size of
1702 a trace file reaches the channel's fixed maximum size, LTTng creates
1703 another file to contain the next event records. LTTng appends a file
1704 count to each trace file name in this case.
1705
1706 If you set the trace file size attribute when you create a channel, the
1707 maximum number of trace files that LTTng creates is _unlimited_ by
1708 default. To limit them, you can also set a maximum number of trace
1709 files. When the number of trace files reaches the channel's fixed
1710 maximum count, the oldest trace file is overwritten. This mechanism is
1711 called _trace file rotation_.
1712
1713
1714 [[event]]
1715 === Instrumentation point, event rule, event, and event record
1716
1717 An _event rule_ is a set of conditions which must be **all** satisfied
1718 for LTTng to record an occuring event.
1719
1720 You set the conditions when you <<enabling-disabling-events,create
1721 an event rule>>.
1722
1723 You always attach an event rule to <<channel,channel>> when you create
1724 it.
1725
1726 When an event passes the conditions of an event rule, LTTng records it
1727 in one of the attached channel's sub-buffers.
1728
1729 The available conditions, as of LTTng{nbsp}{revision}, are:
1730
1731 * The event rule _is enabled_.
1732 * The instrumentation point's type _is{nbsp}T_.
1733 * The instrumentation point's name (sometimes called _event name_)
1734 _matches{nbsp}N_, but _is not{nbsp}E_.
1735 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1736 _is exactly{nbsp}L_.
1737 * The fields of the event's payload _satisfy_ a filter
1738 expression{nbsp}__F__.
1739
1740 As you can see, all the conditions but the dynamic filter are related to
1741 the event rule's status or to the instrumentation point, not to the
1742 occurring events. This is why, without a filter, checking if an event
1743 passes an event rule is not a dynamic task: when you create or modify an
1744 event rule, all the tracers of its tracing domain enable or disable the
1745 instrumentation points themselves once. This is possible because the
1746 attributes of an instrumentation point (type, name, and log level) are
1747 defined statically. In other words, without a dynamic filter, the tracer
1748 _does not evaluate_ the arguments of an instrumentation point unless it
1749 matches an enabled event rule.
1750
1751 Note that, for LTTng to record an event, the <<channel,channel>> to
1752 which a matching event rule is attached must also be enabled, and the
1753 tracing session owning this channel must be active.
1754
1755 [role="img-100"]
1756 .Logical path from an instrumentation point to an event record.
1757 image::event-rule.png[]
1758
1759 .Event, event record, or event rule?
1760 ****
1761 With so many similar terms, it's easy to get confused.
1762
1763 An **event** is the consequence of the execution of an _instrumentation
1764 point_, like a tracepoint that you manually place in some source code,
1765 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1766 time. Different actions can be taken upon the occurrence of an event,
1767 like record the event's payload to a buffer.
1768
1769 An **event record** is the representation of an event in a sub-buffer. A
1770 tracer is responsible for capturing the payload of an event, current
1771 context variables, the event's ID, and the event's timestamp. LTTng
1772 can append this sub-buffer to a trace file.
1773
1774 An **event rule** is a set of conditions which must all be satisfied for
1775 LTTng to record an occuring event. Events still occur without
1776 satisfying event rules, but LTTng does not record them.
1777 ****
1778
1779
1780 [[plumbing]]
1781 == Components of noch:{LTTng}
1782
1783 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1784 to call LTTng a simple _tool_ since it is composed of multiple
1785 interacting components. This section describes those components,
1786 explains their respective roles, and shows how they connect together to
1787 form the LTTng ecosystem.
1788
1789 The following diagram shows how the most important components of LTTng
1790 interact with user applications, the Linux kernel, and you:
1791
1792 [role="img-100"]
1793 .Control and trace data paths between LTTng components.
1794 image::plumbing.png[]
1795
1796 The LTTng project incorporates:
1797
1798 * **LTTng-tools**: Libraries and command-line interface to
1799 control tracing sessions.
1800 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1801 ** <<lttng-consumerd,Consumer daemon>> (cmd:lttng-consumerd).
1802 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1803 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1804 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1805 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1806 applications.
1807 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1808 headers to instrument and trace any native user application.
1809 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1810 *** `liblttng-ust-libc-wrapper`
1811 *** `liblttng-ust-pthread-wrapper`
1812 *** `liblttng-ust-cyg-profile`
1813 *** `liblttng-ust-cyg-profile-fast`
1814 *** `liblttng-ust-dl`
1815 ** User space tracepoint provider source files generator command-line
1816 tool (man:lttng-gen-tp(1)).
1817 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1818 Java applications using `java.util.logging` or
1819 Apache log4j 1.2 logging.
1820 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1821 Python applications using the standard `logging` package.
1822 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1823 the kernel.
1824 ** LTTng kernel tracer module.
1825 ** Tracing ring buffer kernel modules.
1826 ** Probe kernel modules.
1827 ** LTTng logger kernel module.
1828
1829
1830 [[lttng-cli]]
1831 === Tracing control command-line interface
1832
1833 [role="img-100"]
1834 .The tracing control command-line interface.
1835 image::plumbing-lttng-cli.png[]
1836
1837 The _man:lttng(1) command-line tool_ is the standard user interface to
1838 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1839 is part of LTTng-tools.
1840
1841 The cmd:lttng tool is linked with
1842 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1843 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1844
1845 The cmd:lttng tool has a Git-like interface:
1846
1847 [role="term"]
1848 ----
1849 $ lttng <GENERAL OPTIONS> <COMMAND> <COMMAND OPTIONS>
1850 ----
1851
1852 The <<controlling-tracing,Tracing control>> section explores the
1853 available features of LTTng using the cmd:lttng tool.
1854
1855
1856 [[liblttng-ctl-lttng]]
1857 === Tracing control library
1858
1859 [role="img-100"]
1860 .The tracing control library.
1861 image::plumbing-liblttng-ctl.png[]
1862
1863 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1864 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1865 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1866
1867 The <<lttng-cli,cmd:lttng command-line tool>>
1868 is linked with `liblttng-ctl`.
1869
1870 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1871 "master" header:
1872
1873 [source,c]
1874 ----
1875 #include <lttng/lttng.h>
1876 ----
1877
1878 Some objects are referenced by name (C string), such as tracing
1879 sessions, but most of them require to create a handle first using
1880 `lttng_create_handle()`.
1881
1882 The best available developer documentation for `liblttng-ctl` is, as of
1883 LTTng{nbsp}{revision}, its installed header files. Every function and
1884 structure is thoroughly documented.
1885
1886
1887 [[lttng-ust]]
1888 === User space tracing library
1889
1890 [role="img-100"]
1891 .The user space tracing library.
1892 image::plumbing-liblttng-ust.png[]
1893
1894 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1895 is the LTTng user space tracer. It receives commands from a
1896 <<lttng-sessiond,session daemon>>, for example to
1897 enable and disable specific instrumentation points, and writes event
1898 records to ring buffers shared with a
1899 <<lttng-consumerd,consumer daemon>>.
1900 `liblttng-ust` is part of LTTng-UST.
1901
1902 Public C header files are installed beside `liblttng-ust` to
1903 instrument any <<c-application,C or $$C++$$ application>>.
1904
1905 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1906 packages, use their own library providing tracepoints which is
1907 linked with `liblttng-ust`.
1908
1909 An application or library does not have to initialize `liblttng-ust`
1910 manually: its constructor does the necessary tasks to properly register
1911 to a session daemon. The initialization phase also enables the
1912 instrumentation points matching the <<event,event rules>> that you
1913 already created.
1914
1915
1916 [[lttng-ust-agents]]
1917 === User space tracing agents
1918
1919 [role="img-100"]
1920 .The user space tracing agents.
1921 image::plumbing-lttng-ust-agents.png[]
1922
1923 The _LTTng-UST Java and Python agents_ are regular Java and Python
1924 packages which add LTTng tracing capabilities to the
1925 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1926
1927 In the case of Java, the
1928 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1929 core logging facilities] and
1930 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1931 Note that Apache Log4{nbsp}2 is not supported.
1932
1933 In the case of Python, the standard
1934 https://docs.python.org/3/library/logging.html[`logging`] package
1935 is supported. Both Python 2 and Python 3 modules can import the
1936 LTTng-UST Python agent package.
1937
1938 The applications using the LTTng-UST agents are in the
1939 `java.util.logging` (JUL),
1940 log4j, and Python <<domain,tracing domains>>.
1941
1942 Both agents use the same mechanism to trace the log statements. When an
1943 agent is initialized, it creates a log handler that attaches to the root
1944 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1945 When the application executes a log statement, it is passed to the
1946 agent's log handler by the root logger. The agent's log handler calls a
1947 native function in a tracepoint provider package shared library linked
1948 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1949 other fields, like its logger name and its log level. This native
1950 function contains a user space instrumentation point, hence tracing the
1951 log statement.
1952
1953 The log level condition of an
1954 <<event,event rule>> is considered when tracing
1955 a Java or a Python application, and it's compatible with the standard
1956 JUL, log4j, and Python log levels.
1957
1958
1959 [[lttng-modules]]
1960 === LTTng kernel modules
1961
1962 [role="img-100"]
1963 .The LTTng kernel modules.
1964 image::plumbing-lttng-modules.png[]
1965
1966 The _LTTng kernel modules_ are a set of Linux kernel modules
1967 which implement the kernel tracer of the LTTng project. The LTTng
1968 kernel modules are part of LTTng-modules.
1969
1970 The LTTng kernel modules include:
1971
1972 * A set of _probe_ modules.
1973 +
1974 Each module attaches to a specific subsystem
1975 of the Linux kernel using its tracepoint instrument points. There are
1976 also modules to attach to the entry and return points of the Linux
1977 system call functions.
1978
1979 * _Ring buffer_ modules.
1980 +
1981 A ring buffer implementation is provided as kernel modules. The LTTng
1982 kernel tracer writes to the ring buffer; a
1983 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1984
1985 * The _LTTng kernel tracer_ module.
1986 * The _LTTng logger_ module.
1987 +
1988 The LTTng logger module implements the special path:{/proc/lttng-logger}
1989 file so that any executable can generate LTTng events by opening and
1990 writing to this file.
1991 +
1992 See <<proc-lttng-logger-abi,LTTng logger>>.
1993
1994 Generally, you do not have to load the LTTng kernel modules manually
1995 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1996 daemon>> loads the necessary modules when starting. If you have extra
1997 probe modules, you can specify to load them to the session daemon on
1998 the command line.
1999
2000 The LTTng kernel modules are installed in
2001 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
2002 the kernel release (see `uname --kernel-release`).
2003
2004
2005 [[lttng-sessiond]]
2006 === Session daemon
2007
2008 [role="img-100"]
2009 .The session daemon.
2010 image::plumbing-sessiond.png[]
2011
2012 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
2013 managing tracing sessions and for controlling the various components of
2014 LTTng. The session daemon is part of LTTng-tools.
2015
2016 The session daemon sends control requests to and receives control
2017 responses from:
2018
2019 * The <<lttng-ust,user space tracing library>>.
2020 +
2021 Any instance of the user space tracing library first registers to
2022 a session daemon. Then, the session daemon can send requests to
2023 this instance, such as:
2024 +
2025 --
2026 ** Get the list of tracepoints.
2027 ** Share an <<event,event rule>> so that the user space tracing library
2028 can enable or disable tracepoints. Amongst the possible conditions
2029 of an event rule is a filter expression which `liblttng-ust` evalutes
2030 when an event occurs.
2031 ** Share <<channel,channel>> attributes and ring buffer locations.
2032 --
2033 +
2034 The session daemon and the user space tracing library use a Unix
2035 domain socket for their communication.
2036
2037 * The <<lttng-ust-agents,user space tracing agents>>.
2038 +
2039 Any instance of a user space tracing agent first registers to
2040 a session daemon. Then, the session daemon can send requests to
2041 this instance, such as:
2042 +
2043 --
2044 ** Get the list of loggers.
2045 ** Enable or disable a specific logger.
2046 --
2047 +
2048 The session daemon and the user space tracing agent use a TCP connection
2049 for their communication.
2050
2051 * The <<lttng-modules,LTTng kernel tracer>>.
2052 * The <<lttng-consumerd,consumer daemon>>.
2053 +
2054 The session daemon sends requests to the consumer daemon to instruct
2055 it where to send the trace data streams, amongst other information.
2056
2057 * The <<lttng-relayd,relay daemon>>.
2058
2059 The session daemon receives commands from the
2060 <<liblttng-ctl-lttng,tracing control library>>.
2061
2062 The root session daemon loads the appropriate
2063 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
2064 a <<lttng-consumerd,consumer daemon>> as soon as you create
2065 an <<event,event rule>>.
2066
2067 The session daemon does not send and receive trace data: this is the
2068 role of the <<lttng-consumerd,consumer daemon>> and
2069 <<lttng-relayd,relay daemon>>. It does, however, generate the
2070 http://diamon.org/ctf/[CTF] metadata stream.
2071
2072 Each Unix user can have its own session daemon instance. The
2073 tracing sessions managed by different session daemons are completely
2074 independent.
2075
2076 The root user's session daemon is the only one which is
2077 allowed to control the LTTng kernel tracer, and its spawned consumer
2078 daemon is the only one which is allowed to consume trace data from the
2079 LTTng kernel tracer. Note, however, that any Unix user which is a member
2080 of the <<tracing-group,tracing group>> is allowed
2081 to create <<channel,channels>> in the
2082 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
2083 kernel.
2084
2085 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
2086 session daemon when using its `create` command if none is currently
2087 running. You can also start the session daemon manually.
2088
2089
2090 [[lttng-consumerd]]
2091 === Consumer daemon
2092
2093 [role="img-100"]
2094 .The consumer daemon.
2095 image::plumbing-consumerd.png[]
2096
2097 The _consumer daemon_, cmd:lttng-consumerd, is a daemon which shares
2098 ring buffers with user applications or with the LTTng kernel modules to
2099 collect trace data and send it to some location (on disk or to a
2100 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
2101 is part of LTTng-tools.
2102
2103 You do not start a consumer daemon manually: a consumer daemon is always
2104 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
2105 <<event,event rule>>, that is, before you start tracing. When you kill
2106 its owner session daemon, the consumer daemon also exits because it is
2107 the session daemon's child process. Command-line options of
2108 man:lttng-sessiond(8) target the consumer daemon process.
2109
2110 There are up to two running consumer daemons per Unix user, whereas only
2111 one session daemon can run per user. This is because each process can be
2112 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
2113 and 64-bit processes, it is more efficient to have separate
2114 corresponding 32-bit and 64-bit consumer daemons. The root user is an
2115 exception: it can have up to _three_ running consumer daemons: 32-bit
2116 and 64-bit instances for its user applications, and one more
2117 reserved for collecting kernel trace data.
2118
2119
2120 [[lttng-relayd]]
2121 === Relay daemon
2122
2123 [role="img-100"]
2124 .The relay daemon.
2125 image::plumbing-relayd.png[]
2126
2127 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
2128 between remote session and consumer daemons, local trace files, and a
2129 remote live trace viewer. The relay daemon is part of LTTng-tools.
2130
2131 The main purpose of the relay daemon is to implement a receiver of
2132 <<sending-trace-data-over-the-network,trace data over the network>>.
2133 This is useful when the target system does not have much file system
2134 space to record trace files locally.
2135
2136 The relay daemon is also a server to which a
2137 <<lttng-live,live trace viewer>> can
2138 connect. The live trace viewer sends requests to the relay daemon to
2139 receive trace data as the target system emits events. The
2140 communication protocol is named _LTTng live_; it is used over TCP
2141 connections.
2142
2143 Note that you can start the relay daemon on the target system directly.
2144 This is the setup of choice when the use case is to view events as
2145 the target system emits them without the need of a remote system.
2146
2147
2148 [[instrumenting]]
2149 == [[using-lttng]]Instrumentation
2150
2151 There are many examples of tracing and monitoring in our everyday life:
2152
2153 * You have access to real-time and historical weather reports and
2154 forecasts thanks to weather stations installed around the country.
2155 * You know your heart is safe thanks to an electrocardiogram.
2156 * You make sure not to drive your car too fast and to have enough fuel
2157 to reach your destination thanks to gauges visible on your dashboard.
2158
2159 All the previous examples have something in common: they rely on
2160 **instruments**. Without the electrodes attached to the surface of your
2161 body's skin, cardiac monitoring is futile.
2162
2163 LTTng, as a tracer, is no different from those real life examples. If
2164 you're about to trace a software system or, in other words, record its
2165 history of execution, you better have **instrumentation points** in the
2166 subject you're tracing, that is, the actual software.
2167
2168 Various ways were developed to instrument a piece of software for LTTng
2169 tracing. The most straightforward one is to manually place
2170 instrumentation points, called _tracepoints_, in the software's source
2171 code. It is also possible to add instrumentation points dynamically in
2172 the Linux kernel <<domain,tracing domain>>.
2173
2174 If you're only interested in tracing the Linux kernel, your
2175 instrumentation needs are probably already covered by LTTng's built-in
2176 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
2177 user application which is already instrumented for LTTng tracing.
2178 In such cases, you can skip this whole section and read the topics of
2179 the <<controlling-tracing,Tracing control>> section.
2180
2181 Many methods are available to instrument a piece of software for LTTng
2182 tracing. They are:
2183
2184 * <<c-application,User space instrumentation for C and $$C++$$
2185 applications>>.
2186 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
2187 * <<java-application,User space Java agent>>.
2188 * <<python-application,User space Python agent>>.
2189 * <<proc-lttng-logger-abi,LTTng logger>>.
2190 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
2191
2192
2193 [[c-application]]
2194 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
2195
2196 The procedure to instrument a C or $$C++$$ user application with
2197 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
2198
2199 . <<tracepoint-provider,Create the source files of a tracepoint provider
2200 package>>.
2201 . <<probing-the-application-source-code,Add tracepoints to
2202 the application's source code>>.
2203 . <<building-tracepoint-providers-and-user-application,Build and link
2204 a tracepoint provider package and the user application>>.
2205
2206 If you need quick, man:printf(3)-like instrumentation, you can skip
2207 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
2208 instead.
2209
2210 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
2211 instrument a user application with `liblttng-ust`.
2212
2213
2214 [[tracepoint-provider]]
2215 ==== Create the source files of a tracepoint provider package
2216
2217 A _tracepoint provider_ is a set of compiled functions which provide
2218 **tracepoints** to an application, the type of instrumentation point
2219 supported by LTTng-UST. Those functions can emit events with
2220 user-defined fields and serialize those events as event records to one
2221 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
2222 macro, which you <<probing-the-application-source-code,insert in a user
2223 application's source code>>, calls those functions.
2224
2225 A _tracepoint provider package_ is an object file (`.o`) or a shared
2226 library (`.so`) which contains one or more tracepoint providers.
2227 Its source files are:
2228
2229 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
2230 * A <<tpp-source,tracepoint provider package source>> (`.c`).
2231
2232 A tracepoint provider package is dynamically linked with `liblttng-ust`,
2233 the LTTng user space tracer, at run time.
2234
2235 [role="img-100"]
2236 .User application linked with `liblttng-ust` and containing a tracepoint provider.
2237 image::ust-app.png[]
2238
2239 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
2240 skip creating and using a tracepoint provider and use
2241 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
2242
2243
2244 [[tpp-header]]
2245 ===== Create a tracepoint provider header file template
2246
2247 A _tracepoint provider header file_ contains the tracepoint
2248 definitions of a tracepoint provider.
2249
2250 To create a tracepoint provider header file:
2251
2252 . Start from this template:
2253 +
2254 --
2255 [source,c]
2256 .Tracepoint provider header file template (`.h` file extension).
2257 ----
2258 #undef TRACEPOINT_PROVIDER
2259 #define TRACEPOINT_PROVIDER provider_name
2260
2261 #undef TRACEPOINT_INCLUDE
2262 #define TRACEPOINT_INCLUDE "./tp.h"
2263
2264 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2265 #define _TP_H
2266
2267 #include <lttng/tracepoint.h>
2268
2269 /*
2270 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2271 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2272 */
2273
2274 #endif /* _TP_H */
2275
2276 #include <lttng/tracepoint-event.h>
2277 ----
2278 --
2279
2280 . Replace:
2281 +
2282 * `provider_name` with the name of your tracepoint provider.
2283 * `"tp.h"` with the name of your tracepoint provider header file.
2284
2285 . Below the `#include <lttng/tracepoint.h>` line, put your
2286 <<defining-tracepoints,tracepoint definitions>>.
2287
2288 Your tracepoint provider name must be unique amongst all the possible
2289 tracepoint provider names used on the same target system. We
2290 suggest to include the name of your project or company in the name,
2291 for example, `org_lttng_my_project_tpp`.
2292
2293 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2294 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2295 write are the <<defining-tracepoints,tracepoint definitions>>.
2296
2297
2298 [[defining-tracepoints]]
2299 ===== Create a tracepoint definition
2300
2301 A _tracepoint definition_ defines, for a given tracepoint:
2302
2303 * Its **input arguments**. They are the macro parameters that the
2304 `tracepoint()` macro accepts for this particular tracepoint
2305 in the user application's source code.
2306 * Its **output event fields**. They are the sources of event fields
2307 that form the payload of any event that the execution of the
2308 `tracepoint()` macro emits for this particular tracepoint.
2309
2310 You can create a tracepoint definition by using the
2311 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2312 line in the
2313 <<tpp-header,tracepoint provider header file template>>.
2314
2315 The syntax of the `TRACEPOINT_EVENT()` macro is:
2316
2317 [source,c]
2318 .`TRACEPOINT_EVENT()` macro syntax.
2319 ----
2320 TRACEPOINT_EVENT(
2321 /* Tracepoint provider name */
2322 provider_name,
2323
2324 /* Tracepoint name */
2325 tracepoint_name,
2326
2327 /* Input arguments */
2328 TP_ARGS(
2329 arguments
2330 ),
2331
2332 /* Output event fields */
2333 TP_FIELDS(
2334 fields
2335 )
2336 )
2337 ----
2338
2339 Replace:
2340
2341 * `provider_name` with your tracepoint provider name.
2342 * `tracepoint_name` with your tracepoint name.
2343 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2344 * `fields` with the <<tpp-def-output-fields,output event field>>
2345 definitions.
2346
2347 This tracepoint emits events named `provider_name:tracepoint_name`.
2348
2349 [IMPORTANT]
2350 .Event name's length limitation
2351 ====
2352 The concatenation of the tracepoint provider name and the
2353 tracepoint name must not exceed **254 characters**. If it does, the
2354 instrumented application compiles and runs, but LTTng throws multiple
2355 warnings and you could experience serious issues.
2356 ====
2357
2358 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2359
2360 [source,c]
2361 .`TP_ARGS()` macro syntax.
2362 ----
2363 TP_ARGS(
2364 type, arg_name
2365 )
2366 ----
2367
2368 Replace:
2369
2370 * `type` with the C type of the argument.
2371 * `arg_name` with the argument name.
2372
2373 You can repeat `type` and `arg_name` up to 10 times to have
2374 more than one argument.
2375
2376 .`TP_ARGS()` usage with three arguments.
2377 ====
2378 [source,c]
2379 ----
2380 TP_ARGS(
2381 int, count,
2382 float, ratio,
2383 const char*, query
2384 )
2385 ----
2386 ====
2387
2388 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2389 tracepoint definition with no input arguments.
2390
2391 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2392 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2393 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2394 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2395 one event field.
2396
2397 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2398 C expression that the tracer evalutes at the `tracepoint()` macro site
2399 in the application's source code. This expression provides a field's
2400 source of data. The argument expression can include input argument names
2401 listed in the `TP_ARGS()` macro.
2402
2403 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2404 must be unique within a given tracepoint definition.
2405
2406 Here's a complete tracepoint definition example:
2407
2408 .Tracepoint definition.
2409 ====
2410 The following tracepoint definition defines a tracepoint which takes
2411 three input arguments and has four output event fields.
2412
2413 [source,c]
2414 ----
2415 #include "my-custom-structure.h"
2416
2417 TRACEPOINT_EVENT(
2418 my_provider,
2419 my_tracepoint,
2420 TP_ARGS(
2421 const struct my_custom_structure*, my_custom_structure,
2422 float, ratio,
2423 const char*, query
2424 ),
2425 TP_FIELDS(
2426 ctf_string(query_field, query)
2427 ctf_float(double, ratio_field, ratio)
2428 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2429 ctf_integer(int, send_size, my_custom_structure->send_size)
2430 )
2431 )
2432 ----
2433
2434 You can refer to this tracepoint definition with the `tracepoint()`
2435 macro in your application's source code like this:
2436
2437 [source,c]
2438 ----
2439 tracepoint(my_provider, my_tracepoint,
2440 my_structure, some_ratio, the_query);
2441 ----
2442 ====
2443
2444 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2445 if they satisfy an enabled <<event,event rule>>.
2446
2447
2448 [[using-tracepoint-classes]]
2449 ===== Use a tracepoint class
2450
2451 A _tracepoint class_ is a class of tracepoints which share the same
2452 output event field definitions. A _tracepoint instance_ is one
2453 instance of such a defined tracepoint class, with its own tracepoint
2454 name.
2455
2456 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2457 shorthand which defines both a tracepoint class and a tracepoint
2458 instance at the same time.
2459
2460 When you build a tracepoint provider package, the C or $$C++$$ compiler
2461 creates one serialization function for each **tracepoint class**. A
2462 serialization function is responsible for serializing the event fields
2463 of a tracepoint to a sub-buffer when tracing.
2464
2465 For various performance reasons, when your situation requires multiple
2466 tracepoint definitions with different names, but with the same event
2467 fields, we recommend that you manually create a tracepoint class
2468 and instantiate as many tracepoint instances as needed. One positive
2469 effect of such a design, amongst other advantages, is that all
2470 tracepoint instances of the same tracepoint class reuse the same
2471 serialization function, thus reducing
2472 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2473
2474 .Use a tracepoint class and tracepoint instances.
2475 ====
2476 Consider the following three tracepoint definitions:
2477
2478 [source,c]
2479 ----
2480 TRACEPOINT_EVENT(
2481 my_app,
2482 get_account,
2483 TP_ARGS(
2484 int, userid,
2485 size_t, len
2486 ),
2487 TP_FIELDS(
2488 ctf_integer(int, userid, userid)
2489 ctf_integer(size_t, len, len)
2490 )
2491 )
2492
2493 TRACEPOINT_EVENT(
2494 my_app,
2495 get_settings,
2496 TP_ARGS(
2497 int, userid,
2498 size_t, len
2499 ),
2500 TP_FIELDS(
2501 ctf_integer(int, userid, userid)
2502 ctf_integer(size_t, len, len)
2503 )
2504 )
2505
2506 TRACEPOINT_EVENT(
2507 my_app,
2508 get_transaction,
2509 TP_ARGS(
2510 int, userid,
2511 size_t, len
2512 ),
2513 TP_FIELDS(
2514 ctf_integer(int, userid, userid)
2515 ctf_integer(size_t, len, len)
2516 )
2517 )
2518 ----
2519
2520 In this case, we create three tracepoint classes, with one implicit
2521 tracepoint instance for each of them: `get_account`, `get_settings`, and
2522 `get_transaction`. However, they all share the same event field names
2523 and types. Hence three identical, yet independent serialization
2524 functions are created when you build the tracepoint provider package.
2525
2526 A better design choice is to define a single tracepoint class and three
2527 tracepoint instances:
2528
2529 [source,c]
2530 ----
2531 /* The tracepoint class */
2532 TRACEPOINT_EVENT_CLASS(
2533 /* Tracepoint provider name */
2534 my_app,
2535
2536 /* Tracepoint class name */
2537 my_class,
2538
2539 /* Input arguments */
2540 TP_ARGS(
2541 int, userid,
2542 size_t, len
2543 ),
2544
2545 /* Output event fields */
2546 TP_FIELDS(
2547 ctf_integer(int, userid, userid)
2548 ctf_integer(size_t, len, len)
2549 )
2550 )
2551
2552 /* The tracepoint instances */
2553 TRACEPOINT_EVENT_INSTANCE(
2554 /* Tracepoint provider name */
2555 my_app,
2556
2557 /* Tracepoint class name */
2558 my_class,
2559
2560 /* Tracepoint name */
2561 get_account,
2562
2563 /* Input arguments */
2564 TP_ARGS(
2565 int, userid,
2566 size_t, len
2567 )
2568 )
2569 TRACEPOINT_EVENT_INSTANCE(
2570 my_app,
2571 my_class,
2572 get_settings,
2573 TP_ARGS(
2574 int, userid,
2575 size_t, len
2576 )
2577 )
2578 TRACEPOINT_EVENT_INSTANCE(
2579 my_app,
2580 my_class,
2581 get_transaction,
2582 TP_ARGS(
2583 int, userid,
2584 size_t, len
2585 )
2586 )
2587 ----
2588 ====
2589
2590
2591 [[assigning-log-levels]]
2592 ===== Assign a log level to a tracepoint definition
2593
2594 You can assign an optional _log level_ to a
2595 <<defining-tracepoints,tracepoint definition>>.
2596
2597 Assigning different levels of severity to tracepoint definitions can
2598 be useful: when you <<enabling-disabling-events,create an event rule>>,
2599 you can target tracepoints having a log level as severe as a specific
2600 value.
2601
2602 The concept of LTTng-UST log levels is similar to the levels found
2603 in typical logging frameworks:
2604
2605 * In a logging framework, the log level is given by the function
2606 or method name you use at the log statement site: `debug()`,
2607 `info()`, `warn()`, `error()`, and so on.
2608 * In LTTng-UST, you statically assign the log level to a tracepoint
2609 definition; any `tracepoint()` macro invocation which refers to
2610 this definition has this log level.
2611
2612 You can assign a log level to a tracepoint definition with the
2613 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2614 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2615 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2616 tracepoint.
2617
2618 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2619
2620 [source,c]
2621 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2622 ----
2623 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2624 ----
2625
2626 Replace:
2627
2628 * `provider_name` with the tracepoint provider name.
2629 * `tracepoint_name` with the tracepoint name.
2630 * `log_level` with the log level to assign to the tracepoint
2631 definition named `tracepoint_name` in the `provider_name`
2632 tracepoint provider.
2633 +
2634 See man:lttng-ust(3) for a list of available log level names.
2635
2636 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2637 ====
2638 [source,c]
2639 ----
2640 /* Tracepoint definition */
2641 TRACEPOINT_EVENT(
2642 my_app,
2643 get_transaction,
2644 TP_ARGS(
2645 int, userid,
2646 size_t, len
2647 ),
2648 TP_FIELDS(
2649 ctf_integer(int, userid, userid)
2650 ctf_integer(size_t, len, len)
2651 )
2652 )
2653
2654 /* Log level assignment */
2655 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2656 ----
2657 ====
2658
2659
2660 [[tpp-source]]
2661 ===== Create a tracepoint provider package source file
2662
2663 A _tracepoint provider package source file_ is a C source file which
2664 includes a <<tpp-header,tracepoint provider header file>> to expand its
2665 macros into event serialization and other functions.
2666
2667 You can always use the following tracepoint provider package source
2668 file template:
2669
2670 [source,c]
2671 .Tracepoint provider package source file template.
2672 ----
2673 #define TRACEPOINT_CREATE_PROBES
2674
2675 #include "tp.h"
2676 ----
2677
2678 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2679 header file>> name. You may also include more than one tracepoint
2680 provider header file here to create a tracepoint provider package
2681 holding more than one tracepoint providers.
2682
2683
2684 [[probing-the-application-source-code]]
2685 ==== Add tracepoints to an application's source code
2686
2687 Once you <<tpp-header,create a tracepoint provider header file>>, you
2688 can use the `tracepoint()` macro in your application's
2689 source code to insert the tracepoints that this header
2690 <<defining-tracepoints,defines>>.
2691
2692 The `tracepoint()` macro takes at least two parameters: the tracepoint
2693 provider name and the tracepoint name. The corresponding tracepoint
2694 definition defines the other parameters.
2695
2696 .`tracepoint()` usage.
2697 ====
2698 The following <<defining-tracepoints,tracepoint definition>> defines a
2699 tracepoint which takes two input arguments and has two output event
2700 fields.
2701
2702 [source,c]
2703 .Tracepoint provider header file.
2704 ----
2705 #include "my-custom-structure.h"
2706
2707 TRACEPOINT_EVENT(
2708 my_provider,
2709 my_tracepoint,
2710 TP_ARGS(
2711 int, argc,
2712 const char*, cmd_name
2713 ),
2714 TP_FIELDS(
2715 ctf_string(cmd_name, cmd_name)
2716 ctf_integer(int, number_of_args, argc)
2717 )
2718 )
2719 ----
2720
2721 You can refer to this tracepoint definition with the `tracepoint()`
2722 macro in your application's source code like this:
2723
2724 [source,c]
2725 .Application's source file.
2726 ----
2727 #include "tp.h"
2728
2729 int main(int argc, char* argv[])
2730 {
2731 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2732
2733 return 0;
2734 }
2735 ----
2736
2737 Note how the application's source code includes
2738 the tracepoint provider header file containing the tracepoint
2739 definitions to use, path:{tp.h}.
2740 ====
2741
2742 .`tracepoint()` usage with a complex tracepoint definition.
2743 ====
2744 Consider this complex tracepoint definition, where multiple event
2745 fields refer to the same input arguments in their argument expression
2746 parameter:
2747
2748 [source,c]
2749 .Tracepoint provider header file.
2750 ----
2751 /* For `struct stat` */
2752 #include <sys/types.h>
2753 #include <sys/stat.h>
2754 #include <unistd.h>
2755
2756 TRACEPOINT_EVENT(
2757 my_provider,
2758 my_tracepoint,
2759 TP_ARGS(
2760 int, my_int_arg,
2761 char*, my_str_arg,
2762 struct stat*, st
2763 ),
2764 TP_FIELDS(
2765 ctf_integer(int, my_constant_field, 23 + 17)
2766 ctf_integer(int, my_int_arg_field, my_int_arg)
2767 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2768 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2769 my_str_arg[2] + my_str_arg[3])
2770 ctf_string(my_str_arg_field, my_str_arg)
2771 ctf_integer_hex(off_t, size_field, st->st_size)
2772 ctf_float(double, size_dbl_field, (double) st->st_size)
2773 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2774 size_t, strlen(my_str_arg) / 2)
2775 )
2776 )
2777 ----
2778
2779 You can refer to this tracepoint definition with the `tracepoint()`
2780 macro in your application's source code like this:
2781
2782 [source,c]
2783 .Application's source file.
2784 ----
2785 #define TRACEPOINT_DEFINE
2786 #include "tp.h"
2787
2788 int main(void)
2789 {
2790 struct stat s;
2791
2792 stat("/etc/fstab", &s);
2793 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2794
2795 return 0;
2796 }
2797 ----
2798
2799 If you look at the event record that LTTng writes when tracing this
2800 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2801 it should look like this:
2802
2803 .Event record fields
2804 |====
2805 |Field's name |Field's value
2806 |`my_constant_field` |40
2807 |`my_int_arg_field` |23
2808 |`my_int_arg_field2` |529
2809 |`sum4_field` |389
2810 |`my_str_arg_field` |`Hello, World!`
2811 |`size_field` |0x12d
2812 |`size_dbl_field` |301.0
2813 |`half_my_str_arg_field` |`Hello,`
2814 |====
2815 ====
2816
2817 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2818 compute--they use the call stack, for example. To avoid this
2819 computation when the tracepoint is disabled, you can use the
2820 `tracepoint_enabled()` and `do_tracepoint()` macros.
2821
2822 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2823 is:
2824
2825 [source,c]
2826 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2827 ----
2828 tracepoint_enabled(provider_name, tracepoint_name)
2829 do_tracepoint(provider_name, tracepoint_name, ...)
2830 ----
2831
2832 Replace:
2833
2834 * `provider_name` with the tracepoint provider name.
2835 * `tracepoint_name` with the tracepoint name.
2836
2837 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2838 `tracepoint_name` from the provider named `provider_name` is enabled
2839 **at run time**.
2840
2841 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2842 if the tracepoint is enabled. Using `tracepoint()` with
2843 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2844 the `tracepoint_enabled()` check, thus a race condition is
2845 possible in this situation:
2846
2847 [source,c]
2848 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2849 ----
2850 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2851 stuff = prepare_stuff();
2852 }
2853
2854 tracepoint(my_provider, my_tracepoint, stuff);
2855 ----
2856
2857 If the tracepoint is enabled after the condition, then `stuff` is not
2858 prepared: the emitted event will either contain wrong data, or the whole
2859 application could crash (segmentation fault, for example).
2860
2861 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2862 `STAP_PROBEV()` call. If you need it, you must emit
2863 this call yourself.
2864
2865
2866 [[building-tracepoint-providers-and-user-application]]
2867 ==== Build and link a tracepoint provider package and an application
2868
2869 Once you have one or more <<tpp-header,tracepoint provider header
2870 files>> and a <<tpp-source,tracepoint provider package source file>>,
2871 you can create the tracepoint provider package by compiling its source
2872 file. From here, multiple build and run scenarios are possible. The
2873 following table shows common application and library configurations
2874 along with the required command lines to achieve them.
2875
2876 In the following diagrams, we use the following file names:
2877
2878 `app`::
2879 Executable application.
2880
2881 `app.o`::
2882 Application's object file.
2883
2884 `tpp.o`::
2885 Tracepoint provider package object file.
2886
2887 `tpp.a`::
2888 Tracepoint provider package archive file.
2889
2890 `libtpp.so`::
2891 Tracepoint provider package shared object file.
2892
2893 `emon.o`::
2894 User library object file.
2895
2896 `libemon.so`::
2897 User library shared object file.
2898
2899 We use the following symbols in the diagrams of table below:
2900
2901 [role="img-100"]
2902 .Symbols used in the build scenario diagrams.
2903 image::ust-sit-symbols.png[]
2904
2905 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2906 variable in the following instructions.
2907
2908 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2909 .Common tracepoint provider package scenarios.
2910 |====
2911 |Scenario |Instructions
2912
2913 |
2914 The instrumented application is statically linked with
2915 the tracepoint provider package object.
2916
2917 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2918
2919 |
2920 include::../common/ust-sit-step-tp-o.txt[]
2921
2922 To build the instrumented application:
2923
2924 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2925 +
2926 --
2927 [source,c]
2928 ----
2929 #define TRACEPOINT_DEFINE
2930 ----
2931 --
2932
2933 . Compile the application source file:
2934 +
2935 --
2936 [role="term"]
2937 ----
2938 $ gcc -c app.c
2939 ----
2940 --
2941
2942 . Build the application:
2943 +
2944 --
2945 [role="term"]
2946 ----
2947 $ gcc -o app app.o tpp.o -llttng-ust -ldl
2948 ----
2949 --
2950
2951 To run the instrumented application:
2952
2953 * Start the application:
2954 +
2955 --
2956 [role="term"]
2957 ----
2958 $ ./app
2959 ----
2960 --
2961
2962 |
2963 The instrumented application is statically linked with the
2964 tracepoint provider package archive file.
2965
2966 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2967
2968 |
2969 To create the tracepoint provider package archive file:
2970
2971 . Compile the <<tpp-source,tracepoint provider package source file>>:
2972 +
2973 --
2974 [role="term"]
2975 ----
2976 $ gcc -I. -c tpp.c
2977 ----
2978 --
2979
2980 . Create the tracepoint provider package archive file:
2981 +
2982 --
2983 [role="term"]
2984 ----
2985 $ ar rcs tpp.a tpp.o
2986 ----
2987 --
2988
2989 To build the instrumented application:
2990
2991 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2992 +
2993 --
2994 [source,c]
2995 ----
2996 #define TRACEPOINT_DEFINE
2997 ----
2998 --
2999
3000 . Compile the application source file:
3001 +
3002 --
3003 [role="term"]
3004 ----
3005 $ gcc -c app.c
3006 ----
3007 --
3008
3009 . Build the application:
3010 +
3011 --
3012 [role="term"]
3013 ----
3014 $ gcc -o app app.o tpp.a -llttng-ust -ldl
3015 ----
3016 --
3017
3018 To run the instrumented application:
3019
3020 * Start the application:
3021 +
3022 --
3023 [role="term"]
3024 ----
3025 $ ./app
3026 ----
3027 --
3028
3029 |
3030 The instrumented application is linked with the tracepoint provider
3031 package shared object.
3032
3033 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
3034
3035 |
3036 include::../common/ust-sit-step-tp-so.txt[]
3037
3038 To build the instrumented application:
3039
3040 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3041 +
3042 --
3043 [source,c]
3044 ----
3045 #define TRACEPOINT_DEFINE
3046 ----
3047 --
3048
3049 . Compile the application source file:
3050 +
3051 --
3052 [role="term"]
3053 ----
3054 $ gcc -c app.c
3055 ----
3056 --
3057
3058 . Build the application:
3059 +
3060 --
3061 [role="term"]
3062 ----
3063 $ gcc -o app app.o -ldl -L. -ltpp
3064 ----
3065 --
3066
3067 To run the instrumented application:
3068
3069 * Start the application:
3070 +
3071 --
3072 [role="term"]
3073 ----
3074 $ ./app
3075 ----
3076 --
3077
3078 |
3079 The tracepoint provider package shared object is preloaded before the
3080 instrumented application starts.
3081
3082 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
3083
3084 |
3085 include::../common/ust-sit-step-tp-so.txt[]
3086
3087 To build the instrumented application:
3088
3089 . In path:{app.c}, before including path:{tpp.h}, add the
3090 following lines:
3091 +
3092 --
3093 [source,c]
3094 ----
3095 #define TRACEPOINT_DEFINE
3096 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3097 ----
3098 --
3099
3100 . Compile the application source file:
3101 +
3102 --
3103 [role="term"]
3104 ----
3105 $ gcc -c app.c
3106 ----
3107 --
3108
3109 . Build the application:
3110 +
3111 --
3112 [role="term"]
3113 ----
3114 $ gcc -o app app.o -ldl
3115 ----
3116 --
3117
3118 To run the instrumented application with tracing support:
3119
3120 * Preload the tracepoint provider package shared object and
3121 start the application:
3122 +
3123 --
3124 [role="term"]
3125 ----
3126 $ LD_PRELOAD=./libtpp.so ./app
3127 ----
3128 --
3129
3130 To run the instrumented application without tracing support:
3131
3132 * Start the application:
3133 +
3134 --
3135 [role="term"]
3136 ----
3137 $ ./app
3138 ----
3139 --
3140
3141 |
3142 The instrumented application dynamically loads the tracepoint provider
3143 package shared object.
3144
3145 See the <<dlclose-warning,warning about `dlclose()`>>.
3146
3147 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
3148
3149 |
3150 include::../common/ust-sit-step-tp-so.txt[]
3151
3152 To build the instrumented application:
3153
3154 . In path:{app.c}, before including path:{tpp.h}, add the
3155 following lines:
3156 +
3157 --
3158 [source,c]
3159 ----
3160 #define TRACEPOINT_DEFINE
3161 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3162 ----
3163 --
3164
3165 . Compile the application source file:
3166 +
3167 --
3168 [role="term"]
3169 ----
3170 $ gcc -c app.c
3171 ----
3172 --
3173
3174 . Build the application:
3175 +
3176 --
3177 [role="term"]
3178 ----
3179 $ gcc -o app app.o -ldl
3180 ----
3181 --
3182
3183 To run the instrumented application:
3184
3185 * Start the application:
3186 +
3187 --
3188 [role="term"]
3189 ----
3190 $ ./app
3191 ----
3192 --
3193
3194 |
3195 The application is linked with the instrumented user library.
3196
3197 The instrumented user library is statically linked with the tracepoint
3198 provider package object file.
3199
3200 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
3201
3202 |
3203 include::../common/ust-sit-step-tp-o-fpic.txt[]
3204
3205 To build the instrumented user library:
3206
3207 . In path:{emon.c}, before including path:{tpp.h}, add the
3208 following line:
3209 +
3210 --
3211 [source,c]
3212 ----
3213 #define TRACEPOINT_DEFINE
3214 ----
3215 --
3216
3217 . Compile the user library source file:
3218 +
3219 --
3220 [role="term"]
3221 ----
3222 $ gcc -I. -fpic -c emon.c
3223 ----
3224 --
3225
3226 . Build the user library shared object:
3227 +
3228 --
3229 [role="term"]
3230 ----
3231 $ gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
3232 ----
3233 --
3234
3235 To build the application:
3236
3237 . Compile the application source file:
3238 +
3239 --
3240 [role="term"]
3241 ----
3242 $ gcc -c app.c
3243 ----
3244 --
3245
3246 . Build the application:
3247 +
3248 --
3249 [role="term"]
3250 ----
3251 $ gcc -o app app.o -L. -lemon
3252 ----
3253 --
3254
3255 To run the application:
3256
3257 * Start the application:
3258 +
3259 --
3260 [role="term"]
3261 ----
3262 $ ./app
3263 ----
3264 --
3265
3266 |
3267 The application is linked with the instrumented user library.
3268
3269 The instrumented user library is linked with the tracepoint provider
3270 package shared object.
3271
3272 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3273
3274 |
3275 include::../common/ust-sit-step-tp-so.txt[]
3276
3277 To build the instrumented user library:
3278
3279 . In path:{emon.c}, before including path:{tpp.h}, add the
3280 following line:
3281 +
3282 --
3283 [source,c]
3284 ----
3285 #define TRACEPOINT_DEFINE
3286 ----
3287 --
3288
3289 . Compile the user library source file:
3290 +
3291 --
3292 [role="term"]
3293 ----
3294 $ gcc -I. -fpic -c emon.c
3295 ----
3296 --
3297
3298 . Build the user library shared object:
3299 +
3300 --
3301 [role="term"]
3302 ----
3303 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3304 ----
3305 --
3306
3307 To build the application:
3308
3309 . Compile the application source file:
3310 +
3311 --
3312 [role="term"]
3313 ----
3314 $ gcc -c app.c
3315 ----
3316 --
3317
3318 . Build the application:
3319 +
3320 --
3321 [role="term"]
3322 ----
3323 $ gcc -o app app.o -L. -lemon
3324 ----
3325 --
3326
3327 To run the application:
3328
3329 * Start the application:
3330 +
3331 --
3332 [role="term"]
3333 ----
3334 $ ./app
3335 ----
3336 --
3337
3338 |
3339 The tracepoint provider package shared object is preloaded before the
3340 application starts.
3341
3342 The application is linked with the instrumented user library.
3343
3344 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3345
3346 |
3347 include::../common/ust-sit-step-tp-so.txt[]
3348
3349 To build the instrumented user library:
3350
3351 . In path:{emon.c}, before including path:{tpp.h}, add the
3352 following lines:
3353 +
3354 --
3355 [source,c]
3356 ----
3357 #define TRACEPOINT_DEFINE
3358 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3359 ----
3360 --
3361
3362 . Compile the user library source file:
3363 +
3364 --
3365 [role="term"]
3366 ----
3367 $ gcc -I. -fpic -c emon.c
3368 ----
3369 --
3370
3371 . Build the user library shared object:
3372 +
3373 --
3374 [role="term"]
3375 ----
3376 $ gcc -shared -o libemon.so emon.o -ldl
3377 ----
3378 --
3379
3380 To build the application:
3381
3382 . Compile the application source file:
3383 +
3384 --
3385 [role="term"]
3386 ----
3387 $ gcc -c app.c
3388 ----
3389 --
3390
3391 . Build the application:
3392 +
3393 --
3394 [role="term"]
3395 ----
3396 $ gcc -o app app.o -L. -lemon
3397 ----
3398 --
3399
3400 To run the application with tracing support:
3401
3402 * Preload the tracepoint provider package shared object and
3403 start the application:
3404 +
3405 --
3406 [role="term"]
3407 ----
3408 $ LD_PRELOAD=./libtpp.so ./app
3409 ----
3410 --
3411
3412 To run the application without tracing support:
3413
3414 * Start the application:
3415 +
3416 --
3417 [role="term"]
3418 ----
3419 $ ./app
3420 ----
3421 --
3422
3423 |
3424 The application is linked with the instrumented user library.
3425
3426 The instrumented user library dynamically loads the tracepoint provider
3427 package shared object.
3428
3429 See the <<dlclose-warning,warning about `dlclose()`>>.
3430
3431 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3432
3433 |
3434 include::../common/ust-sit-step-tp-so.txt[]
3435
3436 To build the instrumented user library:
3437
3438 . In path:{emon.c}, before including path:{tpp.h}, add the
3439 following lines:
3440 +
3441 --
3442 [source,c]
3443 ----
3444 #define TRACEPOINT_DEFINE
3445 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3446 ----
3447 --
3448
3449 . Compile the user library source file:
3450 +
3451 --
3452 [role="term"]
3453 ----
3454 $ gcc -I. -fpic -c emon.c
3455 ----
3456 --
3457
3458 . Build the user library shared object:
3459 +
3460 --
3461 [role="term"]
3462 ----
3463 $ gcc -shared -o libemon.so emon.o -ldl
3464 ----
3465 --
3466
3467 To build the application:
3468
3469 . Compile the application source file:
3470 +
3471 --
3472 [role="term"]
3473 ----
3474 $ gcc -c app.c
3475 ----
3476 --
3477
3478 . Build the application:
3479 +
3480 --
3481 [role="term"]
3482 ----
3483 $ gcc -o app app.o -L. -lemon
3484 ----
3485 --
3486
3487 To run the application:
3488
3489 * Start the application:
3490 +
3491 --
3492 [role="term"]
3493 ----
3494 $ ./app
3495 ----
3496 --
3497
3498 |
3499 The application dynamically loads the instrumented user library.
3500
3501 The instrumented user library is linked with the tracepoint provider
3502 package shared object.
3503
3504 See the <<dlclose-warning,warning about `dlclose()`>>.
3505
3506 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3507
3508 |
3509 include::../common/ust-sit-step-tp-so.txt[]
3510
3511 To build the instrumented user library:
3512
3513 . In path:{emon.c}, before including path:{tpp.h}, add the
3514 following line:
3515 +
3516 --
3517 [source,c]
3518 ----
3519 #define TRACEPOINT_DEFINE
3520 ----
3521 --
3522
3523 . Compile the user library source file:
3524 +
3525 --
3526 [role="term"]
3527 ----
3528 $ gcc -I. -fpic -c emon.c
3529 ----
3530 --
3531
3532 . Build the user library shared object:
3533 +
3534 --
3535 [role="term"]
3536 ----
3537 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3538 ----
3539 --
3540
3541 To build the application:
3542
3543 . Compile the application source file:
3544 +
3545 --
3546 [role="term"]
3547 ----
3548 $ gcc -c app.c
3549 ----
3550 --
3551
3552 . Build the application:
3553 +
3554 --
3555 [role="term"]
3556 ----
3557 $ gcc -o app app.o -ldl -L. -lemon
3558 ----
3559 --
3560
3561 To run the application:
3562
3563 * Start the application:
3564 +
3565 --
3566 [role="term"]
3567 ----
3568 $ ./app
3569 ----
3570 --
3571
3572 |
3573 The application dynamically loads the instrumented user library.
3574
3575 The instrumented user library dynamically loads the tracepoint provider
3576 package shared object.
3577
3578 See the <<dlclose-warning,warning about `dlclose()`>>.
3579
3580 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3581
3582 |
3583 include::../common/ust-sit-step-tp-so.txt[]
3584
3585 To build the instrumented user library:
3586
3587 . In path:{emon.c}, before including path:{tpp.h}, add the
3588 following lines:
3589 +
3590 --
3591 [source,c]
3592 ----
3593 #define TRACEPOINT_DEFINE
3594 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3595 ----
3596 --
3597
3598 . Compile the user library source file:
3599 +
3600 --
3601 [role="term"]
3602 ----
3603 $ gcc -I. -fpic -c emon.c
3604 ----
3605 --
3606
3607 . Build the user library shared object:
3608 +
3609 --
3610 [role="term"]
3611 ----
3612 $ gcc -shared -o libemon.so emon.o -ldl
3613 ----
3614 --
3615
3616 To build the application:
3617
3618 . Compile the application source file:
3619 +
3620 --
3621 [role="term"]
3622 ----
3623 $ gcc -c app.c
3624 ----
3625 --
3626
3627 . Build the application:
3628 +
3629 --
3630 [role="term"]
3631 ----
3632 $ gcc -o app app.o -ldl -L. -lemon
3633 ----
3634 --
3635
3636 To run the application:
3637
3638 * Start the application:
3639 +
3640 --
3641 [role="term"]
3642 ----
3643 $ ./app
3644 ----
3645 --
3646
3647 |
3648 The tracepoint provider package shared object is preloaded before the
3649 application starts.
3650
3651 The application dynamically loads the instrumented user library.
3652
3653 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3654
3655 |
3656 include::../common/ust-sit-step-tp-so.txt[]
3657
3658 To build the instrumented user library:
3659
3660 . In path:{emon.c}, before including path:{tpp.h}, add the
3661 following lines:
3662 +
3663 --
3664 [source,c]
3665 ----
3666 #define TRACEPOINT_DEFINE
3667 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3668 ----
3669 --
3670
3671 . Compile the user library source file:
3672 +
3673 --
3674 [role="term"]
3675 ----
3676 $ gcc -I. -fpic -c emon.c
3677 ----
3678 --
3679
3680 . Build the user library shared object:
3681 +
3682 --
3683 [role="term"]
3684 ----
3685 $ gcc -shared -o libemon.so emon.o -ldl
3686 ----
3687 --
3688
3689 To build the application:
3690
3691 . Compile the application source file:
3692 +
3693 --
3694 [role="term"]
3695 ----
3696 $ gcc -c app.c
3697 ----
3698 --
3699
3700 . Build the application:
3701 +
3702 --
3703 [role="term"]
3704 ----
3705 $ gcc -o app app.o -L. -lemon
3706 ----
3707 --
3708
3709 To run the application with tracing support:
3710
3711 * Preload the tracepoint provider package shared object and
3712 start the application:
3713 +
3714 --
3715 [role="term"]
3716 ----
3717 $ LD_PRELOAD=./libtpp.so ./app
3718 ----
3719 --
3720
3721 To run the application without tracing support:
3722
3723 * Start the application:
3724 +
3725 --
3726 [role="term"]
3727 ----
3728 $ ./app
3729 ----
3730 --
3731
3732 |
3733 The application is statically linked with the tracepoint provider
3734 package object file.
3735
3736 The application is linked with the instrumented user library.
3737
3738 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3739
3740 |
3741 include::../common/ust-sit-step-tp-o.txt[]
3742
3743 To build the instrumented user library:
3744
3745 . In path:{emon.c}, before including path:{tpp.h}, add the
3746 following line:
3747 +
3748 --
3749 [source,c]
3750 ----
3751 #define TRACEPOINT_DEFINE
3752 ----
3753 --
3754
3755 . Compile the user library source file:
3756 +
3757 --
3758 [role="term"]
3759 ----
3760 $ gcc -I. -fpic -c emon.c
3761 ----
3762 --
3763
3764 . Build the user library shared object:
3765 +
3766 --
3767 [role="term"]
3768 ----
3769 $ gcc -shared -o libemon.so emon.o
3770 ----
3771 --
3772
3773 To build the application:
3774
3775 . Compile the application source file:
3776 +
3777 --
3778 [role="term"]
3779 ----
3780 $ gcc -c app.c
3781 ----
3782 --
3783
3784 . Build the application:
3785 +
3786 --
3787 [role="term"]
3788 ----
3789 $ gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3790 ----
3791 --
3792
3793 To run the instrumented application:
3794
3795 * Start the application:
3796 +
3797 --
3798 [role="term"]
3799 ----
3800 $ ./app
3801 ----
3802 --
3803
3804 |
3805 The application is statically linked with the tracepoint provider
3806 package object file.
3807
3808 The application dynamically loads the instrumented user library.
3809
3810 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3811
3812 |
3813 include::../common/ust-sit-step-tp-o.txt[]
3814
3815 To build the application:
3816
3817 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3818 +
3819 --
3820 [source,c]
3821 ----
3822 #define TRACEPOINT_DEFINE
3823 ----
3824 --
3825
3826 . Compile the application source file:
3827 +
3828 --
3829 [role="term"]
3830 ----
3831 $ gcc -c app.c
3832 ----
3833 --
3834
3835 . Build the application:
3836 +
3837 --
3838 [role="term"]
3839 ----
3840 $ gcc -Wl,--export-dynamic -o app app.o tpp.o \
3841 -llttng-ust -ldl
3842 ----
3843 --
3844 +
3845 The `--export-dynamic` option passed to the linker is necessary for the
3846 dynamically loaded library to ``see'' the tracepoint symbols defined in
3847 the application.
3848
3849 To build the instrumented user library:
3850
3851 . Compile the user library source file:
3852 +
3853 --
3854 [role="term"]
3855 ----
3856 $ gcc -I. -fpic -c emon.c
3857 ----
3858 --
3859
3860 . Build the user library shared object:
3861 +
3862 --
3863 [role="term"]
3864 ----
3865 $ gcc -shared -o libemon.so emon.o
3866 ----
3867 --
3868
3869 To run the application:
3870
3871 * Start the application:
3872 +
3873 --
3874 [role="term"]
3875 ----
3876 $ ./app
3877 ----
3878 --
3879 |====
3880
3881 [[dlclose-warning]]
3882 [IMPORTANT]
3883 .Do not use man:dlclose(3) on a tracepoint provider package
3884 ====
3885 Never use man:dlclose(3) on any shared object which:
3886
3887 * Is linked with, statically or dynamically, a tracepoint provider
3888 package.
3889 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3890 package shared object.
3891
3892 This is currently considered **unsafe** due to a lack of reference
3893 counting from LTTng-UST to the shared object.
3894
3895 A known workaround (available since glibc 2.2) is to use the
3896 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3897 effect of not unloading the loaded shared object, even if man:dlclose(3)
3898 is called.
3899
3900 You can also preload the tracepoint provider package shared object with
3901 the env:LD_PRELOAD environment variable to overcome this limitation.
3902 ====
3903
3904
3905 [[using-lttng-ust-with-daemons]]
3906 ===== Use noch:{LTTng-UST} with daemons
3907
3908 If your instrumented application calls man:fork(2), man:clone(2),
3909 or BSD's man:rfork(2), without a following man:exec(3)-family
3910 system call, you must preload the path:{liblttng-ust-fork.so} shared
3911 object when you start the application.
3912
3913 [role="term"]
3914 ----
3915 $ LD_PRELOAD=liblttng-ust-fork.so ./my-app
3916 ----
3917
3918 If your tracepoint provider package is
3919 a shared library which you also preload, you must put both
3920 shared objects in env:LD_PRELOAD:
3921
3922 [role="term"]
3923 ----
3924 $ LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3925 ----
3926
3927
3928 [role="since-2.9"]
3929 [[liblttng-ust-fd]]
3930 ===== Use noch:{LTTng-UST} with applications which close file descriptors that don't belong to them
3931
3932 If your instrumented application closes one or more file descriptors
3933 which it did not open itself, you must preload the
3934 path:{liblttng-ust-fd.so} shared object when you start the application:
3935
3936 [role="term"]
3937 ----
3938 $ LD_PRELOAD=liblttng-ust-fd.so ./my-app
3939 ----
3940
3941 Typical use cases include closing all the file descriptors after
3942 man:fork(2) or man:rfork(2) and buggy applications doing
3943 ``double closes''.
3944
3945
3946 [[lttng-ust-pkg-config]]
3947 ===== Use noch:{pkg-config}
3948
3949 On some distributions, LTTng-UST ships with a
3950 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3951 metadata file. If this is your case, then you can use cmd:pkg-config to
3952 build an application on the command line:
3953
3954 [role="term"]
3955 ----
3956 $ gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3957 ----
3958
3959
3960 [[instrumenting-32-bit-app-on-64-bit-system]]
3961 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3962
3963 In order to trace a 32-bit application running on a 64-bit system,
3964 LTTng must use a dedicated 32-bit
3965 <<lttng-consumerd,consumer daemon>>.
3966
3967 The following steps show how to build and install a 32-bit consumer
3968 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3969 build and install the 32-bit LTTng-UST libraries, and how to build and
3970 link an instrumented 32-bit application in that context.
3971
3972 To build a 32-bit instrumented application for a 64-bit target system,
3973 assuming you have a fresh target system with no installed Userspace RCU
3974 or LTTng packages:
3975
3976 . Download, build, and install a 32-bit version of Userspace RCU:
3977 +
3978 --
3979 [role="term"]
3980 ----
3981 $ cd $(mktemp -d) &&
3982 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3983 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3984 cd userspace-rcu-0.9.* &&
3985 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3986 make &&
3987 sudo make install &&
3988 sudo ldconfig
3989 ----
3990 --
3991
3992 . Using your distribution's package manager, or from source, install
3993 the following 32-bit versions of the following dependencies of
3994 LTTng-tools and LTTng-UST:
3995 +
3996 --
3997 * https://sourceforge.net/projects/libuuid/[libuuid]
3998 * http://directory.fsf.org/wiki/Popt[popt]
3999 * http://www.xmlsoft.org/[libxml2]
4000 --
4001
4002 . Download, build, and install a 32-bit version of the latest
4003 LTTng-UST{nbsp}{revision}:
4004 +
4005 --
4006 [role="term"]
4007 ----
4008 $ cd $(mktemp -d) &&
4009 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.10.tar.bz2 &&
4010 tar -xf lttng-ust-latest-2.10.tar.bz2 &&
4011 cd lttng-ust-2.10.* &&
4012 ./configure --libdir=/usr/local/lib32 \
4013 CFLAGS=-m32 CXXFLAGS=-m32 \
4014 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
4015 make &&
4016 sudo make install &&
4017 sudo ldconfig
4018 ----
4019 --
4020 +
4021 [NOTE]
4022 ====
4023 Depending on your distribution,
4024 32-bit libraries could be installed at a different location than
4025 `/usr/lib32`. For example, Debian is known to install
4026 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
4027
4028 In this case, make sure to set `LDFLAGS` to all the
4029 relevant 32-bit library paths, for example:
4030
4031 [role="term"]
4032 ----
4033 $ LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
4034 ----
4035 ====
4036
4037 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
4038 the 32-bit consumer daemon:
4039 +
4040 --
4041 [role="term"]
4042 ----
4043 $ cd $(mktemp -d) &&
4044 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
4045 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
4046 cd lttng-tools-2.10.* &&
4047 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
4048 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' \
4049 --disable-bin-lttng --disable-bin-lttng-crash \
4050 --disable-bin-lttng-relayd --disable-bin-lttng-sessiond &&
4051 make &&
4052 cd src/bin/lttng-consumerd &&
4053 sudo make install &&
4054 sudo ldconfig
4055 ----
4056 --
4057
4058 . From your distribution or from source,
4059 <<installing-lttng,install>> the 64-bit versions of
4060 LTTng-UST and Userspace RCU.
4061 . Download, build, and install the 64-bit version of the
4062 latest LTTng-tools{nbsp}{revision}:
4063 +
4064 --
4065 [role="term"]
4066 ----
4067 $ cd $(mktemp -d) &&
4068 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
4069 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
4070 cd lttng-tools-2.10.* &&
4071 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
4072 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
4073 make &&
4074 sudo make install &&
4075 sudo ldconfig
4076 ----
4077 --
4078
4079 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
4080 when linking your 32-bit application:
4081 +
4082 ----
4083 -m32 -L/usr/lib32 -L/usr/local/lib32 \
4084 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
4085 ----
4086 +
4087 For example, let's rebuild the quick start example in
4088 <<tracing-your-own-user-application,Trace a user application>> as an
4089 instrumented 32-bit application:
4090 +
4091 --
4092 [role="term"]
4093 ----
4094 $ gcc -m32 -c -I. hello-tp.c
4095 $ gcc -m32 -c hello.c
4096 $ gcc -m32 -o hello hello.o hello-tp.o \
4097 -L/usr/lib32 -L/usr/local/lib32 \
4098 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
4099 -llttng-ust -ldl
4100 ----
4101 --
4102
4103 No special action is required to execute the 32-bit application and
4104 to trace it: use the command-line man:lttng(1) tool as usual.
4105
4106
4107 [role="since-2.5"]
4108 [[tracef]]
4109 ==== Use `tracef()`
4110
4111 man:tracef(3) is a small LTTng-UST API designed for quick,
4112 man:printf(3)-like instrumentation without the burden of
4113 <<tracepoint-provider,creating>> and
4114 <<building-tracepoint-providers-and-user-application,building>>
4115 a tracepoint provider package.
4116
4117 To use `tracef()` in your application:
4118
4119 . In the C or C++ source files where you need to use `tracef()`,
4120 include `<lttng/tracef.h>`:
4121 +
4122 --
4123 [source,c]
4124 ----
4125 #include <lttng/tracef.h>
4126 ----
4127 --
4128
4129 . In the application's source code, use `tracef()` like you would use
4130 man:printf(3):
4131 +
4132 --
4133 [source,c]
4134 ----
4135 /* ... */
4136
4137 tracef("my message: %d (%s)", my_integer, my_string);
4138
4139 /* ... */
4140 ----
4141 --
4142
4143 . Link your application with `liblttng-ust`:
4144 +
4145 --
4146 [role="term"]
4147 ----
4148 $ gcc -o app app.c -llttng-ust
4149 ----
4150 --
4151
4152 To trace the events that `tracef()` calls emit:
4153
4154 * <<enabling-disabling-events,Create an event rule>> which matches the
4155 `lttng_ust_tracef:*` event name:
4156 +
4157 --
4158 [role="term"]
4159 ----
4160 $ lttng enable-event --userspace 'lttng_ust_tracef:*'
4161 ----
4162 --
4163
4164 [IMPORTANT]
4165 .Limitations of `tracef()`
4166 ====
4167 The `tracef()` utility function was developed to make user space tracing
4168 super simple, albeit with notable disadvantages compared to
4169 <<defining-tracepoints,user-defined tracepoints>>:
4170
4171 * All the emitted events have the same tracepoint provider and
4172 tracepoint names, respectively `lttng_ust_tracef` and `event`.
4173 * There is no static type checking.
4174 * The only event record field you actually get, named `msg`, is a string
4175 potentially containing the values you passed to `tracef()`
4176 using your own format string. This also means that you cannot filter
4177 events with a custom expression at run time because there are no
4178 isolated fields.
4179 * Since `tracef()` uses the C standard library's man:vasprintf(3)
4180 function behind the scenes to format the strings at run time, its
4181 expected performance is lower than with user-defined tracepoints,
4182 which do not require a conversion to a string.
4183
4184 Taking this into consideration, `tracef()` is useful for some quick
4185 prototyping and debugging, but you should not consider it for any
4186 permanent and serious applicative instrumentation.
4187 ====
4188
4189
4190 [role="since-2.7"]
4191 [[tracelog]]
4192 ==== Use `tracelog()`
4193
4194 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
4195 the difference that it accepts an additional log level parameter.
4196
4197 The goal of `tracelog()` is to ease the migration from logging to
4198 tracing.
4199
4200 To use `tracelog()` in your application:
4201
4202 . In the C or C++ source files where you need to use `tracelog()`,
4203 include `<lttng/tracelog.h>`:
4204 +
4205 --
4206 [source,c]
4207 ----
4208 #include <lttng/tracelog.h>
4209 ----
4210 --
4211
4212 . In the application's source code, use `tracelog()` like you would use
4213 man:printf(3), except for the first parameter which is the log
4214 level:
4215 +
4216 --
4217 [source,c]
4218 ----
4219 /* ... */
4220
4221 tracelog(TRACE_WARNING, "my message: %d (%s)",
4222 my_integer, my_string);
4223
4224 /* ... */
4225 ----
4226 --
4227 +
4228 See man:lttng-ust(3) for a list of available log level names.
4229
4230 . Link your application with `liblttng-ust`:
4231 +
4232 --
4233 [role="term"]
4234 ----
4235 $ gcc -o app app.c -llttng-ust
4236 ----
4237 --
4238
4239 To trace the events that `tracelog()` calls emit with a log level
4240 _as severe as_ a specific log level:
4241
4242 * <<enabling-disabling-events,Create an event rule>> which matches the
4243 `lttng_ust_tracelog:*` event name and a minimum level
4244 of severity:
4245 +
4246 --
4247 [role="term"]
4248 ----
4249 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
4250 --loglevel=TRACE_WARNING
4251 ----
4252 --
4253
4254 To trace the events that `tracelog()` calls emit with a
4255 _specific log level_:
4256
4257 * Create an event rule which matches the `lttng_ust_tracelog:*`
4258 event name and a specific log level:
4259 +
4260 --
4261 [role="term"]
4262 ----
4263 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
4264 --loglevel-only=TRACE_INFO
4265 ----
4266 --
4267
4268
4269 [[prebuilt-ust-helpers]]
4270 === Prebuilt user space tracing helpers
4271
4272 The LTTng-UST package provides a few helpers in the form or preloadable
4273 shared objects which automatically instrument system functions and
4274 calls.
4275
4276 The helper shared objects are normally found in dir:{/usr/lib}. If you
4277 built LTTng-UST <<building-from-source,from source>>, they are probably
4278 located in dir:{/usr/local/lib}.
4279
4280 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4281 are:
4282
4283 path:{liblttng-ust-libc-wrapper.so}::
4284 path:{liblttng-ust-pthread-wrapper.so}::
4285 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4286 memory and POSIX threads function tracing>>.
4287
4288 path:{liblttng-ust-cyg-profile.so}::
4289 path:{liblttng-ust-cyg-profile-fast.so}::
4290 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4291
4292 path:{liblttng-ust-dl.so}::
4293 <<liblttng-ust-dl,Dynamic linker tracing>>.
4294
4295 To use a user space tracing helper with any user application:
4296
4297 * Preload the helper shared object when you start the application:
4298 +
4299 --
4300 [role="term"]
4301 ----
4302 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4303 ----
4304 --
4305 +
4306 You can preload more than one helper:
4307 +
4308 --
4309 [role="term"]
4310 ----
4311 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4312 ----
4313 --
4314
4315
4316 [role="since-2.3"]
4317 [[liblttng-ust-libc-pthread-wrapper]]
4318 ==== Instrument C standard library memory and POSIX threads functions
4319
4320 The path:{liblttng-ust-libc-wrapper.so} and
4321 path:{liblttng-ust-pthread-wrapper.so} helpers
4322 add instrumentation to some C standard library and POSIX
4323 threads functions.
4324
4325 [role="growable"]
4326 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4327 |====
4328 |TP provider name |TP name |Instrumented function
4329
4330 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4331 |`calloc` |man:calloc(3)
4332 |`realloc` |man:realloc(3)
4333 |`free` |man:free(3)
4334 |`memalign` |man:memalign(3)
4335 |`posix_memalign` |man:posix_memalign(3)
4336 |====
4337
4338 [role="growable"]
4339 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4340 |====
4341 |TP provider name |TP name |Instrumented function
4342
4343 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4344 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4345 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4346 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4347 |====
4348
4349 When you preload the shared object, it replaces the functions listed
4350 in the previous tables by wrappers which contain tracepoints and call
4351 the replaced functions.
4352
4353
4354 [[liblttng-ust-cyg-profile]]
4355 ==== Instrument function entry and exit
4356
4357 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4358 to the entry and exit points of functions.
4359
4360 man:gcc(1) and man:clang(1) have an option named
4361 https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html[`-finstrument-functions`]
4362 which generates instrumentation calls for entry and exit to functions.
4363 The LTTng-UST function tracing helpers,
4364 path:{liblttng-ust-cyg-profile.so} and
4365 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4366 to add tracepoints to the two generated functions (which contain
4367 `cyg_profile` in their names, hence the helper's name).
4368
4369 To use the LTTng-UST function tracing helper, the source files to
4370 instrument must be built using the `-finstrument-functions` compiler
4371 flag.
4372
4373 There are two versions of the LTTng-UST function tracing helper:
4374
4375 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4376 that you should only use when it can be _guaranteed_ that the
4377 complete event stream is recorded without any lost event record.
4378 Any kind of duplicate information is left out.
4379 +
4380 Assuming no event record is lost, having only the function addresses on
4381 entry is enough to create a call graph, since an event record always
4382 contains the ID of the CPU that generated it.
4383 +
4384 You can use a tool like man:addr2line(1) to convert function addresses
4385 back to source file names and line numbers.
4386
4387 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4388 which also works in use cases where event records might get discarded or
4389 not recorded from application startup.
4390 In these cases, the trace analyzer needs more information to be
4391 able to reconstruct the program flow.
4392
4393 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4394 points of this helper.
4395
4396 All the tracepoints that this helper provides have the
4397 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4398
4399 TIP: It's sometimes a good idea to limit the number of source files that
4400 you compile with the `-finstrument-functions` option to prevent LTTng
4401 from writing an excessive amount of trace data at run time. When using
4402 man:gcc(1), you can use the
4403 `-finstrument-functions-exclude-function-list` option to avoid
4404 instrument entries and exits of specific function names.
4405
4406
4407 [role="since-2.4"]
4408 [[liblttng-ust-dl]]
4409 ==== Instrument the dynamic linker
4410
4411 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4412 man:dlopen(3) and man:dlclose(3) function calls.
4413
4414 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4415 of this helper.
4416
4417
4418 [role="since-2.4"]
4419 [[java-application]]
4420 === User space Java agent
4421
4422 You can instrument any Java application which uses one of the following
4423 logging frameworks:
4424
4425 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4426 (JUL) core logging facilities.
4427 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4428 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4429
4430 [role="img-100"]
4431 .LTTng-UST Java agent imported by a Java application.
4432 image::java-app.png[]
4433
4434 Note that the methods described below are new in LTTng{nbsp}2.8.
4435 Previous LTTng versions use another technique.
4436
4437 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4438 and https://ci.lttng.org/[continuous integration], thus this version is
4439 directly supported. However, the LTTng-UST Java agent is also tested
4440 with OpenJDK{nbsp}7.
4441
4442
4443 [role="since-2.8"]
4444 [[jul]]
4445 ==== Use the LTTng-UST Java agent for `java.util.logging`
4446
4447 To use the LTTng-UST Java agent in a Java application which uses
4448 `java.util.logging` (JUL):
4449
4450 . In the Java application's source code, import the LTTng-UST
4451 log handler package for `java.util.logging`:
4452 +
4453 --
4454 [source,java]
4455 ----
4456 import org.lttng.ust.agent.jul.LttngLogHandler;
4457 ----
4458 --
4459
4460 . Create an LTTng-UST JUL log handler:
4461 +
4462 --
4463 [source,java]
4464 ----
4465 Handler lttngUstLogHandler = new LttngLogHandler();
4466 ----
4467 --
4468
4469 . Add this handler to the JUL loggers which should emit LTTng events:
4470 +
4471 --
4472 [source,java]
4473 ----
4474 Logger myLogger = Logger.getLogger("some-logger");
4475
4476 myLogger.addHandler(lttngUstLogHandler);
4477 ----
4478 --
4479
4480 . Use `java.util.logging` log statements and configuration as usual.
4481 The loggers with an attached LTTng-UST log handler can emit
4482 LTTng events.
4483
4484 . Before exiting the application, remove the LTTng-UST log handler from
4485 the loggers attached to it and call its `close()` method:
4486 +
4487 --
4488 [source,java]
4489 ----
4490 myLogger.removeHandler(lttngUstLogHandler);
4491 lttngUstLogHandler.close();
4492 ----
4493 --
4494 +
4495 This is not strictly necessary, but it is recommended for a clean
4496 disposal of the handler's resources.
4497
4498 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4499 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4500 in the
4501 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4502 path] when you build the Java application.
4503 +
4504 The JAR files are typically located in dir:{/usr/share/java}.
4505 +
4506 IMPORTANT: The LTTng-UST Java agent must be
4507 <<installing-lttng,installed>> for the logging framework your
4508 application uses.
4509
4510 .Use the LTTng-UST Java agent for `java.util.logging`.
4511 ====
4512 [source,java]
4513 .path:{Test.java}
4514 ----
4515 import java.io.IOException;
4516 import java.util.logging.Handler;
4517 import java.util.logging.Logger;
4518 import org.lttng.ust.agent.jul.LttngLogHandler;
4519
4520 public class Test
4521 {
4522 private static final int answer = 42;
4523
4524 public static void main(String[] argv) throws Exception
4525 {
4526 // Create a logger
4527 Logger logger = Logger.getLogger("jello");
4528
4529 // Create an LTTng-UST log handler
4530 Handler lttngUstLogHandler = new LttngLogHandler();
4531
4532 // Add the LTTng-UST log handler to our logger
4533 logger.addHandler(lttngUstLogHandler);
4534
4535 // Log at will!
4536 logger.info("some info");
4537 logger.warning("some warning");
4538 Thread.sleep(500);
4539 logger.finer("finer information; the answer is " + answer);
4540 Thread.sleep(123);
4541 logger.severe("error!");
4542
4543 // Not mandatory, but cleaner
4544 logger.removeHandler(lttngUstLogHandler);
4545 lttngUstLogHandler.close();
4546 }
4547 }
4548 ----
4549
4550 Build this example:
4551
4552 [role="term"]
4553 ----
4554 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4555 ----
4556
4557 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4558 <<enabling-disabling-events,create an event rule>> matching the
4559 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4560
4561 [role="term"]
4562 ----
4563 $ lttng create
4564 $ lttng enable-event --jul jello
4565 $ lttng start
4566 ----
4567
4568 Run the compiled class:
4569
4570 [role="term"]
4571 ----
4572 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4573 ----
4574
4575 <<basic-tracing-session-control,Stop tracing>> and inspect the
4576 recorded events:
4577
4578 [role="term"]
4579 ----
4580 $ lttng stop
4581 $ lttng view
4582 ----
4583 ====
4584
4585 In the resulting trace, an <<event,event record>> generated by a Java
4586 application using `java.util.logging` is named `lttng_jul:event` and
4587 has the following fields:
4588
4589 `msg`::
4590 Log record's message.
4591
4592 `logger_name`::
4593 Logger name.
4594
4595 `class_name`::
4596 Name of the class in which the log statement was executed.
4597
4598 `method_name`::
4599 Name of the method in which the log statement was executed.
4600
4601 `long_millis`::
4602 Logging time (timestamp in milliseconds).
4603
4604 `int_loglevel`::
4605 Log level integer value.
4606
4607 `int_threadid`::
4608 ID of the thread in which the log statement was executed.
4609
4610 You can use the opt:lttng-enable-event(1):--loglevel or
4611 opt:lttng-enable-event(1):--loglevel-only option of the
4612 man:lttng-enable-event(1) command to target a range of JUL log levels
4613 or a specific JUL log level.
4614
4615
4616 [role="since-2.8"]
4617 [[log4j]]
4618 ==== Use the LTTng-UST Java agent for Apache log4j
4619
4620 To use the LTTng-UST Java agent in a Java application which uses
4621 Apache log4j 1.2:
4622
4623 . In the Java application's source code, import the LTTng-UST
4624 log appender package for Apache log4j:
4625 +
4626 --
4627 [source,java]
4628 ----
4629 import org.lttng.ust.agent.log4j.LttngLogAppender;
4630 ----
4631 --
4632
4633 . Create an LTTng-UST log4j log appender:
4634 +
4635 --
4636 [source,java]
4637 ----
4638 Appender lttngUstLogAppender = new LttngLogAppender();
4639 ----
4640 --
4641
4642 . Add this appender to the log4j loggers which should emit LTTng events:
4643 +
4644 --
4645 [source,java]
4646 ----
4647 Logger myLogger = Logger.getLogger("some-logger");
4648
4649 myLogger.addAppender(lttngUstLogAppender);
4650 ----
4651 --
4652
4653 . Use Apache log4j log statements and configuration as usual. The
4654 loggers with an attached LTTng-UST log appender can emit LTTng events.
4655
4656 . Before exiting the application, remove the LTTng-UST log appender from
4657 the loggers attached to it and call its `close()` method:
4658 +
4659 --
4660 [source,java]
4661 ----
4662 myLogger.removeAppender(lttngUstLogAppender);
4663 lttngUstLogAppender.close();
4664 ----
4665 --
4666 +
4667 This is not strictly necessary, but it is recommended for a clean
4668 disposal of the appender's resources.
4669
4670 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4671 files, path:{lttng-ust-agent-common.jar} and
4672 path:{lttng-ust-agent-log4j.jar}, in the
4673 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4674 path] when you build the Java application.
4675 +
4676 The JAR files are typically located in dir:{/usr/share/java}.
4677 +
4678 IMPORTANT: The LTTng-UST Java agent must be
4679 <<installing-lttng,installed>> for the logging framework your
4680 application uses.
4681
4682 .Use the LTTng-UST Java agent for Apache log4j.
4683 ====
4684 [source,java]
4685 .path:{Test.java}
4686 ----
4687 import org.apache.log4j.Appender;
4688 import org.apache.log4j.Logger;
4689 import org.lttng.ust.agent.log4j.LttngLogAppender;
4690
4691 public class Test
4692 {
4693 private static final int answer = 42;
4694
4695 public static void main(String[] argv) throws Exception
4696 {
4697 // Create a logger
4698 Logger logger = Logger.getLogger("jello");
4699
4700 // Create an LTTng-UST log appender
4701 Appender lttngUstLogAppender = new LttngLogAppender();
4702
4703 // Add the LTTng-UST log appender to our logger
4704 logger.addAppender(lttngUstLogAppender);
4705
4706 // Log at will!
4707 logger.info("some info");
4708 logger.warn("some warning");
4709 Thread.sleep(500);
4710 logger.debug("debug information; the answer is " + answer);
4711 Thread.sleep(123);
4712 logger.fatal("error!");
4713
4714 // Not mandatory, but cleaner
4715 logger.removeAppender(lttngUstLogAppender);
4716 lttngUstLogAppender.close();
4717 }
4718 }
4719
4720 ----
4721
4722 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4723 file):
4724
4725 [role="term"]
4726 ----
4727 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4728 ----
4729
4730 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4731 <<enabling-disabling-events,create an event rule>> matching the
4732 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4733
4734 [role="term"]
4735 ----
4736 $ lttng create
4737 $ lttng enable-event --log4j jello
4738 $ lttng start
4739 ----
4740
4741 Run the compiled class:
4742
4743 [role="term"]
4744 ----
4745 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4746 ----
4747
4748 <<basic-tracing-session-control,Stop tracing>> and inspect the
4749 recorded events:
4750
4751 [role="term"]
4752 ----
4753 $ lttng stop
4754 $ lttng view
4755 ----
4756 ====
4757
4758 In the resulting trace, an <<event,event record>> generated by a Java
4759 application using log4j is named `lttng_log4j:event` and
4760 has the following fields:
4761
4762 `msg`::
4763 Log record's message.
4764
4765 `logger_name`::
4766 Logger name.
4767
4768 `class_name`::
4769 Name of the class in which the log statement was executed.
4770
4771 `method_name`::
4772 Name of the method in which the log statement was executed.
4773
4774 `filename`::
4775 Name of the file in which the executed log statement is located.
4776
4777 `line_number`::
4778 Line number at which the log statement was executed.
4779
4780 `timestamp`::
4781 Logging timestamp.
4782
4783 `int_loglevel`::
4784 Log level integer value.
4785
4786 `thread_name`::
4787 Name of the Java thread in which the log statement was executed.
4788
4789 You can use the opt:lttng-enable-event(1):--loglevel or
4790 opt:lttng-enable-event(1):--loglevel-only option of the
4791 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4792 or a specific log4j log level.
4793
4794
4795 [role="since-2.8"]
4796 [[java-application-context]]
4797 ==== Provide application-specific context fields in a Java application
4798
4799 A Java application-specific context field is a piece of state provided
4800 by the application which <<adding-context,you can add>>, using the
4801 man:lttng-add-context(1) command, to each <<event,event record>>
4802 produced by the log statements of this application.
4803
4804 For example, a given object might have a current request ID variable.
4805 You can create a context information retriever for this object and
4806 assign a name to this current request ID. You can then, using the
4807 man:lttng-add-context(1) command, add this context field by name to
4808 the JUL or log4j <<channel,channel>>.
4809
4810 To provide application-specific context fields in a Java application:
4811
4812 . In the Java application's source code, import the LTTng-UST
4813 Java agent context classes and interfaces:
4814 +
4815 --
4816 [source,java]
4817 ----
4818 import org.lttng.ust.agent.context.ContextInfoManager;
4819 import org.lttng.ust.agent.context.IContextInfoRetriever;
4820 ----
4821 --
4822
4823 . Create a context information retriever class, that is, a class which
4824 implements the `IContextInfoRetriever` interface:
4825 +
4826 --
4827 [source,java]
4828 ----
4829 class MyContextInfoRetriever implements IContextInfoRetriever
4830 {
4831 @Override
4832 public Object retrieveContextInfo(String key)
4833 {
4834 if (key.equals("intCtx")) {
4835 return (short) 17;
4836 } else if (key.equals("strContext")) {
4837 return "context value!";
4838 } else {
4839 return null;
4840 }
4841 }
4842 }
4843 ----
4844 --
4845 +
4846 This `retrieveContextInfo()` method is the only member of the
4847 `IContextInfoRetriever` interface. Its role is to return the current
4848 value of a state by name to create a context field. The names of the
4849 context fields and which state variables they return depends on your
4850 specific scenario.
4851 +
4852 All primitive types and objects are supported as context fields.
4853 When `retrieveContextInfo()` returns an object, the context field
4854 serializer calls its `toString()` method to add a string field to
4855 event records. The method can also return `null`, which means that
4856 no context field is available for the required name.
4857
4858 . Register an instance of your context information retriever class to
4859 the context information manager singleton:
4860 +
4861 --
4862 [source,java]
4863 ----
4864 IContextInfoRetriever cir = new MyContextInfoRetriever();
4865 ContextInfoManager cim = ContextInfoManager.getInstance();
4866 cim.registerContextInfoRetriever("retrieverName", cir);
4867 ----
4868 --
4869
4870 . Before exiting the application, remove your context information
4871 retriever from the context information manager singleton:
4872 +
4873 --
4874 [source,java]
4875 ----
4876 ContextInfoManager cim = ContextInfoManager.getInstance();
4877 cim.unregisterContextInfoRetriever("retrieverName");
4878 ----
4879 --
4880 +
4881 This is not strictly necessary, but it is recommended for a clean
4882 disposal of some manager's resources.
4883
4884 . Build your Java application with LTTng-UST Java agent support as
4885 usual, following the procedure for either the <<jul,JUL>> or
4886 <<log4j,Apache log4j>> framework.
4887
4888
4889 .Provide application-specific context fields in a Java application.
4890 ====
4891 [source,java]
4892 .path:{Test.java}
4893 ----
4894 import java.util.logging.Handler;
4895 import java.util.logging.Logger;
4896 import org.lttng.ust.agent.jul.LttngLogHandler;
4897 import org.lttng.ust.agent.context.ContextInfoManager;
4898 import org.lttng.ust.agent.context.IContextInfoRetriever;
4899
4900 public class Test
4901 {
4902 // Our context information retriever class
4903 private static class MyContextInfoRetriever
4904 implements IContextInfoRetriever
4905 {
4906 @Override
4907 public Object retrieveContextInfo(String key) {
4908 if (key.equals("intCtx")) {
4909 return (short) 17;
4910 } else if (key.equals("strContext")) {
4911 return "context value!";
4912 } else {
4913 return null;
4914 }
4915 }
4916 }
4917
4918 private static final int answer = 42;
4919
4920 public static void main(String args[]) throws Exception
4921 {
4922 // Get the context information manager instance
4923 ContextInfoManager cim = ContextInfoManager.getInstance();
4924
4925 // Create and register our context information retriever
4926 IContextInfoRetriever cir = new MyContextInfoRetriever();
4927 cim.registerContextInfoRetriever("myRetriever", cir);
4928
4929 // Create a logger
4930 Logger logger = Logger.getLogger("jello");
4931
4932 // Create an LTTng-UST log handler
4933 Handler lttngUstLogHandler = new LttngLogHandler();
4934
4935 // Add the LTTng-UST log handler to our logger
4936 logger.addHandler(lttngUstLogHandler);
4937
4938 // Log at will!
4939 logger.info("some info");
4940 logger.warning("some warning");
4941 Thread.sleep(500);
4942 logger.finer("finer information; the answer is " + answer);
4943 Thread.sleep(123);
4944 logger.severe("error!");
4945
4946 // Not mandatory, but cleaner
4947 logger.removeHandler(lttngUstLogHandler);
4948 lttngUstLogHandler.close();
4949 cim.unregisterContextInfoRetriever("myRetriever");
4950 }
4951 }
4952 ----
4953
4954 Build this example:
4955
4956 [role="term"]
4957 ----
4958 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4959 ----
4960
4961 <<creating-destroying-tracing-sessions,Create a tracing session>>
4962 and <<enabling-disabling-events,create an event rule>> matching the
4963 `jello` JUL logger:
4964
4965 [role="term"]
4966 ----
4967 $ lttng create
4968 $ lttng enable-event --jul jello
4969 ----
4970
4971 <<adding-context,Add the application-specific context fields>> to the
4972 JUL channel:
4973
4974 [role="term"]
4975 ----
4976 $ lttng add-context --jul --type='$app.myRetriever:intCtx'
4977 $ lttng add-context --jul --type='$app.myRetriever:strContext'
4978 ----
4979
4980 <<basic-tracing-session-control,Start tracing>>:
4981
4982 [role="term"]
4983 ----
4984 $ lttng start
4985 ----
4986
4987 Run the compiled class:
4988
4989 [role="term"]
4990 ----
4991 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4992 ----
4993
4994 <<basic-tracing-session-control,Stop tracing>> and inspect the
4995 recorded events:
4996
4997 [role="term"]
4998 ----
4999 $ lttng stop
5000 $ lttng view
5001 ----
5002 ====
5003
5004
5005 [role="since-2.7"]
5006 [[python-application]]
5007 === User space Python agent
5008
5009 You can instrument a Python 2 or Python 3 application which uses the
5010 standard https://docs.python.org/3/library/logging.html[`logging`]
5011 package.
5012
5013 Each log statement emits an LTTng event once the
5014 application module imports the
5015 <<lttng-ust-agents,LTTng-UST Python agent>> package.
5016
5017 [role="img-100"]
5018 .A Python application importing the LTTng-UST Python agent.
5019 image::python-app.png[]
5020
5021 To use the LTTng-UST Python agent:
5022
5023 . In the Python application's source code, import the LTTng-UST Python
5024 agent:
5025 +
5026 --
5027 [source,python]
5028 ----
5029 import lttngust
5030 ----
5031 --
5032 +
5033 The LTTng-UST Python agent automatically adds its logging handler to the
5034 root logger at import time.
5035 +
5036 Any log statement that the application executes before this import does
5037 not emit an LTTng event.
5038 +
5039 IMPORTANT: The LTTng-UST Python agent must be
5040 <<installing-lttng,installed>>.
5041
5042 . Use log statements and logging configuration as usual.
5043 Since the LTTng-UST Python agent adds a handler to the _root_
5044 logger, you can trace any log statement from any logger.
5045
5046 .Use the LTTng-UST Python agent.
5047 ====
5048 [source,python]
5049 .path:{test.py}
5050 ----
5051 import lttngust
5052 import logging
5053 import time
5054
5055
5056 def example():
5057 logging.basicConfig()
5058 logger = logging.getLogger('my-logger')
5059
5060 while True:
5061 logger.debug('debug message')
5062 logger.info('info message')
5063 logger.warn('warn message')
5064 logger.error('error message')
5065 logger.critical('critical message')
5066 time.sleep(1)
5067
5068
5069 if __name__ == '__main__':
5070 example()
5071 ----
5072
5073 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
5074 logging handler which prints to the standard error stream, is not
5075 strictly required for LTTng-UST tracing to work, but in versions of
5076 Python preceding 3.2, you could see a warning message which indicates
5077 that no handler exists for the logger `my-logger`.
5078
5079 <<creating-destroying-tracing-sessions,Create a tracing session>>,
5080 <<enabling-disabling-events,create an event rule>> matching the
5081 `my-logger` Python logger, and <<basic-tracing-session-control,start
5082 tracing>>:
5083
5084 [role="term"]
5085 ----
5086 $ lttng create
5087 $ lttng enable-event --python my-logger
5088 $ lttng start
5089 ----
5090
5091 Run the Python script:
5092
5093 [role="term"]
5094 ----
5095 $ python test.py
5096 ----
5097
5098 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5099 events:
5100
5101 [role="term"]
5102 ----
5103 $ lttng stop
5104 $ lttng view
5105 ----
5106 ====
5107
5108 In the resulting trace, an <<event,event record>> generated by a Python
5109 application is named `lttng_python:event` and has the following fields:
5110
5111 `asctime`::
5112 Logging time (string).
5113
5114 `msg`::
5115 Log record's message.
5116
5117 `logger_name`::
5118 Logger name.
5119
5120 `funcName`::
5121 Name of the function in which the log statement was executed.
5122
5123 `lineno`::
5124 Line number at which the log statement was executed.
5125
5126 `int_loglevel`::
5127 Log level integer value.
5128
5129 `thread`::
5130 ID of the Python thread in which the log statement was executed.
5131
5132 `threadName`::
5133 Name of the Python thread in which the log statement was executed.
5134
5135 You can use the opt:lttng-enable-event(1):--loglevel or
5136 opt:lttng-enable-event(1):--loglevel-only option of the
5137 man:lttng-enable-event(1) command to target a range of Python log levels
5138 or a specific Python log level.
5139
5140 When an application imports the LTTng-UST Python agent, the agent tries
5141 to register to a <<lttng-sessiond,session daemon>>. Note that you must
5142 <<start-sessiond,start the session daemon>> _before_ you run the Python
5143 application. If a session daemon is found, the agent tries to register
5144 to it during 5{nbsp}seconds, after which the application continues
5145 without LTTng tracing support. You can override this timeout value with
5146 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
5147 (milliseconds).
5148
5149 If the session daemon stops while a Python application with an imported
5150 LTTng-UST Python agent runs, the agent retries to connect and to
5151 register to a session daemon every 3{nbsp}seconds. You can override this
5152 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
5153 variable.
5154
5155
5156 [role="since-2.5"]
5157 [[proc-lttng-logger-abi]]
5158 === LTTng logger
5159
5160 The `lttng-tracer` Linux kernel module, part of
5161 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
5162 path:{/proc/lttng-logger} when it's loaded. Any application can write
5163 text data to this file to emit an LTTng event.
5164
5165 [role="img-100"]
5166 .An application writes to the LTTng logger file to emit an LTTng event.
5167 image::lttng-logger.png[]
5168
5169 The LTTng logger is the quickest method--not the most efficient,
5170 however--to add instrumentation to an application. It is designed
5171 mostly to instrument shell scripts:
5172
5173 [role="term"]
5174 ----
5175 $ echo "Some message, some $variable" > /proc/lttng-logger
5176 ----
5177
5178 Any event that the LTTng logger emits is named `lttng_logger` and
5179 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
5180 other instrumentation points in the kernel tracing domain, **any Unix
5181 user** can <<enabling-disabling-events,create an event rule>> which
5182 matches its event name, not only the root user or users in the
5183 <<tracing-group,tracing group>>.
5184
5185 To use the LTTng logger:
5186
5187 * From any application, write text data to the path:{/proc/lttng-logger}
5188 file.
5189
5190 The `msg` field of `lttng_logger` event records contains the
5191 recorded message.
5192
5193 NOTE: The maximum message length of an LTTng logger event is
5194 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
5195 than one event to contain the remaining data.
5196
5197 You should not use the LTTng logger to trace a user application which
5198 can be instrumented in a more efficient way, namely:
5199
5200 * <<c-application,C and $$C++$$ applications>>.
5201 * <<java-application,Java applications>>.
5202 * <<python-application,Python applications>>.
5203
5204 .Use the LTTng logger.
5205 ====
5206 [source,bash]
5207 .path:{test.bash}
5208 ----
5209 echo 'Hello, World!' > /proc/lttng-logger
5210 sleep 2
5211 df --human-readable --print-type / > /proc/lttng-logger
5212 ----
5213
5214 <<creating-destroying-tracing-sessions,Create a tracing session>>,
5215 <<enabling-disabling-events,create an event rule>> matching the
5216 `lttng_logger` Linux kernel tracepoint, and
5217 <<basic-tracing-session-control,start tracing>>:
5218
5219 [role="term"]
5220 ----
5221 $ lttng create
5222 $ lttng enable-event --kernel lttng_logger
5223 $ lttng start
5224 ----
5225
5226 Run the Bash script:
5227
5228 [role="term"]
5229 ----
5230 $ bash test.bash
5231 ----
5232
5233 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5234 events:
5235
5236 [role="term"]
5237 ----
5238 $ lttng stop
5239 $ lttng view
5240 ----
5241 ====
5242
5243
5244 [[instrumenting-linux-kernel]]
5245 === LTTng kernel tracepoints
5246
5247 NOTE: This section shows how to _add_ instrumentation points to the
5248 Linux kernel. The kernel's subsystems are already thoroughly
5249 instrumented at strategic places for LTTng when you
5250 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
5251 package.
5252
5253 ////
5254 There are two methods to instrument the Linux kernel:
5255
5256 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
5257 tracepoint which uses the `TRACE_EVENT()` API.
5258 +
5259 Choose this if you want to instrumentation a Linux kernel tree with an
5260 instrumentation point compatible with ftrace, perf, and SystemTap.
5261
5262 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
5263 instrument an out-of-tree kernel module.
5264 +
5265 Choose this if you don't need ftrace, perf, or SystemTap support.
5266 ////
5267
5268
5269 [[linux-add-lttng-layer]]
5270 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
5271
5272 This section shows how to add an LTTng layer to existing ftrace
5273 instrumentation using the `TRACE_EVENT()` API.
5274
5275 This section does not document the `TRACE_EVENT()` macro. You can
5276 read the following articles to learn more about this API:
5277
5278 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
5279 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
5280 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
5281
5282 The following procedure assumes that your ftrace tracepoints are
5283 correctly defined in their own header and that they are created in
5284 one source file using the `CREATE_TRACE_POINTS` definition.
5285
5286 To add an LTTng layer over an existing ftrace tracepoint:
5287
5288 . Make sure the following kernel configuration options are
5289 enabled:
5290 +
5291 --
5292 * `CONFIG_MODULES`
5293 * `CONFIG_KALLSYMS`
5294 * `CONFIG_HIGH_RES_TIMERS`
5295 * `CONFIG_TRACEPOINTS`
5296 --
5297
5298 . Build the Linux source tree with your custom ftrace tracepoints.
5299 . Boot the resulting Linux image on your target system.
5300 +
5301 Confirm that the tracepoints exist by looking for their names in the
5302 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5303 is your subsystem's name.
5304
5305 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5306 +
5307 --
5308 [role="term"]
5309 ----
5310 $ cd $(mktemp -d) &&
5311 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
5312 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
5313 cd lttng-modules-2.10.*
5314 ----
5315 --
5316
5317 . In dir:{instrumentation/events/lttng-module}, relative to the root
5318 of the LTTng-modules source tree, create a header file named
5319 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5320 LTTng-modules tracepoint definitions using the LTTng-modules
5321 macros in it.
5322 +
5323 Start with this template:
5324 +
5325 --
5326 [source,c]
5327 .path:{instrumentation/events/lttng-module/my_subsys.h}
5328 ----
5329 #undef TRACE_SYSTEM
5330 #define TRACE_SYSTEM my_subsys
5331
5332 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5333 #define _LTTNG_MY_SUBSYS_H
5334
5335 #include "../../../probes/lttng-tracepoint-event.h"
5336 #include <linux/tracepoint.h>
5337
5338 LTTNG_TRACEPOINT_EVENT(
5339 /*
5340 * Format is identical to TRACE_EVENT()'s version for the three
5341 * following macro parameters:
5342 */
5343 my_subsys_my_event,
5344 TP_PROTO(int my_int, const char *my_string),
5345 TP_ARGS(my_int, my_string),
5346
5347 /* LTTng-modules specific macros */
5348 TP_FIELDS(
5349 ctf_integer(int, my_int_field, my_int)
5350 ctf_string(my_bar_field, my_bar)
5351 )
5352 )
5353
5354 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5355
5356 #include "../../../probes/define_trace.h"
5357 ----
5358 --
5359 +
5360 The entries in the `TP_FIELDS()` section are the list of fields for the
5361 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5362 ftrace's `TRACE_EVENT()` macro.
5363 +
5364 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5365 complete description of the available `ctf_*()` macros.
5366
5367 . Create the LTTng-modules probe's kernel module C source file,
5368 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5369 subsystem name:
5370 +
5371 --
5372 [source,c]
5373 .path:{probes/lttng-probe-my-subsys.c}
5374 ----
5375 #include <linux/module.h>
5376 #include "../lttng-tracer.h"
5377
5378 /*
5379 * Build-time verification of mismatch between mainline
5380 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5381 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5382 */
5383 #include <trace/events/my_subsys.h>
5384
5385 /* Create LTTng tracepoint probes */
5386 #define LTTNG_PACKAGE_BUILD
5387 #define CREATE_TRACE_POINTS
5388 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5389
5390 #include "../instrumentation/events/lttng-module/my_subsys.h"
5391
5392 MODULE_LICENSE("GPL and additional rights");
5393 MODULE_AUTHOR("Your name <your-email>");
5394 MODULE_DESCRIPTION("LTTng my_subsys probes");
5395 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5396 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5397 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5398 LTTNG_MODULES_EXTRAVERSION);
5399 ----
5400 --
5401
5402 . Edit path:{probes/KBuild} and add your new kernel module object
5403 next to the existing ones:
5404 +
5405 --
5406 [source,make]
5407 .path:{probes/KBuild}
5408 ----
5409 # ...
5410
5411 obj-m += lttng-probe-module.o
5412 obj-m += lttng-probe-power.o
5413
5414 obj-m += lttng-probe-my-subsys.o
5415
5416 # ...
5417 ----
5418 --
5419
5420 . Build and install the LTTng kernel modules:
5421 +
5422 --
5423 [role="term"]
5424 ----
5425 $ make KERNELDIR=/path/to/linux
5426 # make modules_install && depmod -a
5427 ----
5428 --
5429 +
5430 Replace `/path/to/linux` with the path to the Linux source tree where
5431 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5432
5433 Note that you can also use the
5434 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5435 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5436 C code that need to be executed before the event fields are recorded.
5437
5438 The best way to learn how to use the previous LTTng-modules macros is to
5439 inspect the existing LTTng-modules tracepoint definitions in the
5440 dir:{instrumentation/events/lttng-module} header files. Compare them
5441 with the Linux kernel mainline versions in the
5442 dir:{include/trace/events} directory of the Linux source tree.
5443
5444
5445 [role="since-2.7"]
5446 [[lttng-tracepoint-event-code]]
5447 ===== Use custom C code to access the data for tracepoint fields
5448
5449 Although we recommended to always use the
5450 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5451 the arguments and fields of an LTTng-modules tracepoint when possible,
5452 sometimes you need a more complex process to access the data that the
5453 tracer records as event record fields. In other words, you need local
5454 variables and multiple C{nbsp}statements instead of simple
5455 argument-based expressions that you pass to the
5456 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5457
5458 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5459 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5460 a block of C{nbsp}code to be executed before LTTng records the fields.
5461 The structure of this macro is:
5462
5463 [source,c]
5464 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5465 ----
5466 LTTNG_TRACEPOINT_EVENT_CODE(
5467 /*
5468 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5469 * version for the following three macro parameters:
5470 */
5471 my_subsys_my_event,
5472 TP_PROTO(int my_int, const char *my_string),
5473 TP_ARGS(my_int, my_string),
5474
5475 /* Declarations of custom local variables */
5476 TP_locvar(
5477 int a = 0;
5478 unsigned long b = 0;
5479 const char *name = "(undefined)";
5480 struct my_struct *my_struct;
5481 ),
5482
5483 /*
5484 * Custom code which uses both tracepoint arguments
5485 * (in TP_ARGS()) and local variables (in TP_locvar()).
5486 *
5487 * Local variables are actually members of a structure pointed
5488 * to by the special variable tp_locvar.
5489 */
5490 TP_code(
5491 if (my_int) {
5492 tp_locvar->a = my_int + 17;
5493 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5494 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5495 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5496 put_my_struct(tp_locvar->my_struct);
5497
5498 if (tp_locvar->b) {
5499 tp_locvar->a = 1;
5500 }
5501 }
5502 ),
5503
5504 /*
5505 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5506 * version for this, except that tp_locvar members can be
5507 * used in the argument expression parameters of
5508 * the ctf_*() macros.
5509 */
5510 TP_FIELDS(
5511 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5512 ctf_integer(int, my_struct_a, tp_locvar->a)
5513 ctf_string(my_string_field, my_string)
5514 ctf_string(my_struct_name, tp_locvar->name)
5515 )
5516 )
5517 ----
5518
5519 IMPORTANT: The C code defined in `TP_code()` must not have any side
5520 effects when executed. In particular, the code must not allocate
5521 memory or get resources without deallocating this memory or putting
5522 those resources afterwards.
5523
5524
5525 [[instrumenting-linux-kernel-tracing]]
5526 ==== Load and unload a custom probe kernel module
5527
5528 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5529 kernel module>> in the kernel before it can emit LTTng events.
5530
5531 To load the default probe kernel modules and a custom probe kernel
5532 module:
5533
5534 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5535 probe modules to load when starting a root <<lttng-sessiond,session
5536 daemon>>:
5537 +
5538 --
5539 .Load the `my_subsys`, `usb`, and the default probe modules.
5540 ====
5541 [role="term"]
5542 ----
5543 # lttng-sessiond --extra-kmod-probes=my_subsys,usb
5544 ----
5545 ====
5546 --
5547 +
5548 You only need to pass the subsystem name, not the whole kernel module
5549 name.
5550
5551 To load _only_ a given custom probe kernel module:
5552
5553 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5554 modules to load when starting a root session daemon:
5555 +
5556 --
5557 .Load only the `my_subsys` and `usb` probe modules.
5558 ====
5559 [role="term"]
5560 ----
5561 # lttng-sessiond --kmod-probes=my_subsys,usb
5562 ----
5563 ====
5564 --
5565
5566 To confirm that a probe module is loaded:
5567
5568 * Use man:lsmod(8):
5569 +
5570 --
5571 [role="term"]
5572 ----
5573 $ lsmod | grep lttng_probe_usb
5574 ----
5575 --
5576
5577 To unload the loaded probe modules:
5578
5579 * Kill the session daemon with `SIGTERM`:
5580 +
5581 --
5582 [role="term"]
5583 ----
5584 # pkill lttng-sessiond
5585 ----
5586 --
5587 +
5588 You can also use man:modprobe(8)'s `--remove` option if the session
5589 daemon terminates abnormally.
5590
5591
5592 [[controlling-tracing]]
5593 == Tracing control
5594
5595 Once an application or a Linux kernel is
5596 <<instrumenting,instrumented>> for LTTng tracing,
5597 you can _trace_ it.
5598
5599 This section is divided in topics on how to use the various
5600 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5601 command-line tool>>, to _control_ the LTTng daemons and tracers.
5602
5603 NOTE: In the following subsections, we refer to an man:lttng(1) command
5604 using its man page name. For example, instead of _Run the `create`
5605 command to..._, we use _Run the man:lttng-create(1) command to..._.
5606
5607
5608 [[start-sessiond]]
5609 === Start a session daemon
5610
5611 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5612 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5613 command-line tool.
5614
5615 You will see the following error when you run a command while no session
5616 daemon is running:
5617
5618 ----
5619 Error: No session daemon is available
5620 ----
5621
5622 The only command that automatically runs a session daemon is
5623 man:lttng-create(1), which you use to
5624 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5625 this is most of the time the first operation that you do, sometimes it's
5626 not. Some examples are:
5627
5628 * <<list-instrumentation-points,List the available instrumentation points>>.
5629 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5630
5631 [[tracing-group]] Each Unix user must have its own running session
5632 daemon to trace user applications. The session daemon that the root user
5633 starts is the only one allowed to control the LTTng kernel tracer. Users
5634 that are part of the _tracing group_ can control the root session
5635 daemon. The default tracing group name is `tracing`; you can set it to
5636 something else with the opt:lttng-sessiond(8):--group option when you
5637 start the root session daemon.
5638
5639 To start a user session daemon:
5640
5641 * Run man:lttng-sessiond(8):
5642 +
5643 --
5644 [role="term"]
5645 ----
5646 $ lttng-sessiond --daemonize
5647 ----
5648 --
5649
5650 To start the root session daemon:
5651
5652 * Run man:lttng-sessiond(8) as the root user:
5653 +
5654 --
5655 [role="term"]
5656 ----
5657 # lttng-sessiond --daemonize
5658 ----
5659 --
5660
5661 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5662 start the session daemon in foreground.
5663
5664 To stop a session daemon, use man:kill(1) on its process ID (standard
5665 `TERM` signal).
5666
5667 Note that some Linux distributions could manage the LTTng session daemon
5668 as a service. In this case, you should use the service manager to
5669 start, restart, and stop session daemons.
5670
5671
5672 [[creating-destroying-tracing-sessions]]
5673 === Create and destroy a tracing session
5674
5675 Almost all the LTTng control operations happen in the scope of
5676 a <<tracing-session,tracing session>>, which is the dialogue between the
5677 <<lttng-sessiond,session daemon>> and you.
5678
5679 To create a tracing session with a generated name:
5680
5681 * Use the man:lttng-create(1) command:
5682 +
5683 --
5684 [role="term"]
5685 ----
5686 $ lttng create
5687 ----
5688 --
5689
5690 The created tracing session's name is `auto` followed by the
5691 creation date.
5692
5693 To create a tracing session with a specific name:
5694
5695 * Use the optional argument of the man:lttng-create(1) command:
5696 +
5697 --
5698 [role="term"]
5699 ----
5700 $ lttng create my-session
5701 ----
5702 --
5703 +
5704 Replace `my-session` with the specific tracing session name.
5705
5706 LTTng appends the creation date to the created tracing session's name.
5707
5708 LTTng writes the traces of a tracing session in
5709 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5710 name of the tracing session. Note that the env:LTTNG_HOME environment
5711 variable defaults to `$HOME` if not set.
5712
5713 To output LTTng traces to a non-default location:
5714
5715 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5716 +
5717 --
5718 [role="term"]
5719 ----
5720 $ lttng create my-session --output=/tmp/some-directory
5721 ----
5722 --
5723
5724 You may create as many tracing sessions as you wish.
5725
5726 To list all the existing tracing sessions for your Unix user:
5727
5728 * Use the man:lttng-list(1) command:
5729 +
5730 --
5731 [role="term"]
5732 ----
5733 $ lttng list
5734 ----
5735 --
5736
5737 When you create a tracing session, it is set as the _current tracing
5738 session_. The following man:lttng(1) commands operate on the current
5739 tracing session when you don't specify one:
5740
5741 [role="list-3-cols"]
5742 * `add-context`
5743 * `destroy`
5744 * `disable-channel`
5745 * `disable-event`
5746 * `enable-channel`
5747 * `enable-event`
5748 * `load`
5749 * `regenerate`
5750 * `save`
5751 * `snapshot`
5752 * `start`
5753 * `stop`
5754 * `track`
5755 * `untrack`
5756 * `view`
5757
5758 To change the current tracing session:
5759
5760 * Use the man:lttng-set-session(1) command:
5761 +
5762 --
5763 [role="term"]
5764 ----
5765 $ lttng set-session new-session
5766 ----
5767 --
5768 +
5769 Replace `new-session` by the name of the new current tracing session.
5770
5771 When you are done tracing in a given tracing session, you can destroy
5772 it. This operation frees the resources taken by the tracing session
5773 to destroy; it does not destroy the trace data that LTTng wrote for
5774 this tracing session.
5775
5776 To destroy the current tracing session:
5777
5778 * Use the man:lttng-destroy(1) command:
5779 +
5780 --
5781 [role="term"]
5782 ----
5783 $ lttng destroy
5784 ----
5785 --
5786
5787 The man:lttng-destroy(1) command also runs the man:lttng-stop(1)
5788 command implicitly (see <<basic-tracing-session-control,Start and stop a
5789 tracing session>>). You need to stop tracing to make LTTng flush the
5790 remaining trace data and make the trace readable.
5791
5792
5793 [[list-instrumentation-points]]
5794 === List the available instrumentation points
5795
5796 The <<lttng-sessiond,session daemon>> can query the running instrumented
5797 user applications and the Linux kernel to get a list of available
5798 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5799 they are tracepoints and system calls. For the user space tracing
5800 domain, they are tracepoints. For the other tracing domains, they are
5801 logger names.
5802
5803 To list the available instrumentation points:
5804
5805 * Use the man:lttng-list(1) command with the requested tracing domain's
5806 option amongst:
5807 +
5808 --
5809 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5810 must be a root user, or it must be a member of the
5811 <<tracing-group,tracing group>>).
5812 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5813 kernel system calls (your Unix user must be a root user, or it must be
5814 a member of the tracing group).
5815 * opt:lttng-list(1):--userspace: user space tracepoints.
5816 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5817 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5818 * opt:lttng-list(1):--python: Python loggers.
5819 --
5820
5821 .List the available user space tracepoints.
5822 ====
5823 [role="term"]
5824 ----
5825 $ lttng list --userspace
5826 ----
5827 ====
5828
5829 .List the available Linux kernel system call tracepoints.
5830 ====
5831 [role="term"]
5832 ----
5833 $ lttng list --kernel --syscall
5834 ----
5835 ====
5836
5837
5838 [[enabling-disabling-events]]
5839 === Create and enable an event rule
5840
5841 Once you <<creating-destroying-tracing-sessions,create a tracing
5842 session>>, you can create <<event,event rules>> with the
5843 man:lttng-enable-event(1) command.
5844
5845 You specify each condition with a command-line option. The available
5846 condition options are shown in the following table.
5847
5848 [role="growable",cols="asciidoc,asciidoc,default"]
5849 .Condition command-line options for the man:lttng-enable-event(1) command.
5850 |====
5851 |Option |Description |Applicable tracing domains
5852
5853 |
5854 One of:
5855
5856 . `--syscall`
5857 . +--probe=__ADDR__+
5858 . +--function=__ADDR__+
5859
5860 |
5861 Instead of using the default _tracepoint_ instrumentation type, use:
5862
5863 . A Linux system call.
5864 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5865 . The entry and return points of a Linux function (symbol or address).
5866
5867 |Linux kernel.
5868
5869 |First positional argument.
5870
5871 |
5872 Tracepoint or system call name. In the case of a Linux KProbe or
5873 function, this is a custom name given to the event rule. With the
5874 JUL, log4j, and Python domains, this is a logger name.
5875
5876 With a tracepoint, logger, or system call name, you can use the special
5877 `*` globbing character to match anything (for example, `sched_*`,
5878 `my_comp*:*msg_*`).
5879
5880 |All.
5881
5882 |
5883 One of:
5884
5885 . +--loglevel=__LEVEL__+
5886 . +--loglevel-only=__LEVEL__+
5887
5888 |
5889 . Match only tracepoints or log statements with a logging level at
5890 least as severe as +__LEVEL__+.
5891 . Match only tracepoints or log statements with a logging level
5892 equal to +__LEVEL__+.
5893
5894 See man:lttng-enable-event(1) for the list of available logging level
5895 names.
5896
5897 |User space, JUL, log4j, and Python.
5898
5899 |+--exclude=__EXCLUSIONS__+
5900
5901 |
5902 When you use a `*` character at the end of the tracepoint or logger
5903 name (first positional argument), exclude the specific names in the
5904 comma-delimited list +__EXCLUSIONS__+.
5905
5906 |
5907 User space, JUL, log4j, and Python.
5908
5909 |+--filter=__EXPR__+
5910
5911 |
5912 Match only events which satisfy the expression +__EXPR__+.
5913
5914 See man:lttng-enable-event(1) to learn more about the syntax of a
5915 filter expression.
5916
5917 |All.
5918
5919 |====
5920
5921 You attach an event rule to a <<channel,channel>> on creation. If you do
5922 not specify the channel with the opt:lttng-enable-event(1):--channel
5923 option, and if the event rule to create is the first in its
5924 <<domain,tracing domain>> for a given tracing session, then LTTng
5925 creates a _default channel_ for you. This default channel is reused in
5926 subsequent invocations of the man:lttng-enable-event(1) command for the
5927 same tracing domain.
5928
5929 An event rule is always enabled at creation time.
5930
5931 The following examples show how you can combine the previous
5932 command-line options to create simple to more complex event rules.
5933
5934 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5935 ====
5936 [role="term"]
5937 ----
5938 $ lttng enable-event --kernel sched_switch
5939 ----
5940 ====
5941
5942 .Create an event rule matching four Linux kernel system calls (default channel).
5943 ====
5944 [role="term"]
5945 ----
5946 $ lttng enable-event --kernel --syscall open,write,read,close
5947 ----
5948 ====
5949
5950 .Create event rules matching tracepoints with filter expressions (default channel).
5951 ====
5952 [role="term"]
5953 ----
5954 $ lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5955 ----
5956
5957 [role="term"]
5958 ----
5959 $ lttng enable-event --kernel --all \
5960 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5961 ----
5962
5963 [role="term"]
5964 ----
5965 $ lttng enable-event --jul my_logger \
5966 --filter='$app.retriever:cur_msg_id > 3'
5967 ----
5968
5969 IMPORTANT: Make sure to always quote the filter string when you
5970 use man:lttng(1) from a shell.
5971 ====
5972
5973 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5974 ====
5975 [role="term"]
5976 ----
5977 $ lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5978 ----
5979
5980 IMPORTANT: Make sure to always quote the wildcard character when you
5981 use man:lttng(1) from a shell.
5982 ====
5983
5984 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5985 ====
5986 [role="term"]
5987 ----
5988 $ lttng enable-event --python my-app.'*' \
5989 --exclude='my-app.module,my-app.hello'
5990 ----
5991 ====
5992
5993 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5994 ====
5995 [role="term"]
5996 ----
5997 $ lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5998 ----
5999 ====
6000
6001 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
6002 ====
6003 [role="term"]
6004 ----
6005 $ lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
6006 ----
6007 ====
6008
6009 The event rules of a given channel form a whitelist: as soon as an
6010 emitted event passes one of them, LTTng can record the event. For
6011 example, an event named `my_app:my_tracepoint` emitted from a user space
6012 tracepoint with a `TRACE_ERROR` log level passes both of the following
6013 rules:
6014
6015 [role="term"]
6016 ----
6017 $ lttng enable-event --userspace my_app:my_tracepoint
6018 $ lttng enable-event --userspace my_app:my_tracepoint \
6019 --loglevel=TRACE_INFO
6020 ----
6021
6022 The second event rule is redundant: the first one includes
6023 the second one.
6024
6025
6026 [[disable-event-rule]]
6027 === Disable an event rule
6028
6029 To disable an event rule that you <<enabling-disabling-events,created>>
6030 previously, use the man:lttng-disable-event(1) command. This command
6031 disables _all_ the event rules (of a given tracing domain and channel)
6032 which match an instrumentation point. The other conditions are not
6033 supported as of LTTng{nbsp}{revision}.
6034
6035 The LTTng tracer does not record an emitted event which passes
6036 a _disabled_ event rule.
6037
6038 .Disable an event rule matching a Python logger (default channel).
6039 ====
6040 [role="term"]
6041 ----
6042 $ lttng disable-event --python my-logger
6043 ----
6044 ====
6045
6046 .Disable an event rule matching all `java.util.logging` loggers (default channel).
6047 ====
6048 [role="term"]
6049 ----
6050 $ lttng disable-event --jul '*'
6051 ----
6052 ====
6053
6054 .Disable _all_ the event rules of the default channel.
6055 ====
6056 The opt:lttng-disable-event(1):--all-events option is not, like the
6057 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
6058 equivalent of the event name `*` (wildcard): it disables _all_ the event
6059 rules of a given channel.
6060
6061 [role="term"]
6062 ----
6063 $ lttng disable-event --jul --all-events
6064 ----
6065 ====
6066
6067 NOTE: You cannot delete an event rule once you create it.
6068
6069
6070 [[status]]
6071 === Get the status of a tracing session
6072
6073 To get the status of the current tracing session, that is, its
6074 parameters, its channels, event rules, and their attributes:
6075
6076 * Use the man:lttng-status(1) command:
6077 +
6078 --
6079 [role="term"]
6080 ----
6081 $ lttng status
6082 ----
6083 --
6084 +
6085
6086 To get the status of any tracing session:
6087
6088 * Use the man:lttng-list(1) command with the tracing session's name:
6089 +
6090 --
6091 [role="term"]
6092 ----
6093 $ lttng list my-session
6094 ----
6095 --
6096 +
6097 Replace `my-session` with the desired tracing session's name.
6098
6099
6100 [[basic-tracing-session-control]]
6101 === Start and stop a tracing session
6102
6103 Once you <<creating-destroying-tracing-sessions,create a tracing
6104 session>> and
6105 <<enabling-disabling-events,create one or more event rules>>,
6106 you can start and stop the tracers for this tracing session.
6107
6108 To start tracing in the current tracing session:
6109
6110 * Use the man:lttng-start(1) command:
6111 +
6112 --
6113 [role="term"]
6114 ----
6115 $ lttng start
6116 ----
6117 --
6118
6119 LTTng is very flexible: you can launch user applications before
6120 or after the you start the tracers. The tracers only record the events
6121 if they pass enabled event rules and if they occur while the tracers are
6122 started.
6123
6124 To stop tracing in the current tracing session:
6125
6126 * Use the man:lttng-stop(1) command:
6127 +
6128 --
6129 [role="term"]
6130 ----
6131 $ lttng stop
6132 ----
6133 --
6134 +
6135 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
6136 records>> or lost sub-buffers since the last time you ran
6137 man:lttng-start(1), warnings are printed when you run the
6138 man:lttng-stop(1) command.
6139
6140 IMPORTANT: You need to stop tracing to make LTTng flush the remaining
6141 trace data and make the trace readable. Note that the
6142 man:lttng-destroy(1) command (see
6143 <<creating-destroying-tracing-sessions,Create and destroy a tracing
6144 session>>) also runs the man:lttng-stop(1) command implicitly.
6145
6146
6147 [[enabling-disabling-channels]]
6148 === Create a channel
6149
6150 Once you create a tracing session, you can create a <<channel,channel>>
6151 with the man:lttng-enable-channel(1) command.
6152
6153 Note that LTTng automatically creates a default channel when, for a
6154 given <<domain,tracing domain>>, no channels exist and you
6155 <<enabling-disabling-events,create>> the first event rule. This default
6156 channel is named `channel0` and its attributes are set to reasonable
6157 values. Therefore, you only need to create a channel when you need
6158 non-default attributes.
6159
6160 You specify each non-default channel attribute with a command-line
6161 option when you use the man:lttng-enable-channel(1) command. The
6162 available command-line options are:
6163
6164 [role="growable",cols="asciidoc,asciidoc"]
6165 .Command-line options for the man:lttng-enable-channel(1) command.
6166 |====
6167 |Option |Description
6168
6169 |`--overwrite`
6170
6171 |
6172 Use the _overwrite_
6173 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
6174 the default _discard_ mode.
6175
6176 |`--buffers-pid` (user space tracing domain only)
6177
6178 |
6179 Use the per-process <<channel-buffering-schemes,buffering scheme>>
6180 instead of the default per-user buffering scheme.
6181
6182 |+--subbuf-size=__SIZE__+
6183
6184 |
6185 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
6186 either for each Unix user (default), or for each instrumented process.
6187
6188 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6189
6190 |+--num-subbuf=__COUNT__+
6191
6192 |
6193 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
6194 for each Unix user (default), or for each instrumented process.
6195
6196 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6197
6198 |+--tracefile-size=__SIZE__+
6199
6200 |
6201 Set the maximum size of each trace file that this channel writes within
6202 a stream to +__SIZE__+ bytes instead of no maximum.
6203
6204 See <<tracefile-rotation,Trace file count and size>>.
6205
6206 |+--tracefile-count=__COUNT__+
6207
6208 |
6209 Limit the number of trace files that this channel creates to
6210 +__COUNT__+ channels instead of no limit.
6211
6212 See <<tracefile-rotation,Trace file count and size>>.
6213
6214 |+--switch-timer=__PERIODUS__+
6215
6216 |
6217 Set the <<channel-switch-timer,switch timer period>>
6218 to +__PERIODUS__+{nbsp}µs.
6219
6220 |+--read-timer=__PERIODUS__+
6221
6222 |
6223 Set the <<channel-read-timer,read timer period>>
6224 to +__PERIODUS__+{nbsp}µs.
6225
6226 |[[opt-blocking-timeout]]+--blocking-timeout=__TIMEOUTUS__+
6227
6228 |
6229 Set the timeout of user space applications which load LTTng-UST
6230 in blocking mode to +__TIMEOUTUS__+:
6231
6232 0 (default)::
6233 Never block (non-blocking mode).
6234
6235 `inf`::
6236 Block forever until space is available in a sub-buffer to record
6237 the event.
6238
6239 __n__, a positive value::
6240 Wait for at most __n__ µs when trying to write into a sub-buffer.
6241
6242 Note that, for this option to have any effect on an instrumented
6243 user space application, you need to run the application with a set
6244 env:LTTNG_UST_ALLOW_BLOCKING environment variable.
6245
6246 |+--output=__TYPE__+ (Linux kernel tracing domain only)
6247
6248 |
6249 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
6250
6251 |====
6252
6253 You can only create a channel in the Linux kernel and user space
6254 <<domain,tracing domains>>: other tracing domains have their own channel
6255 created on the fly when <<enabling-disabling-events,creating event
6256 rules>>.
6257
6258 [IMPORTANT]
6259 ====
6260 Because of a current LTTng limitation, you must create all channels
6261 _before_ you <<basic-tracing-session-control,start tracing>> in a given
6262 tracing session, that is, before the first time you run
6263 man:lttng-start(1).
6264
6265 Since LTTng automatically creates a default channel when you use the
6266 man:lttng-enable-event(1) command with a specific tracing domain, you
6267 cannot, for example, create a Linux kernel event rule, start tracing,
6268 and then create a user space event rule, because no user space channel
6269 exists yet and it's too late to create one.
6270
6271 For this reason, make sure to configure your channels properly
6272 before starting the tracers for the first time!
6273 ====
6274
6275 The following examples show how you can combine the previous
6276 command-line options to create simple to more complex channels.
6277
6278 .Create a Linux kernel channel with default attributes.
6279 ====
6280 [role="term"]
6281 ----
6282 $ lttng enable-channel --kernel my-channel
6283 ----
6284 ====
6285
6286 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6287 ====
6288 [role="term"]
6289 ----
6290 $ lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6291 --buffers-pid my-channel
6292 ----
6293 ====
6294
6295 .[[blocking-timeout-example]]Create a default user space channel with an infinite blocking timeout.
6296 ====
6297 <<creating-destroying-tracing-sessions,Create a tracing-session>>,
6298 create the channel, <<enabling-disabling-events,create an event rule>>,
6299 and <<basic-tracing-session-control,start tracing>>:
6300
6301 [role="term"]
6302 ----
6303 $ lttng create
6304 $ lttng enable-channel --userspace --blocking-timeout=inf blocking-channel
6305 $ lttng enable-event --userspace --channel=blocking-channel --all
6306 $ lttng start
6307 ----
6308
6309 Run an application instrumented with LTTng-UST and allow it to block:
6310
6311 [role="term"]
6312 ----
6313 $ LTTNG_UST_ALLOW_BLOCKING=1 my-app
6314 ----
6315 ====
6316
6317 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
6318 ====
6319 [role="term"]
6320 ----
6321 $ lttng enable-channel --kernel --tracefile-count=8 \
6322 --tracefile-size=4194304 my-channel
6323 ----
6324 ====
6325
6326 .Create a user space channel in overwrite (or _flight recorder_) mode.
6327 ====
6328 [role="term"]
6329 ----
6330 $ lttng enable-channel --userspace --overwrite my-channel
6331 ----
6332 ====
6333
6334 You can <<enabling-disabling-events,create>> the same event rule in
6335 two different channels:
6336
6337 [role="term"]
6338 ----
6339 $ lttng enable-event --userspace --channel=my-channel app:tp
6340 $ lttng enable-event --userspace --channel=other-channel app:tp
6341 ----
6342
6343 If both channels are enabled, when a tracepoint named `app:tp` is
6344 reached, LTTng records two events, one for each channel.
6345
6346
6347 [[disable-channel]]
6348 === Disable a channel
6349
6350 To disable a specific channel that you <<enabling-disabling-channels,created>>
6351 previously, use the man:lttng-disable-channel(1) command.
6352
6353 .Disable a specific Linux kernel channel.
6354 ====
6355 [role="term"]
6356 ----
6357 $ lttng disable-channel --kernel my-channel
6358 ----
6359 ====
6360
6361 The state of a channel precedes the individual states of event rules
6362 attached to it: event rules which belong to a disabled channel, even if
6363 they are enabled, are also considered disabled.
6364
6365
6366 [[adding-context]]
6367 === Add context fields to a channel
6368
6369 Event record fields in trace files provide important information about
6370 events that occured previously, but sometimes some external context may
6371 help you solve a problem faster. Examples of context fields are:
6372
6373 * The **process ID**, **thread ID**, **process name**, and
6374 **process priority** of the thread in which the event occurs.
6375 * The **hostname** of the system on which the event occurs.
6376 * The current values of many possible **performance counters** using
6377 perf, for example:
6378 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6379 ** Cache misses.
6380 ** Branch instructions, misses, and loads.
6381 ** CPU faults.
6382 * Any context defined at the application level (supported for the
6383 JUL and log4j <<domain,tracing domains>>).
6384
6385 To get the full list of available context fields, see
6386 `lttng add-context --list`. Some context fields are reserved for a
6387 specific <<domain,tracing domain>> (Linux kernel or user space).
6388
6389 You add context fields to <<channel,channels>>. All the events
6390 that a channel with added context fields records contain those fields.
6391
6392 To add context fields to one or all the channels of a given tracing
6393 session:
6394
6395 * Use the man:lttng-add-context(1) command.
6396
6397 .Add context fields to all the channels of the current tracing session.
6398 ====
6399 The following command line adds the virtual process identifier and
6400 the per-thread CPU cycles count fields to all the user space channels
6401 of the current tracing session.
6402
6403 [role="term"]
6404 ----
6405 $ lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6406 ----
6407 ====
6408
6409 .Add performance counter context fields by raw ID
6410 ====
6411 See man:lttng-add-context(1) for the exact format of the context field
6412 type, which is partly compatible with the format used in
6413 man:perf-record(1).
6414
6415 [role="term"]
6416 ----
6417 $ lttng add-context --userspace --type=perf:thread:raw:r0110:test
6418 $ lttng add-context --kernel --type=perf:cpu:raw:r0013c:x86unhalted
6419 ----
6420 ====
6421
6422 .Add a context field to a specific channel.
6423 ====
6424 The following command line adds the thread identifier context field
6425 to the Linux kernel channel named `my-channel` in the current
6426 tracing session.
6427
6428 [role="term"]
6429 ----
6430 $ lttng add-context --kernel --channel=my-channel --type=tid
6431 ----
6432 ====
6433
6434 .Add an application-specific context field to a specific channel.
6435 ====
6436 The following command line adds the `cur_msg_id` context field of the
6437 `retriever` context retriever for all the instrumented
6438 <<java-application,Java applications>> recording <<event,event records>>
6439 in the channel named `my-channel`:
6440
6441 [role="term"]
6442 ----
6443 $ lttng add-context --kernel --channel=my-channel \
6444 --type='$app:retriever:cur_msg_id'
6445 ----
6446
6447 IMPORTANT: Make sure to always quote the `$` character when you
6448 use man:lttng-add-context(1) from a shell.
6449 ====
6450
6451 NOTE: You cannot remove context fields from a channel once you add it.
6452
6453
6454 [role="since-2.7"]
6455 [[pid-tracking]]
6456 === Track process IDs
6457
6458 It's often useful to allow only specific process IDs (PIDs) to emit
6459 events. For example, you may wish to record all the system calls made by
6460 a given process (Ă  la http://linux.die.net/man/1/strace[strace]).
6461
6462 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6463 purpose. Both commands operate on a whitelist of process IDs. You _add_
6464 entries to this whitelist with the man:lttng-track(1) command and remove
6465 entries with the man:lttng-untrack(1) command. Any process which has one
6466 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6467 an enabled <<event,event rule>>.
6468
6469 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6470 process with a given tracked ID exit and another process be given this
6471 ID, then the latter would also be allowed to emit events.
6472
6473 .Track and untrack process IDs.
6474 ====
6475 For the sake of the following example, assume the target system has 16
6476 possible PIDs.
6477
6478 When you
6479 <<creating-destroying-tracing-sessions,create a tracing session>>,
6480 the whitelist contains all the possible PIDs:
6481
6482 [role="img-100"]
6483 .All PIDs are tracked.
6484 image::track-all.png[]
6485
6486 When the whitelist is full and you use the man:lttng-track(1) command to
6487 specify some PIDs to track, LTTng first clears the whitelist, then it
6488 tracks the specific PIDs. After:
6489
6490 [role="term"]
6491 ----
6492 $ lttng track --pid=3,4,7,10,13
6493 ----
6494
6495 the whitelist is:
6496
6497 [role="img-100"]
6498 .PIDs 3, 4, 7, 10, and 13 are tracked.
6499 image::track-3-4-7-10-13.png[]
6500
6501 You can add more PIDs to the whitelist afterwards:
6502
6503 [role="term"]
6504 ----
6505 $ lttng track --pid=1,15,16
6506 ----
6507
6508 The result is:
6509
6510 [role="img-100"]
6511 .PIDs 1, 15, and 16 are added to the whitelist.
6512 image::track-1-3-4-7-10-13-15-16.png[]
6513
6514 The man:lttng-untrack(1) command removes entries from the PID tracker's
6515 whitelist. Given the previous example, the following command:
6516
6517 [role="term"]
6518 ----
6519 $ lttng untrack --pid=3,7,10,13
6520 ----
6521
6522 leads to this whitelist:
6523
6524 [role="img-100"]
6525 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6526 image::track-1-4-15-16.png[]
6527
6528 LTTng can track all possible PIDs again using the
6529 opt:lttng-track(1):--all option:
6530
6531 [role="term"]
6532 ----
6533 $ lttng track --pid --all
6534 ----
6535
6536 The result is, again:
6537
6538 [role="img-100"]
6539 .All PIDs are tracked.
6540 image::track-all.png[]
6541 ====
6542
6543 .Track only specific PIDs
6544 ====
6545 A very typical use case with PID tracking is to start with an empty
6546 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6547 then add PIDs manually while tracers are active. You can accomplish this
6548 by using the opt:lttng-untrack(1):--all option of the
6549 man:lttng-untrack(1) command to clear the whitelist after you
6550 <<creating-destroying-tracing-sessions,create a tracing session>>:
6551
6552 [role="term"]
6553 ----
6554 $ lttng untrack --pid --all
6555 ----
6556
6557 gives:
6558
6559 [role="img-100"]
6560 .No PIDs are tracked.
6561 image::untrack-all.png[]
6562
6563 If you trace with this whitelist configuration, the tracer records no
6564 events for this <<domain,tracing domain>> because no processes are
6565 tracked. You can use the man:lttng-track(1) command as usual to track
6566 specific PIDs, for example:
6567
6568 [role="term"]
6569 ----
6570 $ lttng track --pid=6,11
6571 ----
6572
6573 Result:
6574
6575 [role="img-100"]
6576 .PIDs 6 and 11 are tracked.
6577 image::track-6-11.png[]
6578 ====
6579
6580
6581 [role="since-2.5"]
6582 [[saving-loading-tracing-session]]
6583 === Save and load tracing session configurations
6584
6585 Configuring a <<tracing-session,tracing session>> can be long. Some of
6586 the tasks involved are:
6587
6588 * <<enabling-disabling-channels,Create channels>> with
6589 specific attributes.
6590 * <<adding-context,Add context fields>> to specific channels.
6591 * <<enabling-disabling-events,Create event rules>> with specific log
6592 level and filter conditions.
6593
6594 If you use LTTng to solve real world problems, chances are you have to
6595 record events using the same tracing session setup over and over,
6596 modifying a few variables each time in your instrumented program
6597 or environment. To avoid constant tracing session reconfiguration,
6598 the man:lttng(1) command-line tool can save and load tracing session
6599 configurations to/from XML files.
6600
6601 To save a given tracing session configuration:
6602
6603 * Use the man:lttng-save(1) command:
6604 +
6605 --
6606 [role="term"]
6607 ----
6608 $ lttng save my-session
6609 ----
6610 --
6611 +
6612 Replace `my-session` with the name of the tracing session to save.
6613
6614 LTTng saves tracing session configurations to
6615 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6616 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6617 the opt:lttng-save(1):--output-path option to change this destination
6618 directory.
6619
6620 LTTng saves all configuration parameters, for example:
6621
6622 * The tracing session name.
6623 * The trace data output path.
6624 * The channels with their state and all their attributes.
6625 * The context fields you added to channels.
6626 * The event rules with their state, log level and filter conditions.
6627
6628 To load a tracing session:
6629
6630 * Use the man:lttng-load(1) command:
6631 +
6632 --
6633 [role="term"]
6634 ----
6635 $ lttng load my-session
6636 ----
6637 --
6638 +
6639 Replace `my-session` with the name of the tracing session to load.
6640
6641 When LTTng loads a configuration, it restores your saved tracing session
6642 as if you just configured it manually.
6643
6644 See man:lttng(1) for the complete list of command-line options. You
6645 can also save and load all many sessions at a time, and decide in which
6646 directory to output the XML files.
6647
6648
6649 [[sending-trace-data-over-the-network]]
6650 === Send trace data over the network
6651
6652 LTTng can send the recorded trace data to a remote system over the
6653 network instead of writing it to the local file system.
6654
6655 To send the trace data over the network:
6656
6657 . On the _remote_ system (which can also be the target system),
6658 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6659 +
6660 --
6661 [role="term"]
6662 ----
6663 $ lttng-relayd
6664 ----
6665 --
6666
6667 . On the _target_ system, create a tracing session configured to
6668 send trace data over the network:
6669 +
6670 --
6671 [role="term"]
6672 ----
6673 $ lttng create my-session --set-url=net://remote-system
6674 ----
6675 --
6676 +
6677 Replace `remote-system` by the host name or IP address of the
6678 remote system. See man:lttng-create(1) for the exact URL format.
6679
6680 . On the target system, use the man:lttng(1) command-line tool as usual.
6681 When tracing is active, the target's consumer daemon sends sub-buffers
6682 to the relay daemon running on the remote system instead of flushing
6683 them to the local file system. The relay daemon writes the received
6684 packets to the local file system.
6685
6686 The relay daemon writes trace files to
6687 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6688 +__hostname__+ is the host name of the target system and +__session__+
6689 is the tracing session name. Note that the env:LTTNG_HOME environment
6690 variable defaults to `$HOME` if not set. Use the
6691 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6692 trace files to another base directory.
6693
6694
6695 [role="since-2.4"]
6696 [[lttng-live]]
6697 === View events as LTTng emits them (noch:{LTTng} live)
6698
6699 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6700 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6701 display events as LTTng emits them on the target system while tracing is
6702 active.
6703
6704 The relay daemon creates a _tee_: it forwards the trace data to both
6705 the local file system and to connected live viewers:
6706
6707 [role="img-90"]
6708 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6709 image::live.png[]
6710
6711 To use LTTng live:
6712
6713 . On the _target system_, create a <<tracing-session,tracing session>>
6714 in _live mode_:
6715 +
6716 --
6717 [role="term"]
6718 ----
6719 $ lttng create my-session --live
6720 ----
6721 --
6722 +
6723 This spawns a local relay daemon.
6724
6725 . Start the live viewer and configure it to connect to the relay
6726 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6727 +
6728 --
6729 [role="term"]
6730 ----
6731 $ babeltrace --input-format=lttng-live \
6732 net://localhost/host/hostname/my-session
6733 ----
6734 --
6735 +
6736 Replace:
6737 +
6738 --
6739 * `hostname` with the host name of the target system.
6740 * `my-session` with the name of the tracing session to view.
6741 --
6742
6743 . Configure the tracing session as usual with the man:lttng(1)
6744 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6745
6746 You can list the available live tracing sessions with Babeltrace:
6747
6748 [role="term"]
6749 ----
6750 $ babeltrace --input-format=lttng-live net://localhost
6751 ----
6752
6753 You can start the relay daemon on another system. In this case, you need
6754 to specify the relay daemon's URL when you create the tracing session
6755 with the opt:lttng-create(1):--set-url option. You also need to replace
6756 `localhost` in the procedure above with the host name of the system on
6757 which the relay daemon is running.
6758
6759 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6760 command-line options.
6761
6762
6763 [role="since-2.3"]
6764 [[taking-a-snapshot]]
6765 === Take a snapshot of the current sub-buffers of a tracing session
6766
6767 The normal behavior of LTTng is to append full sub-buffers to growing
6768 trace data files. This is ideal to keep a full history of the events
6769 that occurred on the target system, but it can
6770 represent too much data in some situations. For example, you may wish
6771 to trace your application continuously until some critical situation
6772 happens, in which case you only need the latest few recorded
6773 events to perform the desired analysis, not multi-gigabyte trace files.
6774
6775 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6776 current sub-buffers of a given <<tracing-session,tracing session>>.
6777 LTTng can write the snapshot to the local file system or send it over
6778 the network.
6779
6780 To take a snapshot:
6781
6782 . Create a tracing session in _snapshot mode_:
6783 +
6784 --
6785 [role="term"]
6786 ----
6787 $ lttng create my-session --snapshot
6788 ----
6789 --
6790 +
6791 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6792 <<channel,channels>> created in this mode is automatically set to
6793 _overwrite_ (flight recorder mode).
6794
6795 . Configure the tracing session as usual with the man:lttng(1)
6796 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6797
6798 . **Optional**: When you need to take a snapshot,
6799 <<basic-tracing-session-control,stop tracing>>.
6800 +
6801 You can take a snapshot when the tracers are active, but if you stop
6802 them first, you are sure that the data in the sub-buffers does not
6803 change before you actually take the snapshot.
6804
6805 . Take a snapshot:
6806 +
6807 --
6808 [role="term"]
6809 ----
6810 $ lttng snapshot record --name=my-first-snapshot
6811 ----
6812 --
6813 +
6814 LTTng writes the current sub-buffers of all the current tracing
6815 session's channels to trace files on the local file system. Those trace
6816 files have `my-first-snapshot` in their name.
6817
6818 There is no difference between the format of a normal trace file and the
6819 format of a snapshot: viewers of LTTng traces also support LTTng
6820 snapshots.
6821
6822 By default, LTTng writes snapshot files to the path shown by
6823 `lttng snapshot list-output`. You can change this path or decide to send
6824 snapshots over the network using either:
6825
6826 . An output path or URL that you specify when you create the
6827 tracing session.
6828 . An snapshot output path or URL that you add using
6829 `lttng snapshot add-output`
6830 . An output path or URL that you provide directly to the
6831 `lttng snapshot record` command.
6832
6833 Method 3 overrides method 2, which overrides method 1. When you
6834 specify a URL, a relay daemon must listen on a remote system (see
6835 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6836
6837
6838 [role="since-2.6"]
6839 [[mi]]
6840 === Use the machine interface
6841
6842 With any command of the man:lttng(1) command-line tool, you can set the
6843 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6844 XML machine interface output, for example:
6845
6846 [role="term"]
6847 ----
6848 $ lttng --mi=xml enable-event --kernel --syscall open
6849 ----
6850
6851 A schema definition (XSD) is
6852 https://github.com/lttng/lttng-tools/blob/stable-2.10/src/common/mi-lttng-3.0.xsd[available]
6853 to ease the integration with external tools as much as possible.
6854
6855
6856 [role="since-2.8"]
6857 [[metadata-regenerate]]
6858 === Regenerate the metadata of an LTTng trace
6859
6860 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6861 data stream files and a metadata file. This metadata file contains,
6862 amongst other things, information about the offset of the clock sources
6863 used to timestamp <<event,event records>> when tracing.
6864
6865 If, once a <<tracing-session,tracing session>> is
6866 <<basic-tracing-session-control,started>>, a major
6867 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6868 happens, the trace's clock offset also needs to be updated. You
6869 can use the `metadata` item of the man:lttng-regenerate(1) command
6870 to do so.
6871
6872 The main use case of this command is to allow a system to boot with
6873 an incorrect wall time and trace it with LTTng before its wall time
6874 is corrected. Once the system is known to be in a state where its
6875 wall time is correct, it can run `lttng regenerate metadata`.
6876
6877 To regenerate the metadata of an LTTng trace:
6878
6879 * Use the `metadata` item of the man:lttng-regenerate(1) command:
6880 +
6881 --
6882 [role="term"]
6883 ----
6884 $ lttng regenerate metadata
6885 ----
6886 --
6887
6888 [IMPORTANT]
6889 ====
6890 `lttng regenerate metadata` has the following limitations:
6891
6892 * Tracing session <<creating-destroying-tracing-sessions,created>>
6893 in non-live mode.
6894 * User space <<channel,channels>>, if any, are using
6895 <<channel-buffering-schemes,per-user buffering>>.
6896 ====
6897
6898
6899 [role="since-2.9"]
6900 [[regenerate-statedump]]
6901 === Regenerate the state dump of a tracing session
6902
6903 The LTTng kernel and user space tracers generate state dump
6904 <<event,event records>> when the application starts or when you
6905 <<basic-tracing-session-control,start a tracing session>>. An analysis
6906 can use the state dump event records to set an initial state before it
6907 builds the rest of the state from the following event records.
6908 http://tracecompass.org/[Trace Compass] is a notable example of an
6909 application which uses the state dump of an LTTng trace.
6910
6911 When you <<taking-a-snapshot,take a snapshot>>, it's possible that the
6912 state dump event records are not included in the snapshot because they
6913 were recorded to a sub-buffer that has been consumed or overwritten
6914 already.
6915
6916 You can use the `lttng regenerate statedump` command to emit the state
6917 dump event records again.
6918
6919 To regenerate the state dump of the current tracing session, provided
6920 create it in snapshot mode, before you take a snapshot:
6921
6922 . Use the `statedump` item of the man:lttng-regenerate(1) command:
6923 +
6924 --
6925 [role="term"]
6926 ----
6927 $ lttng regenerate statedump
6928 ----
6929 --
6930
6931 . <<basic-tracing-session-control,Stop the tracing session>>:
6932 +
6933 --
6934 [role="term"]
6935 ----
6936 $ lttng stop
6937 ----
6938 --
6939
6940 . <<taking-a-snapshot,Take a snapshot>>:
6941 +
6942 --
6943 [role="term"]
6944 ----
6945 $ lttng snapshot record --name=my-snapshot
6946 ----
6947 --
6948
6949 Depending on the event throughput, you should run steps 1 and 2
6950 as closely as possible.
6951
6952 NOTE: To record the state dump events, you need to
6953 <<enabling-disabling-events,create event rules>> which enable them.
6954 LTTng-UST state dump tracepoints start with `lttng_ust_statedump:`.
6955 LTTng-modules state dump tracepoints start with `lttng_statedump_`.
6956
6957
6958 [role="since-2.7"]
6959 [[persistent-memory-file-systems]]
6960 === Record trace data on persistent memory file systems
6961
6962 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6963 (NVRAM) is random-access memory that retains its information when power
6964 is turned off (non-volatile). Systems with such memory can store data
6965 structures in RAM and retrieve them after a reboot, without flushing
6966 to typical _storage_.
6967
6968 Linux supports NVRAM file systems thanks to either
6969 http://pramfs.sourceforge.net/[PRAMFS] or
6970 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6971 (requires Linux 4.1+).
6972
6973 This section does not describe how to operate such file systems;
6974 we assume that you have a working persistent memory file system.
6975
6976 When you create a <<tracing-session,tracing session>>, you can specify
6977 the path of the shared memory holding the sub-buffers. If you specify a
6978 location on an NVRAM file system, then you can retrieve the latest
6979 recorded trace data when the system reboots after a crash.
6980
6981 To record trace data on a persistent memory file system and retrieve the
6982 trace data after a system crash:
6983
6984 . Create a tracing session with a sub-buffer shared memory path located
6985 on an NVRAM file system:
6986 +
6987 --
6988 [role="term"]
6989 ----
6990 $ lttng create my-session --shm-path=/path/to/shm
6991 ----
6992 --
6993
6994 . Configure the tracing session as usual with the man:lttng(1)
6995 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6996
6997 . After a system crash, use the man:lttng-crash(1) command-line tool to
6998 view the trace data recorded on the NVRAM file system:
6999 +
7000 --
7001 [role="term"]
7002 ----
7003 $ lttng-crash /path/to/shm
7004 ----
7005 --
7006
7007 The binary layout of the ring buffer files is not exactly the same as
7008 the trace files layout. This is why you need to use man:lttng-crash(1)
7009 instead of your preferred trace viewer directly.
7010
7011 To convert the ring buffer files to LTTng trace files:
7012
7013 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
7014 +
7015 --
7016 [role="term"]
7017 ----
7018 $ lttng-crash --extract=/path/to/trace /path/to/shm
7019 ----
7020 --
7021
7022
7023 [role="since-2.10"]
7024 [[notif-trigger-api]]
7025 === Get notified when a channel's buffer usage is too high or too low
7026
7027 With LTTng's $$C/C++$$ notification and trigger API, your user
7028 application can get notified when the buffer usage of one or more
7029 <<channel,channels>> becomes too low or too high. You can use this API
7030 and enable or disable <<event,event rules>> during tracing to avoid
7031 <<channel-overwrite-mode-vs-discard-mode,discarded event records>>.
7032
7033 .Have a user application get notified when an LTTng channel's buffer usage is too high.
7034 ====
7035 In this example, we create and build an application which gets notified
7036 when the buffer usage of a specific LTTng channel is higher than
7037 75{nbsp}%. We only print that it is the case in the example, but we
7038 could as well use the API of <<liblttng-ctl-lttng,`liblttng-ctl`>> to
7039 disable event rules when this happens.
7040
7041 . Create the application's C source file:
7042 +
7043 --
7044 [source,c]
7045 .path:{notif-app.c}
7046 ----
7047 #include <stdio.h>
7048 #include <assert.h>
7049 #include <lttng/domain.h>
7050 #include <lttng/action/action.h>
7051 #include <lttng/action/notify.h>
7052 #include <lttng/condition/condition.h>
7053 #include <lttng/condition/buffer-usage.h>
7054 #include <lttng/condition/evaluation.h>
7055 #include <lttng/notification/channel.h>
7056 #include <lttng/notification/notification.h>
7057 #include <lttng/trigger/trigger.h>
7058 #include <lttng/endpoint.h>
7059
7060 int main(int argc, char *argv[])
7061 {
7062 int exit_status = 0;
7063 struct lttng_notification_channel *notification_channel;
7064 struct lttng_condition *condition;
7065 struct lttng_action *action;
7066 struct lttng_trigger *trigger;
7067 const char *tracing_session_name;
7068 const char *channel_name;
7069
7070 assert(argc >= 3);
7071 tracing_session_name = argv[1];
7072 channel_name = argv[2];
7073
7074 /*
7075 * Create a notification channel. A notification channel
7076 * connects the user application to the LTTng session daemon.
7077 * This notification channel can be used to listen to various
7078 * types of notifications.
7079 */
7080 notification_channel = lttng_notification_channel_create(
7081 lttng_session_daemon_notification_endpoint);
7082
7083 /*
7084 * Create a "high buffer usage" condition. In this case, the
7085 * condition is reached when the buffer usage is greater than or
7086 * equal to 75 %. We create the condition for a specific tracing
7087 * session name, channel name, and for the user space tracing
7088 * domain.
7089 *
7090 * The "low buffer usage" condition type also exists.
7091 */
7092 condition = lttng_condition_buffer_usage_high_create();
7093 lttng_condition_buffer_usage_set_threshold_ratio(condition, .75);
7094 lttng_condition_buffer_usage_set_session_name(
7095 condition, tracing_session_name);
7096 lttng_condition_buffer_usage_set_channel_name(condition,
7097 channel_name);
7098 lttng_condition_buffer_usage_set_domain_type(condition,
7099 LTTNG_DOMAIN_UST);
7100
7101 /*
7102 * Create an action (get a notification) to take when the
7103 * condition created above is reached.
7104 */
7105 action = lttng_action_notify_create();
7106
7107 /*
7108 * Create a trigger. A trigger associates a condition to an
7109 * action: the action is executed when the condition is reached.
7110 */
7111 trigger = lttng_trigger_create(condition, action);
7112
7113 /* Register the trigger to LTTng. */
7114 lttng_register_trigger(trigger);
7115
7116 /*
7117 * Now that we have registered a trigger, a notification will be
7118 * emitted everytime its condition is met. To receive this
7119 * notification, we must subscribe to notifications that match
7120 * the same condition.
7121 */
7122 lttng_notification_channel_subscribe(notification_channel,
7123 condition);
7124
7125 /*
7126 * Notification loop. You can put this in a dedicated thread to
7127 * avoid blocking the main thread.
7128 */
7129 for (;;) {
7130 struct lttng_notification *notification;
7131 enum lttng_notification_channel_status status;
7132 const struct lttng_evaluation *notification_evaluation;
7133 const struct lttng_condition *notification_condition;
7134 double buffer_usage;
7135
7136 /* Receive the next notification. */
7137 status = lttng_notification_channel_get_next_notification(
7138 notification_channel, &notification);
7139
7140 switch (status) {
7141 case LTTNG_NOTIFICATION_CHANNEL_STATUS_OK:
7142 break;
7143 case LTTNG_NOTIFICATION_CHANNEL_STATUS_NOTIFICATIONS_DROPPED:
7144 /*
7145 * The session daemon can drop notifications if
7146 * a monitoring application is not consuming the
7147 * notifications fast enough.
7148 */
7149 continue;
7150 case LTTNG_NOTIFICATION_CHANNEL_STATUS_CLOSED:
7151 /*
7152 * The notification channel has been closed by the
7153 * session daemon. This is typically caused by a session
7154 * daemon shutting down.
7155 */
7156 goto end;
7157 default:
7158 /* Unhandled conditions or errors. */
7159 exit_status = 1;
7160 goto end;
7161 }
7162
7163 /*
7164 * A notification provides, amongst other things:
7165 *
7166 * * The condition that caused this notification to be
7167 * emitted.
7168 * * The condition evaluation, which provides more
7169 * specific information on the evaluation of the
7170 * condition.
7171 *
7172 * The condition evaluation provides the buffer usage
7173 * value at the moment the condition was reached.
7174 */
7175 notification_condition = lttng_notification_get_condition(
7176 notification);
7177 notification_evaluation = lttng_notification_get_evaluation(
7178 notification);
7179
7180 /* We're subscribed to only one condition. */
7181 assert(lttng_condition_get_type(notification_condition) ==
7182 LTTNG_CONDITION_TYPE_BUFFER_USAGE_HIGH);
7183
7184 /*
7185 * Get the exact sampled buffer usage from the
7186 * condition evaluation.
7187 */
7188 lttng_evaluation_buffer_usage_get_usage_ratio(
7189 notification_evaluation, &buffer_usage);
7190
7191 /*
7192 * At this point, instead of printing a message, we
7193 * could do something to reduce the channel's buffer
7194 * usage, like disable specific events.
7195 */
7196 printf("Buffer usage is %f %% in tracing session \"%s\", "
7197 "user space channel \"%s\".\n", buffer_usage * 100,
7198 tracing_session_name, channel_name);
7199 lttng_notification_destroy(notification);
7200 }
7201
7202 end:
7203 lttng_action_destroy(action);
7204 lttng_condition_destroy(condition);
7205 lttng_trigger_destroy(trigger);
7206 lttng_notification_channel_destroy(notification_channel);
7207 return exit_status;
7208 }
7209 ----
7210 --
7211
7212 . Build the `notif-app` application, linking it to `liblttng-ctl`:
7213 +
7214 --
7215 [role="term"]
7216 ----
7217 $ gcc -o notif-app notif-app.c -llttng-ctl
7218 ----
7219 --
7220
7221 . <<creating-destroying-tracing-sessions,Create a tracing session>>,
7222 <<enabling-disabling-events,create an event rule>> matching all the
7223 user space tracepoints, and
7224 <<basic-tracing-session-control,start tracing>>:
7225 +
7226 --
7227 [role="term"]
7228 ----
7229 $ lttng create my-session
7230 $ lttng enable-event --userspace --all
7231 $ lttng start
7232 ----
7233 --
7234 +
7235 If you create the channel manually with the man:lttng-enable-channel(1)
7236 command, you can control how frequently are the current values of the
7237 channel's properties sampled to evaluate user conditions with the
7238 opt:lttng-enable-channel(1):--monitor-timer option.
7239
7240 . Run the `notif-app` application. This program accepts the
7241 <<tracing-session,tracing session>> name and the user space channel
7242 name as its two first arguments. The channel which LTTng automatically
7243 creates with the man:lttng-enable-event(1) command above is named
7244 `channel0`:
7245 +
7246 --
7247 [role="term"]
7248 ----
7249 $ ./notif-app my-session channel0
7250 ----
7251 --
7252
7253 . In another terminal, run an application with a very high event
7254 throughput so that the 75{nbsp}% buffer usage condition is reached.
7255 +
7256 In the first terminal, the application should print lines like this:
7257 +
7258 ----
7259 Buffer usage is 81.45197 % in tracing session "my-session", user space
7260 channel "channel0".
7261 ----
7262 +
7263 If you don't see anything, try modifying the condition in
7264 path:{notif-app.c} to a lower value (0.1, for example), rebuilding it
7265 (step 2) and running it again (step 4).
7266 ====
7267
7268
7269 [[reference]]
7270 == Reference
7271
7272 [[lttng-modules-ref]]
7273 === noch:{LTTng-modules}
7274
7275
7276 [role="since-2.9"]
7277 [[lttng-tracepoint-enum]]
7278 ==== `LTTNG_TRACEPOINT_ENUM()` usage
7279
7280 Use the `LTTNG_TRACEPOINT_ENUM()` macro to define an enumeration:
7281
7282 [source,c]
7283 ----
7284 LTTNG_TRACEPOINT_ENUM(name, TP_ENUM_VALUES(entries))
7285 ----
7286
7287 Replace:
7288
7289 * `name` with the name of the enumeration (C identifier, unique
7290 amongst all the defined enumerations).
7291 * `entries` with a list of enumeration entries.
7292
7293 The available enumeration entry macros are:
7294
7295 +ctf_enum_value(__name__, __value__)+::
7296 Entry named +__name__+ mapped to the integral value +__value__+.
7297
7298 +ctf_enum_range(__name__, __begin__, __end__)+::
7299 Entry named +__name__+ mapped to the range of integral values between
7300 +__begin__+ (included) and +__end__+ (included).
7301
7302 +ctf_enum_auto(__name__)+::
7303 Entry named +__name__+ mapped to the integral value following the
7304 last mapping's value.
7305 +
7306 The last value of a `ctf_enum_value()` entry is its +__value__+
7307 parameter.
7308 +
7309 The last value of a `ctf_enum_range()` entry is its +__end__+ parameter.
7310 +
7311 If `ctf_enum_auto()` is the first entry in the list, its integral
7312 value is 0.
7313
7314 Use the `ctf_enum()` <<lttng-modules-tp-fields,field definition macro>>
7315 to use a defined enumeration as a tracepoint field.
7316
7317 .Define an enumeration with `LTTNG_TRACEPOINT_ENUM()`.
7318 ====
7319 [source,c]
7320 ----
7321 LTTNG_TRACEPOINT_ENUM(
7322 my_enum,
7323 TP_ENUM_VALUES(
7324 ctf_enum_auto("AUTO: EXPECT 0")
7325 ctf_enum_value("VALUE: 23", 23)
7326 ctf_enum_value("VALUE: 27", 27)
7327 ctf_enum_auto("AUTO: EXPECT 28")
7328 ctf_enum_range("RANGE: 101 TO 303", 101, 303)
7329 ctf_enum_auto("AUTO: EXPECT 304")
7330 )
7331 )
7332 ----
7333 ====
7334
7335
7336 [role="since-2.7"]
7337 [[lttng-modules-tp-fields]]
7338 ==== Tracepoint fields macros (for `TP_FIELDS()`)
7339
7340 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
7341 tracepoint fields, which must be listed within `TP_FIELDS()` in
7342 `LTTNG_TRACEPOINT_EVENT()`, are:
7343
7344 [role="func-desc growable",cols="asciidoc,asciidoc"]
7345 .Available macros to define LTTng-modules tracepoint fields
7346 |====
7347 |Macro |Description and parameters
7348
7349 |
7350 +ctf_integer(__t__, __n__, __e__)+
7351
7352 +ctf_integer_nowrite(__t__, __n__, __e__)+
7353
7354 +ctf_user_integer(__t__, __n__, __e__)+
7355
7356 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
7357 |
7358 Standard integer, displayed in base 10.
7359
7360 +__t__+::
7361 Integer C type (`int`, `long`, `size_t`, ...).
7362
7363 +__n__+::
7364 Field name.
7365
7366 +__e__+::
7367 Argument expression.
7368
7369 |
7370 +ctf_integer_hex(__t__, __n__, __e__)+
7371
7372 +ctf_user_integer_hex(__t__, __n__, __e__)+
7373 |
7374 Standard integer, displayed in base 16.
7375
7376 +__t__+::
7377 Integer C type.
7378
7379 +__n__+::
7380 Field name.
7381
7382 +__e__+::
7383 Argument expression.
7384
7385 |+ctf_integer_oct(__t__, __n__, __e__)+
7386 |
7387 Standard integer, displayed in base 8.
7388
7389 +__t__+::
7390 Integer C type.
7391
7392 +__n__+::
7393 Field name.
7394
7395 +__e__+::
7396 Argument expression.
7397
7398 |
7399 +ctf_integer_network(__t__, __n__, __e__)+
7400
7401 +ctf_user_integer_network(__t__, __n__, __e__)+
7402 |
7403 Integer in network byte order (big-endian), displayed in base 10.
7404
7405 +__t__+::
7406 Integer C type.
7407
7408 +__n__+::
7409 Field name.
7410
7411 +__e__+::
7412 Argument expression.
7413
7414 |
7415 +ctf_integer_network_hex(__t__, __n__, __e__)+
7416
7417 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
7418 |
7419 Integer in network byte order, displayed in base 16.
7420
7421 +__t__+::
7422 Integer C type.
7423
7424 +__n__+::
7425 Field name.
7426
7427 +__e__+::
7428 Argument expression.
7429
7430 |
7431 +ctf_enum(__N__, __t__, __n__, __e__)+
7432
7433 +ctf_enum_nowrite(__N__, __t__, __n__, __e__)+
7434
7435 +ctf_user_enum(__N__, __t__, __n__, __e__)+
7436
7437 +ctf_user_enum_nowrite(__N__, __t__, __n__, __e__)+
7438 |
7439 Enumeration.
7440
7441 +__N__+::
7442 Name of a <<lttng-tracepoint-enum,previously defined enumeration>>.
7443
7444 +__t__+::
7445 Integer C type (`int`, `long`, `size_t`, ...).
7446
7447 +__n__+::
7448 Field name.
7449
7450 +__e__+::
7451 Argument expression.
7452
7453 |
7454 +ctf_string(__n__, __e__)+
7455
7456 +ctf_string_nowrite(__n__, __e__)+
7457
7458 +ctf_user_string(__n__, __e__)+
7459
7460 +ctf_user_string_nowrite(__n__, __e__)+
7461 |
7462 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
7463
7464 +__n__+::
7465 Field name.
7466
7467 +__e__+::
7468 Argument expression.
7469
7470 |
7471 +ctf_array(__t__, __n__, __e__, __s__)+
7472
7473 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
7474
7475 +ctf_user_array(__t__, __n__, __e__, __s__)+
7476
7477 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
7478 |
7479 Statically-sized array of integers.
7480
7481 +__t__+::
7482 Array element C type.
7483
7484 +__n__+::
7485 Field name.
7486
7487 +__e__+::
7488 Argument expression.
7489
7490 +__s__+::
7491 Number of elements.
7492
7493 |
7494 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
7495
7496 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7497
7498 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
7499
7500 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7501 |
7502 Statically-sized array of bits.
7503
7504 The type of +__e__+ must be an integer type. +__s__+ is the number
7505 of elements of such type in +__e__+, not the number of bits.
7506
7507 +__t__+::
7508 Array element C type.
7509
7510 +__n__+::
7511 Field name.
7512
7513 +__e__+::
7514 Argument expression.
7515
7516 +__s__+::
7517 Number of elements.
7518
7519 |
7520 +ctf_array_text(__t__, __n__, __e__, __s__)+
7521
7522 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
7523
7524 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
7525
7526 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
7527 |
7528 Statically-sized array, printed as text.
7529
7530 The string does not need to be null-terminated.
7531
7532 +__t__+::
7533 Array element C type (always `char`).
7534
7535 +__n__+::
7536 Field name.
7537
7538 +__e__+::
7539 Argument expression.
7540
7541 +__s__+::
7542 Number of elements.
7543
7544 |
7545 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
7546
7547 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7548
7549 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
7550
7551 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7552 |
7553 Dynamically-sized array of integers.
7554
7555 The type of +__E__+ must be unsigned.
7556
7557 +__t__+::
7558 Array element C type.
7559
7560 +__n__+::
7561 Field name.
7562
7563 +__e__+::
7564 Argument expression.
7565
7566 +__T__+::
7567 Length expression C type.
7568
7569 +__E__+::
7570 Length expression.
7571
7572 |
7573 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7574
7575 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7576 |
7577 Dynamically-sized array of integers, displayed in base 16.
7578
7579 The type of +__E__+ must be unsigned.
7580
7581 +__t__+::
7582 Array element C type.
7583
7584 +__n__+::
7585 Field name.
7586
7587 +__e__+::
7588 Argument expression.
7589
7590 +__T__+::
7591 Length expression C type.
7592
7593 +__E__+::
7594 Length expression.
7595
7596 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
7597 |
7598 Dynamically-sized array of integers in network byte order (big-endian),
7599 displayed in base 10.
7600
7601 The type of +__E__+ must be unsigned.
7602
7603 +__t__+::
7604 Array element C type.
7605
7606 +__n__+::
7607 Field name.
7608
7609 +__e__+::
7610 Argument expression.
7611
7612 +__T__+::
7613 Length expression C type.
7614
7615 +__E__+::
7616 Length expression.
7617
7618 |
7619 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7620
7621 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7622
7623 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7624
7625 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7626 |
7627 Dynamically-sized array of bits.
7628
7629 The type of +__e__+ must be an integer type. +__s__+ is the number
7630 of elements of such type in +__e__+, not the number of bits.
7631
7632 The type of +__E__+ must be unsigned.
7633
7634 +__t__+::
7635 Array element C type.
7636
7637 +__n__+::
7638 Field name.
7639
7640 +__e__+::
7641 Argument expression.
7642
7643 +__T__+::
7644 Length expression C type.
7645
7646 +__E__+::
7647 Length expression.
7648
7649 |
7650 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7651
7652 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7653
7654 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7655
7656 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7657 |
7658 Dynamically-sized array, displayed as text.
7659
7660 The string does not need to be null-terminated.
7661
7662 The type of +__E__+ must be unsigned.
7663
7664 The behaviour is undefined if +__e__+ is `NULL`.
7665
7666 +__t__+::
7667 Sequence element C type (always `char`).
7668
7669 +__n__+::
7670 Field name.
7671
7672 +__e__+::
7673 Argument expression.
7674
7675 +__T__+::
7676 Length expression C type.
7677
7678 +__E__+::
7679 Length expression.
7680 |====
7681
7682 Use the `_user` versions when the argument expression, `e`, is
7683 a user space address. In the cases of `ctf_user_integer*()` and
7684 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7685 be addressable.
7686
7687 The `_nowrite` versions omit themselves from the session trace, but are
7688 otherwise identical. This means the `_nowrite` fields won't be written
7689 in the recorded trace. Their primary purpose is to make some
7690 of the event context available to the
7691 <<enabling-disabling-events,event filters>> without having to
7692 commit the data to sub-buffers.
7693
7694
7695 [[glossary]]
7696 == Glossary
7697
7698 Terms related to LTTng and to tracing in general:
7699
7700 Babeltrace::
7701 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7702 the cmd:babeltrace command, some libraries, and Python bindings.
7703
7704 <<channel-buffering-schemes,buffering scheme>>::
7705 A layout of sub-buffers applied to a given channel.
7706
7707 <<channel,channel>>::
7708 An entity which is responsible for a set of ring buffers.
7709 +
7710 <<event,Event rules>> are always attached to a specific channel.
7711
7712 clock::
7713 A reference of time for a tracer.
7714
7715 <<lttng-consumerd,consumer daemon>>::
7716 A process which is responsible for consuming the full sub-buffers
7717 and write them to a file system or send them over the network.
7718
7719 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7720 mode in which the tracer _discards_ new event records when there's no
7721 sub-buffer space left to store them.
7722
7723 event::
7724 The consequence of the execution of an instrumentation
7725 point, like a tracepoint that you manually place in some source code,
7726 or a Linux kernel KProbe.
7727 +
7728 An event is said to _occur_ at a specific time. Different actions can
7729 be taken upon the occurrence of an event, like record the event's payload
7730 to a sub-buffer.
7731
7732 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7733 The mechanism by which event records of a given channel are lost
7734 (not recorded) when there is no sub-buffer space left to store them.
7735
7736 [[def-event-name]]event name::
7737 The name of an event, which is also the name of the event record.
7738 This is also called the _instrumentation point name_.
7739
7740 event record::
7741 A record, in a trace, of the payload of an event which occured.
7742
7743 <<event,event rule>>::
7744 Set of conditions which must be satisfied for one or more occuring
7745 events to be recorded.
7746
7747 `java.util.logging`::
7748 Java platform's
7749 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7750
7751 <<instrumenting,instrumentation>>::
7752 The use of LTTng probes to make a piece of software traceable.
7753
7754 instrumentation point::
7755 A point in the execution path of a piece of software that, when
7756 reached by this execution, can emit an event.
7757
7758 instrumentation point name::
7759 See _<<def-event-name,event name>>_.
7760
7761 log4j::
7762 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7763 developed by the Apache Software Foundation.
7764
7765 log level::
7766 Level of severity of a log statement or user space
7767 instrumentation point.
7768
7769 LTTng::
7770 The _Linux Trace Toolkit: next generation_ project.
7771
7772 <<lttng-cli,cmd:lttng>>::
7773 A command-line tool provided by the LTTng-tools project which you
7774 can use to send and receive control messages to and from a
7775 session daemon.
7776
7777 LTTng analyses::
7778 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7779 which is a set of analyzing programs that are used to obtain a
7780 higher level view of an LTTng trace.
7781
7782 cmd:lttng-consumerd::
7783 The name of the consumer daemon program.
7784
7785 cmd:lttng-crash::
7786 A utility provided by the LTTng-tools project which can convert
7787 ring buffer files (usually
7788 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7789 to trace files.
7790
7791 LTTng Documentation::
7792 This document.
7793
7794 <<lttng-live,LTTng live>>::
7795 A communication protocol between the relay daemon and live viewers
7796 which makes it possible to see events "live", as they are received by
7797 the relay daemon.
7798
7799 <<lttng-modules,LTTng-modules>>::
7800 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7801 which contains the Linux kernel modules to make the Linux kernel
7802 instrumentation points available for LTTng tracing.
7803
7804 cmd:lttng-relayd::
7805 The name of the relay daemon program.
7806
7807 cmd:lttng-sessiond::
7808 The name of the session daemon program.
7809
7810 LTTng-tools::
7811 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7812 contains the various programs and libraries used to
7813 <<controlling-tracing,control tracing>>.
7814
7815 <<lttng-ust,LTTng-UST>>::
7816 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7817 contains libraries to instrument user applications.
7818
7819 <<lttng-ust-agents,LTTng-UST Java agent>>::
7820 A Java package provided by the LTTng-UST project to allow the
7821 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7822 logging statements.
7823
7824 <<lttng-ust-agents,LTTng-UST Python agent>>::
7825 A Python package provided by the LTTng-UST project to allow the
7826 LTTng instrumentation of Python logging statements.
7827
7828 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7829 The event loss mode in which new event records overwrite older
7830 event records when there's no sub-buffer space left to store them.
7831
7832 <<channel-buffering-schemes,per-process buffering>>::
7833 A buffering scheme in which each instrumented process has its own
7834 sub-buffers for a given user space channel.
7835
7836 <<channel-buffering-schemes,per-user buffering>>::
7837 A buffering scheme in which all the processes of a Unix user share the
7838 same sub-buffer for a given user space channel.
7839
7840 <<lttng-relayd,relay daemon>>::
7841 A process which is responsible for receiving the trace data sent by
7842 a distant consumer daemon.
7843
7844 ring buffer::
7845 A set of sub-buffers.
7846
7847 <<lttng-sessiond,session daemon>>::
7848 A process which receives control commands from you and orchestrates
7849 the tracers and various LTTng daemons.
7850
7851 <<taking-a-snapshot,snapshot>>::
7852 A copy of the current data of all the sub-buffers of a given tracing
7853 session, saved as trace files.
7854
7855 sub-buffer::
7856 One part of an LTTng ring buffer which contains event records.
7857
7858 timestamp::
7859 The time information attached to an event when it is emitted.
7860
7861 trace (_noun_)::
7862 A set of files which are the concatenations of one or more
7863 flushed sub-buffers.
7864
7865 trace (_verb_)::
7866 The action of recording the events emitted by an application
7867 or by a system, or to initiate such recording by controlling
7868 a tracer.
7869
7870 Trace Compass::
7871 The http://tracecompass.org[Trace Compass] project and application.
7872
7873 tracepoint::
7874 An instrumentation point using the tracepoint mechanism of the Linux
7875 kernel or of LTTng-UST.
7876
7877 tracepoint definition::
7878 The definition of a single tracepoint.
7879
7880 tracepoint name::
7881 The name of a tracepoint.
7882
7883 tracepoint provider::
7884 A set of functions providing tracepoints to an instrumented user
7885 application.
7886 +
7887 Not to be confused with a _tracepoint provider package_: many tracepoint
7888 providers can exist within a tracepoint provider package.
7889
7890 tracepoint provider package::
7891 One or more tracepoint providers compiled as an object file or as
7892 a shared library.
7893
7894 tracer::
7895 A software which records emitted events.
7896
7897 <<domain,tracing domain>>::
7898 A namespace for event sources.
7899
7900 <<tracing-group,tracing group>>::
7901 The Unix group in which a Unix user can be to be allowed to trace the
7902 Linux kernel.
7903
7904 <<tracing-session,tracing session>>::
7905 A stateful dialogue between you and a <<lttng-sessiond,session
7906 daemon>>.
7907
7908 user application::
7909 An application running in user space, as opposed to a Linux kernel
7910 module, for example.
This page took 0.190738 seconds and 4 git commands to generate.