cleanup: function attribute 'unused'
[lttng-ust.git] / liblttng-ust / rculfhash.c
CommitLineData
10544ee8 1/*
c0c0989a 2 * SPDX-License-Identifier: LGPL-2.1-or-later
10544ee8 3 *
c0c0989a
MJ
4 * Copyright 2010-2011 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
5 * Copyright 2011 Lai Jiangshan <laijs@cn.fujitsu.com>
10544ee8 6 *
c0c0989a 7 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
10544ee8
MD
8 */
9
10/*
11 * Based on the following articles:
12 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
13 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
14 * - Michael, M. M. High performance dynamic lock-free hash tables
15 * and list-based sets. In Proceedings of the fourteenth annual ACM
16 * symposium on Parallel algorithms and architectures, ACM Press,
17 * (2002), 73-82.
18 *
19 * Some specificities of this Lock-Free Resizable RCU Hash Table
20 * implementation:
21 *
22 * - RCU read-side critical section allows readers to perform hash
23 * table lookups, as well as traversals, and use the returned objects
24 * safely by allowing memory reclaim to take place only after a grace
25 * period.
26 * - Add and remove operations are lock-free, and do not need to
27 * allocate memory. They need to be executed within RCU read-side
28 * critical section to ensure the objects they read are valid and to
29 * deal with the cmpxchg ABA problem.
30 * - add and add_unique operations are supported. add_unique checks if
31 * the node key already exists in the hash table. It ensures not to
32 * populate a duplicate key if the node key already exists in the hash
33 * table.
34 * - The resize operation executes concurrently with
35 * add/add_unique/add_replace/remove/lookup/traversal.
36 * - Hash table nodes are contained within a split-ordered list. This
37 * list is ordered by incrementing reversed-bits-hash value.
38 * - An index of bucket nodes is kept. These bucket nodes are the hash
39 * table "buckets". These buckets are internal nodes that allow to
40 * perform a fast hash lookup, similarly to a skip list. These
41 * buckets are chained together in the split-ordered list, which
42 * allows recursive expansion by inserting new buckets between the
43 * existing buckets. The split-ordered list allows adding new buckets
44 * between existing buckets as the table needs to grow.
45 * - The resize operation for small tables only allows expanding the
46 * hash table. It is triggered automatically by detecting long chains
47 * in the add operation.
48 * - The resize operation for larger tables (and available through an
49 * API) allows both expanding and shrinking the hash table.
50 * - Split-counters are used to keep track of the number of
51 * nodes within the hash table for automatic resize triggering.
52 * - Resize operation initiated by long chain detection is executed by a
53 * worker thread, which keeps lock-freedom of add and remove.
54 * - Resize operations are protected by a mutex.
55 * - The removal operation is split in two parts: first, a "removed"
56 * flag is set in the next pointer within the node to remove. Then,
57 * a "garbage collection" is performed in the bucket containing the
58 * removed node (from the start of the bucket up to the removed node).
59 * All encountered nodes with "removed" flag set in their next
60 * pointers are removed from the linked-list. If the cmpxchg used for
61 * removal fails (due to concurrent garbage-collection or concurrent
62 * add), we retry from the beginning of the bucket. This ensures that
63 * the node with "removed" flag set is removed from the hash table
64 * (not visible to lookups anymore) before the RCU read-side critical
65 * section held across removal ends. Furthermore, this ensures that
66 * the node with "removed" flag set is removed from the linked-list
67 * before its memory is reclaimed. After setting the "removal" flag,
68 * only the thread which removal is the first to set the "removal
69 * owner" flag (with an xchg) into a node's next pointer is considered
70 * to have succeeded its removal (and thus owns the node to reclaim).
71 * Because we garbage-collect starting from an invariant node (the
72 * start-of-bucket bucket node) up to the "removed" node (or find a
73 * reverse-hash that is higher), we are sure that a successful
74 * traversal of the chain leads to a chain that is present in the
75 * linked-list (the start node is never removed) and that it does not
76 * contain the "removed" node anymore, even if concurrent delete/add
77 * operations are changing the structure of the list concurrently.
78 * - The add operations perform garbage collection of buckets if they
79 * encounter nodes with removed flag set in the bucket where they want
80 * to add their new node. This ensures lock-freedom of add operation by
81 * helping the remover unlink nodes from the list rather than to wait
82 * for it do to so.
83 * - There are three memory backends for the hash table buckets: the
84 * "order table", the "chunks", and the "mmap".
85 * - These bucket containers contain a compact version of the hash table
86 * nodes.
87 * - The RCU "order table":
88 * - has a first level table indexed by log2(hash index) which is
89 * copied and expanded by the resize operation. This order table
90 * allows finding the "bucket node" tables.
91 * - There is one bucket node table per hash index order. The size of
92 * each bucket node table is half the number of hashes contained in
93 * this order (except for order 0).
94 * - The RCU "chunks" is best suited for close interaction with a page
95 * allocator. It uses a linear array as index to "chunks" containing
96 * each the same number of buckets.
97 * - The RCU "mmap" memory backend uses a single memory map to hold
98 * all buckets.
99 * - synchronize_rcu is used to garbage-collect the old bucket node table.
100 *
101 * Ordering Guarantees:
102 *
103 * To discuss these guarantees, we first define "read" operation as any
104 * of the the basic lttng_ust_lfht_lookup, lttng_ust_lfht_next_duplicate,
105 * lttng_ust_lfht_first, lttng_ust_lfht_next operation, as well as
106 * lttng_ust_lfht_add_unique (failure).
107 *
108 * We define "read traversal" operation as any of the following
109 * group of operations
110 * - lttng_ust_lfht_lookup followed by iteration with lttng_ust_lfht_next_duplicate
111 * (and/or lttng_ust_lfht_next, although less common).
112 * - lttng_ust_lfht_add_unique (failure) followed by iteration with
113 * lttng_ust_lfht_next_duplicate (and/or lttng_ust_lfht_next, although less
114 * common).
115 * - lttng_ust_lfht_first followed iteration with lttng_ust_lfht_next (and/or
116 * lttng_ust_lfht_next_duplicate, although less common).
117 *
118 * We define "write" operations as any of lttng_ust_lfht_add, lttng_ust_lfht_replace,
119 * lttng_ust_lfht_add_unique (success), lttng_ust_lfht_add_replace, lttng_ust_lfht_del.
120 *
121 * When lttng_ust_lfht_add_unique succeeds (returns the node passed as
122 * parameter), it acts as a "write" operation. When lttng_ust_lfht_add_unique
123 * fails (returns a node different from the one passed as parameter), it
124 * acts as a "read" operation. A lttng_ust_lfht_add_unique failure is a
125 * lttng_ust_lfht_lookup "read" operation, therefore, any ordering guarantee
126 * referring to "lookup" imply any of "lookup" or lttng_ust_lfht_add_unique
127 * (failure).
128 *
129 * We define "prior" and "later" node as nodes observable by reads and
130 * read traversals respectively before and after a write or sequence of
131 * write operations.
132 *
133 * Hash-table operations are often cascaded, for example, the pointer
134 * returned by a lttng_ust_lfht_lookup() might be passed to a lttng_ust_lfht_next(),
135 * whose return value might in turn be passed to another hash-table
136 * operation. This entire cascaded series of operations must be enclosed
137 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
138 * operations.
139 *
140 * The following ordering guarantees are offered by this hash table:
141 *
142 * A.1) "read" after "write": if there is ordering between a write and a
143 * later read, then the read is guaranteed to see the write or some
144 * later write.
145 * A.2) "read traversal" after "write": given that there is dependency
146 * ordering between reads in a "read traversal", if there is
147 * ordering between a write and the first read of the traversal,
148 * then the "read traversal" is guaranteed to see the write or
149 * some later write.
150 * B.1) "write" after "read": if there is ordering between a read and a
151 * later write, then the read will never see the write.
152 * B.2) "write" after "read traversal": given that there is dependency
153 * ordering between reads in a "read traversal", if there is
154 * ordering between the last read of the traversal and a later
155 * write, then the "read traversal" will never see the write.
156 * C) "write" while "read traversal": if a write occurs during a "read
157 * traversal", the traversal may, or may not, see the write.
158 * D.1) "write" after "write": if there is ordering between a write and
159 * a later write, then the later write is guaranteed to see the
160 * effects of the first write.
161 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
162 * order to any pair of concurrent conflicting writes.
163 * Non-conflicting writes (for example, to different keys) are
164 * unordered.
165 * E) If a grace period separates a "del" or "replace" operation
166 * and a subsequent operation, then that subsequent operation is
167 * guaranteed not to see the removed item.
168 * F) Uniqueness guarantee: given a hash table that does not contain
169 * duplicate items for a given key, there will only be one item in
170 * the hash table after an arbitrary sequence of add_unique and/or
171 * add_replace operations. Note, however, that a pair of
172 * concurrent read operations might well access two different items
173 * with that key.
174 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
175 * memory barrier), then the second lookup will return the same
176 * node as the previous lookup, or some later node.
177 * G.2) A "read traversal" that starts after the end of a prior "read
178 * traversal" (ordered by memory barriers) is guaranteed to see the
179 * same nodes as the previous traversal, or some later nodes.
180 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
181 * example, if a pair of reads to the same key run concurrently
182 * with an insertion of that same key, the reads remain unordered
183 * regardless of their return values. In other words, you cannot
184 * rely on the values returned by the reads to deduce ordering.
185 *
186 * Progress guarantees:
187 *
188 * * Reads are wait-free. These operations always move forward in the
189 * hash table linked list, and this list has no loop.
190 * * Writes are lock-free. Any retry loop performed by a write operation
191 * is triggered by progress made within another update operation.
192 *
193 * Bucket node tables:
194 *
195 * hash table hash table the last all bucket node tables
196 * order size bucket node 0 1 2 3 4 5 6(index)
197 * table size
198 * 0 1 1 1
199 * 1 2 1 1 1
200 * 2 4 2 1 1 2
201 * 3 8 4 1 1 2 4
202 * 4 16 8 1 1 2 4 8
203 * 5 32 16 1 1 2 4 8 16
204 * 6 64 32 1 1 2 4 8 16 32
205 *
206 * When growing/shrinking, we only focus on the last bucket node table
207 * which size is (!order ? 1 : (1 << (order -1))).
208 *
209 * Example for growing/shrinking:
210 * grow hash table from order 5 to 6: init the index=6 bucket node table
211 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
212 *
213 * A bit of ascii art explanation:
214 *
215 * The order index is the off-by-one compared to the actual power of 2
216 * because we use index 0 to deal with the 0 special-case.
217 *
218 * This shows the nodes for a small table ordered by reversed bits:
219 *
220 * bits reverse
221 * 0 000 000
222 * 4 100 001
223 * 2 010 010
224 * 6 110 011
225 * 1 001 100
226 * 5 101 101
227 * 3 011 110
228 * 7 111 111
229 *
230 * This shows the nodes in order of non-reversed bits, linked by
231 * reversed-bit order.
232 *
233 * order bits reverse
234 * 0 0 000 000
235 * 1 | 1 001 100 <-
236 * 2 | | 2 010 010 <- |
237 * | | | 3 011 110 | <- |
238 * 3 -> | | | 4 100 001 | |
239 * -> | | 5 101 101 |
240 * -> | 6 110 011
241 * -> 7 111 111
242 */
243
244/*
245 * Note on port to lttng-ust: auto-resize and accounting features are
246 * removed.
247 */
248
249#define _LGPL_SOURCE
250#include <stdlib.h>
251#include <errno.h>
252#include <assert.h>
253#include <stdio.h>
254#include <stdint.h>
255#include <string.h>
256#include <sched.h>
257#include <unistd.h>
258
2eba8e39 259#include <lttng/ust-arch.h>
10544ee8
MD
260#include <lttng/urcu/pointer.h>
261#include <urcu/arch.h>
262#include <urcu/uatomic.h>
263#include <urcu/compiler.h>
264#include "rculfhash.h"
265#include "rculfhash-internal.h"
266#include <stdio.h>
267#include <pthread.h>
268#include <signal.h>
269
270/*
271 * Split-counters lazily update the global counter each 1024
272 * addition/removal. It automatically keeps track of resize required.
273 * We use the bucket length as indicator for need to expand for small
274 * tables and machines lacking per-cpu data support.
275 */
276#define COUNT_COMMIT_ORDER 10
277
278/*
279 * Define the minimum table size.
280 */
281#define MIN_TABLE_ORDER 0
282#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
283
284/*
285 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
286 */
287#define MIN_PARTITION_PER_THREAD_ORDER 12
288#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
289
290/*
291 * The removed flag needs to be updated atomically with the pointer.
292 * It indicates that no node must attach to the node scheduled for
293 * removal, and that node garbage collection must be performed.
294 * The bucket flag does not require to be updated atomically with the
295 * pointer, but it is added as a pointer low bit flag to save space.
296 * The "removal owner" flag is used to detect which of the "del"
297 * operation that has set the "removed flag" gets to return the removed
298 * node to its caller. Note that the replace operation does not need to
299 * iteract with the "removal owner" flag, because it validates that
300 * the "removed" flag is not set before performing its cmpxchg.
301 */
302#define REMOVED_FLAG (1UL << 0)
303#define BUCKET_FLAG (1UL << 1)
304#define REMOVAL_OWNER_FLAG (1UL << 2)
305#define FLAGS_MASK ((1UL << 3) - 1)
306
307/* Value of the end pointer. Should not interact with flags. */
308#define END_VALUE NULL
309
310/*
311 * ht_items_count: Split-counters counting the number of node addition
312 * and removal in the table. Only used if the LTTNG_UST_LFHT_ACCOUNTING flag
313 * is set at hash table creation.
314 *
315 * These are free-running counters, never reset to zero. They count the
316 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
317 * operations to update the global counter. We choose a power-of-2 value
318 * for the trigger to deal with 32 or 64-bit overflow of the counter.
319 */
320struct ht_items_count {
321 unsigned long add, del;
322} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
323
324#ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
325
326static
327void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
328{
329 iter->lfht = ht;
330}
331
332#define lttng_ust_lfht_iter_debug_assert(...) assert(__VA_ARGS__)
333
334#else
335
336static
337void lttng_ust_lfht_iter_debug_set_ht(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
338{
339}
340
341#define lttng_ust_lfht_iter_debug_assert(...)
342
343#endif
344
345/*
346 * Algorithm to reverse bits in a word by lookup table, extended to
347 * 64-bit words.
348 * Source:
349 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
350 * Originally from Public Domain.
351 */
352
353static const uint8_t BitReverseTable256[256] =
354{
355#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
356#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
357#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
358 R6(0), R6(2), R6(1), R6(3)
359};
360#undef R2
361#undef R4
362#undef R6
363
364static
365uint8_t bit_reverse_u8(uint8_t v)
366{
367 return BitReverseTable256[v];
368}
369
370#if (CAA_BITS_PER_LONG == 32)
371static
372uint32_t bit_reverse_u32(uint32_t v)
373{
374 return ((uint32_t) bit_reverse_u8(v) << 24) |
375 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
376 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
377 ((uint32_t) bit_reverse_u8(v >> 24));
378}
379#else
380static
381uint64_t bit_reverse_u64(uint64_t v)
382{
383 return ((uint64_t) bit_reverse_u8(v) << 56) |
384 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
385 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
386 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
387 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
388 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
389 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
390 ((uint64_t) bit_reverse_u8(v >> 56));
391}
392#endif
393
394static
395unsigned long bit_reverse_ulong(unsigned long v)
396{
397#if (CAA_BITS_PER_LONG == 32)
398 return bit_reverse_u32(v);
399#else
400 return bit_reverse_u64(v);
401#endif
402}
403
404/*
405 * fls: returns the position of the most significant bit.
406 * Returns 0 if no bit is set, else returns the position of the most
407 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
408 */
2eba8e39 409#if defined(LTTNG_UST_ARCH_X86)
10544ee8
MD
410static inline
411unsigned int fls_u32(uint32_t x)
412{
413 int r;
414
415 __asm__ ("bsrl %1,%0\n\t"
416 "jnz 1f\n\t"
417 "movl $-1,%0\n\t"
418 "1:\n\t"
419 : "=r" (r) : "rm" (x));
420 return r + 1;
421}
422#define HAS_FLS_U32
423#endif
424
2eba8e39 425#if defined(LTTNG_UST_ARCH_AMD64)
10544ee8
MD
426static inline
427unsigned int fls_u64(uint64_t x)
428{
429 long r;
430
431 __asm__ ("bsrq %1,%0\n\t"
432 "jnz 1f\n\t"
433 "movq $-1,%0\n\t"
434 "1:\n\t"
435 : "=r" (r) : "rm" (x));
436 return r + 1;
437}
438#define HAS_FLS_U64
439#endif
440
441#ifndef HAS_FLS_U64
8da9deee
MJ
442static
443unsigned int fls_u64(uint64_t x)
444 __attribute__((unused));
445static
10544ee8
MD
446unsigned int fls_u64(uint64_t x)
447{
448 unsigned int r = 64;
449
450 if (!x)
451 return 0;
452
453 if (!(x & 0xFFFFFFFF00000000ULL)) {
454 x <<= 32;
455 r -= 32;
456 }
457 if (!(x & 0xFFFF000000000000ULL)) {
458 x <<= 16;
459 r -= 16;
460 }
461 if (!(x & 0xFF00000000000000ULL)) {
462 x <<= 8;
463 r -= 8;
464 }
465 if (!(x & 0xF000000000000000ULL)) {
466 x <<= 4;
467 r -= 4;
468 }
469 if (!(x & 0xC000000000000000ULL)) {
470 x <<= 2;
471 r -= 2;
472 }
473 if (!(x & 0x8000000000000000ULL)) {
474 x <<= 1;
475 r -= 1;
476 }
477 return r;
478}
479#endif
480
481#ifndef HAS_FLS_U32
8da9deee
MJ
482static
483unsigned int fls_u32(uint32_t x)
484 __attribute__((unused));
485static
10544ee8
MD
486unsigned int fls_u32(uint32_t x)
487{
488 unsigned int r = 32;
489
490 if (!x)
491 return 0;
492 if (!(x & 0xFFFF0000U)) {
493 x <<= 16;
494 r -= 16;
495 }
496 if (!(x & 0xFF000000U)) {
497 x <<= 8;
498 r -= 8;
499 }
500 if (!(x & 0xF0000000U)) {
501 x <<= 4;
502 r -= 4;
503 }
504 if (!(x & 0xC0000000U)) {
505 x <<= 2;
506 r -= 2;
507 }
508 if (!(x & 0x80000000U)) {
509 x <<= 1;
510 r -= 1;
511 }
512 return r;
513}
514#endif
515
516unsigned int lttng_ust_lfht_fls_ulong(unsigned long x)
517{
518#if (CAA_BITS_PER_LONG == 32)
519 return fls_u32(x);
520#else
521 return fls_u64(x);
522#endif
523}
524
525/*
526 * Return the minimum order for which x <= (1UL << order).
527 * Return -1 if x is 0.
528 */
529int lttng_ust_lfht_get_count_order_u32(uint32_t x)
530{
531 if (!x)
532 return -1;
533
534 return fls_u32(x - 1);
535}
536
537/*
538 * Return the minimum order for which x <= (1UL << order).
539 * Return -1 if x is 0.
540 */
541int lttng_ust_lfht_get_count_order_ulong(unsigned long x)
542{
543 if (!x)
544 return -1;
545
546 return lttng_ust_lfht_fls_ulong(x - 1);
547}
548
549static
550struct lttng_ust_lfht_node *clear_flag(struct lttng_ust_lfht_node *node)
551{
552 return (struct lttng_ust_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
553}
554
555static
556int is_removed(const struct lttng_ust_lfht_node *node)
557{
558 return ((unsigned long) node) & REMOVED_FLAG;
559}
560
561static
562int is_bucket(struct lttng_ust_lfht_node *node)
563{
564 return ((unsigned long) node) & BUCKET_FLAG;
565}
566
567static
568struct lttng_ust_lfht_node *flag_bucket(struct lttng_ust_lfht_node *node)
569{
570 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
571}
572
573static
574int is_removal_owner(struct lttng_ust_lfht_node *node)
575{
576 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
577}
578
579static
580struct lttng_ust_lfht_node *flag_removal_owner(struct lttng_ust_lfht_node *node)
581{
582 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
583}
584
585static
586struct lttng_ust_lfht_node *flag_removed_or_removal_owner(struct lttng_ust_lfht_node *node)
587{
588 return (struct lttng_ust_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
589}
590
591static
592struct lttng_ust_lfht_node *get_end(void)
593{
594 return (struct lttng_ust_lfht_node *) END_VALUE;
595}
596
597static
598int is_end(struct lttng_ust_lfht_node *node)
599{
600 return clear_flag(node) == (struct lttng_ust_lfht_node *) END_VALUE;
601}
602
603static
604void lttng_ust_lfht_alloc_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
605{
606 return ht->mm->alloc_bucket_table(ht, order);
607}
608
609/*
610 * lttng_ust_lfht_free_bucket_table() should be called with decreasing order.
611 * When lttng_ust_lfht_free_bucket_table(0) is called, it means the whole
612 * lfht is destroyed.
613 */
614static
615void lttng_ust_lfht_free_bucket_table(struct lttng_ust_lfht *ht, unsigned long order)
616{
617 return ht->mm->free_bucket_table(ht, order);
618}
619
620static inline
621struct lttng_ust_lfht_node *bucket_at(struct lttng_ust_lfht *ht, unsigned long index)
622{
623 return ht->bucket_at(ht, index);
624}
625
626static inline
627struct lttng_ust_lfht_node *lookup_bucket(struct lttng_ust_lfht *ht, unsigned long size,
628 unsigned long hash)
629{
630 assert(size > 0);
631 return bucket_at(ht, hash & (size - 1));
632}
633
634/*
635 * Remove all logically deleted nodes from a bucket up to a certain node key.
636 */
637static
638void _lttng_ust_lfht_gc_bucket(struct lttng_ust_lfht_node *bucket, struct lttng_ust_lfht_node *node)
639{
640 struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_next;
641
642 assert(!is_bucket(bucket));
643 assert(!is_removed(bucket));
644 assert(!is_removal_owner(bucket));
645 assert(!is_bucket(node));
646 assert(!is_removed(node));
647 assert(!is_removal_owner(node));
648 for (;;) {
649 iter_prev = bucket;
650 /* We can always skip the bucket node initially */
651 iter = lttng_ust_rcu_dereference(iter_prev->next);
652 assert(!is_removed(iter));
653 assert(!is_removal_owner(iter));
654 assert(iter_prev->reverse_hash <= node->reverse_hash);
655 /*
656 * We should never be called with bucket (start of chain)
657 * and logically removed node (end of path compression
658 * marker) being the actual same node. This would be a
659 * bug in the algorithm implementation.
660 */
661 assert(bucket != node);
662 for (;;) {
663 if (caa_unlikely(is_end(iter)))
664 return;
665 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
666 return;
667 next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
668 if (caa_likely(is_removed(next)))
669 break;
670 iter_prev = clear_flag(iter);
671 iter = next;
672 }
673 assert(!is_removed(iter));
674 assert(!is_removal_owner(iter));
675 if (is_bucket(iter))
676 new_next = flag_bucket(clear_flag(next));
677 else
678 new_next = clear_flag(next);
679 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
680 }
681}
682
683static
684int _lttng_ust_lfht_replace(struct lttng_ust_lfht *ht, unsigned long size,
685 struct lttng_ust_lfht_node *old_node,
686 struct lttng_ust_lfht_node *old_next,
687 struct lttng_ust_lfht_node *new_node)
688{
689 struct lttng_ust_lfht_node *bucket, *ret_next;
690
691 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
692 return -ENOENT;
693
694 assert(!is_removed(old_node));
695 assert(!is_removal_owner(old_node));
696 assert(!is_bucket(old_node));
697 assert(!is_removed(new_node));
698 assert(!is_removal_owner(new_node));
699 assert(!is_bucket(new_node));
700 assert(new_node != old_node);
701 for (;;) {
702 /* Insert after node to be replaced */
703 if (is_removed(old_next)) {
704 /*
705 * Too late, the old node has been removed under us
706 * between lookup and replace. Fail.
707 */
708 return -ENOENT;
709 }
710 assert(old_next == clear_flag(old_next));
711 assert(new_node != old_next);
712 /*
713 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
714 * flag. It is either set atomically at the same time
715 * (replace) or after (del).
716 */
717 assert(!is_removal_owner(old_next));
718 new_node->next = old_next;
719 /*
720 * Here is the whole trick for lock-free replace: we add
721 * the replacement node _after_ the node we want to
722 * replace by atomically setting its next pointer at the
723 * same time we set its removal flag. Given that
724 * the lookups/get next use an iterator aware of the
725 * next pointer, they will either skip the old node due
726 * to the removal flag and see the new node, or use
727 * the old node, but will not see the new one.
728 * This is a replacement of a node with another node
729 * that has the same value: we are therefore not
730 * removing a value from the hash table. We set both the
731 * REMOVED and REMOVAL_OWNER flags atomically so we own
732 * the node after successful cmpxchg.
733 */
734 ret_next = uatomic_cmpxchg(&old_node->next,
735 old_next, flag_removed_or_removal_owner(new_node));
736 if (ret_next == old_next)
737 break; /* We performed the replacement. */
738 old_next = ret_next;
739 }
740
741 /*
742 * Ensure that the old node is not visible to readers anymore:
743 * lookup for the node, and remove it (along with any other
744 * logically removed node) if found.
745 */
746 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
747 _lttng_ust_lfht_gc_bucket(bucket, new_node);
748
749 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
750 return 0;
751}
752
753/*
754 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
755 * mode. A NULL unique_ret allows creation of duplicate keys.
756 */
757static
758void _lttng_ust_lfht_add(struct lttng_ust_lfht *ht,
759 unsigned long hash,
760 lttng_ust_lfht_match_fct match,
761 const void *key,
762 unsigned long size,
763 struct lttng_ust_lfht_node *node,
764 struct lttng_ust_lfht_iter *unique_ret,
765 int bucket_flag)
766{
767 struct lttng_ust_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
768 *return_node;
769 struct lttng_ust_lfht_node *bucket;
770
771 assert(!is_bucket(node));
772 assert(!is_removed(node));
773 assert(!is_removal_owner(node));
774 bucket = lookup_bucket(ht, size, hash);
775 for (;;) {
776 /*
777 * iter_prev points to the non-removed node prior to the
778 * insert location.
779 */
780 iter_prev = bucket;
781 /* We can always skip the bucket node initially */
782 iter = lttng_ust_rcu_dereference(iter_prev->next);
783 assert(iter_prev->reverse_hash <= node->reverse_hash);
784 for (;;) {
785 if (caa_unlikely(is_end(iter)))
786 goto insert;
787 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
788 goto insert;
789
790 /* bucket node is the first node of the identical-hash-value chain */
791 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
792 goto insert;
793
794 next = lttng_ust_rcu_dereference(clear_flag(iter)->next);
795 if (caa_unlikely(is_removed(next)))
796 goto gc_node;
797
798 /* uniquely add */
799 if (unique_ret
800 && !is_bucket(next)
801 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
802 struct lttng_ust_lfht_iter d_iter = {
803 .node = node,
804 .next = iter,
805#ifdef CONFIG_LTTNG_UST_LFHT_ITER_DEBUG
806 .lfht = ht,
807#endif
808 };
809
810 /*
811 * uniquely adding inserts the node as the first
812 * node of the identical-hash-value node chain.
813 *
814 * This semantic ensures no duplicated keys
815 * should ever be observable in the table
816 * (including traversing the table node by
817 * node by forward iterations)
818 */
819 lttng_ust_lfht_next_duplicate(ht, match, key, &d_iter);
820 if (!d_iter.node)
821 goto insert;
822
823 *unique_ret = d_iter;
824 return;
825 }
826
827 iter_prev = clear_flag(iter);
828 iter = next;
829 }
830
831 insert:
832 assert(node != clear_flag(iter));
833 assert(!is_removed(iter_prev));
834 assert(!is_removal_owner(iter_prev));
835 assert(!is_removed(iter));
836 assert(!is_removal_owner(iter));
837 assert(iter_prev != node);
838 if (!bucket_flag)
839 node->next = clear_flag(iter);
840 else
841 node->next = flag_bucket(clear_flag(iter));
842 if (is_bucket(iter))
843 new_node = flag_bucket(node);
844 else
845 new_node = node;
846 if (uatomic_cmpxchg(&iter_prev->next, iter,
847 new_node) != iter) {
848 continue; /* retry */
849 } else {
850 return_node = node;
851 goto end;
852 }
853
854 gc_node:
855 assert(!is_removed(iter));
856 assert(!is_removal_owner(iter));
857 if (is_bucket(iter))
858 new_next = flag_bucket(clear_flag(next));
859 else
860 new_next = clear_flag(next);
861 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
862 /* retry */
863 }
864end:
865 if (unique_ret) {
866 unique_ret->node = return_node;
867 /* unique_ret->next left unset, never used. */
868 }
869}
870
871static
872int _lttng_ust_lfht_del(struct lttng_ust_lfht *ht, unsigned long size,
873 struct lttng_ust_lfht_node *node)
874{
875 struct lttng_ust_lfht_node *bucket, *next;
876
877 if (!node) /* Return -ENOENT if asked to delete NULL node */
878 return -ENOENT;
879
880 /* logically delete the node */
881 assert(!is_bucket(node));
882 assert(!is_removed(node));
883 assert(!is_removal_owner(node));
884
885 /*
886 * We are first checking if the node had previously been
887 * logically removed (this check is not atomic with setting the
888 * logical removal flag). Return -ENOENT if the node had
889 * previously been removed.
890 */
891 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
892 if (caa_unlikely(is_removed(next)))
893 return -ENOENT;
894 assert(!is_bucket(next));
895 /*
896 * The del operation semantic guarantees a full memory barrier
897 * before the uatomic_or atomic commit of the deletion flag.
898 */
899 cmm_smp_mb__before_uatomic_or();
900 /*
901 * We set the REMOVED_FLAG unconditionally. Note that there may
902 * be more than one concurrent thread setting this flag.
903 * Knowing which wins the race will be known after the garbage
904 * collection phase, stay tuned!
905 */
906 uatomic_or(&node->next, REMOVED_FLAG);
907 /* We performed the (logical) deletion. */
908
909 /*
910 * Ensure that the node is not visible to readers anymore: lookup for
911 * the node, and remove it (along with any other logically removed node)
912 * if found.
913 */
914 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
915 _lttng_ust_lfht_gc_bucket(bucket, node);
916
917 assert(is_removed(CMM_LOAD_SHARED(node->next)));
918 /*
919 * Last phase: atomically exchange node->next with a version
920 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
921 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
922 * the node and win the removal race.
923 * It is interesting to note that all "add" paths are forbidden
924 * to change the next pointer starting from the point where the
925 * REMOVED_FLAG is set, so here using a read, followed by a
926 * xchg() suffice to guarantee that the xchg() will ever only
927 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
928 * was already set).
929 */
930 if (!is_removal_owner(uatomic_xchg(&node->next,
931 flag_removal_owner(node->next))))
932 return 0;
933 else
934 return -ENOENT;
935}
936
937/*
938 * Never called with size < 1.
939 */
940static
941void lttng_ust_lfht_create_bucket(struct lttng_ust_lfht *ht, unsigned long size)
942{
943 struct lttng_ust_lfht_node *prev, *node;
944 unsigned long order, len, i;
945 int bucket_order;
946
947 lttng_ust_lfht_alloc_bucket_table(ht, 0);
948
949 dbg_printf("create bucket: order 0 index 0 hash 0\n");
950 node = bucket_at(ht, 0);
951 node->next = flag_bucket(get_end());
952 node->reverse_hash = 0;
953
954 bucket_order = lttng_ust_lfht_get_count_order_ulong(size);
955 assert(bucket_order >= 0);
956
957 for (order = 1; order < (unsigned long) bucket_order + 1; order++) {
958 len = 1UL << (order - 1);
959 lttng_ust_lfht_alloc_bucket_table(ht, order);
960
961 for (i = 0; i < len; i++) {
962 /*
963 * Now, we are trying to init the node with the
964 * hash=(len+i) (which is also a bucket with the
965 * index=(len+i)) and insert it into the hash table,
966 * so this node has to be inserted after the bucket
967 * with the index=(len+i)&(len-1)=i. And because there
968 * is no other non-bucket node nor bucket node with
969 * larger index/hash inserted, so the bucket node
970 * being inserted should be inserted directly linked
971 * after the bucket node with index=i.
972 */
973 prev = bucket_at(ht, i);
974 node = bucket_at(ht, len + i);
975
976 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
977 order, len + i, len + i);
978 node->reverse_hash = bit_reverse_ulong(len + i);
979
980 /* insert after prev */
981 assert(is_bucket(prev->next));
982 node->next = prev->next;
983 prev->next = flag_bucket(node);
984 }
985 }
986}
987
988#if (CAA_BITS_PER_LONG > 32)
989/*
990 * For 64-bit architectures, with max number of buckets small enough not to
991 * use the entire 64-bit memory mapping space (and allowing a fair number of
992 * hash table instances), use the mmap allocator, which is faster. Otherwise,
993 * fallback to the order allocator.
994 */
995static
996const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
997{
998 if (max_nr_buckets && max_nr_buckets <= (1ULL << 32))
999 return &lttng_ust_lfht_mm_mmap;
1000 else
1001 return &lttng_ust_lfht_mm_order;
1002}
1003#else
1004/*
1005 * For 32-bit architectures, use the order allocator.
1006 */
1007static
1008const struct lttng_ust_lfht_mm_type *get_mm_type(unsigned long max_nr_buckets)
1009{
1010 return &lttng_ust_lfht_mm_order;
1011}
1012#endif
1013
1014struct lttng_ust_lfht *lttng_ust_lfht_new(unsigned long init_size,
1015 unsigned long min_nr_alloc_buckets,
1016 unsigned long max_nr_buckets,
1017 int flags,
1018 const struct lttng_ust_lfht_mm_type *mm)
1019{
1020 struct lttng_ust_lfht *ht;
1021 unsigned long order;
1022
1023 /* min_nr_alloc_buckets must be power of two */
1024 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1025 return NULL;
1026
1027 /* init_size must be power of two */
1028 if (!init_size || (init_size & (init_size - 1)))
1029 return NULL;
1030
1031 /*
1032 * Memory management plugin default.
1033 */
1034 if (!mm)
1035 mm = get_mm_type(max_nr_buckets);
1036
1037 /* max_nr_buckets == 0 for order based mm means infinite */
1038 if (mm == &lttng_ust_lfht_mm_order && !max_nr_buckets)
1039 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1040
1041 /* max_nr_buckets must be power of two */
1042 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1043 return NULL;
1044
1045 if (flags & LTTNG_UST_LFHT_AUTO_RESIZE)
1046 return NULL;
1047
1048 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1049 init_size = max(init_size, MIN_TABLE_SIZE);
1050 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1051 init_size = min(init_size, max_nr_buckets);
1052
1053 ht = mm->alloc_lttng_ust_lfht(min_nr_alloc_buckets, max_nr_buckets);
1054 assert(ht);
1055 assert(ht->mm == mm);
1056 assert(ht->bucket_at == mm->bucket_at);
1057
1058 ht->flags = flags;
1059 /* this mutex should not nest in read-side C.S. */
1060 pthread_mutex_init(&ht->resize_mutex, NULL);
1061 order = lttng_ust_lfht_get_count_order_ulong(init_size);
1062 ht->resize_target = 1UL << order;
1063 lttng_ust_lfht_create_bucket(ht, 1UL << order);
1064 ht->size = 1UL << order;
1065 return ht;
1066}
1067
1068void lttng_ust_lfht_lookup(struct lttng_ust_lfht *ht, unsigned long hash,
1069 lttng_ust_lfht_match_fct match, const void *key,
1070 struct lttng_ust_lfht_iter *iter)
1071{
1072 struct lttng_ust_lfht_node *node, *next, *bucket;
1073 unsigned long reverse_hash, size;
1074
1075 lttng_ust_lfht_iter_debug_set_ht(ht, iter);
1076
1077 reverse_hash = bit_reverse_ulong(hash);
1078
1079 size = lttng_ust_rcu_dereference(ht->size);
1080 bucket = lookup_bucket(ht, size, hash);
1081 /* We can always skip the bucket node initially */
1082 node = lttng_ust_rcu_dereference(bucket->next);
1083 node = clear_flag(node);
1084 for (;;) {
1085 if (caa_unlikely(is_end(node))) {
1086 node = next = NULL;
1087 break;
1088 }
1089 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1090 node = next = NULL;
1091 break;
1092 }
1093 next = lttng_ust_rcu_dereference(node->next);
1094 assert(node == clear_flag(node));
1095 if (caa_likely(!is_removed(next))
1096 && !is_bucket(next)
1097 && node->reverse_hash == reverse_hash
1098 && caa_likely(match(node, key))) {
1099 break;
1100 }
1101 node = clear_flag(next);
1102 }
1103 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1104 iter->node = node;
1105 iter->next = next;
1106}
1107
1108void lttng_ust_lfht_next_duplicate(struct lttng_ust_lfht *ht, lttng_ust_lfht_match_fct match,
1109 const void *key, struct lttng_ust_lfht_iter *iter)
1110{
1111 struct lttng_ust_lfht_node *node, *next;
1112 unsigned long reverse_hash;
1113
1114 lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
1115 node = iter->node;
1116 reverse_hash = node->reverse_hash;
1117 next = iter->next;
1118 node = clear_flag(next);
1119
1120 for (;;) {
1121 if (caa_unlikely(is_end(node))) {
1122 node = next = NULL;
1123 break;
1124 }
1125 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1126 node = next = NULL;
1127 break;
1128 }
1129 next = lttng_ust_rcu_dereference(node->next);
1130 if (caa_likely(!is_removed(next))
1131 && !is_bucket(next)
1132 && caa_likely(match(node, key))) {
1133 break;
1134 }
1135 node = clear_flag(next);
1136 }
1137 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1138 iter->node = node;
1139 iter->next = next;
1140}
1141
1142void lttng_ust_lfht_next(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
1143{
1144 struct lttng_ust_lfht_node *node, *next;
1145
1146 lttng_ust_lfht_iter_debug_assert(ht == iter->lfht);
1147 node = clear_flag(iter->next);
1148 for (;;) {
1149 if (caa_unlikely(is_end(node))) {
1150 node = next = NULL;
1151 break;
1152 }
1153 next = lttng_ust_rcu_dereference(node->next);
1154 if (caa_likely(!is_removed(next))
1155 && !is_bucket(next)) {
1156 break;
1157 }
1158 node = clear_flag(next);
1159 }
1160 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1161 iter->node = node;
1162 iter->next = next;
1163}
1164
1165void lttng_ust_lfht_first(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_iter *iter)
1166{
1167 lttng_ust_lfht_iter_debug_set_ht(ht, iter);
1168 /*
1169 * Get next after first bucket node. The first bucket node is the
1170 * first node of the linked list.
1171 */
1172 iter->next = bucket_at(ht, 0)->next;
1173 lttng_ust_lfht_next(ht, iter);
1174}
1175
1176void lttng_ust_lfht_add(struct lttng_ust_lfht *ht, unsigned long hash,
1177 struct lttng_ust_lfht_node *node)
1178{
1179 unsigned long size;
1180
1181 node->reverse_hash = bit_reverse_ulong(hash);
1182 size = lttng_ust_rcu_dereference(ht->size);
1183 _lttng_ust_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1184}
1185
1186struct lttng_ust_lfht_node *lttng_ust_lfht_add_unique(struct lttng_ust_lfht *ht,
1187 unsigned long hash,
1188 lttng_ust_lfht_match_fct match,
1189 const void *key,
1190 struct lttng_ust_lfht_node *node)
1191{
1192 unsigned long size;
1193 struct lttng_ust_lfht_iter iter;
1194
1195 node->reverse_hash = bit_reverse_ulong(hash);
1196 size = lttng_ust_rcu_dereference(ht->size);
1197 _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1198 return iter.node;
1199}
1200
1201struct lttng_ust_lfht_node *lttng_ust_lfht_add_replace(struct lttng_ust_lfht *ht,
1202 unsigned long hash,
1203 lttng_ust_lfht_match_fct match,
1204 const void *key,
1205 struct lttng_ust_lfht_node *node)
1206{
1207 unsigned long size;
1208 struct lttng_ust_lfht_iter iter;
1209
1210 node->reverse_hash = bit_reverse_ulong(hash);
1211 size = lttng_ust_rcu_dereference(ht->size);
1212 for (;;) {
1213 _lttng_ust_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1214 if (iter.node == node) {
1215 return NULL;
1216 }
1217
1218 if (!_lttng_ust_lfht_replace(ht, size, iter.node, iter.next, node))
1219 return iter.node;
1220 }
1221}
1222
1223int lttng_ust_lfht_replace(struct lttng_ust_lfht *ht,
1224 struct lttng_ust_lfht_iter *old_iter,
1225 unsigned long hash,
1226 lttng_ust_lfht_match_fct match,
1227 const void *key,
1228 struct lttng_ust_lfht_node *new_node)
1229{
1230 unsigned long size;
1231
1232 new_node->reverse_hash = bit_reverse_ulong(hash);
1233 if (!old_iter->node)
1234 return -ENOENT;
1235 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1236 return -EINVAL;
1237 if (caa_unlikely(!match(old_iter->node, key)))
1238 return -EINVAL;
1239 size = lttng_ust_rcu_dereference(ht->size);
1240 return _lttng_ust_lfht_replace(ht, size, old_iter->node, old_iter->next,
1241 new_node);
1242}
1243
1244int lttng_ust_lfht_del(struct lttng_ust_lfht *ht, struct lttng_ust_lfht_node *node)
1245{
1246 unsigned long size;
1247
1248 size = lttng_ust_rcu_dereference(ht->size);
1249 return _lttng_ust_lfht_del(ht, size, node);
1250}
1251
1252int lttng_ust_lfht_is_node_deleted(const struct lttng_ust_lfht_node *node)
1253{
1254 return is_removed(CMM_LOAD_SHARED(node->next));
1255}
1256
1257static
1258int lttng_ust_lfht_delete_bucket(struct lttng_ust_lfht *ht)
1259{
1260 struct lttng_ust_lfht_node *node;
1261 unsigned long order, i, size;
1262
1263 /* Check that the table is empty */
1264 node = bucket_at(ht, 0);
1265 do {
1266 node = clear_flag(node)->next;
1267 if (!is_bucket(node))
1268 return -EPERM;
1269 assert(!is_removed(node));
1270 assert(!is_removal_owner(node));
1271 } while (!is_end(node));
1272 /*
1273 * size accessed without lttng_ust_rcu_dereference because hash table is
1274 * being destroyed.
1275 */
1276 size = ht->size;
1277 /* Internal sanity check: all nodes left should be buckets */
1278 for (i = 0; i < size; i++) {
1279 node = bucket_at(ht, i);
1280 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1281 i, i, bit_reverse_ulong(node->reverse_hash));
1282 assert(is_bucket(node->next));
1283 }
1284
1285 for (order = lttng_ust_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1286 lttng_ust_lfht_free_bucket_table(ht, order);
1287
1288 return 0;
1289}
1290
1291/*
1292 * Should only be called when no more concurrent readers nor writers can
1293 * possibly access the table.
1294 */
1295int lttng_ust_lfht_destroy(struct lttng_ust_lfht *ht)
1296{
1297 int ret;
1298
1299 ret = lttng_ust_lfht_delete_bucket(ht);
1300 if (ret)
1301 return ret;
1302 ret = pthread_mutex_destroy(&ht->resize_mutex);
1303 if (ret)
1304 ret = -EBUSY;
1305 poison_free(ht);
1306 return ret;
1307}
This page took 0.070875 seconds and 4 git commands to generate.