| 1 | /* |
| 2 | * mem.spin: Promela code to validate memory barriers with OOO memory. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License as published by |
| 6 | * the Free Software Foundation; either version 2 of the License, or |
| 7 | * (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 17 | * |
| 18 | * Copyright (c) 2009 Mathieu Desnoyers |
| 19 | */ |
| 20 | |
| 21 | /* Promela validation variables. */ |
| 22 | |
| 23 | /* |
| 24 | * Produced process control and data flow. Updated after each instruction to |
| 25 | * show which variables are ready. Using one-hot bit encoding per variable to |
| 26 | * save state space. Used as triggers to execute the instructions having those |
| 27 | * variables as input. Leaving bits active to inhibit instruction execution. |
| 28 | * Scheme used to make instruction disabling and automatic dependency fall-back |
| 29 | * automatic. |
| 30 | */ |
| 31 | |
| 32 | #define CONSUME_TOKENS(state, bits, notbits) \ |
| 33 | ((!(state & (notbits))) && (state & (bits)) == (bits)) |
| 34 | |
| 35 | #define PRODUCE_TOKENS(state, bits) \ |
| 36 | state = state | (bits); |
| 37 | |
| 38 | #define CLEAR_TOKENS(state, bits) \ |
| 39 | state = state & ~(bits) |
| 40 | |
| 41 | #define NR_PROCS 2 |
| 42 | |
| 43 | #define get_pid() (_pid) |
| 44 | |
| 45 | /* |
| 46 | * Each process have its own data in cache. Caches are randomly updated. |
| 47 | * smp_wmb and smp_rmb forces cache updates (write and read), wmb_mb forces |
| 48 | * both. |
| 49 | */ |
| 50 | |
| 51 | #define DECLARE_CACHED_VAR(type, x, v) \ |
| 52 | type mem_##x = v; \ |
| 53 | type cached_##x[NR_PROCS] = v; \ |
| 54 | bit cache_dirty_##x[NR_PROCS] = 0; |
| 55 | |
| 56 | #define IS_CACHE_DIRTY(x, id) (cache_dirty_##x[id]) |
| 57 | |
| 58 | #define READ_CACHED_VAR(x) \ |
| 59 | (cached_##x[get_pid()]) |
| 60 | |
| 61 | #define WRITE_CACHED_VAR(x, v) \ |
| 62 | atomic { \ |
| 63 | cached_##x[get_pid()] = v; \ |
| 64 | cache_dirty_##x[get_pid()] = 1; \ |
| 65 | } |
| 66 | |
| 67 | #define CACHE_WRITE_TO_MEM(x, id) \ |
| 68 | if \ |
| 69 | :: IS_CACHE_DIRTY(x, id) -> \ |
| 70 | mem_##x = cached_##x[id]; \ |
| 71 | cache_dirty_##x[id] = 0; \ |
| 72 | :: else -> \ |
| 73 | skip \ |
| 74 | fi; |
| 75 | |
| 76 | #define CACHE_READ_FROM_MEM(x, id) \ |
| 77 | if \ |
| 78 | :: !IS_CACHE_DIRTY(x, id) -> \ |
| 79 | cached_##x[id] = mem_##x; \ |
| 80 | :: else -> \ |
| 81 | skip \ |
| 82 | fi; |
| 83 | |
| 84 | /* |
| 85 | * May update other caches if cache is dirty, or not. |
| 86 | */ |
| 87 | #define RANDOM_CACHE_WRITE_TO_MEM(x, id) \ |
| 88 | if \ |
| 89 | :: 1 -> CACHE_WRITE_TO_MEM(x, id); \ |
| 90 | :: 1 -> skip \ |
| 91 | fi; |
| 92 | |
| 93 | #define RANDOM_CACHE_READ_FROM_MEM(x, id)\ |
| 94 | if \ |
| 95 | :: 1 -> CACHE_READ_FROM_MEM(x, id); \ |
| 96 | :: 1 -> skip \ |
| 97 | fi; |
| 98 | |
| 99 | inline ooo_mem() |
| 100 | { |
| 101 | atomic { |
| 102 | RANDOM_CACHE_WRITE_TO_MEM(alpha, get_pid()); |
| 103 | RANDOM_CACHE_WRITE_TO_MEM(beta, get_pid()); |
| 104 | RANDOM_CACHE_READ_FROM_MEM(alpha, get_pid()); |
| 105 | RANDOM_CACHE_READ_FROM_MEM(beta, get_pid()); |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | /* must consume all prior read tokens */ |
| 110 | inline smp_rmb() |
| 111 | { |
| 112 | atomic { |
| 113 | /* todo : consume all read tokens .. ? */ |
| 114 | CACHE_READ_FROM_MEM(alpha, get_pid()); |
| 115 | CACHE_READ_FROM_MEM(beta, get_pid()); |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | /* must consume all prior write tokens */ |
| 120 | inline smp_wmb() |
| 121 | { |
| 122 | atomic { |
| 123 | CACHE_WRITE_TO_MEM(alpha, get_pid()); |
| 124 | CACHE_WRITE_TO_MEM(beta, get_pid()); |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | /* sync_core() must consume all prior read and write tokens, including rmb/wmb |
| 129 | * tokens */ |
| 130 | |
| 131 | /* must consume all prior read and write tokens */ |
| 132 | inline smp_mb() |
| 133 | { |
| 134 | atomic { |
| 135 | smp_wmb(); |
| 136 | /* sync_core() */ |
| 137 | smp_rmb(); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | /* Keep in sync manually with smp_rmb, wmp_wmb and ooo_mem */ |
| 142 | DECLARE_CACHED_VAR(byte, alpha, 0); |
| 143 | DECLARE_CACHED_VAR(byte, beta, 0); |
| 144 | |
| 145 | /* value 2 is uninitialized */ |
| 146 | byte read_one = 2; |
| 147 | byte read_two = 2; |
| 148 | |
| 149 | /* |
| 150 | * Bit encoding, proc_one_produced : |
| 151 | */ |
| 152 | |
| 153 | #define P1_PROD_NONE (1 << 0) |
| 154 | |
| 155 | #define P1_READ_ONE (1 << 1) |
| 156 | #define P1_RMB (1 << 2) |
| 157 | #define P1_READ_TWO (1 << 3) |
| 158 | |
| 159 | /* Only need a single color. */ |
| 160 | byte proc_one_produced; |
| 161 | |
| 162 | active proctype test_proc_one() |
| 163 | { |
| 164 | assert(get_pid() < NR_PROCS); |
| 165 | |
| 166 | PRODUCE_TOKENS(proc_one_produced, P1_PROD_NONE); |
| 167 | #ifdef NO_RMB |
| 168 | PRODUCE_TOKENS(proc_one_produced, P1_RMB); |
| 169 | #endif |
| 170 | |
| 171 | do |
| 172 | :: CONSUME_TOKENS(proc_one_produced, |
| 173 | P1_PROD_NONE, P1_READ_ONE) -> |
| 174 | ooo_mem(); |
| 175 | read_one = READ_CACHED_VAR(beta); |
| 176 | ooo_mem(); |
| 177 | PRODUCE_TOKENS(proc_one_produced, P1_READ_ONE); |
| 178 | :: CONSUME_TOKENS(proc_one_produced, |
| 179 | P1_READ_ONE, P1_RMB) -> |
| 180 | smp_rmb(); |
| 181 | PRODUCE_TOKENS(proc_one_produced, P1_RMB); |
| 182 | :: CONSUME_TOKENS(proc_one_produced, |
| 183 | P1_RMB, P1_READ_TWO) -> |
| 184 | ooo_mem(); |
| 185 | read_two = READ_CACHED_VAR(alpha); |
| 186 | ooo_mem(); |
| 187 | PRODUCE_TOKENS(proc_one_produced, P1_READ_TWO); |
| 188 | :: CONSUME_TOKENS(proc_one_produced, |
| 189 | P1_PROD_NONE | P1_READ_ONE | P1_RMB |
| 190 | | P1_READ_TWO, 0) -> |
| 191 | break; |
| 192 | od; |
| 193 | |
| 194 | //CLEAR_TOKENS(proc_one_produced, |
| 195 | // P1_PROD_NONE | P1_READ_ONE | P1_RMB | P1_READ_TWO); |
| 196 | |
| 197 | // test : [] (read_one == 1 -> read_two == 1) |
| 198 | assert(read_one != 1 || read_two == 1); |
| 199 | } |
| 200 | |
| 201 | |
| 202 | /* |
| 203 | * Bit encoding, proc_two_produced : |
| 204 | */ |
| 205 | |
| 206 | #define P2_PROD_NONE (1 << 0) |
| 207 | |
| 208 | #define P2_WRITE_ONE (1 << 1) |
| 209 | #define P2_WMB (1 << 2) |
| 210 | #define P2_WRITE_TWO (1 << 3) |
| 211 | |
| 212 | /* Only need a single color. */ |
| 213 | byte proc_two_produced; |
| 214 | |
| 215 | active proctype test_proc_two() |
| 216 | { |
| 217 | assert(get_pid() < NR_PROCS); |
| 218 | |
| 219 | PRODUCE_TOKENS(proc_two_produced, P2_PROD_NONE); |
| 220 | #ifdef NO_WMB |
| 221 | PRODUCE_TOKENS(proc_two_produced, P2_WMB); |
| 222 | #endif |
| 223 | |
| 224 | do |
| 225 | :: CONSUME_TOKENS(proc_two_produced, |
| 226 | P2_PROD_NONE, P2_WRITE_ONE) -> |
| 227 | ooo_mem(); |
| 228 | WRITE_CACHED_VAR(alpha, 1); |
| 229 | ooo_mem(); |
| 230 | PRODUCE_TOKENS(proc_two_produced, P2_WRITE_ONE); |
| 231 | :: CONSUME_TOKENS(proc_two_produced, |
| 232 | P2_WRITE_ONE, P2_WMB) -> |
| 233 | smp_wmb(); |
| 234 | PRODUCE_TOKENS(proc_two_produced, P2_WMB); |
| 235 | :: CONSUME_TOKENS(proc_two_produced, |
| 236 | P2_WMB, P2_WRITE_TWO) -> |
| 237 | ooo_mem(); |
| 238 | WRITE_CACHED_VAR(beta, 1); |
| 239 | ooo_mem(); |
| 240 | PRODUCE_TOKENS(proc_two_produced, P2_WRITE_TWO); |
| 241 | :: CONSUME_TOKENS(proc_two_produced, |
| 242 | P2_PROD_NONE | P2_WRITE_ONE |
| 243 | | P2_WMB | P2_WRITE_TWO, 0) -> |
| 244 | break; |
| 245 | od; |
| 246 | |
| 247 | //CLEAR_TOKENS(proc_two_produced, |
| 248 | // P2_PROD_NONE | P2_WRITE_ONE | P2_WMB | P2_WRITE_TWO); |
| 249 | } |