2.10: --blocking-timeout is only available in --discard mode
[lttng-docs.git] / 2.10 / lttng-docs-2.10.txt
CommitLineData
85c29972
PP
1The LTTng Documentation
2=======================
3Philippe Proulx <pproulx@efficios.com>
7568806b 4v2.10, 1 August 2017
85c29972
PP
5
6
7include::../common/copyright.txt[]
8
9
10include::../common/welcome.txt[]
11
12
13include::../common/audience.txt[]
14
15
16[[chapters]]
17=== What's in this documentation?
18
19The LTTng Documentation is divided into the following sections:
20
21* **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24+
25You can skip this section if you’re familiar with software tracing and
26with the LTTng project.
27
28* **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31+
32You can skip this section if you already properly installed LTTng on
33your target system.
34
35* **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37+
38We recommend this section if you're new to LTTng or to software tracing
39in general.
40+
41You can skip this section if you're not new to LTTng.
42
43* **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45+
46It's a good idea to become familiar with the core concepts
47before attempting to use the toolkit.
48
49* **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52* **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54+
55Instrumenting source code is essential to provide a meaningful
56source of events.
57+
58You can skip this section if you do not have a programming background.
59
60* **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63* **<<reference,Reference>>** contains reference tables.
64* **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68include::../common/convention.txt[]
69
70
71include::../common/acknowledgements.txt[]
72
73
74[[whats-new]]
75== What's new in LTTng {revision}?
76
77LTTng{nbsp}{revision} bears the name _KeKriek_. From
78http://brasseriedunham.com/[Brasserie Dunham], the _**KeKriek**_ is a
79sour mashed golden wheat ale fermented with local sour cherries from
80Tougas orchards. Fresh sweet cherry notes with some tartness, lively
81carbonation with a dry finish.
82
83New features and changes in LTTng{nbsp}{revision}:
84
85* **Tracing control**:
86** You can put more than one wildcard special character (`*`), and not
87 only at the end, when you <<enabling-disabling-events,create an event
88 rule>>, in both the instrumentation point name and the literal
89 strings of
a2211984 90 link:/man/1/lttng-enable-event/v{revision}/#doc-filter-syntax[filter expressions]:
85c29972
PP
91+
92--
93[role="term"]
94----
95# lttng enable-event --kernel 'x86_*_local_timer_*' \
96 --filter='name == "*a*b*c*d*e" && count >= 23'
97----
98--
99+
100--
101[role="term"]
102----
103$ lttng enable-event --userspace '*_my_org:*msg*'
104----
105--
106
107** New trigger and notification API for
108 <<liblttng-ctl-lttng,`liblttng-ctl`>>. This new subsystem allows you
109 to register triggers which emit a notification when a given
110 condition is satisfied. As of LTTng{nbsp}{revision}, only
111 <<channel,channel>> buffer usage conditions are available.
112 Documentation is available in the
113 https://github.com/lttng/lttng-tools/tree/stable-{revision}/include/lttng[`liblttng-ctl`
90c4e38a
PP
114 header files] and in
115 <<notif-trigger-api,Get notified when a channel's buffer usage is too
116 high or too low>>.
85c29972
PP
117
118** You can now embed the whole textual LTTng-tools man pages into the
119 executables at build time with the `--enable-embedded-help`
120 configuration option. Thanks to this option, you don't need the
121 http://www.methods.co.nz/asciidoc/[AsciiDoc] and
122 https://directory.fsf.org/wiki/Xmlto[xmlto] tools at build time, and
123 a manual pager at run time, to get access to this documentation.
124
125* **User space tracing**:
126** New blocking mode: an LTTng-UST tracepoint can now block until
127 <<channel,sub-buffer>> space is available instead of discarding event
128 records in <<channel-overwrite-mode-vs-discard-mode,discard mode>>.
129 With this feature, you can be sure that no event records are
130 discarded during your application's execution at the expense of
131 performance.
132+
133For example, the following command lines create a user space tracing
134channel with an infinite blocking timeout and run an application
135instrumented with LTTng-UST which is explicitly allowed to block:
136+
137--
138[role="term"]
139----
140$ lttng create
141$ lttng enable-channel --userspace --blocking-timeout=-1 blocking-channel
142$ lttng enable-event --userspace --channel=blocking-channel --all
143$ lttng start
144$ LTTNG_UST_ALLOW_BLOCKING=1 my-app
145----
146--
147+
148See the complete <<blocking-timeout-example,blocking timeout example>>.
149
150* **Linux kernel tracing**:
151** Linux 4.10, 4.11, and 4.12 support.
152** The thread state dump events recorded by LTTng-modules now contain
153 the task's CPU identifier. This improves the precision of the
154 scheduler model for analyses.
155** Extended man:socketpair(2) system call tracing data.
156
157
158[[nuts-and-bolts]]
159== Nuts and bolts
160
161What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
162generation_ is a modern toolkit for tracing Linux systems and
163applications. So your first question might be:
164**what is tracing?**
165
166
167[[what-is-tracing]]
168=== What is tracing?
169
170As the history of software engineering progressed and led to what
171we now take for granted--complex, numerous and
172interdependent software applications running in parallel on
173sophisticated operating systems like Linux--the authors of such
174components, software developers, began feeling a natural
175urge to have tools that would ensure the robustness and good performance
176of their masterpieces.
177
178One major achievement in this field is, inarguably, the
179https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
180an essential tool for developers to find and fix bugs. But even the best
181debugger won't help make your software run faster, and nowadays, faster
182software means either more work done by the same hardware, or cheaper
183hardware for the same work.
184
185A _profiler_ is often the tool of choice to identify performance
186bottlenecks. Profiling is suitable to identify _where_ performance is
187lost in a given software. The profiler outputs a profile, a statistical
188summary of observed events, which you may use to discover which
189functions took the most time to execute. However, a profiler won't
190report _why_ some identified functions are the bottleneck. Bottlenecks
191might only occur when specific conditions are met, conditions that are
192sometimes impossible to capture by a statistical profiler, or impossible
193to reproduce with an application altered by the overhead of an
194event-based profiler. For a thorough investigation of software
195performance issues, a history of execution is essential, with the
196recorded values of variables and context fields you choose, and
197with as little influence as possible on the instrumented software. This
198is where tracing comes in handy.
199
200_Tracing_ is a technique used to understand what goes on in a running
201software system. The software used for tracing is called a _tracer_,
202which is conceptually similar to a tape recorder. When recording,
203specific instrumentation points placed in the software source code
204generate events that are saved on a giant tape: a _trace_ file. You
205can trace user applications and the operating system at the same time,
206opening the possibility of resolving a wide range of problems that would
207otherwise be extremely challenging.
208
209Tracing is often compared to _logging_. However, tracers and loggers are
210two different tools, serving two different purposes. Tracers are
211designed to record much lower-level events that occur much more
212frequently than log messages, often in the range of thousands per
213second, with very little execution overhead. Logging is more appropriate
214for a very high-level analysis of less frequent events: user accesses,
215exceptional conditions (errors and warnings, for example), database
216transactions, instant messaging communications, and such. Simply put,
217logging is one of the many use cases that can be satisfied with tracing.
218
219The list of recorded events inside a trace file can be read manually
220like a log file for the maximum level of detail, but it is generally
221much more interesting to perform application-specific analyses to
222produce reduced statistics and graphs that are useful to resolve a
223given problem. Trace viewers and analyzers are specialized tools
224designed to do this.
225
226In the end, this is what LTTng is: a powerful, open source set of
227tools to trace the Linux kernel and user applications at the same time.
228LTTng is composed of several components actively maintained and
229developed by its link:/community/#where[community].
230
231
232[[lttng-alternatives]]
233=== Alternatives to noch:{LTTng}
234
235Excluding proprietary solutions, a few competing software tracers
236exist for Linux:
237
238* https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
239 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
240 user scripts and is responsible for loading code into the
241 Linux kernel for further execution and collecting the outputted data.
242* https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
243 subsystem in the Linux kernel in which a virtual machine can execute
244 programs passed from the user space to the kernel. You can attach
245 such programs to tracepoints and KProbes thanks to a system call, and
246 they can output data to the user space when executed thanks to
247 different mechanisms (pipe, VM register values, and eBPF maps, to name
248 a few).
249* https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
250 is the de facto function tracer of the Linux kernel. Its user
251 interface is a set of special files in sysfs.
252* https://perf.wiki.kernel.org/[perf] is
253 a performance analyzing tool for Linux which supports hardware
254 performance counters, tracepoints, as well as other counters and
255 types of probes. perf's controlling utility is the cmd:perf command
256 line/curses tool.
257* http://linux.die.net/man/1/strace[strace]
258 is a command-line utility which records system calls made by a
259 user process, as well as signal deliveries and changes of process
260 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
261 to fulfill its function.
262* http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
263 analyze Linux kernel events. You write scripts, or _chisels_ in
264 sysdig's jargon, in Lua and sysdig executes them while the system is
265 being traced or afterwards. sysdig's interface is the cmd:sysdig
266 command-line tool as well as the curses-based cmd:csysdig tool.
267* https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
268 user space tracer which uses custom user scripts to produce plain text
269 traces. SystemTap converts the scripts to the C language, and then
270 compiles them as Linux kernel modules which are loaded to produce
271 trace data. SystemTap's primary user interface is the cmd:stap
272 command-line tool.
273
274The main distinctive features of LTTng is that it produces correlated
275kernel and user space traces, as well as doing so with the lowest
276overhead amongst other solutions. It produces trace files in the
277http://diamon.org/ctf[CTF] format, a file format optimized
278for the production and analyses of multi-gigabyte data.
279
280LTTng is the result of more than 10 years of active open source
281development by a community of passionate developers.
282LTTng{nbsp}{revision} is currently available on major desktop and server
283Linux distributions.
284
285The main interface for tracing control is a single command-line tool
286named cmd:lttng. The latter can create several tracing sessions, enable
287and disable events on the fly, filter events efficiently with custom
288user expressions, start and stop tracing, and much more. LTTng can
289record the traces on the file system or send them over the network, and
290keep them totally or partially. You can view the traces once tracing
291becomes inactive or in real-time.
292
293<<installing-lttng,Install LTTng now>> and
294<<getting-started,start tracing>>!
295
296
297[[installing-lttng]]
298== Installation
299
300**LTTng** is a set of software <<plumbing,components>> which interact to
301<<instrumenting,instrument>> the Linux kernel and user applications, and
302to <<controlling-tracing,control tracing>> (start and stop
303tracing, enable and disable event rules, and the rest). Those
304components are bundled into the following packages:
305
306* **LTTng-tools**: Libraries and command-line interface to
307 control tracing.
308* **LTTng-modules**: Linux kernel modules to instrument and
309 trace the kernel.
310* **LTTng-UST**: Libraries and Java/Python packages to instrument and
311 trace user applications.
312
313Most distributions mark the LTTng-modules and LTTng-UST packages as
314optional when installing LTTng-tools (which is always required). In the
315following sections, we always provide the steps to install all three,
316but note that:
317
318* You only need to install LTTng-modules if you intend to trace the
319 Linux kernel.
320* You only need to install LTTng-UST if you intend to trace user
321 applications.
322
323[role="growable"]
324.Availability of LTTng{nbsp}{revision} for major Linux distributions as of 25 July 2017.
325|====
326|Distribution |Available in releases |Alternatives
327
328|https://www.ubuntu.com/[Ubuntu]
329|Ubuntu{nbsp}14.04 _Trusty Tahr_ and Ubuntu{nbsp}16.04 _Xenial Xerus_:
330<<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
331|link:/docs/v2.9#doc-ubuntu[LTTng{nbsp}2.9 for Ubuntu{nbsp}17.04 _Zesty Zapus_].
332
333<<building-from-source,Build LTTng{nbsp}{revision} from source>> for
334other Ubuntu releases.
335
336|https://getfedora.org/[Fedora]
337|_Not available_
338|link:/docs/v2.9#doc-fedora[LTTng{nbsp}2.9 for Fedora 26].
339
340<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
341
342|https://www.debian.org/[Debian]
343|_Not available_
344|link:/docs/v2.9#doc-debian[LTTng{nbsp}2.9 for Debian "stretch"
345(stable), Debian "buster" (testing), and Debian "sid" (unstable)].
346
347<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
348
349|https://www.archlinux.org/[Arch Linux]
350|_Not available_
351|link:/docs/v2.9#doc-arch-linux[LTTng{nbsp}2.9 in the latest AUR packages].
352
353|https://alpinelinux.org/[Alpine Linux]
354|_Not available_
355|link:/docs/v2.9#doc-alpine-linux[LTTng{nbsp}2.9 for Alpine Linux "edge"].
356
357<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
358
359|https://www.redhat.com/[RHEL] and https://www.suse.com/[SLES]
360|See http://packages.efficios.com/[EfficiOS Enterprise Packages].
361|
362
363|https://buildroot.org/[Buildroot]
364|_Not available_
365|link:/docs/v2.9#doc-buildroot[LTTng{nbsp}2.9 for Buildroot{nbsp}2017.02 and
366Buildroot{nbsp}2017.05].
367
368<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
369
370|http://www.openembedded.org/wiki/Main_Page[OpenEmbedded] and
371https://www.yoctoproject.org/[Yocto]
372|_Not available_
373|link:/docs/v2.9#doc-oe-yocto[LTTng{nbsp}2.9 for Yocto Project{nbsp}2.3 _Pyro_]
374(`openembedded-core` layer).
375
376<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
377|====
378
379
380[[ubuntu]]
381=== [[ubuntu-official-repositories]]Ubuntu
382
383[[ubuntu-ppa]]
384==== noch:{LTTng} Stable {revision} PPA
385
386The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
387Stable{nbsp}{revision} PPA] offers the latest stable
388LTTng{nbsp}{revision} packages for:
389
390* Ubuntu{nbsp}14.04 _Trusty Tahr_
391* Ubuntu{nbsp}16.04 _Xenial Xerus_
392
393To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
394
395. Add the LTTng Stable{nbsp}{revision} PPA repository and update the
396 list of packages:
397+
398--
399[role="term"]
400----
401# apt-add-repository ppa:lttng/stable-2.10
402# apt-get update
403----
404--
405
406. Install the main LTTng{nbsp}{revision} packages:
407+
408--
409[role="term"]
410----
411# apt-get install lttng-tools
412# apt-get install lttng-modules-dkms
413# apt-get install liblttng-ust-dev
414----
415--
416
417. **If you need to instrument and trace
418 <<java-application,Java applications>>**, install the LTTng-UST
419 Java agent:
420+
421--
422[role="term"]
423----
424# apt-get install liblttng-ust-agent-java
425----
426--
427
428. **If you need to instrument and trace
429 <<python-application,Python{nbsp}3 applications>>**, install the
430 LTTng-UST Python agent:
431+
432--
433[role="term"]
434----
435# apt-get install python3-lttngust
436----
437--
438
439
440[[enterprise-distributions]]
441=== RHEL, SUSE, and other enterprise distributions
442
443To install LTTng on enterprise Linux distributions, such as Red Hat
444Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
445see http://packages.efficios.com/[EfficiOS Enterprise Packages].
446
447
448[[building-from-source]]
449=== Build from source
450
451To build and install LTTng{nbsp}{revision} from source:
452
453. Using your distribution's package manager, or from source, install
454 the following dependencies of LTTng-tools and LTTng-UST:
455+
456--
457* https://sourceforge.net/projects/libuuid/[libuuid]
458* http://directory.fsf.org/wiki/Popt[popt]
459* http://liburcu.org/[Userspace RCU]
460* http://www.xmlsoft.org/[libxml2]
461--
462
463. Download, build, and install the latest LTTng-modules{nbsp}{revision}:
464+
465--
466[role="term"]
467----
468$ cd $(mktemp -d) &&
469wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
470tar -xf lttng-modules-latest-2.10.tar.bz2 &&
471cd lttng-modules-2.10.* &&
472make &&
473sudo make modules_install &&
474sudo depmod -a
475----
476--
477
478. Download, build, and install the latest LTTng-UST{nbsp}{revision}:
479+
480--
481[role="term"]
482----
483$ cd $(mktemp -d) &&
484wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.10.tar.bz2 &&
485tar -xf lttng-ust-latest-2.10.tar.bz2 &&
486cd lttng-ust-2.10.* &&
487./configure &&
488make &&
489sudo make install &&
490sudo ldconfig
491----
492--
493+
494--
495[IMPORTANT]
496.Java and Python application tracing
497====
498If you need to instrument and trace <<java-application,Java
499applications>>, pass the `--enable-java-agent-jul`,
500`--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
501`configure` script, depending on which Java logging framework you use.
502
503If you need to instrument and trace <<python-application,Python
504applications>>, pass the `--enable-python-agent` option to the
505`configure` script. You can set the `PYTHON` environment variable to the
506path to the Python interpreter for which to install the LTTng-UST Python
507agent package.
508====
509--
510+
511--
512[NOTE]
513====
514By default, LTTng-UST libraries are installed to
515dir:{/usr/local/lib}, which is the de facto directory in which to
516keep self-compiled and third-party libraries.
517
518When <<building-tracepoint-providers-and-user-application,linking an
519instrumented user application with `liblttng-ust`>>:
520
521* Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
522 variable.
523* Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
524 man:gcc(1), man:g++(1), or man:clang(1).
525====
526--
527
528. Download, build, and install the latest LTTng-tools{nbsp}{revision}:
529+
530--
531[role="term"]
532----
533$ cd $(mktemp -d) &&
534wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
535tar -xf lttng-tools-latest-2.10.tar.bz2 &&
536cd lttng-tools-2.10.* &&
537./configure &&
538make &&
539sudo make install &&
540sudo ldconfig
541----
542--
543
544TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
545previous steps automatically for a given version of LTTng and confine
546the installed files in a specific directory. This can be useful to test
547LTTng without installing it on your system.
548
549
550[[getting-started]]
551== Quick start
552
553This is a short guide to get started quickly with LTTng kernel and user
554space tracing.
555
556Before you follow this guide, make sure to <<installing-lttng,install>>
557LTTng.
558
559This tutorial walks you through the steps to:
560
561. <<tracing-the-linux-kernel,Trace the Linux kernel>>.
562. <<tracing-your-own-user-application,Trace a user application>> written
563 in C.
564. <<viewing-and-analyzing-your-traces,View and analyze the
565 recorded events>>.
566
567
568[[tracing-the-linux-kernel]]
569=== Trace the Linux kernel
570
571The following command lines start with the `#` prompt because you need
572root privileges to trace the Linux kernel. You can also trace the kernel
573as a regular user if your Unix user is a member of the
574<<tracing-group,tracing group>>.
575
576. Create a <<tracing-session,tracing session>> which writes its traces
577 to dir:{/tmp/my-kernel-trace}:
578+
579--
580[role="term"]
581----
582# lttng create my-kernel-session --output=/tmp/my-kernel-trace
583----
584--
585
586. List the available kernel tracepoints and system calls:
587+
588--
589[role="term"]
590----
591# lttng list --kernel
592# lttng list --kernel --syscall
593----
594--
595
596. Create <<event,event rules>> which match the desired instrumentation
597 point names, for example the `sched_switch` and `sched_process_fork`
598 tracepoints, and the man:open(2) and man:close(2) system calls:
599+
600--
601[role="term"]
602----
603# lttng enable-event --kernel sched_switch,sched_process_fork
604# lttng enable-event --kernel --syscall open,close
605----
606--
607+
608You can also create an event rule which matches _all_ the Linux kernel
609tracepoints (this will generate a lot of data when tracing):
610+
611--
612[role="term"]
613----
614# lttng enable-event --kernel --all
615----
616--
617
618. <<basic-tracing-session-control,Start tracing>>:
619+
620--
621[role="term"]
622----
623# lttng start
624----
625--
626
627. Do some operation on your system for a few seconds. For example,
628 load a website, or list the files of a directory.
629. <<basic-tracing-session-control,Stop tracing>> and destroy the
630 tracing session:
631+
632--
633[role="term"]
634----
635# lttng stop
636# lttng destroy
637----
638--
639+
640The man:lttng-destroy(1) command does not destroy the trace data; it
641only destroys the state of the tracing session.
642
643. For the sake of this example, make the recorded trace accessible to
644 the non-root users:
645+
646--
647[role="term"]
648----
649# chown -R $(whoami) /tmp/my-kernel-trace
650----
651--
652
653See <<viewing-and-analyzing-your-traces,View and analyze the
654recorded events>> to view the recorded events.
655
656
657[[tracing-your-own-user-application]]
658=== Trace a user application
659
660This section steps you through a simple example to trace a
661_Hello world_ program written in C.
662
663To create the traceable user application:
664
665. Create the tracepoint provider header file, which defines the
666 tracepoints and the events they can generate:
667+
668--
669[source,c]
670.path:{hello-tp.h}
671----
672#undef TRACEPOINT_PROVIDER
673#define TRACEPOINT_PROVIDER hello_world
674
675#undef TRACEPOINT_INCLUDE
676#define TRACEPOINT_INCLUDE "./hello-tp.h"
677
678#if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
679#define _HELLO_TP_H
680
681#include <lttng/tracepoint.h>
682
683TRACEPOINT_EVENT(
684 hello_world,
685 my_first_tracepoint,
686 TP_ARGS(
687 int, my_integer_arg,
688 char*, my_string_arg
689 ),
690 TP_FIELDS(
691 ctf_string(my_string_field, my_string_arg)
692 ctf_integer(int, my_integer_field, my_integer_arg)
693 )
694)
695
696#endif /* _HELLO_TP_H */
697
698#include <lttng/tracepoint-event.h>
699----
700--
701
702. Create the tracepoint provider package source file:
703+
704--
705[source,c]
706.path:{hello-tp.c}
707----
708#define TRACEPOINT_CREATE_PROBES
709#define TRACEPOINT_DEFINE
710
711#include "hello-tp.h"
712----
713--
714
715. Build the tracepoint provider package:
716+
717--
718[role="term"]
719----
720$ gcc -c -I. hello-tp.c
721----
722--
723
724. Create the _Hello World_ application source file:
725+
726--
727[source,c]
728.path:{hello.c}
729----
730#include <stdio.h>
731#include "hello-tp.h"
732
733int main(int argc, char *argv[])
734{
735 int x;
736
737 puts("Hello, World!\nPress Enter to continue...");
738
739 /*
740 * The following getchar() call is only placed here for the purpose
741 * of this demonstration, to pause the application in order for
742 * you to have time to list its tracepoints. It is not
743 * needed otherwise.
744 */
745 getchar();
746
747 /*
748 * A tracepoint() call.
749 *
750 * Arguments, as defined in hello-tp.h:
751 *
752 * 1. Tracepoint provider name (required)
753 * 2. Tracepoint name (required)
754 * 3. my_integer_arg (first user-defined argument)
755 * 4. my_string_arg (second user-defined argument)
756 *
757 * Notice the tracepoint provider and tracepoint names are
758 * NOT strings: they are in fact parts of variables that the
759 * macros in hello-tp.h create.
760 */
761 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
762
763 for (x = 0; x < argc; ++x) {
764 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
765 }
766
767 puts("Quitting now!");
768 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
769
770 return 0;
771}
772----
773--
774
775. Build the application:
776+
777--
778[role="term"]
779----
780$ gcc -c hello.c
781----
782--
783
784. Link the application with the tracepoint provider package,
785 `liblttng-ust`, and `libdl`:
786+
787--
788[role="term"]
789----
790$ gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
791----
792--
793
794Here's the whole build process:
795
796[role="img-100"]
797.User space tracing tutorial's build steps.
798image::ust-flow.png[]
799
800To trace the user application:
801
802. Run the application with a few arguments:
803+
804--
805[role="term"]
806----
807$ ./hello world and beyond
808----
809--
810+
811You see:
812+
813--
814----
815Hello, World!
816Press Enter to continue...
817----
818--
819
820. Start an LTTng <<lttng-sessiond,session daemon>>:
821+
822--
823[role="term"]
824----
825$ lttng-sessiond --daemonize
826----
827--
828+
829Note that a session daemon might already be running, for example as
830a service that the distribution's service manager started.
831
832. List the available user space tracepoints:
833+
834--
835[role="term"]
836----
837$ lttng list --userspace
838----
839--
840+
841You see the `hello_world:my_first_tracepoint` tracepoint listed
842under the `./hello` process.
843
844. Create a <<tracing-session,tracing session>>:
845+
846--
847[role="term"]
848----
849$ lttng create my-user-space-session
850----
851--
852
853. Create an <<event,event rule>> which matches the
854 `hello_world:my_first_tracepoint` event name:
855+
856--
857[role="term"]
858----
859$ lttng enable-event --userspace hello_world:my_first_tracepoint
860----
861--
862
863. <<basic-tracing-session-control,Start tracing>>:
864+
865--
866[role="term"]
867----
868$ lttng start
869----
870--
871
872. Go back to the running `hello` application and press Enter. The
873 program executes all `tracepoint()` instrumentation points and exits.
874. <<basic-tracing-session-control,Stop tracing>> and destroy the
875 tracing session:
876+
877--
878[role="term"]
879----
880$ lttng stop
881$ lttng destroy
882----
883--
884+
885The man:lttng-destroy(1) command does not destroy the trace data; it
886only destroys the state of the tracing session.
887
888By default, LTTng saves the traces in
889+$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
890where +__name__+ is the tracing session name. The
891env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
892
893See <<viewing-and-analyzing-your-traces,View and analyze the
894recorded events>> to view the recorded events.
895
896
897[[viewing-and-analyzing-your-traces]]
898=== View and analyze the recorded events
899
900Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
901kernel>> and <<tracing-your-own-user-application,Trace a user
902application>> tutorials, you can inspect the recorded events.
903
904Many tools are available to read LTTng traces:
905
906* **cmd:babeltrace** is a command-line utility which converts trace
907 formats; it supports the format that LTTng produces, CTF, as well as a
908 basic text output which can be ++grep++ed. The cmd:babeltrace command
909 is part of the http://diamon.org/babeltrace[Babeltrace] project.
910* Babeltrace also includes
911 **https://www.python.org/[Python] bindings** so
912 that you can easily open and read an LTTng trace with your own script,
913 benefiting from the power of Python.
914* http://tracecompass.org/[**Trace Compass**]
915 is a graphical user interface for viewing and analyzing any type of
916 logs or traces, including LTTng's.
917* https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
918 project which includes many high-level analyses of LTTng kernel
919 traces, like scheduling statistics, interrupt frequency distribution,
920 top CPU usage, and more.
921
922NOTE: This section assumes that the traces recorded during the previous
923tutorials were saved to their default location, in the
924dir:{$LTTNG_HOME/lttng-traces} directory. The env:LTTNG_HOME
925environment variable defaults to `$HOME` if not set.
926
927
928[[viewing-and-analyzing-your-traces-bt]]
929==== Use the cmd:babeltrace command-line tool
930
931The simplest way to list all the recorded events of a trace is to pass
932its path to cmd:babeltrace with no options:
933
934[role="term"]
935----
936$ babeltrace ~/lttng-traces/my-user-space-session*
937----
938
939cmd:babeltrace finds all traces recursively within the given path and
940prints all their events, merging them in chronological order.
941
942You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
943further filtering:
944
945[role="term"]
946----
947$ babeltrace /tmp/my-kernel-trace | grep _switch
948----
949
950You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
951count the recorded events:
952
953[role="term"]
954----
955$ babeltrace /tmp/my-kernel-trace | grep _open | wc --lines
956----
957
958
959[[viewing-and-analyzing-your-traces-bt-python]]
960==== Use the Babeltrace Python bindings
961
962The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
963is useful to isolate events by simple matching using man:grep(1) and
964similar utilities. However, more elaborate filters, such as keeping only
965event records with a field value falling within a specific range, are
966not trivial to write using a shell. Moreover, reductions and even the
967most basic computations involving multiple event records are virtually
968impossible to implement.
969
970Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
971to read the event records of an LTTng trace sequentially and compute the
972desired information.
973
974The following script accepts an LTTng Linux kernel trace path as its
975first argument and prints the short names of the top 5 running processes
976on CPU 0 during the whole trace:
977
978[source,python]
979.path:{top5proc.py}
980----
981from collections import Counter
982import babeltrace
983import sys
984
985
986def top5proc():
987 if len(sys.argv) != 2:
988 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
989 print(msg, file=sys.stderr)
990 return False
991
992 # A trace collection contains one or more traces
993 col = babeltrace.TraceCollection()
994
995 # Add the trace provided by the user (LTTng traces always have
996 # the 'ctf' format)
997 if col.add_trace(sys.argv[1], 'ctf') is None:
998 raise RuntimeError('Cannot add trace')
999
1000 # This counter dict contains execution times:
1001 #
1002 # task command name -> total execution time (ns)
1003 exec_times = Counter()
1004
1005 # This contains the last `sched_switch` timestamp
1006 last_ts = None
1007
1008 # Iterate on events
1009 for event in col.events:
1010 # Keep only `sched_switch` events
1011 if event.name != 'sched_switch':
1012 continue
1013
1014 # Keep only events which happened on CPU 0
1015 if event['cpu_id'] != 0:
1016 continue
1017
1018 # Event timestamp
1019 cur_ts = event.timestamp
1020
1021 if last_ts is None:
1022 # We start here
1023 last_ts = cur_ts
1024
1025 # Previous task command (short) name
1026 prev_comm = event['prev_comm']
1027
1028 # Initialize entry in our dict if not yet done
1029 if prev_comm not in exec_times:
1030 exec_times[prev_comm] = 0
1031
1032 # Compute previous command execution time
1033 diff = cur_ts - last_ts
1034
1035 # Update execution time of this command
1036 exec_times[prev_comm] += diff
1037
1038 # Update last timestamp
1039 last_ts = cur_ts
1040
1041 # Display top 5
1042 for name, ns in exec_times.most_common(5):
1043 s = ns / 1000000000
1044 print('{:20}{} s'.format(name, s))
1045
1046 return True
1047
1048
1049if __name__ == '__main__':
1050 sys.exit(0 if top5proc() else 1)
1051----
1052
1053Run this script:
1054
1055[role="term"]
1056----
1057$ python3 top5proc.py /tmp/my-kernel-trace/kernel
1058----
1059
1060Output example:
1061
1062----
1063swapper/0 48.607245889 s
1064chromium 7.192738188 s
1065pavucontrol 0.709894415 s
1066Compositor 0.660867933 s
1067Xorg.bin 0.616753786 s
1068----
1069
1070Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1071weren't using the CPU that much when tracing, its first position in the
1072list makes sense.
1073
1074
1075[[core-concepts]]
1076== [[understanding-lttng]]Core concepts
1077
1078From a user's perspective, the LTTng system is built on a few concepts,
1079or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1080operates by sending commands to the <<lttng-sessiond,session daemon>>.
1081Understanding how those objects relate to eachother is key in mastering
1082the toolkit.
1083
1084The core concepts are:
1085
1086* <<tracing-session,Tracing session>>
1087* <<domain,Tracing domain>>
1088* <<channel,Channel and ring buffer>>
1089* <<"event","Instrumentation point, event rule, event, and event record">>
1090
1091
1092[[tracing-session]]
1093=== Tracing session
1094
1095A _tracing session_ is a stateful dialogue between you and
1096a <<lttng-sessiond,session daemon>>. You can
1097<<creating-destroying-tracing-sessions,create a new tracing
1098session>> with the `lttng create` command.
1099
1100Anything that you do when you control LTTng tracers happens within a
1101tracing session. In particular, a tracing session:
1102
1103* Has its own name.
1104* Has its own set of trace files.
1105* Has its own state of activity (started or stopped).
1106* Has its own <<tracing-session-mode,mode>> (local, network streaming,
1107 snapshot, or live).
1108* Has its own <<channel,channels>> which have their own
1109 <<event,event rules>>.
1110
1111[role="img-100"]
1112.A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1113image::concepts.png[]
1114
1115Those attributes and objects are completely isolated between different
1116tracing sessions.
1117
1118A tracing session is analogous to a cash machine session:
1119the operations you do on the banking system through the cash machine do
1120not alter the data of other users of the same system. In the case of
1121the cash machine, a session lasts as long as your bank card is inside.
1122In the case of LTTng, a tracing session lasts from the `lttng create`
1123command to the `lttng destroy` command.
1124
1125[role="img-100"]
1126.Each Unix user has its own set of tracing sessions.
1127image::many-sessions.png[]
1128
1129
1130[[tracing-session-mode]]
1131==== Tracing session mode
1132
1133LTTng can send the generated trace data to different locations. The
1134_tracing session mode_ dictates where to send it. The following modes
1135are available in LTTng{nbsp}{revision}:
1136
1137Local mode::
1138 LTTng writes the traces to the file system of the machine being traced
1139 (target system).
1140
1141Network streaming mode::
1142 LTTng sends the traces over the network to a
1143 <<lttng-relayd,relay daemon>> running on a remote system.
1144
1145Snapshot mode::
1146 LTTng does not write the traces by default. Instead, you can request
1147 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1148 current tracing buffers, and to write it to the target's file system
1149 or to send it over the network to a <<lttng-relayd,relay daemon>>
1150 running on a remote system.
1151
1152Live mode::
1153 This mode is similar to the network streaming mode, but a live
1154 trace viewer can connect to the distant relay daemon to
1155 <<lttng-live,view event records as LTTng generates them>> by
1156 the tracers.
1157
1158
1159[[domain]]
1160=== Tracing domain
1161
1162A _tracing domain_ is a namespace for event sources. A tracing domain
1163has its own properties and features.
1164
1165There are currently five available tracing domains:
1166
1167* Linux kernel
1168* User space
1169* `java.util.logging` (JUL)
1170* log4j
1171* Python
1172
1173You must specify a tracing domain when using some commands to avoid
1174ambiguity. For example, since all the domains support named tracepoints
1175as event sources (instrumentation points that you manually insert in the
1176source code), you need to specify a tracing domain when
1177<<enabling-disabling-events,creating an event rule>> because all the
1178tracing domains could have tracepoints with the same names.
1179
1180Some features are reserved to specific tracing domains. Dynamic function
1181entry and return instrumentation points, for example, are currently only
1182supported in the Linux kernel tracing domain, but support for other
1183tracing domains could be added in the future.
1184
1185You can create <<channel,channels>> in the Linux kernel and user space
1186tracing domains. The other tracing domains have a single default
1187channel.
1188
1189
1190[[channel]]
1191=== Channel and ring buffer
1192
1193A _channel_ is an object which is responsible for a set of ring buffers.
1194Each ring buffer is divided into multiple sub-buffers. When an LTTng
1195tracer emits an event, it can record it to one or more
1196sub-buffers. The attributes of a channel determine what to do when
1197there's no space left for a new event record because all sub-buffers
1198are full, where to send a full sub-buffer, and other behaviours.
1199
1200A channel is always associated to a <<domain,tracing domain>>. The
1201`java.util.logging` (JUL), log4j, and Python tracing domains each have
1202a default channel which you cannot configure.
1203
1204A channel also owns <<event,event rules>>. When an LTTng tracer emits
1205an event, it records it to the sub-buffers of all
1206the enabled channels with a satisfied event rule, as long as those
1207channels are part of active <<tracing-session,tracing sessions>>.
1208
1209
1210[[channel-buffering-schemes]]
1211==== Per-user vs. per-process buffering schemes
1212
1213A channel has at least one ring buffer _per CPU_. LTTng always
1214records an event to the ring buffer associated to the CPU on which it
1215occurred.
1216
1217Two _buffering schemes_ are available when you
1218<<enabling-disabling-channels,create a channel>> in the
1219user space <<domain,tracing domain>>:
1220
1221Per-user buffering::
1222 Allocate one set of ring buffers--one per CPU--shared by all the
1223 instrumented processes of each Unix user.
1224+
1225--
1226[role="img-100"]
1227.Per-user buffering scheme.
1228image::per-user-buffering.png[]
1229--
1230
1231Per-process buffering::
1232 Allocate one set of ring buffers--one per CPU--for each
1233 instrumented process.
1234+
1235--
1236[role="img-100"]
1237.Per-process buffering scheme.
1238image::per-process-buffering.png[]
1239--
1240+
1241The per-process buffering scheme tends to consume more memory than the
1242per-user option because systems generally have more instrumented
1243processes than Unix users running instrumented processes. However, the
1244per-process buffering scheme ensures that one process having a high
1245event throughput won't fill all the shared sub-buffers of the same
1246user, only its own.
1247
1248The Linux kernel tracing domain has only one available buffering scheme
1249which is to allocate a single set of ring buffers for the whole system.
1250This scheme is similar to the per-user option, but with a single, global
1251user "running" the kernel.
1252
1253
1254[[channel-overwrite-mode-vs-discard-mode]]
1255==== Overwrite vs. discard event loss modes
1256
1257When an event occurs, LTTng records it to a specific sub-buffer (yellow
1258arc in the following animation) of a specific channel's ring buffer.
1259When there's no space left in a sub-buffer, the tracer marks it as
1260consumable (red) and another, empty sub-buffer starts receiving the
1261following event records. A <<lttng-consumerd,consumer daemon>>
1262eventually consumes the marked sub-buffer (returns to white).
1263
1264[NOTE]
1265[role="docsvg-channel-subbuf-anim"]
1266====
1267{note-no-anim}
1268====
1269
1270In an ideal world, sub-buffers are consumed faster than they are filled,
1271as is the case in the previous animation. In the real world,
1272however, all sub-buffers can be full at some point, leaving no space to
1273record the following events.
1274
1275By default, LTTng-modules and LTTng-UST are _non-blocking_ tracers: when
1276no empty sub-buffer is available, it is acceptable to lose event records
1277when the alternative would be to cause substantial delays in the
1278instrumented application's execution. LTTng privileges performance over
1279integrity; it aims at perturbing the traced system as little as possible
1280in order to make tracing of subtle race conditions and rare interrupt
1281cascades possible.
1282
1283Starting from LTTng{nbsp}2.10, the LTTng user space tracer, LTTng-UST,
1284supports a _blocking mode_. See the <<blocking-timeout-example,blocking
1285timeout example>> to learn how to use the blocking mode.
1286
1287When it comes to losing event records because no empty sub-buffer is
1288available, or because the <<opt-blocking-timeout,blocking timeout>> is
1289reached, the channel's _event loss mode_ determines what to do. The
1290available event loss modes are:
1291
1292Discard mode::
eeb71496
PP
1293 Drop the newest event records until a the tracer releases a
1294 sub-buffer.
1295+
1296This is the only available mode when you specify a
1297<<opt-blocking-timeout,blocking timeout>>.
85c29972
PP
1298
1299Overwrite mode::
1300 Clear the sub-buffer containing the oldest event records and start
1301 writing the newest event records there.
1302+
1303This mode is sometimes called _flight recorder mode_ because it's
1304similar to a
1305https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1306always keep a fixed amount of the latest data.
1307
1308Which mechanism you should choose depends on your context: prioritize
1309the newest or the oldest event records in the ring buffer?
1310
1311Beware that, in overwrite mode, the tracer abandons a whole sub-buffer
1312as soon as a there's no space left for a new event record, whereas in
1313discard mode, the tracer only discards the event record that doesn't
1314fit.
1315
1316In discard mode, LTTng increments a count of lost event records when
1317an event record is lost and saves this count to the trace. In
1318overwrite mode, LTTng keeps no information when it overwrites a
1319sub-buffer before consuming it.
1320
1321There are a few ways to decrease your probability of losing event
1322records.
1323<<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1324how you can fine-une the sub-buffer count and size of a channel to
1325virtually stop losing event records, though at the cost of greater
1326memory usage.
1327
1328
1329[[channel-subbuf-size-vs-subbuf-count]]
1330==== Sub-buffer count and size
1331
1332When you <<enabling-disabling-channels,create a channel>>, you can
1333set its number of sub-buffers and their size.
1334
1335Note that there is noticeable CPU overhead introduced when
1336switching sub-buffers (marking a full one as consumable and switching
1337to an empty one for the following events to be recorded). Knowing this,
1338the following list presents a few practical situations along with how
1339to configure the sub-buffer count and size for them:
1340
1341* **High event throughput**: In general, prefer bigger sub-buffers to
1342 lower the risk of losing event records.
1343+
1344Having bigger sub-buffers also ensures a lower
1345<<channel-switch-timer,sub-buffer switching frequency>>.
1346+
1347The number of sub-buffers is only meaningful if you create the channel
1348in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1349other sub-buffers are left unaltered.
1350
1351* **Low event throughput**: In general, prefer smaller sub-buffers
1352 since the risk of losing event records is low.
1353+
1354Because events occur less frequently, the sub-buffer switching frequency
1355should remain low and thus the tracer's overhead should not be a
1356problem.
1357
1358* **Low memory system**: If your target system has a low memory
1359 limit, prefer fewer first, then smaller sub-buffers.
1360+
1361Even if the system is limited in memory, you want to keep the
1362sub-buffers as big as possible to avoid a high sub-buffer switching
1363frequency.
1364
1365Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1366which means event data is very compact. For example, the average
1367LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1368sub-buffer size of 1{nbsp}MiB is considered big.
1369
1370The previous situations highlight the major trade-off between a few big
1371sub-buffers and more, smaller sub-buffers: sub-buffer switching
1372frequency vs. how much data is lost in overwrite mode. Assuming a
1373constant event throughput and using the overwrite mode, the two
1374following configurations have the same ring buffer total size:
1375
1376[NOTE]
1377[role="docsvg-channel-subbuf-size-vs-count-anim"]
1378====
1379{note-no-anim}
1380====
1381
1382* **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1383 switching frequency, but if a sub-buffer overwrite happens, half of
1384 the event records so far (4{nbsp}MiB) are definitely lost.
1385* **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1386 overhead as the previous configuration, but if a sub-buffer
1387 overwrite happens, only the eighth of event records so far are
1388 definitely lost.
1389
1390In discard mode, the sub-buffers count parameter is pointless: use two
1391sub-buffers and set their size according to the requirements of your
1392situation.
1393
1394
1395[[channel-switch-timer]]
1396==== Switch timer period
1397
1398The _switch timer period_ is an important configurable attribute of
1399a channel to ensure periodic sub-buffer flushing.
1400
1401When the _switch timer_ expires, a sub-buffer switch happens. You can
1402set the switch timer period attribute when you
1403<<enabling-disabling-channels,create a channel>> to ensure that event
1404data is consumed and committed to trace files or to a distant relay
1405daemon periodically in case of a low event throughput.
1406
1407[NOTE]
1408[role="docsvg-channel-switch-timer"]
1409====
1410{note-no-anim}
1411====
1412
1413This attribute is also convenient when you use big sub-buffers to cope
1414with a sporadic high event throughput, even if the throughput is
1415normally low.
1416
1417
1418[[channel-read-timer]]
1419==== Read timer period
1420
1421By default, the LTTng tracers use a notification mechanism to signal a
1422full sub-buffer so that a consumer daemon can consume it. When such
1423notifications must be avoided, for example in real-time applications,
1424you can use the channel's _read timer_ instead. When the read timer
1425fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1426consumable sub-buffers.
1427
1428
1429[[tracefile-rotation]]
1430==== Trace file count and size
1431
1432By default, trace files can grow as large as needed. You can set the
1433maximum size of each trace file that a channel writes when you
1434<<enabling-disabling-channels,create a channel>>. When the size of
1435a trace file reaches the channel's fixed maximum size, LTTng creates
1436another file to contain the next event records. LTTng appends a file
1437count to each trace file name in this case.
1438
1439If you set the trace file size attribute when you create a channel, the
1440maximum number of trace files that LTTng creates is _unlimited_ by
1441default. To limit them, you can also set a maximum number of trace
1442files. When the number of trace files reaches the channel's fixed
1443maximum count, the oldest trace file is overwritten. This mechanism is
1444called _trace file rotation_.
1445
1446
1447[[event]]
1448=== Instrumentation point, event rule, event, and event record
1449
1450An _event rule_ is a set of conditions which must be **all** satisfied
1451for LTTng to record an occuring event.
1452
1453You set the conditions when you <<enabling-disabling-events,create
1454an event rule>>.
1455
1456You always attach an event rule to <<channel,channel>> when you create
1457it.
1458
1459When an event passes the conditions of an event rule, LTTng records it
1460in one of the attached channel's sub-buffers.
1461
1462The available conditions, as of LTTng{nbsp}{revision}, are:
1463
1464* The event rule _is enabled_.
1465* The instrumentation point's type _is{nbsp}T_.
1466* The instrumentation point's name (sometimes called _event name_)
1467 _matches{nbsp}N_, but _is not{nbsp}E_.
1468* The instrumentation point's log level _is as severe as{nbsp}L_, or
1469 _is exactly{nbsp}L_.
1470* The fields of the event's payload _satisfy_ a filter
1471 expression{nbsp}__F__.
1472
1473As you can see, all the conditions but the dynamic filter are related to
1474the event rule's status or to the instrumentation point, not to the
1475occurring events. This is why, without a filter, checking if an event
1476passes an event rule is not a dynamic task: when you create or modify an
1477event rule, all the tracers of its tracing domain enable or disable the
1478instrumentation points themselves once. This is possible because the
1479attributes of an instrumentation point (type, name, and log level) are
1480defined statically. In other words, without a dynamic filter, the tracer
1481_does not evaluate_ the arguments of an instrumentation point unless it
1482matches an enabled event rule.
1483
1484Note that, for LTTng to record an event, the <<channel,channel>> to
1485which a matching event rule is attached must also be enabled, and the
1486tracing session owning this channel must be active.
1487
1488[role="img-100"]
1489.Logical path from an instrumentation point to an event record.
1490image::event-rule.png[]
1491
1492.Event, event record, or event rule?
1493****
1494With so many similar terms, it's easy to get confused.
1495
1496An **event** is the consequence of the execution of an _instrumentation
1497point_, like a tracepoint that you manually place in some source code,
1498or a Linux kernel KProbe. An event is said to _occur_ at a specific
1499time. Different actions can be taken upon the occurrence of an event,
1500like record the event's payload to a buffer.
1501
1502An **event record** is the representation of an event in a sub-buffer. A
1503tracer is responsible for capturing the payload of an event, current
1504context variables, the event's ID, and the event's timestamp. LTTng
1505can append this sub-buffer to a trace file.
1506
1507An **event rule** is a set of conditions which must all be satisfied for
1508LTTng to record an occuring event. Events still occur without
1509satisfying event rules, but LTTng does not record them.
1510****
1511
1512
1513[[plumbing]]
1514== Components of noch:{LTTng}
1515
1516The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1517to call LTTng a simple _tool_ since it is composed of multiple
1518interacting components. This section describes those components,
1519explains their respective roles, and shows how they connect together to
1520form the LTTng ecosystem.
1521
1522The following diagram shows how the most important components of LTTng
1523interact with user applications, the Linux kernel, and you:
1524
1525[role="img-100"]
1526.Control and trace data paths between LTTng components.
1527image::plumbing.png[]
1528
1529The LTTng project incorporates:
1530
1531* **LTTng-tools**: Libraries and command-line interface to
1532 control tracing sessions.
1533** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1534** <<lttng-consumerd,Consumer daemon>> (man:lttng-consumerd(8)).
1535** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1536** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1537** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1538* **LTTng-UST**: Libraries and Java/Python packages to trace user
1539 applications.
1540** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1541 headers to instrument and trace any native user application.
1542** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1543*** `liblttng-ust-libc-wrapper`
1544*** `liblttng-ust-pthread-wrapper`
1545*** `liblttng-ust-cyg-profile`
1546*** `liblttng-ust-cyg-profile-fast`
1547*** `liblttng-ust-dl`
1548** User space tracepoint provider source files generator command-line
1549 tool (man:lttng-gen-tp(1)).
1550** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1551 Java applications using `java.util.logging` or
1552 Apache log4j 1.2 logging.
1553** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1554 Python applications using the standard `logging` package.
1555* **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1556 the kernel.
1557** LTTng kernel tracer module.
1558** Tracing ring buffer kernel modules.
1559** Probe kernel modules.
1560** LTTng logger kernel module.
1561
1562
1563[[lttng-cli]]
1564=== Tracing control command-line interface
1565
1566[role="img-100"]
1567.The tracing control command-line interface.
1568image::plumbing-lttng-cli.png[]
1569
1570The _man:lttng(1) command-line tool_ is the standard user interface to
1571control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1572is part of LTTng-tools.
1573
1574The cmd:lttng tool is linked with
1575<<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1576one or more <<lttng-sessiond,session daemons>> behind the scenes.
1577
1578The cmd:lttng tool has a Git-like interface:
1579
1580[role="term"]
1581----
1582$ lttng <GENERAL OPTIONS> <COMMAND> <COMMAND OPTIONS>
1583----
1584
1585The <<controlling-tracing,Tracing control>> section explores the
1586available features of LTTng using the cmd:lttng tool.
1587
1588
1589[[liblttng-ctl-lttng]]
1590=== Tracing control library
1591
1592[role="img-100"]
1593.The tracing control library.
1594image::plumbing-liblttng-ctl.png[]
1595
1596The _LTTng control library_, `liblttng-ctl`, is used to communicate
1597with a <<lttng-sessiond,session daemon>> using a C API that hides the
1598underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1599
1600The <<lttng-cli,cmd:lttng command-line tool>>
1601is linked with `liblttng-ctl`.
1602
1603You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1604"master" header:
1605
1606[source,c]
1607----
1608#include <lttng/lttng.h>
1609----
1610
1611Some objects are referenced by name (C string), such as tracing
1612sessions, but most of them require to create a handle first using
1613`lttng_create_handle()`.
1614
1615The best available developer documentation for `liblttng-ctl` is, as of
1616LTTng{nbsp}{revision}, its installed header files. Every function and
1617structure is thoroughly documented.
1618
1619
1620[[lttng-ust]]
1621=== User space tracing library
1622
1623[role="img-100"]
1624.The user space tracing library.
1625image::plumbing-liblttng-ust.png[]
1626
1627The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1628is the LTTng user space tracer. It receives commands from a
1629<<lttng-sessiond,session daemon>>, for example to
1630enable and disable specific instrumentation points, and writes event
1631records to ring buffers shared with a
1632<<lttng-consumerd,consumer daemon>>.
1633`liblttng-ust` is part of LTTng-UST.
1634
1635Public C header files are installed beside `liblttng-ust` to
1636instrument any <<c-application,C or $$C++$$ application>>.
1637
1638<<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1639packages, use their own library providing tracepoints which is
1640linked with `liblttng-ust`.
1641
1642An application or library does not have to initialize `liblttng-ust`
1643manually: its constructor does the necessary tasks to properly register
1644to a session daemon. The initialization phase also enables the
1645instrumentation points matching the <<event,event rules>> that you
1646already created.
1647
1648
1649[[lttng-ust-agents]]
1650=== User space tracing agents
1651
1652[role="img-100"]
1653.The user space tracing agents.
1654image::plumbing-lttng-ust-agents.png[]
1655
1656The _LTTng-UST Java and Python agents_ are regular Java and Python
1657packages which add LTTng tracing capabilities to the
1658native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1659
1660In the case of Java, the
1661https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1662core logging facilities] and
1663https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1664Note that Apache Log4{nbsp}2 is not supported.
1665
1666In the case of Python, the standard
1667https://docs.python.org/3/library/logging.html[`logging`] package
1668is supported. Both Python 2 and Python 3 modules can import the
1669LTTng-UST Python agent package.
1670
1671The applications using the LTTng-UST agents are in the
1672`java.util.logging` (JUL),
1673log4j, and Python <<domain,tracing domains>>.
1674
1675Both agents use the same mechanism to trace the log statements. When an
1676agent is initialized, it creates a log handler that attaches to the root
1677logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1678When the application executes a log statement, it is passed to the
1679agent's log handler by the root logger. The agent's log handler calls a
1680native function in a tracepoint provider package shared library linked
1681with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1682other fields, like its logger name and its log level. This native
1683function contains a user space instrumentation point, hence tracing the
1684log statement.
1685
1686The log level condition of an
1687<<event,event rule>> is considered when tracing
1688a Java or a Python application, and it's compatible with the standard
1689JUL, log4j, and Python log levels.
1690
1691
1692[[lttng-modules]]
1693=== LTTng kernel modules
1694
1695[role="img-100"]
1696.The LTTng kernel modules.
1697image::plumbing-lttng-modules.png[]
1698
1699The _LTTng kernel modules_ are a set of Linux kernel modules
1700which implement the kernel tracer of the LTTng project. The LTTng
1701kernel modules are part of LTTng-modules.
1702
1703The LTTng kernel modules include:
1704
1705* A set of _probe_ modules.
1706+
1707Each module attaches to a specific subsystem
1708of the Linux kernel using its tracepoint instrument points. There are
1709also modules to attach to the entry and return points of the Linux
1710system call functions.
1711
1712* _Ring buffer_ modules.
1713+
1714A ring buffer implementation is provided as kernel modules. The LTTng
1715kernel tracer writes to the ring buffer; a
1716<<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1717
1718* The _LTTng kernel tracer_ module.
1719* The _LTTng logger_ module.
1720+
1721The LTTng logger module implements the special path:{/proc/lttng-logger}
1722file so that any executable can generate LTTng events by opening and
1723writing to this file.
1724+
1725See <<proc-lttng-logger-abi,LTTng logger>>.
1726
1727Generally, you do not have to load the LTTng kernel modules manually
1728(using man:modprobe(8), for example): a root <<lttng-sessiond,session
1729daemon>> loads the necessary modules when starting. If you have extra
1730probe modules, you can specify to load them to the session daemon on
1731the command line.
1732
1733The LTTng kernel modules are installed in
1734+/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1735the kernel release (see `uname --kernel-release`).
1736
1737
1738[[lttng-sessiond]]
1739=== Session daemon
1740
1741[role="img-100"]
1742.The session daemon.
1743image::plumbing-sessiond.png[]
1744
1745The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1746managing tracing sessions and for controlling the various components of
1747LTTng. The session daemon is part of LTTng-tools.
1748
1749The session daemon sends control requests to and receives control
1750responses from:
1751
1752* The <<lttng-ust,user space tracing library>>.
1753+
1754Any instance of the user space tracing library first registers to
1755a session daemon. Then, the session daemon can send requests to
1756this instance, such as:
1757+
1758--
1759** Get the list of tracepoints.
1760** Share an <<event,event rule>> so that the user space tracing library
1761 can enable or disable tracepoints. Amongst the possible conditions
1762 of an event rule is a filter expression which `liblttng-ust` evalutes
1763 when an event occurs.
1764** Share <<channel,channel>> attributes and ring buffer locations.
1765--
1766+
1767The session daemon and the user space tracing library use a Unix
1768domain socket for their communication.
1769
1770* The <<lttng-ust-agents,user space tracing agents>>.
1771+
1772Any instance of a user space tracing agent first registers to
1773a session daemon. Then, the session daemon can send requests to
1774this instance, such as:
1775+
1776--
1777** Get the list of loggers.
1778** Enable or disable a specific logger.
1779--
1780+
1781The session daemon and the user space tracing agent use a TCP connection
1782for their communication.
1783
1784* The <<lttng-modules,LTTng kernel tracer>>.
1785* The <<lttng-consumerd,consumer daemon>>.
1786+
1787The session daemon sends requests to the consumer daemon to instruct
1788it where to send the trace data streams, amongst other information.
1789
1790* The <<lttng-relayd,relay daemon>>.
1791
1792The session daemon receives commands from the
1793<<liblttng-ctl-lttng,tracing control library>>.
1794
1795The root session daemon loads the appropriate
1796<<lttng-modules,LTTng kernel modules>> on startup. It also spawns
1797a <<lttng-consumerd,consumer daemon>> as soon as you create
1798an <<event,event rule>>.
1799
1800The session daemon does not send and receive trace data: this is the
1801role of the <<lttng-consumerd,consumer daemon>> and
1802<<lttng-relayd,relay daemon>>. It does, however, generate the
1803http://diamon.org/ctf/[CTF] metadata stream.
1804
1805Each Unix user can have its own session daemon instance. The
1806tracing sessions managed by different session daemons are completely
1807independent.
1808
1809The root user's session daemon is the only one which is
1810allowed to control the LTTng kernel tracer, and its spawned consumer
1811daemon is the only one which is allowed to consume trace data from the
1812LTTng kernel tracer. Note, however, that any Unix user which is a member
1813of the <<tracing-group,tracing group>> is allowed
1814to create <<channel,channels>> in the
1815Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
1816kernel.
1817
1818The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
1819session daemon when using its `create` command if none is currently
1820running. You can also start the session daemon manually.
1821
1822
1823[[lttng-consumerd]]
1824=== Consumer daemon
1825
1826[role="img-100"]
1827.The consumer daemon.
1828image::plumbing-consumerd.png[]
1829
1830The _consumer daemon_, man:lttng-consumerd(8), is a daemon which shares
1831ring buffers with user applications or with the LTTng kernel modules to
1832collect trace data and send it to some location (on disk or to a
1833<<lttng-relayd,relay daemon>> over the network). The consumer daemon
1834is part of LTTng-tools.
1835
1836You do not start a consumer daemon manually: a consumer daemon is always
1837spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
1838<<event,event rule>>, that is, before you start tracing. When you kill
1839its owner session daemon, the consumer daemon also exits because it is
1840the session daemon's child process. Command-line options of
1841man:lttng-sessiond(8) target the consumer daemon process.
1842
1843There are up to two running consumer daemons per Unix user, whereas only
1844one session daemon can run per user. This is because each process can be
1845either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
1846and 64-bit processes, it is more efficient to have separate
1847corresponding 32-bit and 64-bit consumer daemons. The root user is an
1848exception: it can have up to _three_ running consumer daemons: 32-bit
1849and 64-bit instances for its user applications, and one more
1850reserved for collecting kernel trace data.
1851
1852
1853[[lttng-relayd]]
1854=== Relay daemon
1855
1856[role="img-100"]
1857.The relay daemon.
1858image::plumbing-relayd.png[]
1859
1860The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
1861between remote session and consumer daemons, local trace files, and a
1862remote live trace viewer. The relay daemon is part of LTTng-tools.
1863
1864The main purpose of the relay daemon is to implement a receiver of
1865<<sending-trace-data-over-the-network,trace data over the network>>.
1866This is useful when the target system does not have much file system
1867space to record trace files locally.
1868
1869The relay daemon is also a server to which a
1870<<lttng-live,live trace viewer>> can
1871connect. The live trace viewer sends requests to the relay daemon to
1872receive trace data as the target system emits events. The
1873communication protocol is named _LTTng live_; it is used over TCP
1874connections.
1875
1876Note that you can start the relay daemon on the target system directly.
1877This is the setup of choice when the use case is to view events as
1878the target system emits them without the need of a remote system.
1879
1880
1881[[instrumenting]]
1882== [[using-lttng]]Instrumentation
1883
1884There are many examples of tracing and monitoring in our everyday life:
1885
1886* You have access to real-time and historical weather reports and
1887 forecasts thanks to weather stations installed around the country.
1888* You know your heart is safe thanks to an electrocardiogram.
1889* You make sure not to drive your car too fast and to have enough fuel
1890 to reach your destination thanks to gauges visible on your dashboard.
1891
1892All the previous examples have something in common: they rely on
1893**instruments**. Without the electrodes attached to the surface of your
1894body's skin, cardiac monitoring is futile.
1895
1896LTTng, as a tracer, is no different from those real life examples. If
1897you're about to trace a software system or, in other words, record its
1898history of execution, you better have **instrumentation points** in the
1899subject you're tracing, that is, the actual software.
1900
1901Various ways were developed to instrument a piece of software for LTTng
1902tracing. The most straightforward one is to manually place
1903instrumentation points, called _tracepoints_, in the software's source
1904code. It is also possible to add instrumentation points dynamically in
1905the Linux kernel <<domain,tracing domain>>.
1906
1907If you're only interested in tracing the Linux kernel, your
1908instrumentation needs are probably already covered by LTTng's built-in
1909<<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
1910user application which is already instrumented for LTTng tracing.
1911In such cases, you can skip this whole section and read the topics of
1912the <<controlling-tracing,Tracing control>> section.
1913
1914Many methods are available to instrument a piece of software for LTTng
1915tracing. They are:
1916
1917* <<c-application,User space instrumentation for C and $$C++$$
1918 applications>>.
1919* <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
1920* <<java-application,User space Java agent>>.
1921* <<python-application,User space Python agent>>.
1922* <<proc-lttng-logger-abi,LTTng logger>>.
1923* <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
1924
1925
1926[[c-application]]
1927=== [[cxx-application]]User space instrumentation for C and $$C++$$ applications
1928
1929The procedure to instrument a C or $$C++$$ user application with
1930the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
1931
1932. <<tracepoint-provider,Create the source files of a tracepoint provider
1933 package>>.
1934. <<probing-the-application-source-code,Add tracepoints to
1935 the application's source code>>.
1936. <<building-tracepoint-providers-and-user-application,Build and link
1937 a tracepoint provider package and the user application>>.
1938
1939If you need quick, man:printf(3)-like instrumentation, you can skip
1940those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
1941instead.
1942
1943IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
1944instrument a user application with `liblttng-ust`.
1945
1946
1947[[tracepoint-provider]]
1948==== Create the source files of a tracepoint provider package
1949
1950A _tracepoint provider_ is a set of compiled functions which provide
1951**tracepoints** to an application, the type of instrumentation point
1952supported by LTTng-UST. Those functions can emit events with
1953user-defined fields and serialize those events as event records to one
1954or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
1955macro, which you <<probing-the-application-source-code,insert in a user
1956application's source code>>, calls those functions.
1957
1958A _tracepoint provider package_ is an object file (`.o`) or a shared
1959library (`.so`) which contains one or more tracepoint providers.
1960Its source files are:
1961
1962* One or more <<tpp-header,tracepoint provider header>> (`.h`).
1963* A <<tpp-source,tracepoint provider package source>> (`.c`).
1964
1965A tracepoint provider package is dynamically linked with `liblttng-ust`,
1966the LTTng user space tracer, at run time.
1967
1968[role="img-100"]
1969.User application linked with `liblttng-ust` and containing a tracepoint provider.
1970image::ust-app.png[]
1971
1972NOTE: If you need quick, man:printf(3)-like instrumentation, you can
1973skip creating and using a tracepoint provider and use
1974<<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
1975
1976
1977[[tpp-header]]
1978===== Create a tracepoint provider header file template
1979
1980A _tracepoint provider header file_ contains the tracepoint
1981definitions of a tracepoint provider.
1982
1983To create a tracepoint provider header file:
1984
1985. Start from this template:
1986+
1987--
1988[source,c]
1989.Tracepoint provider header file template (`.h` file extension).
1990----
1991#undef TRACEPOINT_PROVIDER
1992#define TRACEPOINT_PROVIDER provider_name
1993
1994#undef TRACEPOINT_INCLUDE
1995#define TRACEPOINT_INCLUDE "./tp.h"
1996
1997#if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
1998#define _TP_H
1999
2000#include <lttng/tracepoint.h>
2001
2002/*
2003 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2004 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2005 */
2006
2007#endif /* _TP_H */
2008
2009#include <lttng/tracepoint-event.h>
2010----
2011--
2012
2013. Replace:
2014+
2015* `provider_name` with the name of your tracepoint provider.
2016* `"tp.h"` with the name of your tracepoint provider header file.
2017
2018. Below the `#include <lttng/tracepoint.h>` line, put your
2019 <<defining-tracepoints,tracepoint definitions>>.
2020
2021Your tracepoint provider name must be unique amongst all the possible
2022tracepoint provider names used on the same target system. We
2023suggest to include the name of your project or company in the name,
2024for example, `org_lttng_my_project_tpp`.
2025
2026TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2027this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2028write are the <<defining-tracepoints,tracepoint definitions>>.
2029
2030
2031[[defining-tracepoints]]
2032===== Create a tracepoint definition
2033
2034A _tracepoint definition_ defines, for a given tracepoint:
2035
2036* Its **input arguments**. They are the macro parameters that the
2037 `tracepoint()` macro accepts for this particular tracepoint
2038 in the user application's source code.
2039* Its **output event fields**. They are the sources of event fields
2040 that form the payload of any event that the execution of the
2041 `tracepoint()` macro emits for this particular tracepoint.
2042
2043You can create a tracepoint definition by using the
2044`TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2045line in the
2046<<tpp-header,tracepoint provider header file template>>.
2047
2048The syntax of the `TRACEPOINT_EVENT()` macro is:
2049
2050[source,c]
2051.`TRACEPOINT_EVENT()` macro syntax.
2052----
2053TRACEPOINT_EVENT(
2054 /* Tracepoint provider name */
2055 provider_name,
2056
2057 /* Tracepoint name */
2058 tracepoint_name,
2059
2060 /* Input arguments */
2061 TP_ARGS(
2062 arguments
2063 ),
2064
2065 /* Output event fields */
2066 TP_FIELDS(
2067 fields
2068 )
2069)
2070----
2071
2072Replace:
2073
2074* `provider_name` with your tracepoint provider name.
2075* `tracepoint_name` with your tracepoint name.
2076* `arguments` with the <<tpp-def-input-args,input arguments>>.
2077* `fields` with the <<tpp-def-output-fields,output event field>>
2078 definitions.
2079
2080This tracepoint emits events named `provider_name:tracepoint_name`.
2081
2082[IMPORTANT]
2083.Event name's length limitation
2084====
2085The concatenation of the tracepoint provider name and the
2086tracepoint name must not exceed **254 characters**. If it does, the
2087instrumented application compiles and runs, but LTTng throws multiple
2088warnings and you could experience serious issues.
2089====
2090
2091[[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2092
2093[source,c]
2094.`TP_ARGS()` macro syntax.
2095----
2096TP_ARGS(
2097 type, arg_name
2098)
2099----
2100
2101Replace:
2102
2103* `type` with the C type of the argument.
2104* `arg_name` with the argument name.
2105
2106You can repeat `type` and `arg_name` up to 10 times to have
2107more than one argument.
2108
2109.`TP_ARGS()` usage with three arguments.
2110====
2111[source,c]
2112----
2113TP_ARGS(
2114 int, count,
2115 float, ratio,
2116 const char*, query
2117)
2118----
2119====
2120
2121The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2122tracepoint definition with no input arguments.
2123
2124[[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2125`ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2126man:lttng-ust(3) for a complete description of the available `ctf_*()`
2127macros. A `ctf_*()` macro specifies the type, size, and byte order of
2128one event field.
2129
2130Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2131C expression that the tracer evalutes at the `tracepoint()` macro site
2132in the application's source code. This expression provides a field's
2133source of data. The argument expression can include input argument names
2134listed in the `TP_ARGS()` macro.
2135
2136Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2137must be unique within a given tracepoint definition.
2138
2139Here's a complete tracepoint definition example:
2140
2141.Tracepoint definition.
2142====
2143The following tracepoint definition defines a tracepoint which takes
2144three input arguments and has four output event fields.
2145
2146[source,c]
2147----
2148#include "my-custom-structure.h"
2149
2150TRACEPOINT_EVENT(
2151 my_provider,
2152 my_tracepoint,
2153 TP_ARGS(
2154 const struct my_custom_structure*, my_custom_structure,
2155 float, ratio,
2156 const char*, query
2157 ),
2158 TP_FIELDS(
2159 ctf_string(query_field, query)
2160 ctf_float(double, ratio_field, ratio)
2161 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2162 ctf_integer(int, send_size, my_custom_structure->send_size)
2163 )
2164)
2165----
2166
2167You can refer to this tracepoint definition with the `tracepoint()`
2168macro in your application's source code like this:
2169
2170[source,c]
2171----
2172tracepoint(my_provider, my_tracepoint,
2173 my_structure, some_ratio, the_query);
2174----
2175====
2176
2177NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2178if they satisfy an enabled <<event,event rule>>.
2179
2180
2181[[using-tracepoint-classes]]
2182===== Use a tracepoint class
2183
2184A _tracepoint class_ is a class of tracepoints which share the same
2185output event field definitions. A _tracepoint instance_ is one
2186instance of such a defined tracepoint class, with its own tracepoint
2187name.
2188
2189The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2190shorthand which defines both a tracepoint class and a tracepoint
2191instance at the same time.
2192
2193When you build a tracepoint provider package, the C or $$C++$$ compiler
2194creates one serialization function for each **tracepoint class**. A
2195serialization function is responsible for serializing the event fields
2196of a tracepoint to a sub-buffer when tracing.
2197
2198For various performance reasons, when your situation requires multiple
2199tracepoint definitions with different names, but with the same event
2200fields, we recommend that you manually create a tracepoint class
2201and instantiate as many tracepoint instances as needed. One positive
2202effect of such a design, amongst other advantages, is that all
2203tracepoint instances of the same tracepoint class reuse the same
2204serialization function, thus reducing
2205https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2206
2207.Use a tracepoint class and tracepoint instances.
2208====
2209Consider the following three tracepoint definitions:
2210
2211[source,c]
2212----
2213TRACEPOINT_EVENT(
2214 my_app,
2215 get_account,
2216 TP_ARGS(
2217 int, userid,
2218 size_t, len
2219 ),
2220 TP_FIELDS(
2221 ctf_integer(int, userid, userid)
2222 ctf_integer(size_t, len, len)
2223 )
2224)
2225
2226TRACEPOINT_EVENT(
2227 my_app,
2228 get_settings,
2229 TP_ARGS(
2230 int, userid,
2231 size_t, len
2232 ),
2233 TP_FIELDS(
2234 ctf_integer(int, userid, userid)
2235 ctf_integer(size_t, len, len)
2236 )
2237)
2238
2239TRACEPOINT_EVENT(
2240 my_app,
2241 get_transaction,
2242 TP_ARGS(
2243 int, userid,
2244 size_t, len
2245 ),
2246 TP_FIELDS(
2247 ctf_integer(int, userid, userid)
2248 ctf_integer(size_t, len, len)
2249 )
2250)
2251----
2252
2253In this case, we create three tracepoint classes, with one implicit
2254tracepoint instance for each of them: `get_account`, `get_settings`, and
2255`get_transaction`. However, they all share the same event field names
2256and types. Hence three identical, yet independent serialization
2257functions are created when you build the tracepoint provider package.
2258
2259A better design choice is to define a single tracepoint class and three
2260tracepoint instances:
2261
2262[source,c]
2263----
2264/* The tracepoint class */
2265TRACEPOINT_EVENT_CLASS(
2266 /* Tracepoint provider name */
2267 my_app,
2268
2269 /* Tracepoint class name */
2270 my_class,
2271
2272 /* Input arguments */
2273 TP_ARGS(
2274 int, userid,
2275 size_t, len
2276 ),
2277
2278 /* Output event fields */
2279 TP_FIELDS(
2280 ctf_integer(int, userid, userid)
2281 ctf_integer(size_t, len, len)
2282 )
2283)
2284
2285/* The tracepoint instances */
2286TRACEPOINT_EVENT_INSTANCE(
2287 /* Tracepoint provider name */
2288 my_app,
2289
2290 /* Tracepoint class name */
2291 my_class,
2292
2293 /* Tracepoint name */
2294 get_account,
2295
2296 /* Input arguments */
2297 TP_ARGS(
2298 int, userid,
2299 size_t, len
2300 )
2301)
2302TRACEPOINT_EVENT_INSTANCE(
2303 my_app,
2304 my_class,
2305 get_settings,
2306 TP_ARGS(
2307 int, userid,
2308 size_t, len
2309 )
2310)
2311TRACEPOINT_EVENT_INSTANCE(
2312 my_app,
2313 my_class,
2314 get_transaction,
2315 TP_ARGS(
2316 int, userid,
2317 size_t, len
2318 )
2319)
2320----
2321====
2322
2323
2324[[assigning-log-levels]]
2325===== Assign a log level to a tracepoint definition
2326
2327You can assign an optional _log level_ to a
2328<<defining-tracepoints,tracepoint definition>>.
2329
2330Assigning different levels of severity to tracepoint definitions can
2331be useful: when you <<enabling-disabling-events,create an event rule>>,
2332you can target tracepoints having a log level as severe as a specific
2333value.
2334
2335The concept of LTTng-UST log levels is similar to the levels found
2336in typical logging frameworks:
2337
2338* In a logging framework, the log level is given by the function
2339 or method name you use at the log statement site: `debug()`,
2340 `info()`, `warn()`, `error()`, and so on.
2341* In LTTng-UST, you statically assign the log level to a tracepoint
2342 definition; any `tracepoint()` macro invocation which refers to
2343 this definition has this log level.
2344
2345You can assign a log level to a tracepoint definition with the
2346`TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2347<<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2348<<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2349tracepoint.
2350
2351The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2352
2353[source,c]
2354.`TRACEPOINT_LOGLEVEL()` macro syntax.
2355----
2356TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2357----
2358
2359Replace:
2360
2361* `provider_name` with the tracepoint provider name.
2362* `tracepoint_name` with the tracepoint name.
2363* `log_level` with the log level to assign to the tracepoint
2364 definition named `tracepoint_name` in the `provider_name`
2365 tracepoint provider.
2366+
2367See man:lttng-ust(3) for a list of available log level names.
2368
2369.Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2370====
2371[source,c]
2372----
2373/* Tracepoint definition */
2374TRACEPOINT_EVENT(
2375 my_app,
2376 get_transaction,
2377 TP_ARGS(
2378 int, userid,
2379 size_t, len
2380 ),
2381 TP_FIELDS(
2382 ctf_integer(int, userid, userid)
2383 ctf_integer(size_t, len, len)
2384 )
2385)
2386
2387/* Log level assignment */
2388TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2389----
2390====
2391
2392
2393[[tpp-source]]
2394===== Create a tracepoint provider package source file
2395
2396A _tracepoint provider package source file_ is a C source file which
2397includes a <<tpp-header,tracepoint provider header file>> to expand its
2398macros into event serialization and other functions.
2399
2400You can always use the following tracepoint provider package source
2401file template:
2402
2403[source,c]
2404.Tracepoint provider package source file template.
2405----
2406#define TRACEPOINT_CREATE_PROBES
2407
2408#include "tp.h"
2409----
2410
2411Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2412header file>> name. You may also include more than one tracepoint
2413provider header file here to create a tracepoint provider package
2414holding more than one tracepoint providers.
2415
2416
2417[[probing-the-application-source-code]]
2418==== Add tracepoints to an application's source code
2419
2420Once you <<tpp-header,create a tracepoint provider header file>>, you
2421can use the `tracepoint()` macro in your application's
2422source code to insert the tracepoints that this header
2423<<defining-tracepoints,defines>>.
2424
2425The `tracepoint()` macro takes at least two parameters: the tracepoint
2426provider name and the tracepoint name. The corresponding tracepoint
2427definition defines the other parameters.
2428
2429.`tracepoint()` usage.
2430====
2431The following <<defining-tracepoints,tracepoint definition>> defines a
2432tracepoint which takes two input arguments and has two output event
2433fields.
2434
2435[source,c]
2436.Tracepoint provider header file.
2437----
2438#include "my-custom-structure.h"
2439
2440TRACEPOINT_EVENT(
2441 my_provider,
2442 my_tracepoint,
2443 TP_ARGS(
2444 int, argc,
2445 const char*, cmd_name
2446 ),
2447 TP_FIELDS(
2448 ctf_string(cmd_name, cmd_name)
2449 ctf_integer(int, number_of_args, argc)
2450 )
2451)
2452----
2453
2454You can refer to this tracepoint definition with the `tracepoint()`
2455macro in your application's source code like this:
2456
2457[source,c]
2458.Application's source file.
2459----
2460#include "tp.h"
2461
2462int main(int argc, char* argv[])
2463{
2464 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2465
2466 return 0;
2467}
2468----
2469
2470Note how the application's source code includes
2471the tracepoint provider header file containing the tracepoint
2472definitions to use, path:{tp.h}.
2473====
2474
2475.`tracepoint()` usage with a complex tracepoint definition.
2476====
2477Consider this complex tracepoint definition, where multiple event
2478fields refer to the same input arguments in their argument expression
2479parameter:
2480
2481[source,c]
2482.Tracepoint provider header file.
2483----
2484/* For `struct stat` */
2485#include <sys/types.h>
2486#include <sys/stat.h>
2487#include <unistd.h>
2488
2489TRACEPOINT_EVENT(
2490 my_provider,
2491 my_tracepoint,
2492 TP_ARGS(
2493 int, my_int_arg,
2494 char*, my_str_arg,
2495 struct stat*, st
2496 ),
2497 TP_FIELDS(
2498 ctf_integer(int, my_constant_field, 23 + 17)
2499 ctf_integer(int, my_int_arg_field, my_int_arg)
2500 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2501 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2502 my_str_arg[2] + my_str_arg[3])
2503 ctf_string(my_str_arg_field, my_str_arg)
2504 ctf_integer_hex(off_t, size_field, st->st_size)
2505 ctf_float(double, size_dbl_field, (double) st->st_size)
2506 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2507 size_t, strlen(my_str_arg) / 2)
2508 )
2509)
2510----
2511
2512You can refer to this tracepoint definition with the `tracepoint()`
2513macro in your application's source code like this:
2514
2515[source,c]
2516.Application's source file.
2517----
2518#define TRACEPOINT_DEFINE
2519#include "tp.h"
2520
2521int main(void)
2522{
2523 struct stat s;
2524
2525 stat("/etc/fstab", &s);
2526 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2527
2528 return 0;
2529}
2530----
2531
2532If you look at the event record that LTTng writes when tracing this
2533program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2534it should look like this:
2535
2536.Event record fields
2537|====
2538|Field's name |Field's value
2539|`my_constant_field` |40
2540|`my_int_arg_field` |23
2541|`my_int_arg_field2` |529
2542|`sum4_field` |389
2543|`my_str_arg_field` |`Hello, World!`
2544|`size_field` |0x12d
2545|`size_dbl_field` |301.0
2546|`half_my_str_arg_field` |`Hello,`
2547|====
2548====
2549
2550Sometimes, the arguments you pass to `tracepoint()` are expensive to
2551compute--they use the call stack, for example. To avoid this
2552computation when the tracepoint is disabled, you can use the
2553`tracepoint_enabled()` and `do_tracepoint()` macros.
2554
2555The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2556is:
2557
2558[source,c]
2559.`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2560----
2561tracepoint_enabled(provider_name, tracepoint_name)
2562do_tracepoint(provider_name, tracepoint_name, ...)
2563----
2564
2565Replace:
2566
2567* `provider_name` with the tracepoint provider name.
2568* `tracepoint_name` with the tracepoint name.
2569
2570`tracepoint_enabled()` returns a non-zero value if the tracepoint named
2571`tracepoint_name` from the provider named `provider_name` is enabled
2572**at run time**.
2573
2574`do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2575if the tracepoint is enabled. Using `tracepoint()` with
2576`tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2577the `tracepoint_enabled()` check, thus a race condition is
2578possible in this situation:
2579
2580[source,c]
2581.Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2582----
2583if (tracepoint_enabled(my_provider, my_tracepoint)) {
2584 stuff = prepare_stuff();
2585}
2586
2587tracepoint(my_provider, my_tracepoint, stuff);
2588----
2589
2590If the tracepoint is enabled after the condition, then `stuff` is not
2591prepared: the emitted event will either contain wrong data, or the whole
2592application could crash (segmentation fault, for example).
2593
2594NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2595`STAP_PROBEV()` call. If you need it, you must emit
2596this call yourself.
2597
2598
2599[[building-tracepoint-providers-and-user-application]]
2600==== Build and link a tracepoint provider package and an application
2601
2602Once you have one or more <<tpp-header,tracepoint provider header
2603files>> and a <<tpp-source,tracepoint provider package source file>>,
2604you can create the tracepoint provider package by compiling its source
2605file. From here, multiple build and run scenarios are possible. The
2606following table shows common application and library configurations
2607along with the required command lines to achieve them.
2608
2609In the following diagrams, we use the following file names:
2610
2611`app`::
2612 Executable application.
2613
2614`app.o`::
2615 Application's object file.
2616
2617`tpp.o`::
2618 Tracepoint provider package object file.
2619
2620`tpp.a`::
2621 Tracepoint provider package archive file.
2622
2623`libtpp.so`::
2624 Tracepoint provider package shared object file.
2625
2626`emon.o`::
2627 User library object file.
2628
2629`libemon.so`::
2630 User library shared object file.
2631
2632We use the following symbols in the diagrams of table below:
2633
2634[role="img-100"]
2635.Symbols used in the build scenario diagrams.
2636image::ust-sit-symbols.png[]
2637
2638We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2639variable in the following instructions.
2640
2641[role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2642.Common tracepoint provider package scenarios.
2643|====
2644|Scenario |Instructions
2645
2646|
2647The instrumented application is statically linked with
2648the tracepoint provider package object.
2649
2650image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2651
2652|
2653include::../common/ust-sit-step-tp-o.txt[]
2654
2655To build the instrumented application:
2656
2657. In path:{app.c}, before including path:{tpp.h}, add the following line:
2658+
2659--
2660[source,c]
2661----
2662#define TRACEPOINT_DEFINE
2663----
2664--
2665
2666. Compile the application source file:
2667+
2668--
2669[role="term"]
2670----
2671$ gcc -c app.c
2672----
2673--
2674
2675. Build the application:
2676+
2677--
2678[role="term"]
2679----
2680$ gcc -o app app.o tpp.o -llttng-ust -ldl
2681----
2682--
2683
2684To run the instrumented application:
2685
2686* Start the application:
2687+
2688--
2689[role="term"]
2690----
2691$ ./app
2692----
2693--
2694
2695|
2696The instrumented application is statically linked with the
2697tracepoint provider package archive file.
2698
2699image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2700
2701|
2702To create the tracepoint provider package archive file:
2703
2704. Compile the <<tpp-source,tracepoint provider package source file>>:
2705+
2706--
2707[role="term"]
2708----
2709$ gcc -I. -c tpp.c
2710----
2711--
2712
2713. Create the tracepoint provider package archive file:
2714+
2715--
2716[role="term"]
2717----
2718$ ar rcs tpp.a tpp.o
2719----
2720--
2721
2722To build the instrumented application:
2723
2724. In path:{app.c}, before including path:{tpp.h}, add the following line:
2725+
2726--
2727[source,c]
2728----
2729#define TRACEPOINT_DEFINE
2730----
2731--
2732
2733. Compile the application source file:
2734+
2735--
2736[role="term"]
2737----
2738$ gcc -c app.c
2739----
2740--
2741
2742. Build the application:
2743+
2744--
2745[role="term"]
2746----
2747$ gcc -o app app.o tpp.a -llttng-ust -ldl
2748----
2749--
2750
2751To run the instrumented application:
2752
2753* Start the application:
2754+
2755--
2756[role="term"]
2757----
2758$ ./app
2759----
2760--
2761
2762|
2763The instrumented application is linked with the tracepoint provider
2764package shared object.
2765
2766image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2767
2768|
2769include::../common/ust-sit-step-tp-so.txt[]
2770
2771To build the instrumented application:
2772
2773. In path:{app.c}, before including path:{tpp.h}, add the following line:
2774+
2775--
2776[source,c]
2777----
2778#define TRACEPOINT_DEFINE
2779----
2780--
2781
2782. Compile the application source file:
2783+
2784--
2785[role="term"]
2786----
2787$ gcc -c app.c
2788----
2789--
2790
2791. Build the application:
2792+
2793--
2794[role="term"]
2795----
2796$ gcc -o app app.o -ldl -L. -ltpp
2797----
2798--
2799
2800To run the instrumented application:
2801
2802* Start the application:
2803+
2804--
2805[role="term"]
2806----
2807$ ./app
2808----
2809--
2810
2811|
2812The tracepoint provider package shared object is preloaded before the
2813instrumented application starts.
2814
2815image::ust-sit+tp-so-preloaded+app-instrumented.png[]
2816
2817|
2818include::../common/ust-sit-step-tp-so.txt[]
2819
2820To build the instrumented application:
2821
2822. In path:{app.c}, before including path:{tpp.h}, add the
2823 following lines:
2824+
2825--
2826[source,c]
2827----
2828#define TRACEPOINT_DEFINE
2829#define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2830----
2831--
2832
2833. Compile the application source file:
2834+
2835--
2836[role="term"]
2837----
2838$ gcc -c app.c
2839----
2840--
2841
2842. Build the application:
2843+
2844--
2845[role="term"]
2846----
2847$ gcc -o app app.o -ldl
2848----
2849--
2850
2851To run the instrumented application with tracing support:
2852
2853* Preload the tracepoint provider package shared object and
2854 start the application:
2855+
2856--
2857[role="term"]
2858----
2859$ LD_PRELOAD=./libtpp.so ./app
2860----
2861--
2862
2863To run the instrumented application without tracing support:
2864
2865* Start the application:
2866+
2867--
2868[role="term"]
2869----
2870$ ./app
2871----
2872--
2873
2874|
2875The instrumented application dynamically loads the tracepoint provider
2876package shared object.
2877
2878See the <<dlclose-warning,warning about `dlclose()`>>.
2879
2880image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
2881
2882|
2883include::../common/ust-sit-step-tp-so.txt[]
2884
2885To build the instrumented application:
2886
2887. In path:{app.c}, before including path:{tpp.h}, add the
2888 following lines:
2889+
2890--
2891[source,c]
2892----
2893#define TRACEPOINT_DEFINE
2894#define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2895----
2896--
2897
2898. Compile the application source file:
2899+
2900--
2901[role="term"]
2902----
2903$ gcc -c app.c
2904----
2905--
2906
2907. Build the application:
2908+
2909--
2910[role="term"]
2911----
2912$ gcc -o app app.o -ldl
2913----
2914--
2915
2916To run the instrumented application:
2917
2918* Start the application:
2919+
2920--
2921[role="term"]
2922----
2923$ ./app
2924----
2925--
2926
2927|
2928The application is linked with the instrumented user library.
2929
2930The instrumented user library is statically linked with the tracepoint
2931provider package object file.
2932
2933image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
2934
2935|
2936include::../common/ust-sit-step-tp-o-fpic.txt[]
2937
2938To build the instrumented user library:
2939
2940. In path:{emon.c}, before including path:{tpp.h}, add the
2941 following line:
2942+
2943--
2944[source,c]
2945----
2946#define TRACEPOINT_DEFINE
2947----
2948--
2949
2950. Compile the user library source file:
2951+
2952--
2953[role="term"]
2954----
2955$ gcc -I. -fpic -c emon.c
2956----
2957--
2958
2959. Build the user library shared object:
2960+
2961--
2962[role="term"]
2963----
2964$ gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
2965----
2966--
2967
2968To build the application:
2969
2970. Compile the application source file:
2971+
2972--
2973[role="term"]
2974----
2975$ gcc -c app.c
2976----
2977--
2978
2979. Build the application:
2980+
2981--
2982[role="term"]
2983----
2984$ gcc -o app app.o -L. -lemon
2985----
2986--
2987
2988To run the application:
2989
2990* Start the application:
2991+
2992--
2993[role="term"]
2994----
2995$ ./app
2996----
2997--
2998
2999|
3000The application is linked with the instrumented user library.
3001
3002The instrumented user library is linked with the tracepoint provider
3003package shared object.
3004
3005image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3006
3007|
3008include::../common/ust-sit-step-tp-so.txt[]
3009
3010To build the instrumented user library:
3011
3012. In path:{emon.c}, before including path:{tpp.h}, add the
3013 following line:
3014+
3015--
3016[source,c]
3017----
3018#define TRACEPOINT_DEFINE
3019----
3020--
3021
3022. Compile the user library source file:
3023+
3024--
3025[role="term"]
3026----
3027$ gcc -I. -fpic -c emon.c
3028----
3029--
3030
3031. Build the user library shared object:
3032+
3033--
3034[role="term"]
3035----
3036$ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3037----
3038--
3039
3040To build the application:
3041
3042. Compile the application source file:
3043+
3044--
3045[role="term"]
3046----
3047$ gcc -c app.c
3048----
3049--
3050
3051. Build the application:
3052+
3053--
3054[role="term"]
3055----
3056$ gcc -o app app.o -L. -lemon
3057----
3058--
3059
3060To run the application:
3061
3062* Start the application:
3063+
3064--
3065[role="term"]
3066----
3067$ ./app
3068----
3069--
3070
3071|
3072The tracepoint provider package shared object is preloaded before the
3073application starts.
3074
3075The application is linked with the instrumented user library.
3076
3077image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3078
3079|
3080include::../common/ust-sit-step-tp-so.txt[]
3081
3082To build the instrumented user library:
3083
3084. In path:{emon.c}, before including path:{tpp.h}, add the
3085 following lines:
3086+
3087--
3088[source,c]
3089----
3090#define TRACEPOINT_DEFINE
3091#define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3092----
3093--
3094
3095. Compile the user library source file:
3096+
3097--
3098[role="term"]
3099----
3100$ gcc -I. -fpic -c emon.c
3101----
3102--
3103
3104. Build the user library shared object:
3105+
3106--
3107[role="term"]
3108----
3109$ gcc -shared -o libemon.so emon.o -ldl
3110----
3111--
3112
3113To build the application:
3114
3115. Compile the application source file:
3116+
3117--
3118[role="term"]
3119----
3120$ gcc -c app.c
3121----
3122--
3123
3124. Build the application:
3125+
3126--
3127[role="term"]
3128----
3129$ gcc -o app app.o -L. -lemon
3130----
3131--
3132
3133To run the application with tracing support:
3134
3135* Preload the tracepoint provider package shared object and
3136 start the application:
3137+
3138--
3139[role="term"]
3140----
3141$ LD_PRELOAD=./libtpp.so ./app
3142----
3143--
3144
3145To run the application without tracing support:
3146
3147* Start the application:
3148+
3149--
3150[role="term"]
3151----
3152$ ./app
3153----
3154--
3155
3156|
3157The application is linked with the instrumented user library.
3158
3159The instrumented user library dynamically loads the tracepoint provider
3160package shared object.
3161
3162See the <<dlclose-warning,warning about `dlclose()`>>.
3163
3164image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3165
3166|
3167include::../common/ust-sit-step-tp-so.txt[]
3168
3169To build the instrumented user library:
3170
3171. In path:{emon.c}, before including path:{tpp.h}, add the
3172 following lines:
3173+
3174--
3175[source,c]
3176----
3177#define TRACEPOINT_DEFINE
3178#define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3179----
3180--
3181
3182. Compile the user library source file:
3183+
3184--
3185[role="term"]
3186----
3187$ gcc -I. -fpic -c emon.c
3188----
3189--
3190
3191. Build the user library shared object:
3192+
3193--
3194[role="term"]
3195----
3196$ gcc -shared -o libemon.so emon.o -ldl
3197----
3198--
3199
3200To build the application:
3201
3202. Compile the application source file:
3203+
3204--
3205[role="term"]
3206----
3207$ gcc -c app.c
3208----
3209--
3210
3211. Build the application:
3212+
3213--
3214[role="term"]
3215----
3216$ gcc -o app app.o -L. -lemon
3217----
3218--
3219
3220To run the application:
3221
3222* Start the application:
3223+
3224--
3225[role="term"]
3226----
3227$ ./app
3228----
3229--
3230
3231|
3232The application dynamically loads the instrumented user library.
3233
3234The instrumented user library is linked with the tracepoint provider
3235package shared object.
3236
3237See the <<dlclose-warning,warning about `dlclose()`>>.
3238
3239image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3240
3241|
3242include::../common/ust-sit-step-tp-so.txt[]
3243
3244To build the instrumented user library:
3245
3246. In path:{emon.c}, before including path:{tpp.h}, add the
3247 following line:
3248+
3249--
3250[source,c]
3251----
3252#define TRACEPOINT_DEFINE
3253----
3254--
3255
3256. Compile the user library source file:
3257+
3258--
3259[role="term"]
3260----
3261$ gcc -I. -fpic -c emon.c
3262----
3263--
3264
3265. Build the user library shared object:
3266+
3267--
3268[role="term"]
3269----
3270$ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3271----
3272--
3273
3274To build the application:
3275
3276. Compile the application source file:
3277+
3278--
3279[role="term"]
3280----
3281$ gcc -c app.c
3282----
3283--
3284
3285. Build the application:
3286+
3287--
3288[role="term"]
3289----
3290$ gcc -o app app.o -ldl -L. -lemon
3291----
3292--
3293
3294To run the application:
3295
3296* Start the application:
3297+
3298--
3299[role="term"]
3300----
3301$ ./app
3302----
3303--
3304
3305|
3306The application dynamically loads the instrumented user library.
3307
3308The instrumented user library dynamically loads the tracepoint provider
3309package shared object.
3310
3311See the <<dlclose-warning,warning about `dlclose()`>>.
3312
3313image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3314
3315|
3316include::../common/ust-sit-step-tp-so.txt[]
3317
3318To build the instrumented user library:
3319
3320. In path:{emon.c}, before including path:{tpp.h}, add the
3321 following lines:
3322+
3323--
3324[source,c]
3325----
3326#define TRACEPOINT_DEFINE
3327#define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3328----
3329--
3330
3331. Compile the user library source file:
3332+
3333--
3334[role="term"]
3335----
3336$ gcc -I. -fpic -c emon.c
3337----
3338--
3339
3340. Build the user library shared object:
3341+
3342--
3343[role="term"]
3344----
3345$ gcc -shared -o libemon.so emon.o -ldl
3346----
3347--
3348
3349To build the application:
3350
3351. Compile the application source file:
3352+
3353--
3354[role="term"]
3355----
3356$ gcc -c app.c
3357----
3358--
3359
3360. Build the application:
3361+
3362--
3363[role="term"]
3364----
3365$ gcc -o app app.o -ldl -L. -lemon
3366----
3367--
3368
3369To run the application:
3370
3371* Start the application:
3372+
3373--
3374[role="term"]
3375----
3376$ ./app
3377----
3378--
3379
3380|
3381The tracepoint provider package shared object is preloaded before the
3382application starts.
3383
3384The application dynamically loads the instrumented user library.
3385
3386image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3387
3388|
3389include::../common/ust-sit-step-tp-so.txt[]
3390
3391To build the instrumented user library:
3392
3393. In path:{emon.c}, before including path:{tpp.h}, add the
3394 following lines:
3395+
3396--
3397[source,c]
3398----
3399#define TRACEPOINT_DEFINE
3400#define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3401----
3402--
3403
3404. Compile the user library source file:
3405+
3406--
3407[role="term"]
3408----
3409$ gcc -I. -fpic -c emon.c
3410----
3411--
3412
3413. Build the user library shared object:
3414+
3415--
3416[role="term"]
3417----
3418$ gcc -shared -o libemon.so emon.o -ldl
3419----
3420--
3421
3422To build the application:
3423
3424. Compile the application source file:
3425+
3426--
3427[role="term"]
3428----
3429$ gcc -c app.c
3430----
3431--
3432
3433. Build the application:
3434+
3435--
3436[role="term"]
3437----
3438$ gcc -o app app.o -L. -lemon
3439----
3440--
3441
3442To run the application with tracing support:
3443
3444* Preload the tracepoint provider package shared object and
3445 start the application:
3446+
3447--
3448[role="term"]
3449----
3450$ LD_PRELOAD=./libtpp.so ./app
3451----
3452--
3453
3454To run the application without tracing support:
3455
3456* Start the application:
3457+
3458--
3459[role="term"]
3460----
3461$ ./app
3462----
3463--
3464
3465|
3466The application is statically linked with the tracepoint provider
3467package object file.
3468
3469The application is linked with the instrumented user library.
3470
3471image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3472
3473|
3474include::../common/ust-sit-step-tp-o.txt[]
3475
3476To build the instrumented user library:
3477
3478. In path:{emon.c}, before including path:{tpp.h}, add the
3479 following line:
3480+
3481--
3482[source,c]
3483----
3484#define TRACEPOINT_DEFINE
3485----
3486--
3487
3488. Compile the user library source file:
3489+
3490--
3491[role="term"]
3492----
3493$ gcc -I. -fpic -c emon.c
3494----
3495--
3496
3497. Build the user library shared object:
3498+
3499--
3500[role="term"]
3501----
3502$ gcc -shared -o libemon.so emon.o
3503----
3504--
3505
3506To build the application:
3507
3508. Compile the application source file:
3509+
3510--
3511[role="term"]
3512----
3513$ gcc -c app.c
3514----
3515--
3516
3517. Build the application:
3518+
3519--
3520[role="term"]
3521----
3522$ gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3523----
3524--
3525
3526To run the instrumented application:
3527
3528* Start the application:
3529+
3530--
3531[role="term"]
3532----
3533$ ./app
3534----
3535--
3536
3537|
3538The application is statically linked with the tracepoint provider
3539package object file.
3540
3541The application dynamically loads the instrumented user library.
3542
3543image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3544
3545|
3546include::../common/ust-sit-step-tp-o.txt[]
3547
3548To build the application:
3549
3550. In path:{app.c}, before including path:{tpp.h}, add the following line:
3551+
3552--
3553[source,c]
3554----
3555#define TRACEPOINT_DEFINE
3556----
3557--
3558
3559. Compile the application source file:
3560+
3561--
3562[role="term"]
3563----
3564$ gcc -c app.c
3565----
3566--
3567
3568. Build the application:
3569+
3570--
3571[role="term"]
3572----
3573$ gcc -Wl,--export-dynamic -o app app.o tpp.o \
3574 -llttng-ust -ldl
3575----
3576--
3577+
3578The `--export-dynamic` option passed to the linker is necessary for the
3579dynamically loaded library to ``see'' the tracepoint symbols defined in
3580the application.
3581
3582To build the instrumented user library:
3583
3584. Compile the user library source file:
3585+
3586--
3587[role="term"]
3588----
3589$ gcc -I. -fpic -c emon.c
3590----
3591--
3592
3593. Build the user library shared object:
3594+
3595--
3596[role="term"]
3597----
3598$ gcc -shared -o libemon.so emon.o
3599----
3600--
3601
3602To run the application:
3603
3604* Start the application:
3605+
3606--
3607[role="term"]
3608----
3609$ ./app
3610----
3611--
3612|====
3613
3614[[dlclose-warning]]
3615[IMPORTANT]
3616.Do not use man:dlclose(3) on a tracepoint provider package
3617====
3618Never use man:dlclose(3) on any shared object which:
3619
3620* Is linked with, statically or dynamically, a tracepoint provider
3621 package.
3622* Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3623 package shared object.
3624
3625This is currently considered **unsafe** due to a lack of reference
3626counting from LTTng-UST to the shared object.
3627
3628A known workaround (available since glibc 2.2) is to use the
3629`RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3630effect of not unloading the loaded shared object, even if man:dlclose(3)
3631is called.
3632
3633You can also preload the tracepoint provider package shared object with
3634the env:LD_PRELOAD environment variable to overcome this limitation.
3635====
3636
3637
3638[[using-lttng-ust-with-daemons]]
3639===== Use noch:{LTTng-UST} with daemons
3640
3641If your instrumented application calls man:fork(2), man:clone(2),
3642or BSD's man:rfork(2), without a following man:exec(3)-family
3643system call, you must preload the path:{liblttng-ust-fork.so} shared
3644object when you start the application.
3645
3646[role="term"]
3647----
3648$ LD_PRELOAD=liblttng-ust-fork.so ./my-app
3649----
3650
3651If your tracepoint provider package is
3652a shared library which you also preload, you must put both
3653shared objects in env:LD_PRELOAD:
3654
3655[role="term"]
3656----
3657$ LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3658----
3659
3660
3661[role="since-2.9"]
3662[[liblttng-ust-fd]]
3663===== Use noch:{LTTng-UST} with applications which close file descriptors that don't belong to them
3664
3665If your instrumented application closes one or more file descriptors
3666which it did not open itself, you must preload the
3667path:{liblttng-ust-fd.so} shared object when you start the application:
3668
3669[role="term"]
3670----
3671$ LD_PRELOAD=liblttng-ust-fd.so ./my-app
3672----
3673
3674Typical use cases include closing all the file descriptors after
3675man:fork(2) or man:rfork(2) and buggy applications doing
3676``double closes''.
3677
3678
3679[[lttng-ust-pkg-config]]
3680===== Use noch:{pkg-config}
3681
3682On some distributions, LTTng-UST ships with a
3683https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3684metadata file. If this is your case, then you can use cmd:pkg-config to
3685build an application on the command line:
3686
3687[role="term"]
3688----
3689$ gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3690----
3691
3692
3693[[instrumenting-32-bit-app-on-64-bit-system]]
3694===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3695
3696In order to trace a 32-bit application running on a 64-bit system,
3697LTTng must use a dedicated 32-bit
3698<<lttng-consumerd,consumer daemon>>.
3699
3700The following steps show how to build and install a 32-bit consumer
3701daemon, which is _not_ part of the default 64-bit LTTng build, how to
3702build and install the 32-bit LTTng-UST libraries, and how to build and
3703link an instrumented 32-bit application in that context.
3704
3705To build a 32-bit instrumented application for a 64-bit target system,
3706assuming you have a fresh target system with no installed Userspace RCU
3707or LTTng packages:
3708
3709. Download, build, and install a 32-bit version of Userspace RCU:
3710+
3711--
3712[role="term"]
3713----
3714$ cd $(mktemp -d) &&
3715wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3716tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3717cd userspace-rcu-0.9.* &&
3718./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3719make &&
3720sudo make install &&
3721sudo ldconfig
3722----
3723--
3724
3725. Using your distribution's package manager, or from source, install
3726 the following 32-bit versions of the following dependencies of
3727 LTTng-tools and LTTng-UST:
3728+
3729--
3730* https://sourceforge.net/projects/libuuid/[libuuid]
3731* http://directory.fsf.org/wiki/Popt[popt]
3732* http://www.xmlsoft.org/[libxml2]
3733--
3734
3735. Download, build, and install a 32-bit version of the latest
3736 LTTng-UST{nbsp}{revision}:
3737+
3738--
3739[role="term"]
3740----
3741$ cd $(mktemp -d) &&
3742wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.10.tar.bz2 &&
3743tar -xf lttng-ust-latest-2.10.tar.bz2 &&
3744cd lttng-ust-2.10.* &&
3745./configure --libdir=/usr/local/lib32 \
3746 CFLAGS=-m32 CXXFLAGS=-m32 \
3747 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3748make &&
3749sudo make install &&
3750sudo ldconfig
3751----
3752--
3753+
3754[NOTE]
3755====
3756Depending on your distribution,
375732-bit libraries could be installed at a different location than
3758`/usr/lib32`. For example, Debian is known to install
3759some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3760
3761In this case, make sure to set `LDFLAGS` to all the
3762relevant 32-bit library paths, for example:
3763
3764[role="term"]
3765----
3766$ LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3767----
3768====
3769
3770. Download the latest LTTng-tools{nbsp}{revision}, build, and install
3771 the 32-bit consumer daemon:
3772+
3773--
3774[role="term"]
3775----
3776$ cd $(mktemp -d) &&
3777wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
3778tar -xf lttng-tools-latest-2.10.tar.bz2 &&
3779cd lttng-tools-2.10.* &&
3780./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3781 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' \
3782 --disable-bin-lttng --disable-bin-lttng-crash \
3783 --disable-bin-lttng-relayd --disable-bin-lttng-sessiond &&
3784make &&
3785cd src/bin/lttng-consumerd &&
3786sudo make install &&
3787sudo ldconfig
3788----
3789--
3790
3791. From your distribution or from source,
3792 <<installing-lttng,install>> the 64-bit versions of
3793 LTTng-UST and Userspace RCU.
3794. Download, build, and install the 64-bit version of the
3795 latest LTTng-tools{nbsp}{revision}:
3796+
3797--
3798[role="term"]
3799----
3800$ cd $(mktemp -d) &&
3801wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
3802tar -xf lttng-tools-latest-2.10.tar.bz2 &&
3803cd lttng-tools-2.10.* &&
3804./configure --with-consumerd32-libdir=/usr/local/lib32 \
3805 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
3806make &&
3807sudo make install &&
3808sudo ldconfig
3809----
3810--
3811
3812. Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
3813 when linking your 32-bit application:
3814+
3815----
3816-m32 -L/usr/lib32 -L/usr/local/lib32 \
3817-Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
3818----
3819+
3820For example, let's rebuild the quick start example in
3821<<tracing-your-own-user-application,Trace a user application>> as an
3822instrumented 32-bit application:
3823+
3824--
3825[role="term"]
3826----
3827$ gcc -m32 -c -I. hello-tp.c
3828$ gcc -m32 -c hello.c
3829$ gcc -m32 -o hello hello.o hello-tp.o \
3830 -L/usr/lib32 -L/usr/local/lib32 \
3831 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
3832 -llttng-ust -ldl
3833----
3834--
3835
3836No special action is required to execute the 32-bit application and
3837to trace it: use the command-line man:lttng(1) tool as usual.
3838
3839
3840[role="since-2.5"]
3841[[tracef]]
3842==== Use `tracef()`
3843
3844man:tracef(3) is a small LTTng-UST API designed for quick,
3845man:printf(3)-like instrumentation without the burden of
3846<<tracepoint-provider,creating>> and
3847<<building-tracepoint-providers-and-user-application,building>>
3848a tracepoint provider package.
3849
3850To use `tracef()` in your application:
3851
3852. In the C or C++ source files where you need to use `tracef()`,
3853 include `<lttng/tracef.h>`:
3854+
3855--
3856[source,c]
3857----
3858#include <lttng/tracef.h>
3859----
3860--
3861
3862. In the application's source code, use `tracef()` like you would use
3863 man:printf(3):
3864+
3865--
3866[source,c]
3867----
3868 /* ... */
3869
3870 tracef("my message: %d (%s)", my_integer, my_string);
3871
3872 /* ... */
3873----
3874--
3875
3876. Link your application with `liblttng-ust`:
3877+
3878--
3879[role="term"]
3880----
3881$ gcc -o app app.c -llttng-ust
3882----
3883--
3884
3885To trace the events that `tracef()` calls emit:
3886
3887* <<enabling-disabling-events,Create an event rule>> which matches the
3888 `lttng_ust_tracef:*` event name:
3889+
3890--
3891[role="term"]
3892----
3893$ lttng enable-event --userspace 'lttng_ust_tracef:*'
3894----
3895--
3896
3897[IMPORTANT]
3898.Limitations of `tracef()`
3899====
3900The `tracef()` utility function was developed to make user space tracing
3901super simple, albeit with notable disadvantages compared to
3902<<defining-tracepoints,user-defined tracepoints>>:
3903
3904* All the emitted events have the same tracepoint provider and
3905 tracepoint names, respectively `lttng_ust_tracef` and `event`.
3906* There is no static type checking.
3907* The only event record field you actually get, named `msg`, is a string
3908 potentially containing the values you passed to `tracef()`
3909 using your own format string. This also means that you cannot filter
3910 events with a custom expression at run time because there are no
3911 isolated fields.
3912* Since `tracef()` uses the C standard library's man:vasprintf(3)
3913 function behind the scenes to format the strings at run time, its
3914 expected performance is lower than with user-defined tracepoints,
3915 which do not require a conversion to a string.
3916
3917Taking this into consideration, `tracef()` is useful for some quick
3918prototyping and debugging, but you should not consider it for any
3919permanent and serious applicative instrumentation.
3920====
3921
3922
3923[role="since-2.7"]
3924[[tracelog]]
3925==== Use `tracelog()`
3926
3927The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
3928the difference that it accepts an additional log level parameter.
3929
3930The goal of `tracelog()` is to ease the migration from logging to
3931tracing.
3932
3933To use `tracelog()` in your application:
3934
3935. In the C or C++ source files where you need to use `tracelog()`,
3936 include `<lttng/tracelog.h>`:
3937+
3938--
3939[source,c]
3940----
3941#include <lttng/tracelog.h>
3942----
3943--
3944
3945. In the application's source code, use `tracelog()` like you would use
3946 man:printf(3), except for the first parameter which is the log
3947 level:
3948+
3949--
3950[source,c]
3951----
3952 /* ... */
3953
3954 tracelog(TRACE_WARNING, "my message: %d (%s)",
3955 my_integer, my_string);
3956
3957 /* ... */
3958----
3959--
3960+
3961See man:lttng-ust(3) for a list of available log level names.
3962
3963. Link your application with `liblttng-ust`:
3964+
3965--
3966[role="term"]
3967----
3968$ gcc -o app app.c -llttng-ust
3969----
3970--
3971
3972To trace the events that `tracelog()` calls emit with a log level
3973_as severe as_ a specific log level:
3974
3975* <<enabling-disabling-events,Create an event rule>> which matches the
3976 `lttng_ust_tracelog:*` event name and a minimum level
3977 of severity:
3978+
3979--
3980[role="term"]
3981----
3982$ lttng enable-event --userspace 'lttng_ust_tracelog:*'
3983 --loglevel=TRACE_WARNING
3984----
3985--
3986
3987To trace the events that `tracelog()` calls emit with a
3988_specific log level_:
3989
3990* Create an event rule which matches the `lttng_ust_tracelog:*`
3991 event name and a specific log level:
3992+
3993--
3994[role="term"]
3995----
3996$ lttng enable-event --userspace 'lttng_ust_tracelog:*'
3997 --loglevel-only=TRACE_INFO
3998----
3999--
4000
4001
4002[[prebuilt-ust-helpers]]
4003=== Prebuilt user space tracing helpers
4004
4005The LTTng-UST package provides a few helpers in the form or preloadable
4006shared objects which automatically instrument system functions and
4007calls.
4008
4009The helper shared objects are normally found in dir:{/usr/lib}. If you
4010built LTTng-UST <<building-from-source,from source>>, they are probably
4011located in dir:{/usr/local/lib}.
4012
4013The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4014are:
4015
4016path:{liblttng-ust-libc-wrapper.so}::
4017path:{liblttng-ust-pthread-wrapper.so}::
4018 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4019 memory and POSIX threads function tracing>>.
4020
4021path:{liblttng-ust-cyg-profile.so}::
4022path:{liblttng-ust-cyg-profile-fast.so}::
4023 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4024
4025path:{liblttng-ust-dl.so}::
4026 <<liblttng-ust-dl,Dynamic linker tracing>>.
4027
4028To use a user space tracing helper with any user application:
4029
4030* Preload the helper shared object when you start the application:
4031+
4032--
4033[role="term"]
4034----
4035$ LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4036----
4037--
4038+
4039You can preload more than one helper:
4040+
4041--
4042[role="term"]
4043----
4044$ LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4045----
4046--
4047
4048
4049[role="since-2.3"]
4050[[liblttng-ust-libc-pthread-wrapper]]
4051==== Instrument C standard library memory and POSIX threads functions
4052
4053The path:{liblttng-ust-libc-wrapper.so} and
4054path:{liblttng-ust-pthread-wrapper.so} helpers
4055add instrumentation to some C standard library and POSIX
4056threads functions.
4057
4058[role="growable"]
4059.Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4060|====
4061|TP provider name |TP name |Instrumented function
4062
4063.6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4064 |`calloc` |man:calloc(3)
4065 |`realloc` |man:realloc(3)
4066 |`free` |man:free(3)
4067 |`memalign` |man:memalign(3)
4068 |`posix_memalign` |man:posix_memalign(3)
4069|====
4070
4071[role="growable"]
4072.Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4073|====
4074|TP provider name |TP name |Instrumented function
4075
4076.4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4077 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4078 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4079 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4080|====
4081
4082When you preload the shared object, it replaces the functions listed
4083in the previous tables by wrappers which contain tracepoints and call
4084the replaced functions.
4085
4086
4087[[liblttng-ust-cyg-profile]]
4088==== Instrument function entry and exit
4089
4090The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4091to the entry and exit points of functions.
4092
4093man:gcc(1) and man:clang(1) have an option named
4094https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html[`-finstrument-functions`]
4095which generates instrumentation calls for entry and exit to functions.
4096The LTTng-UST function tracing helpers,
4097path:{liblttng-ust-cyg-profile.so} and
4098path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4099to add tracepoints to the two generated functions (which contain
4100`cyg_profile` in their names, hence the helper's name).
4101
4102To use the LTTng-UST function tracing helper, the source files to
4103instrument must be built using the `-finstrument-functions` compiler
4104flag.
4105
4106There are two versions of the LTTng-UST function tracing helper:
4107
4108* **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4109 that you should only use when it can be _guaranteed_ that the
4110 complete event stream is recorded without any lost event record.
4111 Any kind of duplicate information is left out.
4112+
4113Assuming no event record is lost, having only the function addresses on
4114entry is enough to create a call graph, since an event record always
4115contains the ID of the CPU that generated it.
4116+
4117You can use a tool like man:addr2line(1) to convert function addresses
4118back to source file names and line numbers.
4119
4120* **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4121which also works in use cases where event records might get discarded or
4122not recorded from application startup.
4123In these cases, the trace analyzer needs more information to be
4124able to reconstruct the program flow.
4125
4126See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4127points of this helper.
4128
4129All the tracepoints that this helper provides have the
4130log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4131
4132TIP: It's sometimes a good idea to limit the number of source files that
4133you compile with the `-finstrument-functions` option to prevent LTTng
4134from writing an excessive amount of trace data at run time. When using
4135man:gcc(1), you can use the
4136`-finstrument-functions-exclude-function-list` option to avoid
4137instrument entries and exits of specific function names.
4138
4139
4140[role="since-2.4"]
4141[[liblttng-ust-dl]]
4142==== Instrument the dynamic linker
4143
4144The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4145man:dlopen(3) and man:dlclose(3) function calls.
4146
4147See man:lttng-ust-dl(3) to learn more about the instrumentation points
4148of this helper.
4149
4150
4151[role="since-2.4"]
4152[[java-application]]
4153=== User space Java agent
4154
4155You can instrument any Java application which uses one of the following
4156logging frameworks:
4157
4158* The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4159 (JUL) core logging facilities.
4160* http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4161 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4162
4163[role="img-100"]
4164.LTTng-UST Java agent imported by a Java application.
4165image::java-app.png[]
4166
4167Note that the methods described below are new in LTTng{nbsp}{revision}.
4168Previous LTTng versions use another technique.
4169
4170NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4171and https://ci.lttng.org/[continuous integration], thus this version is
4172directly supported. However, the LTTng-UST Java agent is also tested
4173with OpenJDK{nbsp}7.
4174
4175
4176[role="since-2.8"]
4177[[jul]]
4178==== Use the LTTng-UST Java agent for `java.util.logging`
4179
4180To use the LTTng-UST Java agent in a Java application which uses
4181`java.util.logging` (JUL):
4182
4183. In the Java application's source code, import the LTTng-UST
4184 log handler package for `java.util.logging`:
4185+
4186--
4187[source,java]
4188----
4189import org.lttng.ust.agent.jul.LttngLogHandler;
4190----
4191--
4192
4193. Create an LTTng-UST JUL log handler:
4194+
4195--
4196[source,java]
4197----
4198Handler lttngUstLogHandler = new LttngLogHandler();
4199----
4200--
4201
4202. Add this handler to the JUL loggers which should emit LTTng events:
4203+
4204--
4205[source,java]
4206----
4207Logger myLogger = Logger.getLogger("some-logger");
4208
4209myLogger.addHandler(lttngUstLogHandler);
4210----
4211--
4212
4213. Use `java.util.logging` log statements and configuration as usual.
4214 The loggers with an attached LTTng-UST log handler can emit
4215 LTTng events.
4216
4217. Before exiting the application, remove the LTTng-UST log handler from
4218 the loggers attached to it and call its `close()` method:
4219+
4220--
4221[source,java]
4222----
4223myLogger.removeHandler(lttngUstLogHandler);
4224lttngUstLogHandler.close();
4225----
4226--
4227+
4228This is not strictly necessary, but it is recommended for a clean
4229disposal of the handler's resources.
4230
4231. Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4232 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4233 in the
4234 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4235 path] when you build the Java application.
4236+
4237The JAR files are typically located in dir:{/usr/share/java}.
4238+
4239IMPORTANT: The LTTng-UST Java agent must be
4240<<installing-lttng,installed>> for the logging framework your
4241application uses.
4242
4243.Use the LTTng-UST Java agent for `java.util.logging`.
4244====
4245[source,java]
4246.path:{Test.java}
4247----
4248import java.io.IOException;
4249import java.util.logging.Handler;
4250import java.util.logging.Logger;
4251import org.lttng.ust.agent.jul.LttngLogHandler;
4252
4253public class Test
4254{
4255 private static final int answer = 42;
4256
4257 public static void main(String[] argv) throws Exception
4258 {
4259 // Create a logger
4260 Logger logger = Logger.getLogger("jello");
4261
4262 // Create an LTTng-UST log handler
4263 Handler lttngUstLogHandler = new LttngLogHandler();
4264
4265 // Add the LTTng-UST log handler to our logger
4266 logger.addHandler(lttngUstLogHandler);
4267
4268 // Log at will!
4269 logger.info("some info");
4270 logger.warning("some warning");
4271 Thread.sleep(500);
4272 logger.finer("finer information; the answer is " + answer);
4273 Thread.sleep(123);
4274 logger.severe("error!");
4275
4276 // Not mandatory, but cleaner
4277 logger.removeHandler(lttngUstLogHandler);
4278 lttngUstLogHandler.close();
4279 }
4280}
4281----
4282
4283Build this example:
4284
4285[role="term"]
4286----
4287$ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4288----
4289
4290<<creating-destroying-tracing-sessions,Create a tracing session>>,
4291<<enabling-disabling-events,create an event rule>> matching the
4292`jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4293
4294[role="term"]
4295----
4296$ lttng create
4297$ lttng enable-event --jul jello
4298$ lttng start
4299----
4300
4301Run the compiled class:
4302
4303[role="term"]
4304----
4305$ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4306----
4307
4308<<basic-tracing-session-control,Stop tracing>> and inspect the
4309recorded events:
4310
4311[role="term"]
4312----
4313$ lttng stop
4314$ lttng view
4315----
4316====
4317
4318In the resulting trace, an <<event,event record>> generated by a Java
4319application using `java.util.logging` is named `lttng_jul:event` and
4320has the following fields:
4321
4322`msg`::
4323 Log record's message.
4324
4325`logger_name`::
4326 Logger name.
4327
4328`class_name`::
4329 Name of the class in which the log statement was executed.
4330
4331`method_name`::
4332 Name of the method in which the log statement was executed.
4333
4334`long_millis`::
4335 Logging time (timestamp in milliseconds).
4336
4337`int_loglevel`::
4338 Log level integer value.
4339
4340`int_threadid`::
4341 ID of the thread in which the log statement was executed.
4342
4343You can use the opt:lttng-enable-event(1):--loglevel or
4344opt:lttng-enable-event(1):--loglevel-only option of the
4345man:lttng-enable-event(1) command to target a range of JUL log levels
4346or a specific JUL log level.
4347
4348
4349[role="since-2.8"]
4350[[log4j]]
4351==== Use the LTTng-UST Java agent for Apache log4j
4352
4353To use the LTTng-UST Java agent in a Java application which uses
4354Apache log4j 1.2:
4355
4356. In the Java application's source code, import the LTTng-UST
4357 log appender package for Apache log4j:
4358+
4359--
4360[source,java]
4361----
4362import org.lttng.ust.agent.log4j.LttngLogAppender;
4363----
4364--
4365
4366. Create an LTTng-UST log4j log appender:
4367+
4368--
4369[source,java]
4370----
4371Appender lttngUstLogAppender = new LttngLogAppender();
4372----
4373--
4374
4375. Add this appender to the log4j loggers which should emit LTTng events:
4376+
4377--
4378[source,java]
4379----
4380Logger myLogger = Logger.getLogger("some-logger");
4381
4382myLogger.addAppender(lttngUstLogAppender);
4383----
4384--
4385
4386. Use Apache log4j log statements and configuration as usual. The
4387 loggers with an attached LTTng-UST log appender can emit LTTng events.
4388
4389. Before exiting the application, remove the LTTng-UST log appender from
4390 the loggers attached to it and call its `close()` method:
4391+
4392--
4393[source,java]
4394----
4395myLogger.removeAppender(lttngUstLogAppender);
4396lttngUstLogAppender.close();
4397----
4398--
4399+
4400This is not strictly necessary, but it is recommended for a clean
4401disposal of the appender's resources.
4402
4403. Include the LTTng-UST Java agent's common and log4j-specific JAR
4404 files, path:{lttng-ust-agent-common.jar} and
4405 path:{lttng-ust-agent-log4j.jar}, in the
4406 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4407 path] when you build the Java application.
4408+
4409The JAR files are typically located in dir:{/usr/share/java}.
4410+
4411IMPORTANT: The LTTng-UST Java agent must be
4412<<installing-lttng,installed>> for the logging framework your
4413application uses.
4414
4415.Use the LTTng-UST Java agent for Apache log4j.
4416====
4417[source,java]
4418.path:{Test.java}
4419----
4420import org.apache.log4j.Appender;
4421import org.apache.log4j.Logger;
4422import org.lttng.ust.agent.log4j.LttngLogAppender;
4423
4424public class Test
4425{
4426 private static final int answer = 42;
4427
4428 public static void main(String[] argv) throws Exception
4429 {
4430 // Create a logger
4431 Logger logger = Logger.getLogger("jello");
4432
4433 // Create an LTTng-UST log appender
4434 Appender lttngUstLogAppender = new LttngLogAppender();
4435
4436 // Add the LTTng-UST log appender to our logger
4437 logger.addAppender(lttngUstLogAppender);
4438
4439 // Log at will!
4440 logger.info("some info");
4441 logger.warn("some warning");
4442 Thread.sleep(500);
4443 logger.debug("debug information; the answer is " + answer);
4444 Thread.sleep(123);
4445 logger.fatal("error!");
4446
4447 // Not mandatory, but cleaner
4448 logger.removeAppender(lttngUstLogAppender);
4449 lttngUstLogAppender.close();
4450 }
4451}
4452
4453----
4454
4455Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4456file):
4457
4458[role="term"]
4459----
4460$ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4461----
4462
4463<<creating-destroying-tracing-sessions,Create a tracing session>>,
4464<<enabling-disabling-events,create an event rule>> matching the
4465`jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4466
4467[role="term"]
4468----
4469$ lttng create
4470$ lttng enable-event --log4j jello
4471$ lttng start
4472----
4473
4474Run the compiled class:
4475
4476[role="term"]
4477----
4478$ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4479----
4480
4481<<basic-tracing-session-control,Stop tracing>> and inspect the
4482recorded events:
4483
4484[role="term"]
4485----
4486$ lttng stop
4487$ lttng view
4488----
4489====
4490
4491In the resulting trace, an <<event,event record>> generated by a Java
4492application using log4j is named `lttng_log4j:event` and
4493has the following fields:
4494
4495`msg`::
4496 Log record's message.
4497
4498`logger_name`::
4499 Logger name.
4500
4501`class_name`::
4502 Name of the class in which the log statement was executed.
4503
4504`method_name`::
4505 Name of the method in which the log statement was executed.
4506
4507`filename`::
4508 Name of the file in which the executed log statement is located.
4509
4510`line_number`::
4511 Line number at which the log statement was executed.
4512
4513`timestamp`::
4514 Logging timestamp.
4515
4516`int_loglevel`::
4517 Log level integer value.
4518
4519`thread_name`::
4520 Name of the Java thread in which the log statement was executed.
4521
4522You can use the opt:lttng-enable-event(1):--loglevel or
4523opt:lttng-enable-event(1):--loglevel-only option of the
4524man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4525or a specific log4j log level.
4526
4527
4528[role="since-2.8"]
4529[[java-application-context]]
4530==== Provide application-specific context fields in a Java application
4531
4532A Java application-specific context field is a piece of state provided
4533by the application which <<adding-context,you can add>>, using the
4534man:lttng-add-context(1) command, to each <<event,event record>>
4535produced by the log statements of this application.
4536
4537For example, a given object might have a current request ID variable.
4538You can create a context information retriever for this object and
4539assign a name to this current request ID. You can then, using the
4540man:lttng-add-context(1) command, add this context field by name to
4541the JUL or log4j <<channel,channel>>.
4542
4543To provide application-specific context fields in a Java application:
4544
4545. In the Java application's source code, import the LTTng-UST
4546 Java agent context classes and interfaces:
4547+
4548--
4549[source,java]
4550----
4551import org.lttng.ust.agent.context.ContextInfoManager;
4552import org.lttng.ust.agent.context.IContextInfoRetriever;
4553----
4554--
4555
4556. Create a context information retriever class, that is, a class which
4557 implements the `IContextInfoRetriever` interface:
4558+
4559--
4560[source,java]
4561----
4562class MyContextInfoRetriever implements IContextInfoRetriever
4563{
4564 @Override
4565 public Object retrieveContextInfo(String key)
4566 {
4567 if (key.equals("intCtx")) {
4568 return (short) 17;
4569 } else if (key.equals("strContext")) {
4570 return "context value!";
4571 } else {
4572 return null;
4573 }
4574 }
4575}
4576----
4577--
4578+
4579This `retrieveContextInfo()` method is the only member of the
4580`IContextInfoRetriever` interface. Its role is to return the current
4581value of a state by name to create a context field. The names of the
4582context fields and which state variables they return depends on your
4583specific scenario.
4584+
4585All primitive types and objects are supported as context fields.
4586When `retrieveContextInfo()` returns an object, the context field
4587serializer calls its `toString()` method to add a string field to
4588event records. The method can also return `null`, which means that
4589no context field is available for the required name.
4590
4591. Register an instance of your context information retriever class to
4592 the context information manager singleton:
4593+
4594--
4595[source,java]
4596----
4597IContextInfoRetriever cir = new MyContextInfoRetriever();
4598ContextInfoManager cim = ContextInfoManager.getInstance();
4599cim.registerContextInfoRetriever("retrieverName", cir);
4600----
4601--
4602
4603. Before exiting the application, remove your context information
4604 retriever from the context information manager singleton:
4605+
4606--
4607[source,java]
4608----
4609ContextInfoManager cim = ContextInfoManager.getInstance();
4610cim.unregisterContextInfoRetriever("retrieverName");
4611----
4612--
4613+
4614This is not strictly necessary, but it is recommended for a clean
4615disposal of some manager's resources.
4616
4617. Build your Java application with LTTng-UST Java agent support as
4618 usual, following the procedure for either the <<jul,JUL>> or
4619 <<log4j,Apache log4j>> framework.
4620
4621
4622.Provide application-specific context fields in a Java application.
4623====
4624[source,java]
4625.path:{Test.java}
4626----
4627import java.util.logging.Handler;
4628import java.util.logging.Logger;
4629import org.lttng.ust.agent.jul.LttngLogHandler;
4630import org.lttng.ust.agent.context.ContextInfoManager;
4631import org.lttng.ust.agent.context.IContextInfoRetriever;
4632
4633public class Test
4634{
4635 // Our context information retriever class
4636 private static class MyContextInfoRetriever
4637 implements IContextInfoRetriever
4638 {
4639 @Override
4640 public Object retrieveContextInfo(String key) {
4641 if (key.equals("intCtx")) {
4642 return (short) 17;
4643 } else if (key.equals("strContext")) {
4644 return "context value!";
4645 } else {
4646 return null;
4647 }
4648 }
4649 }
4650
4651 private static final int answer = 42;
4652
4653 public static void main(String args[]) throws Exception
4654 {
4655 // Get the context information manager instance
4656 ContextInfoManager cim = ContextInfoManager.getInstance();
4657
4658 // Create and register our context information retriever
4659 IContextInfoRetriever cir = new MyContextInfoRetriever();
4660 cim.registerContextInfoRetriever("myRetriever", cir);
4661
4662 // Create a logger
4663 Logger logger = Logger.getLogger("jello");
4664
4665 // Create an LTTng-UST log handler
4666 Handler lttngUstLogHandler = new LttngLogHandler();
4667
4668 // Add the LTTng-UST log handler to our logger
4669 logger.addHandler(lttngUstLogHandler);
4670
4671 // Log at will!
4672 logger.info("some info");
4673 logger.warning("some warning");
4674 Thread.sleep(500);
4675 logger.finer("finer information; the answer is " + answer);
4676 Thread.sleep(123);
4677 logger.severe("error!");
4678
4679 // Not mandatory, but cleaner
4680 logger.removeHandler(lttngUstLogHandler);
4681 lttngUstLogHandler.close();
4682 cim.unregisterContextInfoRetriever("myRetriever");
4683 }
4684}
4685----
4686
4687Build this example:
4688
4689[role="term"]
4690----
4691$ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4692----
4693
4694<<creating-destroying-tracing-sessions,Create a tracing session>>
4695and <<enabling-disabling-events,create an event rule>> matching the
4696`jello` JUL logger:
4697
4698[role="term"]
4699----
4700$ lttng create
4701$ lttng enable-event --jul jello
4702----
4703
4704<<adding-context,Add the application-specific context fields>> to the
4705JUL channel:
4706
4707[role="term"]
4708----
4709$ lttng add-context --jul --type='$app.myRetriever:intCtx'
4710$ lttng add-context --jul --type='$app.myRetriever:strContext'
4711----
4712
4713<<basic-tracing-session-control,Start tracing>>:
4714
4715[role="term"]
4716----
4717$ lttng start
4718----
4719
4720Run the compiled class:
4721
4722[role="term"]
4723----
4724$ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4725----
4726
4727<<basic-tracing-session-control,Stop tracing>> and inspect the
4728recorded events:
4729
4730[role="term"]
4731----
4732$ lttng stop
4733$ lttng view
4734----
4735====
4736
4737
4738[role="since-2.7"]
4739[[python-application]]
4740=== User space Python agent
4741
4742You can instrument a Python 2 or Python 3 application which uses the
4743standard https://docs.python.org/3/library/logging.html[`logging`]
4744package.
4745
4746Each log statement emits an LTTng event once the
4747application module imports the
4748<<lttng-ust-agents,LTTng-UST Python agent>> package.
4749
4750[role="img-100"]
4751.A Python application importing the LTTng-UST Python agent.
4752image::python-app.png[]
4753
4754To use the LTTng-UST Python agent:
4755
4756. In the Python application's source code, import the LTTng-UST Python
4757 agent:
4758+
4759--
4760[source,python]
4761----
4762import lttngust
4763----
4764--
4765+
4766The LTTng-UST Python agent automatically adds its logging handler to the
4767root logger at import time.
4768+
4769Any log statement that the application executes before this import does
4770not emit an LTTng event.
4771+
4772IMPORTANT: The LTTng-UST Python agent must be
4773<<installing-lttng,installed>>.
4774
4775. Use log statements and logging configuration as usual.
4776 Since the LTTng-UST Python agent adds a handler to the _root_
4777 logger, you can trace any log statement from any logger.
4778
4779.Use the LTTng-UST Python agent.
4780====
4781[source,python]
4782.path:{test.py}
4783----
4784import lttngust
4785import logging
4786import time
4787
4788
4789def example():
4790 logging.basicConfig()
4791 logger = logging.getLogger('my-logger')
4792
4793 while True:
4794 logger.debug('debug message')
4795 logger.info('info message')
4796 logger.warn('warn message')
4797 logger.error('error message')
4798 logger.critical('critical message')
4799 time.sleep(1)
4800
4801
4802if __name__ == '__main__':
4803 example()
4804----
4805
4806NOTE: `logging.basicConfig()`, which adds to the root logger a basic
4807logging handler which prints to the standard error stream, is not
4808strictly required for LTTng-UST tracing to work, but in versions of
4809Python preceding 3.2, you could see a warning message which indicates
4810that no handler exists for the logger `my-logger`.
4811
4812<<creating-destroying-tracing-sessions,Create a tracing session>>,
4813<<enabling-disabling-events,create an event rule>> matching the
4814`my-logger` Python logger, and <<basic-tracing-session-control,start
4815tracing>>:
4816
4817[role="term"]
4818----
4819$ lttng create
4820$ lttng enable-event --python my-logger
4821$ lttng start
4822----
4823
4824Run the Python script:
4825
4826[role="term"]
4827----
4828$ python test.py
4829----
4830
4831<<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4832events:
4833
4834[role="term"]
4835----
4836$ lttng stop
4837$ lttng view
4838----
4839====
4840
4841In the resulting trace, an <<event,event record>> generated by a Python
4842application is named `lttng_python:event` and has the following fields:
4843
4844`asctime`::
4845 Logging time (string).
4846
4847`msg`::
4848 Log record's message.
4849
4850`logger_name`::
4851 Logger name.
4852
4853`funcName`::
4854 Name of the function in which the log statement was executed.
4855
4856`lineno`::
4857 Line number at which the log statement was executed.
4858
4859`int_loglevel`::
4860 Log level integer value.
4861
4862`thread`::
4863 ID of the Python thread in which the log statement was executed.
4864
4865`threadName`::
4866 Name of the Python thread in which the log statement was executed.
4867
4868You can use the opt:lttng-enable-event(1):--loglevel or
4869opt:lttng-enable-event(1):--loglevel-only option of the
4870man:lttng-enable-event(1) command to target a range of Python log levels
4871or a specific Python log level.
4872
4873When an application imports the LTTng-UST Python agent, the agent tries
4874to register to a <<lttng-sessiond,session daemon>>. Note that you must
4875<<start-sessiond,start the session daemon>> _before_ you run the Python
4876application. If a session daemon is found, the agent tries to register
4877to it during 5{nbsp}seconds, after which the application continues
4878without LTTng tracing support. You can override this timeout value with
4879the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
4880(milliseconds).
4881
4882If the session daemon stops while a Python application with an imported
4883LTTng-UST Python agent runs, the agent retries to connect and to
4884register to a session daemon every 3{nbsp}seconds. You can override this
4885delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
4886variable.
4887
4888
4889[role="since-2.5"]
4890[[proc-lttng-logger-abi]]
4891=== LTTng logger
4892
4893The `lttng-tracer` Linux kernel module, part of
4894<<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
4895path:{/proc/lttng-logger} when it's loaded. Any application can write
4896text data to this file to emit an LTTng event.
4897
4898[role="img-100"]
4899.An application writes to the LTTng logger file to emit an LTTng event.
4900image::lttng-logger.png[]
4901
4902The LTTng logger is the quickest method--not the most efficient,
4903however--to add instrumentation to an application. It is designed
4904mostly to instrument shell scripts:
4905
4906[role="term"]
4907----
4908$ echo "Some message, some $variable" > /proc/lttng-logger
4909----
4910
4911Any event that the LTTng logger emits is named `lttng_logger` and
4912belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
4913other instrumentation points in the kernel tracing domain, **any Unix
4914user** can <<enabling-disabling-events,create an event rule>> which
4915matches its event name, not only the root user or users in the
4916<<tracing-group,tracing group>>.
4917
4918To use the LTTng logger:
4919
4920* From any application, write text data to the path:{/proc/lttng-logger}
4921 file.
4922
4923The `msg` field of `lttng_logger` event records contains the
4924recorded message.
4925
4926NOTE: The maximum message length of an LTTng logger event is
49271024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
4928than one event to contain the remaining data.
4929
4930You should not use the LTTng logger to trace a user application which
4931can be instrumented in a more efficient way, namely:
4932
4933* <<c-application,C and $$C++$$ applications>>.
4934* <<java-application,Java applications>>.
4935* <<python-application,Python applications>>.
4936
4937.Use the LTTng logger.
4938====
4939[source,bash]
4940.path:{test.bash}
4941----
4942echo 'Hello, World!' > /proc/lttng-logger
4943sleep 2
4944df --human-readable --print-type / > /proc/lttng-logger
4945----
4946
4947<<creating-destroying-tracing-sessions,Create a tracing session>>,
4948<<enabling-disabling-events,create an event rule>> matching the
4949`lttng_logger` Linux kernel tracepoint, and
4950<<basic-tracing-session-control,start tracing>>:
4951
4952[role="term"]
4953----
4954$ lttng create
4955$ lttng enable-event --kernel lttng_logger
4956$ lttng start
4957----
4958
4959Run the Bash script:
4960
4961[role="term"]
4962----
4963$ bash test.bash
4964----
4965
4966<<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4967events:
4968
4969[role="term"]
4970----
4971$ lttng stop
4972$ lttng view
4973----
4974====
4975
4976
4977[[instrumenting-linux-kernel]]
4978=== LTTng kernel tracepoints
4979
4980NOTE: This section shows how to _add_ instrumentation points to the
4981Linux kernel. The kernel's subsystems are already thoroughly
4982instrumented at strategic places for LTTng when you
4983<<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
4984package.
4985
4986////
4987There are two methods to instrument the Linux kernel:
4988
4989. <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
4990 tracepoint which uses the `TRACE_EVENT()` API.
4991+
4992Choose this if you want to instrumentation a Linux kernel tree with an
4993instrumentation point compatible with ftrace, perf, and SystemTap.
4994
4995. Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
4996 instrument an out-of-tree kernel module.
4997+
4998Choose this if you don't need ftrace, perf, or SystemTap support.
4999////
5000
5001
5002[[linux-add-lttng-layer]]
5003==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
5004
5005This section shows how to add an LTTng layer to existing ftrace
5006instrumentation using the `TRACE_EVENT()` API.
5007
5008This section does not document the `TRACE_EVENT()` macro. You can
5009read the following articles to learn more about this API:
5010
5011* http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
5012* http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
5013* http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
5014
5015The following procedure assumes that your ftrace tracepoints are
5016correctly defined in their own header and that they are created in
5017one source file using the `CREATE_TRACE_POINTS` definition.
5018
5019To add an LTTng layer over an existing ftrace tracepoint:
5020
5021. Make sure the following kernel configuration options are
5022 enabled:
5023+
5024--
5025* `CONFIG_MODULES`
5026* `CONFIG_KALLSYMS`
5027* `CONFIG_HIGH_RES_TIMERS`
5028* `CONFIG_TRACEPOINTS`
5029--
5030
5031. Build the Linux source tree with your custom ftrace tracepoints.
5032. Boot the resulting Linux image on your target system.
5033+
5034Confirm that the tracepoints exist by looking for their names in the
5035dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5036is your subsystem's name.
5037
5038. Get a copy of the latest LTTng-modules{nbsp}{revision}:
5039+
5040--
5041[role="term"]
5042----
5043$ cd $(mktemp -d) &&
5044wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
5045tar -xf lttng-modules-latest-2.10.tar.bz2 &&
5046cd lttng-modules-2.10.*
5047----
5048--
5049
5050. In dir:{instrumentation/events/lttng-module}, relative to the root
5051 of the LTTng-modules source tree, create a header file named
5052 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5053 LTTng-modules tracepoint definitions using the LTTng-modules
5054 macros in it.
5055+
5056Start with this template:
5057+
5058--
5059[source,c]
5060.path:{instrumentation/events/lttng-module/my_subsys.h}
5061----
5062#undef TRACE_SYSTEM
5063#define TRACE_SYSTEM my_subsys
5064
5065#if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5066#define _LTTNG_MY_SUBSYS_H
5067
5068#include "../../../probes/lttng-tracepoint-event.h"
5069#include <linux/tracepoint.h>
5070
5071LTTNG_TRACEPOINT_EVENT(
5072 /*
5073 * Format is identical to TRACE_EVENT()'s version for the three
5074 * following macro parameters:
5075 */
5076 my_subsys_my_event,
5077 TP_PROTO(int my_int, const char *my_string),
5078 TP_ARGS(my_int, my_string),
5079
5080 /* LTTng-modules specific macros */
5081 TP_FIELDS(
5082 ctf_integer(int, my_int_field, my_int)
5083 ctf_string(my_bar_field, my_bar)
5084 )
5085)
5086
5087#endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5088
5089#include "../../../probes/define_trace.h"
5090----
5091--
5092+
5093The entries in the `TP_FIELDS()` section are the list of fields for the
5094LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5095ftrace's `TRACE_EVENT()` macro.
5096+
5097See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5098complete description of the available `ctf_*()` macros.
5099
5100. Create the LTTng-modules probe's kernel module C source file,
5101 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5102 subsystem name:
5103+
5104--
5105[source,c]
5106.path:{probes/lttng-probe-my-subsys.c}
5107----
5108#include <linux/module.h>
5109#include "../lttng-tracer.h"
5110
5111/*
5112 * Build-time verification of mismatch between mainline
5113 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5114 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5115 */
5116#include <trace/events/my_subsys.h>
5117
5118/* Create LTTng tracepoint probes */
5119#define LTTNG_PACKAGE_BUILD
5120#define CREATE_TRACE_POINTS
5121#define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5122
5123#include "../instrumentation/events/lttng-module/my_subsys.h"
5124
5125MODULE_LICENSE("GPL and additional rights");
5126MODULE_AUTHOR("Your name <your-email>");
5127MODULE_DESCRIPTION("LTTng my_subsys probes");
5128MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5129 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5130 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5131 LTTNG_MODULES_EXTRAVERSION);
5132----
5133--
5134
5135. Edit path:{probes/KBuild} and add your new kernel module object
5136 next to the existing ones:
5137+
5138--
5139[source,make]
5140.path:{probes/KBuild}
5141----
5142# ...
5143
5144obj-m += lttng-probe-module.o
5145obj-m += lttng-probe-power.o
5146
5147obj-m += lttng-probe-my-subsys.o
5148
5149# ...
5150----
5151--
5152
5153. Build and install the LTTng kernel modules:
5154+
5155--
5156[role="term"]
5157----
5158$ make KERNELDIR=/path/to/linux
5159# make modules_install && depmod -a
5160----
5161--
5162+
5163Replace `/path/to/linux` with the path to the Linux source tree where
5164you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5165
5166Note that you can also use the
5167<<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5168instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5169C code that need to be executed before the event fields are recorded.
5170
5171The best way to learn how to use the previous LTTng-modules macros is to
5172inspect the existing LTTng-modules tracepoint definitions in the
5173dir:{instrumentation/events/lttng-module} header files. Compare them
5174with the Linux kernel mainline versions in the
5175dir:{include/trace/events} directory of the Linux source tree.
5176
5177
5178[role="since-2.7"]
5179[[lttng-tracepoint-event-code]]
5180===== Use custom C code to access the data for tracepoint fields
5181
5182Although we recommended to always use the
5183<<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5184the arguments and fields of an LTTng-modules tracepoint when possible,
5185sometimes you need a more complex process to access the data that the
5186tracer records as event record fields. In other words, you need local
5187variables and multiple C{nbsp}statements instead of simple
5188argument-based expressions that you pass to the
5189<<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5190
5191You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5192`LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5193a block of C{nbsp}code to be executed before LTTng records the fields.
5194The structure of this macro is:
5195
5196[source,c]
5197.`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5198----
5199LTTNG_TRACEPOINT_EVENT_CODE(
5200 /*
5201 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5202 * version for the following three macro parameters:
5203 */
5204 my_subsys_my_event,
5205 TP_PROTO(int my_int, const char *my_string),
5206 TP_ARGS(my_int, my_string),
5207
5208 /* Declarations of custom local variables */
5209 TP_locvar(
5210 int a = 0;
5211 unsigned long b = 0;
5212 const char *name = "(undefined)";
5213 struct my_struct *my_struct;
5214 ),
5215
5216 /*
5217 * Custom code which uses both tracepoint arguments
5218 * (in TP_ARGS()) and local variables (in TP_locvar()).
5219 *
5220 * Local variables are actually members of a structure pointed
5221 * to by the special variable tp_locvar.
5222 */
5223 TP_code(
5224 if (my_int) {
5225 tp_locvar->a = my_int + 17;
5226 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5227 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5228 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5229 put_my_struct(tp_locvar->my_struct);
5230
5231 if (tp_locvar->b) {
5232 tp_locvar->a = 1;
5233 }
5234 }
5235 ),
5236
5237 /*
5238 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5239 * version for this, except that tp_locvar members can be
5240 * used in the argument expression parameters of
5241 * the ctf_*() macros.
5242 */
5243 TP_FIELDS(
5244 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5245 ctf_integer(int, my_struct_a, tp_locvar->a)
5246 ctf_string(my_string_field, my_string)
5247 ctf_string(my_struct_name, tp_locvar->name)
5248 )
5249)
5250----
5251
5252IMPORTANT: The C code defined in `TP_code()` must not have any side
5253effects when executed. In particular, the code must not allocate
5254memory or get resources without deallocating this memory or putting
5255those resources afterwards.
5256
5257
5258[[instrumenting-linux-kernel-tracing]]
5259==== Load and unload a custom probe kernel module
5260
5261You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5262kernel module>> in the kernel before it can emit LTTng events.
5263
5264To load the default probe kernel modules and a custom probe kernel
5265module:
5266
5267* Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5268 probe modules to load when starting a root <<lttng-sessiond,session
5269 daemon>>:
5270+
5271--
5272.Load the `my_subsys`, `usb`, and the default probe modules.
5273====
5274[role="term"]
5275----
5276# lttng-sessiond --extra-kmod-probes=my_subsys,usb
5277----
5278====
5279--
5280+
5281You only need to pass the subsystem name, not the whole kernel module
5282name.
5283
5284To load _only_ a given custom probe kernel module:
5285
5286* Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5287 modules to load when starting a root session daemon:
5288+
5289--
5290.Load only the `my_subsys` and `usb` probe modules.
5291====
5292[role="term"]
5293----
5294# lttng-sessiond --kmod-probes=my_subsys,usb
5295----
5296====
5297--
5298
5299To confirm that a probe module is loaded:
5300
5301* Use man:lsmod(8):
5302+
5303--
5304[role="term"]
5305----
5306$ lsmod | grep lttng_probe_usb
5307----
5308--
5309
5310To unload the loaded probe modules:
5311
5312* Kill the session daemon with `SIGTERM`:
5313+
5314--
5315[role="term"]
5316----
5317# pkill lttng-sessiond
5318----
5319--
5320+
5321You can also use man:modprobe(8)'s `--remove` option if the session
5322daemon terminates abnormally.
5323
5324
5325[[controlling-tracing]]
5326== Tracing control
5327
5328Once an application or a Linux kernel is
5329<<instrumenting,instrumented>> for LTTng tracing,
5330you can _trace_ it.
5331
5332This section is divided in topics on how to use the various
5333<<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5334command-line tool>>, to _control_ the LTTng daemons and tracers.
5335
5336NOTE: In the following subsections, we refer to an man:lttng(1) command
5337using its man page name. For example, instead of _Run the `create`
5338command to..._, we use _Run the man:lttng-create(1) command to..._.
5339
5340
5341[[start-sessiond]]
5342=== Start a session daemon
5343
5344In some situations, you need to run a <<lttng-sessiond,session daemon>>
5345(man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5346command-line tool.
5347
5348You will see the following error when you run a command while no session
5349daemon is running:
5350
5351----
5352Error: No session daemon is available
5353----
5354
5355The only command that automatically runs a session daemon is
5356man:lttng-create(1), which you use to
5357<<creating-destroying-tracing-sessions,create a tracing session>>. While
5358this is most of the time the first operation that you do, sometimes it's
5359not. Some examples are:
5360
5361* <<list-instrumentation-points,List the available instrumentation points>>.
5362* <<saving-loading-tracing-session,Load a tracing session configuration>>.
5363
5364[[tracing-group]] Each Unix user must have its own running session
5365daemon to trace user applications. The session daemon that the root user
5366starts is the only one allowed to control the LTTng kernel tracer. Users
5367that are part of the _tracing group_ can control the root session
5368daemon. The default tracing group name is `tracing`; you can set it to
5369something else with the opt:lttng-sessiond(8):--group option when you
5370start the root session daemon.
5371
5372To start a user session daemon:
5373
5374* Run man:lttng-sessiond(8):
5375+
5376--
5377[role="term"]
5378----
5379$ lttng-sessiond --daemonize
5380----
5381--
5382
5383To start the root session daemon:
5384
5385* Run man:lttng-sessiond(8) as the root user:
5386+
5387--
5388[role="term"]
5389----
5390# lttng-sessiond --daemonize
5391----
5392--
5393
5394In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5395start the session daemon in foreground.
5396
5397To stop a session daemon, use man:kill(1) on its process ID (standard
5398`TERM` signal).
5399
5400Note that some Linux distributions could manage the LTTng session daemon
5401as a service. In this case, you should use the service manager to
5402start, restart, and stop session daemons.
5403
5404
5405[[creating-destroying-tracing-sessions]]
5406=== Create and destroy a tracing session
5407
5408Almost all the LTTng control operations happen in the scope of
5409a <<tracing-session,tracing session>>, which is the dialogue between the
5410<<lttng-sessiond,session daemon>> and you.
5411
5412To create a tracing session with a generated name:
5413
5414* Use the man:lttng-create(1) command:
5415+
5416--
5417[role="term"]
5418----
5419$ lttng create
5420----
5421--
5422
5423The created tracing session's name is `auto` followed by the
5424creation date.
5425
5426To create a tracing session with a specific name:
5427
5428* Use the optional argument of the man:lttng-create(1) command:
5429+
5430--
5431[role="term"]
5432----
5433$ lttng create my-session
5434----
5435--
5436+
5437Replace `my-session` with the specific tracing session name.
5438
5439LTTng appends the creation date to the created tracing session's name.
5440
5441LTTng writes the traces of a tracing session in
5442+$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5443name of the tracing session. Note that the env:LTTNG_HOME environment
5444variable defaults to `$HOME` if not set.
5445
5446To output LTTng traces to a non-default location:
5447
5448* Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5449+
5450--
5451[role="term"]
5452----
5453$ lttng create my-session --output=/tmp/some-directory
5454----
5455--
5456
5457You may create as many tracing sessions as you wish.
5458
5459To list all the existing tracing sessions for your Unix user:
5460
5461* Use the man:lttng-list(1) command:
5462+
5463--
5464[role="term"]
5465----
5466$ lttng list
5467----
5468--
5469
5470When you create a tracing session, it is set as the _current tracing
5471session_. The following man:lttng(1) commands operate on the current
5472tracing session when you don't specify one:
5473
5474[role="list-3-cols"]
5475* `add-context`
5476* `destroy`
5477* `disable-channel`
5478* `disable-event`
5479* `enable-channel`
5480* `enable-event`
5481* `load`
5482* `regenerate`
5483* `save`
5484* `snapshot`
5485* `start`
5486* `stop`
5487* `track`
5488* `untrack`
5489* `view`
5490
5491To change the current tracing session:
5492
5493* Use the man:lttng-set-session(1) command:
5494+
5495--
5496[role="term"]
5497----
5498$ lttng set-session new-session
5499----
5500--
5501+
5502Replace `new-session` by the name of the new current tracing session.
5503
5504When you are done tracing in a given tracing session, you can destroy
5505it. This operation frees the resources taken by the tracing session
5506to destroy; it does not destroy the trace data that LTTng wrote for
5507this tracing session.
5508
5509To destroy the current tracing session:
5510
5511* Use the man:lttng-destroy(1) command:
5512+
5513--
5514[role="term"]
5515----
5516$ lttng destroy
5517----
5518--
5519
5520
5521[[list-instrumentation-points]]
5522=== List the available instrumentation points
5523
5524The <<lttng-sessiond,session daemon>> can query the running instrumented
5525user applications and the Linux kernel to get a list of available
5526instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5527they are tracepoints and system calls. For the user space tracing
5528domain, they are tracepoints. For the other tracing domains, they are
5529logger names.
5530
5531To list the available instrumentation points:
5532
5533* Use the man:lttng-list(1) command with the requested tracing domain's
5534 option amongst:
5535+
5536--
5537* opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5538 must be a root user, or it must be a member of the
5539 <<tracing-group,tracing group>>).
5540* opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5541 kernel system calls (your Unix user must be a root user, or it must be
5542 a member of the tracing group).
5543* opt:lttng-list(1):--userspace: user space tracepoints.
5544* opt:lttng-list(1):--jul: `java.util.logging` loggers.
5545* opt:lttng-list(1):--log4j: Apache log4j loggers.
5546* opt:lttng-list(1):--python: Python loggers.
5547--
5548
5549.List the available user space tracepoints.
5550====
5551[role="term"]
5552----
5553$ lttng list --userspace
5554----
5555====
5556
5557.List the available Linux kernel system call tracepoints.
5558====
5559[role="term"]
5560----
5561$ lttng list --kernel --syscall
5562----
5563====
5564
5565
5566[[enabling-disabling-events]]
5567=== Create and enable an event rule
5568
5569Once you <<creating-destroying-tracing-sessions,create a tracing
5570session>>, you can create <<event,event rules>> with the
5571man:lttng-enable-event(1) command.
5572
5573You specify each condition with a command-line option. The available
5574condition options are shown in the following table.
5575
5576[role="growable",cols="asciidoc,asciidoc,default"]
5577.Condition command-line options for the man:lttng-enable-event(1) command.
5578|====
5579|Option |Description |Applicable tracing domains
5580
5581|
5582One of:
5583
5584. `--syscall`
5585. +--probe=__ADDR__+
5586. +--function=__ADDR__+
5587
5588|
5589Instead of using the default _tracepoint_ instrumentation type, use:
5590
5591. A Linux system call.
5592. A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5593. The entry and return points of a Linux function (symbol or address).
5594
5595|Linux kernel.
5596
5597|First positional argument.
5598
5599|
5600Tracepoint or system call name. In the case of a Linux KProbe or
5601function, this is a custom name given to the event rule. With the
5602JUL, log4j, and Python domains, this is a logger name.
5603
5604With a tracepoint, logger, or system call name, the last character
5605can be `*` to match anything that remains.
5606
5607|All.
5608
5609|
5610One of:
5611
5612. +--loglevel=__LEVEL__+
5613. +--loglevel-only=__LEVEL__+
5614
5615|
5616. Match only tracepoints or log statements with a logging level at
5617 least as severe as +__LEVEL__+.
5618. Match only tracepoints or log statements with a logging level
5619 equal to +__LEVEL__+.
5620
5621See man:lttng-enable-event(1) for the list of available logging level
5622names.
5623
5624|User space, JUL, log4j, and Python.
5625
5626|+--exclude=__EXCLUSIONS__+
5627
5628|
5629When you use a `*` character at the end of the tracepoint or logger
5630name (first positional argument), exclude the specific names in the
5631comma-delimited list +__EXCLUSIONS__+.
5632
5633|
5634User space, JUL, log4j, and Python.
5635
5636|+--filter=__EXPR__+
5637
5638|
5639Match only events which satisfy the expression +__EXPR__+.
5640
5641See man:lttng-enable-event(1) to learn more about the syntax of a
5642filter expression.
5643
5644|All.
5645
5646|====
5647
5648You attach an event rule to a <<channel,channel>> on creation. If you do
5649not specify the channel with the opt:lttng-enable-event(1):--channel
5650option, and if the event rule to create is the first in its
5651<<domain,tracing domain>> for a given tracing session, then LTTng
5652creates a _default channel_ for you. This default channel is reused in
5653subsequent invocations of the man:lttng-enable-event(1) command for the
5654same tracing domain.
5655
5656An event rule is always enabled at creation time.
5657
5658The following examples show how you can combine the previous
5659command-line options to create simple to more complex event rules.
5660
5661.Create an event rule targetting a Linux kernel tracepoint (default channel).
5662====
5663[role="term"]
5664----
5665$ lttng enable-event --kernel sched_switch
5666----
5667====
5668
5669.Create an event rule matching four Linux kernel system calls (default channel).
5670====
5671[role="term"]
5672----
5673$ lttng enable-event --kernel --syscall open,write,read,close
5674----
5675====
5676
5677.Create event rules matching tracepoints with filter expressions (default channel).
5678====
5679[role="term"]
5680----
5681$ lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5682----
5683
5684[role="term"]
5685----
5686$ lttng enable-event --kernel --all \
5687 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5688----
5689
5690[role="term"]
5691----
5692$ lttng enable-event --jul my_logger \
5693 --filter='$app.retriever:cur_msg_id > 3'
5694----
5695
5696IMPORTANT: Make sure to always quote the filter string when you
5697use man:lttng(1) from a shell.
5698====
5699
5700.Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5701====
5702[role="term"]
5703----
5704$ lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5705----
5706
5707IMPORTANT: Make sure to always quote the wildcard character when you
5708use man:lttng(1) from a shell.
5709====
5710
5711.Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5712====
5713[role="term"]
5714----
5715$ lttng enable-event --python my-app.'*' \
5716 --exclude='my-app.module,my-app.hello'
5717----
5718====
5719
5720.Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5721====
5722[role="term"]
5723----
5724$ lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5725----
5726====
5727
5728.Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5729====
5730[role="term"]
5731----
5732$ lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5733----
5734====
5735
5736The event rules of a given channel form a whitelist: as soon as an
5737emitted event passes one of them, LTTng can record the event. For
5738example, an event named `my_app:my_tracepoint` emitted from a user space
5739tracepoint with a `TRACE_ERROR` log level passes both of the following
5740rules:
5741
5742[role="term"]
5743----
5744$ lttng enable-event --userspace my_app:my_tracepoint
5745$ lttng enable-event --userspace my_app:my_tracepoint \
5746 --loglevel=TRACE_INFO
5747----
5748
5749The second event rule is redundant: the first one includes
5750the second one.
5751
5752
5753[[disable-event-rule]]
5754=== Disable an event rule
5755
5756To disable an event rule that you <<enabling-disabling-events,created>>
5757previously, use the man:lttng-disable-event(1) command. This command
5758disables _all_ the event rules (of a given tracing domain and channel)
5759which match an instrumentation point. The other conditions are not
5760supported as of LTTng{nbsp}{revision}.
5761
5762The LTTng tracer does not record an emitted event which passes
5763a _disabled_ event rule.
5764
5765.Disable an event rule matching a Python logger (default channel).
5766====
5767[role="term"]
5768----
5769$ lttng disable-event --python my-logger
5770----
5771====
5772
5773.Disable an event rule matching all `java.util.logging` loggers (default channel).
5774====
5775[role="term"]
5776----
5777$ lttng disable-event --jul '*'
5778----
5779====
5780
5781.Disable _all_ the event rules of the default channel.
5782====
5783The opt:lttng-disable-event(1):--all-events option is not, like the
5784opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5785equivalent of the event name `*` (wildcard): it disables _all_ the event
5786rules of a given channel.
5787
5788[role="term"]
5789----
5790$ lttng disable-event --jul --all-events
5791----
5792====
5793
5794NOTE: You cannot delete an event rule once you create it.
5795
5796
5797[[status]]
5798=== Get the status of a tracing session
5799
5800To get the status of the current tracing session, that is, its
5801parameters, its channels, event rules, and their attributes:
5802
5803* Use the man:lttng-status(1) command:
5804+
5805--
5806[role="term"]
5807----
5808$ lttng status
5809----
5810--
5811+
5812
5813To get the status of any tracing session:
5814
5815* Use the man:lttng-list(1) command with the tracing session's name:
5816+
5817--
5818[role="term"]
5819----
5820$ lttng list my-session
5821----
5822--
5823+
5824Replace `my-session` with the desired tracing session's name.
5825
5826
5827[[basic-tracing-session-control]]
5828=== Start and stop a tracing session
5829
5830Once you <<creating-destroying-tracing-sessions,create a tracing
5831session>> and
5832<<enabling-disabling-events,create one or more event rules>>,
5833you can start and stop the tracers for this tracing session.
5834
5835To start tracing in the current tracing session:
5836
5837* Use the man:lttng-start(1) command:
5838+
5839--
5840[role="term"]
5841----
5842$ lttng start
5843----
5844--
5845
5846LTTng is very flexible: you can launch user applications before
5847or after the you start the tracers. The tracers only record the events
5848if they pass enabled event rules and if they occur while the tracers are
5849started.
5850
5851To stop tracing in the current tracing session:
5852
5853* Use the man:lttng-stop(1) command:
5854+
5855--
5856[role="term"]
5857----
5858$ lttng stop
5859----
5860--
5861+
5862If there were <<channel-overwrite-mode-vs-discard-mode,lost event
5863records>> or lost sub-buffers since the last time you ran
5864man:lttng-start(1), warnings are printed when you run the
5865man:lttng-stop(1) command.
5866
5867
5868[[enabling-disabling-channels]]
5869=== Create a channel
5870
5871Once you create a tracing session, you can create a <<channel,channel>>
5872with the man:lttng-enable-channel(1) command.
5873
5874Note that LTTng automatically creates a default channel when, for a
5875given <<domain,tracing domain>>, no channels exist and you
5876<<enabling-disabling-events,create>> the first event rule. This default
5877channel is named `channel0` and its attributes are set to reasonable
5878values. Therefore, you only need to create a channel when you need
5879non-default attributes.
5880
5881You specify each non-default channel attribute with a command-line
5882option when you use the man:lttng-enable-channel(1) command. The
5883available command-line options are:
5884
5885[role="growable",cols="asciidoc,asciidoc"]
5886.Command-line options for the man:lttng-enable-channel(1) command.
5887|====
5888|Option |Description
5889
5890|`--overwrite`
5891
5892|
5893Use the _overwrite_
5894<<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
5895the default _discard_ mode.
5896
5897|`--buffers-pid` (user space tracing domain only)
5898
5899|
5900Use the per-process <<channel-buffering-schemes,buffering scheme>>
5901instead of the default per-user buffering scheme.
5902
5903|+--subbuf-size=__SIZE__+
5904
5905|
5906Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
5907either for each Unix user (default), or for each instrumented process.
5908
5909See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5910
5911|+--num-subbuf=__COUNT__+
5912
5913|
5914Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
5915for each Unix user (default), or for each instrumented process.
5916
5917See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5918
5919|+--tracefile-size=__SIZE__+
5920
5921|
5922Set the maximum size of each trace file that this channel writes within
5923a stream to +__SIZE__+ bytes instead of no maximum.
5924
5925See <<tracefile-rotation,Trace file count and size>>.
5926
5927|+--tracefile-count=__COUNT__+
5928
5929|
5930Limit the number of trace files that this channel creates to
5931+__COUNT__+ channels instead of no limit.
5932
5933See <<tracefile-rotation,Trace file count and size>>.
5934
5935|+--switch-timer=__PERIODUS__+
5936
5937|
5938Set the <<channel-switch-timer,switch timer period>>
5939to +__PERIODUS__+{nbsp}µs.
5940
5941|+--read-timer=__PERIODUS__+
5942
5943|
5944Set the <<channel-read-timer,read timer period>>
5945to +__PERIODUS__+{nbsp}µs.
5946
5947|[[opt-blocking-timeout]]+--blocking-timeout=__TIMEOUTUS__+
5948
5949|
5950Set the timeout of user space applications which load LTTng-UST
5951in blocking mode to +__TIMEOUTUS__+:
5952
59530 (default)::
5954 Never block (non-blocking mode).
5955
5956-1::
5957 Block forever until space is available in a sub-buffer to record
5958 the event.
5959
5960__n__, a positive value::
5961 Wait for at most __n__ µs when trying to write into a sub-buffer.
5962
5963Note that, for this option to have any effect on an instrumented
5964user space application, you need to run the application with a set
5965env:LTTNG_UST_ALLOW_BLOCKING environment variable.
5966
5967|+--output=__TYPE__+ (Linux kernel tracing domain only)
5968
5969|
5970Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
5971
5972|====
5973
5974You can only create a channel in the Linux kernel and user space
5975<<domain,tracing domains>>: other tracing domains have their own channel
5976created on the fly when <<enabling-disabling-events,creating event
5977rules>>.
5978
5979[IMPORTANT]
5980====
5981Because of a current LTTng limitation, you must create all channels
5982_before_ you <<basic-tracing-session-control,start tracing>> in a given
5983tracing session, that is, before the first time you run
5984man:lttng-start(1).
5985
5986Since LTTng automatically creates a default channel when you use the
5987man:lttng-enable-event(1) command with a specific tracing domain, you
5988cannot, for example, create a Linux kernel event rule, start tracing,
5989and then create a user space event rule, because no user space channel
5990exists yet and it's too late to create one.
5991
5992For this reason, make sure to configure your channels properly
5993before starting the tracers for the first time!
5994====
5995
5996The following examples show how you can combine the previous
5997command-line options to create simple to more complex channels.
5998
5999.Create a Linux kernel channel with default attributes.
6000====
6001[role="term"]
6002----
6003$ lttng enable-channel --kernel my-channel
6004----
6005====
6006
6007.Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6008====
6009[role="term"]
6010----
6011$ lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6012 --buffers-pid my-channel
6013----
6014====
6015
71b643ed 6016.[[blocking-timeout-example]]Create a default user space channel with an infinite blocking timeout.
85c29972
PP
6017====
6018<<creating-destroying-tracing-sessions,Create a tracing-session>>,
6019create the channel, <<enabling-disabling-events,create an event rule>>,
6020and <<basic-tracing-session-control,start tracing>>:
6021
6022[role="term"]
6023----
6024$ lttng create
6025$ lttng enable-channel --userspace --blocking-timeout=-1 blocking-channel
6026$ lttng enable-event --userspace --channel=blocking-channel --all
6027$ lttng start
6028----
6029
6030Run an application instrumented with LTTng-UST and allow it to block:
6031
6032[role="term"]
6033----
6034$ LTTNG_UST_ALLOW_BLOCKING=1 my-app
6035----
6036====
6037
6038.Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
6039====
6040[role="term"]
6041----
6042$ lttng enable-channel --kernel --tracefile-count=8 \
6043 --tracefile-size=4194304 my-channel
6044----
6045====
6046
6047.Create a user space channel in overwrite (or _flight recorder_) mode.
6048====
6049[role="term"]
6050----
6051$ lttng enable-channel --userspace --overwrite my-channel
6052----
6053====
6054
6055You can <<enabling-disabling-events,create>> the same event rule in
6056two different channels:
6057
6058[role="term"]
6059----
6060$ lttng enable-event --userspace --channel=my-channel app:tp
6061$ lttng enable-event --userspace --channel=other-channel app:tp
6062----
6063
6064If both channels are enabled, when a tracepoint named `app:tp` is
6065reached, LTTng records two events, one for each channel.
6066
6067
6068[[disable-channel]]
6069=== Disable a channel
6070
6071To disable a specific channel that you <<enabling-disabling-channels,created>>
6072previously, use the man:lttng-disable-channel(1) command.
6073
6074.Disable a specific Linux kernel channel.
6075====
6076[role="term"]
6077----
6078$ lttng disable-channel --kernel my-channel
6079----
6080====
6081
6082The state of a channel precedes the individual states of event rules
6083attached to it: event rules which belong to a disabled channel, even if
6084they are enabled, are also considered disabled.
6085
6086
6087[[adding-context]]
6088=== Add context fields to a channel
6089
6090Event record fields in trace files provide important information about
6091events that occured previously, but sometimes some external context may
6092help you solve a problem faster. Examples of context fields are:
6093
6094* The **process ID**, **thread ID**, **process name**, and
6095 **process priority** of the thread in which the event occurs.
6096* The **hostname** of the system on which the event occurs.
6097* The current values of many possible **performance counters** using
6098 perf, for example:
6099** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6100** Cache misses.
6101** Branch instructions, misses, and loads.
6102** CPU faults.
6103* Any context defined at the application level (supported for the
6104 JUL and log4j <<domain,tracing domains>>).
6105
6106To get the full list of available context fields, see
6107`lttng add-context --list`. Some context fields are reserved for a
6108specific <<domain,tracing domain>> (Linux kernel or user space).
6109
6110You add context fields to <<channel,channels>>. All the events
6111that a channel with added context fields records contain those fields.
6112
6113To add context fields to one or all the channels of a given tracing
6114session:
6115
6116* Use the man:lttng-add-context(1) command.
6117
6118.Add context fields to all the channels of the current tracing session.
6119====
6120The following command line adds the virtual process identifier and
6121the per-thread CPU cycles count fields to all the user space channels
6122of the current tracing session.
6123
6124[role="term"]
6125----
6126$ lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6127----
6128====
6129
6130.Add performance counter context fields by raw ID
6131====
6132See man:lttng-add-context(1) for the exact format of the context field
6133type, which is partly compatible with the format used in
6134man:perf-record(1).
6135
6136[role="term"]
6137----
6138$ lttng add-context --userspace --type=perf:thread:raw:r0110:test
6139$ lttng add-context --kernel --type=perf:cpu:raw:r0013c:x86unhalted
6140----
6141====
6142
6143.Add a context field to a specific channel.
6144====
6145The following command line adds the thread identifier context field
6146to the Linux kernel channel named `my-channel` in the current
6147tracing session.
6148
6149[role="term"]
6150----
6151$ lttng add-context --kernel --channel=my-channel --type=tid
6152----
6153====
6154
6155.Add an application-specific context field to a specific channel.
6156====
6157The following command line adds the `cur_msg_id` context field of the
6158`retriever` context retriever for all the instrumented
6159<<java-application,Java applications>> recording <<event,event records>>
6160in the channel named `my-channel`:
6161
6162[role="term"]
6163----
6164$ lttng add-context --kernel --channel=my-channel \
6165 --type='$app:retriever:cur_msg_id'
6166----
6167
6168IMPORTANT: Make sure to always quote the `$` character when you
6169use man:lttng-add-context(1) from a shell.
6170====
6171
6172NOTE: You cannot remove context fields from a channel once you add it.
6173
6174
6175[role="since-2.7"]
6176[[pid-tracking]]
6177=== Track process IDs
6178
6179It's often useful to allow only specific process IDs (PIDs) to emit
6180events. For example, you may wish to record all the system calls made by
6181a given process (Ă  la http://linux.die.net/man/1/strace[strace]).
6182
6183The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6184purpose. Both commands operate on a whitelist of process IDs. You _add_
6185entries to this whitelist with the man:lttng-track(1) command and remove
6186entries with the man:lttng-untrack(1) command. Any process which has one
6187of the PIDs in the whitelist is allowed to emit LTTng events which pass
6188an enabled <<event,event rule>>.
6189
6190NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6191process with a given tracked ID exit and another process be given this
6192ID, then the latter would also be allowed to emit events.
6193
6194.Track and untrack process IDs.
6195====
6196For the sake of the following example, assume the target system has 16
6197possible PIDs.
6198
6199When you
6200<<creating-destroying-tracing-sessions,create a tracing session>>,
6201the whitelist contains all the possible PIDs:
6202
6203[role="img-100"]
6204.All PIDs are tracked.
6205image::track-all.png[]
6206
6207When the whitelist is full and you use the man:lttng-track(1) command to
6208specify some PIDs to track, LTTng first clears the whitelist, then it
6209tracks the specific PIDs. After:
6210
6211[role="term"]
6212----
6213$ lttng track --pid=3,4,7,10,13
6214----
6215
6216the whitelist is:
6217
6218[role="img-100"]
6219.PIDs 3, 4, 7, 10, and 13 are tracked.
6220image::track-3-4-7-10-13.png[]
6221
6222You can add more PIDs to the whitelist afterwards:
6223
6224[role="term"]
6225----
6226$ lttng track --pid=1,15,16
6227----
6228
6229The result is:
6230
6231[role="img-100"]
6232.PIDs 1, 15, and 16 are added to the whitelist.
6233image::track-1-3-4-7-10-13-15-16.png[]
6234
6235The man:lttng-untrack(1) command removes entries from the PID tracker's
6236whitelist. Given the previous example, the following command:
6237
6238[role="term"]
6239----
6240$ lttng untrack --pid=3,7,10,13
6241----
6242
6243leads to this whitelist:
6244
6245[role="img-100"]
6246.PIDs 3, 7, 10, and 13 are removed from the whitelist.
6247image::track-1-4-15-16.png[]
6248
6249LTTng can track all possible PIDs again using the opt:track(1):--all
6250option:
6251
6252[role="term"]
6253----
6254$ lttng track --pid --all
6255----
6256
6257The result is, again:
6258
6259[role="img-100"]
6260.All PIDs are tracked.
6261image::track-all.png[]
6262====
6263
6264.Track only specific PIDs
6265====
6266A very typical use case with PID tracking is to start with an empty
6267whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6268then add PIDs manually while tracers are active. You can accomplish this
6269by using the opt:lttng-untrack(1):--all option of the
6270man:lttng-untrack(1) command to clear the whitelist after you
6271<<creating-destroying-tracing-sessions,create a tracing session>>:
6272
6273[role="term"]
6274----
6275$ lttng untrack --pid --all
6276----
6277
6278gives:
6279
6280[role="img-100"]
6281.No PIDs are tracked.
6282image::untrack-all.png[]
6283
6284If you trace with this whitelist configuration, the tracer records no
6285events for this <<domain,tracing domain>> because no processes are
6286tracked. You can use the man:lttng-track(1) command as usual to track
6287specific PIDs, for example:
6288
6289[role="term"]
6290----
6291$ lttng track --pid=6,11
6292----
6293
6294Result:
6295
6296[role="img-100"]
6297.PIDs 6 and 11 are tracked.
6298image::track-6-11.png[]
6299====
6300
6301
6302[role="since-2.5"]
6303[[saving-loading-tracing-session]]
6304=== Save and load tracing session configurations
6305
6306Configuring a <<tracing-session,tracing session>> can be long. Some of
6307the tasks involved are:
6308
6309* <<enabling-disabling-channels,Create channels>> with
6310 specific attributes.
6311* <<adding-context,Add context fields>> to specific channels.
6312* <<enabling-disabling-events,Create event rules>> with specific log
6313 level and filter conditions.
6314
6315If you use LTTng to solve real world problems, chances are you have to
6316record events using the same tracing session setup over and over,
6317modifying a few variables each time in your instrumented program
6318or environment. To avoid constant tracing session reconfiguration,
6319the man:lttng(1) command-line tool can save and load tracing session
6320configurations to/from XML files.
6321
6322To save a given tracing session configuration:
6323
6324* Use the man:lttng-save(1) command:
6325+
6326--
6327[role="term"]
6328----
6329$ lttng save my-session
6330----
6331--
6332+
6333Replace `my-session` with the name of the tracing session to save.
6334
6335LTTng saves tracing session configurations to
6336dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6337env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6338the opt:lttng-save(1):--output-path option to change this destination
6339directory.
6340
6341LTTng saves all configuration parameters, for example:
6342
6343* The tracing session name.
6344* The trace data output path.
6345* The channels with their state and all their attributes.
6346* The context fields you added to channels.
6347* The event rules with their state, log level and filter conditions.
6348
6349To load a tracing session:
6350
6351* Use the man:lttng-load(1) command:
6352+
6353--
6354[role="term"]
6355----
6356$ lttng load my-session
6357----
6358--
6359+
6360Replace `my-session` with the name of the tracing session to load.
6361
6362When LTTng loads a configuration, it restores your saved tracing session
6363as if you just configured it manually.
6364
6365See man:lttng(1) for the complete list of command-line options. You
6366can also save and load all many sessions at a time, and decide in which
6367directory to output the XML files.
6368
6369
6370[[sending-trace-data-over-the-network]]
6371=== Send trace data over the network
6372
6373LTTng can send the recorded trace data to a remote system over the
6374network instead of writing it to the local file system.
6375
6376To send the trace data over the network:
6377
6378. On the _remote_ system (which can also be the target system),
6379 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6380+
6381--
6382[role="term"]
6383----
6384$ lttng-relayd
6385----
6386--
6387
6388. On the _target_ system, create a tracing session configured to
6389 send trace data over the network:
6390+
6391--
6392[role="term"]
6393----
6394$ lttng create my-session --set-url=net://remote-system
6395----
6396--
6397+
6398Replace `remote-system` by the host name or IP address of the
6399remote system. See man:lttng-create(1) for the exact URL format.
6400
6401. On the target system, use the man:lttng(1) command-line tool as usual.
6402 When tracing is active, the target's consumer daemon sends sub-buffers
6403 to the relay daemon running on the remote system instead of flushing
6404 them to the local file system. The relay daemon writes the received
6405 packets to the local file system.
6406
6407The relay daemon writes trace files to
6408+$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6409+__hostname__+ is the host name of the target system and +__session__+
6410is the tracing session name. Note that the env:LTTNG_HOME environment
6411variable defaults to `$HOME` if not set. Use the
6412opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6413trace files to another base directory.
6414
6415
6416[role="since-2.4"]
6417[[lttng-live]]
6418=== View events as LTTng emits them (noch:{LTTng} live)
6419
6420LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6421daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6422display events as LTTng emits them on the target system while tracing is
6423active.
6424
6425The relay daemon creates a _tee_: it forwards the trace data to both
6426the local file system and to connected live viewers:
6427
6428[role="img-90"]
6429.The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6430image::live.png[]
6431
6432To use LTTng live:
6433
6434. On the _target system_, create a <<tracing-session,tracing session>>
6435 in _live mode_:
6436+
6437--
6438[role="term"]
6439----
6440$ lttng create my-session --live
6441----
6442--
6443+
6444This spawns a local relay daemon.
6445
6446. Start the live viewer and configure it to connect to the relay
6447 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6448+
6449--
6450[role="term"]
6451----
6452$ babeltrace --input-format=lttng-live \
6453 net://localhost/host/hostname/my-session
6454----
6455--
6456+
6457Replace:
6458+
6459--
6460* `hostname` with the host name of the target system.
6461* `my-session` with the name of the tracing session to view.
6462--
6463
6464. Configure the tracing session as usual with the man:lttng(1)
6465 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6466
6467You can list the available live tracing sessions with Babeltrace:
6468
6469[role="term"]
6470----
6471$ babeltrace --input-format=lttng-live net://localhost
6472----
6473
6474You can start the relay daemon on another system. In this case, you need
6475to specify the relay daemon's URL when you create the tracing session
6476with the opt:lttng-create(1):--set-url option. You also need to replace
6477`localhost` in the procedure above with the host name of the system on
6478which the relay daemon is running.
6479
6480See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6481command-line options.
6482
6483
6484[role="since-2.3"]
6485[[taking-a-snapshot]]
6486=== Take a snapshot of the current sub-buffers of a tracing session
6487
6488The normal behavior of LTTng is to append full sub-buffers to growing
6489trace data files. This is ideal to keep a full history of the events
6490that occurred on the target system, but it can
6491represent too much data in some situations. For example, you may wish
6492to trace your application continuously until some critical situation
6493happens, in which case you only need the latest few recorded
6494events to perform the desired analysis, not multi-gigabyte trace files.
6495
6496With the man:lttng-snapshot(1) command, you can take a snapshot of the
6497current sub-buffers of a given <<tracing-session,tracing session>>.
6498LTTng can write the snapshot to the local file system or send it over
6499the network.
6500
6501To take a snapshot:
6502
6503. Create a tracing session in _snapshot mode_:
6504+
6505--
6506[role="term"]
6507----
6508$ lttng create my-session --snapshot
6509----
6510--
6511+
6512The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6513<<channel,channels>> created in this mode is automatically set to
6514_overwrite_ (flight recorder mode).
6515
6516. Configure the tracing session as usual with the man:lttng(1)
6517 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6518
6519. **Optional**: When you need to take a snapshot,
6520 <<basic-tracing-session-control,stop tracing>>.
6521+
6522You can take a snapshot when the tracers are active, but if you stop
6523them first, you are sure that the data in the sub-buffers does not
6524change before you actually take the snapshot.
6525
6526. Take a snapshot:
6527+
6528--
6529[role="term"]
6530----
6531$ lttng snapshot record --name=my-first-snapshot
6532----
6533--
6534+
6535LTTng writes the current sub-buffers of all the current tracing
6536session's channels to trace files on the local file system. Those trace
6537files have `my-first-snapshot` in their name.
6538
6539There is no difference between the format of a normal trace file and the
6540format of a snapshot: viewers of LTTng traces also support LTTng
6541snapshots.
6542
6543By default, LTTng writes snapshot files to the path shown by
6544`lttng snapshot list-output`. You can change this path or decide to send
6545snapshots over the network using either:
6546
6547. An output path or URL that you specify when you create the
6548 tracing session.
6549. An snapshot output path or URL that you add using
6550 `lttng snapshot add-output`
6551. An output path or URL that you provide directly to the
6552 `lttng snapshot record` command.
6553
6554Method 3 overrides method 2, which overrides method 1. When you
6555specify a URL, a relay daemon must listen on a remote system (see
6556<<sending-trace-data-over-the-network,Send trace data over the network>>).
6557
6558
6559[role="since-2.6"]
6560[[mi]]
6561=== Use the machine interface
6562
6563With any command of the man:lttng(1) command-line tool, you can set the
6564opt:lttng(1):--mi option to `xml` (before the command name) to get an
6565XML machine interface output, for example:
6566
6567[role="term"]
6568----
6569$ lttng --mi=xml enable-event --kernel --syscall open
6570----
6571
6572A schema definition (XSD) is
6573https://github.com/lttng/lttng-tools/blob/stable-2.10/src/common/mi-lttng-3.0.xsd[available]
6574to ease the integration with external tools as much as possible.
6575
6576
6577[role="since-2.8"]
6578[[metadata-regenerate]]
6579=== Regenerate the metadata of an LTTng trace
6580
6581An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6582data stream files and a metadata file. This metadata file contains,
6583amongst other things, information about the offset of the clock sources
6584used to timestamp <<event,event records>> when tracing.
6585
6586If, once a <<tracing-session,tracing session>> is
6587<<basic-tracing-session-control,started>>, a major
6588https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6589happens, the trace's clock offset also needs to be updated. You
6590can use the `metadata` item of the man:lttng-regenerate(1) command
6591to do so.
6592
6593The main use case of this command is to allow a system to boot with
6594an incorrect wall time and trace it with LTTng before its wall time
6595is corrected. Once the system is known to be in a state where its
6596wall time is correct, it can run `lttng regenerate metadata`.
6597
6598To regenerate the metadata of an LTTng trace:
6599
6600* Use the `metadata` item of the man:lttng-regenerate(1) command:
6601+
6602--
6603[role="term"]
6604----
6605$ lttng regenerate metadata
6606----
6607--
6608
6609[IMPORTANT]
6610====
6611`lttng regenerate metadata` has the following limitations:
6612
6613* Tracing session <<creating-destroying-tracing-sessions,created>>
6614 in non-live mode.
6615* User space <<channel,channels>>, if any, are using
6616 <<channel-buffering-schemes,per-user buffering>>.
6617====
6618
6619
6620[role="since-2.9"]
6621[[regenerate-statedump]]
6622=== Regenerate the state dump of a tracing session
6623
6624The LTTng kernel and user space tracers generate state dump
6625<<event,event records>> when the application starts or when you
6626<<basic-tracing-session-control,start a tracing session>>. An analysis
6627can use the state dump event records to set an initial state before it
6628builds the rest of the state from the following event records.
6629http://tracecompass.org/[Trace Compass] is a notable example of an
6630application which uses the state dump of an LTTng trace.
6631
6632When you <<taking-a-snapshot,take a snapshot>>, it's possible that the
6633state dump event records are not included in the snapshot because they
6634were recorded to a sub-buffer that has been consumed or overwritten
6635already.
6636
6637You can use the `lttng regenerate statedump` command to emit the state
6638dump event records again.
6639
6640To regenerate the state dump of the current tracing session, provided
6641create it in snapshot mode, before you take a snapshot:
6642
6643. Use the `statedump` item of the man:lttng-regenerate(1) command:
6644+
6645--
6646[role="term"]
6647----
6648$ lttng regenerate statedump
6649----
6650--
6651
6652. <<basic-tracing-session-control,Stop the tracing session>>:
6653+
6654--
6655[role="term"]
6656----
6657$ lttng stop
6658----
6659--
6660
6661. <<taking-a-snapshot,Take a snapshot>>:
6662+
6663--
6664[role="term"]
6665----
6666$ lttng snapshot record --name=my-snapshot
6667----
6668--
6669
6670Depending on the event throughput, you should run steps 1 and 2
6671as closely as possible.
6672
6673NOTE: To record the state dump events, you need to
6674<<enabling-disabling-events,create event rules>> which enable them.
6675LTTng-UST state dump tracepoints start with `lttng_ust_statedump:`.
6676LTTng-modules state dump tracepoints start with `lttng_statedump_`.
6677
6678
6679[role="since-2.7"]
6680[[persistent-memory-file-systems]]
6681=== Record trace data on persistent memory file systems
6682
6683https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6684(NVRAM) is random-access memory that retains its information when power
6685is turned off (non-volatile). Systems with such memory can store data
6686structures in RAM and retrieve them after a reboot, without flushing
6687to typical _storage_.
6688
6689Linux supports NVRAM file systems thanks to either
6690http://pramfs.sourceforge.net/[PRAMFS] or
6691https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6692(requires Linux 4.1+).
6693
6694This section does not describe how to operate such file systems;
6695we assume that you have a working persistent memory file system.
6696
6697When you create a <<tracing-session,tracing session>>, you can specify
6698the path of the shared memory holding the sub-buffers. If you specify a
6699location on an NVRAM file system, then you can retrieve the latest
6700recorded trace data when the system reboots after a crash.
6701
6702To record trace data on a persistent memory file system and retrieve the
6703trace data after a system crash:
6704
6705. Create a tracing session with a sub-buffer shared memory path located
6706 on an NVRAM file system:
6707+
6708--
6709[role="term"]
6710----
6711$ lttng create my-session --shm-path=/path/to/shm
6712----
6713--
6714
6715. Configure the tracing session as usual with the man:lttng(1)
6716 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6717
6718. After a system crash, use the man:lttng-crash(1) command-line tool to
6719 view the trace data recorded on the NVRAM file system:
6720+
6721--
6722[role="term"]
6723----
6724$ lttng-crash /path/to/shm
6725----
6726--
6727
6728The binary layout of the ring buffer files is not exactly the same as
6729the trace files layout. This is why you need to use man:lttng-crash(1)
6730instead of your preferred trace viewer directly.
6731
6732To convert the ring buffer files to LTTng trace files:
6733
6734* Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6735+
6736--
6737[role="term"]
6738----
6739$ lttng-crash --extract=/path/to/trace /path/to/shm
6740----
6741--
6742
6743
90c4e38a
PP
6744[role="since-2.10"]
6745[[notif-trigger-api]]
6746=== Get notified when a channel's buffer usage is too high or too low
6747
6748With LTTng's $$C/C++$$ notification and trigger API, your user
6749application can get notified when the buffer usage of one or more
6750<<channel,channels>> becomes too low or too high. You can use this API
6751and enable or disable <<event,event rules>> during tracing to avoid
6752<<channel-overwrite-mode-vs-discard-mode,discarded event records>>.
6753
6754.Have a user application get notified when an LTTng channel's buffer usage is too high.
6755====
6756In this example, we create and build an application which gets notified
6757when the buffer usage of a specific LTTng channel is higher than
675875{nbsp}%. We only print that it is the case in the example, but we
6759could as well use the API of <<liblttng-ctl-lttng,`liblttng-ctl`>> to
6760disable event rules when this happens.
6761
6762. Create the application's C source file:
6763+
6764--
6765[source,c]
6766.path:{notif-app.c}
6767----
6768#include <stdio.h>
6769#include <assert.h>
6770#include <lttng/domain.h>
6771#include <lttng/action/action.h>
6772#include <lttng/action/notify.h>
6773#include <lttng/condition/condition.h>
6774#include <lttng/condition/buffer-usage.h>
6775#include <lttng/condition/evaluation.h>
6776#include <lttng/notification/channel.h>
6777#include <lttng/notification/notification.h>
6778#include <lttng/trigger/trigger.h>
6779#include <lttng/endpoint.h>
6780
6781int main(int argc, char *argv[])
6782{
d2a86fb9
PP
6783 int exit_status = 0;
6784 struct lttng_notification_channel *notification_channel;
6785 struct lttng_condition *condition;
6786 struct lttng_action *action;
6787 struct lttng_trigger *trigger;
6788 const char *tracing_session_name;
6789 const char *channel_name;
6790
6791 assert(argc >= 3);
6792 tracing_session_name = argv[1];
6793 channel_name = argv[2];
90c4e38a
PP
6794
6795 /*
d2a86fb9
PP
6796 * Create a notification channel. A notification channel
6797 * connects the user application to the LTTng session daemon.
7568806b 6798 * This notification channel can be used to listen to various
d2a86fb9
PP
6799 * types of notifications.
6800 */
6801 notification_channel = lttng_notification_channel_create(
6802 lttng_session_daemon_notification_endpoint);
6803
6804 /*
6805 * Create a "high buffer usage" condition. In this case, the
6806 * condition is reached when the buffer usage is greater than or
7568806b
PP
6807 * equal to 75 %. We create the condition for a specific tracing
6808 * session name, channel name, and for the user space tracing
6809 * domain.
90c4e38a 6810 *
d2a86fb9
PP
6811 * The "low buffer usage" condition type also exists.
6812 */
6813 condition = lttng_condition_buffer_usage_high_create();
6814 lttng_condition_buffer_usage_set_threshold_ratio(condition, .75);
6815 lttng_condition_buffer_usage_set_session_name(
6816 condition, tracing_session_name);
6817 lttng_condition_buffer_usage_set_channel_name(condition,
6818 channel_name);
6819 lttng_condition_buffer_usage_set_domain_type(condition,
6820 LTTNG_DOMAIN_UST);
6821
6822 /*
6823 * Create an action (get a notification) to take when the
6824 * condition created above is reached.
6825 */
6826 action = lttng_action_notify_create();
6827
6828 /*
6829 * Create a trigger. A trigger associates a condition to an
6830 * action: the action is executed when the condition is reached.
90c4e38a 6831 */
d2a86fb9 6832 trigger = lttng_trigger_create(condition, action);
90c4e38a 6833
d2a86fb9
PP
6834 /* Register the trigger to LTTng. */
6835 lttng_register_trigger(trigger);
90c4e38a
PP
6836
6837 /*
d2a86fb9
PP
6838 * Now that we have registered a trigger, a notification will be
6839 * emitted everytime its condition is met. To receive this
6840 * notification, we must subscribe to notifications that match
6841 * the same condition.
90c4e38a 6842 */
7568806b
PP
6843 lttng_notification_channel_subscribe(notification_channel,
6844 condition);
90c4e38a
PP
6845
6846 /*
7568806b
PP
6847 * Notification loop. You can put this in a dedicated thread to
6848 * avoid blocking the main thread.
90c4e38a 6849 */
d2a86fb9
PP
6850 for (;;) {
6851 struct lttng_notification *notification;
6852 enum lttng_notification_channel_status status;
6853 const struct lttng_evaluation *notification_evaluation;
6854 const struct lttng_condition *notification_condition;
6855 double buffer_usage;
6856
6857 /* Receive the next notification. */
6858 status = lttng_notification_channel_get_next_notification(
7568806b 6859 notification_channel, &notification);
d2a86fb9
PP
6860
6861 switch (status) {
6862 case LTTNG_NOTIFICATION_CHANNEL_STATUS_OK:
6863 break;
6864 case LTTNG_NOTIFICATION_CHANNEL_STATUS_NOTIFICATIONS_DROPPED:
6865 /*
6866 * The session daemon can drop notifications if
6867 * a monitoring application is not consuming the
6868 * notifications fast enough.
6869 */
6870 continue;
6871 case LTTNG_NOTIFICATION_CHANNEL_STATUS_CLOSED:
6872 /*
6873 * The notification channel has been closed by the
6874 * session daemon. This is typically caused by a session
6875 * daemon shutting down.
6876 */
6877 goto end;
6878 default:
6879 /* Unhandled conditions or errors. */
6880 exit_status = 1;
6881 goto end;
6882 }
6883
6884 /*
6885 * A notification provides, amongst other things:
6886 *
6887 * * The condition that caused this notification to be
6888 * emitted.
6889 * * The condition evaluation, which provides more
6890 * specific information on the evaluation of the
6891 * condition.
6892 *
6893 * The condition evaluation provides the buffer usage
7568806b 6894 * value at the moment the condition was reached.
d2a86fb9
PP
6895 */
6896 notification_condition = lttng_notification_get_condition(
6897 notification);
6898 notification_evaluation = lttng_notification_get_evaluation(
6899 notification);
6900
6901 /* We're subscribed to only one condition. */
6902 assert(lttng_condition_get_type(notification_condition) ==
6903 LTTNG_CONDITION_TYPE_BUFFER_USAGE_HIGH);
6904
6905 /*
6906 * Get the exact sampled buffer usage from the
6907 * condition evaluation.
6908 */
6909 lttng_evaluation_buffer_usage_get_usage_ratio(
6910 notification_evaluation, &buffer_usage);
6911
6912 /*
6913 * At this point, instead of printing a message, we
6914 * could do something to reduce the channel's buffer
6915 * usage, like disable specific events.
6916 */
6917 printf("Buffer usage is %f %% in tracing session \"%s\", "
7568806b
PP
6918 "user space channel \"%s\".\n", buffer_usage * 100,
6919 tracing_session_name, channel_name);
d2a86fb9
PP
6920 lttng_notification_destroy(notification);
6921 }
90c4e38a
PP
6922
6923end:
d2a86fb9
PP
6924 lttng_action_destroy(action);
6925 lttng_condition_destroy(condition);
6926 lttng_trigger_destroy(trigger);
6927 lttng_notification_channel_destroy(notification_channel);
6928 return exit_status;
90c4e38a
PP
6929}
6930----
6931--
6932
6933. Build the `notif-app` application, linking it to `liblttng-ctl`:
6934+
6935--
6936[role="term"]
6937----
6938$ gcc -o notif-app notif-app.c -llttng-ctl
6939----
6940--
6941
6942. <<creating-destroying-tracing-sessions,Create a tracing session>>,
6943 <<enabling-disabling-events,create an event rule>> matching all the
6944 user space tracepoints, and
6945 <<basic-tracing-session-control,start tracing>>:
6946+
6947--
6948[role="term"]
6949----
6950$ lttng create my-session
6951$ lttng enable-event --userspace --all
6952$ lttng start
6953----
6954--
6955+
6956If you create the channel manually with the man:lttng-enable-channel(1)
6957command, you can control how frequently are the current values of the
6958channel's properties sampled to evaluate user conditions with the
6959opt:lttng-enable-channel(1):--monitor-timer option.
6960
6961. Run the `notif-app` application. This program accepts the
6962 <<tracing-session,tracing session>> name and the user space channel
6963 name as its two first arguments. The channel which LTTng automatically
6964 creates with the man:lttng-enable-event(1) command above is named
6965 `channel0`:
6966+
6967--
6968[role="term"]
6969----
6970$ ./notif-app my-session channel0
6971----
6972--
6973
6974. In another terminal, run an application with a very high event
6975 throughput so that the 75{nbsp}% buffer usage condition is reached.
6976+
6977In the first terminal, the application should print lines like this:
6978+
6979----
6980Buffer usage is 81.45197 % in tracing session "my-session", user space
6981channel "channel0".
6982----
6983+
6984If you don't see anything, try modifying the condition in
6985path:{notif-app.c} to a lower value (0.1, for example), rebuilding it
6986(step 2) and running it again (step 4).
6987====
6988
6989
85c29972
PP
6990[[reference]]
6991== Reference
6992
6993[[lttng-modules-ref]]
6994=== noch:{LTTng-modules}
6995
6996
6997[role="since-2.9"]
6998[[lttng-tracepoint-enum]]
6999==== `LTTNG_TRACEPOINT_ENUM()` usage
7000
7001Use the `LTTNG_TRACEPOINT_ENUM()` macro to define an enumeration:
7002
7003[source,c]
7004----
7005LTTNG_TRACEPOINT_ENUM(name, TP_ENUM_VALUES(entries))
7006----
7007
7008Replace:
7009
7010* `name` with the name of the enumeration (C identifier, unique
7011 amongst all the defined enumerations).
7012* `entries` with a list of enumeration entries.
7013
7014The available enumeration entry macros are:
7015
7016+ctf_enum_value(__name__, __value__)+::
7017 Entry named +__name__+ mapped to the integral value +__value__+.
7018
7019+ctf_enum_range(__name__, __begin__, __end__)+::
7020 Entry named +__name__+ mapped to the range of integral values between
7021 +__begin__+ (included) and +__end__+ (included).
7022
7023+ctf_enum_auto(__name__)+::
7024 Entry named +__name__+ mapped to the integral value following the
7025 last mapping's value.
7026+
7027The last value of a `ctf_enum_value()` entry is its +__value__+
7028parameter.
7029+
7030The last value of a `ctf_enum_range()` entry is its +__end__+ parameter.
7031+
7032If `ctf_enum_auto()` is the first entry in the list, its integral
7033value is 0.
7034
7035Use the `ctf_enum()` <<lttng-modules-tp-fields,field definition macro>>
7036to use a defined enumeration as a tracepoint field.
7037
7038.Define an enumeration with `LTTNG_TRACEPOINT_ENUM()`.
7039====
7040[source,c]
7041----
7042LTTNG_TRACEPOINT_ENUM(
7043 my_enum,
7044 TP_ENUM_VALUES(
7045 ctf_enum_auto("AUTO: EXPECT 0")
7046 ctf_enum_value("VALUE: 23", 23)
7047 ctf_enum_value("VALUE: 27", 27)
7048 ctf_enum_auto("AUTO: EXPECT 28")
7049 ctf_enum_range("RANGE: 101 TO 303", 101, 303)
7050 ctf_enum_auto("AUTO: EXPECT 304")
7051 )
7052)
7053----
7054====
7055
7056
7057[role="since-2.7"]
7058[[lttng-modules-tp-fields]]
7059==== Tracepoint fields macros (for `TP_FIELDS()`)
7060
7061[[tp-fast-assign]][[tp-struct-entry]]The available macros to define
7062tracepoint fields, which must be listed within `TP_FIELDS()` in
7063`LTTNG_TRACEPOINT_EVENT()`, are:
7064
7065[role="func-desc growable",cols="asciidoc,asciidoc"]
7066.Available macros to define LTTng-modules tracepoint fields
7067|====
7068|Macro |Description and parameters
7069
7070|
7071+ctf_integer(__t__, __n__, __e__)+
7072
7073+ctf_integer_nowrite(__t__, __n__, __e__)+
7074
7075+ctf_user_integer(__t__, __n__, __e__)+
7076
7077+ctf_user_integer_nowrite(__t__, __n__, __e__)+
7078|
7079Standard integer, displayed in base 10.
7080
7081+__t__+::
7082 Integer C type (`int`, `long`, `size_t`, ...).
7083
7084+__n__+::
7085 Field name.
7086
7087+__e__+::
7088 Argument expression.
7089
7090|
7091+ctf_integer_hex(__t__, __n__, __e__)+
7092
7093+ctf_user_integer_hex(__t__, __n__, __e__)+
7094|
7095Standard integer, displayed in base 16.
7096
7097+__t__+::
7098 Integer C type.
7099
7100+__n__+::
7101 Field name.
7102
7103+__e__+::
7104 Argument expression.
7105
7106|+ctf_integer_oct(__t__, __n__, __e__)+
7107|
7108Standard integer, displayed in base 8.
7109
7110+__t__+::
7111 Integer C type.
7112
7113+__n__+::
7114 Field name.
7115
7116+__e__+::
7117 Argument expression.
7118
7119|
7120+ctf_integer_network(__t__, __n__, __e__)+
7121
7122+ctf_user_integer_network(__t__, __n__, __e__)+
7123|
7124Integer in network byte order (big-endian), displayed in base 10.
7125
7126+__t__+::
7127 Integer C type.
7128
7129+__n__+::
7130 Field name.
7131
7132+__e__+::
7133 Argument expression.
7134
7135|
7136+ctf_integer_network_hex(__t__, __n__, __e__)+
7137
7138+ctf_user_integer_network_hex(__t__, __n__, __e__)+
7139|
7140Integer in network byte order, displayed in base 16.
7141
7142+__t__+::
7143 Integer C type.
7144
7145+__n__+::
7146 Field name.
7147
7148+__e__+::
7149 Argument expression.
7150
7151|
7152+ctf_enum(__N__, __t__, __n__, __e__)+
7153
7154+ctf_enum_nowrite(__N__, __t__, __n__, __e__)+
7155
7156+ctf_user_enum(__N__, __t__, __n__, __e__)+
7157
7158+ctf_user_enum_nowrite(__N__, __t__, __n__, __e__)+
7159|
7160Enumeration.
7161
7162+__N__+::
7163 Name of a <<lttng-tracepoint-enum,previously defined enumeration>>.
7164
7165+__t__+::
7166 Integer C type (`int`, `long`, `size_t`, ...).
7167
7168+__n__+::
7169 Field name.
7170
7171+__e__+::
7172 Argument expression.
7173
7174|
7175+ctf_string(__n__, __e__)+
7176
7177+ctf_string_nowrite(__n__, __e__)+
7178
7179+ctf_user_string(__n__, __e__)+
7180
7181+ctf_user_string_nowrite(__n__, __e__)+
7182|
7183Null-terminated string; undefined behavior if +__e__+ is `NULL`.
7184
7185+__n__+::
7186 Field name.
7187
7188+__e__+::
7189 Argument expression.
7190
7191|
7192+ctf_array(__t__, __n__, __e__, __s__)+
7193
7194+ctf_array_nowrite(__t__, __n__, __e__, __s__)+
7195
7196+ctf_user_array(__t__, __n__, __e__, __s__)+
7197
7198+ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
7199|
7200Statically-sized array of integers.
7201
7202+__t__+::
7203 Array element C type.
7204
7205+__n__+::
7206 Field name.
7207
7208+__e__+::
7209 Argument expression.
7210
7211+__s__+::
7212 Number of elements.
7213
7214|
7215+ctf_array_bitfield(__t__, __n__, __e__, __s__)+
7216
7217+ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7218
7219+ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
7220
7221+ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7222|
7223Statically-sized array of bits.
7224
7225The type of +__e__+ must be an integer type. +__s__+ is the number
7226of elements of such type in +__e__+, not the number of bits.
7227
7228+__t__+::
7229 Array element C type.
7230
7231+__n__+::
7232 Field name.
7233
7234+__e__+::
7235 Argument expression.
7236
7237+__s__+::
7238 Number of elements.
7239
7240|
7241+ctf_array_text(__t__, __n__, __e__, __s__)+
7242
7243+ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
7244
7245+ctf_user_array_text(__t__, __n__, __e__, __s__)+
7246
7247+ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
7248|
7249Statically-sized array, printed as text.
7250
7251The string does not need to be null-terminated.
7252
7253+__t__+::
7254 Array element C type (always `char`).
7255
7256+__n__+::
7257 Field name.
7258
7259+__e__+::
7260 Argument expression.
7261
7262+__s__+::
7263 Number of elements.
7264
7265|
7266+ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
7267
7268+ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7269
7270+ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
7271
7272+ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7273|
7274Dynamically-sized array of integers.
7275
7276The type of +__E__+ must be unsigned.
7277
7278+__t__+::
7279 Array element C type.
7280
7281+__n__+::
7282 Field name.
7283
7284+__e__+::
7285 Argument expression.
7286
7287+__T__+::
7288 Length expression C type.
7289
7290+__E__+::
7291 Length expression.
7292
7293|
7294+ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7295
7296+ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7297|
7298Dynamically-sized array of integers, displayed in base 16.
7299
7300The type of +__E__+ must be unsigned.
7301
7302+__t__+::
7303 Array element C type.
7304
7305+__n__+::
7306 Field name.
7307
7308+__e__+::
7309 Argument expression.
7310
7311+__T__+::
7312 Length expression C type.
7313
7314+__E__+::
7315 Length expression.
7316
7317|+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
7318|
7319Dynamically-sized array of integers in network byte order (big-endian),
7320displayed in base 10.
7321
7322The type of +__E__+ must be unsigned.
7323
7324+__t__+::
7325 Array element C type.
7326
7327+__n__+::
7328 Field name.
7329
7330+__e__+::
7331 Argument expression.
7332
7333+__T__+::
7334 Length expression C type.
7335
7336+__E__+::
7337 Length expression.
7338
7339|
7340+ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7341
7342+ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7343
7344+ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7345
7346+ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7347|
7348Dynamically-sized array of bits.
7349
7350The type of +__e__+ must be an integer type. +__s__+ is the number
7351of elements of such type in +__e__+, not the number of bits.
7352
7353The type of +__E__+ must be unsigned.
7354
7355+__t__+::
7356 Array element C type.
7357
7358+__n__+::
7359 Field name.
7360
7361+__e__+::
7362 Argument expression.
7363
7364+__T__+::
7365 Length expression C type.
7366
7367+__E__+::
7368 Length expression.
7369
7370|
7371+ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7372
7373+ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7374
7375+ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7376
7377+ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7378|
7379Dynamically-sized array, displayed as text.
7380
7381The string does not need to be null-terminated.
7382
7383The type of +__E__+ must be unsigned.
7384
7385The behaviour is undefined if +__e__+ is `NULL`.
7386
7387+__t__+::
7388 Sequence element C type (always `char`).
7389
7390+__n__+::
7391 Field name.
7392
7393+__e__+::
7394 Argument expression.
7395
7396+__T__+::
7397 Length expression C type.
7398
7399+__E__+::
7400 Length expression.
7401|====
7402
7403Use the `_user` versions when the argument expression, `e`, is
7404a user space address. In the cases of `ctf_user_integer*()` and
7405`ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7406be addressable.
7407
7408The `_nowrite` versions omit themselves from the session trace, but are
7409otherwise identical. This means the `_nowrite` fields won't be written
7410in the recorded trace. Their primary purpose is to make some
7411of the event context available to the
7412<<enabling-disabling-events,event filters>> without having to
7413commit the data to sub-buffers.
7414
7415
7416[[glossary]]
7417== Glossary
7418
7419Terms related to LTTng and to tracing in general:
7420
7421Babeltrace::
7422 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7423 the cmd:babeltrace command, some libraries, and Python bindings.
7424
7425<<channel-buffering-schemes,buffering scheme>>::
7426 A layout of sub-buffers applied to a given channel.
7427
7428<<channel,channel>>::
7429 An entity which is responsible for a set of ring buffers.
7430+
7431<<event,Event rules>> are always attached to a specific channel.
7432
7433clock::
7434 A reference of time for a tracer.
7435
7436<<lttng-consumerd,consumer daemon>>::
7437 A process which is responsible for consuming the full sub-buffers
7438 and write them to a file system or send them over the network.
7439
7440<<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7441 mode in which the tracer _discards_ new event records when there's no
7442 sub-buffer space left to store them.
7443
7444event::
7445 The consequence of the execution of an instrumentation
7446 point, like a tracepoint that you manually place in some source code,
7447 or a Linux kernel KProbe.
7448+
7449An event is said to _occur_ at a specific time. Different actions can
7450be taken upon the occurrence of an event, like record the event's payload
7451to a sub-buffer.
7452
7453<<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7454 The mechanism by which event records of a given channel are lost
7455 (not recorded) when there is no sub-buffer space left to store them.
7456
7457[[def-event-name]]event name::
7458 The name of an event, which is also the name of the event record.
7459 This is also called the _instrumentation point name_.
7460
7461event record::
7462 A record, in a trace, of the payload of an event which occured.
7463
7464<<event,event rule>>::
7465 Set of conditions which must be satisfied for one or more occuring
7466 events to be recorded.
7467
7468`java.util.logging`::
7469 Java platform's
7470 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7471
7472<<instrumenting,instrumentation>>::
7473 The use of LTTng probes to make a piece of software traceable.
7474
7475instrumentation point::
7476 A point in the execution path of a piece of software that, when
7477 reached by this execution, can emit an event.
7478
7479instrumentation point name::
7480 See _<<def-event-name,event name>>_.
7481
7482log4j::
7483 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7484 developed by the Apache Software Foundation.
7485
7486log level::
7487 Level of severity of a log statement or user space
7488 instrumentation point.
7489
7490LTTng::
7491 The _Linux Trace Toolkit: next generation_ project.
7492
7493<<lttng-cli,cmd:lttng>>::
7494 A command-line tool provided by the LTTng-tools project which you
7495 can use to send and receive control messages to and from a
7496 session daemon.
7497
7498LTTng analyses::
7499 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7500 which is a set of analyzing programs that are used to obtain a
7501 higher level view of an LTTng trace.
7502
7503cmd:lttng-consumerd::
7504 The name of the consumer daemon program.
7505
7506cmd:lttng-crash::
7507 A utility provided by the LTTng-tools project which can convert
7508 ring buffer files (usually
7509 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7510 to trace files.
7511
7512LTTng Documentation::
7513 This document.
7514
7515<<lttng-live,LTTng live>>::
7516 A communication protocol between the relay daemon and live viewers
7517 which makes it possible to see events "live", as they are received by
7518 the relay daemon.
7519
7520<<lttng-modules,LTTng-modules>>::
7521 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7522 which contains the Linux kernel modules to make the Linux kernel
7523 instrumentation points available for LTTng tracing.
7524
7525cmd:lttng-relayd::
7526 The name of the relay daemon program.
7527
7528cmd:lttng-sessiond::
7529 The name of the session daemon program.
7530
7531LTTng-tools::
7532 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7533 contains the various programs and libraries used to
7534 <<controlling-tracing,control tracing>>.
7535
7536<<lttng-ust,LTTng-UST>>::
7537 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7538 contains libraries to instrument user applications.
7539
7540<<lttng-ust-agents,LTTng-UST Java agent>>::
7541 A Java package provided by the LTTng-UST project to allow the
7542 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7543 logging statements.
7544
7545<<lttng-ust-agents,LTTng-UST Python agent>>::
7546 A Python package provided by the LTTng-UST project to allow the
7547 LTTng instrumentation of Python logging statements.
7548
7549<<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7550 The event loss mode in which new event records overwrite older
7551 event records when there's no sub-buffer space left to store them.
7552
7553<<channel-buffering-schemes,per-process buffering>>::
7554 A buffering scheme in which each instrumented process has its own
7555 sub-buffers for a given user space channel.
7556
7557<<channel-buffering-schemes,per-user buffering>>::
7558 A buffering scheme in which all the processes of a Unix user share the
7559 same sub-buffer for a given user space channel.
7560
7561<<lttng-relayd,relay daemon>>::
7562 A process which is responsible for receiving the trace data sent by
7563 a distant consumer daemon.
7564
7565ring buffer::
7566 A set of sub-buffers.
7567
7568<<lttng-sessiond,session daemon>>::
7569 A process which receives control commands from you and orchestrates
7570 the tracers and various LTTng daemons.
7571
7572<<taking-a-snapshot,snapshot>>::
7573 A copy of the current data of all the sub-buffers of a given tracing
7574 session, saved as trace files.
7575
7576sub-buffer::
7577 One part of an LTTng ring buffer which contains event records.
7578
7579timestamp::
7580 The time information attached to an event when it is emitted.
7581
7582trace (_noun_)::
7583 A set of files which are the concatenations of one or more
7584 flushed sub-buffers.
7585
7586trace (_verb_)::
7587 The action of recording the events emitted by an application
7588 or by a system, or to initiate such recording by controlling
7589 a tracer.
7590
7591Trace Compass::
7592 The http://tracecompass.org[Trace Compass] project and application.
7593
7594tracepoint::
7595 An instrumentation point using the tracepoint mechanism of the Linux
7596 kernel or of LTTng-UST.
7597
7598tracepoint definition::
7599 The definition of a single tracepoint.
7600
7601tracepoint name::
7602 The name of a tracepoint.
7603
7604tracepoint provider::
7605 A set of functions providing tracepoints to an instrumented user
7606 application.
7607+
7608Not to be confused with a _tracepoint provider package_: many tracepoint
7609providers can exist within a tracepoint provider package.
7610
7611tracepoint provider package::
7612 One or more tracepoint providers compiled as an object file or as
7613 a shared library.
7614
7615tracer::
7616 A software which records emitted events.
7617
7618<<domain,tracing domain>>::
7619 A namespace for event sources.
7620
7621<<tracing-group,tracing group>>::
7622 The Unix group in which a Unix user can be to be allowed to trace the
7623 Linux kernel.
7624
7625<<tracing-session,tracing session>>::
7626 A stateful dialogue between you and a <<lttng-sessiond,session
7627 daemon>>.
7628
7629user application::
7630 An application running in user space, as opposed to a Linux kernel
7631 module, for example.
This page took 0.305451 seconds and 4 git commands to generate.