2.10: add missing "Buildroot" section
[lttng-docs.git] / 2.10 / lttng-docs-2.10.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.10, 12 November 2018
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/welcome.txt[]
11
12
13 include::../common/audience.txt[]
14
15
16 [[chapters]]
17 === What's in this documentation?
18
19 The LTTng Documentation is divided into the following sections:
20
21 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24 +
25 You can skip this section if you’re familiar with software tracing and
26 with the LTTng project.
27
28 * **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31 +
32 You can skip this section if you already properly installed LTTng on
33 your target system.
34
35 * **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37 +
38 We recommend this section if you're new to LTTng or to software tracing
39 in general.
40 +
41 You can skip this section if you're not new to LTTng.
42
43 * **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45 +
46 It's a good idea to become familiar with the core concepts
47 before attempting to use the toolkit.
48
49 * **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52 * **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54 +
55 Instrumenting source code is essential to provide a meaningful
56 source of events.
57 +
58 You can skip this section if you do not have a programming background.
59
60 * **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63 * **<<reference,Reference>>** contains reference tables.
64 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68 include::../common/convention.txt[]
69
70
71 include::../common/acknowledgements.txt[]
72
73
74 [[whats-new]]
75 == What's new in LTTng {revision}?
76
77 LTTng{nbsp}{revision} bears the name _KeKriek_. From
78 http://brasseriedunham.com/[Brasserie Dunham], the _**KeKriek**_ is a
79 sour mashed golden wheat ale fermented with local sour cherries from
80 Tougas orchards. Fresh sweet cherry notes with some tartness, lively
81 carbonation with a dry finish.
82
83 New features and changes in LTTng{nbsp}{revision}:
84
85 * **Tracing control**:
86 ** You can put more than one wildcard special character (`*`), and not
87 only at the end, when you <<enabling-disabling-events,create an event
88 rule>>, in both the instrumentation point name and the literal
89 strings of
90 link:/man/1/lttng-enable-event/v{revision}/#doc-filter-syntax[filter expressions]:
91 +
92 --
93 [role="term"]
94 ----
95 # lttng enable-event --kernel 'x86_*_local_timer_*' \
96 --filter='name == "*a*b*c*d*e" && count >= 23'
97 ----
98 --
99 +
100 --
101 [role="term"]
102 ----
103 $ lttng enable-event --userspace '*_my_org:*msg*'
104 ----
105 --
106
107 ** New trigger and notification API for
108 <<liblttng-ctl-lttng,`liblttng-ctl`>>. This new subsystem allows you
109 to register triggers which emit a notification when a given
110 condition is satisfied. As of LTTng{nbsp}{revision}, only
111 <<channel,channel>> buffer usage conditions are available.
112 Documentation is available in the
113 https://github.com/lttng/lttng-tools/tree/stable-{revision}/include/lttng[`liblttng-ctl`
114 header files] and in
115 <<notif-trigger-api,Get notified when a channel's buffer usage is too
116 high or too low>>.
117
118 ** You can now embed the whole textual LTTng-tools man pages into the
119 executables at build time with the `--enable-embedded-help`
120 configuration option. Thanks to this option, you don't need the
121 http://www.methods.co.nz/asciidoc/[AsciiDoc] and
122 https://directory.fsf.org/wiki/Xmlto[xmlto] tools at build time, and
123 a manual pager at run time, to get access to this documentation.
124
125 * **User space tracing**:
126 ** New blocking mode: an LTTng-UST tracepoint can now block until
127 <<channel,sub-buffer>> space is available instead of discarding event
128 records in <<channel-overwrite-mode-vs-discard-mode,discard mode>>.
129 With this feature, you can be sure that no event records are
130 discarded during your application's execution at the expense of
131 performance.
132 +
133 For example, the following command lines create a user space tracing
134 channel with an infinite blocking timeout and run an application
135 instrumented with LTTng-UST which is explicitly allowed to block:
136 +
137 --
138 [role="term"]
139 ----
140 $ lttng create
141 $ lttng enable-channel --userspace --blocking-timeout=inf blocking-channel
142 $ lttng enable-event --userspace --channel=blocking-channel --all
143 $ lttng start
144 $ LTTNG_UST_ALLOW_BLOCKING=1 my-app
145 ----
146 --
147 +
148 See the complete <<blocking-timeout-example,blocking timeout example>>.
149
150 * **Linux kernel tracing**:
151 ** Linux 4.10, 4.11, and 4.12 support.
152 ** The thread state dump events recorded by LTTng-modules now contain
153 the task's CPU identifier. This improves the precision of the
154 scheduler model for analyses.
155 ** Extended man:socketpair(2) system call tracing data.
156
157
158 [[nuts-and-bolts]]
159 == Nuts and bolts
160
161 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
162 generation_ is a modern toolkit for tracing Linux systems and
163 applications. So your first question might be:
164 **what is tracing?**
165
166
167 [[what-is-tracing]]
168 === What is tracing?
169
170 As the history of software engineering progressed and led to what
171 we now take for granted--complex, numerous and
172 interdependent software applications running in parallel on
173 sophisticated operating systems like Linux--the authors of such
174 components, software developers, began feeling a natural
175 urge to have tools that would ensure the robustness and good performance
176 of their masterpieces.
177
178 One major achievement in this field is, inarguably, the
179 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
180 an essential tool for developers to find and fix bugs. But even the best
181 debugger won't help make your software run faster, and nowadays, faster
182 software means either more work done by the same hardware, or cheaper
183 hardware for the same work.
184
185 A _profiler_ is often the tool of choice to identify performance
186 bottlenecks. Profiling is suitable to identify _where_ performance is
187 lost in a given software. The profiler outputs a profile, a statistical
188 summary of observed events, which you may use to discover which
189 functions took the most time to execute. However, a profiler won't
190 report _why_ some identified functions are the bottleneck. Bottlenecks
191 might only occur when specific conditions are met, conditions that are
192 sometimes impossible to capture by a statistical profiler, or impossible
193 to reproduce with an application altered by the overhead of an
194 event-based profiler. For a thorough investigation of software
195 performance issues, a history of execution is essential, with the
196 recorded values of variables and context fields you choose, and
197 with as little influence as possible on the instrumented software. This
198 is where tracing comes in handy.
199
200 _Tracing_ is a technique used to understand what goes on in a running
201 software system. The software used for tracing is called a _tracer_,
202 which is conceptually similar to a tape recorder. When recording,
203 specific instrumentation points placed in the software source code
204 generate events that are saved on a giant tape: a _trace_ file. You
205 can trace user applications and the operating system at the same time,
206 opening the possibility of resolving a wide range of problems that would
207 otherwise be extremely challenging.
208
209 Tracing is often compared to _logging_. However, tracers and loggers are
210 two different tools, serving two different purposes. Tracers are
211 designed to record much lower-level events that occur much more
212 frequently than log messages, often in the range of thousands per
213 second, with very little execution overhead. Logging is more appropriate
214 for a very high-level analysis of less frequent events: user accesses,
215 exceptional conditions (errors and warnings, for example), database
216 transactions, instant messaging communications, and such. Simply put,
217 logging is one of the many use cases that can be satisfied with tracing.
218
219 The list of recorded events inside a trace file can be read manually
220 like a log file for the maximum level of detail, but it is generally
221 much more interesting to perform application-specific analyses to
222 produce reduced statistics and graphs that are useful to resolve a
223 given problem. Trace viewers and analyzers are specialized tools
224 designed to do this.
225
226 In the end, this is what LTTng is: a powerful, open source set of
227 tools to trace the Linux kernel and user applications at the same time.
228 LTTng is composed of several components actively maintained and
229 developed by its link:/community/#where[community].
230
231
232 [[lttng-alternatives]]
233 === Alternatives to noch:{LTTng}
234
235 Excluding proprietary solutions, a few competing software tracers
236 exist for Linux:
237
238 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
239 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
240 user scripts and is responsible for loading code into the
241 Linux kernel for further execution and collecting the outputted data.
242 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
243 subsystem in the Linux kernel in which a virtual machine can execute
244 programs passed from the user space to the kernel. You can attach
245 such programs to tracepoints and KProbes thanks to a system call, and
246 they can output data to the user space when executed thanks to
247 different mechanisms (pipe, VM register values, and eBPF maps, to name
248 a few).
249 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
250 is the de facto function tracer of the Linux kernel. Its user
251 interface is a set of special files in sysfs.
252 * https://perf.wiki.kernel.org/[perf] is
253 a performance analyzing tool for Linux which supports hardware
254 performance counters, tracepoints, as well as other counters and
255 types of probes. perf's controlling utility is the cmd:perf command
256 line/curses tool.
257 * http://linux.die.net/man/1/strace[strace]
258 is a command-line utility which records system calls made by a
259 user process, as well as signal deliveries and changes of process
260 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
261 to fulfill its function.
262 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
263 analyze Linux kernel events. You write scripts, or _chisels_ in
264 sysdig's jargon, in Lua and sysdig executes them while the system is
265 being traced or afterwards. sysdig's interface is the cmd:sysdig
266 command-line tool as well as the curses-based cmd:csysdig tool.
267 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
268 user space tracer which uses custom user scripts to produce plain text
269 traces. SystemTap converts the scripts to the C language, and then
270 compiles them as Linux kernel modules which are loaded to produce
271 trace data. SystemTap's primary user interface is the cmd:stap
272 command-line tool.
273
274 The main distinctive features of LTTng is that it produces correlated
275 kernel and user space traces, as well as doing so with the lowest
276 overhead amongst other solutions. It produces trace files in the
277 http://diamon.org/ctf[CTF] format, a file format optimized
278 for the production and analyses of multi-gigabyte data.
279
280 LTTng is the result of more than 10 years of active open source
281 development by a community of passionate developers.
282 LTTng{nbsp}{revision} is currently available on major desktop and server
283 Linux distributions.
284
285 The main interface for tracing control is a single command-line tool
286 named cmd:lttng. The latter can create several tracing sessions, enable
287 and disable events on the fly, filter events efficiently with custom
288 user expressions, start and stop tracing, and much more. LTTng can
289 record the traces on the file system or send them over the network, and
290 keep them totally or partially. You can view the traces once tracing
291 becomes inactive or in real-time.
292
293 <<installing-lttng,Install LTTng now>> and
294 <<getting-started,start tracing>>!
295
296
297 [[installing-lttng]]
298 == Installation
299
300 **LTTng** is a set of software <<plumbing,components>> which interact to
301 <<instrumenting,instrument>> the Linux kernel and user applications, and
302 to <<controlling-tracing,control tracing>> (start and stop
303 tracing, enable and disable event rules, and the rest). Those
304 components are bundled into the following packages:
305
306 * **LTTng-tools**: Libraries and command-line interface to
307 control tracing.
308 * **LTTng-modules**: Linux kernel modules to instrument and
309 trace the kernel.
310 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
311 trace user applications.
312
313 Most distributions mark the LTTng-modules and LTTng-UST packages as
314 optional when installing LTTng-tools (which is always required). In the
315 following sections, we always provide the steps to install all three,
316 but note that:
317
318 * You only need to install LTTng-modules if you intend to trace the
319 Linux kernel.
320 * You only need to install LTTng-UST if you intend to trace user
321 applications.
322
323 [role="growable"]
324 .Availability of LTTng{nbsp}{revision} for major Linux distributions as of 12 November 2018.
325 |====
326 |Distribution |Available in releases |Alternatives
327
328 |https://www.ubuntu.com/[Ubuntu]
329 |<<ubuntu,Ubuntu{nbsp}18.04 _Bionic Beaver_>>.
330
331 Ubuntu{nbsp}14.04 _Trusty Tahr_, Ubuntu{nbsp}16.04 _Xenial Xerus_,
332 and Ubuntu{nbsp}18.04 _Bionic Beaver_:
333 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
334 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
335
336 |https://getfedora.org/[Fedora]
337 |xref:fedora["Fedora{nbsp}27, Fedora{nbsp}28, and Fedora{nbsp}29"].
338 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
339
340 |https://www.debian.org/[Debian]
341 |<<debian,Debian "buster" (testing)>>.
342 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
343
344 |https://www.archlinux.org/[Arch Linux]
345 |<<arch-linux,Current Arch Linux build>>.
346 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
347
348 |https://alpinelinux.org/[Alpine Linux]
349 |<<alpine-linux,Alpine Linux{nbsp}3.7 and Alpine Linux{nbsp}3.8>>.
350 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
351
352 |https://www.opensuse.org/[openSUSE]
353 |<<opensuse,openSUSE Leap{nbsp}15.0>>.
354 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
355
356 |https://www.redhat.com/[RHEL] and https://www.suse.com/[SLES]
357 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
358 |
359
360 |https://buildroot.org/[Buildroot]
361 |xref:buildroot[Buildroot{nbsp}2018.02, Buildroot{nbsp}2018.05,
362 Buildroot{nbsp}2018.08, and Buildroot{nbsp}2018.11"].
363 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
364
365 |http://www.openembedded.org/wiki/Main_Page[OpenEmbedded] and
366 https://www.yoctoproject.org/[Yocto]
367 |_Not available_
368 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
369 |====
370
371
372 [[ubuntu]]
373 === [[ubuntu-official-repositories]]Ubuntu
374
375 LTTng{nbsp}{revision} is available on Ubuntu{nbsp}18.04 _Bionic Beaver_.
376 For previous supported releases of Ubuntu,
377 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
378
379 To install LTTng{nbsp}{revision} on Ubuntu{nbsp}18.04 _Bionic Beaver_:
380
381 . Install the main LTTng{nbsp}{revision} packages:
382 +
383 --
384 [role="term"]
385 ----
386 # apt-get install lttng-tools
387 # apt-get install lttng-modules-dkms
388 # apt-get install liblttng-ust-dev
389 ----
390 --
391
392 . **If you need to instrument and trace
393 <<java-application,Java applications>>**, install the LTTng-UST
394 Java agent:
395 +
396 --
397 [role="term"]
398 ----
399 # apt-get install liblttng-ust-agent-java
400 ----
401 --
402
403 . **If you need to instrument and trace
404 <<python-application,Python{nbsp}3 applications>>**, install the
405 LTTng-UST Python agent:
406 +
407 --
408 [role="term"]
409 ----
410 # apt-get install python3-lttngust
411 ----
412 --
413
414
415 [[ubuntu-ppa]]
416 ==== noch:{LTTng} Stable {revision} PPA
417
418 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
419 Stable{nbsp}{revision} PPA] offers the latest stable
420 LTTng{nbsp}{revision} packages for:
421
422 * Ubuntu{nbsp}14.04 _Trusty Tahr_
423 * Ubuntu{nbsp}16.04 _Xenial Xerus_
424 * Ubuntu{nbsp}18.04 _Bionic Beaver_
425
426 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
427
428 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
429 list of packages:
430 +
431 --
432 [role="term"]
433 ----
434 # apt-add-repository ppa:lttng/stable-2.10
435 # apt-get update
436 ----
437 --
438
439 . Install the main LTTng{nbsp}{revision} packages:
440 +
441 --
442 [role="term"]
443 ----
444 # apt-get install lttng-tools
445 # apt-get install lttng-modules-dkms
446 # apt-get install liblttng-ust-dev
447 ----
448 --
449
450 . **If you need to instrument and trace
451 <<java-application,Java applications>>**, install the LTTng-UST
452 Java agent:
453 +
454 --
455 [role="term"]
456 ----
457 # apt-get install liblttng-ust-agent-java
458 ----
459 --
460
461 . **If you need to instrument and trace
462 <<python-application,Python{nbsp}3 applications>>**, install the
463 LTTng-UST Python agent:
464 +
465 --
466 [role="term"]
467 ----
468 # apt-get install python3-lttngust
469 ----
470 --
471
472
473 [[fedora]]
474 === Fedora
475
476 To install LTTng{nbsp}{revision} on Fedora{nbsp}27, Fedora{nbsp}28,
477 or Fedora{nbsp}29:
478
479 . Install the LTTng-tools{nbsp}{revision} and LTTng-UST{nbsp}{revision}
480 packages:
481 +
482 --
483 [role="term"]
484 ----
485 # yum install lttng-tools
486 # yum install lttng-ust
487 ----
488 --
489
490 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
491 +
492 --
493 [role="term"]
494 ----
495 $ cd $(mktemp -d) &&
496 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
497 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
498 cd lttng-modules-2.10.* &&
499 make &&
500 sudo make modules_install &&
501 sudo depmod -a
502 ----
503 --
504
505 [IMPORTANT]
506 .Java and Python application instrumentation and tracing
507 ====
508 If you need to instrument and trace <<java-application,Java
509 applications>> on Fedora, you need to build and install
510 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
511 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
512 `--enable-java-agent-all` options to the `configure` script, depending
513 on which Java logging framework you use.
514
515 If you need to instrument and trace <<python-application,Python
516 applications>> on Fedora, you need to build and install
517 LTTng-UST{nbsp}{revision} from source and pass the
518 `--enable-python-agent` option to the `configure` script.
519 ====
520
521
522 [[debian]]
523 === Debian
524
525 To install LTTng{nbsp}{revision} on Debian "buster" (testing):
526
527 . Install the main LTTng{nbsp}{revision} packages:
528 +
529 --
530 [role="term"]
531 ----
532 # apt-get install lttng-modules-dkms
533 # apt-get install liblttng-ust-dev
534 # apt-get install lttng-tools
535 ----
536 --
537
538 . **If you need to instrument and trace <<java-application,Java
539 applications>>**, install the LTTng-UST Java agent:
540 +
541 --
542 [role="term"]
543 ----
544 # apt-get install liblttng-ust-agent-java
545 ----
546 --
547
548 . **If you need to instrument and trace <<python-application,Python
549 applications>>**, install the LTTng-UST Python agent:
550 +
551 --
552 [role="term"]
553 ----
554 # apt-get install python3-lttngust
555 ----
556 --
557
558
559 [[arch-linux]]
560 === Arch Linux
561
562 LTTng-UST{nbsp}{revision} is available in Arch Linux's _Community_
563 repository, while LTTng-tools{nbsp}{revision} and
564 LTTng-modules{nbsp}{revision} are available in the
565 https://aur.archlinux.org/[AUR].
566
567 To install LTTng{nbsp}{revision} on Arch Linux, using
568 https://github.com/rmarquis/pacaur[pacaur] for the AUR packages:
569
570 . Install the main LTTng{nbsp}{revision} packages:
571 +
572 --
573 [role="term"]
574 ----
575 # pacman -Sy lttng-ust
576 $ pikaur -Sy lttng-tools
577 $ pikaur -Sy lttng-modules
578 ----
579 --
580
581 . **If you need to instrument and trace <<python-application,Python
582 applications>>**, install the LTTng-UST Python agent:
583 +
584 --
585 [role="term"]
586 ----
587 # pacman -Sy python-lttngust
588 # pacman -Sy python2-lttngust
589 ----
590 --
591
592
593 [[alpine-linux]]
594 === Alpine Linux
595
596 To install LTTng-tools{nbsp}{revision} and LTTng-UST{nbsp}{revision} on
597 Alpine Linux{nbsp}3.7 or Alpine Linux{nbsp}3.8:
598
599 . Add the LTTng packages:
600 +
601 --
602 [role="term"]
603 ----
604 # apk add lttng-tools
605 # apk add lttng-ust-dev
606 ----
607 --
608
609 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
610 +
611 --
612 [role="term"]
613 ----
614 $ cd $(mktemp -d) &&
615 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
616 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
617 cd lttng-modules-2.10.* &&
618 make &&
619 sudo make modules_install &&
620 sudo depmod -a
621 ----
622 --
623
624
625 [[opensuse]]
626 === noch:{openSUSE}
627
628 To install LTTng{nbsp}{revision} on openSUSE Leap{nbsp}15.0:
629
630 * Install the main LTTng{nbsp}{revision} packages:
631 +
632 --
633 [role="term"]
634 ----
635 sudo zypper install lttng-tools
636 sudo zypper install lttng-modules
637 sudo zypper install lttng-ust-devel
638 ----
639 --
640
641 [IMPORTANT]
642 .Java and Python application instrumentation and tracing
643 ====
644 If you need to instrument and trace <<java-application,Java
645 applications>> on openSUSE, you need to build and install
646 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
647 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
648 `--enable-java-agent-all` options to the `configure` script, depending
649 on which Java logging framework you use.
650
651 If you need to instrument and trace <<python-application,Python
652 applications>> on openSUSE, you need to build and install
653 LTTng-UST{nbsp}{revision} from source and pass the
654 `--enable-python-agent` option to the `configure` script.
655 ====
656
657
658 [[enterprise-distributions]]
659 === RHEL, SUSE, and other enterprise distributions
660
661 To install LTTng on enterprise Linux distributions, such as Red Hat
662 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
663 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
664
665
666 [[buildroot]]
667 === Buildroot
668
669 To install LTTng{nbsp}{revision} on Buildroot{nbsp}2018.02,
670 Buildroot{nbsp}2018.05, Buildroot{nbsp}2018.08, or
671 Buildroot{nbsp}2018.11:
672
673 . Launch the Buildroot configuration tool:
674 +
675 --
676 [role="term"]
677 ----
678 $ make menuconfig
679 ----
680 --
681
682 . In **Kernel**, check **Linux kernel**.
683 . In **Toolchain**, check **Enable WCHAR support**.
684 . In **Target packages**{nbsp}&#8594; **Debugging, profiling and benchmark**,
685 check **lttng-modules** and **lttng-tools**.
686 . In **Target packages**{nbsp}&#8594; **Libraries**{nbsp}&#8594;
687 **Other**, check **lttng-libust**.
688
689
690 [[building-from-source]]
691 === Build from source
692
693 To build and install LTTng{nbsp}{revision} from source:
694
695 . Using your distribution's package manager, or from source, install
696 the following dependencies of LTTng-tools and LTTng-UST:
697 +
698 --
699 * https://sourceforge.net/projects/libuuid/[libuuid]
700 * http://directory.fsf.org/wiki/Popt[popt]
701 * http://liburcu.org/[Userspace RCU]
702 * http://www.xmlsoft.org/[libxml2]
703 --
704
705 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
706 +
707 --
708 [role="term"]
709 ----
710 $ cd $(mktemp -d) &&
711 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
712 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
713 cd lttng-modules-2.10.* &&
714 make &&
715 sudo make modules_install &&
716 sudo depmod -a
717 ----
718 --
719
720 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
721 +
722 --
723 [role="term"]
724 ----
725 $ cd $(mktemp -d) &&
726 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.10.tar.bz2 &&
727 tar -xf lttng-ust-latest-2.10.tar.bz2 &&
728 cd lttng-ust-2.10.* &&
729 ./configure &&
730 make &&
731 sudo make install &&
732 sudo ldconfig
733 ----
734 --
735 +
736 --
737 [IMPORTANT]
738 .Java and Python application tracing
739 ====
740 If you need to instrument and trace <<java-application,Java
741 applications>>, pass the `--enable-java-agent-jul`,
742 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
743 `configure` script, depending on which Java logging framework you use.
744
745 If you need to instrument and trace <<python-application,Python
746 applications>>, pass the `--enable-python-agent` option to the
747 `configure` script. You can set the `PYTHON` environment variable to the
748 path to the Python interpreter for which to install the LTTng-UST Python
749 agent package.
750 ====
751 --
752 +
753 --
754 [NOTE]
755 ====
756 By default, LTTng-UST libraries are installed to
757 dir:{/usr/local/lib}, which is the de facto directory in which to
758 keep self-compiled and third-party libraries.
759
760 When <<building-tracepoint-providers-and-user-application,linking an
761 instrumented user application with `liblttng-ust`>>:
762
763 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
764 variable.
765 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
766 man:gcc(1), man:g++(1), or man:clang(1).
767 ====
768 --
769
770 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
771 +
772 --
773 [role="term"]
774 ----
775 $ cd $(mktemp -d) &&
776 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
777 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
778 cd lttng-tools-2.10.* &&
779 ./configure &&
780 make &&
781 sudo make install &&
782 sudo ldconfig
783 ----
784 --
785
786 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
787 previous steps automatically for a given version of LTTng and confine
788 the installed files in a specific directory. This can be useful to test
789 LTTng without installing it on your system.
790
791
792 [[getting-started]]
793 == Quick start
794
795 This is a short guide to get started quickly with LTTng kernel and user
796 space tracing.
797
798 Before you follow this guide, make sure to <<installing-lttng,install>>
799 LTTng.
800
801 This tutorial walks you through the steps to:
802
803 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
804 . <<tracing-your-own-user-application,Trace a user application>> written
805 in C.
806 . <<viewing-and-analyzing-your-traces,View and analyze the
807 recorded events>>.
808
809
810 [[tracing-the-linux-kernel]]
811 === Trace the Linux kernel
812
813 The following command lines start with the `#` prompt because you need
814 root privileges to trace the Linux kernel. You can also trace the kernel
815 as a regular user if your Unix user is a member of the
816 <<tracing-group,tracing group>>.
817
818 . Create a <<tracing-session,tracing session>> which writes its traces
819 to dir:{/tmp/my-kernel-trace}:
820 +
821 --
822 [role="term"]
823 ----
824 # lttng create my-kernel-session --output=/tmp/my-kernel-trace
825 ----
826 --
827
828 . List the available kernel tracepoints and system calls:
829 +
830 --
831 [role="term"]
832 ----
833 # lttng list --kernel
834 # lttng list --kernel --syscall
835 ----
836 --
837
838 . Create <<event,event rules>> which match the desired instrumentation
839 point names, for example the `sched_switch` and `sched_process_fork`
840 tracepoints, and the man:open(2) and man:close(2) system calls:
841 +
842 --
843 [role="term"]
844 ----
845 # lttng enable-event --kernel sched_switch,sched_process_fork
846 # lttng enable-event --kernel --syscall open,close
847 ----
848 --
849 +
850 You can also create an event rule which matches _all_ the Linux kernel
851 tracepoints (this will generate a lot of data when tracing):
852 +
853 --
854 [role="term"]
855 ----
856 # lttng enable-event --kernel --all
857 ----
858 --
859
860 . <<basic-tracing-session-control,Start tracing>>:
861 +
862 --
863 [role="term"]
864 ----
865 # lttng start
866 ----
867 --
868
869 . Do some operation on your system for a few seconds. For example,
870 load a website, or list the files of a directory.
871 . <<basic-tracing-session-control,Stop tracing>> and destroy the
872 tracing session:
873 +
874 --
875 [role="term"]
876 ----
877 # lttng stop
878 # lttng destroy
879 ----
880 --
881 +
882 The man:lttng-destroy(1) command does not destroy the trace data; it
883 only destroys the state of the tracing session.
884
885 . For the sake of this example, make the recorded trace accessible to
886 the non-root users:
887 +
888 --
889 [role="term"]
890 ----
891 # chown -R $(whoami) /tmp/my-kernel-trace
892 ----
893 --
894
895 See <<viewing-and-analyzing-your-traces,View and analyze the
896 recorded events>> to view the recorded events.
897
898
899 [[tracing-your-own-user-application]]
900 === Trace a user application
901
902 This section steps you through a simple example to trace a
903 _Hello world_ program written in C.
904
905 To create the traceable user application:
906
907 . Create the tracepoint provider header file, which defines the
908 tracepoints and the events they can generate:
909 +
910 --
911 [source,c]
912 .path:{hello-tp.h}
913 ----
914 #undef TRACEPOINT_PROVIDER
915 #define TRACEPOINT_PROVIDER hello_world
916
917 #undef TRACEPOINT_INCLUDE
918 #define TRACEPOINT_INCLUDE "./hello-tp.h"
919
920 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
921 #define _HELLO_TP_H
922
923 #include <lttng/tracepoint.h>
924
925 TRACEPOINT_EVENT(
926 hello_world,
927 my_first_tracepoint,
928 TP_ARGS(
929 int, my_integer_arg,
930 char*, my_string_arg
931 ),
932 TP_FIELDS(
933 ctf_string(my_string_field, my_string_arg)
934 ctf_integer(int, my_integer_field, my_integer_arg)
935 )
936 )
937
938 #endif /* _HELLO_TP_H */
939
940 #include <lttng/tracepoint-event.h>
941 ----
942 --
943
944 . Create the tracepoint provider package source file:
945 +
946 --
947 [source,c]
948 .path:{hello-tp.c}
949 ----
950 #define TRACEPOINT_CREATE_PROBES
951 #define TRACEPOINT_DEFINE
952
953 #include "hello-tp.h"
954 ----
955 --
956
957 . Build the tracepoint provider package:
958 +
959 --
960 [role="term"]
961 ----
962 $ gcc -c -I. hello-tp.c
963 ----
964 --
965
966 . Create the _Hello World_ application source file:
967 +
968 --
969 [source,c]
970 .path:{hello.c}
971 ----
972 #include <stdio.h>
973 #include "hello-tp.h"
974
975 int main(int argc, char *argv[])
976 {
977 int x;
978
979 puts("Hello, World!\nPress Enter to continue...");
980
981 /*
982 * The following getchar() call is only placed here for the purpose
983 * of this demonstration, to pause the application in order for
984 * you to have time to list its tracepoints. It is not
985 * needed otherwise.
986 */
987 getchar();
988
989 /*
990 * A tracepoint() call.
991 *
992 * Arguments, as defined in hello-tp.h:
993 *
994 * 1. Tracepoint provider name (required)
995 * 2. Tracepoint name (required)
996 * 3. my_integer_arg (first user-defined argument)
997 * 4. my_string_arg (second user-defined argument)
998 *
999 * Notice the tracepoint provider and tracepoint names are
1000 * NOT strings: they are in fact parts of variables that the
1001 * macros in hello-tp.h create.
1002 */
1003 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
1004
1005 for (x = 0; x < argc; ++x) {
1006 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
1007 }
1008
1009 puts("Quitting now!");
1010 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
1011
1012 return 0;
1013 }
1014 ----
1015 --
1016
1017 . Build the application:
1018 +
1019 --
1020 [role="term"]
1021 ----
1022 $ gcc -c hello.c
1023 ----
1024 --
1025
1026 . Link the application with the tracepoint provider package,
1027 `liblttng-ust`, and `libdl`:
1028 +
1029 --
1030 [role="term"]
1031 ----
1032 $ gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
1033 ----
1034 --
1035
1036 Here's the whole build process:
1037
1038 [role="img-100"]
1039 .User space tracing tutorial's build steps.
1040 image::ust-flow.png[]
1041
1042 To trace the user application:
1043
1044 . Run the application with a few arguments:
1045 +
1046 --
1047 [role="term"]
1048 ----
1049 $ ./hello world and beyond
1050 ----
1051 --
1052 +
1053 You see:
1054 +
1055 --
1056 ----
1057 Hello, World!
1058 Press Enter to continue...
1059 ----
1060 --
1061
1062 . Start an LTTng <<lttng-sessiond,session daemon>>:
1063 +
1064 --
1065 [role="term"]
1066 ----
1067 $ lttng-sessiond --daemonize
1068 ----
1069 --
1070 +
1071 Note that a session daemon might already be running, for example as
1072 a service that the distribution's service manager started.
1073
1074 . List the available user space tracepoints:
1075 +
1076 --
1077 [role="term"]
1078 ----
1079 $ lttng list --userspace
1080 ----
1081 --
1082 +
1083 You see the `hello_world:my_first_tracepoint` tracepoint listed
1084 under the `./hello` process.
1085
1086 . Create a <<tracing-session,tracing session>>:
1087 +
1088 --
1089 [role="term"]
1090 ----
1091 $ lttng create my-user-space-session
1092 ----
1093 --
1094
1095 . Create an <<event,event rule>> which matches the
1096 `hello_world:my_first_tracepoint` event name:
1097 +
1098 --
1099 [role="term"]
1100 ----
1101 $ lttng enable-event --userspace hello_world:my_first_tracepoint
1102 ----
1103 --
1104
1105 . <<basic-tracing-session-control,Start tracing>>:
1106 +
1107 --
1108 [role="term"]
1109 ----
1110 $ lttng start
1111 ----
1112 --
1113
1114 . Go back to the running `hello` application and press Enter. The
1115 program executes all `tracepoint()` instrumentation points and exits.
1116 . <<basic-tracing-session-control,Stop tracing>> and destroy the
1117 tracing session:
1118 +
1119 --
1120 [role="term"]
1121 ----
1122 $ lttng stop
1123 $ lttng destroy
1124 ----
1125 --
1126 +
1127 The man:lttng-destroy(1) command does not destroy the trace data; it
1128 only destroys the state of the tracing session.
1129
1130 By default, LTTng saves the traces in
1131 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
1132 where +__name__+ is the tracing session name. The
1133 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
1134
1135 See <<viewing-and-analyzing-your-traces,View and analyze the
1136 recorded events>> to view the recorded events.
1137
1138
1139 [[viewing-and-analyzing-your-traces]]
1140 === View and analyze the recorded events
1141
1142 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
1143 kernel>> and <<tracing-your-own-user-application,Trace a user
1144 application>> tutorials, you can inspect the recorded events.
1145
1146 Many tools are available to read LTTng traces:
1147
1148 * **cmd:babeltrace** is a command-line utility which converts trace
1149 formats; it supports the format that LTTng produces, CTF, as well as a
1150 basic text output which can be ++grep++ed. The cmd:babeltrace command
1151 is part of the http://diamon.org/babeltrace[Babeltrace] project.
1152 * Babeltrace also includes
1153 **https://www.python.org/[Python] bindings** so
1154 that you can easily open and read an LTTng trace with your own script,
1155 benefiting from the power of Python.
1156 * http://tracecompass.org/[**Trace Compass**]
1157 is a graphical user interface for viewing and analyzing any type of
1158 logs or traces, including LTTng's.
1159 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
1160 project which includes many high-level analyses of LTTng kernel
1161 traces, like scheduling statistics, interrupt frequency distribution,
1162 top CPU usage, and more.
1163
1164 NOTE: This section assumes that the traces recorded during the previous
1165 tutorials were saved to their default location, in the
1166 dir:{$LTTNG_HOME/lttng-traces} directory. The env:LTTNG_HOME
1167 environment variable defaults to `$HOME` if not set.
1168
1169
1170 [[viewing-and-analyzing-your-traces-bt]]
1171 ==== Use the cmd:babeltrace command-line tool
1172
1173 The simplest way to list all the recorded events of a trace is to pass
1174 its path to cmd:babeltrace with no options:
1175
1176 [role="term"]
1177 ----
1178 $ babeltrace ~/lttng-traces/my-user-space-session*
1179 ----
1180
1181 cmd:babeltrace finds all traces recursively within the given path and
1182 prints all their events, merging them in chronological order.
1183
1184 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
1185 further filtering:
1186
1187 [role="term"]
1188 ----
1189 $ babeltrace /tmp/my-kernel-trace | grep _switch
1190 ----
1191
1192 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
1193 count the recorded events:
1194
1195 [role="term"]
1196 ----
1197 $ babeltrace /tmp/my-kernel-trace | grep _open | wc --lines
1198 ----
1199
1200
1201 [[viewing-and-analyzing-your-traces-bt-python]]
1202 ==== Use the Babeltrace Python bindings
1203
1204 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
1205 is useful to isolate events by simple matching using man:grep(1) and
1206 similar utilities. However, more elaborate filters, such as keeping only
1207 event records with a field value falling within a specific range, are
1208 not trivial to write using a shell. Moreover, reductions and even the
1209 most basic computations involving multiple event records are virtually
1210 impossible to implement.
1211
1212 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
1213 to read the event records of an LTTng trace sequentially and compute the
1214 desired information.
1215
1216 The following script accepts an LTTng Linux kernel trace path as its
1217 first argument and prints the short names of the top 5 running processes
1218 on CPU 0 during the whole trace:
1219
1220 [source,python]
1221 .path:{top5proc.py}
1222 ----
1223 from collections import Counter
1224 import babeltrace
1225 import sys
1226
1227
1228 def top5proc():
1229 if len(sys.argv) != 2:
1230 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
1231 print(msg, file=sys.stderr)
1232 return False
1233
1234 # A trace collection contains one or more traces
1235 col = babeltrace.TraceCollection()
1236
1237 # Add the trace provided by the user (LTTng traces always have
1238 # the 'ctf' format)
1239 if col.add_trace(sys.argv[1], 'ctf') is None:
1240 raise RuntimeError('Cannot add trace')
1241
1242 # This counter dict contains execution times:
1243 #
1244 # task command name -> total execution time (ns)
1245 exec_times = Counter()
1246
1247 # This contains the last `sched_switch` timestamp
1248 last_ts = None
1249
1250 # Iterate on events
1251 for event in col.events:
1252 # Keep only `sched_switch` events
1253 if event.name != 'sched_switch':
1254 continue
1255
1256 # Keep only events which happened on CPU 0
1257 if event['cpu_id'] != 0:
1258 continue
1259
1260 # Event timestamp
1261 cur_ts = event.timestamp
1262
1263 if last_ts is None:
1264 # We start here
1265 last_ts = cur_ts
1266
1267 # Previous task command (short) name
1268 prev_comm = event['prev_comm']
1269
1270 # Initialize entry in our dict if not yet done
1271 if prev_comm not in exec_times:
1272 exec_times[prev_comm] = 0
1273
1274 # Compute previous command execution time
1275 diff = cur_ts - last_ts
1276
1277 # Update execution time of this command
1278 exec_times[prev_comm] += diff
1279
1280 # Update last timestamp
1281 last_ts = cur_ts
1282
1283 # Display top 5
1284 for name, ns in exec_times.most_common(5):
1285 s = ns / 1000000000
1286 print('{:20}{} s'.format(name, s))
1287
1288 return True
1289
1290
1291 if __name__ == '__main__':
1292 sys.exit(0 if top5proc() else 1)
1293 ----
1294
1295 Run this script:
1296
1297 [role="term"]
1298 ----
1299 $ python3 top5proc.py /tmp/my-kernel-trace/kernel
1300 ----
1301
1302 Output example:
1303
1304 ----
1305 swapper/0 48.607245889 s
1306 chromium 7.192738188 s
1307 pavucontrol 0.709894415 s
1308 Compositor 0.660867933 s
1309 Xorg.bin 0.616753786 s
1310 ----
1311
1312 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1313 weren't using the CPU that much when tracing, its first position in the
1314 list makes sense.
1315
1316
1317 [[core-concepts]]
1318 == [[understanding-lttng]]Core concepts
1319
1320 From a user's perspective, the LTTng system is built on a few concepts,
1321 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1322 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1323 Understanding how those objects relate to eachother is key in mastering
1324 the toolkit.
1325
1326 The core concepts are:
1327
1328 * <<tracing-session,Tracing session>>
1329 * <<domain,Tracing domain>>
1330 * <<channel,Channel and ring buffer>>
1331 * <<"event","Instrumentation point, event rule, event, and event record">>
1332
1333
1334 [[tracing-session]]
1335 === Tracing session
1336
1337 A _tracing session_ is a stateful dialogue between you and
1338 a <<lttng-sessiond,session daemon>>. You can
1339 <<creating-destroying-tracing-sessions,create a new tracing
1340 session>> with the `lttng create` command.
1341
1342 Anything that you do when you control LTTng tracers happens within a
1343 tracing session. In particular, a tracing session:
1344
1345 * Has its own name.
1346 * Has its own set of trace files.
1347 * Has its own state of activity (started or stopped).
1348 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1349 snapshot, or live).
1350 * Has its own <<channel,channels>> which have their own
1351 <<event,event rules>>.
1352
1353 [role="img-100"]
1354 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1355 image::concepts.png[]
1356
1357 Those attributes and objects are completely isolated between different
1358 tracing sessions.
1359
1360 A tracing session is analogous to a cash machine session:
1361 the operations you do on the banking system through the cash machine do
1362 not alter the data of other users of the same system. In the case of
1363 the cash machine, a session lasts as long as your bank card is inside.
1364 In the case of LTTng, a tracing session lasts from the `lttng create`
1365 command to the `lttng destroy` command.
1366
1367 [role="img-100"]
1368 .Each Unix user has its own set of tracing sessions.
1369 image::many-sessions.png[]
1370
1371
1372 [[tracing-session-mode]]
1373 ==== Tracing session mode
1374
1375 LTTng can send the generated trace data to different locations. The
1376 _tracing session mode_ dictates where to send it. The following modes
1377 are available in LTTng{nbsp}{revision}:
1378
1379 Local mode::
1380 LTTng writes the traces to the file system of the machine being traced
1381 (target system).
1382
1383 Network streaming mode::
1384 LTTng sends the traces over the network to a
1385 <<lttng-relayd,relay daemon>> running on a remote system.
1386
1387 Snapshot mode::
1388 LTTng does not write the traces by default. Instead, you can request
1389 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1390 current tracing buffers, and to write it to the target's file system
1391 or to send it over the network to a <<lttng-relayd,relay daemon>>
1392 running on a remote system.
1393
1394 Live mode::
1395 This mode is similar to the network streaming mode, but a live
1396 trace viewer can connect to the distant relay daemon to
1397 <<lttng-live,view event records as LTTng generates them>> by
1398 the tracers.
1399
1400
1401 [[domain]]
1402 === Tracing domain
1403
1404 A _tracing domain_ is a namespace for event sources. A tracing domain
1405 has its own properties and features.
1406
1407 There are currently five available tracing domains:
1408
1409 * Linux kernel
1410 * User space
1411 * `java.util.logging` (JUL)
1412 * log4j
1413 * Python
1414
1415 You must specify a tracing domain when using some commands to avoid
1416 ambiguity. For example, since all the domains support named tracepoints
1417 as event sources (instrumentation points that you manually insert in the
1418 source code), you need to specify a tracing domain when
1419 <<enabling-disabling-events,creating an event rule>> because all the
1420 tracing domains could have tracepoints with the same names.
1421
1422 Some features are reserved to specific tracing domains. Dynamic function
1423 entry and return instrumentation points, for example, are currently only
1424 supported in the Linux kernel tracing domain, but support for other
1425 tracing domains could be added in the future.
1426
1427 You can create <<channel,channels>> in the Linux kernel and user space
1428 tracing domains. The other tracing domains have a single default
1429 channel.
1430
1431
1432 [[channel]]
1433 === Channel and ring buffer
1434
1435 A _channel_ is an object which is responsible for a set of ring buffers.
1436 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1437 tracer emits an event, it can record it to one or more
1438 sub-buffers. The attributes of a channel determine what to do when
1439 there's no space left for a new event record because all sub-buffers
1440 are full, where to send a full sub-buffer, and other behaviours.
1441
1442 A channel is always associated to a <<domain,tracing domain>>. The
1443 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1444 a default channel which you cannot configure.
1445
1446 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1447 an event, it records it to the sub-buffers of all
1448 the enabled channels with a satisfied event rule, as long as those
1449 channels are part of active <<tracing-session,tracing sessions>>.
1450
1451
1452 [[channel-buffering-schemes]]
1453 ==== Per-user vs. per-process buffering schemes
1454
1455 A channel has at least one ring buffer _per CPU_. LTTng always
1456 records an event to the ring buffer associated to the CPU on which it
1457 occurred.
1458
1459 Two _buffering schemes_ are available when you
1460 <<enabling-disabling-channels,create a channel>> in the
1461 user space <<domain,tracing domain>>:
1462
1463 Per-user buffering::
1464 Allocate one set of ring buffers--one per CPU--shared by all the
1465 instrumented processes of each Unix user.
1466 +
1467 --
1468 [role="img-100"]
1469 .Per-user buffering scheme.
1470 image::per-user-buffering.png[]
1471 --
1472
1473 Per-process buffering::
1474 Allocate one set of ring buffers--one per CPU--for each
1475 instrumented process.
1476 +
1477 --
1478 [role="img-100"]
1479 .Per-process buffering scheme.
1480 image::per-process-buffering.png[]
1481 --
1482 +
1483 The per-process buffering scheme tends to consume more memory than the
1484 per-user option because systems generally have more instrumented
1485 processes than Unix users running instrumented processes. However, the
1486 per-process buffering scheme ensures that one process having a high
1487 event throughput won't fill all the shared sub-buffers of the same
1488 user, only its own.
1489
1490 The Linux kernel tracing domain has only one available buffering scheme
1491 which is to allocate a single set of ring buffers for the whole system.
1492 This scheme is similar to the per-user option, but with a single, global
1493 user "running" the kernel.
1494
1495
1496 [[channel-overwrite-mode-vs-discard-mode]]
1497 ==== Overwrite vs. discard event loss modes
1498
1499 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1500 arc in the following animation) of a specific channel's ring buffer.
1501 When there's no space left in a sub-buffer, the tracer marks it as
1502 consumable (red) and another, empty sub-buffer starts receiving the
1503 following event records. A <<lttng-consumerd,consumer daemon>>
1504 eventually consumes the marked sub-buffer (returns to white).
1505
1506 [NOTE]
1507 [role="docsvg-channel-subbuf-anim"]
1508 ====
1509 {note-no-anim}
1510 ====
1511
1512 In an ideal world, sub-buffers are consumed faster than they are filled,
1513 as is the case in the previous animation. In the real world,
1514 however, all sub-buffers can be full at some point, leaving no space to
1515 record the following events.
1516
1517 By default, LTTng-modules and LTTng-UST are _non-blocking_ tracers: when
1518 no empty sub-buffer is available, it is acceptable to lose event records
1519 when the alternative would be to cause substantial delays in the
1520 instrumented application's execution. LTTng privileges performance over
1521 integrity; it aims at perturbing the traced system as little as possible
1522 in order to make tracing of subtle race conditions and rare interrupt
1523 cascades possible.
1524
1525 Starting from LTTng{nbsp}2.10, the LTTng user space tracer, LTTng-UST,
1526 supports a _blocking mode_. See the <<blocking-timeout-example,blocking
1527 timeout example>> to learn how to use the blocking mode.
1528
1529 When it comes to losing event records because no empty sub-buffer is
1530 available, or because the <<opt-blocking-timeout,blocking timeout>> is
1531 reached, the channel's _event loss mode_ determines what to do. The
1532 available event loss modes are:
1533
1534 Discard mode::
1535 Drop the newest event records until a the tracer releases a
1536 sub-buffer.
1537 +
1538 This is the only available mode when you specify a
1539 <<opt-blocking-timeout,blocking timeout>>.
1540
1541 Overwrite mode::
1542 Clear the sub-buffer containing the oldest event records and start
1543 writing the newest event records there.
1544 +
1545 This mode is sometimes called _flight recorder mode_ because it's
1546 similar to a
1547 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1548 always keep a fixed amount of the latest data.
1549
1550 Which mechanism you should choose depends on your context: prioritize
1551 the newest or the oldest event records in the ring buffer?
1552
1553 Beware that, in overwrite mode, the tracer abandons a _whole sub-buffer_
1554 as soon as a there's no space left for a new event record, whereas in
1555 discard mode, the tracer only discards the event record that doesn't
1556 fit.
1557
1558 In discard mode, LTTng increments a count of lost event records when an
1559 event record is lost and saves this count to the trace. In overwrite
1560 mode, since LTTng 2.8, LTTng increments a count of lost sub-buffers when
1561 a sub-buffer is lost and saves this count to the trace. In this mode,
1562 the exact number of lost event records in those lost sub-buffers is not
1563 saved to the trace. Trace analyses can use the trace's saved discarded
1564 event record and sub-buffer counts to decide whether or not to perform
1565 the analyses even if trace data is known to be missing.
1566
1567 There are a few ways to decrease your probability of losing event
1568 records.
1569 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1570 how you can fine-une the sub-buffer count and size of a channel to
1571 virtually stop losing event records, though at the cost of greater
1572 memory usage.
1573
1574
1575 [[channel-subbuf-size-vs-subbuf-count]]
1576 ==== Sub-buffer count and size
1577
1578 When you <<enabling-disabling-channels,create a channel>>, you can
1579 set its number of sub-buffers and their size.
1580
1581 Note that there is noticeable CPU overhead introduced when
1582 switching sub-buffers (marking a full one as consumable and switching
1583 to an empty one for the following events to be recorded). Knowing this,
1584 the following list presents a few practical situations along with how
1585 to configure the sub-buffer count and size for them:
1586
1587 * **High event throughput**: In general, prefer bigger sub-buffers to
1588 lower the risk of losing event records.
1589 +
1590 Having bigger sub-buffers also ensures a lower
1591 <<channel-switch-timer,sub-buffer switching frequency>>.
1592 +
1593 The number of sub-buffers is only meaningful if you create the channel
1594 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1595 other sub-buffers are left unaltered.
1596
1597 * **Low event throughput**: In general, prefer smaller sub-buffers
1598 since the risk of losing event records is low.
1599 +
1600 Because events occur less frequently, the sub-buffer switching frequency
1601 should remain low and thus the tracer's overhead should not be a
1602 problem.
1603
1604 * **Low memory system**: If your target system has a low memory
1605 limit, prefer fewer first, then smaller sub-buffers.
1606 +
1607 Even if the system is limited in memory, you want to keep the
1608 sub-buffers as big as possible to avoid a high sub-buffer switching
1609 frequency.
1610
1611 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1612 which means event data is very compact. For example, the average
1613 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1614 sub-buffer size of 1{nbsp}MiB is considered big.
1615
1616 The previous situations highlight the major trade-off between a few big
1617 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1618 frequency vs. how much data is lost in overwrite mode. Assuming a
1619 constant event throughput and using the overwrite mode, the two
1620 following configurations have the same ring buffer total size:
1621
1622 [NOTE]
1623 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1624 ====
1625 {note-no-anim}
1626 ====
1627
1628 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1629 switching frequency, but if a sub-buffer overwrite happens, half of
1630 the event records so far (4{nbsp}MiB) are definitely lost.
1631 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1632 overhead as the previous configuration, but if a sub-buffer
1633 overwrite happens, only the eighth of event records so far are
1634 definitely lost.
1635
1636 In discard mode, the sub-buffers count parameter is pointless: use two
1637 sub-buffers and set their size according to the requirements of your
1638 situation.
1639
1640
1641 [[channel-switch-timer]]
1642 ==== Switch timer period
1643
1644 The _switch timer period_ is an important configurable attribute of
1645 a channel to ensure periodic sub-buffer flushing.
1646
1647 When the _switch timer_ expires, a sub-buffer switch happens. You can
1648 set the switch timer period attribute when you
1649 <<enabling-disabling-channels,create a channel>> to ensure that event
1650 data is consumed and committed to trace files or to a distant relay
1651 daemon periodically in case of a low event throughput.
1652
1653 [NOTE]
1654 [role="docsvg-channel-switch-timer"]
1655 ====
1656 {note-no-anim}
1657 ====
1658
1659 This attribute is also convenient when you use big sub-buffers to cope
1660 with a sporadic high event throughput, even if the throughput is
1661 normally low.
1662
1663
1664 [[channel-read-timer]]
1665 ==== Read timer period
1666
1667 By default, the LTTng tracers use a notification mechanism to signal a
1668 full sub-buffer so that a consumer daemon can consume it. When such
1669 notifications must be avoided, for example in real-time applications,
1670 you can use the channel's _read timer_ instead. When the read timer
1671 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1672 consumable sub-buffers.
1673
1674
1675 [[tracefile-rotation]]
1676 ==== Trace file count and size
1677
1678 By default, trace files can grow as large as needed. You can set the
1679 maximum size of each trace file that a channel writes when you
1680 <<enabling-disabling-channels,create a channel>>. When the size of
1681 a trace file reaches the channel's fixed maximum size, LTTng creates
1682 another file to contain the next event records. LTTng appends a file
1683 count to each trace file name in this case.
1684
1685 If you set the trace file size attribute when you create a channel, the
1686 maximum number of trace files that LTTng creates is _unlimited_ by
1687 default. To limit them, you can also set a maximum number of trace
1688 files. When the number of trace files reaches the channel's fixed
1689 maximum count, the oldest trace file is overwritten. This mechanism is
1690 called _trace file rotation_.
1691
1692
1693 [[event]]
1694 === Instrumentation point, event rule, event, and event record
1695
1696 An _event rule_ is a set of conditions which must be **all** satisfied
1697 for LTTng to record an occuring event.
1698
1699 You set the conditions when you <<enabling-disabling-events,create
1700 an event rule>>.
1701
1702 You always attach an event rule to <<channel,channel>> when you create
1703 it.
1704
1705 When an event passes the conditions of an event rule, LTTng records it
1706 in one of the attached channel's sub-buffers.
1707
1708 The available conditions, as of LTTng{nbsp}{revision}, are:
1709
1710 * The event rule _is enabled_.
1711 * The instrumentation point's type _is{nbsp}T_.
1712 * The instrumentation point's name (sometimes called _event name_)
1713 _matches{nbsp}N_, but _is not{nbsp}E_.
1714 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1715 _is exactly{nbsp}L_.
1716 * The fields of the event's payload _satisfy_ a filter
1717 expression{nbsp}__F__.
1718
1719 As you can see, all the conditions but the dynamic filter are related to
1720 the event rule's status or to the instrumentation point, not to the
1721 occurring events. This is why, without a filter, checking if an event
1722 passes an event rule is not a dynamic task: when you create or modify an
1723 event rule, all the tracers of its tracing domain enable or disable the
1724 instrumentation points themselves once. This is possible because the
1725 attributes of an instrumentation point (type, name, and log level) are
1726 defined statically. In other words, without a dynamic filter, the tracer
1727 _does not evaluate_ the arguments of an instrumentation point unless it
1728 matches an enabled event rule.
1729
1730 Note that, for LTTng to record an event, the <<channel,channel>> to
1731 which a matching event rule is attached must also be enabled, and the
1732 tracing session owning this channel must be active.
1733
1734 [role="img-100"]
1735 .Logical path from an instrumentation point to an event record.
1736 image::event-rule.png[]
1737
1738 .Event, event record, or event rule?
1739 ****
1740 With so many similar terms, it's easy to get confused.
1741
1742 An **event** is the consequence of the execution of an _instrumentation
1743 point_, like a tracepoint that you manually place in some source code,
1744 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1745 time. Different actions can be taken upon the occurrence of an event,
1746 like record the event's payload to a buffer.
1747
1748 An **event record** is the representation of an event in a sub-buffer. A
1749 tracer is responsible for capturing the payload of an event, current
1750 context variables, the event's ID, and the event's timestamp. LTTng
1751 can append this sub-buffer to a trace file.
1752
1753 An **event rule** is a set of conditions which must all be satisfied for
1754 LTTng to record an occuring event. Events still occur without
1755 satisfying event rules, but LTTng does not record them.
1756 ****
1757
1758
1759 [[plumbing]]
1760 == Components of noch:{LTTng}
1761
1762 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1763 to call LTTng a simple _tool_ since it is composed of multiple
1764 interacting components. This section describes those components,
1765 explains their respective roles, and shows how they connect together to
1766 form the LTTng ecosystem.
1767
1768 The following diagram shows how the most important components of LTTng
1769 interact with user applications, the Linux kernel, and you:
1770
1771 [role="img-100"]
1772 .Control and trace data paths between LTTng components.
1773 image::plumbing.png[]
1774
1775 The LTTng project incorporates:
1776
1777 * **LTTng-tools**: Libraries and command-line interface to
1778 control tracing sessions.
1779 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1780 ** <<lttng-consumerd,Consumer daemon>> (cmd:lttng-consumerd).
1781 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1782 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1783 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1784 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1785 applications.
1786 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1787 headers to instrument and trace any native user application.
1788 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1789 *** `liblttng-ust-libc-wrapper`
1790 *** `liblttng-ust-pthread-wrapper`
1791 *** `liblttng-ust-cyg-profile`
1792 *** `liblttng-ust-cyg-profile-fast`
1793 *** `liblttng-ust-dl`
1794 ** User space tracepoint provider source files generator command-line
1795 tool (man:lttng-gen-tp(1)).
1796 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1797 Java applications using `java.util.logging` or
1798 Apache log4j 1.2 logging.
1799 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1800 Python applications using the standard `logging` package.
1801 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1802 the kernel.
1803 ** LTTng kernel tracer module.
1804 ** Tracing ring buffer kernel modules.
1805 ** Probe kernel modules.
1806 ** LTTng logger kernel module.
1807
1808
1809 [[lttng-cli]]
1810 === Tracing control command-line interface
1811
1812 [role="img-100"]
1813 .The tracing control command-line interface.
1814 image::plumbing-lttng-cli.png[]
1815
1816 The _man:lttng(1) command-line tool_ is the standard user interface to
1817 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1818 is part of LTTng-tools.
1819
1820 The cmd:lttng tool is linked with
1821 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1822 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1823
1824 The cmd:lttng tool has a Git-like interface:
1825
1826 [role="term"]
1827 ----
1828 $ lttng <GENERAL OPTIONS> <COMMAND> <COMMAND OPTIONS>
1829 ----
1830
1831 The <<controlling-tracing,Tracing control>> section explores the
1832 available features of LTTng using the cmd:lttng tool.
1833
1834
1835 [[liblttng-ctl-lttng]]
1836 === Tracing control library
1837
1838 [role="img-100"]
1839 .The tracing control library.
1840 image::plumbing-liblttng-ctl.png[]
1841
1842 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1843 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1844 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1845
1846 The <<lttng-cli,cmd:lttng command-line tool>>
1847 is linked with `liblttng-ctl`.
1848
1849 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1850 "master" header:
1851
1852 [source,c]
1853 ----
1854 #include <lttng/lttng.h>
1855 ----
1856
1857 Some objects are referenced by name (C string), such as tracing
1858 sessions, but most of them require to create a handle first using
1859 `lttng_create_handle()`.
1860
1861 The best available developer documentation for `liblttng-ctl` is, as of
1862 LTTng{nbsp}{revision}, its installed header files. Every function and
1863 structure is thoroughly documented.
1864
1865
1866 [[lttng-ust]]
1867 === User space tracing library
1868
1869 [role="img-100"]
1870 .The user space tracing library.
1871 image::plumbing-liblttng-ust.png[]
1872
1873 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1874 is the LTTng user space tracer. It receives commands from a
1875 <<lttng-sessiond,session daemon>>, for example to
1876 enable and disable specific instrumentation points, and writes event
1877 records to ring buffers shared with a
1878 <<lttng-consumerd,consumer daemon>>.
1879 `liblttng-ust` is part of LTTng-UST.
1880
1881 Public C header files are installed beside `liblttng-ust` to
1882 instrument any <<c-application,C or $$C++$$ application>>.
1883
1884 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1885 packages, use their own library providing tracepoints which is
1886 linked with `liblttng-ust`.
1887
1888 An application or library does not have to initialize `liblttng-ust`
1889 manually: its constructor does the necessary tasks to properly register
1890 to a session daemon. The initialization phase also enables the
1891 instrumentation points matching the <<event,event rules>> that you
1892 already created.
1893
1894
1895 [[lttng-ust-agents]]
1896 === User space tracing agents
1897
1898 [role="img-100"]
1899 .The user space tracing agents.
1900 image::plumbing-lttng-ust-agents.png[]
1901
1902 The _LTTng-UST Java and Python agents_ are regular Java and Python
1903 packages which add LTTng tracing capabilities to the
1904 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1905
1906 In the case of Java, the
1907 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1908 core logging facilities] and
1909 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1910 Note that Apache Log4{nbsp}2 is not supported.
1911
1912 In the case of Python, the standard
1913 https://docs.python.org/3/library/logging.html[`logging`] package
1914 is supported. Both Python 2 and Python 3 modules can import the
1915 LTTng-UST Python agent package.
1916
1917 The applications using the LTTng-UST agents are in the
1918 `java.util.logging` (JUL),
1919 log4j, and Python <<domain,tracing domains>>.
1920
1921 Both agents use the same mechanism to trace the log statements. When an
1922 agent is initialized, it creates a log handler that attaches to the root
1923 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1924 When the application executes a log statement, it is passed to the
1925 agent's log handler by the root logger. The agent's log handler calls a
1926 native function in a tracepoint provider package shared library linked
1927 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1928 other fields, like its logger name and its log level. This native
1929 function contains a user space instrumentation point, hence tracing the
1930 log statement.
1931
1932 The log level condition of an
1933 <<event,event rule>> is considered when tracing
1934 a Java or a Python application, and it's compatible with the standard
1935 JUL, log4j, and Python log levels.
1936
1937
1938 [[lttng-modules]]
1939 === LTTng kernel modules
1940
1941 [role="img-100"]
1942 .The LTTng kernel modules.
1943 image::plumbing-lttng-modules.png[]
1944
1945 The _LTTng kernel modules_ are a set of Linux kernel modules
1946 which implement the kernel tracer of the LTTng project. The LTTng
1947 kernel modules are part of LTTng-modules.
1948
1949 The LTTng kernel modules include:
1950
1951 * A set of _probe_ modules.
1952 +
1953 Each module attaches to a specific subsystem
1954 of the Linux kernel using its tracepoint instrument points. There are
1955 also modules to attach to the entry and return points of the Linux
1956 system call functions.
1957
1958 * _Ring buffer_ modules.
1959 +
1960 A ring buffer implementation is provided as kernel modules. The LTTng
1961 kernel tracer writes to the ring buffer; a
1962 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1963
1964 * The _LTTng kernel tracer_ module.
1965 * The _LTTng logger_ module.
1966 +
1967 The LTTng logger module implements the special path:{/proc/lttng-logger}
1968 file so that any executable can generate LTTng events by opening and
1969 writing to this file.
1970 +
1971 See <<proc-lttng-logger-abi,LTTng logger>>.
1972
1973 Generally, you do not have to load the LTTng kernel modules manually
1974 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1975 daemon>> loads the necessary modules when starting. If you have extra
1976 probe modules, you can specify to load them to the session daemon on
1977 the command line.
1978
1979 The LTTng kernel modules are installed in
1980 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1981 the kernel release (see `uname --kernel-release`).
1982
1983
1984 [[lttng-sessiond]]
1985 === Session daemon
1986
1987 [role="img-100"]
1988 .The session daemon.
1989 image::plumbing-sessiond.png[]
1990
1991 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1992 managing tracing sessions and for controlling the various components of
1993 LTTng. The session daemon is part of LTTng-tools.
1994
1995 The session daemon sends control requests to and receives control
1996 responses from:
1997
1998 * The <<lttng-ust,user space tracing library>>.
1999 +
2000 Any instance of the user space tracing library first registers to
2001 a session daemon. Then, the session daemon can send requests to
2002 this instance, such as:
2003 +
2004 --
2005 ** Get the list of tracepoints.
2006 ** Share an <<event,event rule>> so that the user space tracing library
2007 can enable or disable tracepoints. Amongst the possible conditions
2008 of an event rule is a filter expression which `liblttng-ust` evalutes
2009 when an event occurs.
2010 ** Share <<channel,channel>> attributes and ring buffer locations.
2011 --
2012 +
2013 The session daemon and the user space tracing library use a Unix
2014 domain socket for their communication.
2015
2016 * The <<lttng-ust-agents,user space tracing agents>>.
2017 +
2018 Any instance of a user space tracing agent first registers to
2019 a session daemon. Then, the session daemon can send requests to
2020 this instance, such as:
2021 +
2022 --
2023 ** Get the list of loggers.
2024 ** Enable or disable a specific logger.
2025 --
2026 +
2027 The session daemon and the user space tracing agent use a TCP connection
2028 for their communication.
2029
2030 * The <<lttng-modules,LTTng kernel tracer>>.
2031 * The <<lttng-consumerd,consumer daemon>>.
2032 +
2033 The session daemon sends requests to the consumer daemon to instruct
2034 it where to send the trace data streams, amongst other information.
2035
2036 * The <<lttng-relayd,relay daemon>>.
2037
2038 The session daemon receives commands from the
2039 <<liblttng-ctl-lttng,tracing control library>>.
2040
2041 The root session daemon loads the appropriate
2042 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
2043 a <<lttng-consumerd,consumer daemon>> as soon as you create
2044 an <<event,event rule>>.
2045
2046 The session daemon does not send and receive trace data: this is the
2047 role of the <<lttng-consumerd,consumer daemon>> and
2048 <<lttng-relayd,relay daemon>>. It does, however, generate the
2049 http://diamon.org/ctf/[CTF] metadata stream.
2050
2051 Each Unix user can have its own session daemon instance. The
2052 tracing sessions managed by different session daemons are completely
2053 independent.
2054
2055 The root user's session daemon is the only one which is
2056 allowed to control the LTTng kernel tracer, and its spawned consumer
2057 daemon is the only one which is allowed to consume trace data from the
2058 LTTng kernel tracer. Note, however, that any Unix user which is a member
2059 of the <<tracing-group,tracing group>> is allowed
2060 to create <<channel,channels>> in the
2061 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
2062 kernel.
2063
2064 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
2065 session daemon when using its `create` command if none is currently
2066 running. You can also start the session daemon manually.
2067
2068
2069 [[lttng-consumerd]]
2070 === Consumer daemon
2071
2072 [role="img-100"]
2073 .The consumer daemon.
2074 image::plumbing-consumerd.png[]
2075
2076 The _consumer daemon_, cmd:lttng-consumerd, is a daemon which shares
2077 ring buffers with user applications or with the LTTng kernel modules to
2078 collect trace data and send it to some location (on disk or to a
2079 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
2080 is part of LTTng-tools.
2081
2082 You do not start a consumer daemon manually: a consumer daemon is always
2083 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
2084 <<event,event rule>>, that is, before you start tracing. When you kill
2085 its owner session daemon, the consumer daemon also exits because it is
2086 the session daemon's child process. Command-line options of
2087 man:lttng-sessiond(8) target the consumer daemon process.
2088
2089 There are up to two running consumer daemons per Unix user, whereas only
2090 one session daemon can run per user. This is because each process can be
2091 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
2092 and 64-bit processes, it is more efficient to have separate
2093 corresponding 32-bit and 64-bit consumer daemons. The root user is an
2094 exception: it can have up to _three_ running consumer daemons: 32-bit
2095 and 64-bit instances for its user applications, and one more
2096 reserved for collecting kernel trace data.
2097
2098
2099 [[lttng-relayd]]
2100 === Relay daemon
2101
2102 [role="img-100"]
2103 .The relay daemon.
2104 image::plumbing-relayd.png[]
2105
2106 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
2107 between remote session and consumer daemons, local trace files, and a
2108 remote live trace viewer. The relay daemon is part of LTTng-tools.
2109
2110 The main purpose of the relay daemon is to implement a receiver of
2111 <<sending-trace-data-over-the-network,trace data over the network>>.
2112 This is useful when the target system does not have much file system
2113 space to record trace files locally.
2114
2115 The relay daemon is also a server to which a
2116 <<lttng-live,live trace viewer>> can
2117 connect. The live trace viewer sends requests to the relay daemon to
2118 receive trace data as the target system emits events. The
2119 communication protocol is named _LTTng live_; it is used over TCP
2120 connections.
2121
2122 Note that you can start the relay daemon on the target system directly.
2123 This is the setup of choice when the use case is to view events as
2124 the target system emits them without the need of a remote system.
2125
2126
2127 [[instrumenting]]
2128 == [[using-lttng]]Instrumentation
2129
2130 There are many examples of tracing and monitoring in our everyday life:
2131
2132 * You have access to real-time and historical weather reports and
2133 forecasts thanks to weather stations installed around the country.
2134 * You know your heart is safe thanks to an electrocardiogram.
2135 * You make sure not to drive your car too fast and to have enough fuel
2136 to reach your destination thanks to gauges visible on your dashboard.
2137
2138 All the previous examples have something in common: they rely on
2139 **instruments**. Without the electrodes attached to the surface of your
2140 body's skin, cardiac monitoring is futile.
2141
2142 LTTng, as a tracer, is no different from those real life examples. If
2143 you're about to trace a software system or, in other words, record its
2144 history of execution, you better have **instrumentation points** in the
2145 subject you're tracing, that is, the actual software.
2146
2147 Various ways were developed to instrument a piece of software for LTTng
2148 tracing. The most straightforward one is to manually place
2149 instrumentation points, called _tracepoints_, in the software's source
2150 code. It is also possible to add instrumentation points dynamically in
2151 the Linux kernel <<domain,tracing domain>>.
2152
2153 If you're only interested in tracing the Linux kernel, your
2154 instrumentation needs are probably already covered by LTTng's built-in
2155 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
2156 user application which is already instrumented for LTTng tracing.
2157 In such cases, you can skip this whole section and read the topics of
2158 the <<controlling-tracing,Tracing control>> section.
2159
2160 Many methods are available to instrument a piece of software for LTTng
2161 tracing. They are:
2162
2163 * <<c-application,User space instrumentation for C and $$C++$$
2164 applications>>.
2165 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
2166 * <<java-application,User space Java agent>>.
2167 * <<python-application,User space Python agent>>.
2168 * <<proc-lttng-logger-abi,LTTng logger>>.
2169 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
2170
2171
2172 [[c-application]]
2173 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
2174
2175 The procedure to instrument a C or $$C++$$ user application with
2176 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
2177
2178 . <<tracepoint-provider,Create the source files of a tracepoint provider
2179 package>>.
2180 . <<probing-the-application-source-code,Add tracepoints to
2181 the application's source code>>.
2182 . <<building-tracepoint-providers-and-user-application,Build and link
2183 a tracepoint provider package and the user application>>.
2184
2185 If you need quick, man:printf(3)-like instrumentation, you can skip
2186 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
2187 instead.
2188
2189 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
2190 instrument a user application with `liblttng-ust`.
2191
2192
2193 [[tracepoint-provider]]
2194 ==== Create the source files of a tracepoint provider package
2195
2196 A _tracepoint provider_ is a set of compiled functions which provide
2197 **tracepoints** to an application, the type of instrumentation point
2198 supported by LTTng-UST. Those functions can emit events with
2199 user-defined fields and serialize those events as event records to one
2200 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
2201 macro, which you <<probing-the-application-source-code,insert in a user
2202 application's source code>>, calls those functions.
2203
2204 A _tracepoint provider package_ is an object file (`.o`) or a shared
2205 library (`.so`) which contains one or more tracepoint providers.
2206 Its source files are:
2207
2208 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
2209 * A <<tpp-source,tracepoint provider package source>> (`.c`).
2210
2211 A tracepoint provider package is dynamically linked with `liblttng-ust`,
2212 the LTTng user space tracer, at run time.
2213
2214 [role="img-100"]
2215 .User application linked with `liblttng-ust` and containing a tracepoint provider.
2216 image::ust-app.png[]
2217
2218 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
2219 skip creating and using a tracepoint provider and use
2220 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
2221
2222
2223 [[tpp-header]]
2224 ===== Create a tracepoint provider header file template
2225
2226 A _tracepoint provider header file_ contains the tracepoint
2227 definitions of a tracepoint provider.
2228
2229 To create a tracepoint provider header file:
2230
2231 . Start from this template:
2232 +
2233 --
2234 [source,c]
2235 .Tracepoint provider header file template (`.h` file extension).
2236 ----
2237 #undef TRACEPOINT_PROVIDER
2238 #define TRACEPOINT_PROVIDER provider_name
2239
2240 #undef TRACEPOINT_INCLUDE
2241 #define TRACEPOINT_INCLUDE "./tp.h"
2242
2243 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2244 #define _TP_H
2245
2246 #include <lttng/tracepoint.h>
2247
2248 /*
2249 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2250 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2251 */
2252
2253 #endif /* _TP_H */
2254
2255 #include <lttng/tracepoint-event.h>
2256 ----
2257 --
2258
2259 . Replace:
2260 +
2261 * `provider_name` with the name of your tracepoint provider.
2262 * `"tp.h"` with the name of your tracepoint provider header file.
2263
2264 . Below the `#include <lttng/tracepoint.h>` line, put your
2265 <<defining-tracepoints,tracepoint definitions>>.
2266
2267 Your tracepoint provider name must be unique amongst all the possible
2268 tracepoint provider names used on the same target system. We
2269 suggest to include the name of your project or company in the name,
2270 for example, `org_lttng_my_project_tpp`.
2271
2272 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2273 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2274 write are the <<defining-tracepoints,tracepoint definitions>>.
2275
2276
2277 [[defining-tracepoints]]
2278 ===== Create a tracepoint definition
2279
2280 A _tracepoint definition_ defines, for a given tracepoint:
2281
2282 * Its **input arguments**. They are the macro parameters that the
2283 `tracepoint()` macro accepts for this particular tracepoint
2284 in the user application's source code.
2285 * Its **output event fields**. They are the sources of event fields
2286 that form the payload of any event that the execution of the
2287 `tracepoint()` macro emits for this particular tracepoint.
2288
2289 You can create a tracepoint definition by using the
2290 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2291 line in the
2292 <<tpp-header,tracepoint provider header file template>>.
2293
2294 The syntax of the `TRACEPOINT_EVENT()` macro is:
2295
2296 [source,c]
2297 .`TRACEPOINT_EVENT()` macro syntax.
2298 ----
2299 TRACEPOINT_EVENT(
2300 /* Tracepoint provider name */
2301 provider_name,
2302
2303 /* Tracepoint name */
2304 tracepoint_name,
2305
2306 /* Input arguments */
2307 TP_ARGS(
2308 arguments
2309 ),
2310
2311 /* Output event fields */
2312 TP_FIELDS(
2313 fields
2314 )
2315 )
2316 ----
2317
2318 Replace:
2319
2320 * `provider_name` with your tracepoint provider name.
2321 * `tracepoint_name` with your tracepoint name.
2322 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2323 * `fields` with the <<tpp-def-output-fields,output event field>>
2324 definitions.
2325
2326 This tracepoint emits events named `provider_name:tracepoint_name`.
2327
2328 [IMPORTANT]
2329 .Event name's length limitation
2330 ====
2331 The concatenation of the tracepoint provider name and the
2332 tracepoint name must not exceed **254 characters**. If it does, the
2333 instrumented application compiles and runs, but LTTng throws multiple
2334 warnings and you could experience serious issues.
2335 ====
2336
2337 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2338
2339 [source,c]
2340 .`TP_ARGS()` macro syntax.
2341 ----
2342 TP_ARGS(
2343 type, arg_name
2344 )
2345 ----
2346
2347 Replace:
2348
2349 * `type` with the C type of the argument.
2350 * `arg_name` with the argument name.
2351
2352 You can repeat `type` and `arg_name` up to 10 times to have
2353 more than one argument.
2354
2355 .`TP_ARGS()` usage with three arguments.
2356 ====
2357 [source,c]
2358 ----
2359 TP_ARGS(
2360 int, count,
2361 float, ratio,
2362 const char*, query
2363 )
2364 ----
2365 ====
2366
2367 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2368 tracepoint definition with no input arguments.
2369
2370 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2371 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2372 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2373 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2374 one event field.
2375
2376 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2377 C expression that the tracer evalutes at the `tracepoint()` macro site
2378 in the application's source code. This expression provides a field's
2379 source of data. The argument expression can include input argument names
2380 listed in the `TP_ARGS()` macro.
2381
2382 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2383 must be unique within a given tracepoint definition.
2384
2385 Here's a complete tracepoint definition example:
2386
2387 .Tracepoint definition.
2388 ====
2389 The following tracepoint definition defines a tracepoint which takes
2390 three input arguments and has four output event fields.
2391
2392 [source,c]
2393 ----
2394 #include "my-custom-structure.h"
2395
2396 TRACEPOINT_EVENT(
2397 my_provider,
2398 my_tracepoint,
2399 TP_ARGS(
2400 const struct my_custom_structure*, my_custom_structure,
2401 float, ratio,
2402 const char*, query
2403 ),
2404 TP_FIELDS(
2405 ctf_string(query_field, query)
2406 ctf_float(double, ratio_field, ratio)
2407 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2408 ctf_integer(int, send_size, my_custom_structure->send_size)
2409 )
2410 )
2411 ----
2412
2413 You can refer to this tracepoint definition with the `tracepoint()`
2414 macro in your application's source code like this:
2415
2416 [source,c]
2417 ----
2418 tracepoint(my_provider, my_tracepoint,
2419 my_structure, some_ratio, the_query);
2420 ----
2421 ====
2422
2423 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2424 if they satisfy an enabled <<event,event rule>>.
2425
2426
2427 [[using-tracepoint-classes]]
2428 ===== Use a tracepoint class
2429
2430 A _tracepoint class_ is a class of tracepoints which share the same
2431 output event field definitions. A _tracepoint instance_ is one
2432 instance of such a defined tracepoint class, with its own tracepoint
2433 name.
2434
2435 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2436 shorthand which defines both a tracepoint class and a tracepoint
2437 instance at the same time.
2438
2439 When you build a tracepoint provider package, the C or $$C++$$ compiler
2440 creates one serialization function for each **tracepoint class**. A
2441 serialization function is responsible for serializing the event fields
2442 of a tracepoint to a sub-buffer when tracing.
2443
2444 For various performance reasons, when your situation requires multiple
2445 tracepoint definitions with different names, but with the same event
2446 fields, we recommend that you manually create a tracepoint class
2447 and instantiate as many tracepoint instances as needed. One positive
2448 effect of such a design, amongst other advantages, is that all
2449 tracepoint instances of the same tracepoint class reuse the same
2450 serialization function, thus reducing
2451 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2452
2453 .Use a tracepoint class and tracepoint instances.
2454 ====
2455 Consider the following three tracepoint definitions:
2456
2457 [source,c]
2458 ----
2459 TRACEPOINT_EVENT(
2460 my_app,
2461 get_account,
2462 TP_ARGS(
2463 int, userid,
2464 size_t, len
2465 ),
2466 TP_FIELDS(
2467 ctf_integer(int, userid, userid)
2468 ctf_integer(size_t, len, len)
2469 )
2470 )
2471
2472 TRACEPOINT_EVENT(
2473 my_app,
2474 get_settings,
2475 TP_ARGS(
2476 int, userid,
2477 size_t, len
2478 ),
2479 TP_FIELDS(
2480 ctf_integer(int, userid, userid)
2481 ctf_integer(size_t, len, len)
2482 )
2483 )
2484
2485 TRACEPOINT_EVENT(
2486 my_app,
2487 get_transaction,
2488 TP_ARGS(
2489 int, userid,
2490 size_t, len
2491 ),
2492 TP_FIELDS(
2493 ctf_integer(int, userid, userid)
2494 ctf_integer(size_t, len, len)
2495 )
2496 )
2497 ----
2498
2499 In this case, we create three tracepoint classes, with one implicit
2500 tracepoint instance for each of them: `get_account`, `get_settings`, and
2501 `get_transaction`. However, they all share the same event field names
2502 and types. Hence three identical, yet independent serialization
2503 functions are created when you build the tracepoint provider package.
2504
2505 A better design choice is to define a single tracepoint class and three
2506 tracepoint instances:
2507
2508 [source,c]
2509 ----
2510 /* The tracepoint class */
2511 TRACEPOINT_EVENT_CLASS(
2512 /* Tracepoint provider name */
2513 my_app,
2514
2515 /* Tracepoint class name */
2516 my_class,
2517
2518 /* Input arguments */
2519 TP_ARGS(
2520 int, userid,
2521 size_t, len
2522 ),
2523
2524 /* Output event fields */
2525 TP_FIELDS(
2526 ctf_integer(int, userid, userid)
2527 ctf_integer(size_t, len, len)
2528 )
2529 )
2530
2531 /* The tracepoint instances */
2532 TRACEPOINT_EVENT_INSTANCE(
2533 /* Tracepoint provider name */
2534 my_app,
2535
2536 /* Tracepoint class name */
2537 my_class,
2538
2539 /* Tracepoint name */
2540 get_account,
2541
2542 /* Input arguments */
2543 TP_ARGS(
2544 int, userid,
2545 size_t, len
2546 )
2547 )
2548 TRACEPOINT_EVENT_INSTANCE(
2549 my_app,
2550 my_class,
2551 get_settings,
2552 TP_ARGS(
2553 int, userid,
2554 size_t, len
2555 )
2556 )
2557 TRACEPOINT_EVENT_INSTANCE(
2558 my_app,
2559 my_class,
2560 get_transaction,
2561 TP_ARGS(
2562 int, userid,
2563 size_t, len
2564 )
2565 )
2566 ----
2567 ====
2568
2569
2570 [[assigning-log-levels]]
2571 ===== Assign a log level to a tracepoint definition
2572
2573 You can assign an optional _log level_ to a
2574 <<defining-tracepoints,tracepoint definition>>.
2575
2576 Assigning different levels of severity to tracepoint definitions can
2577 be useful: when you <<enabling-disabling-events,create an event rule>>,
2578 you can target tracepoints having a log level as severe as a specific
2579 value.
2580
2581 The concept of LTTng-UST log levels is similar to the levels found
2582 in typical logging frameworks:
2583
2584 * In a logging framework, the log level is given by the function
2585 or method name you use at the log statement site: `debug()`,
2586 `info()`, `warn()`, `error()`, and so on.
2587 * In LTTng-UST, you statically assign the log level to a tracepoint
2588 definition; any `tracepoint()` macro invocation which refers to
2589 this definition has this log level.
2590
2591 You can assign a log level to a tracepoint definition with the
2592 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2593 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2594 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2595 tracepoint.
2596
2597 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2598
2599 [source,c]
2600 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2601 ----
2602 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2603 ----
2604
2605 Replace:
2606
2607 * `provider_name` with the tracepoint provider name.
2608 * `tracepoint_name` with the tracepoint name.
2609 * `log_level` with the log level to assign to the tracepoint
2610 definition named `tracepoint_name` in the `provider_name`
2611 tracepoint provider.
2612 +
2613 See man:lttng-ust(3) for a list of available log level names.
2614
2615 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2616 ====
2617 [source,c]
2618 ----
2619 /* Tracepoint definition */
2620 TRACEPOINT_EVENT(
2621 my_app,
2622 get_transaction,
2623 TP_ARGS(
2624 int, userid,
2625 size_t, len
2626 ),
2627 TP_FIELDS(
2628 ctf_integer(int, userid, userid)
2629 ctf_integer(size_t, len, len)
2630 )
2631 )
2632
2633 /* Log level assignment */
2634 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2635 ----
2636 ====
2637
2638
2639 [[tpp-source]]
2640 ===== Create a tracepoint provider package source file
2641
2642 A _tracepoint provider package source file_ is a C source file which
2643 includes a <<tpp-header,tracepoint provider header file>> to expand its
2644 macros into event serialization and other functions.
2645
2646 You can always use the following tracepoint provider package source
2647 file template:
2648
2649 [source,c]
2650 .Tracepoint provider package source file template.
2651 ----
2652 #define TRACEPOINT_CREATE_PROBES
2653
2654 #include "tp.h"
2655 ----
2656
2657 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2658 header file>> name. You may also include more than one tracepoint
2659 provider header file here to create a tracepoint provider package
2660 holding more than one tracepoint providers.
2661
2662
2663 [[probing-the-application-source-code]]
2664 ==== Add tracepoints to an application's source code
2665
2666 Once you <<tpp-header,create a tracepoint provider header file>>, you
2667 can use the `tracepoint()` macro in your application's
2668 source code to insert the tracepoints that this header
2669 <<defining-tracepoints,defines>>.
2670
2671 The `tracepoint()` macro takes at least two parameters: the tracepoint
2672 provider name and the tracepoint name. The corresponding tracepoint
2673 definition defines the other parameters.
2674
2675 .`tracepoint()` usage.
2676 ====
2677 The following <<defining-tracepoints,tracepoint definition>> defines a
2678 tracepoint which takes two input arguments and has two output event
2679 fields.
2680
2681 [source,c]
2682 .Tracepoint provider header file.
2683 ----
2684 #include "my-custom-structure.h"
2685
2686 TRACEPOINT_EVENT(
2687 my_provider,
2688 my_tracepoint,
2689 TP_ARGS(
2690 int, argc,
2691 const char*, cmd_name
2692 ),
2693 TP_FIELDS(
2694 ctf_string(cmd_name, cmd_name)
2695 ctf_integer(int, number_of_args, argc)
2696 )
2697 )
2698 ----
2699
2700 You can refer to this tracepoint definition with the `tracepoint()`
2701 macro in your application's source code like this:
2702
2703 [source,c]
2704 .Application's source file.
2705 ----
2706 #include "tp.h"
2707
2708 int main(int argc, char* argv[])
2709 {
2710 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2711
2712 return 0;
2713 }
2714 ----
2715
2716 Note how the application's source code includes
2717 the tracepoint provider header file containing the tracepoint
2718 definitions to use, path:{tp.h}.
2719 ====
2720
2721 .`tracepoint()` usage with a complex tracepoint definition.
2722 ====
2723 Consider this complex tracepoint definition, where multiple event
2724 fields refer to the same input arguments in their argument expression
2725 parameter:
2726
2727 [source,c]
2728 .Tracepoint provider header file.
2729 ----
2730 /* For `struct stat` */
2731 #include <sys/types.h>
2732 #include <sys/stat.h>
2733 #include <unistd.h>
2734
2735 TRACEPOINT_EVENT(
2736 my_provider,
2737 my_tracepoint,
2738 TP_ARGS(
2739 int, my_int_arg,
2740 char*, my_str_arg,
2741 struct stat*, st
2742 ),
2743 TP_FIELDS(
2744 ctf_integer(int, my_constant_field, 23 + 17)
2745 ctf_integer(int, my_int_arg_field, my_int_arg)
2746 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2747 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2748 my_str_arg[2] + my_str_arg[3])
2749 ctf_string(my_str_arg_field, my_str_arg)
2750 ctf_integer_hex(off_t, size_field, st->st_size)
2751 ctf_float(double, size_dbl_field, (double) st->st_size)
2752 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2753 size_t, strlen(my_str_arg) / 2)
2754 )
2755 )
2756 ----
2757
2758 You can refer to this tracepoint definition with the `tracepoint()`
2759 macro in your application's source code like this:
2760
2761 [source,c]
2762 .Application's source file.
2763 ----
2764 #define TRACEPOINT_DEFINE
2765 #include "tp.h"
2766
2767 int main(void)
2768 {
2769 struct stat s;
2770
2771 stat("/etc/fstab", &s);
2772 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2773
2774 return 0;
2775 }
2776 ----
2777
2778 If you look at the event record that LTTng writes when tracing this
2779 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2780 it should look like this:
2781
2782 .Event record fields
2783 |====
2784 |Field's name |Field's value
2785 |`my_constant_field` |40
2786 |`my_int_arg_field` |23
2787 |`my_int_arg_field2` |529
2788 |`sum4_field` |389
2789 |`my_str_arg_field` |`Hello, World!`
2790 |`size_field` |0x12d
2791 |`size_dbl_field` |301.0
2792 |`half_my_str_arg_field` |`Hello,`
2793 |====
2794 ====
2795
2796 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2797 compute--they use the call stack, for example. To avoid this
2798 computation when the tracepoint is disabled, you can use the
2799 `tracepoint_enabled()` and `do_tracepoint()` macros.
2800
2801 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2802 is:
2803
2804 [source,c]
2805 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2806 ----
2807 tracepoint_enabled(provider_name, tracepoint_name)
2808 do_tracepoint(provider_name, tracepoint_name, ...)
2809 ----
2810
2811 Replace:
2812
2813 * `provider_name` with the tracepoint provider name.
2814 * `tracepoint_name` with the tracepoint name.
2815
2816 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2817 `tracepoint_name` from the provider named `provider_name` is enabled
2818 **at run time**.
2819
2820 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2821 if the tracepoint is enabled. Using `tracepoint()` with
2822 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2823 the `tracepoint_enabled()` check, thus a race condition is
2824 possible in this situation:
2825
2826 [source,c]
2827 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2828 ----
2829 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2830 stuff = prepare_stuff();
2831 }
2832
2833 tracepoint(my_provider, my_tracepoint, stuff);
2834 ----
2835
2836 If the tracepoint is enabled after the condition, then `stuff` is not
2837 prepared: the emitted event will either contain wrong data, or the whole
2838 application could crash (segmentation fault, for example).
2839
2840 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2841 `STAP_PROBEV()` call. If you need it, you must emit
2842 this call yourself.
2843
2844
2845 [[building-tracepoint-providers-and-user-application]]
2846 ==== Build and link a tracepoint provider package and an application
2847
2848 Once you have one or more <<tpp-header,tracepoint provider header
2849 files>> and a <<tpp-source,tracepoint provider package source file>>,
2850 you can create the tracepoint provider package by compiling its source
2851 file. From here, multiple build and run scenarios are possible. The
2852 following table shows common application and library configurations
2853 along with the required command lines to achieve them.
2854
2855 In the following diagrams, we use the following file names:
2856
2857 `app`::
2858 Executable application.
2859
2860 `app.o`::
2861 Application's object file.
2862
2863 `tpp.o`::
2864 Tracepoint provider package object file.
2865
2866 `tpp.a`::
2867 Tracepoint provider package archive file.
2868
2869 `libtpp.so`::
2870 Tracepoint provider package shared object file.
2871
2872 `emon.o`::
2873 User library object file.
2874
2875 `libemon.so`::
2876 User library shared object file.
2877
2878 We use the following symbols in the diagrams of table below:
2879
2880 [role="img-100"]
2881 .Symbols used in the build scenario diagrams.
2882 image::ust-sit-symbols.png[]
2883
2884 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2885 variable in the following instructions.
2886
2887 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2888 .Common tracepoint provider package scenarios.
2889 |====
2890 |Scenario |Instructions
2891
2892 |
2893 The instrumented application is statically linked with
2894 the tracepoint provider package object.
2895
2896 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2897
2898 |
2899 include::../common/ust-sit-step-tp-o.txt[]
2900
2901 To build the instrumented application:
2902
2903 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2904 +
2905 --
2906 [source,c]
2907 ----
2908 #define TRACEPOINT_DEFINE
2909 ----
2910 --
2911
2912 . Compile the application source file:
2913 +
2914 --
2915 [role="term"]
2916 ----
2917 $ gcc -c app.c
2918 ----
2919 --
2920
2921 . Build the application:
2922 +
2923 --
2924 [role="term"]
2925 ----
2926 $ gcc -o app app.o tpp.o -llttng-ust -ldl
2927 ----
2928 --
2929
2930 To run the instrumented application:
2931
2932 * Start the application:
2933 +
2934 --
2935 [role="term"]
2936 ----
2937 $ ./app
2938 ----
2939 --
2940
2941 |
2942 The instrumented application is statically linked with the
2943 tracepoint provider package archive file.
2944
2945 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2946
2947 |
2948 To create the tracepoint provider package archive file:
2949
2950 . Compile the <<tpp-source,tracepoint provider package source file>>:
2951 +
2952 --
2953 [role="term"]
2954 ----
2955 $ gcc -I. -c tpp.c
2956 ----
2957 --
2958
2959 . Create the tracepoint provider package archive file:
2960 +
2961 --
2962 [role="term"]
2963 ----
2964 $ ar rcs tpp.a tpp.o
2965 ----
2966 --
2967
2968 To build the instrumented application:
2969
2970 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2971 +
2972 --
2973 [source,c]
2974 ----
2975 #define TRACEPOINT_DEFINE
2976 ----
2977 --
2978
2979 . Compile the application source file:
2980 +
2981 --
2982 [role="term"]
2983 ----
2984 $ gcc -c app.c
2985 ----
2986 --
2987
2988 . Build the application:
2989 +
2990 --
2991 [role="term"]
2992 ----
2993 $ gcc -o app app.o tpp.a -llttng-ust -ldl
2994 ----
2995 --
2996
2997 To run the instrumented application:
2998
2999 * Start the application:
3000 +
3001 --
3002 [role="term"]
3003 ----
3004 $ ./app
3005 ----
3006 --
3007
3008 |
3009 The instrumented application is linked with the tracepoint provider
3010 package shared object.
3011
3012 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
3013
3014 |
3015 include::../common/ust-sit-step-tp-so.txt[]
3016
3017 To build the instrumented application:
3018
3019 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3020 +
3021 --
3022 [source,c]
3023 ----
3024 #define TRACEPOINT_DEFINE
3025 ----
3026 --
3027
3028 . Compile the application source file:
3029 +
3030 --
3031 [role="term"]
3032 ----
3033 $ gcc -c app.c
3034 ----
3035 --
3036
3037 . Build the application:
3038 +
3039 --
3040 [role="term"]
3041 ----
3042 $ gcc -o app app.o -ldl -L. -ltpp
3043 ----
3044 --
3045
3046 To run the instrumented application:
3047
3048 * Start the application:
3049 +
3050 --
3051 [role="term"]
3052 ----
3053 $ ./app
3054 ----
3055 --
3056
3057 |
3058 The tracepoint provider package shared object is preloaded before the
3059 instrumented application starts.
3060
3061 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
3062
3063 |
3064 include::../common/ust-sit-step-tp-so.txt[]
3065
3066 To build the instrumented application:
3067
3068 . In path:{app.c}, before including path:{tpp.h}, add the
3069 following lines:
3070 +
3071 --
3072 [source,c]
3073 ----
3074 #define TRACEPOINT_DEFINE
3075 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3076 ----
3077 --
3078
3079 . Compile the application source file:
3080 +
3081 --
3082 [role="term"]
3083 ----
3084 $ gcc -c app.c
3085 ----
3086 --
3087
3088 . Build the application:
3089 +
3090 --
3091 [role="term"]
3092 ----
3093 $ gcc -o app app.o -ldl
3094 ----
3095 --
3096
3097 To run the instrumented application with tracing support:
3098
3099 * Preload the tracepoint provider package shared object and
3100 start the application:
3101 +
3102 --
3103 [role="term"]
3104 ----
3105 $ LD_PRELOAD=./libtpp.so ./app
3106 ----
3107 --
3108
3109 To run the instrumented application without tracing support:
3110
3111 * Start the application:
3112 +
3113 --
3114 [role="term"]
3115 ----
3116 $ ./app
3117 ----
3118 --
3119
3120 |
3121 The instrumented application dynamically loads the tracepoint provider
3122 package shared object.
3123
3124 See the <<dlclose-warning,warning about `dlclose()`>>.
3125
3126 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
3127
3128 |
3129 include::../common/ust-sit-step-tp-so.txt[]
3130
3131 To build the instrumented application:
3132
3133 . In path:{app.c}, before including path:{tpp.h}, add the
3134 following lines:
3135 +
3136 --
3137 [source,c]
3138 ----
3139 #define TRACEPOINT_DEFINE
3140 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3141 ----
3142 --
3143
3144 . Compile the application source file:
3145 +
3146 --
3147 [role="term"]
3148 ----
3149 $ gcc -c app.c
3150 ----
3151 --
3152
3153 . Build the application:
3154 +
3155 --
3156 [role="term"]
3157 ----
3158 $ gcc -o app app.o -ldl
3159 ----
3160 --
3161
3162 To run the instrumented application:
3163
3164 * Start the application:
3165 +
3166 --
3167 [role="term"]
3168 ----
3169 $ ./app
3170 ----
3171 --
3172
3173 |
3174 The application is linked with the instrumented user library.
3175
3176 The instrumented user library is statically linked with the tracepoint
3177 provider package object file.
3178
3179 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
3180
3181 |
3182 include::../common/ust-sit-step-tp-o-fpic.txt[]
3183
3184 To build the instrumented user library:
3185
3186 . In path:{emon.c}, before including path:{tpp.h}, add the
3187 following line:
3188 +
3189 --
3190 [source,c]
3191 ----
3192 #define TRACEPOINT_DEFINE
3193 ----
3194 --
3195
3196 . Compile the user library source file:
3197 +
3198 --
3199 [role="term"]
3200 ----
3201 $ gcc -I. -fpic -c emon.c
3202 ----
3203 --
3204
3205 . Build the user library shared object:
3206 +
3207 --
3208 [role="term"]
3209 ----
3210 $ gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
3211 ----
3212 --
3213
3214 To build the application:
3215
3216 . Compile the application source file:
3217 +
3218 --
3219 [role="term"]
3220 ----
3221 $ gcc -c app.c
3222 ----
3223 --
3224
3225 . Build the application:
3226 +
3227 --
3228 [role="term"]
3229 ----
3230 $ gcc -o app app.o -L. -lemon
3231 ----
3232 --
3233
3234 To run the application:
3235
3236 * Start the application:
3237 +
3238 --
3239 [role="term"]
3240 ----
3241 $ ./app
3242 ----
3243 --
3244
3245 |
3246 The application is linked with the instrumented user library.
3247
3248 The instrumented user library is linked with the tracepoint provider
3249 package shared object.
3250
3251 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3252
3253 |
3254 include::../common/ust-sit-step-tp-so.txt[]
3255
3256 To build the instrumented user library:
3257
3258 . In path:{emon.c}, before including path:{tpp.h}, add the
3259 following line:
3260 +
3261 --
3262 [source,c]
3263 ----
3264 #define TRACEPOINT_DEFINE
3265 ----
3266 --
3267
3268 . Compile the user library source file:
3269 +
3270 --
3271 [role="term"]
3272 ----
3273 $ gcc -I. -fpic -c emon.c
3274 ----
3275 --
3276
3277 . Build the user library shared object:
3278 +
3279 --
3280 [role="term"]
3281 ----
3282 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3283 ----
3284 --
3285
3286 To build the application:
3287
3288 . Compile the application source file:
3289 +
3290 --
3291 [role="term"]
3292 ----
3293 $ gcc -c app.c
3294 ----
3295 --
3296
3297 . Build the application:
3298 +
3299 --
3300 [role="term"]
3301 ----
3302 $ gcc -o app app.o -L. -lemon
3303 ----
3304 --
3305
3306 To run the application:
3307
3308 * Start the application:
3309 +
3310 --
3311 [role="term"]
3312 ----
3313 $ ./app
3314 ----
3315 --
3316
3317 |
3318 The tracepoint provider package shared object is preloaded before the
3319 application starts.
3320
3321 The application is linked with the instrumented user library.
3322
3323 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3324
3325 |
3326 include::../common/ust-sit-step-tp-so.txt[]
3327
3328 To build the instrumented user library:
3329
3330 . In path:{emon.c}, before including path:{tpp.h}, add the
3331 following lines:
3332 +
3333 --
3334 [source,c]
3335 ----
3336 #define TRACEPOINT_DEFINE
3337 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3338 ----
3339 --
3340
3341 . Compile the user library source file:
3342 +
3343 --
3344 [role="term"]
3345 ----
3346 $ gcc -I. -fpic -c emon.c
3347 ----
3348 --
3349
3350 . Build the user library shared object:
3351 +
3352 --
3353 [role="term"]
3354 ----
3355 $ gcc -shared -o libemon.so emon.o -ldl
3356 ----
3357 --
3358
3359 To build the application:
3360
3361 . Compile the application source file:
3362 +
3363 --
3364 [role="term"]
3365 ----
3366 $ gcc -c app.c
3367 ----
3368 --
3369
3370 . Build the application:
3371 +
3372 --
3373 [role="term"]
3374 ----
3375 $ gcc -o app app.o -L. -lemon
3376 ----
3377 --
3378
3379 To run the application with tracing support:
3380
3381 * Preload the tracepoint provider package shared object and
3382 start the application:
3383 +
3384 --
3385 [role="term"]
3386 ----
3387 $ LD_PRELOAD=./libtpp.so ./app
3388 ----
3389 --
3390
3391 To run the application without tracing support:
3392
3393 * Start the application:
3394 +
3395 --
3396 [role="term"]
3397 ----
3398 $ ./app
3399 ----
3400 --
3401
3402 |
3403 The application is linked with the instrumented user library.
3404
3405 The instrumented user library dynamically loads the tracepoint provider
3406 package shared object.
3407
3408 See the <<dlclose-warning,warning about `dlclose()`>>.
3409
3410 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3411
3412 |
3413 include::../common/ust-sit-step-tp-so.txt[]
3414
3415 To build the instrumented user library:
3416
3417 . In path:{emon.c}, before including path:{tpp.h}, add the
3418 following lines:
3419 +
3420 --
3421 [source,c]
3422 ----
3423 #define TRACEPOINT_DEFINE
3424 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3425 ----
3426 --
3427
3428 . Compile the user library source file:
3429 +
3430 --
3431 [role="term"]
3432 ----
3433 $ gcc -I. -fpic -c emon.c
3434 ----
3435 --
3436
3437 . Build the user library shared object:
3438 +
3439 --
3440 [role="term"]
3441 ----
3442 $ gcc -shared -o libemon.so emon.o -ldl
3443 ----
3444 --
3445
3446 To build the application:
3447
3448 . Compile the application source file:
3449 +
3450 --
3451 [role="term"]
3452 ----
3453 $ gcc -c app.c
3454 ----
3455 --
3456
3457 . Build the application:
3458 +
3459 --
3460 [role="term"]
3461 ----
3462 $ gcc -o app app.o -L. -lemon
3463 ----
3464 --
3465
3466 To run the application:
3467
3468 * Start the application:
3469 +
3470 --
3471 [role="term"]
3472 ----
3473 $ ./app
3474 ----
3475 --
3476
3477 |
3478 The application dynamically loads the instrumented user library.
3479
3480 The instrumented user library is linked with the tracepoint provider
3481 package shared object.
3482
3483 See the <<dlclose-warning,warning about `dlclose()`>>.
3484
3485 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3486
3487 |
3488 include::../common/ust-sit-step-tp-so.txt[]
3489
3490 To build the instrumented user library:
3491
3492 . In path:{emon.c}, before including path:{tpp.h}, add the
3493 following line:
3494 +
3495 --
3496 [source,c]
3497 ----
3498 #define TRACEPOINT_DEFINE
3499 ----
3500 --
3501
3502 . Compile the user library source file:
3503 +
3504 --
3505 [role="term"]
3506 ----
3507 $ gcc -I. -fpic -c emon.c
3508 ----
3509 --
3510
3511 . Build the user library shared object:
3512 +
3513 --
3514 [role="term"]
3515 ----
3516 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3517 ----
3518 --
3519
3520 To build the application:
3521
3522 . Compile the application source file:
3523 +
3524 --
3525 [role="term"]
3526 ----
3527 $ gcc -c app.c
3528 ----
3529 --
3530
3531 . Build the application:
3532 +
3533 --
3534 [role="term"]
3535 ----
3536 $ gcc -o app app.o -ldl -L. -lemon
3537 ----
3538 --
3539
3540 To run the application:
3541
3542 * Start the application:
3543 +
3544 --
3545 [role="term"]
3546 ----
3547 $ ./app
3548 ----
3549 --
3550
3551 |
3552 The application dynamically loads the instrumented user library.
3553
3554 The instrumented user library dynamically loads the tracepoint provider
3555 package shared object.
3556
3557 See the <<dlclose-warning,warning about `dlclose()`>>.
3558
3559 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3560
3561 |
3562 include::../common/ust-sit-step-tp-so.txt[]
3563
3564 To build the instrumented user library:
3565
3566 . In path:{emon.c}, before including path:{tpp.h}, add the
3567 following lines:
3568 +
3569 --
3570 [source,c]
3571 ----
3572 #define TRACEPOINT_DEFINE
3573 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3574 ----
3575 --
3576
3577 . Compile the user library source file:
3578 +
3579 --
3580 [role="term"]
3581 ----
3582 $ gcc -I. -fpic -c emon.c
3583 ----
3584 --
3585
3586 . Build the user library shared object:
3587 +
3588 --
3589 [role="term"]
3590 ----
3591 $ gcc -shared -o libemon.so emon.o -ldl
3592 ----
3593 --
3594
3595 To build the application:
3596
3597 . Compile the application source file:
3598 +
3599 --
3600 [role="term"]
3601 ----
3602 $ gcc -c app.c
3603 ----
3604 --
3605
3606 . Build the application:
3607 +
3608 --
3609 [role="term"]
3610 ----
3611 $ gcc -o app app.o -ldl -L. -lemon
3612 ----
3613 --
3614
3615 To run the application:
3616
3617 * Start the application:
3618 +
3619 --
3620 [role="term"]
3621 ----
3622 $ ./app
3623 ----
3624 --
3625
3626 |
3627 The tracepoint provider package shared object is preloaded before the
3628 application starts.
3629
3630 The application dynamically loads the instrumented user library.
3631
3632 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3633
3634 |
3635 include::../common/ust-sit-step-tp-so.txt[]
3636
3637 To build the instrumented user library:
3638
3639 . In path:{emon.c}, before including path:{tpp.h}, add the
3640 following lines:
3641 +
3642 --
3643 [source,c]
3644 ----
3645 #define TRACEPOINT_DEFINE
3646 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3647 ----
3648 --
3649
3650 . Compile the user library source file:
3651 +
3652 --
3653 [role="term"]
3654 ----
3655 $ gcc -I. -fpic -c emon.c
3656 ----
3657 --
3658
3659 . Build the user library shared object:
3660 +
3661 --
3662 [role="term"]
3663 ----
3664 $ gcc -shared -o libemon.so emon.o -ldl
3665 ----
3666 --
3667
3668 To build the application:
3669
3670 . Compile the application source file:
3671 +
3672 --
3673 [role="term"]
3674 ----
3675 $ gcc -c app.c
3676 ----
3677 --
3678
3679 . Build the application:
3680 +
3681 --
3682 [role="term"]
3683 ----
3684 $ gcc -o app app.o -L. -lemon
3685 ----
3686 --
3687
3688 To run the application with tracing support:
3689
3690 * Preload the tracepoint provider package shared object and
3691 start the application:
3692 +
3693 --
3694 [role="term"]
3695 ----
3696 $ LD_PRELOAD=./libtpp.so ./app
3697 ----
3698 --
3699
3700 To run the application without tracing support:
3701
3702 * Start the application:
3703 +
3704 --
3705 [role="term"]
3706 ----
3707 $ ./app
3708 ----
3709 --
3710
3711 |
3712 The application is statically linked with the tracepoint provider
3713 package object file.
3714
3715 The application is linked with the instrumented user library.
3716
3717 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3718
3719 |
3720 include::../common/ust-sit-step-tp-o.txt[]
3721
3722 To build the instrumented user library:
3723
3724 . In path:{emon.c}, before including path:{tpp.h}, add the
3725 following line:
3726 +
3727 --
3728 [source,c]
3729 ----
3730 #define TRACEPOINT_DEFINE
3731 ----
3732 --
3733
3734 . Compile the user library source file:
3735 +
3736 --
3737 [role="term"]
3738 ----
3739 $ gcc -I. -fpic -c emon.c
3740 ----
3741 --
3742
3743 . Build the user library shared object:
3744 +
3745 --
3746 [role="term"]
3747 ----
3748 $ gcc -shared -o libemon.so emon.o
3749 ----
3750 --
3751
3752 To build the application:
3753
3754 . Compile the application source file:
3755 +
3756 --
3757 [role="term"]
3758 ----
3759 $ gcc -c app.c
3760 ----
3761 --
3762
3763 . Build the application:
3764 +
3765 --
3766 [role="term"]
3767 ----
3768 $ gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3769 ----
3770 --
3771
3772 To run the instrumented application:
3773
3774 * Start the application:
3775 +
3776 --
3777 [role="term"]
3778 ----
3779 $ ./app
3780 ----
3781 --
3782
3783 |
3784 The application is statically linked with the tracepoint provider
3785 package object file.
3786
3787 The application dynamically loads the instrumented user library.
3788
3789 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3790
3791 |
3792 include::../common/ust-sit-step-tp-o.txt[]
3793
3794 To build the application:
3795
3796 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3797 +
3798 --
3799 [source,c]
3800 ----
3801 #define TRACEPOINT_DEFINE
3802 ----
3803 --
3804
3805 . Compile the application source file:
3806 +
3807 --
3808 [role="term"]
3809 ----
3810 $ gcc -c app.c
3811 ----
3812 --
3813
3814 . Build the application:
3815 +
3816 --
3817 [role="term"]
3818 ----
3819 $ gcc -Wl,--export-dynamic -o app app.o tpp.o \
3820 -llttng-ust -ldl
3821 ----
3822 --
3823 +
3824 The `--export-dynamic` option passed to the linker is necessary for the
3825 dynamically loaded library to ``see'' the tracepoint symbols defined in
3826 the application.
3827
3828 To build the instrumented user library:
3829
3830 . Compile the user library source file:
3831 +
3832 --
3833 [role="term"]
3834 ----
3835 $ gcc -I. -fpic -c emon.c
3836 ----
3837 --
3838
3839 . Build the user library shared object:
3840 +
3841 --
3842 [role="term"]
3843 ----
3844 $ gcc -shared -o libemon.so emon.o
3845 ----
3846 --
3847
3848 To run the application:
3849
3850 * Start the application:
3851 +
3852 --
3853 [role="term"]
3854 ----
3855 $ ./app
3856 ----
3857 --
3858 |====
3859
3860 [[dlclose-warning]]
3861 [IMPORTANT]
3862 .Do not use man:dlclose(3) on a tracepoint provider package
3863 ====
3864 Never use man:dlclose(3) on any shared object which:
3865
3866 * Is linked with, statically or dynamically, a tracepoint provider
3867 package.
3868 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3869 package shared object.
3870
3871 This is currently considered **unsafe** due to a lack of reference
3872 counting from LTTng-UST to the shared object.
3873
3874 A known workaround (available since glibc 2.2) is to use the
3875 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3876 effect of not unloading the loaded shared object, even if man:dlclose(3)
3877 is called.
3878
3879 You can also preload the tracepoint provider package shared object with
3880 the env:LD_PRELOAD environment variable to overcome this limitation.
3881 ====
3882
3883
3884 [[using-lttng-ust-with-daemons]]
3885 ===== Use noch:{LTTng-UST} with daemons
3886
3887 If your instrumented application calls man:fork(2), man:clone(2),
3888 or BSD's man:rfork(2), without a following man:exec(3)-family
3889 system call, you must preload the path:{liblttng-ust-fork.so} shared
3890 object when you start the application.
3891
3892 [role="term"]
3893 ----
3894 $ LD_PRELOAD=liblttng-ust-fork.so ./my-app
3895 ----
3896
3897 If your tracepoint provider package is
3898 a shared library which you also preload, you must put both
3899 shared objects in env:LD_PRELOAD:
3900
3901 [role="term"]
3902 ----
3903 $ LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3904 ----
3905
3906
3907 [role="since-2.9"]
3908 [[liblttng-ust-fd]]
3909 ===== Use noch:{LTTng-UST} with applications which close file descriptors that don't belong to them
3910
3911 If your instrumented application closes one or more file descriptors
3912 which it did not open itself, you must preload the
3913 path:{liblttng-ust-fd.so} shared object when you start the application:
3914
3915 [role="term"]
3916 ----
3917 $ LD_PRELOAD=liblttng-ust-fd.so ./my-app
3918 ----
3919
3920 Typical use cases include closing all the file descriptors after
3921 man:fork(2) or man:rfork(2) and buggy applications doing
3922 ``double closes''.
3923
3924
3925 [[lttng-ust-pkg-config]]
3926 ===== Use noch:{pkg-config}
3927
3928 On some distributions, LTTng-UST ships with a
3929 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3930 metadata file. If this is your case, then you can use cmd:pkg-config to
3931 build an application on the command line:
3932
3933 [role="term"]
3934 ----
3935 $ gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3936 ----
3937
3938
3939 [[instrumenting-32-bit-app-on-64-bit-system]]
3940 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3941
3942 In order to trace a 32-bit application running on a 64-bit system,
3943 LTTng must use a dedicated 32-bit
3944 <<lttng-consumerd,consumer daemon>>.
3945
3946 The following steps show how to build and install a 32-bit consumer
3947 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3948 build and install the 32-bit LTTng-UST libraries, and how to build and
3949 link an instrumented 32-bit application in that context.
3950
3951 To build a 32-bit instrumented application for a 64-bit target system,
3952 assuming you have a fresh target system with no installed Userspace RCU
3953 or LTTng packages:
3954
3955 . Download, build, and install a 32-bit version of Userspace RCU:
3956 +
3957 --
3958 [role="term"]
3959 ----
3960 $ cd $(mktemp -d) &&
3961 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3962 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3963 cd userspace-rcu-0.9.* &&
3964 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3965 make &&
3966 sudo make install &&
3967 sudo ldconfig
3968 ----
3969 --
3970
3971 . Using your distribution's package manager, or from source, install
3972 the following 32-bit versions of the following dependencies of
3973 LTTng-tools and LTTng-UST:
3974 +
3975 --
3976 * https://sourceforge.net/projects/libuuid/[libuuid]
3977 * http://directory.fsf.org/wiki/Popt[popt]
3978 * http://www.xmlsoft.org/[libxml2]
3979 --
3980
3981 . Download, build, and install a 32-bit version of the latest
3982 LTTng-UST{nbsp}{revision}:
3983 +
3984 --
3985 [role="term"]
3986 ----
3987 $ cd $(mktemp -d) &&
3988 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.10.tar.bz2 &&
3989 tar -xf lttng-ust-latest-2.10.tar.bz2 &&
3990 cd lttng-ust-2.10.* &&
3991 ./configure --libdir=/usr/local/lib32 \
3992 CFLAGS=-m32 CXXFLAGS=-m32 \
3993 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3994 make &&
3995 sudo make install &&
3996 sudo ldconfig
3997 ----
3998 --
3999 +
4000 [NOTE]
4001 ====
4002 Depending on your distribution,
4003 32-bit libraries could be installed at a different location than
4004 `/usr/lib32`. For example, Debian is known to install
4005 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
4006
4007 In this case, make sure to set `LDFLAGS` to all the
4008 relevant 32-bit library paths, for example:
4009
4010 [role="term"]
4011 ----
4012 $ LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
4013 ----
4014 ====
4015
4016 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
4017 the 32-bit consumer daemon:
4018 +
4019 --
4020 [role="term"]
4021 ----
4022 $ cd $(mktemp -d) &&
4023 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
4024 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
4025 cd lttng-tools-2.10.* &&
4026 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
4027 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' \
4028 --disable-bin-lttng --disable-bin-lttng-crash \
4029 --disable-bin-lttng-relayd --disable-bin-lttng-sessiond &&
4030 make &&
4031 cd src/bin/lttng-consumerd &&
4032 sudo make install &&
4033 sudo ldconfig
4034 ----
4035 --
4036
4037 . From your distribution or from source,
4038 <<installing-lttng,install>> the 64-bit versions of
4039 LTTng-UST and Userspace RCU.
4040 . Download, build, and install the 64-bit version of the
4041 latest LTTng-tools{nbsp}{revision}:
4042 +
4043 --
4044 [role="term"]
4045 ----
4046 $ cd $(mktemp -d) &&
4047 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
4048 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
4049 cd lttng-tools-2.10.* &&
4050 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
4051 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
4052 make &&
4053 sudo make install &&
4054 sudo ldconfig
4055 ----
4056 --
4057
4058 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
4059 when linking your 32-bit application:
4060 +
4061 ----
4062 -m32 -L/usr/lib32 -L/usr/local/lib32 \
4063 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
4064 ----
4065 +
4066 For example, let's rebuild the quick start example in
4067 <<tracing-your-own-user-application,Trace a user application>> as an
4068 instrumented 32-bit application:
4069 +
4070 --
4071 [role="term"]
4072 ----
4073 $ gcc -m32 -c -I. hello-tp.c
4074 $ gcc -m32 -c hello.c
4075 $ gcc -m32 -o hello hello.o hello-tp.o \
4076 -L/usr/lib32 -L/usr/local/lib32 \
4077 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
4078 -llttng-ust -ldl
4079 ----
4080 --
4081
4082 No special action is required to execute the 32-bit application and
4083 to trace it: use the command-line man:lttng(1) tool as usual.
4084
4085
4086 [role="since-2.5"]
4087 [[tracef]]
4088 ==== Use `tracef()`
4089
4090 man:tracef(3) is a small LTTng-UST API designed for quick,
4091 man:printf(3)-like instrumentation without the burden of
4092 <<tracepoint-provider,creating>> and
4093 <<building-tracepoint-providers-and-user-application,building>>
4094 a tracepoint provider package.
4095
4096 To use `tracef()` in your application:
4097
4098 . In the C or C++ source files where you need to use `tracef()`,
4099 include `<lttng/tracef.h>`:
4100 +
4101 --
4102 [source,c]
4103 ----
4104 #include <lttng/tracef.h>
4105 ----
4106 --
4107
4108 . In the application's source code, use `tracef()` like you would use
4109 man:printf(3):
4110 +
4111 --
4112 [source,c]
4113 ----
4114 /* ... */
4115
4116 tracef("my message: %d (%s)", my_integer, my_string);
4117
4118 /* ... */
4119 ----
4120 --
4121
4122 . Link your application with `liblttng-ust`:
4123 +
4124 --
4125 [role="term"]
4126 ----
4127 $ gcc -o app app.c -llttng-ust
4128 ----
4129 --
4130
4131 To trace the events that `tracef()` calls emit:
4132
4133 * <<enabling-disabling-events,Create an event rule>> which matches the
4134 `lttng_ust_tracef:*` event name:
4135 +
4136 --
4137 [role="term"]
4138 ----
4139 $ lttng enable-event --userspace 'lttng_ust_tracef:*'
4140 ----
4141 --
4142
4143 [IMPORTANT]
4144 .Limitations of `tracef()`
4145 ====
4146 The `tracef()` utility function was developed to make user space tracing
4147 super simple, albeit with notable disadvantages compared to
4148 <<defining-tracepoints,user-defined tracepoints>>:
4149
4150 * All the emitted events have the same tracepoint provider and
4151 tracepoint names, respectively `lttng_ust_tracef` and `event`.
4152 * There is no static type checking.
4153 * The only event record field you actually get, named `msg`, is a string
4154 potentially containing the values you passed to `tracef()`
4155 using your own format string. This also means that you cannot filter
4156 events with a custom expression at run time because there are no
4157 isolated fields.
4158 * Since `tracef()` uses the C standard library's man:vasprintf(3)
4159 function behind the scenes to format the strings at run time, its
4160 expected performance is lower than with user-defined tracepoints,
4161 which do not require a conversion to a string.
4162
4163 Taking this into consideration, `tracef()` is useful for some quick
4164 prototyping and debugging, but you should not consider it for any
4165 permanent and serious applicative instrumentation.
4166 ====
4167
4168
4169 [role="since-2.7"]
4170 [[tracelog]]
4171 ==== Use `tracelog()`
4172
4173 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
4174 the difference that it accepts an additional log level parameter.
4175
4176 The goal of `tracelog()` is to ease the migration from logging to
4177 tracing.
4178
4179 To use `tracelog()` in your application:
4180
4181 . In the C or C++ source files where you need to use `tracelog()`,
4182 include `<lttng/tracelog.h>`:
4183 +
4184 --
4185 [source,c]
4186 ----
4187 #include <lttng/tracelog.h>
4188 ----
4189 --
4190
4191 . In the application's source code, use `tracelog()` like you would use
4192 man:printf(3), except for the first parameter which is the log
4193 level:
4194 +
4195 --
4196 [source,c]
4197 ----
4198 /* ... */
4199
4200 tracelog(TRACE_WARNING, "my message: %d (%s)",
4201 my_integer, my_string);
4202
4203 /* ... */
4204 ----
4205 --
4206 +
4207 See man:lttng-ust(3) for a list of available log level names.
4208
4209 . Link your application with `liblttng-ust`:
4210 +
4211 --
4212 [role="term"]
4213 ----
4214 $ gcc -o app app.c -llttng-ust
4215 ----
4216 --
4217
4218 To trace the events that `tracelog()` calls emit with a log level
4219 _as severe as_ a specific log level:
4220
4221 * <<enabling-disabling-events,Create an event rule>> which matches the
4222 `lttng_ust_tracelog:*` event name and a minimum level
4223 of severity:
4224 +
4225 --
4226 [role="term"]
4227 ----
4228 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
4229 --loglevel=TRACE_WARNING
4230 ----
4231 --
4232
4233 To trace the events that `tracelog()` calls emit with a
4234 _specific log level_:
4235
4236 * Create an event rule which matches the `lttng_ust_tracelog:*`
4237 event name and a specific log level:
4238 +
4239 --
4240 [role="term"]
4241 ----
4242 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
4243 --loglevel-only=TRACE_INFO
4244 ----
4245 --
4246
4247
4248 [[prebuilt-ust-helpers]]
4249 === Prebuilt user space tracing helpers
4250
4251 The LTTng-UST package provides a few helpers in the form or preloadable
4252 shared objects which automatically instrument system functions and
4253 calls.
4254
4255 The helper shared objects are normally found in dir:{/usr/lib}. If you
4256 built LTTng-UST <<building-from-source,from source>>, they are probably
4257 located in dir:{/usr/local/lib}.
4258
4259 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4260 are:
4261
4262 path:{liblttng-ust-libc-wrapper.so}::
4263 path:{liblttng-ust-pthread-wrapper.so}::
4264 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4265 memory and POSIX threads function tracing>>.
4266
4267 path:{liblttng-ust-cyg-profile.so}::
4268 path:{liblttng-ust-cyg-profile-fast.so}::
4269 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4270
4271 path:{liblttng-ust-dl.so}::
4272 <<liblttng-ust-dl,Dynamic linker tracing>>.
4273
4274 To use a user space tracing helper with any user application:
4275
4276 * Preload the helper shared object when you start the application:
4277 +
4278 --
4279 [role="term"]
4280 ----
4281 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4282 ----
4283 --
4284 +
4285 You can preload more than one helper:
4286 +
4287 --
4288 [role="term"]
4289 ----
4290 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4291 ----
4292 --
4293
4294
4295 [role="since-2.3"]
4296 [[liblttng-ust-libc-pthread-wrapper]]
4297 ==== Instrument C standard library memory and POSIX threads functions
4298
4299 The path:{liblttng-ust-libc-wrapper.so} and
4300 path:{liblttng-ust-pthread-wrapper.so} helpers
4301 add instrumentation to some C standard library and POSIX
4302 threads functions.
4303
4304 [role="growable"]
4305 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4306 |====
4307 |TP provider name |TP name |Instrumented function
4308
4309 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4310 |`calloc` |man:calloc(3)
4311 |`realloc` |man:realloc(3)
4312 |`free` |man:free(3)
4313 |`memalign` |man:memalign(3)
4314 |`posix_memalign` |man:posix_memalign(3)
4315 |====
4316
4317 [role="growable"]
4318 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4319 |====
4320 |TP provider name |TP name |Instrumented function
4321
4322 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4323 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4324 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4325 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4326 |====
4327
4328 When you preload the shared object, it replaces the functions listed
4329 in the previous tables by wrappers which contain tracepoints and call
4330 the replaced functions.
4331
4332
4333 [[liblttng-ust-cyg-profile]]
4334 ==== Instrument function entry and exit
4335
4336 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4337 to the entry and exit points of functions.
4338
4339 man:gcc(1) and man:clang(1) have an option named
4340 https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html[`-finstrument-functions`]
4341 which generates instrumentation calls for entry and exit to functions.
4342 The LTTng-UST function tracing helpers,
4343 path:{liblttng-ust-cyg-profile.so} and
4344 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4345 to add tracepoints to the two generated functions (which contain
4346 `cyg_profile` in their names, hence the helper's name).
4347
4348 To use the LTTng-UST function tracing helper, the source files to
4349 instrument must be built using the `-finstrument-functions` compiler
4350 flag.
4351
4352 There are two versions of the LTTng-UST function tracing helper:
4353
4354 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4355 that you should only use when it can be _guaranteed_ that the
4356 complete event stream is recorded without any lost event record.
4357 Any kind of duplicate information is left out.
4358 +
4359 Assuming no event record is lost, having only the function addresses on
4360 entry is enough to create a call graph, since an event record always
4361 contains the ID of the CPU that generated it.
4362 +
4363 You can use a tool like man:addr2line(1) to convert function addresses
4364 back to source file names and line numbers.
4365
4366 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4367 which also works in use cases where event records might get discarded or
4368 not recorded from application startup.
4369 In these cases, the trace analyzer needs more information to be
4370 able to reconstruct the program flow.
4371
4372 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4373 points of this helper.
4374
4375 All the tracepoints that this helper provides have the
4376 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4377
4378 TIP: It's sometimes a good idea to limit the number of source files that
4379 you compile with the `-finstrument-functions` option to prevent LTTng
4380 from writing an excessive amount of trace data at run time. When using
4381 man:gcc(1), you can use the
4382 `-finstrument-functions-exclude-function-list` option to avoid
4383 instrument entries and exits of specific function names.
4384
4385
4386 [role="since-2.4"]
4387 [[liblttng-ust-dl]]
4388 ==== Instrument the dynamic linker
4389
4390 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4391 man:dlopen(3) and man:dlclose(3) function calls.
4392
4393 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4394 of this helper.
4395
4396
4397 [role="since-2.4"]
4398 [[java-application]]
4399 === User space Java agent
4400
4401 You can instrument any Java application which uses one of the following
4402 logging frameworks:
4403
4404 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4405 (JUL) core logging facilities.
4406 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4407 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4408
4409 [role="img-100"]
4410 .LTTng-UST Java agent imported by a Java application.
4411 image::java-app.png[]
4412
4413 Note that the methods described below are new in LTTng{nbsp}{revision}.
4414 Previous LTTng versions use another technique.
4415
4416 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4417 and https://ci.lttng.org/[continuous integration], thus this version is
4418 directly supported. However, the LTTng-UST Java agent is also tested
4419 with OpenJDK{nbsp}7.
4420
4421
4422 [role="since-2.8"]
4423 [[jul]]
4424 ==== Use the LTTng-UST Java agent for `java.util.logging`
4425
4426 To use the LTTng-UST Java agent in a Java application which uses
4427 `java.util.logging` (JUL):
4428
4429 . In the Java application's source code, import the LTTng-UST
4430 log handler package for `java.util.logging`:
4431 +
4432 --
4433 [source,java]
4434 ----
4435 import org.lttng.ust.agent.jul.LttngLogHandler;
4436 ----
4437 --
4438
4439 . Create an LTTng-UST JUL log handler:
4440 +
4441 --
4442 [source,java]
4443 ----
4444 Handler lttngUstLogHandler = new LttngLogHandler();
4445 ----
4446 --
4447
4448 . Add this handler to the JUL loggers which should emit LTTng events:
4449 +
4450 --
4451 [source,java]
4452 ----
4453 Logger myLogger = Logger.getLogger("some-logger");
4454
4455 myLogger.addHandler(lttngUstLogHandler);
4456 ----
4457 --
4458
4459 . Use `java.util.logging` log statements and configuration as usual.
4460 The loggers with an attached LTTng-UST log handler can emit
4461 LTTng events.
4462
4463 . Before exiting the application, remove the LTTng-UST log handler from
4464 the loggers attached to it and call its `close()` method:
4465 +
4466 --
4467 [source,java]
4468 ----
4469 myLogger.removeHandler(lttngUstLogHandler);
4470 lttngUstLogHandler.close();
4471 ----
4472 --
4473 +
4474 This is not strictly necessary, but it is recommended for a clean
4475 disposal of the handler's resources.
4476
4477 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4478 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4479 in the
4480 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4481 path] when you build the Java application.
4482 +
4483 The JAR files are typically located in dir:{/usr/share/java}.
4484 +
4485 IMPORTANT: The LTTng-UST Java agent must be
4486 <<installing-lttng,installed>> for the logging framework your
4487 application uses.
4488
4489 .Use the LTTng-UST Java agent for `java.util.logging`.
4490 ====
4491 [source,java]
4492 .path:{Test.java}
4493 ----
4494 import java.io.IOException;
4495 import java.util.logging.Handler;
4496 import java.util.logging.Logger;
4497 import org.lttng.ust.agent.jul.LttngLogHandler;
4498
4499 public class Test
4500 {
4501 private static final int answer = 42;
4502
4503 public static void main(String[] argv) throws Exception
4504 {
4505 // Create a logger
4506 Logger logger = Logger.getLogger("jello");
4507
4508 // Create an LTTng-UST log handler
4509 Handler lttngUstLogHandler = new LttngLogHandler();
4510
4511 // Add the LTTng-UST log handler to our logger
4512 logger.addHandler(lttngUstLogHandler);
4513
4514 // Log at will!
4515 logger.info("some info");
4516 logger.warning("some warning");
4517 Thread.sleep(500);
4518 logger.finer("finer information; the answer is " + answer);
4519 Thread.sleep(123);
4520 logger.severe("error!");
4521
4522 // Not mandatory, but cleaner
4523 logger.removeHandler(lttngUstLogHandler);
4524 lttngUstLogHandler.close();
4525 }
4526 }
4527 ----
4528
4529 Build this example:
4530
4531 [role="term"]
4532 ----
4533 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4534 ----
4535
4536 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4537 <<enabling-disabling-events,create an event rule>> matching the
4538 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4539
4540 [role="term"]
4541 ----
4542 $ lttng create
4543 $ lttng enable-event --jul jello
4544 $ lttng start
4545 ----
4546
4547 Run the compiled class:
4548
4549 [role="term"]
4550 ----
4551 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4552 ----
4553
4554 <<basic-tracing-session-control,Stop tracing>> and inspect the
4555 recorded events:
4556
4557 [role="term"]
4558 ----
4559 $ lttng stop
4560 $ lttng view
4561 ----
4562 ====
4563
4564 In the resulting trace, an <<event,event record>> generated by a Java
4565 application using `java.util.logging` is named `lttng_jul:event` and
4566 has the following fields:
4567
4568 `msg`::
4569 Log record's message.
4570
4571 `logger_name`::
4572 Logger name.
4573
4574 `class_name`::
4575 Name of the class in which the log statement was executed.
4576
4577 `method_name`::
4578 Name of the method in which the log statement was executed.
4579
4580 `long_millis`::
4581 Logging time (timestamp in milliseconds).
4582
4583 `int_loglevel`::
4584 Log level integer value.
4585
4586 `int_threadid`::
4587 ID of the thread in which the log statement was executed.
4588
4589 You can use the opt:lttng-enable-event(1):--loglevel or
4590 opt:lttng-enable-event(1):--loglevel-only option of the
4591 man:lttng-enable-event(1) command to target a range of JUL log levels
4592 or a specific JUL log level.
4593
4594
4595 [role="since-2.8"]
4596 [[log4j]]
4597 ==== Use the LTTng-UST Java agent for Apache log4j
4598
4599 To use the LTTng-UST Java agent in a Java application which uses
4600 Apache log4j 1.2:
4601
4602 . In the Java application's source code, import the LTTng-UST
4603 log appender package for Apache log4j:
4604 +
4605 --
4606 [source,java]
4607 ----
4608 import org.lttng.ust.agent.log4j.LttngLogAppender;
4609 ----
4610 --
4611
4612 . Create an LTTng-UST log4j log appender:
4613 +
4614 --
4615 [source,java]
4616 ----
4617 Appender lttngUstLogAppender = new LttngLogAppender();
4618 ----
4619 --
4620
4621 . Add this appender to the log4j loggers which should emit LTTng events:
4622 +
4623 --
4624 [source,java]
4625 ----
4626 Logger myLogger = Logger.getLogger("some-logger");
4627
4628 myLogger.addAppender(lttngUstLogAppender);
4629 ----
4630 --
4631
4632 . Use Apache log4j log statements and configuration as usual. The
4633 loggers with an attached LTTng-UST log appender can emit LTTng events.
4634
4635 . Before exiting the application, remove the LTTng-UST log appender from
4636 the loggers attached to it and call its `close()` method:
4637 +
4638 --
4639 [source,java]
4640 ----
4641 myLogger.removeAppender(lttngUstLogAppender);
4642 lttngUstLogAppender.close();
4643 ----
4644 --
4645 +
4646 This is not strictly necessary, but it is recommended for a clean
4647 disposal of the appender's resources.
4648
4649 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4650 files, path:{lttng-ust-agent-common.jar} and
4651 path:{lttng-ust-agent-log4j.jar}, in the
4652 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4653 path] when you build the Java application.
4654 +
4655 The JAR files are typically located in dir:{/usr/share/java}.
4656 +
4657 IMPORTANT: The LTTng-UST Java agent must be
4658 <<installing-lttng,installed>> for the logging framework your
4659 application uses.
4660
4661 .Use the LTTng-UST Java agent for Apache log4j.
4662 ====
4663 [source,java]
4664 .path:{Test.java}
4665 ----
4666 import org.apache.log4j.Appender;
4667 import org.apache.log4j.Logger;
4668 import org.lttng.ust.agent.log4j.LttngLogAppender;
4669
4670 public class Test
4671 {
4672 private static final int answer = 42;
4673
4674 public static void main(String[] argv) throws Exception
4675 {
4676 // Create a logger
4677 Logger logger = Logger.getLogger("jello");
4678
4679 // Create an LTTng-UST log appender
4680 Appender lttngUstLogAppender = new LttngLogAppender();
4681
4682 // Add the LTTng-UST log appender to our logger
4683 logger.addAppender(lttngUstLogAppender);
4684
4685 // Log at will!
4686 logger.info("some info");
4687 logger.warn("some warning");
4688 Thread.sleep(500);
4689 logger.debug("debug information; the answer is " + answer);
4690 Thread.sleep(123);
4691 logger.fatal("error!");
4692
4693 // Not mandatory, but cleaner
4694 logger.removeAppender(lttngUstLogAppender);
4695 lttngUstLogAppender.close();
4696 }
4697 }
4698
4699 ----
4700
4701 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4702 file):
4703
4704 [role="term"]
4705 ----
4706 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4707 ----
4708
4709 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4710 <<enabling-disabling-events,create an event rule>> matching the
4711 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4712
4713 [role="term"]
4714 ----
4715 $ lttng create
4716 $ lttng enable-event --log4j jello
4717 $ lttng start
4718 ----
4719
4720 Run the compiled class:
4721
4722 [role="term"]
4723 ----
4724 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4725 ----
4726
4727 <<basic-tracing-session-control,Stop tracing>> and inspect the
4728 recorded events:
4729
4730 [role="term"]
4731 ----
4732 $ lttng stop
4733 $ lttng view
4734 ----
4735 ====
4736
4737 In the resulting trace, an <<event,event record>> generated by a Java
4738 application using log4j is named `lttng_log4j:event` and
4739 has the following fields:
4740
4741 `msg`::
4742 Log record's message.
4743
4744 `logger_name`::
4745 Logger name.
4746
4747 `class_name`::
4748 Name of the class in which the log statement was executed.
4749
4750 `method_name`::
4751 Name of the method in which the log statement was executed.
4752
4753 `filename`::
4754 Name of the file in which the executed log statement is located.
4755
4756 `line_number`::
4757 Line number at which the log statement was executed.
4758
4759 `timestamp`::
4760 Logging timestamp.
4761
4762 `int_loglevel`::
4763 Log level integer value.
4764
4765 `thread_name`::
4766 Name of the Java thread in which the log statement was executed.
4767
4768 You can use the opt:lttng-enable-event(1):--loglevel or
4769 opt:lttng-enable-event(1):--loglevel-only option of the
4770 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4771 or a specific log4j log level.
4772
4773
4774 [role="since-2.8"]
4775 [[java-application-context]]
4776 ==== Provide application-specific context fields in a Java application
4777
4778 A Java application-specific context field is a piece of state provided
4779 by the application which <<adding-context,you can add>>, using the
4780 man:lttng-add-context(1) command, to each <<event,event record>>
4781 produced by the log statements of this application.
4782
4783 For example, a given object might have a current request ID variable.
4784 You can create a context information retriever for this object and
4785 assign a name to this current request ID. You can then, using the
4786 man:lttng-add-context(1) command, add this context field by name to
4787 the JUL or log4j <<channel,channel>>.
4788
4789 To provide application-specific context fields in a Java application:
4790
4791 . In the Java application's source code, import the LTTng-UST
4792 Java agent context classes and interfaces:
4793 +
4794 --
4795 [source,java]
4796 ----
4797 import org.lttng.ust.agent.context.ContextInfoManager;
4798 import org.lttng.ust.agent.context.IContextInfoRetriever;
4799 ----
4800 --
4801
4802 . Create a context information retriever class, that is, a class which
4803 implements the `IContextInfoRetriever` interface:
4804 +
4805 --
4806 [source,java]
4807 ----
4808 class MyContextInfoRetriever implements IContextInfoRetriever
4809 {
4810 @Override
4811 public Object retrieveContextInfo(String key)
4812 {
4813 if (key.equals("intCtx")) {
4814 return (short) 17;
4815 } else if (key.equals("strContext")) {
4816 return "context value!";
4817 } else {
4818 return null;
4819 }
4820 }
4821 }
4822 ----
4823 --
4824 +
4825 This `retrieveContextInfo()` method is the only member of the
4826 `IContextInfoRetriever` interface. Its role is to return the current
4827 value of a state by name to create a context field. The names of the
4828 context fields and which state variables they return depends on your
4829 specific scenario.
4830 +
4831 All primitive types and objects are supported as context fields.
4832 When `retrieveContextInfo()` returns an object, the context field
4833 serializer calls its `toString()` method to add a string field to
4834 event records. The method can also return `null`, which means that
4835 no context field is available for the required name.
4836
4837 . Register an instance of your context information retriever class to
4838 the context information manager singleton:
4839 +
4840 --
4841 [source,java]
4842 ----
4843 IContextInfoRetriever cir = new MyContextInfoRetriever();
4844 ContextInfoManager cim = ContextInfoManager.getInstance();
4845 cim.registerContextInfoRetriever("retrieverName", cir);
4846 ----
4847 --
4848
4849 . Before exiting the application, remove your context information
4850 retriever from the context information manager singleton:
4851 +
4852 --
4853 [source,java]
4854 ----
4855 ContextInfoManager cim = ContextInfoManager.getInstance();
4856 cim.unregisterContextInfoRetriever("retrieverName");
4857 ----
4858 --
4859 +
4860 This is not strictly necessary, but it is recommended for a clean
4861 disposal of some manager's resources.
4862
4863 . Build your Java application with LTTng-UST Java agent support as
4864 usual, following the procedure for either the <<jul,JUL>> or
4865 <<log4j,Apache log4j>> framework.
4866
4867
4868 .Provide application-specific context fields in a Java application.
4869 ====
4870 [source,java]
4871 .path:{Test.java}
4872 ----
4873 import java.util.logging.Handler;
4874 import java.util.logging.Logger;
4875 import org.lttng.ust.agent.jul.LttngLogHandler;
4876 import org.lttng.ust.agent.context.ContextInfoManager;
4877 import org.lttng.ust.agent.context.IContextInfoRetriever;
4878
4879 public class Test
4880 {
4881 // Our context information retriever class
4882 private static class MyContextInfoRetriever
4883 implements IContextInfoRetriever
4884 {
4885 @Override
4886 public Object retrieveContextInfo(String key) {
4887 if (key.equals("intCtx")) {
4888 return (short) 17;
4889 } else if (key.equals("strContext")) {
4890 return "context value!";
4891 } else {
4892 return null;
4893 }
4894 }
4895 }
4896
4897 private static final int answer = 42;
4898
4899 public static void main(String args[]) throws Exception
4900 {
4901 // Get the context information manager instance
4902 ContextInfoManager cim = ContextInfoManager.getInstance();
4903
4904 // Create and register our context information retriever
4905 IContextInfoRetriever cir = new MyContextInfoRetriever();
4906 cim.registerContextInfoRetriever("myRetriever", cir);
4907
4908 // Create a logger
4909 Logger logger = Logger.getLogger("jello");
4910
4911 // Create an LTTng-UST log handler
4912 Handler lttngUstLogHandler = new LttngLogHandler();
4913
4914 // Add the LTTng-UST log handler to our logger
4915 logger.addHandler(lttngUstLogHandler);
4916
4917 // Log at will!
4918 logger.info("some info");
4919 logger.warning("some warning");
4920 Thread.sleep(500);
4921 logger.finer("finer information; the answer is " + answer);
4922 Thread.sleep(123);
4923 logger.severe("error!");
4924
4925 // Not mandatory, but cleaner
4926 logger.removeHandler(lttngUstLogHandler);
4927 lttngUstLogHandler.close();
4928 cim.unregisterContextInfoRetriever("myRetriever");
4929 }
4930 }
4931 ----
4932
4933 Build this example:
4934
4935 [role="term"]
4936 ----
4937 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4938 ----
4939
4940 <<creating-destroying-tracing-sessions,Create a tracing session>>
4941 and <<enabling-disabling-events,create an event rule>> matching the
4942 `jello` JUL logger:
4943
4944 [role="term"]
4945 ----
4946 $ lttng create
4947 $ lttng enable-event --jul jello
4948 ----
4949
4950 <<adding-context,Add the application-specific context fields>> to the
4951 JUL channel:
4952
4953 [role="term"]
4954 ----
4955 $ lttng add-context --jul --type='$app.myRetriever:intCtx'
4956 $ lttng add-context --jul --type='$app.myRetriever:strContext'
4957 ----
4958
4959 <<basic-tracing-session-control,Start tracing>>:
4960
4961 [role="term"]
4962 ----
4963 $ lttng start
4964 ----
4965
4966 Run the compiled class:
4967
4968 [role="term"]
4969 ----
4970 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4971 ----
4972
4973 <<basic-tracing-session-control,Stop tracing>> and inspect the
4974 recorded events:
4975
4976 [role="term"]
4977 ----
4978 $ lttng stop
4979 $ lttng view
4980 ----
4981 ====
4982
4983
4984 [role="since-2.7"]
4985 [[python-application]]
4986 === User space Python agent
4987
4988 You can instrument a Python 2 or Python 3 application which uses the
4989 standard https://docs.python.org/3/library/logging.html[`logging`]
4990 package.
4991
4992 Each log statement emits an LTTng event once the
4993 application module imports the
4994 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4995
4996 [role="img-100"]
4997 .A Python application importing the LTTng-UST Python agent.
4998 image::python-app.png[]
4999
5000 To use the LTTng-UST Python agent:
5001
5002 . In the Python application's source code, import the LTTng-UST Python
5003 agent:
5004 +
5005 --
5006 [source,python]
5007 ----
5008 import lttngust
5009 ----
5010 --
5011 +
5012 The LTTng-UST Python agent automatically adds its logging handler to the
5013 root logger at import time.
5014 +
5015 Any log statement that the application executes before this import does
5016 not emit an LTTng event.
5017 +
5018 IMPORTANT: The LTTng-UST Python agent must be
5019 <<installing-lttng,installed>>.
5020
5021 . Use log statements and logging configuration as usual.
5022 Since the LTTng-UST Python agent adds a handler to the _root_
5023 logger, you can trace any log statement from any logger.
5024
5025 .Use the LTTng-UST Python agent.
5026 ====
5027 [source,python]
5028 .path:{test.py}
5029 ----
5030 import lttngust
5031 import logging
5032 import time
5033
5034
5035 def example():
5036 logging.basicConfig()
5037 logger = logging.getLogger('my-logger')
5038
5039 while True:
5040 logger.debug('debug message')
5041 logger.info('info message')
5042 logger.warn('warn message')
5043 logger.error('error message')
5044 logger.critical('critical message')
5045 time.sleep(1)
5046
5047
5048 if __name__ == '__main__':
5049 example()
5050 ----
5051
5052 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
5053 logging handler which prints to the standard error stream, is not
5054 strictly required for LTTng-UST tracing to work, but in versions of
5055 Python preceding 3.2, you could see a warning message which indicates
5056 that no handler exists for the logger `my-logger`.
5057
5058 <<creating-destroying-tracing-sessions,Create a tracing session>>,
5059 <<enabling-disabling-events,create an event rule>> matching the
5060 `my-logger` Python logger, and <<basic-tracing-session-control,start
5061 tracing>>:
5062
5063 [role="term"]
5064 ----
5065 $ lttng create
5066 $ lttng enable-event --python my-logger
5067 $ lttng start
5068 ----
5069
5070 Run the Python script:
5071
5072 [role="term"]
5073 ----
5074 $ python test.py
5075 ----
5076
5077 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5078 events:
5079
5080 [role="term"]
5081 ----
5082 $ lttng stop
5083 $ lttng view
5084 ----
5085 ====
5086
5087 In the resulting trace, an <<event,event record>> generated by a Python
5088 application is named `lttng_python:event` and has the following fields:
5089
5090 `asctime`::
5091 Logging time (string).
5092
5093 `msg`::
5094 Log record's message.
5095
5096 `logger_name`::
5097 Logger name.
5098
5099 `funcName`::
5100 Name of the function in which the log statement was executed.
5101
5102 `lineno`::
5103 Line number at which the log statement was executed.
5104
5105 `int_loglevel`::
5106 Log level integer value.
5107
5108 `thread`::
5109 ID of the Python thread in which the log statement was executed.
5110
5111 `threadName`::
5112 Name of the Python thread in which the log statement was executed.
5113
5114 You can use the opt:lttng-enable-event(1):--loglevel or
5115 opt:lttng-enable-event(1):--loglevel-only option of the
5116 man:lttng-enable-event(1) command to target a range of Python log levels
5117 or a specific Python log level.
5118
5119 When an application imports the LTTng-UST Python agent, the agent tries
5120 to register to a <<lttng-sessiond,session daemon>>. Note that you must
5121 <<start-sessiond,start the session daemon>> _before_ you run the Python
5122 application. If a session daemon is found, the agent tries to register
5123 to it during 5{nbsp}seconds, after which the application continues
5124 without LTTng tracing support. You can override this timeout value with
5125 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
5126 (milliseconds).
5127
5128 If the session daemon stops while a Python application with an imported
5129 LTTng-UST Python agent runs, the agent retries to connect and to
5130 register to a session daemon every 3{nbsp}seconds. You can override this
5131 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
5132 variable.
5133
5134
5135 [role="since-2.5"]
5136 [[proc-lttng-logger-abi]]
5137 === LTTng logger
5138
5139 The `lttng-tracer` Linux kernel module, part of
5140 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
5141 path:{/proc/lttng-logger} when it's loaded. Any application can write
5142 text data to this file to emit an LTTng event.
5143
5144 [role="img-100"]
5145 .An application writes to the LTTng logger file to emit an LTTng event.
5146 image::lttng-logger.png[]
5147
5148 The LTTng logger is the quickest method--not the most efficient,
5149 however--to add instrumentation to an application. It is designed
5150 mostly to instrument shell scripts:
5151
5152 [role="term"]
5153 ----
5154 $ echo "Some message, some $variable" > /proc/lttng-logger
5155 ----
5156
5157 Any event that the LTTng logger emits is named `lttng_logger` and
5158 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
5159 other instrumentation points in the kernel tracing domain, **any Unix
5160 user** can <<enabling-disabling-events,create an event rule>> which
5161 matches its event name, not only the root user or users in the
5162 <<tracing-group,tracing group>>.
5163
5164 To use the LTTng logger:
5165
5166 * From any application, write text data to the path:{/proc/lttng-logger}
5167 file.
5168
5169 The `msg` field of `lttng_logger` event records contains the
5170 recorded message.
5171
5172 NOTE: The maximum message length of an LTTng logger event is
5173 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
5174 than one event to contain the remaining data.
5175
5176 You should not use the LTTng logger to trace a user application which
5177 can be instrumented in a more efficient way, namely:
5178
5179 * <<c-application,C and $$C++$$ applications>>.
5180 * <<java-application,Java applications>>.
5181 * <<python-application,Python applications>>.
5182
5183 .Use the LTTng logger.
5184 ====
5185 [source,bash]
5186 .path:{test.bash}
5187 ----
5188 echo 'Hello, World!' > /proc/lttng-logger
5189 sleep 2
5190 df --human-readable --print-type / > /proc/lttng-logger
5191 ----
5192
5193 <<creating-destroying-tracing-sessions,Create a tracing session>>,
5194 <<enabling-disabling-events,create an event rule>> matching the
5195 `lttng_logger` Linux kernel tracepoint, and
5196 <<basic-tracing-session-control,start tracing>>:
5197
5198 [role="term"]
5199 ----
5200 $ lttng create
5201 $ lttng enable-event --kernel lttng_logger
5202 $ lttng start
5203 ----
5204
5205 Run the Bash script:
5206
5207 [role="term"]
5208 ----
5209 $ bash test.bash
5210 ----
5211
5212 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5213 events:
5214
5215 [role="term"]
5216 ----
5217 $ lttng stop
5218 $ lttng view
5219 ----
5220 ====
5221
5222
5223 [[instrumenting-linux-kernel]]
5224 === LTTng kernel tracepoints
5225
5226 NOTE: This section shows how to _add_ instrumentation points to the
5227 Linux kernel. The kernel's subsystems are already thoroughly
5228 instrumented at strategic places for LTTng when you
5229 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
5230 package.
5231
5232 ////
5233 There are two methods to instrument the Linux kernel:
5234
5235 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
5236 tracepoint which uses the `TRACE_EVENT()` API.
5237 +
5238 Choose this if you want to instrumentation a Linux kernel tree with an
5239 instrumentation point compatible with ftrace, perf, and SystemTap.
5240
5241 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
5242 instrument an out-of-tree kernel module.
5243 +
5244 Choose this if you don't need ftrace, perf, or SystemTap support.
5245 ////
5246
5247
5248 [[linux-add-lttng-layer]]
5249 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
5250
5251 This section shows how to add an LTTng layer to existing ftrace
5252 instrumentation using the `TRACE_EVENT()` API.
5253
5254 This section does not document the `TRACE_EVENT()` macro. You can
5255 read the following articles to learn more about this API:
5256
5257 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
5258 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
5259 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
5260
5261 The following procedure assumes that your ftrace tracepoints are
5262 correctly defined in their own header and that they are created in
5263 one source file using the `CREATE_TRACE_POINTS` definition.
5264
5265 To add an LTTng layer over an existing ftrace tracepoint:
5266
5267 . Make sure the following kernel configuration options are
5268 enabled:
5269 +
5270 --
5271 * `CONFIG_MODULES`
5272 * `CONFIG_KALLSYMS`
5273 * `CONFIG_HIGH_RES_TIMERS`
5274 * `CONFIG_TRACEPOINTS`
5275 --
5276
5277 . Build the Linux source tree with your custom ftrace tracepoints.
5278 . Boot the resulting Linux image on your target system.
5279 +
5280 Confirm that the tracepoints exist by looking for their names in the
5281 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5282 is your subsystem's name.
5283
5284 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5285 +
5286 --
5287 [role="term"]
5288 ----
5289 $ cd $(mktemp -d) &&
5290 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
5291 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
5292 cd lttng-modules-2.10.*
5293 ----
5294 --
5295
5296 . In dir:{instrumentation/events/lttng-module}, relative to the root
5297 of the LTTng-modules source tree, create a header file named
5298 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5299 LTTng-modules tracepoint definitions using the LTTng-modules
5300 macros in it.
5301 +
5302 Start with this template:
5303 +
5304 --
5305 [source,c]
5306 .path:{instrumentation/events/lttng-module/my_subsys.h}
5307 ----
5308 #undef TRACE_SYSTEM
5309 #define TRACE_SYSTEM my_subsys
5310
5311 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5312 #define _LTTNG_MY_SUBSYS_H
5313
5314 #include "../../../probes/lttng-tracepoint-event.h"
5315 #include <linux/tracepoint.h>
5316
5317 LTTNG_TRACEPOINT_EVENT(
5318 /*
5319 * Format is identical to TRACE_EVENT()'s version for the three
5320 * following macro parameters:
5321 */
5322 my_subsys_my_event,
5323 TP_PROTO(int my_int, const char *my_string),
5324 TP_ARGS(my_int, my_string),
5325
5326 /* LTTng-modules specific macros */
5327 TP_FIELDS(
5328 ctf_integer(int, my_int_field, my_int)
5329 ctf_string(my_bar_field, my_bar)
5330 )
5331 )
5332
5333 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5334
5335 #include "../../../probes/define_trace.h"
5336 ----
5337 --
5338 +
5339 The entries in the `TP_FIELDS()` section are the list of fields for the
5340 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5341 ftrace's `TRACE_EVENT()` macro.
5342 +
5343 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5344 complete description of the available `ctf_*()` macros.
5345
5346 . Create the LTTng-modules probe's kernel module C source file,
5347 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5348 subsystem name:
5349 +
5350 --
5351 [source,c]
5352 .path:{probes/lttng-probe-my-subsys.c}
5353 ----
5354 #include <linux/module.h>
5355 #include "../lttng-tracer.h"
5356
5357 /*
5358 * Build-time verification of mismatch between mainline
5359 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5360 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5361 */
5362 #include <trace/events/my_subsys.h>
5363
5364 /* Create LTTng tracepoint probes */
5365 #define LTTNG_PACKAGE_BUILD
5366 #define CREATE_TRACE_POINTS
5367 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5368
5369 #include "../instrumentation/events/lttng-module/my_subsys.h"
5370
5371 MODULE_LICENSE("GPL and additional rights");
5372 MODULE_AUTHOR("Your name <your-email>");
5373 MODULE_DESCRIPTION("LTTng my_subsys probes");
5374 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5375 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5376 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5377 LTTNG_MODULES_EXTRAVERSION);
5378 ----
5379 --
5380
5381 . Edit path:{probes/KBuild} and add your new kernel module object
5382 next to the existing ones:
5383 +
5384 --
5385 [source,make]
5386 .path:{probes/KBuild}
5387 ----
5388 # ...
5389
5390 obj-m += lttng-probe-module.o
5391 obj-m += lttng-probe-power.o
5392
5393 obj-m += lttng-probe-my-subsys.o
5394
5395 # ...
5396 ----
5397 --
5398
5399 . Build and install the LTTng kernel modules:
5400 +
5401 --
5402 [role="term"]
5403 ----
5404 $ make KERNELDIR=/path/to/linux
5405 # make modules_install && depmod -a
5406 ----
5407 --
5408 +
5409 Replace `/path/to/linux` with the path to the Linux source tree where
5410 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5411
5412 Note that you can also use the
5413 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5414 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5415 C code that need to be executed before the event fields are recorded.
5416
5417 The best way to learn how to use the previous LTTng-modules macros is to
5418 inspect the existing LTTng-modules tracepoint definitions in the
5419 dir:{instrumentation/events/lttng-module} header files. Compare them
5420 with the Linux kernel mainline versions in the
5421 dir:{include/trace/events} directory of the Linux source tree.
5422
5423
5424 [role="since-2.7"]
5425 [[lttng-tracepoint-event-code]]
5426 ===== Use custom C code to access the data for tracepoint fields
5427
5428 Although we recommended to always use the
5429 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5430 the arguments and fields of an LTTng-modules tracepoint when possible,
5431 sometimes you need a more complex process to access the data that the
5432 tracer records as event record fields. In other words, you need local
5433 variables and multiple C{nbsp}statements instead of simple
5434 argument-based expressions that you pass to the
5435 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5436
5437 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5438 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5439 a block of C{nbsp}code to be executed before LTTng records the fields.
5440 The structure of this macro is:
5441
5442 [source,c]
5443 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5444 ----
5445 LTTNG_TRACEPOINT_EVENT_CODE(
5446 /*
5447 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5448 * version for the following three macro parameters:
5449 */
5450 my_subsys_my_event,
5451 TP_PROTO(int my_int, const char *my_string),
5452 TP_ARGS(my_int, my_string),
5453
5454 /* Declarations of custom local variables */
5455 TP_locvar(
5456 int a = 0;
5457 unsigned long b = 0;
5458 const char *name = "(undefined)";
5459 struct my_struct *my_struct;
5460 ),
5461
5462 /*
5463 * Custom code which uses both tracepoint arguments
5464 * (in TP_ARGS()) and local variables (in TP_locvar()).
5465 *
5466 * Local variables are actually members of a structure pointed
5467 * to by the special variable tp_locvar.
5468 */
5469 TP_code(
5470 if (my_int) {
5471 tp_locvar->a = my_int + 17;
5472 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5473 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5474 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5475 put_my_struct(tp_locvar->my_struct);
5476
5477 if (tp_locvar->b) {
5478 tp_locvar->a = 1;
5479 }
5480 }
5481 ),
5482
5483 /*
5484 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5485 * version for this, except that tp_locvar members can be
5486 * used in the argument expression parameters of
5487 * the ctf_*() macros.
5488 */
5489 TP_FIELDS(
5490 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5491 ctf_integer(int, my_struct_a, tp_locvar->a)
5492 ctf_string(my_string_field, my_string)
5493 ctf_string(my_struct_name, tp_locvar->name)
5494 )
5495 )
5496 ----
5497
5498 IMPORTANT: The C code defined in `TP_code()` must not have any side
5499 effects when executed. In particular, the code must not allocate
5500 memory or get resources without deallocating this memory or putting
5501 those resources afterwards.
5502
5503
5504 [[instrumenting-linux-kernel-tracing]]
5505 ==== Load and unload a custom probe kernel module
5506
5507 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5508 kernel module>> in the kernel before it can emit LTTng events.
5509
5510 To load the default probe kernel modules and a custom probe kernel
5511 module:
5512
5513 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5514 probe modules to load when starting a root <<lttng-sessiond,session
5515 daemon>>:
5516 +
5517 --
5518 .Load the `my_subsys`, `usb`, and the default probe modules.
5519 ====
5520 [role="term"]
5521 ----
5522 # lttng-sessiond --extra-kmod-probes=my_subsys,usb
5523 ----
5524 ====
5525 --
5526 +
5527 You only need to pass the subsystem name, not the whole kernel module
5528 name.
5529
5530 To load _only_ a given custom probe kernel module:
5531
5532 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5533 modules to load when starting a root session daemon:
5534 +
5535 --
5536 .Load only the `my_subsys` and `usb` probe modules.
5537 ====
5538 [role="term"]
5539 ----
5540 # lttng-sessiond --kmod-probes=my_subsys,usb
5541 ----
5542 ====
5543 --
5544
5545 To confirm that a probe module is loaded:
5546
5547 * Use man:lsmod(8):
5548 +
5549 --
5550 [role="term"]
5551 ----
5552 $ lsmod | grep lttng_probe_usb
5553 ----
5554 --
5555
5556 To unload the loaded probe modules:
5557
5558 * Kill the session daemon with `SIGTERM`:
5559 +
5560 --
5561 [role="term"]
5562 ----
5563 # pkill lttng-sessiond
5564 ----
5565 --
5566 +
5567 You can also use man:modprobe(8)'s `--remove` option if the session
5568 daemon terminates abnormally.
5569
5570
5571 [[controlling-tracing]]
5572 == Tracing control
5573
5574 Once an application or a Linux kernel is
5575 <<instrumenting,instrumented>> for LTTng tracing,
5576 you can _trace_ it.
5577
5578 This section is divided in topics on how to use the various
5579 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5580 command-line tool>>, to _control_ the LTTng daemons and tracers.
5581
5582 NOTE: In the following subsections, we refer to an man:lttng(1) command
5583 using its man page name. For example, instead of _Run the `create`
5584 command to..._, we use _Run the man:lttng-create(1) command to..._.
5585
5586
5587 [[start-sessiond]]
5588 === Start a session daemon
5589
5590 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5591 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5592 command-line tool.
5593
5594 You will see the following error when you run a command while no session
5595 daemon is running:
5596
5597 ----
5598 Error: No session daemon is available
5599 ----
5600
5601 The only command that automatically runs a session daemon is
5602 man:lttng-create(1), which you use to
5603 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5604 this is most of the time the first operation that you do, sometimes it's
5605 not. Some examples are:
5606
5607 * <<list-instrumentation-points,List the available instrumentation points>>.
5608 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5609
5610 [[tracing-group]] Each Unix user must have its own running session
5611 daemon to trace user applications. The session daemon that the root user
5612 starts is the only one allowed to control the LTTng kernel tracer. Users
5613 that are part of the _tracing group_ can control the root session
5614 daemon. The default tracing group name is `tracing`; you can set it to
5615 something else with the opt:lttng-sessiond(8):--group option when you
5616 start the root session daemon.
5617
5618 To start a user session daemon:
5619
5620 * Run man:lttng-sessiond(8):
5621 +
5622 --
5623 [role="term"]
5624 ----
5625 $ lttng-sessiond --daemonize
5626 ----
5627 --
5628
5629 To start the root session daemon:
5630
5631 * Run man:lttng-sessiond(8) as the root user:
5632 +
5633 --
5634 [role="term"]
5635 ----
5636 # lttng-sessiond --daemonize
5637 ----
5638 --
5639
5640 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5641 start the session daemon in foreground.
5642
5643 To stop a session daemon, use man:kill(1) on its process ID (standard
5644 `TERM` signal).
5645
5646 Note that some Linux distributions could manage the LTTng session daemon
5647 as a service. In this case, you should use the service manager to
5648 start, restart, and stop session daemons.
5649
5650
5651 [[creating-destroying-tracing-sessions]]
5652 === Create and destroy a tracing session
5653
5654 Almost all the LTTng control operations happen in the scope of
5655 a <<tracing-session,tracing session>>, which is the dialogue between the
5656 <<lttng-sessiond,session daemon>> and you.
5657
5658 To create a tracing session with a generated name:
5659
5660 * Use the man:lttng-create(1) command:
5661 +
5662 --
5663 [role="term"]
5664 ----
5665 $ lttng create
5666 ----
5667 --
5668
5669 The created tracing session's name is `auto` followed by the
5670 creation date.
5671
5672 To create a tracing session with a specific name:
5673
5674 * Use the optional argument of the man:lttng-create(1) command:
5675 +
5676 --
5677 [role="term"]
5678 ----
5679 $ lttng create my-session
5680 ----
5681 --
5682 +
5683 Replace `my-session` with the specific tracing session name.
5684
5685 LTTng appends the creation date to the created tracing session's name.
5686
5687 LTTng writes the traces of a tracing session in
5688 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5689 name of the tracing session. Note that the env:LTTNG_HOME environment
5690 variable defaults to `$HOME` if not set.
5691
5692 To output LTTng traces to a non-default location:
5693
5694 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5695 +
5696 --
5697 [role="term"]
5698 ----
5699 $ lttng create my-session --output=/tmp/some-directory
5700 ----
5701 --
5702
5703 You may create as many tracing sessions as you wish.
5704
5705 To list all the existing tracing sessions for your Unix user:
5706
5707 * Use the man:lttng-list(1) command:
5708 +
5709 --
5710 [role="term"]
5711 ----
5712 $ lttng list
5713 ----
5714 --
5715
5716 When you create a tracing session, it is set as the _current tracing
5717 session_. The following man:lttng(1) commands operate on the current
5718 tracing session when you don't specify one:
5719
5720 [role="list-3-cols"]
5721 * `add-context`
5722 * `destroy`
5723 * `disable-channel`
5724 * `disable-event`
5725 * `enable-channel`
5726 * `enable-event`
5727 * `load`
5728 * `regenerate`
5729 * `save`
5730 * `snapshot`
5731 * `start`
5732 * `stop`
5733 * `track`
5734 * `untrack`
5735 * `view`
5736
5737 To change the current tracing session:
5738
5739 * Use the man:lttng-set-session(1) command:
5740 +
5741 --
5742 [role="term"]
5743 ----
5744 $ lttng set-session new-session
5745 ----
5746 --
5747 +
5748 Replace `new-session` by the name of the new current tracing session.
5749
5750 When you are done tracing in a given tracing session, you can destroy
5751 it. This operation frees the resources taken by the tracing session
5752 to destroy; it does not destroy the trace data that LTTng wrote for
5753 this tracing session.
5754
5755 To destroy the current tracing session:
5756
5757 * Use the man:lttng-destroy(1) command:
5758 +
5759 --
5760 [role="term"]
5761 ----
5762 $ lttng destroy
5763 ----
5764 --
5765
5766
5767 [[list-instrumentation-points]]
5768 === List the available instrumentation points
5769
5770 The <<lttng-sessiond,session daemon>> can query the running instrumented
5771 user applications and the Linux kernel to get a list of available
5772 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5773 they are tracepoints and system calls. For the user space tracing
5774 domain, they are tracepoints. For the other tracing domains, they are
5775 logger names.
5776
5777 To list the available instrumentation points:
5778
5779 * Use the man:lttng-list(1) command with the requested tracing domain's
5780 option amongst:
5781 +
5782 --
5783 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5784 must be a root user, or it must be a member of the
5785 <<tracing-group,tracing group>>).
5786 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5787 kernel system calls (your Unix user must be a root user, or it must be
5788 a member of the tracing group).
5789 * opt:lttng-list(1):--userspace: user space tracepoints.
5790 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5791 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5792 * opt:lttng-list(1):--python: Python loggers.
5793 --
5794
5795 .List the available user space tracepoints.
5796 ====
5797 [role="term"]
5798 ----
5799 $ lttng list --userspace
5800 ----
5801 ====
5802
5803 .List the available Linux kernel system call tracepoints.
5804 ====
5805 [role="term"]
5806 ----
5807 $ lttng list --kernel --syscall
5808 ----
5809 ====
5810
5811
5812 [[enabling-disabling-events]]
5813 === Create and enable an event rule
5814
5815 Once you <<creating-destroying-tracing-sessions,create a tracing
5816 session>>, you can create <<event,event rules>> with the
5817 man:lttng-enable-event(1) command.
5818
5819 You specify each condition with a command-line option. The available
5820 condition options are shown in the following table.
5821
5822 [role="growable",cols="asciidoc,asciidoc,default"]
5823 .Condition command-line options for the man:lttng-enable-event(1) command.
5824 |====
5825 |Option |Description |Applicable tracing domains
5826
5827 |
5828 One of:
5829
5830 . `--syscall`
5831 . +--probe=__ADDR__+
5832 . +--function=__ADDR__+
5833
5834 |
5835 Instead of using the default _tracepoint_ instrumentation type, use:
5836
5837 . A Linux system call.
5838 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5839 . The entry and return points of a Linux function (symbol or address).
5840
5841 |Linux kernel.
5842
5843 |First positional argument.
5844
5845 |
5846 Tracepoint or system call name. In the case of a Linux KProbe or
5847 function, this is a custom name given to the event rule. With the
5848 JUL, log4j, and Python domains, this is a logger name.
5849
5850 With a tracepoint, logger, or system call name, you can use the special
5851 `*` globbing character to match anything (for example, `sched_*`,
5852 `my_comp*:*msg_*`).
5853
5854 |All.
5855
5856 |
5857 One of:
5858
5859 . +--loglevel=__LEVEL__+
5860 . +--loglevel-only=__LEVEL__+
5861
5862 |
5863 . Match only tracepoints or log statements with a logging level at
5864 least as severe as +__LEVEL__+.
5865 . Match only tracepoints or log statements with a logging level
5866 equal to +__LEVEL__+.
5867
5868 See man:lttng-enable-event(1) for the list of available logging level
5869 names.
5870
5871 |User space, JUL, log4j, and Python.
5872
5873 |+--exclude=__EXCLUSIONS__+
5874
5875 |
5876 When you use a `*` character at the end of the tracepoint or logger
5877 name (first positional argument), exclude the specific names in the
5878 comma-delimited list +__EXCLUSIONS__+.
5879
5880 |
5881 User space, JUL, log4j, and Python.
5882
5883 |+--filter=__EXPR__+
5884
5885 |
5886 Match only events which satisfy the expression +__EXPR__+.
5887
5888 See man:lttng-enable-event(1) to learn more about the syntax of a
5889 filter expression.
5890
5891 |All.
5892
5893 |====
5894
5895 You attach an event rule to a <<channel,channel>> on creation. If you do
5896 not specify the channel with the opt:lttng-enable-event(1):--channel
5897 option, and if the event rule to create is the first in its
5898 <<domain,tracing domain>> for a given tracing session, then LTTng
5899 creates a _default channel_ for you. This default channel is reused in
5900 subsequent invocations of the man:lttng-enable-event(1) command for the
5901 same tracing domain.
5902
5903 An event rule is always enabled at creation time.
5904
5905 The following examples show how you can combine the previous
5906 command-line options to create simple to more complex event rules.
5907
5908 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5909 ====
5910 [role="term"]
5911 ----
5912 $ lttng enable-event --kernel sched_switch
5913 ----
5914 ====
5915
5916 .Create an event rule matching four Linux kernel system calls (default channel).
5917 ====
5918 [role="term"]
5919 ----
5920 $ lttng enable-event --kernel --syscall open,write,read,close
5921 ----
5922 ====
5923
5924 .Create event rules matching tracepoints with filter expressions (default channel).
5925 ====
5926 [role="term"]
5927 ----
5928 $ lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5929 ----
5930
5931 [role="term"]
5932 ----
5933 $ lttng enable-event --kernel --all \
5934 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5935 ----
5936
5937 [role="term"]
5938 ----
5939 $ lttng enable-event --jul my_logger \
5940 --filter='$app.retriever:cur_msg_id > 3'
5941 ----
5942
5943 IMPORTANT: Make sure to always quote the filter string when you
5944 use man:lttng(1) from a shell.
5945 ====
5946
5947 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5948 ====
5949 [role="term"]
5950 ----
5951 $ lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5952 ----
5953
5954 IMPORTANT: Make sure to always quote the wildcard character when you
5955 use man:lttng(1) from a shell.
5956 ====
5957
5958 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5959 ====
5960 [role="term"]
5961 ----
5962 $ lttng enable-event --python my-app.'*' \
5963 --exclude='my-app.module,my-app.hello'
5964 ----
5965 ====
5966
5967 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5968 ====
5969 [role="term"]
5970 ----
5971 $ lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5972 ----
5973 ====
5974
5975 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5976 ====
5977 [role="term"]
5978 ----
5979 $ lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5980 ----
5981 ====
5982
5983 The event rules of a given channel form a whitelist: as soon as an
5984 emitted event passes one of them, LTTng can record the event. For
5985 example, an event named `my_app:my_tracepoint` emitted from a user space
5986 tracepoint with a `TRACE_ERROR` log level passes both of the following
5987 rules:
5988
5989 [role="term"]
5990 ----
5991 $ lttng enable-event --userspace my_app:my_tracepoint
5992 $ lttng enable-event --userspace my_app:my_tracepoint \
5993 --loglevel=TRACE_INFO
5994 ----
5995
5996 The second event rule is redundant: the first one includes
5997 the second one.
5998
5999
6000 [[disable-event-rule]]
6001 === Disable an event rule
6002
6003 To disable an event rule that you <<enabling-disabling-events,created>>
6004 previously, use the man:lttng-disable-event(1) command. This command
6005 disables _all_ the event rules (of a given tracing domain and channel)
6006 which match an instrumentation point. The other conditions are not
6007 supported as of LTTng{nbsp}{revision}.
6008
6009 The LTTng tracer does not record an emitted event which passes
6010 a _disabled_ event rule.
6011
6012 .Disable an event rule matching a Python logger (default channel).
6013 ====
6014 [role="term"]
6015 ----
6016 $ lttng disable-event --python my-logger
6017 ----
6018 ====
6019
6020 .Disable an event rule matching all `java.util.logging` loggers (default channel).
6021 ====
6022 [role="term"]
6023 ----
6024 $ lttng disable-event --jul '*'
6025 ----
6026 ====
6027
6028 .Disable _all_ the event rules of the default channel.
6029 ====
6030 The opt:lttng-disable-event(1):--all-events option is not, like the
6031 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
6032 equivalent of the event name `*` (wildcard): it disables _all_ the event
6033 rules of a given channel.
6034
6035 [role="term"]
6036 ----
6037 $ lttng disable-event --jul --all-events
6038 ----
6039 ====
6040
6041 NOTE: You cannot delete an event rule once you create it.
6042
6043
6044 [[status]]
6045 === Get the status of a tracing session
6046
6047 To get the status of the current tracing session, that is, its
6048 parameters, its channels, event rules, and their attributes:
6049
6050 * Use the man:lttng-status(1) command:
6051 +
6052 --
6053 [role="term"]
6054 ----
6055 $ lttng status
6056 ----
6057 --
6058 +
6059
6060 To get the status of any tracing session:
6061
6062 * Use the man:lttng-list(1) command with the tracing session's name:
6063 +
6064 --
6065 [role="term"]
6066 ----
6067 $ lttng list my-session
6068 ----
6069 --
6070 +
6071 Replace `my-session` with the desired tracing session's name.
6072
6073
6074 [[basic-tracing-session-control]]
6075 === Start and stop a tracing session
6076
6077 Once you <<creating-destroying-tracing-sessions,create a tracing
6078 session>> and
6079 <<enabling-disabling-events,create one or more event rules>>,
6080 you can start and stop the tracers for this tracing session.
6081
6082 To start tracing in the current tracing session:
6083
6084 * Use the man:lttng-start(1) command:
6085 +
6086 --
6087 [role="term"]
6088 ----
6089 $ lttng start
6090 ----
6091 --
6092
6093 LTTng is very flexible: you can launch user applications before
6094 or after the you start the tracers. The tracers only record the events
6095 if they pass enabled event rules and if they occur while the tracers are
6096 started.
6097
6098 To stop tracing in the current tracing session:
6099
6100 * Use the man:lttng-stop(1) command:
6101 +
6102 --
6103 [role="term"]
6104 ----
6105 $ lttng stop
6106 ----
6107 --
6108 +
6109 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
6110 records>> or lost sub-buffers since the last time you ran
6111 man:lttng-start(1), warnings are printed when you run the
6112 man:lttng-stop(1) command.
6113
6114
6115 [[enabling-disabling-channels]]
6116 === Create a channel
6117
6118 Once you create a tracing session, you can create a <<channel,channel>>
6119 with the man:lttng-enable-channel(1) command.
6120
6121 Note that LTTng automatically creates a default channel when, for a
6122 given <<domain,tracing domain>>, no channels exist and you
6123 <<enabling-disabling-events,create>> the first event rule. This default
6124 channel is named `channel0` and its attributes are set to reasonable
6125 values. Therefore, you only need to create a channel when you need
6126 non-default attributes.
6127
6128 You specify each non-default channel attribute with a command-line
6129 option when you use the man:lttng-enable-channel(1) command. The
6130 available command-line options are:
6131
6132 [role="growable",cols="asciidoc,asciidoc"]
6133 .Command-line options for the man:lttng-enable-channel(1) command.
6134 |====
6135 |Option |Description
6136
6137 |`--overwrite`
6138
6139 |
6140 Use the _overwrite_
6141 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
6142 the default _discard_ mode.
6143
6144 |`--buffers-pid` (user space tracing domain only)
6145
6146 |
6147 Use the per-process <<channel-buffering-schemes,buffering scheme>>
6148 instead of the default per-user buffering scheme.
6149
6150 |+--subbuf-size=__SIZE__+
6151
6152 |
6153 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
6154 either for each Unix user (default), or for each instrumented process.
6155
6156 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6157
6158 |+--num-subbuf=__COUNT__+
6159
6160 |
6161 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
6162 for each Unix user (default), or for each instrumented process.
6163
6164 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6165
6166 |+--tracefile-size=__SIZE__+
6167
6168 |
6169 Set the maximum size of each trace file that this channel writes within
6170 a stream to +__SIZE__+ bytes instead of no maximum.
6171
6172 See <<tracefile-rotation,Trace file count and size>>.
6173
6174 |+--tracefile-count=__COUNT__+
6175
6176 |
6177 Limit the number of trace files that this channel creates to
6178 +__COUNT__+ channels instead of no limit.
6179
6180 See <<tracefile-rotation,Trace file count and size>>.
6181
6182 |+--switch-timer=__PERIODUS__+
6183
6184 |
6185 Set the <<channel-switch-timer,switch timer period>>
6186 to +__PERIODUS__+{nbsp}µs.
6187
6188 |+--read-timer=__PERIODUS__+
6189
6190 |
6191 Set the <<channel-read-timer,read timer period>>
6192 to +__PERIODUS__+{nbsp}µs.
6193
6194 |[[opt-blocking-timeout]]+--blocking-timeout=__TIMEOUTUS__+
6195
6196 |
6197 Set the timeout of user space applications which load LTTng-UST
6198 in blocking mode to +__TIMEOUTUS__+:
6199
6200 0 (default)::
6201 Never block (non-blocking mode).
6202
6203 `inf`::
6204 Block forever until space is available in a sub-buffer to record
6205 the event.
6206
6207 __n__, a positive value::
6208 Wait for at most __n__ µs when trying to write into a sub-buffer.
6209
6210 Note that, for this option to have any effect on an instrumented
6211 user space application, you need to run the application with a set
6212 env:LTTNG_UST_ALLOW_BLOCKING environment variable.
6213
6214 |+--output=__TYPE__+ (Linux kernel tracing domain only)
6215
6216 |
6217 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
6218
6219 |====
6220
6221 You can only create a channel in the Linux kernel and user space
6222 <<domain,tracing domains>>: other tracing domains have their own channel
6223 created on the fly when <<enabling-disabling-events,creating event
6224 rules>>.
6225
6226 [IMPORTANT]
6227 ====
6228 Because of a current LTTng limitation, you must create all channels
6229 _before_ you <<basic-tracing-session-control,start tracing>> in a given
6230 tracing session, that is, before the first time you run
6231 man:lttng-start(1).
6232
6233 Since LTTng automatically creates a default channel when you use the
6234 man:lttng-enable-event(1) command with a specific tracing domain, you
6235 cannot, for example, create a Linux kernel event rule, start tracing,
6236 and then create a user space event rule, because no user space channel
6237 exists yet and it's too late to create one.
6238
6239 For this reason, make sure to configure your channels properly
6240 before starting the tracers for the first time!
6241 ====
6242
6243 The following examples show how you can combine the previous
6244 command-line options to create simple to more complex channels.
6245
6246 .Create a Linux kernel channel with default attributes.
6247 ====
6248 [role="term"]
6249 ----
6250 $ lttng enable-channel --kernel my-channel
6251 ----
6252 ====
6253
6254 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6255 ====
6256 [role="term"]
6257 ----
6258 $ lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6259 --buffers-pid my-channel
6260 ----
6261 ====
6262
6263 .[[blocking-timeout-example]]Create a default user space channel with an infinite blocking timeout.
6264 ====
6265 <<creating-destroying-tracing-sessions,Create a tracing-session>>,
6266 create the channel, <<enabling-disabling-events,create an event rule>>,
6267 and <<basic-tracing-session-control,start tracing>>:
6268
6269 [role="term"]
6270 ----
6271 $ lttng create
6272 $ lttng enable-channel --userspace --blocking-timeout=inf blocking-channel
6273 $ lttng enable-event --userspace --channel=blocking-channel --all
6274 $ lttng start
6275 ----
6276
6277 Run an application instrumented with LTTng-UST and allow it to block:
6278
6279 [role="term"]
6280 ----
6281 $ LTTNG_UST_ALLOW_BLOCKING=1 my-app
6282 ----
6283 ====
6284
6285 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
6286 ====
6287 [role="term"]
6288 ----
6289 $ lttng enable-channel --kernel --tracefile-count=8 \
6290 --tracefile-size=4194304 my-channel
6291 ----
6292 ====
6293
6294 .Create a user space channel in overwrite (or _flight recorder_) mode.
6295 ====
6296 [role="term"]
6297 ----
6298 $ lttng enable-channel --userspace --overwrite my-channel
6299 ----
6300 ====
6301
6302 You can <<enabling-disabling-events,create>> the same event rule in
6303 two different channels:
6304
6305 [role="term"]
6306 ----
6307 $ lttng enable-event --userspace --channel=my-channel app:tp
6308 $ lttng enable-event --userspace --channel=other-channel app:tp
6309 ----
6310
6311 If both channels are enabled, when a tracepoint named `app:tp` is
6312 reached, LTTng records two events, one for each channel.
6313
6314
6315 [[disable-channel]]
6316 === Disable a channel
6317
6318 To disable a specific channel that you <<enabling-disabling-channels,created>>
6319 previously, use the man:lttng-disable-channel(1) command.
6320
6321 .Disable a specific Linux kernel channel.
6322 ====
6323 [role="term"]
6324 ----
6325 $ lttng disable-channel --kernel my-channel
6326 ----
6327 ====
6328
6329 The state of a channel precedes the individual states of event rules
6330 attached to it: event rules which belong to a disabled channel, even if
6331 they are enabled, are also considered disabled.
6332
6333
6334 [[adding-context]]
6335 === Add context fields to a channel
6336
6337 Event record fields in trace files provide important information about
6338 events that occured previously, but sometimes some external context may
6339 help you solve a problem faster. Examples of context fields are:
6340
6341 * The **process ID**, **thread ID**, **process name**, and
6342 **process priority** of the thread in which the event occurs.
6343 * The **hostname** of the system on which the event occurs.
6344 * The current values of many possible **performance counters** using
6345 perf, for example:
6346 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6347 ** Cache misses.
6348 ** Branch instructions, misses, and loads.
6349 ** CPU faults.
6350 * Any context defined at the application level (supported for the
6351 JUL and log4j <<domain,tracing domains>>).
6352
6353 To get the full list of available context fields, see
6354 `lttng add-context --list`. Some context fields are reserved for a
6355 specific <<domain,tracing domain>> (Linux kernel or user space).
6356
6357 You add context fields to <<channel,channels>>. All the events
6358 that a channel with added context fields records contain those fields.
6359
6360 To add context fields to one or all the channels of a given tracing
6361 session:
6362
6363 * Use the man:lttng-add-context(1) command.
6364
6365 .Add context fields to all the channels of the current tracing session.
6366 ====
6367 The following command line adds the virtual process identifier and
6368 the per-thread CPU cycles count fields to all the user space channels
6369 of the current tracing session.
6370
6371 [role="term"]
6372 ----
6373 $ lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6374 ----
6375 ====
6376
6377 .Add performance counter context fields by raw ID
6378 ====
6379 See man:lttng-add-context(1) for the exact format of the context field
6380 type, which is partly compatible with the format used in
6381 man:perf-record(1).
6382
6383 [role="term"]
6384 ----
6385 $ lttng add-context --userspace --type=perf:thread:raw:r0110:test
6386 $ lttng add-context --kernel --type=perf:cpu:raw:r0013c:x86unhalted
6387 ----
6388 ====
6389
6390 .Add a context field to a specific channel.
6391 ====
6392 The following command line adds the thread identifier context field
6393 to the Linux kernel channel named `my-channel` in the current
6394 tracing session.
6395
6396 [role="term"]
6397 ----
6398 $ lttng add-context --kernel --channel=my-channel --type=tid
6399 ----
6400 ====
6401
6402 .Add an application-specific context field to a specific channel.
6403 ====
6404 The following command line adds the `cur_msg_id` context field of the
6405 `retriever` context retriever for all the instrumented
6406 <<java-application,Java applications>> recording <<event,event records>>
6407 in the channel named `my-channel`:
6408
6409 [role="term"]
6410 ----
6411 $ lttng add-context --kernel --channel=my-channel \
6412 --type='$app:retriever:cur_msg_id'
6413 ----
6414
6415 IMPORTANT: Make sure to always quote the `$` character when you
6416 use man:lttng-add-context(1) from a shell.
6417 ====
6418
6419 NOTE: You cannot remove context fields from a channel once you add it.
6420
6421
6422 [role="since-2.7"]
6423 [[pid-tracking]]
6424 === Track process IDs
6425
6426 It's often useful to allow only specific process IDs (PIDs) to emit
6427 events. For example, you may wish to record all the system calls made by
6428 a given process (Ă  la http://linux.die.net/man/1/strace[strace]).
6429
6430 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6431 purpose. Both commands operate on a whitelist of process IDs. You _add_
6432 entries to this whitelist with the man:lttng-track(1) command and remove
6433 entries with the man:lttng-untrack(1) command. Any process which has one
6434 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6435 an enabled <<event,event rule>>.
6436
6437 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6438 process with a given tracked ID exit and another process be given this
6439 ID, then the latter would also be allowed to emit events.
6440
6441 .Track and untrack process IDs.
6442 ====
6443 For the sake of the following example, assume the target system has 16
6444 possible PIDs.
6445
6446 When you
6447 <<creating-destroying-tracing-sessions,create a tracing session>>,
6448 the whitelist contains all the possible PIDs:
6449
6450 [role="img-100"]
6451 .All PIDs are tracked.
6452 image::track-all.png[]
6453
6454 When the whitelist is full and you use the man:lttng-track(1) command to
6455 specify some PIDs to track, LTTng first clears the whitelist, then it
6456 tracks the specific PIDs. After:
6457
6458 [role="term"]
6459 ----
6460 $ lttng track --pid=3,4,7,10,13
6461 ----
6462
6463 the whitelist is:
6464
6465 [role="img-100"]
6466 .PIDs 3, 4, 7, 10, and 13 are tracked.
6467 image::track-3-4-7-10-13.png[]
6468
6469 You can add more PIDs to the whitelist afterwards:
6470
6471 [role="term"]
6472 ----
6473 $ lttng track --pid=1,15,16
6474 ----
6475
6476 The result is:
6477
6478 [role="img-100"]
6479 .PIDs 1, 15, and 16 are added to the whitelist.
6480 image::track-1-3-4-7-10-13-15-16.png[]
6481
6482 The man:lttng-untrack(1) command removes entries from the PID tracker's
6483 whitelist. Given the previous example, the following command:
6484
6485 [role="term"]
6486 ----
6487 $ lttng untrack --pid=3,7,10,13
6488 ----
6489
6490 leads to this whitelist:
6491
6492 [role="img-100"]
6493 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6494 image::track-1-4-15-16.png[]
6495
6496 LTTng can track all possible PIDs again using the
6497 opt:lttng-track(1):--all option:
6498
6499 [role="term"]
6500 ----
6501 $ lttng track --pid --all
6502 ----
6503
6504 The result is, again:
6505
6506 [role="img-100"]
6507 .All PIDs are tracked.
6508 image::track-all.png[]
6509 ====
6510
6511 .Track only specific PIDs
6512 ====
6513 A very typical use case with PID tracking is to start with an empty
6514 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6515 then add PIDs manually while tracers are active. You can accomplish this
6516 by using the opt:lttng-untrack(1):--all option of the
6517 man:lttng-untrack(1) command to clear the whitelist after you
6518 <<creating-destroying-tracing-sessions,create a tracing session>>:
6519
6520 [role="term"]
6521 ----
6522 $ lttng untrack --pid --all
6523 ----
6524
6525 gives:
6526
6527 [role="img-100"]
6528 .No PIDs are tracked.
6529 image::untrack-all.png[]
6530
6531 If you trace with this whitelist configuration, the tracer records no
6532 events for this <<domain,tracing domain>> because no processes are
6533 tracked. You can use the man:lttng-track(1) command as usual to track
6534 specific PIDs, for example:
6535
6536 [role="term"]
6537 ----
6538 $ lttng track --pid=6,11
6539 ----
6540
6541 Result:
6542
6543 [role="img-100"]
6544 .PIDs 6 and 11 are tracked.
6545 image::track-6-11.png[]
6546 ====
6547
6548
6549 [role="since-2.5"]
6550 [[saving-loading-tracing-session]]
6551 === Save and load tracing session configurations
6552
6553 Configuring a <<tracing-session,tracing session>> can be long. Some of
6554 the tasks involved are:
6555
6556 * <<enabling-disabling-channels,Create channels>> with
6557 specific attributes.
6558 * <<adding-context,Add context fields>> to specific channels.
6559 * <<enabling-disabling-events,Create event rules>> with specific log
6560 level and filter conditions.
6561
6562 If you use LTTng to solve real world problems, chances are you have to
6563 record events using the same tracing session setup over and over,
6564 modifying a few variables each time in your instrumented program
6565 or environment. To avoid constant tracing session reconfiguration,
6566 the man:lttng(1) command-line tool can save and load tracing session
6567 configurations to/from XML files.
6568
6569 To save a given tracing session configuration:
6570
6571 * Use the man:lttng-save(1) command:
6572 +
6573 --
6574 [role="term"]
6575 ----
6576 $ lttng save my-session
6577 ----
6578 --
6579 +
6580 Replace `my-session` with the name of the tracing session to save.
6581
6582 LTTng saves tracing session configurations to
6583 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6584 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6585 the opt:lttng-save(1):--output-path option to change this destination
6586 directory.
6587
6588 LTTng saves all configuration parameters, for example:
6589
6590 * The tracing session name.
6591 * The trace data output path.
6592 * The channels with their state and all their attributes.
6593 * The context fields you added to channels.
6594 * The event rules with their state, log level and filter conditions.
6595
6596 To load a tracing session:
6597
6598 * Use the man:lttng-load(1) command:
6599 +
6600 --
6601 [role="term"]
6602 ----
6603 $ lttng load my-session
6604 ----
6605 --
6606 +
6607 Replace `my-session` with the name of the tracing session to load.
6608
6609 When LTTng loads a configuration, it restores your saved tracing session
6610 as if you just configured it manually.
6611
6612 See man:lttng(1) for the complete list of command-line options. You
6613 can also save and load all many sessions at a time, and decide in which
6614 directory to output the XML files.
6615
6616
6617 [[sending-trace-data-over-the-network]]
6618 === Send trace data over the network
6619
6620 LTTng can send the recorded trace data to a remote system over the
6621 network instead of writing it to the local file system.
6622
6623 To send the trace data over the network:
6624
6625 . On the _remote_ system (which can also be the target system),
6626 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6627 +
6628 --
6629 [role="term"]
6630 ----
6631 $ lttng-relayd
6632 ----
6633 --
6634
6635 . On the _target_ system, create a tracing session configured to
6636 send trace data over the network:
6637 +
6638 --
6639 [role="term"]
6640 ----
6641 $ lttng create my-session --set-url=net://remote-system
6642 ----
6643 --
6644 +
6645 Replace `remote-system` by the host name or IP address of the
6646 remote system. See man:lttng-create(1) for the exact URL format.
6647
6648 . On the target system, use the man:lttng(1) command-line tool as usual.
6649 When tracing is active, the target's consumer daemon sends sub-buffers
6650 to the relay daemon running on the remote system instead of flushing
6651 them to the local file system. The relay daemon writes the received
6652 packets to the local file system.
6653
6654 The relay daemon writes trace files to
6655 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6656 +__hostname__+ is the host name of the target system and +__session__+
6657 is the tracing session name. Note that the env:LTTNG_HOME environment
6658 variable defaults to `$HOME` if not set. Use the
6659 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6660 trace files to another base directory.
6661
6662
6663 [role="since-2.4"]
6664 [[lttng-live]]
6665 === View events as LTTng emits them (noch:{LTTng} live)
6666
6667 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6668 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6669 display events as LTTng emits them on the target system while tracing is
6670 active.
6671
6672 The relay daemon creates a _tee_: it forwards the trace data to both
6673 the local file system and to connected live viewers:
6674
6675 [role="img-90"]
6676 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6677 image::live.png[]
6678
6679 To use LTTng live:
6680
6681 . On the _target system_, create a <<tracing-session,tracing session>>
6682 in _live mode_:
6683 +
6684 --
6685 [role="term"]
6686 ----
6687 $ lttng create my-session --live
6688 ----
6689 --
6690 +
6691 This spawns a local relay daemon.
6692
6693 . Start the live viewer and configure it to connect to the relay
6694 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6695 +
6696 --
6697 [role="term"]
6698 ----
6699 $ babeltrace --input-format=lttng-live \
6700 net://localhost/host/hostname/my-session
6701 ----
6702 --
6703 +
6704 Replace:
6705 +
6706 --
6707 * `hostname` with the host name of the target system.
6708 * `my-session` with the name of the tracing session to view.
6709 --
6710
6711 . Configure the tracing session as usual with the man:lttng(1)
6712 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6713
6714 You can list the available live tracing sessions with Babeltrace:
6715
6716 [role="term"]
6717 ----
6718 $ babeltrace --input-format=lttng-live net://localhost
6719 ----
6720
6721 You can start the relay daemon on another system. In this case, you need
6722 to specify the relay daemon's URL when you create the tracing session
6723 with the opt:lttng-create(1):--set-url option. You also need to replace
6724 `localhost` in the procedure above with the host name of the system on
6725 which the relay daemon is running.
6726
6727 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6728 command-line options.
6729
6730
6731 [role="since-2.3"]
6732 [[taking-a-snapshot]]
6733 === Take a snapshot of the current sub-buffers of a tracing session
6734
6735 The normal behavior of LTTng is to append full sub-buffers to growing
6736 trace data files. This is ideal to keep a full history of the events
6737 that occurred on the target system, but it can
6738 represent too much data in some situations. For example, you may wish
6739 to trace your application continuously until some critical situation
6740 happens, in which case you only need the latest few recorded
6741 events to perform the desired analysis, not multi-gigabyte trace files.
6742
6743 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6744 current sub-buffers of a given <<tracing-session,tracing session>>.
6745 LTTng can write the snapshot to the local file system or send it over
6746 the network.
6747
6748 To take a snapshot:
6749
6750 . Create a tracing session in _snapshot mode_:
6751 +
6752 --
6753 [role="term"]
6754 ----
6755 $ lttng create my-session --snapshot
6756 ----
6757 --
6758 +
6759 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6760 <<channel,channels>> created in this mode is automatically set to
6761 _overwrite_ (flight recorder mode).
6762
6763 . Configure the tracing session as usual with the man:lttng(1)
6764 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6765
6766 . **Optional**: When you need to take a snapshot,
6767 <<basic-tracing-session-control,stop tracing>>.
6768 +
6769 You can take a snapshot when the tracers are active, but if you stop
6770 them first, you are sure that the data in the sub-buffers does not
6771 change before you actually take the snapshot.
6772
6773 . Take a snapshot:
6774 +
6775 --
6776 [role="term"]
6777 ----
6778 $ lttng snapshot record --name=my-first-snapshot
6779 ----
6780 --
6781 +
6782 LTTng writes the current sub-buffers of all the current tracing
6783 session's channels to trace files on the local file system. Those trace
6784 files have `my-first-snapshot` in their name.
6785
6786 There is no difference between the format of a normal trace file and the
6787 format of a snapshot: viewers of LTTng traces also support LTTng
6788 snapshots.
6789
6790 By default, LTTng writes snapshot files to the path shown by
6791 `lttng snapshot list-output`. You can change this path or decide to send
6792 snapshots over the network using either:
6793
6794 . An output path or URL that you specify when you create the
6795 tracing session.
6796 . An snapshot output path or URL that you add using
6797 `lttng snapshot add-output`
6798 . An output path or URL that you provide directly to the
6799 `lttng snapshot record` command.
6800
6801 Method 3 overrides method 2, which overrides method 1. When you
6802 specify a URL, a relay daemon must listen on a remote system (see
6803 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6804
6805
6806 [role="since-2.6"]
6807 [[mi]]
6808 === Use the machine interface
6809
6810 With any command of the man:lttng(1) command-line tool, you can set the
6811 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6812 XML machine interface output, for example:
6813
6814 [role="term"]
6815 ----
6816 $ lttng --mi=xml enable-event --kernel --syscall open
6817 ----
6818
6819 A schema definition (XSD) is
6820 https://github.com/lttng/lttng-tools/blob/stable-2.10/src/common/mi-lttng-3.0.xsd[available]
6821 to ease the integration with external tools as much as possible.
6822
6823
6824 [role="since-2.8"]
6825 [[metadata-regenerate]]
6826 === Regenerate the metadata of an LTTng trace
6827
6828 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6829 data stream files and a metadata file. This metadata file contains,
6830 amongst other things, information about the offset of the clock sources
6831 used to timestamp <<event,event records>> when tracing.
6832
6833 If, once a <<tracing-session,tracing session>> is
6834 <<basic-tracing-session-control,started>>, a major
6835 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6836 happens, the trace's clock offset also needs to be updated. You
6837 can use the `metadata` item of the man:lttng-regenerate(1) command
6838 to do so.
6839
6840 The main use case of this command is to allow a system to boot with
6841 an incorrect wall time and trace it with LTTng before its wall time
6842 is corrected. Once the system is known to be in a state where its
6843 wall time is correct, it can run `lttng regenerate metadata`.
6844
6845 To regenerate the metadata of an LTTng trace:
6846
6847 * Use the `metadata` item of the man:lttng-regenerate(1) command:
6848 +
6849 --
6850 [role="term"]
6851 ----
6852 $ lttng regenerate metadata
6853 ----
6854 --
6855
6856 [IMPORTANT]
6857 ====
6858 `lttng regenerate metadata` has the following limitations:
6859
6860 * Tracing session <<creating-destroying-tracing-sessions,created>>
6861 in non-live mode.
6862 * User space <<channel,channels>>, if any, are using
6863 <<channel-buffering-schemes,per-user buffering>>.
6864 ====
6865
6866
6867 [role="since-2.9"]
6868 [[regenerate-statedump]]
6869 === Regenerate the state dump of a tracing session
6870
6871 The LTTng kernel and user space tracers generate state dump
6872 <<event,event records>> when the application starts or when you
6873 <<basic-tracing-session-control,start a tracing session>>. An analysis
6874 can use the state dump event records to set an initial state before it
6875 builds the rest of the state from the following event records.
6876 http://tracecompass.org/[Trace Compass] is a notable example of an
6877 application which uses the state dump of an LTTng trace.
6878
6879 When you <<taking-a-snapshot,take a snapshot>>, it's possible that the
6880 state dump event records are not included in the snapshot because they
6881 were recorded to a sub-buffer that has been consumed or overwritten
6882 already.
6883
6884 You can use the `lttng regenerate statedump` command to emit the state
6885 dump event records again.
6886
6887 To regenerate the state dump of the current tracing session, provided
6888 create it in snapshot mode, before you take a snapshot:
6889
6890 . Use the `statedump` item of the man:lttng-regenerate(1) command:
6891 +
6892 --
6893 [role="term"]
6894 ----
6895 $ lttng regenerate statedump
6896 ----
6897 --
6898
6899 . <<basic-tracing-session-control,Stop the tracing session>>:
6900 +
6901 --
6902 [role="term"]
6903 ----
6904 $ lttng stop
6905 ----
6906 --
6907
6908 . <<taking-a-snapshot,Take a snapshot>>:
6909 +
6910 --
6911 [role="term"]
6912 ----
6913 $ lttng snapshot record --name=my-snapshot
6914 ----
6915 --
6916
6917 Depending on the event throughput, you should run steps 1 and 2
6918 as closely as possible.
6919
6920 NOTE: To record the state dump events, you need to
6921 <<enabling-disabling-events,create event rules>> which enable them.
6922 LTTng-UST state dump tracepoints start with `lttng_ust_statedump:`.
6923 LTTng-modules state dump tracepoints start with `lttng_statedump_`.
6924
6925
6926 [role="since-2.7"]
6927 [[persistent-memory-file-systems]]
6928 === Record trace data on persistent memory file systems
6929
6930 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6931 (NVRAM) is random-access memory that retains its information when power
6932 is turned off (non-volatile). Systems with such memory can store data
6933 structures in RAM and retrieve them after a reboot, without flushing
6934 to typical _storage_.
6935
6936 Linux supports NVRAM file systems thanks to either
6937 http://pramfs.sourceforge.net/[PRAMFS] or
6938 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6939 (requires Linux 4.1+).
6940
6941 This section does not describe how to operate such file systems;
6942 we assume that you have a working persistent memory file system.
6943
6944 When you create a <<tracing-session,tracing session>>, you can specify
6945 the path of the shared memory holding the sub-buffers. If you specify a
6946 location on an NVRAM file system, then you can retrieve the latest
6947 recorded trace data when the system reboots after a crash.
6948
6949 To record trace data on a persistent memory file system and retrieve the
6950 trace data after a system crash:
6951
6952 . Create a tracing session with a sub-buffer shared memory path located
6953 on an NVRAM file system:
6954 +
6955 --
6956 [role="term"]
6957 ----
6958 $ lttng create my-session --shm-path=/path/to/shm
6959 ----
6960 --
6961
6962 . Configure the tracing session as usual with the man:lttng(1)
6963 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6964
6965 . After a system crash, use the man:lttng-crash(1) command-line tool to
6966 view the trace data recorded on the NVRAM file system:
6967 +
6968 --
6969 [role="term"]
6970 ----
6971 $ lttng-crash /path/to/shm
6972 ----
6973 --
6974
6975 The binary layout of the ring buffer files is not exactly the same as
6976 the trace files layout. This is why you need to use man:lttng-crash(1)
6977 instead of your preferred trace viewer directly.
6978
6979 To convert the ring buffer files to LTTng trace files:
6980
6981 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6982 +
6983 --
6984 [role="term"]
6985 ----
6986 $ lttng-crash --extract=/path/to/trace /path/to/shm
6987 ----
6988 --
6989
6990
6991 [role="since-2.10"]
6992 [[notif-trigger-api]]
6993 === Get notified when a channel's buffer usage is too high or too low
6994
6995 With LTTng's $$C/C++$$ notification and trigger API, your user
6996 application can get notified when the buffer usage of one or more
6997 <<channel,channels>> becomes too low or too high. You can use this API
6998 and enable or disable <<event,event rules>> during tracing to avoid
6999 <<channel-overwrite-mode-vs-discard-mode,discarded event records>>.
7000
7001 .Have a user application get notified when an LTTng channel's buffer usage is too high.
7002 ====
7003 In this example, we create and build an application which gets notified
7004 when the buffer usage of a specific LTTng channel is higher than
7005 75{nbsp}%. We only print that it is the case in the example, but we
7006 could as well use the API of <<liblttng-ctl-lttng,`liblttng-ctl`>> to
7007 disable event rules when this happens.
7008
7009 . Create the application's C source file:
7010 +
7011 --
7012 [source,c]
7013 .path:{notif-app.c}
7014 ----
7015 #include <stdio.h>
7016 #include <assert.h>
7017 #include <lttng/domain.h>
7018 #include <lttng/action/action.h>
7019 #include <lttng/action/notify.h>
7020 #include <lttng/condition/condition.h>
7021 #include <lttng/condition/buffer-usage.h>
7022 #include <lttng/condition/evaluation.h>
7023 #include <lttng/notification/channel.h>
7024 #include <lttng/notification/notification.h>
7025 #include <lttng/trigger/trigger.h>
7026 #include <lttng/endpoint.h>
7027
7028 int main(int argc, char *argv[])
7029 {
7030 int exit_status = 0;
7031 struct lttng_notification_channel *notification_channel;
7032 struct lttng_condition *condition;
7033 struct lttng_action *action;
7034 struct lttng_trigger *trigger;
7035 const char *tracing_session_name;
7036 const char *channel_name;
7037
7038 assert(argc >= 3);
7039 tracing_session_name = argv[1];
7040 channel_name = argv[2];
7041
7042 /*
7043 * Create a notification channel. A notification channel
7044 * connects the user application to the LTTng session daemon.
7045 * This notification channel can be used to listen to various
7046 * types of notifications.
7047 */
7048 notification_channel = lttng_notification_channel_create(
7049 lttng_session_daemon_notification_endpoint);
7050
7051 /*
7052 * Create a "high buffer usage" condition. In this case, the
7053 * condition is reached when the buffer usage is greater than or
7054 * equal to 75 %. We create the condition for a specific tracing
7055 * session name, channel name, and for the user space tracing
7056 * domain.
7057 *
7058 * The "low buffer usage" condition type also exists.
7059 */
7060 condition = lttng_condition_buffer_usage_high_create();
7061 lttng_condition_buffer_usage_set_threshold_ratio(condition, .75);
7062 lttng_condition_buffer_usage_set_session_name(
7063 condition, tracing_session_name);
7064 lttng_condition_buffer_usage_set_channel_name(condition,
7065 channel_name);
7066 lttng_condition_buffer_usage_set_domain_type(condition,
7067 LTTNG_DOMAIN_UST);
7068
7069 /*
7070 * Create an action (get a notification) to take when the
7071 * condition created above is reached.
7072 */
7073 action = lttng_action_notify_create();
7074
7075 /*
7076 * Create a trigger. A trigger associates a condition to an
7077 * action: the action is executed when the condition is reached.
7078 */
7079 trigger = lttng_trigger_create(condition, action);
7080
7081 /* Register the trigger to LTTng. */
7082 lttng_register_trigger(trigger);
7083
7084 /*
7085 * Now that we have registered a trigger, a notification will be
7086 * emitted everytime its condition is met. To receive this
7087 * notification, we must subscribe to notifications that match
7088 * the same condition.
7089 */
7090 lttng_notification_channel_subscribe(notification_channel,
7091 condition);
7092
7093 /*
7094 * Notification loop. You can put this in a dedicated thread to
7095 * avoid blocking the main thread.
7096 */
7097 for (;;) {
7098 struct lttng_notification *notification;
7099 enum lttng_notification_channel_status status;
7100 const struct lttng_evaluation *notification_evaluation;
7101 const struct lttng_condition *notification_condition;
7102 double buffer_usage;
7103
7104 /* Receive the next notification. */
7105 status = lttng_notification_channel_get_next_notification(
7106 notification_channel, &notification);
7107
7108 switch (status) {
7109 case LTTNG_NOTIFICATION_CHANNEL_STATUS_OK:
7110 break;
7111 case LTTNG_NOTIFICATION_CHANNEL_STATUS_NOTIFICATIONS_DROPPED:
7112 /*
7113 * The session daemon can drop notifications if
7114 * a monitoring application is not consuming the
7115 * notifications fast enough.
7116 */
7117 continue;
7118 case LTTNG_NOTIFICATION_CHANNEL_STATUS_CLOSED:
7119 /*
7120 * The notification channel has been closed by the
7121 * session daemon. This is typically caused by a session
7122 * daemon shutting down.
7123 */
7124 goto end;
7125 default:
7126 /* Unhandled conditions or errors. */
7127 exit_status = 1;
7128 goto end;
7129 }
7130
7131 /*
7132 * A notification provides, amongst other things:
7133 *
7134 * * The condition that caused this notification to be
7135 * emitted.
7136 * * The condition evaluation, which provides more
7137 * specific information on the evaluation of the
7138 * condition.
7139 *
7140 * The condition evaluation provides the buffer usage
7141 * value at the moment the condition was reached.
7142 */
7143 notification_condition = lttng_notification_get_condition(
7144 notification);
7145 notification_evaluation = lttng_notification_get_evaluation(
7146 notification);
7147
7148 /* We're subscribed to only one condition. */
7149 assert(lttng_condition_get_type(notification_condition) ==
7150 LTTNG_CONDITION_TYPE_BUFFER_USAGE_HIGH);
7151
7152 /*
7153 * Get the exact sampled buffer usage from the
7154 * condition evaluation.
7155 */
7156 lttng_evaluation_buffer_usage_get_usage_ratio(
7157 notification_evaluation, &buffer_usage);
7158
7159 /*
7160 * At this point, instead of printing a message, we
7161 * could do something to reduce the channel's buffer
7162 * usage, like disable specific events.
7163 */
7164 printf("Buffer usage is %f %% in tracing session \"%s\", "
7165 "user space channel \"%s\".\n", buffer_usage * 100,
7166 tracing_session_name, channel_name);
7167 lttng_notification_destroy(notification);
7168 }
7169
7170 end:
7171 lttng_action_destroy(action);
7172 lttng_condition_destroy(condition);
7173 lttng_trigger_destroy(trigger);
7174 lttng_notification_channel_destroy(notification_channel);
7175 return exit_status;
7176 }
7177 ----
7178 --
7179
7180 . Build the `notif-app` application, linking it to `liblttng-ctl`:
7181 +
7182 --
7183 [role="term"]
7184 ----
7185 $ gcc -o notif-app notif-app.c -llttng-ctl
7186 ----
7187 --
7188
7189 . <<creating-destroying-tracing-sessions,Create a tracing session>>,
7190 <<enabling-disabling-events,create an event rule>> matching all the
7191 user space tracepoints, and
7192 <<basic-tracing-session-control,start tracing>>:
7193 +
7194 --
7195 [role="term"]
7196 ----
7197 $ lttng create my-session
7198 $ lttng enable-event --userspace --all
7199 $ lttng start
7200 ----
7201 --
7202 +
7203 If you create the channel manually with the man:lttng-enable-channel(1)
7204 command, you can control how frequently are the current values of the
7205 channel's properties sampled to evaluate user conditions with the
7206 opt:lttng-enable-channel(1):--monitor-timer option.
7207
7208 . Run the `notif-app` application. This program accepts the
7209 <<tracing-session,tracing session>> name and the user space channel
7210 name as its two first arguments. The channel which LTTng automatically
7211 creates with the man:lttng-enable-event(1) command above is named
7212 `channel0`:
7213 +
7214 --
7215 [role="term"]
7216 ----
7217 $ ./notif-app my-session channel0
7218 ----
7219 --
7220
7221 . In another terminal, run an application with a very high event
7222 throughput so that the 75{nbsp}% buffer usage condition is reached.
7223 +
7224 In the first terminal, the application should print lines like this:
7225 +
7226 ----
7227 Buffer usage is 81.45197 % in tracing session "my-session", user space
7228 channel "channel0".
7229 ----
7230 +
7231 If you don't see anything, try modifying the condition in
7232 path:{notif-app.c} to a lower value (0.1, for example), rebuilding it
7233 (step 2) and running it again (step 4).
7234 ====
7235
7236
7237 [[reference]]
7238 == Reference
7239
7240 [[lttng-modules-ref]]
7241 === noch:{LTTng-modules}
7242
7243
7244 [role="since-2.9"]
7245 [[lttng-tracepoint-enum]]
7246 ==== `LTTNG_TRACEPOINT_ENUM()` usage
7247
7248 Use the `LTTNG_TRACEPOINT_ENUM()` macro to define an enumeration:
7249
7250 [source,c]
7251 ----
7252 LTTNG_TRACEPOINT_ENUM(name, TP_ENUM_VALUES(entries))
7253 ----
7254
7255 Replace:
7256
7257 * `name` with the name of the enumeration (C identifier, unique
7258 amongst all the defined enumerations).
7259 * `entries` with a list of enumeration entries.
7260
7261 The available enumeration entry macros are:
7262
7263 +ctf_enum_value(__name__, __value__)+::
7264 Entry named +__name__+ mapped to the integral value +__value__+.
7265
7266 +ctf_enum_range(__name__, __begin__, __end__)+::
7267 Entry named +__name__+ mapped to the range of integral values between
7268 +__begin__+ (included) and +__end__+ (included).
7269
7270 +ctf_enum_auto(__name__)+::
7271 Entry named +__name__+ mapped to the integral value following the
7272 last mapping's value.
7273 +
7274 The last value of a `ctf_enum_value()` entry is its +__value__+
7275 parameter.
7276 +
7277 The last value of a `ctf_enum_range()` entry is its +__end__+ parameter.
7278 +
7279 If `ctf_enum_auto()` is the first entry in the list, its integral
7280 value is 0.
7281
7282 Use the `ctf_enum()` <<lttng-modules-tp-fields,field definition macro>>
7283 to use a defined enumeration as a tracepoint field.
7284
7285 .Define an enumeration with `LTTNG_TRACEPOINT_ENUM()`.
7286 ====
7287 [source,c]
7288 ----
7289 LTTNG_TRACEPOINT_ENUM(
7290 my_enum,
7291 TP_ENUM_VALUES(
7292 ctf_enum_auto("AUTO: EXPECT 0")
7293 ctf_enum_value("VALUE: 23", 23)
7294 ctf_enum_value("VALUE: 27", 27)
7295 ctf_enum_auto("AUTO: EXPECT 28")
7296 ctf_enum_range("RANGE: 101 TO 303", 101, 303)
7297 ctf_enum_auto("AUTO: EXPECT 304")
7298 )
7299 )
7300 ----
7301 ====
7302
7303
7304 [role="since-2.7"]
7305 [[lttng-modules-tp-fields]]
7306 ==== Tracepoint fields macros (for `TP_FIELDS()`)
7307
7308 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
7309 tracepoint fields, which must be listed within `TP_FIELDS()` in
7310 `LTTNG_TRACEPOINT_EVENT()`, are:
7311
7312 [role="func-desc growable",cols="asciidoc,asciidoc"]
7313 .Available macros to define LTTng-modules tracepoint fields
7314 |====
7315 |Macro |Description and parameters
7316
7317 |
7318 +ctf_integer(__t__, __n__, __e__)+
7319
7320 +ctf_integer_nowrite(__t__, __n__, __e__)+
7321
7322 +ctf_user_integer(__t__, __n__, __e__)+
7323
7324 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
7325 |
7326 Standard integer, displayed in base 10.
7327
7328 +__t__+::
7329 Integer C type (`int`, `long`, `size_t`, ...).
7330
7331 +__n__+::
7332 Field name.
7333
7334 +__e__+::
7335 Argument expression.
7336
7337 |
7338 +ctf_integer_hex(__t__, __n__, __e__)+
7339
7340 +ctf_user_integer_hex(__t__, __n__, __e__)+
7341 |
7342 Standard integer, displayed in base 16.
7343
7344 +__t__+::
7345 Integer C type.
7346
7347 +__n__+::
7348 Field name.
7349
7350 +__e__+::
7351 Argument expression.
7352
7353 |+ctf_integer_oct(__t__, __n__, __e__)+
7354 |
7355 Standard integer, displayed in base 8.
7356
7357 +__t__+::
7358 Integer C type.
7359
7360 +__n__+::
7361 Field name.
7362
7363 +__e__+::
7364 Argument expression.
7365
7366 |
7367 +ctf_integer_network(__t__, __n__, __e__)+
7368
7369 +ctf_user_integer_network(__t__, __n__, __e__)+
7370 |
7371 Integer in network byte order (big-endian), displayed in base 10.
7372
7373 +__t__+::
7374 Integer C type.
7375
7376 +__n__+::
7377 Field name.
7378
7379 +__e__+::
7380 Argument expression.
7381
7382 |
7383 +ctf_integer_network_hex(__t__, __n__, __e__)+
7384
7385 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
7386 |
7387 Integer in network byte order, displayed in base 16.
7388
7389 +__t__+::
7390 Integer C type.
7391
7392 +__n__+::
7393 Field name.
7394
7395 +__e__+::
7396 Argument expression.
7397
7398 |
7399 +ctf_enum(__N__, __t__, __n__, __e__)+
7400
7401 +ctf_enum_nowrite(__N__, __t__, __n__, __e__)+
7402
7403 +ctf_user_enum(__N__, __t__, __n__, __e__)+
7404
7405 +ctf_user_enum_nowrite(__N__, __t__, __n__, __e__)+
7406 |
7407 Enumeration.
7408
7409 +__N__+::
7410 Name of a <<lttng-tracepoint-enum,previously defined enumeration>>.
7411
7412 +__t__+::
7413 Integer C type (`int`, `long`, `size_t`, ...).
7414
7415 +__n__+::
7416 Field name.
7417
7418 +__e__+::
7419 Argument expression.
7420
7421 |
7422 +ctf_string(__n__, __e__)+
7423
7424 +ctf_string_nowrite(__n__, __e__)+
7425
7426 +ctf_user_string(__n__, __e__)+
7427
7428 +ctf_user_string_nowrite(__n__, __e__)+
7429 |
7430 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
7431
7432 +__n__+::
7433 Field name.
7434
7435 +__e__+::
7436 Argument expression.
7437
7438 |
7439 +ctf_array(__t__, __n__, __e__, __s__)+
7440
7441 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
7442
7443 +ctf_user_array(__t__, __n__, __e__, __s__)+
7444
7445 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
7446 |
7447 Statically-sized array of integers.
7448
7449 +__t__+::
7450 Array element C type.
7451
7452 +__n__+::
7453 Field name.
7454
7455 +__e__+::
7456 Argument expression.
7457
7458 +__s__+::
7459 Number of elements.
7460
7461 |
7462 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
7463
7464 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7465
7466 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
7467
7468 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7469 |
7470 Statically-sized array of bits.
7471
7472 The type of +__e__+ must be an integer type. +__s__+ is the number
7473 of elements of such type in +__e__+, not the number of bits.
7474
7475 +__t__+::
7476 Array element C type.
7477
7478 +__n__+::
7479 Field name.
7480
7481 +__e__+::
7482 Argument expression.
7483
7484 +__s__+::
7485 Number of elements.
7486
7487 |
7488 +ctf_array_text(__t__, __n__, __e__, __s__)+
7489
7490 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
7491
7492 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
7493
7494 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
7495 |
7496 Statically-sized array, printed as text.
7497
7498 The string does not need to be null-terminated.
7499
7500 +__t__+::
7501 Array element C type (always `char`).
7502
7503 +__n__+::
7504 Field name.
7505
7506 +__e__+::
7507 Argument expression.
7508
7509 +__s__+::
7510 Number of elements.
7511
7512 |
7513 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
7514
7515 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7516
7517 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
7518
7519 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7520 |
7521 Dynamically-sized array of integers.
7522
7523 The type of +__E__+ must be unsigned.
7524
7525 +__t__+::
7526 Array element C type.
7527
7528 +__n__+::
7529 Field name.
7530
7531 +__e__+::
7532 Argument expression.
7533
7534 +__T__+::
7535 Length expression C type.
7536
7537 +__E__+::
7538 Length expression.
7539
7540 |
7541 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7542
7543 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7544 |
7545 Dynamically-sized array of integers, displayed in base 16.
7546
7547 The type of +__E__+ must be unsigned.
7548
7549 +__t__+::
7550 Array element C type.
7551
7552 +__n__+::
7553 Field name.
7554
7555 +__e__+::
7556 Argument expression.
7557
7558 +__T__+::
7559 Length expression C type.
7560
7561 +__E__+::
7562 Length expression.
7563
7564 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
7565 |
7566 Dynamically-sized array of integers in network byte order (big-endian),
7567 displayed in base 10.
7568
7569 The type of +__E__+ must be unsigned.
7570
7571 +__t__+::
7572 Array element C type.
7573
7574 +__n__+::
7575 Field name.
7576
7577 +__e__+::
7578 Argument expression.
7579
7580 +__T__+::
7581 Length expression C type.
7582
7583 +__E__+::
7584 Length expression.
7585
7586 |
7587 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7588
7589 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7590
7591 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7592
7593 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7594 |
7595 Dynamically-sized array of bits.
7596
7597 The type of +__e__+ must be an integer type. +__s__+ is the number
7598 of elements of such type in +__e__+, not the number of bits.
7599
7600 The type of +__E__+ must be unsigned.
7601
7602 +__t__+::
7603 Array element C type.
7604
7605 +__n__+::
7606 Field name.
7607
7608 +__e__+::
7609 Argument expression.
7610
7611 +__T__+::
7612 Length expression C type.
7613
7614 +__E__+::
7615 Length expression.
7616
7617 |
7618 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7619
7620 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7621
7622 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7623
7624 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7625 |
7626 Dynamically-sized array, displayed as text.
7627
7628 The string does not need to be null-terminated.
7629
7630 The type of +__E__+ must be unsigned.
7631
7632 The behaviour is undefined if +__e__+ is `NULL`.
7633
7634 +__t__+::
7635 Sequence element C type (always `char`).
7636
7637 +__n__+::
7638 Field name.
7639
7640 +__e__+::
7641 Argument expression.
7642
7643 +__T__+::
7644 Length expression C type.
7645
7646 +__E__+::
7647 Length expression.
7648 |====
7649
7650 Use the `_user` versions when the argument expression, `e`, is
7651 a user space address. In the cases of `ctf_user_integer*()` and
7652 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7653 be addressable.
7654
7655 The `_nowrite` versions omit themselves from the session trace, but are
7656 otherwise identical. This means the `_nowrite` fields won't be written
7657 in the recorded trace. Their primary purpose is to make some
7658 of the event context available to the
7659 <<enabling-disabling-events,event filters>> without having to
7660 commit the data to sub-buffers.
7661
7662
7663 [[glossary]]
7664 == Glossary
7665
7666 Terms related to LTTng and to tracing in general:
7667
7668 Babeltrace::
7669 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7670 the cmd:babeltrace command, some libraries, and Python bindings.
7671
7672 <<channel-buffering-schemes,buffering scheme>>::
7673 A layout of sub-buffers applied to a given channel.
7674
7675 <<channel,channel>>::
7676 An entity which is responsible for a set of ring buffers.
7677 +
7678 <<event,Event rules>> are always attached to a specific channel.
7679
7680 clock::
7681 A reference of time for a tracer.
7682
7683 <<lttng-consumerd,consumer daemon>>::
7684 A process which is responsible for consuming the full sub-buffers
7685 and write them to a file system or send them over the network.
7686
7687 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7688 mode in which the tracer _discards_ new event records when there's no
7689 sub-buffer space left to store them.
7690
7691 event::
7692 The consequence of the execution of an instrumentation
7693 point, like a tracepoint that you manually place in some source code,
7694 or a Linux kernel KProbe.
7695 +
7696 An event is said to _occur_ at a specific time. Different actions can
7697 be taken upon the occurrence of an event, like record the event's payload
7698 to a sub-buffer.
7699
7700 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7701 The mechanism by which event records of a given channel are lost
7702 (not recorded) when there is no sub-buffer space left to store them.
7703
7704 [[def-event-name]]event name::
7705 The name of an event, which is also the name of the event record.
7706 This is also called the _instrumentation point name_.
7707
7708 event record::
7709 A record, in a trace, of the payload of an event which occured.
7710
7711 <<event,event rule>>::
7712 Set of conditions which must be satisfied for one or more occuring
7713 events to be recorded.
7714
7715 `java.util.logging`::
7716 Java platform's
7717 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7718
7719 <<instrumenting,instrumentation>>::
7720 The use of LTTng probes to make a piece of software traceable.
7721
7722 instrumentation point::
7723 A point in the execution path of a piece of software that, when
7724 reached by this execution, can emit an event.
7725
7726 instrumentation point name::
7727 See _<<def-event-name,event name>>_.
7728
7729 log4j::
7730 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7731 developed by the Apache Software Foundation.
7732
7733 log level::
7734 Level of severity of a log statement or user space
7735 instrumentation point.
7736
7737 LTTng::
7738 The _Linux Trace Toolkit: next generation_ project.
7739
7740 <<lttng-cli,cmd:lttng>>::
7741 A command-line tool provided by the LTTng-tools project which you
7742 can use to send and receive control messages to and from a
7743 session daemon.
7744
7745 LTTng analyses::
7746 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7747 which is a set of analyzing programs that are used to obtain a
7748 higher level view of an LTTng trace.
7749
7750 cmd:lttng-consumerd::
7751 The name of the consumer daemon program.
7752
7753 cmd:lttng-crash::
7754 A utility provided by the LTTng-tools project which can convert
7755 ring buffer files (usually
7756 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7757 to trace files.
7758
7759 LTTng Documentation::
7760 This document.
7761
7762 <<lttng-live,LTTng live>>::
7763 A communication protocol between the relay daemon and live viewers
7764 which makes it possible to see events "live", as they are received by
7765 the relay daemon.
7766
7767 <<lttng-modules,LTTng-modules>>::
7768 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7769 which contains the Linux kernel modules to make the Linux kernel
7770 instrumentation points available for LTTng tracing.
7771
7772 cmd:lttng-relayd::
7773 The name of the relay daemon program.
7774
7775 cmd:lttng-sessiond::
7776 The name of the session daemon program.
7777
7778 LTTng-tools::
7779 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7780 contains the various programs and libraries used to
7781 <<controlling-tracing,control tracing>>.
7782
7783 <<lttng-ust,LTTng-UST>>::
7784 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7785 contains libraries to instrument user applications.
7786
7787 <<lttng-ust-agents,LTTng-UST Java agent>>::
7788 A Java package provided by the LTTng-UST project to allow the
7789 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7790 logging statements.
7791
7792 <<lttng-ust-agents,LTTng-UST Python agent>>::
7793 A Python package provided by the LTTng-UST project to allow the
7794 LTTng instrumentation of Python logging statements.
7795
7796 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7797 The event loss mode in which new event records overwrite older
7798 event records when there's no sub-buffer space left to store them.
7799
7800 <<channel-buffering-schemes,per-process buffering>>::
7801 A buffering scheme in which each instrumented process has its own
7802 sub-buffers for a given user space channel.
7803
7804 <<channel-buffering-schemes,per-user buffering>>::
7805 A buffering scheme in which all the processes of a Unix user share the
7806 same sub-buffer for a given user space channel.
7807
7808 <<lttng-relayd,relay daemon>>::
7809 A process which is responsible for receiving the trace data sent by
7810 a distant consumer daemon.
7811
7812 ring buffer::
7813 A set of sub-buffers.
7814
7815 <<lttng-sessiond,session daemon>>::
7816 A process which receives control commands from you and orchestrates
7817 the tracers and various LTTng daemons.
7818
7819 <<taking-a-snapshot,snapshot>>::
7820 A copy of the current data of all the sub-buffers of a given tracing
7821 session, saved as trace files.
7822
7823 sub-buffer::
7824 One part of an LTTng ring buffer which contains event records.
7825
7826 timestamp::
7827 The time information attached to an event when it is emitted.
7828
7829 trace (_noun_)::
7830 A set of files which are the concatenations of one or more
7831 flushed sub-buffers.
7832
7833 trace (_verb_)::
7834 The action of recording the events emitted by an application
7835 or by a system, or to initiate such recording by controlling
7836 a tracer.
7837
7838 Trace Compass::
7839 The http://tracecompass.org[Trace Compass] project and application.
7840
7841 tracepoint::
7842 An instrumentation point using the tracepoint mechanism of the Linux
7843 kernel or of LTTng-UST.
7844
7845 tracepoint definition::
7846 The definition of a single tracepoint.
7847
7848 tracepoint name::
7849 The name of a tracepoint.
7850
7851 tracepoint provider::
7852 A set of functions providing tracepoints to an instrumented user
7853 application.
7854 +
7855 Not to be confused with a _tracepoint provider package_: many tracepoint
7856 providers can exist within a tracepoint provider package.
7857
7858 tracepoint provider package::
7859 One or more tracepoint providers compiled as an object file or as
7860 a shared library.
7861
7862 tracer::
7863 A software which records emitted events.
7864
7865 <<domain,tracing domain>>::
7866 A namespace for event sources.
7867
7868 <<tracing-group,tracing group>>::
7869 The Unix group in which a Unix user can be to be allowed to trace the
7870 Linux kernel.
7871
7872 <<tracing-session,tracing session>>::
7873 A stateful dialogue between you and a <<lttng-sessiond,session
7874 daemon>>.
7875
7876 user application::
7877 An application running in user space, as opposed to a Linux kernel
7878 module, for example.
This page took 0.242006 seconds and 4 git commands to generate.