Add no locking test option for glib hash
[urcu.git] / rculfhash.c
... / ...
CommitLineData
1/*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Expandable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23/*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Expandable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation only allows expanding the hash table.
52 * It is triggered either through an API call or automatically by
53 * detecting long chains in the add operation.
54 * - Resize operation initiated by long chain detection is executed by a
55 * call_rcu thread, which keeps lock-freedom of add and remove.
56 * - Resize operations are protected by a mutex.
57 * - The removal operation is split in two parts: first, a "removed"
58 * flag is set in the next pointer within the node to remove. Then,
59 * a "garbage collection" is performed in the bucket containing the
60 * removed node (from the start of the bucket up to the removed node).
61 * All encountered nodes with "removed" flag set in their next
62 * pointers are removed from the linked-list. If the cmpxchg used for
63 * removal fails (due to concurrent garbage-collection or concurrent
64 * add), we retry from the beginning of the bucket. This ensures that
65 * the node with "removed" flag set is removed from the hash table
66 * (not visible to lookups anymore) before the RCU read-side critical
67 * section held across removal ends. Furthermore, this ensures that
68 * the node with "removed" flag set is removed from the linked-list
69 * before its memory is reclaimed. Only the thread which removal
70 * successfully set the "removed" flag (with a cmpxchg) into a node's
71 * next pointer is considered to have succeeded its removal (and thus
72 * owns the node to reclaim). Because we garbage-collect starting from
73 * an invariant node (the start-of-bucket dummy node) up to the
74 * "removed" node (or find a reverse-hash that is higher), we are sure
75 * that a successful traversal of the chain leads to a chain that is
76 * present in the linked-list (the start node is never removed) and
77 * that is does not contain the "removed" node anymore, even if
78 * concurrent delete/add operations are changing the structure of the
79 * list concurrently.
80 * - The add operation performs gargage collection of buckets if it
81 * encounters nodes with removed flag set in the bucket where it wants
82 * to add its new node. This ensures lock-freedom of add operation by
83 * helping the remover unlink nodes from the list rather than to wait
84 * for it do to so.
85 * - A RCU "order table" indexed by log2(hash index) is copied and
86 * expanded by the resize operation. This order table allows finding
87 * the "dummy node" tables.
88 * - There is one dummy node table per hash index order. The size of
89 * each dummy node table is half the number of hashes contained in
90 * this order.
91 * - call_rcu is used to garbage-collect the old order table.
92 * - The per-order dummy node tables contain a compact version of the
93 * hash table nodes. These tables are invariant after they are
94 * populated into the hash table.
95 */
96
97#define _LGPL_SOURCE
98#include <stdlib.h>
99#include <errno.h>
100#include <assert.h>
101#include <stdio.h>
102#include <stdint.h>
103#include <string.h>
104
105#include <urcu.h>
106#include <urcu-call-rcu.h>
107#include <urcu/arch.h>
108#include <urcu/uatomic.h>
109#include <urcu/jhash.h>
110#include <urcu/compiler.h>
111#include <urcu/rculfhash.h>
112#include <stdio.h>
113#include <pthread.h>
114
115#ifndef CDS_HT_NOATOMIC
116# define test_cmpxchg(ptr, old, _new) uatomic_cmpxchg(ptr, old, _new)
117#else
118# define test_cmpxchg(ptr, old, _new) \
119({ \
120 __typeof__(*(ptr)) __readptr = *(ptr); \
121 (__readptr == (old)) ? ({ \
122 *(ptr) = (_new); \
123 (old); \
124 }) : __readptr; \
125})
126#endif
127
128#ifdef DEBUG
129#define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
130#else
131#define dbg_printf(fmt, args...)
132#endif
133
134#define CHAIN_LEN_TARGET 4
135#define CHAIN_LEN_RESIZE_THRESHOLD 8
136
137#ifndef max
138#define max(a, b) ((a) > (b) ? (a) : (b))
139#endif
140
141/*
142 * The removed flag needs to be updated atomically with the pointer.
143 * The dummy flag does not require to be updated atomically with the
144 * pointer, but it is added as a pointer low bit flag to save space.
145 */
146#define REMOVED_FLAG (1UL << 0)
147#define DUMMY_FLAG (1UL << 1)
148#define FLAGS_MASK ((1UL << 2) - 1)
149
150struct rcu_table {
151 unsigned long size; /* always a power of 2 */
152 unsigned long resize_target;
153 int resize_initiated;
154 struct rcu_head head;
155 struct _cds_lfht_node *tbl[0];
156};
157
158struct cds_lfht {
159 struct rcu_table *t; /* shared */
160 cds_lfht_hash_fct hash_fct;
161 cds_lfht_compare_fct compare_fct;
162 unsigned long hash_seed;
163 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
164 unsigned int in_progress_resize, in_progress_destroy;
165 void (*cds_lfht_call_rcu)(struct rcu_head *head,
166 void (*func)(struct rcu_head *head));
167};
168
169struct rcu_resize_work {
170 struct rcu_head head;
171 struct cds_lfht *ht;
172};
173
174/*
175 * Algorithm to reverse bits in a word by lookup table, extended to
176 * 64-bit words.
177 * Source:
178 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
179 * Originally from Public Domain.
180 */
181
182static const uint8_t BitReverseTable256[256] =
183{
184#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
185#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
186#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
187 R6(0), R6(2), R6(1), R6(3)
188};
189#undef R2
190#undef R4
191#undef R6
192
193static
194uint8_t bit_reverse_u8(uint8_t v)
195{
196 return BitReverseTable256[v];
197}
198
199static __attribute__((unused))
200uint32_t bit_reverse_u32(uint32_t v)
201{
202 return ((uint32_t) bit_reverse_u8(v) << 24) |
203 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
204 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
205 ((uint32_t) bit_reverse_u8(v >> 24));
206}
207
208static __attribute__((unused))
209uint64_t bit_reverse_u64(uint64_t v)
210{
211 return ((uint64_t) bit_reverse_u8(v) << 56) |
212 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
213 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
214 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
215 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
216 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
217 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
218 ((uint64_t) bit_reverse_u8(v >> 56));
219}
220
221static
222unsigned long bit_reverse_ulong(unsigned long v)
223{
224#if (CAA_BITS_PER_LONG == 32)
225 return bit_reverse_u32(v);
226#else
227 return bit_reverse_u64(v);
228#endif
229}
230
231/*
232 * fls: returns the position of the most significant bit.
233 * Returns 0 if no bit is set, else returns the position of the most
234 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
235 */
236#if defined(__i386) || defined(__x86_64)
237static inline
238unsigned int fls_u32(uint32_t x)
239{
240 int r;
241
242 asm("bsrl %1,%0\n\t"
243 "jnz 1f\n\t"
244 "movl $-1,%0\n\t"
245 "1:\n\t"
246 : "=r" (r) : "rm" (x));
247 return r + 1;
248}
249#define HAS_FLS_U32
250#endif
251
252#if defined(__x86_64)
253static inline
254unsigned int fls_u64(uint64_t x)
255{
256 long r;
257
258 asm("bsrq %1,%0\n\t"
259 "jnz 1f\n\t"
260 "movq $-1,%0\n\t"
261 "1:\n\t"
262 : "=r" (r) : "rm" (x));
263 return r + 1;
264}
265#define HAS_FLS_U64
266#endif
267
268#ifndef HAS_FLS_U64
269static __attribute__((unused))
270unsigned int fls_u64(uint64_t x)
271{
272 unsigned int r = 64;
273
274 if (!x)
275 return 0;
276
277 if (!(x & 0xFFFFFFFF00000000ULL)) {
278 x <<= 32;
279 r -= 32;
280 }
281 if (!(x & 0xFFFF000000000000ULL)) {
282 x <<= 16;
283 r -= 16;
284 }
285 if (!(x & 0xFF00000000000000ULL)) {
286 x <<= 8;
287 r -= 8;
288 }
289 if (!(x & 0xF000000000000000ULL)) {
290 x <<= 4;
291 r -= 4;
292 }
293 if (!(x & 0xC000000000000000ULL)) {
294 x <<= 2;
295 r -= 2;
296 }
297 if (!(x & 0x8000000000000000ULL)) {
298 x <<= 1;
299 r -= 1;
300 }
301 return r;
302}
303#endif
304
305#ifndef HAS_FLS_U32
306static __attribute__((unused))
307unsigned int fls_u32(uint32_t x)
308{
309 unsigned int r = 32;
310
311 if (!x)
312 return 0;
313 if (!(x & 0xFFFF0000U)) {
314 x <<= 16;
315 r -= 16;
316 }
317 if (!(x & 0xFF000000U)) {
318 x <<= 8;
319 r -= 8;
320 }
321 if (!(x & 0xF0000000U)) {
322 x <<= 4;
323 r -= 4;
324 }
325 if (!(x & 0xC0000000U)) {
326 x <<= 2;
327 r -= 2;
328 }
329 if (!(x & 0x80000000U)) {
330 x <<= 1;
331 r -= 1;
332 }
333 return r;
334}
335#endif
336
337unsigned int fls_ulong(unsigned long x)
338{
339#if (CAA_BITS_PER_lONG == 32)
340 return fls_u32(x);
341#else
342 return fls_u64(x);
343#endif
344}
345
346int get_count_order_u32(uint32_t x)
347{
348 int order;
349
350 order = fls_u32(x) - 1;
351 if (x & (x - 1))
352 order++;
353 return order;
354}
355
356int get_count_order_ulong(unsigned long x)
357{
358 int order;
359
360 order = fls_ulong(x) - 1;
361 if (x & (x - 1))
362 order++;
363 return order;
364}
365
366static
367void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth);
368
369static
370void check_resize(struct cds_lfht *ht, struct rcu_table *t,
371 uint32_t chain_len)
372{
373 if (chain_len > 100)
374 dbg_printf("WARNING: large chain length: %u.\n",
375 chain_len);
376 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
377 cds_lfht_resize_lazy(ht, t,
378 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
379}
380
381static
382struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
383{
384 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
385}
386
387static
388int is_removed(struct cds_lfht_node *node)
389{
390 return ((unsigned long) node) & REMOVED_FLAG;
391}
392
393static
394struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
395{
396 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
397}
398
399static
400int is_dummy(struct cds_lfht_node *node)
401{
402 return ((unsigned long) node) & DUMMY_FLAG;
403}
404
405static
406struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
407{
408 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
409}
410
411static
412unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
413{
414 unsigned long old1, old2;
415
416 old1 = uatomic_read(ptr);
417 do {
418 old2 = old1;
419 if (old2 >= v)
420 return old2;
421 } while ((old1 = test_cmpxchg(ptr, old2, v)) != old2);
422 return v;
423}
424
425/*
426 * Remove all logically deleted nodes from a bucket up to a certain node key.
427 */
428static
429void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
430{
431 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
432
433 for (;;) {
434 iter_prev = dummy;
435 /* We can always skip the dummy node initially */
436 iter = rcu_dereference(iter_prev->p.next);
437 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
438 for (;;) {
439 if (unlikely(!clear_flag(iter)))
440 return;
441 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
442 return;
443 next = rcu_dereference(clear_flag(iter)->p.next);
444 if (likely(is_removed(next)))
445 break;
446 iter_prev = clear_flag(iter);
447 iter = next;
448 }
449 assert(!is_removed(iter));
450 if (is_dummy(iter))
451 new_next = flag_dummy(clear_flag(next));
452 else
453 new_next = clear_flag(next);
454 (void) test_cmpxchg(&iter_prev->p.next, iter, new_next);
455 }
456}
457
458static
459struct cds_lfht_node *_cds_lfht_add(struct cds_lfht *ht, struct rcu_table *t,
460 struct cds_lfht_node *node, int unique, int dummy)
461{
462 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
463 *dummy_node;
464 struct _cds_lfht_node *lookup;
465 unsigned long hash, index, order;
466
467 if (!t->size) {
468 assert(dummy);
469 node->p.next = flag_dummy(NULL);
470 return node; /* Initial first add (head) */
471 }
472 hash = bit_reverse_ulong(node->p.reverse_hash);
473 for (;;) {
474 uint32_t chain_len = 0;
475
476 /*
477 * iter_prev points to the non-removed node prior to the
478 * insert location.
479 */
480 index = hash & (t->size - 1);
481 order = get_count_order_ulong(index + 1);
482 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
483 iter_prev = (struct cds_lfht_node *) lookup;
484 /* We can always skip the dummy node initially */
485 iter = rcu_dereference(iter_prev->p.next);
486 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
487 for (;;) {
488 if (unlikely(!clear_flag(iter)))
489 goto insert;
490 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
491 goto insert;
492 next = rcu_dereference(clear_flag(iter)->p.next);
493 if (unlikely(is_removed(next)))
494 goto gc_node;
495 if (unique
496 && !is_dummy(next)
497 && !ht->compare_fct(node->key, node->key_len,
498 clear_flag(iter)->key,
499 clear_flag(iter)->key_len))
500 return clear_flag(iter);
501 /* Only account for identical reverse hash once */
502 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
503 && !is_dummy(next))
504 check_resize(ht, t, ++chain_len);
505 iter_prev = clear_flag(iter);
506 iter = next;
507 }
508 insert:
509 assert(node != clear_flag(iter));
510 assert(!is_removed(iter_prev));
511 assert(iter_prev != node);
512 if (!dummy)
513 node->p.next = clear_flag(iter);
514 else
515 node->p.next = flag_dummy(clear_flag(iter));
516 if (is_dummy(iter))
517 new_node = flag_dummy(node);
518 else
519 new_node = node;
520 if (test_cmpxchg(&iter_prev->p.next, iter,
521 new_node) != iter)
522 continue; /* retry */
523 else
524 goto gc_end;
525 gc_node:
526 assert(!is_removed(iter));
527 if (is_dummy(iter))
528 new_next = flag_dummy(clear_flag(next));
529 else
530 new_next = clear_flag(next);
531 (void) test_cmpxchg(&iter_prev->p.next, iter, new_next);
532 /* retry */
533 }
534gc_end:
535 /* Garbage collect logically removed nodes in the bucket */
536 index = hash & (t->size - 1);
537 order = get_count_order_ulong(index + 1);
538 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
539 dummy_node = (struct cds_lfht_node *) lookup;
540 _cds_lfht_gc_bucket(dummy_node, node);
541 return node;
542}
543
544static
545int _cds_lfht_remove(struct cds_lfht *ht, struct rcu_table *t,
546 struct cds_lfht_node *node)
547{
548 struct cds_lfht_node *dummy, *next, *old;
549 struct _cds_lfht_node *lookup;
550 int flagged = 0;
551 unsigned long hash, index, order;
552
553 /* logically delete the node */
554 old = rcu_dereference(node->p.next);
555 do {
556 next = old;
557 if (unlikely(is_removed(next)))
558 goto end;
559 assert(!is_dummy(next));
560 old = test_cmpxchg(&node->p.next, next,
561 flag_removed(next));
562 } while (old != next);
563
564 /* We performed the (logical) deletion. */
565 flagged = 1;
566
567 /*
568 * Ensure that the node is not visible to readers anymore: lookup for
569 * the node, and remove it (along with any other logically removed node)
570 * if found.
571 */
572 hash = bit_reverse_ulong(node->p.reverse_hash);
573 index = hash & (t->size - 1);
574 order = get_count_order_ulong(index + 1);
575 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
576 dummy = (struct cds_lfht_node *) lookup;
577 _cds_lfht_gc_bucket(dummy, node);
578end:
579 /*
580 * Only the flagging action indicated that we (and no other)
581 * removed the node from the hash.
582 */
583 if (flagged) {
584 assert(is_removed(rcu_dereference(node->p.next)));
585 return 0;
586 } else
587 return -ENOENT;
588}
589
590static
591void init_table(struct cds_lfht *ht, struct rcu_table *t,
592 unsigned long first_order, unsigned long len_order)
593{
594 unsigned long i, end_order;
595
596 dbg_printf("init table: first_order %lu end_order %lu\n",
597 first_order, first_order + len_order);
598 end_order = first_order + len_order;
599 t->size = !first_order ? 0 : (1UL << (first_order - 1));
600 for (i = first_order; i < end_order; i++) {
601 unsigned long j, len;
602
603 len = !i ? 1 : 1UL << (i - 1);
604 dbg_printf("init order %lu len: %lu\n", i, len);
605 t->tbl[i] = calloc(len, sizeof(struct _cds_lfht_node));
606 for (j = 0; j < len; j++) {
607 dbg_printf("init entry: i %lu j %lu hash %lu\n",
608 i, j, !i ? 0 : (1UL << (i - 1)) + j);
609 struct cds_lfht_node *new_node =
610 (struct cds_lfht_node *) &t->tbl[i][j];
611 new_node->p.reverse_hash =
612 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
613 (void) _cds_lfht_add(ht, t, new_node, 0, 1);
614 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
615 break;
616 }
617 /* Update table size */
618 t->size = !i ? 1 : (1UL << i);
619 dbg_printf("init new size: %lu\n", t->size);
620 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
621 break;
622 }
623 t->resize_target = t->size;
624 t->resize_initiated = 0;
625}
626
627struct cds_lfht *cds_lfht_new(cds_lfht_hash_fct hash_fct,
628 cds_lfht_compare_fct compare_fct,
629 unsigned long hash_seed,
630 unsigned long init_size,
631 void (*cds_lfht_call_rcu)(struct rcu_head *head,
632 void (*func)(struct rcu_head *head)))
633{
634 struct cds_lfht *ht;
635 unsigned long order;
636
637 /* init_size must be power of two */
638 if (init_size && (init_size & (init_size - 1)))
639 return NULL;
640 ht = calloc(1, sizeof(struct cds_lfht));
641 ht->hash_fct = hash_fct;
642 ht->compare_fct = compare_fct;
643 ht->hash_seed = hash_seed;
644 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
645 ht->in_progress_resize = 0;
646 /* this mutex should not nest in read-side C.S. */
647 pthread_mutex_init(&ht->resize_mutex, NULL);
648 order = get_count_order_ulong(max(init_size, 1)) + 1;
649 ht->t = calloc(1, sizeof(struct cds_lfht)
650 + (order * sizeof(struct _cds_lfht_node *)));
651 ht->t->size = 0;
652 pthread_mutex_lock(&ht->resize_mutex);
653 init_table(ht, ht->t, 0, order);
654 pthread_mutex_unlock(&ht->resize_mutex);
655 return ht;
656}
657
658struct cds_lfht_node *cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len)
659{
660 struct rcu_table *t;
661 struct cds_lfht_node *node, *next;
662 struct _cds_lfht_node *lookup;
663 unsigned long hash, reverse_hash, index, order;
664
665 hash = ht->hash_fct(key, key_len, ht->hash_seed);
666 reverse_hash = bit_reverse_ulong(hash);
667
668 t = rcu_dereference(ht->t);
669 index = hash & (t->size - 1);
670 order = get_count_order_ulong(index + 1);
671 lookup = &t->tbl[order][index & ((1UL << (order - 1)) - 1)];
672 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
673 hash, index, order, index & ((1UL << (order - 1)) - 1));
674 node = (struct cds_lfht_node *) lookup;
675 for (;;) {
676 if (unlikely(!node))
677 break;
678 if (unlikely(node->p.reverse_hash > reverse_hash)) {
679 node = NULL;
680 break;
681 }
682 next = rcu_dereference(node->p.next);
683 if (likely(!is_removed(next))
684 && !is_dummy(next)
685 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
686 break;
687 }
688 node = clear_flag(next);
689 }
690 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
691 return node;
692}
693
694struct cds_lfht_node *cds_lfht_next(struct cds_lfht *ht,
695 struct cds_lfht_node *node)
696{
697 struct cds_lfht_node *next;
698 unsigned long reverse_hash;
699 void *key;
700 size_t key_len;
701
702 reverse_hash = node->p.reverse_hash;
703 key = node->key;
704 key_len = node->key_len;
705 next = rcu_dereference(node->p.next);
706 node = clear_flag(next);
707
708 for (;;) {
709 if (unlikely(!node))
710 break;
711 if (unlikely(node->p.reverse_hash > reverse_hash)) {
712 node = NULL;
713 break;
714 }
715 next = rcu_dereference(node->p.next);
716 if (likely(!is_removed(next))
717 && !is_dummy(next)
718 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
719 break;
720 }
721 node = clear_flag(next);
722 }
723 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
724 return node;
725}
726
727void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
728{
729 struct rcu_table *t;
730 unsigned long hash;
731
732 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
733 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
734
735 t = rcu_dereference(ht->t);
736 (void) _cds_lfht_add(ht, t, node, 0, 0);
737}
738
739struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
740 struct cds_lfht_node *node)
741{
742 struct rcu_table *t;
743 unsigned long hash;
744
745 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
746 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
747
748 t = rcu_dereference(ht->t);
749 return _cds_lfht_add(ht, t, node, 1, 0);
750}
751
752int cds_lfht_remove(struct cds_lfht *ht, struct cds_lfht_node *node)
753{
754 struct rcu_table *t;
755
756 t = rcu_dereference(ht->t);
757 return _cds_lfht_remove(ht, t, node);
758}
759
760static
761int cds_lfht_delete_dummy(struct cds_lfht *ht)
762{
763 struct rcu_table *t;
764 struct cds_lfht_node *node;
765 struct _cds_lfht_node *lookup;
766 unsigned long order, i;
767
768 t = ht->t;
769 /* Check that the table is empty */
770 lookup = &t->tbl[0][0];
771 node = (struct cds_lfht_node *) lookup;
772 do {
773 node = clear_flag(node)->p.next;
774 if (!is_dummy(node))
775 return -EPERM;
776 assert(!is_removed(node));
777 } while (clear_flag(node));
778 /* Internal sanity check: all nodes left should be dummy */
779 for (order = 0; order < get_count_order_ulong(t->size) + 1; order++) {
780 unsigned long len;
781
782 len = !order ? 1 : 1UL << (order - 1);
783 for (i = 0; i < len; i++) {
784 dbg_printf("delete order %lu i %lu hash %lu\n",
785 order, i,
786 bit_reverse_ulong(t->tbl[order][i].reverse_hash));
787 assert(is_dummy(t->tbl[order][i].next));
788 }
789 free(t->tbl[order]);
790 }
791 return 0;
792}
793
794/*
795 * Should only be called when no more concurrent readers nor writers can
796 * possibly access the table.
797 */
798int cds_lfht_destroy(struct cds_lfht *ht)
799{
800 int ret;
801
802 /* Wait for in-flight resize operations to complete */
803 CMM_STORE_SHARED(ht->in_progress_destroy, 1);
804 while (uatomic_read(&ht->in_progress_resize))
805 poll(NULL, 0, 100); /* wait for 100ms */
806 ret = cds_lfht_delete_dummy(ht);
807 if (ret)
808 return ret;
809 free(ht->t);
810 free(ht);
811 return ret;
812}
813
814void cds_lfht_count_nodes(struct cds_lfht *ht,
815 unsigned long *count,
816 unsigned long *removed)
817{
818 struct rcu_table *t;
819 struct cds_lfht_node *node, *next;
820 struct _cds_lfht_node *lookup;
821 unsigned long nr_dummy = 0;
822
823 *count = 0;
824 *removed = 0;
825
826 t = rcu_dereference(ht->t);
827 /* Count non-dummy nodes in the table */
828 lookup = &t->tbl[0][0];
829 node = (struct cds_lfht_node *) lookup;
830 do {
831 next = rcu_dereference(node->p.next);
832 if (is_removed(next)) {
833 assert(!is_dummy(next));
834 (*removed)++;
835 } else if (!is_dummy(next))
836 (*count)++;
837 else
838 (nr_dummy)++;
839 node = clear_flag(next);
840 } while (node);
841 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
842}
843
844static
845void cds_lfht_free_table_cb(struct rcu_head *head)
846{
847 struct rcu_table *t =
848 caa_container_of(head, struct rcu_table, head);
849 free(t);
850}
851
852/* called with resize mutex held */
853static
854void _do_cds_lfht_resize(struct cds_lfht *ht)
855{
856 unsigned long new_size, old_size, old_order, new_order;
857 struct rcu_table *new_t, *old_t;
858
859 old_t = ht->t;
860 old_size = old_t->size;
861 old_order = get_count_order_ulong(old_size) + 1;
862
863 new_size = CMM_LOAD_SHARED(old_t->resize_target);
864 if (old_size == new_size)
865 return;
866 new_order = get_count_order_ulong(new_size) + 1;
867 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
868 old_size, old_order, new_size, new_order);
869 new_t = malloc(sizeof(struct cds_lfht)
870 + (new_order * sizeof(struct _cds_lfht_node *)));
871 assert(new_size > old_size);
872 memcpy(&new_t->tbl, &old_t->tbl,
873 old_order * sizeof(struct _cds_lfht_node *));
874 init_table(ht, new_t, old_order, new_order - old_order);
875 /* Changing table and size atomically wrt lookups */
876 rcu_assign_pointer(ht->t, new_t);
877 ht->cds_lfht_call_rcu(&old_t->head, cds_lfht_free_table_cb);
878}
879
880static
881unsigned long resize_target_update(struct rcu_table *t,
882 int growth_order)
883{
884 return _uatomic_max(&t->resize_target,
885 t->size << growth_order);
886}
887
888void cds_lfht_resize(struct cds_lfht *ht, int growth)
889{
890 struct rcu_table *t = rcu_dereference(ht->t);
891 unsigned long target_size;
892
893 if (growth < 0) {
894 /*
895 * Silently refuse to shrink hash table. (not supported)
896 */
897 dbg_printf("shrinking hash table not supported.\n");
898 return;
899 }
900
901 target_size = resize_target_update(t, growth);
902 if (t->size < target_size) {
903 CMM_STORE_SHARED(t->resize_initiated, 1);
904 pthread_mutex_lock(&ht->resize_mutex);
905 _do_cds_lfht_resize(ht);
906 pthread_mutex_unlock(&ht->resize_mutex);
907 }
908}
909
910static
911void do_resize_cb(struct rcu_head *head)
912{
913 struct rcu_resize_work *work =
914 caa_container_of(head, struct rcu_resize_work, head);
915 struct cds_lfht *ht = work->ht;
916
917 pthread_mutex_lock(&ht->resize_mutex);
918 _do_cds_lfht_resize(ht);
919 pthread_mutex_unlock(&ht->resize_mutex);
920 free(work);
921 cmm_smp_mb(); /* finish resize before decrement */
922 uatomic_dec(&ht->in_progress_resize);
923}
924
925static
926void cds_lfht_resize_lazy(struct cds_lfht *ht, struct rcu_table *t, int growth)
927{
928 struct rcu_resize_work *work;
929 unsigned long target_size;
930
931 target_size = resize_target_update(t, growth);
932 if (!CMM_LOAD_SHARED(t->resize_initiated) && t->size < target_size) {
933 uatomic_inc(&ht->in_progress_resize);
934 cmm_smp_mb(); /* increment resize count before calling it */
935 work = malloc(sizeof(*work));
936 work->ht = ht;
937 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
938 CMM_STORE_SHARED(t->resize_initiated, 1);
939 }
940}
This page took 0.026153 seconds and 4 git commands to generate.