Move all sources to 'src/'
[lttng-ust.git] / liblttng-ust / rculfhash.c
diff --git a/liblttng-ust/rculfhash.c b/liblttng-ust/rculfhash.c
deleted file mode 100644 (file)
index de90d71..0000000
+++ /dev/null
@@ -1,1310 +0,0 @@
-/*
- * SPDX-License-Identifier: LGPL-2.1-or-later
- *
- * Copyright 2010-2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
- * Copyright 2011 Lai Jiangshan <laijs@cn.fujitsu.com>
- *
- * Userspace RCU library - Lock-Free Resizable RCU Hash Table
- */
-
-/*
- * Based on the following articles:
- * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
- *   extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
- * - Michael, M. M. High performance dynamic lock-free hash tables
- *   and list-based sets. In Proceedings of the fourteenth annual ACM
- *   symposium on Parallel algorithms and architectures, ACM Press,
- *   (2002), 73-82.
- *
- * Some specificities of this Lock-Free Resizable RCU Hash Table
- * implementation:
- *
- * - RCU read-side critical section allows readers to perform hash
- *   table lookups, as well as traversals, and use the returned objects
- *   safely by allowing memory reclaim to take place only after a grace
- *   period.
- * - Add and remove operations are lock-free, and do not need to
- *   allocate memory. They need to be executed within RCU read-side
- *   critical section to ensure the objects they read are valid and to
- *   deal with the cmpxchg ABA problem.
- * - add and add_unique operations are supported. add_unique checks if
- *   the node key already exists in the hash table. It ensures not to
- *   populate a duplicate key if the node key already exists in the hash
- *   table.
- * - The resize operation executes concurrently with
- *   add/add_unique/add_replace/remove/lookup/traversal.
- * - Hash table nodes are contained within a split-ordered list. This
- *   list is ordered by incrementing reversed-bits-hash value.
- * - An index of bucket nodes is kept. These bucket nodes are the hash
- *   table "buckets". These buckets are internal nodes that allow to
- *   perform a fast hash lookup, similarly to a skip list. These
- *   buckets are chained together in the split-ordered list, which
- *   allows recursive expansion by inserting new buckets between the
- *   existing buckets. The split-ordered list allows adding new buckets
- *   between existing buckets as the table needs to grow.
- * - The resize operation for small tables only allows expanding the
- *   hash table. It is triggered automatically by detecting long chains
- *   in the add operation.
- * - The resize operation for larger tables (and available through an
- *   API) allows both expanding and shrinking the hash table.
- * - Split-counters are used to keep track of the number of
- *   nodes within the hash table for automatic resize triggering.
- * - Resize operation initiated by long chain detection is executed by a
- *   worker thread, which keeps lock-freedom of add and remove.
- * - Resize operations are protected by a mutex.
- * - The removal operation is split in two parts: first, a "removed"
- *   flag is set in the next pointer within the node to remove. Then,
- *   a "garbage collection" is performed in the bucket containing the
- *   removed node (from the start of the bucket up to the removed node).
- *   All encountered nodes with "removed" flag set in their next
- *   pointers are removed from the linked-list. If the cmpxchg used for
- *   removal fails (due to concurrent garbage-collection or concurrent
- *   add), we retry from the beginning of the bucket. This ensures that
- *   the node with "removed" flag set is removed from the hash table
- *   (not visible to lookups anymore) before the RCU read-side critical
- *   section held across removal ends. Furthermore, this ensures that
- *   the node with "removed" flag set is removed from the linked-list
- *   before its memory is reclaimed. After setting the "removal" flag,
- *   only the thread which removal is the first to set the "removal
- *   owner" flag (with an xchg) into a node's next pointer is considered
- *   to have succeeded its removal (and thus owns the node to reclaim).
- *   Because we garbage-collect starting from an invariant node (the
- *   start-of-bucket bucket node) up to the "removed" node (or find a
- *   reverse-hash that is higher), we are sure that a successful
- *   traversal of the chain leads to a chain that is present in the
- *   linked-list (the start node is never removed) and that it does not
- *   contain the "removed" node anymore, even if concurrent delete/add
- *   operations are changing the structure of the list concurrently.
- * - The add operations perform garbage collection of buckets if they
- *   encounter nodes with removed flag set in the bucket where they want
- *   to add their new node. This ensures lock-freedom of add operation by
- *   helping the remover unlink nodes from the list rather than to wait
- *   for it do to so.
- * - There are three memory backends for the hash table buckets: the
- *   "order table", the "chunks", and the "mmap".
- * - These bucket containers contain a compact version of the hash table
- *   nodes.
- * - The RCU "order table":
- *   -  has a first level table indexed by log2(hash index) which is
- *      copied and expanded by the resize operation. This order table
- *      allows finding the "bucket node" tables.
- *   - There is one bucket node table per hash index order. The size of
- *     each bucket node table is half the number of hashes contained in
- *     this order (except for order 0).
- * - The RCU "chunks" is best suited for close interaction with a page
- *   allocator. It uses a linear array as index to "chunks" containing
- *   each the same number of buckets.
- * - The RCU "mmap" memory backend uses a single memory map to hold
- *   all buckets.
- * - synchronize_rcu is used to garbage-collect the old bucket node table.
- *
- * Ordering Guarantees:
- *
- * To discuss these guarantees, we first define "read" operation as any
- * of the the basic lttng_ust_lfht_lookup, lttng_ust_lfht_next_duplicate,
- * lttng_ust_lfht_first, lttng_ust_lfht_next operation, as well as
- * lttng_ust_lfht_add_unique (failure).
- *
- * We define "read traversal" operation as any of the following
- * group of operations
- *  - lttng_ust_lfht_lookup followed by iteration with lttng_ust_lfht_next_duplicate
- *    (and/or lttng_ust_lfht_next, although less common).
- *  - lttng_ust_lfht_add_unique (failure) followed by iteration with
- *    lttng_ust_lfht_next_duplicate (and/or lttng_ust_lfht_next, although less
- *    common).
- *  - lttng_ust_lfht_first followed iteration with lttng_ust_lfht_next (and/or
- *    lttng_ust_lfht_next_duplicate, although less common).
- *
- * We define "write" operations as any of lttng_ust_lfht_add, lttng_ust_lfht_replace,
- * lttng_ust_lfht_add_unique (success), lttng_ust_lfht_add_replace, lttng_ust_lfht_del.
- *
- * When lttng_ust_lfht_add_unique succeeds (returns the node passed as
- * parameter), it acts as a "write" operation. When lttng_ust_lfht_add_unique
- * fails (returns a node different from the one passed as parameter), it
- * acts as a "read" operation. A lttng_ust_lfht_add_unique failure is a
- * lttng_ust_lfht_lookup "read" operation, therefore, any ordering guarantee
- * referring to "lookup" imply any of "lookup" or lttng_ust_lfht_add_unique
- * (failure).
- *
- * We define "prior" and "later" node as nodes observable by reads and
- * read traversals respectively before and after a write or sequence of
- * write operations.
- *
- * Hash-table operations are often cascaded, for example, the pointer
- * returned by a lttng_ust_lfht_lookup() might be passed to a lttng_ust_lfht_next(),
- * whose return value might in turn be passed to another hash-table
- * operation. This entire cascaded series of operations must be enclosed
- * by a pair of matching rcu_read_lock() and rcu_read_unlock()
- * operations.
- *
- * The following ordering guarantees are offered by this hash table:
- *
- * A.1) "read" after "write": if there is ordering between a write and a
- *      later read, then the read is guaranteed to see the write or some
- *      later write.
- * A.2) "read traversal" after "write": given that there is dependency
- *      ordering between reads in a "read traversal", if there is
- *      ordering between a write and the first read of the traversal,
- *      then the "read traversal" is guaranteed to see the write or
- *      some later write.
- * B.1) "write" after "read": if there is ordering between a read and a
- *      later write, then the read will never see the write.
- * B.2) "write" after "read traversal": given that there is dependency
- *      ordering between reads in a "read traversal", if there is
- *      ordering between the last read of the traversal and a later
- *      write, then the "read traversal" will never see the write.
- * C)   "write" while "read traversal": if a write occurs during a "read
- *      traversal", the traversal may, or may not, see the write.
- * D.1) "write" after "write": if there is ordering between a write and
- *      a later write, then the later write is guaranteed to see the
- *      effects of the first write.
- * D.2) Concurrent "write" pairs: The system will assign an arbitrary
- *      order to any pair of concurrent conflicting writes.
- *      Non-conflicting writes (for example, to different keys) are
- *      unordered.
- * E)   If a grace period separates a "del" or "replace" operation
- *      and a subsequent operation, then that subsequent operation is
- *      guaranteed not to see the removed item.
- * F)   Uniqueness guarantee: given a hash table that does not contain
- *      duplicate items for a given key, there will only be one item in
- *      the hash table after an arbitrary sequence of add_unique and/or
- *      add_replace operations. Note, however, that a pair of
- *      concurrent read operations might well access two different items
- *      with that key.
- * G.1) If a pair of lookups for a given key are ordered (e.g. by a
- *      memory barrier), then the second lookup will return the same
- *      node as the previous lookup, or some later node.
- * G.2) A "read traversal" that starts after the end of a prior "read
- *      traversal" (ordered by memory barriers) is guaranteed to see the
- *      same nodes as the previous traversal, or some later nodes.
- * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
- *      example, if a pair of reads to the same key run concurrently
- *      with an insertion of that same key, the reads remain unordered
- *      regardless of their return values. In other words, you cannot
- *      rely on the values returned by the reads to deduce ordering.
- *
- * Progress guarantees:
- *
- * * Reads are wait-free. These operations always move forward in the
- *   hash table linked list, and this list has no loop.
- * * Writes are lock-free. Any retry loop performed by a write operation
- *   is triggered by progress made within another update operation.
- *
- * Bucket node tables:
- *
- * hash table  hash table      the last        all bucket node tables
- * order       size            bucket node     0   1   2   3   4   5   6(index)
- *                             table size
- * 0           1               1               1
- * 1           2               1               1   1
- * 2           4               2               1   1   2
- * 3           8               4               1   1   2   4
- * 4           16              8               1   1   2   4   8
- * 5           32              16              1   1   2   4   8  16
- * 6           64              32              1   1   2   4   8  16  32
- *
- * When growing/shrinking, we only focus on the last bucket node table
- * which size is (!order ? 1 : (1 << (order -1))).
- *
- * Example for growing/shrinking:
- * grow hash table from order 5 to 6: init the index=6 bucket node table
- * shrink hash table from order 6 to 5: fini the index=6 bucket node table
- *
- * A bit of ascii art explanation:
- *
- * The order index is the off-by-one compared to the actual power of 2
- * because we use index 0 to deal with the 0 special-case.
- *
- * This shows the nodes for a small table ordered by reversed bits:
- *
- *    bits   reverse
- * 0  000        000
- * 4  100        001
- * 2  010        010
- * 6  110        011
- * 1  001        100
- * 5  101        101
- * 3  011        110
- * 7  111        111
- *
- * This shows the nodes in order of non-reversed bits, linked by
- * reversed-bit order.
- *
- * order              bits       reverse
- * 0               0  000        000
- * 1               |  1  001        100             <-
- * 2               |  |  2  010        010    <-     |
- *                 |  |  |  3  011        110  | <-  |
- * 3               -> |  |  |  4  100        001  |  |
- *                    -> |  |     5  101        101  |
- *                       -> |        6  110        011
- *                          ->          7  111        111
- */
-
-/*
- * Note on port to lttng-ust: auto-resize and accounting features are
- * removed.
- */
-
-#define _LGPL_SOURCE
-#include <stdlib.h>
-#include <errno.h>
-#include <assert.h>
-#include <stdio.h>
-#include <stdint.h>
-#include <string.h>
-#include <sched.h>
-#include <unistd.h>
-
-#include <lttng/ust-arch.h>
-#include <lttng/urcu/pointer.h>
-#include <urcu/arch.h>
-#include <urcu/uatomic.h>
-#include <urcu/compiler.h>
-#include "rculfhash.h"
-#include "rculfhash-internal.h"
-#include <stdio.h>
-#include <pthread.h>
-#include <signal.h>
-
-/*
- * Split-counters lazily update the global counter each 1024
- * addition/removal. It automatically keeps track of resize required.
- * We use the bucket length as indicator for need to expand for small
- * tables and machines lacking per-cpu data support.
- */
-#define COUNT_COMMIT_ORDER             10
-
-/*
- * Define the minimum table size.
- */
-#define MIN_TABLE_ORDER                        0
-#define MIN_TABLE_SIZE                 (1UL << MIN_TABLE_ORDER)
-
-/*
- * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
- */
-#define MIN_PARTITION_PER_THREAD_ORDER 12
-#define MIN_PARTITION_PER_THREAD       (1UL << MIN_PARTITION_PER_THREAD_ORDER)
-
-/*
- * The removed flag needs to be updated atomically with the pointer.
- * It indicates that no node must attach to the node scheduled for
- * removal, and that node garbage collection must be performed.
- * The bucket flag does not require to be updated atomically with the
- * pointer, but it is added as a pointer low bit flag to save space.
- * The "removal owner" flag is used to detect which of the "del"
- * operation that has set the "removed flag" gets to return the removed
- * node to its caller. Note that the replace operation does not need to
- * iteract with the "removal owner" flag, because it validates that
- * the "removed" flag is not set before performing its cmpxchg.
- */
-#define REMOVED_FLAG           (1UL << 0)
-#define BUCKET_FLAG            (1UL << 1)
-#define REMOVAL_OWNER_FLAG     (1UL << 2)
-#define FLAGS_MASK             ((1UL << 3) - 1)
-
-/* Value of the end pointer. Should not interact with flags. */
-#define END_VALUE              NULL
-
-/*
- * ht_items_count: Split-counters counting the number of node addition
- * and removal in the table. Only used if the LTTNG_UST_LFHT_ACCOUNTING flag
- * is set at hash table creation.
- *
- * These are free-running counters, never reset to zero. They count the
- * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
- * operations to update the global counter. We choose a power-of-2 value
- * for the trigger to deal with 32 or 64-bit overflow of the counter.
- */
-struct ht_items_count {
-       unsigned long add, del;
-} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
-
-#ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
-
-static
-void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
-{
-       iter->lfht = ht;
-}
-
-#define lttng_ust_lfht_iter_debug_assert(...)          assert(__VA_ARGS__)
-
-#else
-
-static
-void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht __attribute__((unused)),
-               struct lttng_ust_lfht_iter *iter __attribute__((unused)))
-{
-}
-
-#define lttng_ust_lfht_iter_debug_assert(...)
-
-#endif
-
-/*
- * Algorithm to reverse bits in a word by lookup table, extended to
- * 64-bit words.
- * Source:
- * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
- * Originally from Public Domain.
- */
-
-static const uint8_t BitReverseTable256[256] =
-{
-#define R2(n) (n),   (n) + 2*64,     (n) + 1*64,     (n) + 3*64
-#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
-#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
-       R6(0), R6(2), R6(1), R6(3)
-};
-#undef R2
-#undef R4
-#undef R6
-
-static
-uint8_t bit_reverse_u8(uint8_t v)
-{
-       return BitReverseTable256[v];
-}
-
-#if (CAA_BITS_PER_LONG == 32)
-static
-uint32_t bit_reverse_u32(uint32_t v)
-{
-       return ((uint32_t) bit_reverse_u8(v) << 24) |
-               ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
-               ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
-               ((uint32_t) bit_reverse_u8(v >> 24));
-}
-#else
-static
-uint64_t bit_reverse_u64(uint64_t v)
-{
-       return ((uint64_t) bit_reverse_u8(v) << 56) |
-               ((uint64_t) bit_reverse_u8(v >> 8)  << 48) |
-               ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
-               ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
-               ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
-               ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
-               ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
-               ((uint64_t) bit_reverse_u8(v >> 56));
-}
-#endif
-
-static
-unsigned long bit_reverse_ulong(unsigned long v)
-{
-#if (CAA_BITS_PER_LONG == 32)
-       return bit_reverse_u32(v);
-#else
-       return bit_reverse_u64(v);
-#endif
-}
-
-/*
- * fls: returns the position of the most significant bit.
- * Returns 0 if no bit is set, else returns the position of the most
- * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
- */
-#if defined(LTTNG_UST_ARCH_X86)
-static inline
-unsigned int fls_u32(uint32_t x)
-{
-       int r;
-
-       __asm__ ("bsrl %1,%0\n\t"
-           "jnz 1f\n\t"
-           "movl $-1,%0\n\t"
-           "1:\n\t"
-           : "=r" (r) : "rm" (x));
-       return r + 1;
-}
-#define HAS_FLS_U32
-#endif
-
-#if defined(LTTNG_UST_ARCH_AMD64)
-static inline
-unsigned int fls_u64(uint64_t x)
-{
-       long r;
-
-       __asm__ ("bsrq %1,%0\n\t"
-           "jnz 1f\n\t"
-           "movq $-1,%0\n\t"
-           "1:\n\t"
-           : "=r" (r) : "rm" (x));
-       return r + 1;
-}
-#define HAS_FLS_U64
-#endif
-
-#ifndef HAS_FLS_U64
-static
-unsigned int fls_u64(uint64_t x)
-       __attribute__((unused));
-static
-unsigned int fls_u64(uint64_t x)
-{
-       unsigned int r = 64;
-
-       if (!x)
-               return 0;
-
-       if (!(x & 0xFFFFFFFF00000000ULL)) {
-               x <<= 32;
-               r -= 32;
-       }
-       if (!(x & 0xFFFF000000000000ULL)) {
-               x <<= 16;
-               r -= 16;
-       }
-       if (!(x & 0xFF00000000000000ULL)) {
-               x <<= 8;
-               r -= 8;
-       }
-       if (!(x & 0xF000000000000000ULL)) {
-               x <<= 4;
-               r -= 4;
-       }
-       if (!(x & 0xC000000000000000ULL)) {
-               x <<= 2;
-               r -= 2;
-       }
-       if (!(x & 0x8000000000000000ULL)) {
-               x <<= 1;
-               r -= 1;
-       }
-       return r;
-}
-#endif
-
-#ifndef HAS_FLS_U32
-static
-unsigned int fls_u32(uint32_t x)
-       __attribute__((unused));
-static
-unsigned int fls_u32(uint32_t x)
-{
-       unsigned int r = 32;
-
-       if (!x)
-               return 0;
-       if (!(x & 0xFFFF0000U)) {
-               x <<= 16;
-               r -= 16;
-       }
-       if (!(x & 0xFF000000U)) {
-               x <<= 8;
-               r -= 8;
-       }
-       if (!(x & 0xF0000000U)) {
-               x <<= 4;
-               r -= 4;
-       }
-       if (!(x & 0xC0000000U)) {
-               x <<= 2;
-               r -= 2;
-       }
-       if (!(x & 0x80000000U)) {
-               x <<= 1;
-               r -= 1;
-       }
-       return r;
-}
-#endif
-
-unsigned int lttng_ust_lfht_fls_ulong(unsigned long x)
-{
-#if (CAA_BITS_PER_LONG == 32)
-       return fls_u32(x);
-#else
-       return fls_u64(x);
-#endif
-}
-
-/*
- * Return the minimum order for which x <= (1UL << order).
- * Return -1 if x is 0.
- */
-int lttng_ust_lfht_get_count_order_u32(uint32_t x)
-{
-       if (!x)
-               return -1;
-
-       return fls_u32(x - 1);
-}
-
-/*
- * Return the minimum order for which x <= (1UL << order).
- * Return -1 if x is 0.
- */
-int lttng_ust_lfht_get_count_order_ulong(unsigned long x)
-{
-       if (!x)
-               return -1;
-
-       return lttng_ust_lfht_fls_ulong(x - 1);
-}
-
-static
-struct lttng_ust_lfht_node *clear_flag(struct lttng_ust_lfht_node *node)
-{
-       return (struct lttng_ust_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
-}
-
-static
-int is_removed(const struct lttng_ust_lfht_node *node)
-{
-       return ((unsigned long) node) & REMOVED_FLAG;
-}
-
-static
-int is_bucket(struct lttng_ust_lfht_node *node)
-{
-       return ((unsigned long) node) & BUCKET_FLAG;
-}
-
-static
-struct lttng_ust_lfht_node *flag_bucket(struct lttng_ust_lfht_node *node)
-{
-       return (struct lttng_ust_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
-}
-
-static
-int is_removal_owner(struct lttng_ust_lfht_node *node)
-{
-       return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
-}
-
-static
-struct lttng_ust_lfht_node *flag_removal_owner(struct lttng_ust_lfht_node *node)
-{
-       return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
-}
-
-static
-struct lttng_ust_lfht_node *flag_removed_or_removal_owner(struct lttng_ust_lfht_node *node)
-{
-       return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
-}
-
-static
-struct lttng_ust_lfht_node *get_end(void)
-{
-       return (struct lttng_ust_lfht_node *) END_VALUE;
-}
-
-static
-int is_end(struct lttng_ust_lfht_node *node)
-{
-       return clear_flag(node) == (struct lttng_ust_lfht_node *) END_VALUE;
-}
-
-static
-void lttng_ust_lfht_alloc_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
-{
-       return ht->mm->alloc_bucket_table(ht, order);
-}
-
-/*
- * lttng_ust_lfht_free_bucket_table() should be called with decreasing order.
- * When lttng_ust_lfht_free_bucket_table(0) is called, it means the whole
- * lfht is destroyed.
- */
-static
-void lttng_ust_lfht_free_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
-{
-       return ht->mm->free_bucket_table(ht, order);
-}
-
-static inline
-struct lttng_ust_lfht_node *bucket_at(struct lttng_ust_lfht *ht, unsigned long index)
-{
-       return ht->bucket_at(ht, index);
-}
-
-static inline
-struct lttng_ust_lfht_node *lookup_bucket(struct lttng_ust_lfht *ht, unsigned long size,
-               unsigned long hash)
-{
-       assert(size > 0);
-       return bucket_at(ht, hash & (size - 1));
-}
-
-/*
- * Remove all logically deleted nodes from a bucket up to a certain node key.
- */
-static
-void _lttng_ust_lfht_gc_bucket(struct lttng_ust_lfht_node *bucket, struct lttng_ust_lfht_node *node)
-{
-       struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_next;
-
-       assert(!is_bucket(bucket));
-       assert(!is_removed(bucket));
-       assert(!is_removal_owner(bucket));
-       assert(!is_bucket(node));
-       assert(!is_removed(node));
-       assert(!is_removal_owner(node));
-       for (;;) {
-               iter_prev = bucket;
-               /* We can always skip the bucket node initially */
-               iter = lttng_ust_rcu_dereference(iter_prev->next);
-               assert(!is_removed(iter));
-               assert(!is_removal_owner(iter));
-               assert(iter_prev->reverse_hash <= node->reverse_hash);
-               /*
-                * We should never be called with bucket (start of chain)
-                * and logically removed node (end of path compression
-                * marker) being the actual same node. This would be a
-                * bug in the algorithm implementation.
-                */
-               assert(bucket != node);
-               for (;;) {
-                       if (caa_unlikely(is_end(iter)))
-                               return;
-                       if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
-                               return;
-                       next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
-                       if (caa_likely(is_removed(next)))
-                               break;
-                       iter_prev = clear_flag(iter);
-                       iter = next;
-               }
-               assert(!is_removed(iter));
-               assert(!is_removal_owner(iter));
-               if (is_bucket(iter))
-                       new_next = flag_bucket(clear_flag(next));
-               else
-                       new_next = clear_flag(next);
-               (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
-       }
-}
-
-static
-int _lttng_ust_lfht_replace(struct lttng_ust_lfht *ht, unsigned long size,
-               struct lttng_ust_lfht_node *old_node,
-               struct lttng_ust_lfht_node *old_next,
-               struct lttng_ust_lfht_node *new_node)
-{
-       struct lttng_ust_lfht_node *bucket, *ret_next;
-
-       if (!old_node)  /* Return -ENOENT if asked to replace NULL node */
-               return -ENOENT;
-
-       assert(!is_removed(old_node));
-       assert(!is_removal_owner(old_node));
-       assert(!is_bucket(old_node));
-       assert(!is_removed(new_node));
-       assert(!is_removal_owner(new_node));
-       assert(!is_bucket(new_node));
-       assert(new_node != old_node);
-       for (;;) {
-               /* Insert after node to be replaced */
-               if (is_removed(old_next)) {
-                       /*
-                        * Too late, the old node has been removed under us
-                        * between lookup and replace. Fail.
-                        */
-                       return -ENOENT;
-               }
-               assert(old_next == clear_flag(old_next));
-               assert(new_node != old_next);
-               /*
-                * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
-                * flag. It is either set atomically at the same time
-                * (replace) or after (del).
-                */
-               assert(!is_removal_owner(old_next));
-               new_node->next = old_next;
-               /*
-                * Here is the whole trick for lock-free replace: we add
-                * the replacement node _after_ the node we want to
-                * replace by atomically setting its next pointer at the
-                * same time we set its removal flag. Given that
-                * the lookups/get next use an iterator aware of the
-                * next pointer, they will either skip the old node due
-                * to the removal flag and see the new node, or use
-                * the old node, but will not see the new one.
-                * This is a replacement of a node with another node
-                * that has the same value: we are therefore not
-                * removing a value from the hash table. We set both the
-                * REMOVED and REMOVAL_OWNER flags atomically so we own
-                * the node after successful cmpxchg.
-                */
-               ret_next = uatomic_cmpxchg(&old_node->next,
-                       old_next, flag_removed_or_removal_owner(new_node));
-               if (ret_next == old_next)
-                       break;          /* We performed the replacement. */
-               old_next = ret_next;
-       }
-
-       /*
-        * Ensure that the old node is not visible to readers anymore:
-        * lookup for the node, and remove it (along with any other
-        * logically removed node) if found.
-        */
-       bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
-       _lttng_ust_lfht_gc_bucket(bucket, new_node);
-
-       assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
-       return 0;
-}
-
-/*
- * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
- * mode. A NULL unique_ret allows creation of duplicate keys.
- */
-static
-void _lttng_ust_lfht_add(struct lttng_ust_lfht *ht,
-               unsigned long hash,
-               lttng_ust_lfht_match_fct match,
-               const void *key,
-               unsigned long size,
-               struct lttng_ust_lfht_node *node,
-               struct lttng_ust_lfht_iter *unique_ret,
-               int bucket_flag)
-{
-       struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
-                       *return_node;
-       struct lttng_ust_lfht_node *bucket;
-
-       assert(!is_bucket(node));
-       assert(!is_removed(node));
-       assert(!is_removal_owner(node));
-       bucket = lookup_bucket(ht, size, hash);
-       for (;;) {
-               /*
-                * iter_prev points to the non-removed node prior to the
-                * insert location.
-                */
-               iter_prev = bucket;
-               /* We can always skip the bucket node initially */
-               iter = lttng_ust_rcu_dereference(iter_prev->next);
-               assert(iter_prev->reverse_hash <= node->reverse_hash);
-               for (;;) {
-                       if (caa_unlikely(is_end(iter)))
-                               goto insert;
-                       if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
-                               goto insert;
-
-                       /* bucket node is the first node of the identical-hash-value chain */
-                       if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
-                               goto insert;
-
-                       next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
-                       if (caa_unlikely(is_removed(next)))
-                               goto gc_node;
-
-                       /* uniquely add */
-                       if (unique_ret
-                           && !is_bucket(next)
-                           && clear_flag(iter)->reverse_hash == node->reverse_hash) {
-                               struct lttng_ust_lfht_iter d_iter = {
-                                       .node = node,
-                                       .next = iter,
-#ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
-                                       .lfht = ht,
-#endif
-                               };
-
-                               /*
-                                * uniquely adding inserts the node as the first
-                                * node of the identical-hash-value node chain.
-                                *
-                                * This semantic ensures no duplicated keys
-                                * should ever be observable in the table
-                                * (including traversing the table node by
-                                * node by forward iterations)
-                                */
-                               lttng_ust_lfht_next_duplicate(ht, match, key, &d_iter);
-                               if (!d_iter.node)
-                                       goto insert;
-
-                               *unique_ret = d_iter;
-                               return;
-                       }
-
-                       iter_prev = clear_flag(iter);
-                       iter = next;
-               }
-
-       insert:
-               assert(node != clear_flag(iter));
-               assert(!is_removed(iter_prev));
-               assert(!is_removal_owner(iter_prev));
-               assert(!is_removed(iter));
-               assert(!is_removal_owner(iter));
-               assert(iter_prev != node);
-               if (!bucket_flag)
-                       node->next = clear_flag(iter);
-               else
-                       node->next = flag_bucket(clear_flag(iter));
-               if (is_bucket(iter))
-                       new_node = flag_bucket(node);
-               else
-                       new_node = node;
-               if (uatomic_cmpxchg(&iter_prev->next, iter,
-                                   new_node) != iter) {
-                       continue;       /* retry */
-               } else {
-                       return_node = node;
-                       goto end;
-               }
-
-       gc_node:
-               assert(!is_removed(iter));
-               assert(!is_removal_owner(iter));
-               if (is_bucket(iter))
-                       new_next = flag_bucket(clear_flag(next));
-               else
-                       new_next = clear_flag(next);
-               (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
-               /* retry */
-       }
-end:
-       if (unique_ret) {
-               unique_ret->node = return_node;
-               /* unique_ret->next left unset, never used. */
-       }
-}
-
-static
-int _lttng_ust_lfht_del(struct lttng_ust_lfht *ht, unsigned long size,
-               struct lttng_ust_lfht_node *node)
-{
-       struct lttng_ust_lfht_node *bucket, *next;
-
-       if (!node)      /* Return -ENOENT if asked to delete NULL node */
-               return -ENOENT;
-
-       /* logically delete the node */
-       assert(!is_bucket(node));
-       assert(!is_removed(node));
-       assert(!is_removal_owner(node));
-
-       /*
-        * We are first checking if the node had previously been
-        * logically removed (this check is not atomic with setting the
-        * logical removal flag). Return -ENOENT if the node had
-        * previously been removed.
-        */
-       next = CMM_LOAD_SHARED(node->next);     /* next is not dereferenced */
-       if (caa_unlikely(is_removed(next)))
-               return -ENOENT;
-       assert(!is_bucket(next));
-       /*
-        * The del operation semantic guarantees a full memory barrier
-        * before the uatomic_or atomic commit of the deletion flag.
-        */
-       cmm_smp_mb__before_uatomic_or();
-       /*
-        * We set the REMOVED_FLAG unconditionally. Note that there may
-        * be more than one concurrent thread setting this flag.
-        * Knowing which wins the race will be known after the garbage
-        * collection phase, stay tuned!
-        */
-       uatomic_or(&node->next, REMOVED_FLAG);
-       /* We performed the (logical) deletion. */
-
-       /*
-        * Ensure that the node is not visible to readers anymore: lookup for
-        * the node, and remove it (along with any other logically removed node)
-        * if found.
-        */
-       bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
-       _lttng_ust_lfht_gc_bucket(bucket, node);
-
-       assert(is_removed(CMM_LOAD_SHARED(node->next)));
-       /*
-        * Last phase: atomically exchange node->next with a version
-        * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
-        * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
-        * the node and win the removal race.
-        * It is interesting to note that all "add" paths are forbidden
-        * to change the next pointer starting from the point where the
-        * REMOVED_FLAG is set, so here using a read, followed by a
-        * xchg() suffice to guarantee that the xchg() will ever only
-        * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
-        * was already set).
-        */
-       if (!is_removal_owner(uatomic_xchg(&node->next,
-                       flag_removal_owner(node->next))))
-               return 0;
-       else
-               return -ENOENT;
-}
-
-/*
- * Never called with size < 1.
- */
-static
-void lttng_ust_lfht_create_bucket(struct lttng_ust_lfht *ht, unsigned long size)
-{
-       struct lttng_ust_lfht_node *prev, *node;
-       unsigned long order, len, i;
-       int bucket_order;
-
-       lttng_ust_lfht_alloc_bucket_table(ht, 0);
-
-       dbg_printf("create bucket: order 0 index 0 hash 0\n");
-       node = bucket_at(ht, 0);
-       node->next = flag_bucket(get_end());
-       node->reverse_hash = 0;
-
-       bucket_order = lttng_ust_lfht_get_count_order_ulong(size);
-       assert(bucket_order >= 0);
-
-       for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
-               len = 1UL << (order - 1);
-               lttng_ust_lfht_alloc_bucket_table(ht, order);
-
-               for (i = 0; i < len; i++) {
-                       /*
-                        * Now, we are trying to init the node with the
-                        * hash=(len+i) (which is also a bucket with the
-                        * index=(len+i)) and insert it into the hash table,
-                        * so this node has to be inserted after the bucket
-                        * with the index=(len+i)&(len-1)=i. And because there
-                        * is no other non-bucket node nor bucket node with
-                        * larger index/hash inserted, so the bucket node
-                        * being inserted should be inserted directly linked
-                        * after the bucket node with index=i.
-                        */
-                       prev = bucket_at(ht, i);
-                       node = bucket_at(ht, len + i);
-
-                       dbg_printf("create bucket: order %lu index %lu hash %lu\n",
-                                  order, len + i, len + i);
-                       node->reverse_hash = bit_reverse_ulong(len + i);
-
-                       /* insert after prev */
-                       assert(is_bucket(prev->next));
-                       node->next = prev->next;
-                       prev->next = flag_bucket(node);
-               }
-       }
-}
-
-#if (CAA_BITS_PER_LONG > 32)
-/*
- * For 64-bit architectures, with max number of buckets small enough not to
- * use the entire 64-bit memory mapping space (and allowing a fair number of
- * hash table instances), use the mmap allocator, which is faster. Otherwise,
- * fallback to the order allocator.
- */
-static
-const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
-{
-       if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
-               return &lttng_ust_lfht_mm_mmap;
-       else
-               return &lttng_ust_lfht_mm_order;
-}
-#else
-/*
- * For 32-bit architectures, use the order allocator.
- */
-static
-const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
-{
-       return &lttng_ust_lfht_mm_order;
-}
-#endif
-
-struct lttng_ust_lfht *lttng_ust_lfht_new(unsigned long init_size,
-                       unsigned long min_nr_alloc_buckets,
-                       unsigned long max_nr_buckets,
-                       int flags,
-                       const struct lttng_ust_lfht_mm_type *mm)
-{
-       struct lttng_ust_lfht *ht;
-       unsigned long order;
-
-       /* min_nr_alloc_buckets must be power of two */
-       if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
-               return NULL;
-
-       /* init_size must be power of two */
-       if (!init_size || (init_size & (init_size - 1)))
-               return NULL;
-
-       /*
-        * Memory management plugin default.
-        */
-       if (!mm)
-               mm = get_mm_type(max_nr_buckets);
-
-       /* max_nr_buckets == 0 for order based mm means infinite */
-       if (mm == &lttng_ust_lfht_mm_order && !max_nr_buckets)
-               max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
-
-       /* max_nr_buckets must be power of two */
-       if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
-               return NULL;
-
-       if (flags & LTTNG_UST_LFHT_AUTO_RESIZE)
-               return NULL;
-
-       min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
-       init_size = max(init_size, MIN_TABLE_SIZE);
-       max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
-       init_size = min(init_size, max_nr_buckets);
-
-       ht = mm->alloc_lttng_ust_lfht(min_nr_alloc_buckets, max_nr_buckets);
-       assert(ht);
-       assert(ht->mm == mm);
-       assert(ht->bucket_at == mm->bucket_at);
-
-       ht->flags = flags;
-       /* this mutex should not nest in read-side C.S. */
-       pthread_mutex_init(&ht->resize_mutex, NULL);
-       order = lttng_ust_lfht_get_count_order_ulong(init_size);
-       ht->resize_target = 1UL << order;
-       lttng_ust_lfht_create_bucket(ht, 1UL << order);
-       ht->size = 1UL << order;
-       return ht;
-}
-
-void lttng_ust_lfht_lookup(struct lttng_ust_lfht *ht, unsigned long hash,
-               lttng_ust_lfht_match_fct match, const void *key,
-               struct lttng_ust_lfht_iter *iter)
-{
-       struct lttng_ust_lfht_node *node, *next, *bucket;
-       unsigned long reverse_hash, size;
-
-       lttng_ust_lfht_iter_debug_set_ht(ht, iter);
-
-       reverse_hash = bit_reverse_ulong(hash);
-
-       size = lttng_ust_rcu_dereference(ht->size);
-       bucket = lookup_bucket(ht, size, hash);
-       /* We can always skip the bucket node initially */
-       node = lttng_ust_rcu_dereference(bucket->next);
-       node = clear_flag(node);
-       for (;;) {
-               if (caa_unlikely(is_end(node))) {
-                       node = next = NULL;
-                       break;
-               }
-               if (caa_unlikely(node->reverse_hash > reverse_hash)) {
-                       node = next = NULL;
-                       break;
-               }
-               next = lttng_ust_rcu_dereference(node->next);
-               assert(node == clear_flag(node));
-               if (caa_likely(!is_removed(next))
-                   && !is_bucket(next)
-                   && node->reverse_hash == reverse_hash
-                   && caa_likely(match(node, key))) {
-                               break;
-               }
-               node = clear_flag(next);
-       }
-       assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
-       iter->node = node;
-       iter->next = next;
-}
-
-void lttng_ust_lfht_next_duplicate(struct lttng_ust_lfht *ht __attribute__((unused)),
-               lttng_ust_lfht_match_fct match,
-               const void *key, struct lttng_ust_lfht_iter *iter)
-{
-       struct lttng_ust_lfht_node *node, *next;
-       unsigned long reverse_hash;
-
-       lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
-       node = iter->node;
-       reverse_hash = node->reverse_hash;
-       next = iter->next;
-       node = clear_flag(next);
-
-       for (;;) {
-               if (caa_unlikely(is_end(node))) {
-                       node = next = NULL;
-                       break;
-               }
-               if (caa_unlikely(node->reverse_hash > reverse_hash)) {
-                       node = next = NULL;
-                       break;
-               }
-               next = lttng_ust_rcu_dereference(node->next);
-               if (caa_likely(!is_removed(next))
-                   && !is_bucket(next)
-                   && caa_likely(match(node, key))) {
-                               break;
-               }
-               node = clear_flag(next);
-       }
-       assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
-       iter->node = node;
-       iter->next = next;
-}
-
-void lttng_ust_lfht_next(struct lttng_ust_lfht *ht __attribute__((unused)),
-               struct lttng_ust_lfht_iter *iter)
-{
-       struct lttng_ust_lfht_node *node, *next;
-
-       lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
-       node = clear_flag(iter->next);
-       for (;;) {
-               if (caa_unlikely(is_end(node))) {
-                       node = next = NULL;
-                       break;
-               }
-               next = lttng_ust_rcu_dereference(node->next);
-               if (caa_likely(!is_removed(next))
-                   && !is_bucket(next)) {
-                               break;
-               }
-               node = clear_flag(next);
-       }
-       assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
-       iter->node = node;
-       iter->next = next;
-}
-
-void lttng_ust_lfht_first(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
-{
-       lttng_ust_lfht_iter_debug_set_ht(ht, iter);
-       /*
-        * Get next after first bucket node. The first bucket node is the
-        * first node of the linked list.
-        */
-       iter->next = bucket_at(ht, 0)->next;
-       lttng_ust_lfht_next(ht, iter);
-}
-
-void lttng_ust_lfht_add(struct lttng_ust_lfht *ht, unsigned long hash,
-               struct lttng_ust_lfht_node *node)
-{
-       unsigned long size;
-
-       node->reverse_hash = bit_reverse_ulong(hash);
-       size = lttng_ust_rcu_dereference(ht->size);
-       _lttng_ust_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
-}
-
-struct lttng_ust_lfht_node *lttng_ust_lfht_add_unique(struct lttng_ust_lfht *ht,
-                               unsigned long hash,
-                               lttng_ust_lfht_match_fct match,
-                               const void *key,
-                               struct lttng_ust_lfht_node *node)
-{
-       unsigned long size;
-       struct lttng_ust_lfht_iter iter;
-
-       node->reverse_hash = bit_reverse_ulong(hash);
-       size = lttng_ust_rcu_dereference(ht->size);
-       _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
-       return iter.node;
-}
-
-struct lttng_ust_lfht_node *lttng_ust_lfht_add_replace(struct lttng_ust_lfht *ht,
-                               unsigned long hash,
-                               lttng_ust_lfht_match_fct match,
-                               const void *key,
-                               struct lttng_ust_lfht_node *node)
-{
-       unsigned long size;
-       struct lttng_ust_lfht_iter iter;
-
-       node->reverse_hash = bit_reverse_ulong(hash);
-       size = lttng_ust_rcu_dereference(ht->size);
-       for (;;) {
-               _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
-               if (iter.node == node) {
-                       return NULL;
-               }
-
-               if (!_lttng_ust_lfht_replace(ht, size, iter.node, iter.next, node))
-                       return iter.node;
-       }
-}
-
-int lttng_ust_lfht_replace(struct lttng_ust_lfht *ht,
-               struct lttng_ust_lfht_iter *old_iter,
-               unsigned long hash,
-               lttng_ust_lfht_match_fct match,
-               const void *key,
-               struct lttng_ust_lfht_node *new_node)
-{
-       unsigned long size;
-
-       new_node->reverse_hash = bit_reverse_ulong(hash);
-       if (!old_iter->node)
-               return -ENOENT;
-       if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
-               return -EINVAL;
-       if (caa_unlikely(!match(old_iter->node, key)))
-               return -EINVAL;
-       size = lttng_ust_rcu_dereference(ht->size);
-       return _lttng_ust_lfht_replace(ht, size, old_iter->node, old_iter->next,
-                       new_node);
-}
-
-int lttng_ust_lfht_del(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_node *node)
-{
-       unsigned long size;
-
-       size = lttng_ust_rcu_dereference(ht->size);
-       return _lttng_ust_lfht_del(ht, size, node);
-}
-
-int lttng_ust_lfht_is_node_deleted(const struct lttng_ust_lfht_node *node)
-{
-       return is_removed(CMM_LOAD_SHARED(node->next));
-}
-
-static
-int lttng_ust_lfht_delete_bucket(struct lttng_ust_lfht *ht)
-{
-       struct lttng_ust_lfht_node *node;
-       unsigned long order, i, size;
-
-       /* Check that the table is empty */
-       node = bucket_at(ht, 0);
-       do {
-               node = clear_flag(node)->next;
-               if (!is_bucket(node))
-                       return -EPERM;
-               assert(!is_removed(node));
-               assert(!is_removal_owner(node));
-       } while (!is_end(node));
-       /*
-        * size accessed without lttng_ust_rcu_dereference because hash table is
-        * being destroyed.
-        */
-       size = ht->size;
-       /* Internal sanity check: all nodes left should be buckets */
-       for (i = 0; i < size; i++) {
-               node = bucket_at(ht, i);
-               dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
-                       i, i, bit_reverse_ulong(node->reverse_hash));
-               assert(is_bucket(node->next));
-       }
-
-       for (order = lttng_ust_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
-               lttng_ust_lfht_free_bucket_table(ht, order);
-
-       return 0;
-}
-
-/*
- * Should only be called when no more concurrent readers nor writers can
- * possibly access the table.
- */
-int lttng_ust_lfht_destroy(struct lttng_ust_lfht *ht)
-{
-       int ret;
-
-       ret = lttng_ust_lfht_delete_bucket(ht);
-       if (ret)
-               return ret;
-       ret = pthread_mutex_destroy(&ht->resize_mutex);
-       if (ret)
-               ret = -EBUSY;
-       poison_free(ht);
-       return ret;
-}
This page took 0.034323 seconds and 4 git commands to generate.