2.8: Update OE/Yocto version
[lttng-docs.git] / 2.8 / lttng-docs-2.8.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.8, 25 October 2016
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/welcome.txt[]
11
12
13 include::../common/audience.txt[]
14
15
16 [[chapters]]
17 === What's in this documentation?
18
19 The LTTng Documentation is divided into the following sections:
20
21 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24 +
25 You can skip this section if you’re familiar with software tracing and
26 with the LTTng project.
27
28 * **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31 +
32 You can skip this section if you already properly installed LTTng on
33 your target system.
34
35 * **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37 +
38 We recommend this section if you're new to LTTng or to software tracing
39 in general.
40 +
41 You can skip this section if you're not new to LTTng.
42
43 * **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45 +
46 It's a good idea to become familiar with the core concepts
47 before attempting to use the toolkit.
48
49 * **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52 * **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54 +
55 Instrumenting source code is essential to provide a meaningful
56 source of events.
57 +
58 You can skip this section if you do not have a programming background.
59
60 * **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63 * **<<reference,Reference>>** contains reference tables.
64 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68 include::../common/convention.txt[]
69
70
71 include::../common/acknowledgements.txt[]
72
73
74 [[whats-new]]
75 == What's new in LTTng {revision}?
76
77 * **Tracing control**:
78 ** You can attach <<java-application-context,Java application-specific
79 context fields>> to a <<channel,channel>> with the
80 man:lttng-add-context(1) command:
81 +
82 --
83 [role="term"]
84 ----
85 lttng add-context --jul --type='$app.retriever:cur_msg_id'
86 ----
87 --
88 +
89 Here, `$app` is the prefix of all application-specific context fields,
90 `retriever` names a _context information retriever_ defined at the
91 application level, and `cur_msg_id` names a context field read from this
92 retriever.
93 +
94 Both the `java.util.logging` and Apache log4j <<domain,tracing domains>>
95 are supported.
96
97 ** You can use Java application-specific <<adding-context,context>>
98 fields in the <<enabling-disabling-events,filter expression>> of an
99 <<event,event rule>>:
100 +
101 --
102 [role="term"]
103 ----
104 lttng enable-event --log4j my_logger \
105 --filter='$app.retriever:cur_msg_id == 23'
106 ----
107 --
108
109 ** New `lttng status` command which is the equivalent of +lttng list
110 __CUR__+, where +__CUR__+ is the name of the current
111 <<tracing-session,tracing session>>.
112 +
113 See man:lttng-status(1).
114
115 ** New `lttng metadata regenerate` command to regenerate the metadata
116 file of an LTTng trace at any moment. This command is meant to be
117 used to resample the wall time following a major
118 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
119 so that a system which boots with an incorrect wall time can be
120 traced before its wall time is NTP-corrected.
121 +
122 See man:lttng-metadata(1).
123
124 ** New command-line interface warnings when <<event,event records>> or
125 whole sub-buffers are
126 <<channel-overwrite-mode-vs-discard-mode,lost>>. The warning messages
127 are printed when a <<tracing-session,tracing session>> is
128 <<basic-tracing-session-control,stopped>> (man:lttng-stop(1)
129 command).
130
131 * **User space tracing**:
132 ** Shared object base address dump in order to map <<event,event
133 records>> to original source location (file and line number).
134 +
135 If you attach the `ip` and `vpid` <<adding-context,context fields>> to a
136 user space <<channel,channel>> and if you use the
137 <<liblttng-ust-dl,path:{liblttng-ust-dl.so} helper>>, you can retrieve
138 the source location where a given event record was generated.
139 +
140 The http://diamon.org/babeltrace/[Babeltrace] trace viewer supports this
141 state dump and those context fields since version 1.4 to print the
142 source location of a given event record. http://tracecompass.org/[Trace
143 Compass] also supports this since version 2.0.
144
145 ** A <<java-application,Java application>> which uses
146 `java.util.logging` now adds an LTTng-UST log handler to the desired
147 JUL loggers.
148 +
149 The previous workflow was to initialize the LTTng-UST Java agent
150 by calling `LTTngAgent.getLTTngAgent()`. This had the effect of adding
151 an LTTng-UST log handler to the root loggers.
152
153 ** A <<java-application,Java application>> which uses Apache log4j now
154 adds an LTTng-UST log appender to the desired log4j loggers.
155 +
156 The previous workflow was to initialize the LTTng-UST Java agent
157 by calling `LTTngAgent.getLTTngAgent()`. This had the effect of adding
158 an LTTng-UST appender to the root loggers.
159
160 ** Any <<java-application,Java application>> can provide
161 <<java-application-context,dynamic context fields>> while running
162 thanks to a new API provided by the <<lttng-ust-agents,LTTng-UST Java
163 agent>>. You can require LTTng to record specific context fields in
164 event records, and you can use them in the filter expression of
165 <<event,event rules>>.
166
167 * **Linux kernel tracing**:
168 ** The LTTng kernel modules can now be built into a Linux kernel image,
169 that is, not as loadable modules.
170 +
171 Follow the project's
172 https://github.com/lttng/lttng-modules/blob/stable-{revision}/README.md#kernel-built-in-support[`README.md`]
173 file to learn how.
174
175 ** New instrumentation:
176 *** ARM64 architecture support.
177 *** x86 page faults.
178 *** x86 `irq_vectors`.
179 ** New <<adding-context,context fields>>:
180 *** `interruptible`
181 *** `preemptible`
182 *** `need_reschedule`
183 *** `migratable` (specific to RT-Preempt)
184 ** Clock source plugin support for advanced cases where a custom source
185 of time is needed to timestamp LTTng event records.
186 +
187 See https://github.com/lttng/lttng-modules/blob/stable-{revision}/lttng-clock.h[`lttng-clock.h`]
188 for an overview of the small API.
189
190 * **Documentation**:
191 ** The link:/man[man pages] of the man:lttng(1) command-line tool are
192 split into one man page per command (à la Git), for example:
193 +
194 --
195 [role="term"]
196 ----
197 man lttng-enable-event
198 ----
199 --
200 +
201 You can also use the `--help` option of any man:lttng(1) command to
202 open its man page.
203 +
204 The content and formatting of all the LTTng man pages has improved
205 dramatically.
206
207
208 [[nuts-and-bolts]]
209 == Nuts and bolts
210
211 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
212 generation_ is a modern toolkit for tracing Linux systems and
213 applications. So your first question might be:
214 **what is tracing?**
215
216
217 [[what-is-tracing]]
218 === What is tracing?
219
220 As the history of software engineering progressed and led to what
221 we now take for granted--complex, numerous and
222 interdependent software applications running in parallel on
223 sophisticated operating systems like Linux--the authors of such
224 components, software developers, began feeling a natural
225 urge to have tools that would ensure the robustness and good performance
226 of their masterpieces.
227
228 One major achievement in this field is, inarguably, the
229 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
230 an essential tool for developers to find and fix bugs. But even the best
231 debugger won't help make your software run faster, and nowadays, faster
232 software means either more work done by the same hardware, or cheaper
233 hardware for the same work.
234
235 A _profiler_ is often the tool of choice to identify performance
236 bottlenecks. Profiling is suitable to identify _where_ performance is
237 lost in a given software. The profiler outputs a profile, a statistical
238 summary of observed events, which you may use to discover which
239 functions took the most time to execute. However, a profiler won't
240 report _why_ some identified functions are the bottleneck. Bottlenecks
241 might only occur when specific conditions are met, conditions that are
242 sometimes impossible to capture by a statistical profiler, or impossible
243 to reproduce with an application altered by the overhead of an
244 event-based profiler. For a thorough investigation of software
245 performance issues, a history of execution is essential, with the
246 recorded values of variables and context fields you choose, and
247 with as little influence as possible on the instrumented software. This
248 is where tracing comes in handy.
249
250 _Tracing_ is a technique used to understand what goes on in a running
251 software system. The software used for tracing is called a _tracer_,
252 which is conceptually similar to a tape recorder. When recording,
253 specific instrumentation points placed in the software source code
254 generate events that are saved on a giant tape: a _trace_ file. You
255 can trace user applications and the operating system at the same time,
256 opening the possibility of resolving a wide range of problems that would
257 otherwise be extremely challenging.
258
259 Tracing is often compared to _logging_. However, tracers and loggers are
260 two different tools, serving two different purposes. Tracers are
261 designed to record much lower-level events that occur much more
262 frequently than log messages, often in the range of thousands per
263 second, with very little execution overhead. Logging is more appropriate
264 for a very high-level analysis of less frequent events: user accesses,
265 exceptional conditions (errors and warnings, for example), database
266 transactions, instant messaging communications, and such. Simply put,
267 logging is one of the many use cases that can be satisfied with tracing.
268
269 The list of recorded events inside a trace file can be read manually
270 like a log file for the maximum level of detail, but it is generally
271 much more interesting to perform application-specific analyses to
272 produce reduced statistics and graphs that are useful to resolve a
273 given problem. Trace viewers and analyzers are specialized tools
274 designed to do this.
275
276 In the end, this is what LTTng is: a powerful, open source set of
277 tools to trace the Linux kernel and user applications at the same time.
278 LTTng is composed of several components actively maintained and
279 developed by its link:/community/#where[community].
280
281
282 [[lttng-alternatives]]
283 === Alternatives to noch:{LTTng}
284
285 Excluding proprietary solutions, a few competing software tracers
286 exist for Linux:
287
288 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
289 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
290 user scripts and is responsible for loading code into the
291 Linux kernel for further execution and collecting the outputted data.
292 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
293 subsystem in the Linux kernel in which a virtual machine can execute
294 programs passed from the user space to the kernel. You can attach
295 such programs to tracepoints and KProbes thanks to a system call, and
296 they can output data to the user space when executed thanks to
297 different mechanisms (pipe, VM register values, and eBPF maps, to name
298 a few).
299 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
300 is the de facto function tracer of the Linux kernel. Its user
301 interface is a set of special files in sysfs.
302 * https://perf.wiki.kernel.org/[perf] is
303 a performance analyzing tool for Linux which supports hardware
304 performance counters, tracepoints, as well as other counters and
305 types of probes. perf's controlling utility is the cmd:perf command
306 line/curses tool.
307 * http://linux.die.net/man/1/strace[strace]
308 is a command-line utility which records system calls made by a
309 user process, as well as signal deliveries and changes of process
310 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
311 to fulfill its function.
312 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
313 analyze Linux kernel events. You write scripts, or _chisels_ in
314 sysdig's jargon, in Lua and sysdig executes them while the system is
315 being traced or afterwards. sysdig's interface is the cmd:sysdig
316 command-line tool as well as the curses-based cmd:csysdig tool.
317 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
318 user space tracer which uses custom user scripts to produce plain text
319 traces. SystemTap converts the scripts to the C language, and then
320 compiles them as Linux kernel modules which are loaded to produce
321 trace data. SystemTap's primary user interface is the cmd:stap
322 command-line tool.
323
324 The main distinctive features of LTTng is that it produces correlated
325 kernel and user space traces, as well as doing so with the lowest
326 overhead amongst other solutions. It produces trace files in the
327 http://diamon.org/ctf[CTF] format, a file format optimized
328 for the production and analyses of multi-gigabyte data.
329
330 LTTng is the result of more than 10 years of active open source
331 development by a community of passionate developers.
332 LTTng{nbsp}{revision} is currently available on major desktop and server
333 Linux distributions.
334
335 The main interface for tracing control is a single command-line tool
336 named cmd:lttng. The latter can create several tracing sessions, enable
337 and disable events on the fly, filter events efficiently with custom
338 user expressions, start and stop tracing, and much more. LTTng can
339 record the traces on the file system or send them over the network, and
340 keep them totally or partially. You can view the traces once tracing
341 becomes inactive or in real-time.
342
343 <<installing-lttng,Install LTTng now>> and
344 <<getting-started,start tracing>>!
345
346
347 [[installing-lttng]]
348 == Installation
349
350 **LTTng** is a set of software <<plumbing,components>> which interact to
351 <<instrumenting,instrument>> the Linux kernel and user applications, and
352 to <<controlling-tracing,control tracing>> (start and stop
353 tracing, enable and disable event rules, and the rest). Those
354 components are bundled into the following packages:
355
356 * **LTTng-tools**: Libraries and command-line interface to
357 control tracing.
358 * **LTTng-modules**: Linux kernel modules to instrument and
359 trace the kernel.
360 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
361 trace user applications.
362
363 Most distributions mark the LTTng-modules and LTTng-UST packages as
364 optional when installing LTTng-tools (which is always required). In the
365 following sections, we always provide the steps to install all three,
366 but note that:
367
368 * You only need to install LTTng-modules if you intend to trace the
369 Linux kernel.
370 * You only need to install LTTng-UST if you intend to trace user
371 applications.
372
373 [role="growable"]
374 .Availability of LTTng{nbsp}{revision} for major Linux distributions.
375 |====
376 |Distribution |Available in releases |Alternatives
377
378 |Ubuntu
379 |<<ubuntu,Ubuntu{nbsp}16.10 _Yakkety Yak_>>
380 |LTTng{nbsp}{revision} for Ubuntu{nbsp}14.04 _Trusty Tahr_
381 and Ubuntu{nbsp}16.04 _Xenial Xerus_:
382 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
383
384 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
385 other Ubuntu releases.
386
387 |Fedora
388 |_Not available_
389 |LTTng{nbsp}{revision} for Fedora{nbsp}25 and Fedora{nbsp}26 (not
390 released yet).
391
392 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
393 other Fedora releases.
394
395 |Debian
396 |<<debian,Debian "stretch" (testing)>>
397 |
398 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
399 previous Debian releases.
400
401 |openSUSE
402 |_Not available_
403 |LTTng{nbsp}2.7 for openSUSE Leap{nbsp}42.1.
404
405 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
406 other openSUSE releases.
407
408 |Arch Linux
409 |Latest AUR packages.
410 |
411
412 |Alpine Linux
413 |<<alpine-linux,Alpine Linux "edge">>
414 |LTTng{nbsp}{revision} for Alpine Linux{nbsp}3.5 (not released yet).
415
416 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
417 other Alpine Linux releases.
418
419 |RHEL and SLES
420 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
421 |
422
423 |Buildroot
424 |_Not available_
425 |LTTng{nbsp}{revision} for Buildroot{nbsp}2016.11 (not released yet).
426
427 LTTng{nbsp}2.7 for Buildroot{nbsp}2016.02, Buildroot{nbsp}2016.05,
428 and Buildroot{nbsp}2016.08.
429
430 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
431 other Buildroot releases.
432
433 |OpenEmbedded and Yocto
434 |<<oe-yocto,Yocto Project{nbsp}2.2 _Morty_>> (`openembedded-core` layer)
435 |<<building-from-source,Build LTTng{nbsp}{revision} from source>> for
436 other OpenEmbedded releases.
437 |====
438
439
440 [[ubuntu]]
441 === [[ubuntu-official-repositories]]Ubuntu
442
443 LTTng{nbsp}{revision} is available on Ubuntu{nbsp}16.10 _Yakkety Yak_.
444 For previous releases of Ubuntu, <<ubuntu-ppa,use the LTTng
445 Stable{nbsp}{revision} PPA>>.
446
447 To install LTTng{nbsp}{revision} on Ubuntu 16.10{nbsp}_Yakkety Yak_:
448
449 . Install the main LTTng{nbsp}{revision} packages:
450 +
451 --
452 [role="term"]
453 ----
454 sudo apt-get install lttng-tools
455 sudo apt-get install lttng-modules-dkms
456 sudo apt-get install liblttng-ust-dev
457 ----
458 --
459
460 . **If you need to instrument and trace
461 <<java-application,Java applications>>**, install the LTTng-UST
462 Java agent:
463 +
464 --
465 [role="term"]
466 ----
467 sudo apt-get install liblttng-ust-agent-java
468 ----
469 --
470
471 . **If you need to instrument and trace
472 <<python-application,Python applications>>**, install the
473 LTTng-UST Python agent:
474 +
475 --
476 [role="term"]
477 ----
478 sudo apt-get install python3-lttngust
479 ----
480 --
481
482
483 [[ubuntu-ppa]]
484 ==== noch:{LTTng} Stable {revision} PPA
485
486 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
487 Stable{nbsp}{revision} PPA] offers the latest stable
488 LTTng{nbsp}{revision} packages for:
489
490 * Ubuntu{nbsp}14.04 _Trusty Tahr_
491 * Ubuntu{nbsp}16.04 _Xenial Xerus_
492
493 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
494
495 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
496 list of packages:
497 +
498 --
499 [role="term"]
500 ----
501 sudo apt-add-repository ppa:lttng/stable-2.8
502 sudo apt-get update
503 ----
504 --
505
506 . Install the main LTTng{nbsp}{revision} packages:
507 +
508 --
509 [role="term"]
510 ----
511 sudo apt-get install lttng-tools
512 sudo apt-get install lttng-modules-dkms
513 sudo apt-get install liblttng-ust-dev
514 ----
515 --
516
517 . **If you need to instrument and trace
518 <<java-application,Java applications>>**, install the LTTng-UST
519 Java agent:
520 +
521 --
522 [role="term"]
523 ----
524 sudo apt-get install liblttng-ust-agent-java
525 ----
526 --
527
528 . **If you need to instrument and trace
529 <<python-application,Python applications>>**, install the
530 LTTng-UST Python agent:
531 +
532 --
533 [role="term"]
534 ----
535 sudo apt-get install python3-lttngust
536 ----
537 --
538
539
540 [[debian]]
541 === Debian
542
543 To install LTTng{nbsp}{revision} on Debian "stretch" (testing):
544
545 . Install the main LTTng{nbsp}{revision} packages:
546 +
547 --
548 [role="term"]
549 ----
550 sudo apt-get install lttng-modules-dkms
551 sudo apt-get install liblttng-ust-dev
552 sudo apt-get install lttng-tools
553 ----
554 --
555
556 . **If you need to instrument and trace <<java-application,Java
557 applications>>**, install the LTTng-UST Java agent:
558 +
559 --
560 [role="term"]
561 ----
562 sudo apt-get install liblttng-ust-agent-java
563 ----
564 --
565
566 . **If you need to instrument and trace <<python-application,Python
567 applications>>**, install the LTTng-UST Python agent:
568 +
569 --
570 [role="term"]
571 ----
572 sudo apt-get install python3-lttngust
573 ----
574 --
575
576
577 [[alpine-linux]]
578 === Alpine Linux
579
580 To install LTTng{nbsp}{revision} (tracing control and user space
581 tracing) on Alpine Linux "edge":
582
583 . Make sure your system is
584 https://wiki.alpinelinux.org/wiki/Edge[configured for "edge"].
585 . Enable the _testing_ repository by uncommenting the corresponding
586 line in path:{/etc/apk/repositories}.
587 . Add the LTTng packages:
588 +
589 --
590 [role="term"]
591 ----
592 sudo apk add lttng-tools
593 sudo apk add lttng-ust-dev
594 ----
595 --
596
597 To install LTTng-modules{nbsp}{revision} (Linux kernel tracing support)
598 on Alpine Linux "edge":
599
600 . Add the vanilla Linux kernel:
601 +
602 --
603 [role="term"]
604 ----
605 apk add linux-vanilla linux-vanilla-dev
606 ----
607 --
608
609 . Reboot with the vanilla Linux kernel.
610 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
611 +
612 --
613 [role="term"]
614 ----
615 cd $(mktemp -d) &&
616 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
617 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
618 cd lttng-modules-2.8.* &&
619 make &&
620 sudo make modules_install &&
621 sudo depmod -a
622 ----
623 --
624
625
626 [[oe-yocto]]
627 === OpenEmbedded and Yocto
628
629 LTTng{nbsp}{revision} recipes are available in the
630 http://layers.openembedded.org/layerindex/branch/master/layer/openembedded-core/[`openembedded-core`]
631 layer for Yocto Project{nbsp}2.2 _Morty_ under the following names:
632
633 * `lttng-tools`
634 * `lttng-modules`
635 * `lttng-ust`
636
637 With BitBake, the simplest way to include LTTng recipes in your target
638 image is to add them to `IMAGE_INSTALL_append` in path:{conf/local.conf}:
639
640 ----
641 IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"
642 ----
643
644 If you use Hob:
645
646 . Select a machine and an image recipe.
647 . Click **Edit image recipe**.
648 . Under the **All recipes** tab, search for **lttng**.
649 . Check the desired LTTng recipes.
650
651 [IMPORTANT]
652 .Java and Python application instrumentation and tracing
653 ====
654 If you need to instrument and trace <<java-application,Java
655 applications>> on openSUSE, you need to build and install
656 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
657 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
658 `--enable-java-agent-all` options to the `configure` script, depending
659 on which Java logging framework you use.
660
661 If you need to instrument and trace <<python-application,Python
662 applications>> on openSUSE, you need to build and install
663 LTTng-UST{nbsp}{revision} from source and pass the
664 `--enable-python-agent` option to the `configure` script.
665 ====
666
667
668 [[enterprise-distributions]]
669 === RHEL, SUSE, and other enterprise distributions
670
671 To install LTTng on enterprise Linux distributions, such as Red Hat
672 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
673 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
674
675
676 [[building-from-source]]
677 === Build from source
678
679 To build and install LTTng{nbsp}{revision} from source:
680
681 . Using your distribution's package manager, or from source, install
682 the following dependencies of LTTng-tools and LTTng-UST:
683 +
684 --
685 * https://sourceforge.net/projects/libuuid/[libuuid]
686 * http://directory.fsf.org/wiki/Popt[popt]
687 * http://liburcu.org/[Userspace RCU]
688 * http://www.xmlsoft.org/[libxml2]
689 --
690
691 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
692 +
693 --
694 [role="term"]
695 ----
696 cd $(mktemp -d) &&
697 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
698 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
699 cd lttng-modules-2.8.* &&
700 make &&
701 sudo make modules_install &&
702 sudo depmod -a
703 ----
704 --
705
706 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
707 +
708 --
709 [role="term"]
710 ----
711 cd $(mktemp -d) &&
712 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.8.tar.bz2 &&
713 tar -xf lttng-ust-latest-2.8.tar.bz2 &&
714 cd lttng-ust-2.8.* &&
715 ./configure &&
716 make &&
717 sudo make install &&
718 sudo ldconfig
719 ----
720 --
721 +
722 --
723 [IMPORTANT]
724 .Java and Python application tracing
725 ====
726 If you need to instrument and trace <<java-application,Java
727 applications>>, pass the `--enable-java-agent-jul`,
728 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
729 `configure` script, depending on which Java logging framework you use.
730
731 If you need to instrument and trace <<python-application,Python
732 applications>>, pass the `--enable-python-agent` option to the
733 `configure` script. You can set the `PYTHON` environment variable to the
734 path to the Python interpreter for which to install the LTTng-UST Python
735 agent package.
736 ====
737 --
738 +
739 --
740 [NOTE]
741 ====
742 By default, LTTng-UST libraries are installed to
743 dir:{/usr/local/lib}, which is the de facto directory in which to
744 keep self-compiled and third-party libraries.
745
746 When <<building-tracepoint-providers-and-user-application,linking an
747 instrumented user application with `liblttng-ust`>>:
748
749 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
750 variable.
751 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
752 man:gcc(1), man:g++(1), or man:clang(1).
753 ====
754 --
755
756 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
757 +
758 --
759 [role="term"]
760 ----
761 cd $(mktemp -d) &&
762 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
763 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
764 cd lttng-tools-2.8.* &&
765 ./configure &&
766 make &&
767 sudo make install &&
768 sudo ldconfig
769 ----
770 --
771
772 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
773 previous steps automatically for a given version of LTTng and confine
774 the installed files in a specific directory. This can be useful to test
775 LTTng without installing it on your system.
776
777
778 [[getting-started]]
779 == Quick start
780
781 This is a short guide to get started quickly with LTTng kernel and user
782 space tracing.
783
784 Before you follow this guide, make sure to <<installing-lttng,install>>
785 LTTng.
786
787 This tutorial walks you through the steps to:
788
789 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
790 . <<tracing-your-own-user-application,Trace a user application>> written
791 in C.
792 . <<viewing-and-analyzing-your-traces,View and analyze the
793 recorded events>>.
794
795
796 [[tracing-the-linux-kernel]]
797 === Trace the Linux kernel
798
799 The following command lines start with cmd:sudo because you need root
800 privileges to trace the Linux kernel. You can avoid using cmd:sudo if
801 your Unix user is a member of the <<lttng-sessiond,tracing group>>.
802
803 . Create a <<tracing-session,tracing session>>:
804 +
805 --
806 [role="term"]
807 ----
808 sudo lttng create my-kernel-session
809 ----
810 --
811
812 . List the available kernel tracepoints and system calls:
813 +
814 --
815 [role="term"]
816 ----
817 lttng list --kernel
818 ----
819 --
820
821 . Create an <<event,event rule>> which matches the desired event names,
822 for example `sched_switch` and `sched_process_fork`:
823 +
824 --
825 [role="term"]
826 ----
827 sudo lttng enable-event --kernel sched_switch,sched_process_fork
828 ----
829 --
830 +
831 You can also create an event rule which _matches_ all the Linux kernel
832 tracepoints (this will generate a lot of data when tracing):
833 +
834 --
835 [role="term"]
836 ----
837 sudo lttng enable-event --kernel --all
838 ----
839 --
840
841 . Start tracing:
842 +
843 --
844 [role="term"]
845 ----
846 sudo lttng start
847 ----
848 --
849
850 . Do some operation on your system for a few seconds. For example,
851 load a website, or list the files of a directory.
852 . Stop tracing and destroy the tracing session:
853 +
854 --
855 [role="term"]
856 ----
857 sudo lttng stop
858 sudo lttng destroy
859 ----
860 --
861 +
862 The man:lttng-destroy(1) command does not destroy the trace data; it
863 only destroys the state of the tracing session.
864
865 By default, LTTng saves the traces in
866 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
867 where +__name__+ is the tracing session name. Note that the
868 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
869
870 See <<viewing-and-analyzing-your-traces,View and analyze the
871 recorded events>> to view the recorded events.
872
873
874 [[tracing-your-own-user-application]]
875 === Trace a user application
876
877 This section steps you through a simple example to trace a
878 _Hello world_ program written in C.
879
880 To create the traceable user application:
881
882 . Create the tracepoint provider header file, which defines the
883 tracepoints and the events they can generate:
884 +
885 --
886 [source,c]
887 .path:{hello-tp.h}
888 ----
889 #undef TRACEPOINT_PROVIDER
890 #define TRACEPOINT_PROVIDER hello_world
891
892 #undef TRACEPOINT_INCLUDE
893 #define TRACEPOINT_INCLUDE "./hello-tp.h"
894
895 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
896 #define _HELLO_TP_H
897
898 #include <lttng/tracepoint.h>
899
900 TRACEPOINT_EVENT(
901 hello_world,
902 my_first_tracepoint,
903 TP_ARGS(
904 int, my_integer_arg,
905 char*, my_string_arg
906 ),
907 TP_FIELDS(
908 ctf_string(my_string_field, my_string_arg)
909 ctf_integer(int, my_integer_field, my_integer_arg)
910 )
911 )
912
913 #endif /* _HELLO_TP_H */
914
915 #include <lttng/tracepoint-event.h>
916 ----
917 --
918
919 . Create the tracepoint provider package source file:
920 +
921 --
922 [source,c]
923 .path:{hello-tp.c}
924 ----
925 #define TRACEPOINT_CREATE_PROBES
926 #define TRACEPOINT_DEFINE
927
928 #include "hello-tp.h"
929 ----
930 --
931
932 . Build the tracepoint provider package:
933 +
934 --
935 [role="term"]
936 ----
937 gcc -c -I. hello-tp.c
938 ----
939 --
940
941 . Create the _Hello World_ application source file:
942 +
943 --
944 [source,c]
945 .path:{hello.c}
946 ----
947 #include <stdio.h>
948 #include "hello-tp.h"
949
950 int main(int argc, char *argv[])
951 {
952 int x;
953
954 puts("Hello, World!\nPress Enter to continue...");
955
956 /*
957 * The following getchar() call is only placed here for the purpose
958 * of this demonstration, to pause the application in order for
959 * you to have time to list its tracepoints. It is not
960 * needed otherwise.
961 */
962 getchar();
963
964 /*
965 * A tracepoint() call.
966 *
967 * Arguments, as defined in hello-tp.h:
968 *
969 * 1. Tracepoint provider name (required)
970 * 2. Tracepoint name (required)
971 * 3. my_integer_arg (first user-defined argument)
972 * 4. my_string_arg (second user-defined argument)
973 *
974 * Notice the tracepoint provider and tracepoint names are
975 * NOT strings: they are in fact parts of variables that the
976 * macros in hello-tp.h create.
977 */
978 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
979
980 for (x = 0; x < argc; ++x) {
981 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
982 }
983
984 puts("Quitting now!");
985 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
986
987 return 0;
988 }
989 ----
990 --
991
992 . Build the application:
993 +
994 --
995 [role="term"]
996 ----
997 gcc -c hello.c
998 ----
999 --
1000
1001 . Link the application with the tracepoint provider package,
1002 `liblttng-ust`, and `libdl`:
1003 +
1004 --
1005 [role="term"]
1006 ----
1007 gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
1008 ----
1009 --
1010
1011 Here's the whole build process:
1012
1013 [role="img-100"]
1014 .User space tracing tutorial's build steps.
1015 image::ust-flow.png[]
1016
1017 To trace the user application:
1018
1019 . Run the application with a few arguments:
1020 +
1021 --
1022 [role="term"]
1023 ----
1024 ./hello world and beyond
1025 ----
1026 --
1027 +
1028 You see:
1029 +
1030 --
1031 ----
1032 Hello, World!
1033 Press Enter to continue...
1034 ----
1035 --
1036
1037 . Start an LTTng <<lttng-sessiond,session daemon>>:
1038 +
1039 --
1040 [role="term"]
1041 ----
1042 lttng-sessiond --daemonize
1043 ----
1044 --
1045 +
1046 Note that a session daemon might already be running, for example as
1047 a service that the distribution's service manager started.
1048
1049 . List the available user space tracepoints:
1050 +
1051 --
1052 [role="term"]
1053 ----
1054 lttng list --userspace
1055 ----
1056 --
1057 +
1058 You see the `hello_world:my_first_tracepoint` tracepoint listed
1059 under the `./hello` process.
1060
1061 . Create a <<tracing-session,tracing session>>:
1062 +
1063 --
1064 [role="term"]
1065 ----
1066 lttng create my-user-space-session
1067 ----
1068 --
1069
1070 . Create an <<event,event rule>> which matches the
1071 `hello_world:my_first_tracepoint` event name:
1072 +
1073 --
1074 [role="term"]
1075 ----
1076 lttng enable-event --userspace hello_world:my_first_tracepoint
1077 ----
1078 --
1079
1080 . Start tracing:
1081 +
1082 --
1083 [role="term"]
1084 ----
1085 lttng start
1086 ----
1087 --
1088
1089 . Go back to the running `hello` application and press Enter. The
1090 program executes all `tracepoint()` instrumentation points and exits.
1091 . Stop tracing and destroy the tracing session:
1092 +
1093 --
1094 [role="term"]
1095 ----
1096 sudo lttng stop
1097 sudo lttng destroy
1098 ----
1099 --
1100 +
1101 The man:lttng-destroy(1) command does not destroy the trace data; it
1102 only destroys the state of the tracing session.
1103
1104 By default, LTTng saves the traces in
1105 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
1106 where +__name__+ is the tracing session name. Note that the
1107 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
1108
1109 See <<viewing-and-analyzing-your-traces,View and analyze the
1110 recorded events>> to view the recorded events.
1111
1112
1113 [[viewing-and-analyzing-your-traces]]
1114 === View and analyze the recorded events
1115
1116 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
1117 kernel>> and <<tracing-your-own-user-application,Trace a user
1118 application>> tutorials, you can inspect the recorded events.
1119
1120 Many tools are available to read LTTng traces:
1121
1122 * **cmd:babeltrace** is a command-line utility which converts trace
1123 formats; it supports the format that LTTng produces, CTF, as well as a
1124 basic text output which can be ++grep++ed. The cmd:babeltrace command
1125 is part of the http://diamon.org/babeltrace[Babeltrace] project.
1126 * Babeltrace also includes
1127 **https://www.python.org/[Python] bindings** so
1128 that you can easily open and read an LTTng trace with your own script,
1129 benefiting from the power of Python.
1130 * http://tracecompass.org/[**Trace Compass**]
1131 is a graphical user interface for viewing and analyzing any type of
1132 logs or traces, including LTTng's.
1133 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
1134 project which includes many high-level analyses of LTTng kernel
1135 traces, like scheduling statistics, interrupt frequency distribution,
1136 top CPU usage, and more.
1137
1138 NOTE: This section assumes that the traces recorded during the previous
1139 tutorials were saved to their default location, in the
1140 dir:{$LTTNG_HOME/lttng-traces} directory. Note that the env:LTTNG_HOME
1141 environment variable defaults to `$HOME` if not set.
1142
1143
1144 [[viewing-and-analyzing-your-traces-bt]]
1145 ==== Use the cmd:babeltrace command-line tool
1146
1147 The simplest way to list all the recorded events of a trace is to pass
1148 its path to cmd:babeltrace with no options:
1149
1150 [role="term"]
1151 ----
1152 babeltrace ~/lttng-traces/my-user-space-session*
1153 ----
1154
1155 cmd:babeltrace finds all traces recursively within the given path and
1156 prints all their events, merging them in chronological order.
1157
1158 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
1159 further filtering:
1160
1161 [role="term"]
1162 ----
1163 babeltrace ~/lttng-traces/my-kernel-session* | grep sys_
1164 ----
1165
1166 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
1167 count the recorded events:
1168
1169 [role="term"]
1170 ----
1171 babeltrace ~/lttng-traces/my-kernel-session* | grep sys_read | wc --lines
1172 ----
1173
1174
1175 [[viewing-and-analyzing-your-traces-bt-python]]
1176 ==== Use the Babeltrace Python bindings
1177
1178 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
1179 is useful to isolate events by simple matching using man:grep(1) and
1180 similar utilities. However, more elaborate filters, such as keeping only
1181 event records with a field value falling within a specific range, are
1182 not trivial to write using a shell. Moreover, reductions and even the
1183 most basic computations involving multiple event records are virtually
1184 impossible to implement.
1185
1186 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
1187 to read the event records of an LTTng trace sequentially and compute the
1188 desired information.
1189
1190 The following script accepts an LTTng Linux kernel trace path as its
1191 first argument and prints the short names of the top 5 running processes
1192 on CPU 0 during the whole trace:
1193
1194 [source,python]
1195 .path:{top5proc.py}
1196 ----
1197 from collections import Counter
1198 import babeltrace
1199 import sys
1200
1201
1202 def top5proc():
1203 if len(sys.argv) != 2:
1204 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
1205 print(msg, file=sys.stderr)
1206 return False
1207
1208 # A trace collection contains one or more traces
1209 col = babeltrace.TraceCollection()
1210
1211 # Add the trace provided by the user (LTTng traces always have
1212 # the 'ctf' format)
1213 if col.add_trace(sys.argv[1], 'ctf') is None:
1214 raise RuntimeError('Cannot add trace')
1215
1216 # This counter dict contains execution times:
1217 #
1218 # task command name -> total execution time (ns)
1219 exec_times = Counter()
1220
1221 # This contains the last `sched_switch` timestamp
1222 last_ts = None
1223
1224 # Iterate on events
1225 for event in col.events:
1226 # Keep only `sched_switch` events
1227 if event.name != 'sched_switch':
1228 continue
1229
1230 # Keep only events which happened on CPU 0
1231 if event['cpu_id'] != 0:
1232 continue
1233
1234 # Event timestamp
1235 cur_ts = event.timestamp
1236
1237 if last_ts is None:
1238 # We start here
1239 last_ts = cur_ts
1240
1241 # Previous task command (short) name
1242 prev_comm = event['prev_comm']
1243
1244 # Initialize entry in our dict if not yet done
1245 if prev_comm not in exec_times:
1246 exec_times[prev_comm] = 0
1247
1248 # Compute previous command execution time
1249 diff = cur_ts - last_ts
1250
1251 # Update execution time of this command
1252 exec_times[prev_comm] += diff
1253
1254 # Update last timestamp
1255 last_ts = cur_ts
1256
1257 # Display top 5
1258 for name, ns in exec_times.most_common(5):
1259 s = ns / 1000000000
1260 print('{:20}{} s'.format(name, s))
1261
1262 return True
1263
1264
1265 if __name__ == '__main__':
1266 sys.exit(0 if top5proc() else 1)
1267 ----
1268
1269 Run this script:
1270
1271 [role="term"]
1272 ----
1273 python3 top5proc.py ~/lttng-traces/my-kernel-session*/kernel
1274 ----
1275
1276 Output example:
1277
1278 ----
1279 swapper/0 48.607245889 s
1280 chromium 7.192738188 s
1281 pavucontrol 0.709894415 s
1282 Compositor 0.660867933 s
1283 Xorg.bin 0.616753786 s
1284 ----
1285
1286 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1287 weren't using the CPU that much when tracing, its first position in the
1288 list makes sense.
1289
1290
1291 [[core-concepts]]
1292 == [[understanding-lttng]]Core concepts
1293
1294 From a user's perspective, the LTTng system is built on a few concepts,
1295 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1296 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1297 Understanding how those objects relate to eachother is key in mastering
1298 the toolkit.
1299
1300 The core concepts are:
1301
1302 * <<tracing-session,Tracing session>>
1303 * <<domain,Tracing domain>>
1304 * <<channel,Channel and ring buffer>>
1305 * <<"event","Instrumentation point, event rule, event, and event record">>
1306
1307
1308 [[tracing-session]]
1309 === Tracing session
1310
1311 A _tracing session_ is a stateful dialogue between you and
1312 a <<lttng-sessiond,session daemon>>. You can
1313 <<creating-destroying-tracing-sessions,create a new tracing
1314 session>> with the `lttng create` command.
1315
1316 Anything that you do when you control LTTng tracers happens within a
1317 tracing session. In particular, a tracing session:
1318
1319 * Has its own name.
1320 * Has its own set of trace files.
1321 * Has its own state of activity (started or stopped).
1322 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1323 snapshot, or live).
1324 * Has its own <<channel,channels>> which have their own
1325 <<event,event rules>>.
1326
1327 [role="img-100"]
1328 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1329 image::concepts.png[]
1330
1331 Those attributes and objects are completely isolated between different
1332 tracing sessions.
1333
1334 A tracing session is analogous to a cash machine session:
1335 the operations you do on the banking system through the cash machine do
1336 not alter the data of other users of the same system. In the case of
1337 the cash machine, a session lasts as long as your bank card is inside.
1338 In the case of LTTng, a tracing session lasts from the `lttng create`
1339 command to the `lttng destroy` command.
1340
1341 [role="img-100"]
1342 .Each Unix user has its own set of tracing sessions.
1343 image::many-sessions.png[]
1344
1345
1346 [[tracing-session-mode]]
1347 ==== Tracing session mode
1348
1349 LTTng can send the generated trace data to different locations. The
1350 _tracing session mode_ dictates where to send it. The following modes
1351 are available in LTTng{nbsp}{revision}:
1352
1353 Local mode::
1354 LTTng writes the traces to the file system of the machine being traced
1355 (target system).
1356
1357 Network streaming mode::
1358 LTTng sends the traces over the network to a
1359 <<lttng-relayd,relay daemon>> running on a remote system.
1360
1361 Snapshot mode::
1362 LTTng does not write the traces by default. Instead, you can request
1363 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1364 current tracing buffers, and to write it to the target's file system
1365 or to send it over the network to a <<lttng-relayd,relay daemon>>
1366 running on a remote system.
1367
1368 Live mode::
1369 This mode is similar to the network streaming mode, but a live
1370 trace viewer can connect to the distant relay daemon to
1371 <<lttng-live,view event records as LTTng generates them>> by
1372 the tracers.
1373
1374
1375 [[domain]]
1376 === Tracing domain
1377
1378 A _tracing domain_ is a namespace for event sources. A tracing domain
1379 has its own properties and features.
1380
1381 There are currently five available tracing domains:
1382
1383 * Linux kernel
1384 * User space
1385 * `java.util.logging` (JUL)
1386 * log4j
1387 * Python
1388
1389 You must specify a tracing domain when using some commands to avoid
1390 ambiguity. For example, since all the domains support named tracepoints
1391 as event sources (instrumentation points that you manually insert in the
1392 source code), you need to specify a tracing domain when
1393 <<enabling-disabling-events,creating an event rule>> because all the
1394 tracing domains could have tracepoints with the same names.
1395
1396 Some features are reserved to specific tracing domains. Dynamic function
1397 entry and return instrumentation points, for example, are currently only
1398 supported in the Linux kernel tracing domain, but support for other
1399 tracing domains could be added in the future.
1400
1401 You can create <<channel,channels>> in the Linux kernel and user space
1402 tracing domains. The other tracing domains have a single default
1403 channel.
1404
1405
1406 [[channel]]
1407 === Channel and ring buffer
1408
1409 A _channel_ is an object which is responsible for a set of ring buffers.
1410 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1411 tracer emits an event, it can record it to one or more
1412 sub-buffers. The attributes of a channel determine what to do when
1413 there's no space left for a new event record because all sub-buffers
1414 are full, where to send a full sub-buffer, and other behaviours.
1415
1416 A channel is always associated to a <<domain,tracing domain>>. The
1417 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1418 a default channel which you cannot configure.
1419
1420 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1421 an event, it records it to the sub-buffers of all
1422 the enabled channels with a satisfied event rule, as long as those
1423 channels are part of active <<tracing-session,tracing sessions>>.
1424
1425
1426 [[channel-buffering-schemes]]
1427 ==== Per-user vs. per-process buffering schemes
1428
1429 A channel has at least one ring buffer _per CPU_. LTTng always
1430 records an event to the ring buffer associated to the CPU on which it
1431 occurred.
1432
1433 Two _buffering schemes_ are available when you
1434 <<enabling-disabling-channels,create a channel>> in the
1435 user space <<domain,tracing domain>>:
1436
1437 Per-user buffering::
1438 Allocate one set of ring buffers--one per CPU--shared by all the
1439 instrumented processes of each Unix user.
1440 +
1441 --
1442 [role="img-100"]
1443 .Per-user buffering scheme.
1444 image::per-user-buffering.png[]
1445 --
1446
1447 Per-process buffering::
1448 Allocate one set of ring buffers--one per CPU--for each
1449 instrumented process.
1450 +
1451 --
1452 [role="img-100"]
1453 .Per-process buffering scheme.
1454 image::per-process-buffering.png[]
1455 --
1456 +
1457 The per-process buffering scheme tends to consume more memory than the
1458 per-user option because systems generally have more instrumented
1459 processes than Unix users running instrumented processes. However, the
1460 per-process buffering scheme ensures that one process having a high
1461 event throughput won't fill all the shared sub-buffers of the same
1462 user, only its own.
1463
1464 The Linux kernel tracing domain has only one available buffering scheme
1465 which is to allocate a single set of ring buffers for the whole system.
1466 This scheme is similar to the per-user option, but with a single, global
1467 user "running" the kernel.
1468
1469
1470 [[channel-overwrite-mode-vs-discard-mode]]
1471 ==== Overwrite vs. discard event loss modes
1472
1473 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1474 arc in the following animation) of a specific channel's ring buffer.
1475 When there's no space left in a sub-buffer, the tracer marks it as
1476 consumable (red) and another, empty sub-buffer starts receiving the
1477 following event records. A <<lttng-consumerd,consumer daemon>>
1478 eventually consumes the marked sub-buffer (returns to white).
1479
1480 [NOTE]
1481 [role="docsvg-channel-subbuf-anim"]
1482 ====
1483 {note-no-anim}
1484 ====
1485
1486 In an ideal world, sub-buffers are consumed faster than they are filled,
1487 as is the case in the previous animation. In the real world,
1488 however, all sub-buffers can be full at some point, leaving no space to
1489 record the following events.
1490
1491 By design, LTTng is a _non-blocking_ tracer: when no empty sub-buffer is
1492 available, it is acceptable to lose event records when the alternative
1493 would be to cause substantial delays in the instrumented application's
1494 execution. LTTng privileges performance over integrity; it aims at
1495 perturbing the traced system as little as possible in order to make
1496 tracing of subtle race conditions and rare interrupt cascades possible.
1497
1498 When it comes to losing event records because no empty sub-buffer is
1499 available, the channel's _event loss mode_ determines what to do. The
1500 available event loss modes are:
1501
1502 Discard mode::
1503 Drop the newest event records until a the tracer
1504 releases a sub-buffer.
1505
1506 Overwrite mode::
1507 Clear the sub-buffer containing the oldest event records and start
1508 writing the newest event records there.
1509 +
1510 This mode is sometimes called _flight recorder mode_ because it's
1511 similar to a
1512 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1513 always keep a fixed amount of the latest data.
1514
1515 Which mechanism you should choose depends on your context: prioritize
1516 the newest or the oldest event records in the ring buffer?
1517
1518 Beware that, in overwrite mode, the tracer abandons a whole sub-buffer
1519 as soon as a there's no space left for a new event record, whereas in
1520 discard mode, the tracer only discards the event record that doesn't
1521 fit.
1522
1523 In discard mode, LTTng increments a count of lost event records when
1524 an event record is lost and saves this count to the trace. In
1525 overwrite mode, LTTng keeps no information when it overwrites a
1526 sub-buffer before consuming it.
1527
1528 There are a few ways to decrease your probability of losing event
1529 records.
1530 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1531 how you can fine-une the sub-buffer count and size of a channel to
1532 virtually stop losing event records, though at the cost of greater
1533 memory usage.
1534
1535
1536 [[channel-subbuf-size-vs-subbuf-count]]
1537 ==== Sub-buffer count and size
1538
1539 When you <<enabling-disabling-channels,create a channel>>, you can
1540 set its number of sub-buffers and their size.
1541
1542 Note that there is noticeable CPU overhead introduced when
1543 switching sub-buffers (marking a full one as consumable and switching
1544 to an empty one for the following events to be recorded). Knowing this,
1545 the following list presents a few practical situations along with how
1546 to configure the sub-buffer count and size for them:
1547
1548 * **High event throughput**: In general, prefer bigger sub-buffers to
1549 lower the risk of losing event records.
1550 +
1551 Having bigger sub-buffers also ensures a lower sub-buffer switching
1552 frequency.
1553 +
1554 The number of sub-buffers is only meaningful if you create the channel
1555 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1556 other sub-buffers are left unaltered.
1557
1558 * **Low event throughput**: In general, prefer smaller sub-buffers
1559 since the risk of losing event records is low.
1560 +
1561 Because events occur less frequently, the sub-buffer switching frequency
1562 should remain low and thus the tracer's overhead should not be a
1563 problem.
1564
1565 * **Low memory system**: If your target system has a low memory
1566 limit, prefer fewer first, then smaller sub-buffers.
1567 +
1568 Even if the system is limited in memory, you want to keep the
1569 sub-buffers as big as possible to avoid a high sub-buffer switching
1570 frequency.
1571
1572 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1573 which means event data is very compact. For example, the average
1574 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1575 sub-buffer size of 1{nbsp}MiB is considered big.
1576
1577 The previous situations highlight the major trade-off between a few big
1578 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1579 frequency vs. how much data is lost in overwrite mode. Assuming a
1580 constant event throughput and using the overwrite mode, the two
1581 following configurations have the same ring buffer total size:
1582
1583 [NOTE]
1584 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1585 ====
1586 {note-no-anim}
1587 ====
1588
1589 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1590 switching frequency, but if a sub-buffer overwrite happens, half of
1591 the event records so far (4{nbsp}MiB) are definitely lost.
1592 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1593 overhead as the previous configuration, but if a sub-buffer
1594 overwrite happens, only the eighth of event records so far are
1595 definitely lost.
1596
1597 In discard mode, the sub-buffers count parameter is pointless: use two
1598 sub-buffers and set their size according to the requirements of your
1599 situation.
1600
1601
1602 [[channel-switch-timer]]
1603 ==== Switch timer period
1604
1605 The _switch timer period_ is an important configurable attribute of
1606 a channel to ensure periodic sub-buffer flushing.
1607
1608 When the _switch timer_ expires, a sub-buffer switch happens. You can
1609 set the switch timer period attribute when you
1610 <<enabling-disabling-channels,create a channel>> to ensure that event
1611 data is consumed and committed to trace files or to a distant relay
1612 daemon periodically in case of a low event throughput.
1613
1614 [NOTE]
1615 [role="docsvg-channel-switch-timer"]
1616 ====
1617 {note-no-anim}
1618 ====
1619
1620 This attribute is also convenient when you use big sub-buffers to cope
1621 with a sporadic high event throughput, even if the throughput is
1622 normally low.
1623
1624
1625 [[channel-read-timer]]
1626 ==== Read timer period
1627
1628 By default, the LTTng tracers use a notification mechanism to signal a
1629 full sub-buffer so that a consumer daemon can consume it. When such
1630 notifications must be avoided, for example in real-time applications,
1631 you can use the channel's _read timer_ instead. When the read timer
1632 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1633 consumable sub-buffers.
1634
1635
1636 [[tracefile-rotation]]
1637 ==== Trace file count and size
1638
1639 By default, trace files can grow as large as needed. You can set the
1640 maximum size of each trace file that a channel writes when you
1641 <<enabling-disabling-channels,create a channel>>. When the size of
1642 a trace file reaches the channel's fixed maximum size, LTTng creates
1643 another file to contain the next event records. LTTng appends a file
1644 count to each trace file name in this case.
1645
1646 If you set the trace file size attribute when you create a channel, the
1647 maximum number of trace files that LTTng creates is _unlimited_ by
1648 default. To limit them, you can also set a maximum number of trace
1649 files. When the number of trace files reaches the channel's fixed
1650 maximum count, the oldest trace file is overwritten. This mechanism is
1651 called _trace file rotation_.
1652
1653
1654 [[event]]
1655 === Instrumentation point, event rule, event, and event record
1656
1657 An _event rule_ is a set of conditions which must be **all** satisfied
1658 for LTTng to record an occuring event.
1659
1660 You set the conditions when you <<enabling-disabling-events,create
1661 an event rule>>.
1662
1663 You always attach an event rule to <<channel,channel>> when you create
1664 it.
1665
1666 When an event passes the conditions of an event rule, LTTng records it
1667 in one of the attached channel's sub-buffers.
1668
1669 The available conditions, as of LTTng{nbsp}{revision}, are:
1670
1671 * The event rule _is enabled_.
1672 * The instrumentation point's type _is{nbsp}T_.
1673 * The instrumentation point's name (sometimes called _event name_)
1674 _matches{nbsp}N_, but _is not{nbsp}E_.
1675 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1676 _is exactly{nbsp}L_.
1677 * The fields of the event's payload _satisfy_ a filter
1678 expression{nbsp}__F__.
1679
1680 As you can see, all the conditions but the dynamic filter are related to
1681 the event rule's status or to the instrumentation point, not to the
1682 occurring events. This is why, without a filter, checking if an event
1683 passes an event rule is not a dynamic task: when you create or modify an
1684 event rule, all the tracers of its tracing domain enable or disable the
1685 instrumentation points themselves once. This is possible because the
1686 attributes of an instrumentation point (type, name, and log level) are
1687 defined statically. In other words, without a dynamic filter, the tracer
1688 _does not evaluate_ the arguments of an instrumentation point unless it
1689 matches an enabled event rule.
1690
1691 Note that, for LTTng to record an event, the <<channel,channel>> to
1692 which a matching event rule is attached must also be enabled, and the
1693 tracing session owning this channel must be active.
1694
1695 [role="img-100"]
1696 .Logical path from an instrumentation point to an event record.
1697 image::event-rule.png[]
1698
1699 .Event, event record, or event rule?
1700 ****
1701 With so many similar terms, it's easy to get confused.
1702
1703 An **event** is the consequence of the execution of an _instrumentation
1704 point_, like a tracepoint that you manually place in some source code,
1705 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1706 time. Different actions can be taken upon the occurance of an event,
1707 like record the event's payload to a buffer.
1708
1709 An **event record** is the representation of an event in a sub-buffer. A
1710 tracer is responsible for capturing the payload of an event, current
1711 context variables, the event's ID, and the event's timestamp. LTTng
1712 can append this sub-buffer to a trace file.
1713
1714 An **event rule** is a set of conditions which must all be satisfied for
1715 LTTng to record an occuring event. Events still occur without
1716 satisfying event rules, but LTTng does not record them.
1717 ****
1718
1719
1720 [[plumbing]]
1721 == Components of noch:{LTTng}
1722
1723 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1724 to call LTTng a simple _tool_ since it is composed of multiple
1725 interacting components. This section describes those components,
1726 explains their respective roles, and shows how they connect together to
1727 form the LTTng ecosystem.
1728
1729 The following diagram shows how the most important components of LTTng
1730 interact with user applications, the Linux kernel, and you:
1731
1732 [role="img-100"]
1733 .Control and trace data paths between LTTng components.
1734 image::plumbing.png[]
1735
1736 The LTTng project incorporates:
1737
1738 * **LTTng-tools**: Libraries and command-line interface to
1739 control tracing sessions.
1740 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1741 ** <<lttng-consumerd,Consumer daemon>> (man:lttng-consumerd(8)).
1742 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1743 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1744 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1745 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1746 applications.
1747 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1748 headers to instrument and trace any native user application.
1749 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1750 *** `liblttng-ust-libc-wrapper`
1751 *** `liblttng-ust-pthread-wrapper`
1752 *** `liblttng-ust-cyg-profile`
1753 *** `liblttng-ust-cyg-profile-fast`
1754 *** `liblttng-ust-dl`
1755 ** User space tracepoint provider source files generator command-line
1756 tool (man:lttng-gen-tp(1)).
1757 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1758 Java applications using `java.util.logging` or
1759 Apache log4j 1.2 logging.
1760 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1761 Python applications using the standard `logging` package.
1762 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1763 the kernel.
1764 ** LTTng kernel tracer module.
1765 ** Tracing ring buffer kernel modules.
1766 ** Probe kernel modules.
1767 ** LTTng logger kernel module.
1768
1769
1770 [[lttng-cli]]
1771 === Tracing control command-line interface
1772
1773 [role="img-100"]
1774 .The tracing control command-line interface.
1775 image::plumbing-lttng-cli.png[]
1776
1777 The _man:lttng(1) command-line tool_ is the standard user interface to
1778 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1779 is part of LTTng-tools.
1780
1781 The cmd:lttng tool is linked with
1782 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1783 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1784
1785 The cmd:lttng tool has a Git-like interface:
1786
1787 [role="term"]
1788 ----
1789 lttng <general options> <command> <command options>
1790 ----
1791
1792 The <<controlling-tracing,Tracing control>> section explores the
1793 available features of LTTng using the cmd:lttng tool.
1794
1795
1796 [[liblttng-ctl-lttng]]
1797 === Tracing control library
1798
1799 [role="img-100"]
1800 .The tracing control library.
1801 image::plumbing-liblttng-ctl.png[]
1802
1803 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1804 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1805 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1806
1807 The <<lttng-cli,cmd:lttng command-line tool>>
1808 is linked with `liblttng-ctl`.
1809
1810 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1811 "master" header:
1812
1813 [source,c]
1814 ----
1815 #include <lttng/lttng.h>
1816 ----
1817
1818 Some objects are referenced by name (C string), such as tracing
1819 sessions, but most of them require to create a handle first using
1820 `lttng_create_handle()`.
1821
1822 The best available developer documentation for `liblttng-ctl` is, as of
1823 LTTng{nbsp}{revision}, its installed header files. Every function and
1824 structure is thoroughly documented.
1825
1826
1827 [[lttng-ust]]
1828 === User space tracing library
1829
1830 [role="img-100"]
1831 .The user space tracing library.
1832 image::plumbing-liblttng-ust.png[]
1833
1834 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1835 is the LTTng user space tracer. It receives commands from a
1836 <<lttng-sessiond,session daemon>>, for example to
1837 enable and disable specific instrumentation points, and writes event
1838 records to ring buffers shared with a
1839 <<lttng-consumerd,consumer daemon>>.
1840 `liblttng-ust` is part of LTTng-UST.
1841
1842 Public C header files are installed beside `liblttng-ust` to
1843 instrument any <<c-application,C or $$C++$$ application>>.
1844
1845 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1846 packages, use their own library providing tracepoints which is
1847 linked with `liblttng-ust`.
1848
1849 An application or library does not have to initialize `liblttng-ust`
1850 manually: its constructor does the necessary tasks to properly register
1851 to a session daemon. The initialization phase also enables the
1852 instrumentation points matching the <<event,event rules>> that you
1853 already created.
1854
1855
1856 [[lttng-ust-agents]]
1857 === User space tracing agents
1858
1859 [role="img-100"]
1860 .The user space tracing agents.
1861 image::plumbing-lttng-ust-agents.png[]
1862
1863 The _LTTng-UST Java and Python agents_ are regular Java and Python
1864 packages which add LTTng tracing capabilities to the
1865 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1866
1867 In the case of Java, the
1868 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1869 core logging facilities] and
1870 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1871 Note that Apache Log4{nbsp}2 is not supported.
1872
1873 In the case of Python, the standard
1874 https://docs.python.org/3/library/logging.html[`logging`] package
1875 is supported. Both Python 2 and Python 3 modules can import the
1876 LTTng-UST Python agent package.
1877
1878 The applications using the LTTng-UST agents are in the
1879 `java.util.logging` (JUL),
1880 log4j, and Python <<domain,tracing domains>>.
1881
1882 Both agents use the same mechanism to trace the log statements. When an
1883 agent is initialized, it creates a log handler that attaches to the root
1884 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1885 When the application executes a log statement, it is passed to the
1886 agent's log handler by the root logger. The agent's log handler calls a
1887 native function in a tracepoint provider package shared library linked
1888 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1889 other fields, like its logger name and its log level. This native
1890 function contains a user space instrumentation point, hence tracing the
1891 log statement.
1892
1893 The log level condition of an
1894 <<event,event rule>> is considered when tracing
1895 a Java or a Python application, and it's compatible with the standard
1896 JUL, log4j, and Python log levels.
1897
1898
1899 [[lttng-modules]]
1900 === LTTng kernel modules
1901
1902 [role="img-100"]
1903 .The LTTng kernel modules.
1904 image::plumbing-lttng-modules.png[]
1905
1906 The _LTTng kernel modules_ are a set of Linux kernel modules
1907 which implement the kernel tracer of the LTTng project. The LTTng
1908 kernel modules are part of LTTng-modules.
1909
1910 The LTTng kernel modules include:
1911
1912 * A set of _probe_ modules.
1913 +
1914 Each module attaches to a specific subsystem
1915 of the Linux kernel using its tracepoint instrument points. There are
1916 also modules to attach to the entry and return points of the Linux
1917 system call functions.
1918
1919 * _Ring buffer_ modules.
1920 +
1921 A ring buffer implementation is provided as kernel modules. The LTTng
1922 kernel tracer writes to the ring buffer; a
1923 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1924
1925 * The _LTTng kernel tracer_ module.
1926 * The _LTTng logger_ module.
1927 +
1928 The LTTng logger module implements the special path:{/proc/lttng-logger}
1929 file so that any executable can generate LTTng events by opening and
1930 writing to this file.
1931 +
1932 See <<proc-lttng-logger-abi,LTTng logger>>.
1933
1934 Generally, you do not have to load the LTTng kernel modules manually
1935 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1936 daemon>> loads the necessary modules when starting. If you have extra
1937 probe modules, you can specify to load them to the session daemon on
1938 the command line.
1939
1940 The LTTng kernel modules are installed in
1941 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1942 the kernel release (see `uname --kernel-release`).
1943
1944
1945 [[lttng-sessiond]]
1946 === Session daemon
1947
1948 [role="img-100"]
1949 .The session daemon.
1950 image::plumbing-sessiond.png[]
1951
1952 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1953 managing tracing sessions and for controlling the various components of
1954 LTTng. The session daemon is part of LTTng-tools.
1955
1956 The session daemon sends control requests to and receives control
1957 responses from:
1958
1959 * The <<lttng-ust,user space tracing library>>.
1960 +
1961 Any instance of the user space tracing library first registers to
1962 a session daemon. Then, the session daemon can send requests to
1963 this instance, such as:
1964 +
1965 --
1966 ** Get the list of tracepoints.
1967 ** Share an <<event,event rule>> so that the user space tracing library
1968 can enable or disable tracepoints. Amongst the possible conditions
1969 of an event rule is a filter expression which `liblttng-ust` evalutes
1970 when an event occurs.
1971 ** Share <<channel,channel>> attributes and ring buffer locations.
1972 --
1973 +
1974 The session daemon and the user space tracing library use a Unix
1975 domain socket for their communication.
1976
1977 * The <<lttng-ust-agents,user space tracing agents>>.
1978 +
1979 Any instance of a user space tracing agent first registers to
1980 a session daemon. Then, the session daemon can send requests to
1981 this instance, such as:
1982 +
1983 --
1984 ** Get the list of loggers.
1985 ** Enable or disable a specific logger.
1986 --
1987 +
1988 The session daemon and the user space tracing agent use a TCP connection
1989 for their communication.
1990
1991 * The <<lttng-modules,LTTng kernel tracer>>.
1992 * The <<lttng-consumerd,consumer daemon>>.
1993 +
1994 The session daemon sends requests to the consumer daemon to instruct
1995 it where to send the trace data streams, amongst other information.
1996
1997 * The <<lttng-relayd,relay daemon>>.
1998
1999 The session daemon receives commands from the
2000 <<liblttng-ctl-lttng,tracing control library>>.
2001
2002 The root session daemon loads the appropriate
2003 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
2004 a <<lttng-consumerd,consumer daemon>> as soon as you create
2005 an <<event,event rule>>.
2006
2007 The session daemon does not send and receive trace data: this is the
2008 role of the <<lttng-consumerd,consumer daemon>> and
2009 <<lttng-relayd,relay daemon>>. It does, however, generate the
2010 http://diamon.org/ctf/[CTF] metadata stream.
2011
2012 Each Unix user can have its own session daemon instance. The
2013 tracing sessions managed by different session daemons are completely
2014 independent.
2015
2016 The root user's session daemon is the only one which is
2017 allowed to control the LTTng kernel tracer, and its spawned consumer
2018 daemon is the only one which is allowed to consume trace data from the
2019 LTTng kernel tracer. Note, however, that any Unix user which is a member
2020 of the <<tracing-group,tracing group>> is allowed
2021 to create <<channel,channels>> in the
2022 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
2023 kernel.
2024
2025 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
2026 session daemon when using its `create` command if none is currently
2027 running. You can also start the session daemon manually.
2028
2029
2030 [[lttng-consumerd]]
2031 === Consumer daemon
2032
2033 [role="img-100"]
2034 .The consumer daemon.
2035 image::plumbing-consumerd.png[]
2036
2037 The _consumer daemon_, man:lttng-consumerd(8), is a daemon which shares
2038 ring buffers with user applications or with the LTTng kernel modules to
2039 collect trace data and send it to some location (on disk or to a
2040 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
2041 is part of LTTng-tools.
2042
2043 You do not start a consumer daemon manually: a consumer daemon is always
2044 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
2045 <<event,event rule>>, that is, before you start tracing. When you kill
2046 its owner session daemon, the consumer daemon also exits because it is
2047 the session daemon's child process. Command-line options of
2048 man:lttng-sessiond(8) target the consumer daemon process.
2049
2050 There are up to two running consumer daemons per Unix user, whereas only
2051 one session daemon can run per user. This is because each process can be
2052 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
2053 and 64-bit processes, it is more efficient to have separate
2054 corresponding 32-bit and 64-bit consumer daemons. The root user is an
2055 exception: it can have up to _three_ running consumer daemons: 32-bit
2056 and 64-bit instances for its user applications, and one more
2057 reserved for collecting kernel trace data.
2058
2059
2060 [[lttng-relayd]]
2061 === Relay daemon
2062
2063 [role="img-100"]
2064 .The relay daemon.
2065 image::plumbing-relayd.png[]
2066
2067 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
2068 between remote session and consumer daemons, local trace files, and a
2069 remote live trace viewer. The relay daemon is part of LTTng-tools.
2070
2071 The main purpose of the relay daemon is to implement a receiver of
2072 <<sending-trace-data-over-the-network,trace data over the network>>.
2073 This is useful when the target system does not have much file system
2074 space to record trace files locally.
2075
2076 The relay daemon is also a server to which a
2077 <<lttng-live,live trace viewer>> can
2078 connect. The live trace viewer sends requests to the relay daemon to
2079 receive trace data as the target system emits events. The
2080 communication protocol is named _LTTng live_; it is used over TCP
2081 connections.
2082
2083 Note that you can start the relay daemon on the target system directly.
2084 This is the setup of choice when the use case is to view events as
2085 the target system emits them without the need of a remote system.
2086
2087
2088 [[instrumenting]]
2089 == [[using-lttng]]Instrumentation
2090
2091 There are many examples of tracing and monitoring in our everyday life:
2092
2093 * You have access to real-time and historical weather reports and
2094 forecasts thanks to weather stations installed around the country.
2095 * You know your heart is safe thanks to an electrocardiogram.
2096 * You make sure not to drive your car too fast and to have enough fuel
2097 to reach your destination thanks to gauges visible on your dashboard.
2098
2099 All the previous examples have something in common: they rely on
2100 **instruments**. Without the electrodes attached to the surface of your
2101 body's skin, cardiac monitoring is futile.
2102
2103 LTTng, as a tracer, is no different from those real life examples. If
2104 you're about to trace a software system or, in other words, record its
2105 history of execution, you better have **instrumentation points** in the
2106 subject you're tracing, that is, the actual software.
2107
2108 Various ways were developed to instrument a piece of software for LTTng
2109 tracing. The most straightforward one is to manually place
2110 instrumentation points, called _tracepoints_, in the software's source
2111 code. It is also possible to add instrumentation points dynamically in
2112 the Linux kernel <<domain,tracing domain>>.
2113
2114 If you're only interested in tracing the Linux kernel, your
2115 instrumentation needs are probably already covered by LTTng's built-in
2116 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
2117 user application which is already instrumented for LTTng tracing.
2118 In such cases, you can skip this whole section and read the topics of
2119 the <<controlling-tracing,Tracing control>> section.
2120
2121 Many methods are available to instrument a piece of software for LTTng
2122 tracing. They are:
2123
2124 * <<c-application,User space instrumentation for C and $$C++$$
2125 applications>>.
2126 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
2127 * <<java-application,User space Java agent>>.
2128 * <<python-application,User space Python agent>>.
2129 * <<proc-lttng-logger-abi,LTTng logger>>.
2130 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
2131
2132
2133 [[c-application]]
2134 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
2135
2136 The procedure to instrument a C or $$C++$$ user application with
2137 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
2138
2139 . <<tracepoint-provider,Create the source files of a tracepoint provider
2140 package>>.
2141 . <<probing-the-application-source-code,Add tracepoints to
2142 the application's source code>>.
2143 . <<building-tracepoint-providers-and-user-application,Build and link
2144 a tracepoint provider package and the user application>>.
2145
2146 If you need quick, man:printf(3)-like instrumentation, you can skip
2147 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
2148 instead.
2149
2150 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
2151 instrument a user application with `liblttng-ust`.
2152
2153
2154 [[tracepoint-provider]]
2155 ==== Create the source files of a tracepoint provider package
2156
2157 A _tracepoint provider_ is a set of compiled functions which provide
2158 **tracepoints** to an application, the type of instrumentation point
2159 supported by LTTng-UST. Those functions can emit events with
2160 user-defined fields and serialize those events as event records to one
2161 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
2162 macro, which you <<probing-the-application-source-code,insert in a user
2163 application's source code>>, calls those functions.
2164
2165 A _tracepoint provider package_ is an object file (`.o`) or a shared
2166 library (`.so`) which contains one or more tracepoint providers.
2167 Its source files are:
2168
2169 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
2170 * A <<tpp-source,tracepoint provider package source>> (`.c`).
2171
2172 A tracepoint provider package is dynamically linked with `liblttng-ust`,
2173 the LTTng user space tracer, at run time.
2174
2175 [role="img-100"]
2176 .User application linked with `liblttng-ust` and containing a tracepoint provider.
2177 image::ust-app.png[]
2178
2179 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
2180 skip creating and using a tracepoint provider and use
2181 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
2182
2183
2184 [[tpp-header]]
2185 ===== Create a tracepoint provider header file template
2186
2187 A _tracepoint provider header file_ contains the tracepoint
2188 definitions of a tracepoint provider.
2189
2190 To create a tracepoint provider header file:
2191
2192 . Start from this template:
2193 +
2194 --
2195 [source,c]
2196 .Tracepoint provider header file template (`.h` file extension).
2197 ----
2198 #undef TRACEPOINT_PROVIDER
2199 #define TRACEPOINT_PROVIDER provider_name
2200
2201 #undef TRACEPOINT_INCLUDE
2202 #define TRACEPOINT_INCLUDE "./tp.h"
2203
2204 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2205 #define _TP_H
2206
2207 #include <lttng/tracepoint.h>
2208
2209 /*
2210 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2211 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2212 */
2213
2214 #endif /* _TP_H */
2215
2216 #include <lttng/tracepoint-event.h>
2217 ----
2218 --
2219
2220 . Replace:
2221 +
2222 * `provider_name` with the name of your tracepoint provider.
2223 * `"tp.h"` with the name of your tracepoint provider header file.
2224
2225 . Below the `#include <lttng/tracepoint.h>` line, put your
2226 <<defining-tracepoints,tracepoint definitions>>.
2227
2228 Your tracepoint provider name must be unique amongst all the possible
2229 tracepoint provider names used on the same target system. We
2230 suggest to include the name of your project or company in the name,
2231 for example, `org_lttng_my_project_tpp`.
2232
2233 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2234 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2235 write are the <<defining-tracepoints,tracepoint definitions>>.
2236
2237
2238 [[defining-tracepoints]]
2239 ===== Create a tracepoint definition
2240
2241 A _tracepoint definition_ defines, for a given tracepoint:
2242
2243 * Its **input arguments**. They are the macro parameters that the
2244 `tracepoint()` macro accepts for this particular tracepoint
2245 in the user application's source code.
2246 * Its **output event fields**. They are the sources of event fields
2247 that form the payload of any event that the execution of the
2248 `tracepoint()` macro emits for this particular tracepoint.
2249
2250 You can create a tracepoint definition by using the
2251 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2252 line in the
2253 <<tpp-header,tracepoint provider header file template>>.
2254
2255 The syntax of the `TRACEPOINT_EVENT()` macro is:
2256
2257 [source,c]
2258 .`TRACEPOINT_EVENT()` macro syntax.
2259 ----
2260 TRACEPOINT_EVENT(
2261 /* Tracepoint provider name */
2262 provider_name,
2263
2264 /* Tracepoint name */
2265 tracepoint_name,
2266
2267 /* Input arguments */
2268 TP_ARGS(
2269 arguments
2270 ),
2271
2272 /* Output event fields */
2273 TP_FIELDS(
2274 fields
2275 )
2276 )
2277 ----
2278
2279 Replace:
2280
2281 * `provider_name` with your tracepoint provider name.
2282 * `tracepoint_name` with your tracepoint name.
2283 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2284 * `fields` with the <<tpp-def-output-fields,output event field>>
2285 definitions.
2286
2287 This tracepoint emits events named `provider_name:tracepoint_name`.
2288
2289 [IMPORTANT]
2290 .Event name's length limitation
2291 ====
2292 The concatenation of the tracepoint provider name and the
2293 tracepoint name must not exceed **254 characters**. If it does, the
2294 instrumented application compiles and runs, but LTTng throws multiple
2295 warnings and you could experience serious issues.
2296 ====
2297
2298 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2299
2300 [source,c]
2301 .`TP_ARGS()` macro syntax.
2302 ----
2303 TP_ARGS(
2304 type, arg_name
2305 )
2306 ----
2307
2308 Replace:
2309
2310 * `type` with the C type of the argument.
2311 * `arg_name` with the argument name.
2312
2313 You can repeat `type` and `arg_name` up to 10 times to have
2314 more than one argument.
2315
2316 .`TP_ARGS()` usage with three arguments.
2317 ====
2318 [source,c]
2319 ----
2320 TP_ARGS(
2321 int, count,
2322 float, ratio,
2323 const char*, query
2324 )
2325 ----
2326 ====
2327
2328 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2329 tracepoint definition with no input arguments.
2330
2331 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2332 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2333 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2334 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2335 one event field.
2336
2337 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2338 C expression that the tracer evalutes at the `tracepoint()` macro site
2339 in the application's source code. This expression provides a field's
2340 source of data. The argument expression can include input argument names
2341 listed in the `TP_ARGS()` macro.
2342
2343 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2344 must be unique within a given tracepoint definition.
2345
2346 Here's a complete tracepoint definition example:
2347
2348 .Tracepoint definition.
2349 ====
2350 The following tracepoint definition defines a tracepoint which takes
2351 three input arguments and has four output event fields.
2352
2353 [source,c]
2354 ----
2355 #include "my-custom-structure.h"
2356
2357 TRACEPOINT_EVENT(
2358 my_provider,
2359 my_tracepoint,
2360 TP_ARGS(
2361 const struct my_custom_structure*, my_custom_structure,
2362 float, ratio,
2363 const char*, query
2364 ),
2365 TP_FIELDS(
2366 ctf_string(query_field, query)
2367 ctf_float(double, ratio_field, ratio)
2368 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2369 ctf_integer(int, send_size, my_custom_structure->send_size)
2370 )
2371 )
2372 ----
2373
2374 You can refer to this tracepoint definition with the `tracepoint()`
2375 macro in your application's source code like this:
2376
2377 [source,c]
2378 ----
2379 tracepoint(my_provider, my_tracepoint,
2380 my_structure, some_ratio, the_query);
2381 ----
2382 ====
2383
2384 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2385 if they satisfy an enabled <<event,event rule>>.
2386
2387
2388 [[using-tracepoint-classes]]
2389 ===== Use a tracepoint class
2390
2391 A _tracepoint class_ is a class of tracepoints which share the same
2392 output event field definitions. A _tracepoint instance_ is one
2393 instance of such a defined tracepoint class, with its own tracepoint
2394 name.
2395
2396 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2397 shorthand which defines both a tracepoint class and a tracepoint
2398 instance at the same time.
2399
2400 When you build a tracepoint provider package, the C or $$C++$$ compiler
2401 creates one serialization function for each **tracepoint class**. A
2402 serialization function is responsible for serializing the event fields
2403 of a tracepoint to a sub-buffer when tracing.
2404
2405 For various performance reasons, when your situation requires multiple
2406 tracepoint definitions with different names, but with the same event
2407 fields, we recommend that you manually create a tracepoint class
2408 and instantiate as many tracepoint instances as needed. One positive
2409 effect of such a design, amongst other advantages, is that all
2410 tracepoint instances of the same tracepoint class reuse the same
2411 serialization function, thus reducing
2412 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2413
2414 .Use a tracepoint class and tracepoint instances.
2415 ====
2416 Consider the following three tracepoint definitions:
2417
2418 [source,c]
2419 ----
2420 TRACEPOINT_EVENT(
2421 my_app,
2422 get_account,
2423 TP_ARGS(
2424 int, userid,
2425 size_t, len
2426 ),
2427 TP_FIELDS(
2428 ctf_integer(int, userid, userid)
2429 ctf_integer(size_t, len, len)
2430 )
2431 )
2432
2433 TRACEPOINT_EVENT(
2434 my_app,
2435 get_settings,
2436 TP_ARGS(
2437 int, userid,
2438 size_t, len
2439 ),
2440 TP_FIELDS(
2441 ctf_integer(int, userid, userid)
2442 ctf_integer(size_t, len, len)
2443 )
2444 )
2445
2446 TRACEPOINT_EVENT(
2447 my_app,
2448 get_transaction,
2449 TP_ARGS(
2450 int, userid,
2451 size_t, len
2452 ),
2453 TP_FIELDS(
2454 ctf_integer(int, userid, userid)
2455 ctf_integer(size_t, len, len)
2456 )
2457 )
2458 ----
2459
2460 In this case, we create three tracepoint classes, with one implicit
2461 tracepoint instance for each of them: `get_account`, `get_settings`, and
2462 `get_transaction`. However, they all share the same event field names
2463 and types. Hence three identical, yet independent serialization
2464 functions are created when you build the tracepoint provider package.
2465
2466 A better design choice is to define a single tracepoint class and three
2467 tracepoint instances:
2468
2469 [source,c]
2470 ----
2471 /* The tracepoint class */
2472 TRACEPOINT_EVENT_CLASS(
2473 /* Tracepoint provider name */
2474 my_app,
2475
2476 /* Tracepoint class name */
2477 my_class,
2478
2479 /* Input arguments */
2480 TP_ARGS(
2481 int, userid,
2482 size_t, len
2483 ),
2484
2485 /* Output event fields */
2486 TP_FIELDS(
2487 ctf_integer(int, userid, userid)
2488 ctf_integer(size_t, len, len)
2489 )
2490 )
2491
2492 /* The tracepoint instances */
2493 TRACEPOINT_EVENT_INSTANCE(
2494 /* Tracepoint provider name */
2495 my_app,
2496
2497 /* Tracepoint class name */
2498 my_class,
2499
2500 /* Tracepoint name */
2501 get_account,
2502
2503 /* Input arguments */
2504 TP_ARGS(
2505 int, userid,
2506 size_t, len
2507 )
2508 )
2509 TRACEPOINT_EVENT_INSTANCE(
2510 my_app,
2511 my_class,
2512 get_settings,
2513 TP_ARGS(
2514 int, userid,
2515 size_t, len
2516 )
2517 )
2518 TRACEPOINT_EVENT_INSTANCE(
2519 my_app,
2520 my_class,
2521 get_transaction,
2522 TP_ARGS(
2523 int, userid,
2524 size_t, len
2525 )
2526 )
2527 ----
2528 ====
2529
2530
2531 [[assigning-log-levels]]
2532 ===== Assign a log level to a tracepoint definition
2533
2534 You can assign an optional _log level_ to a
2535 <<defining-tracepoints,tracepoint definition>>.
2536
2537 Assigning different levels of severity to tracepoint definitions can
2538 be useful: when you <<enabling-disabling-events,create an event rule>>,
2539 you can target tracepoints having a log level as severe as a specific
2540 value.
2541
2542 The concept of LTTng-UST log levels is similar to the levels found
2543 in typical logging frameworks:
2544
2545 * In a logging framework, the log level is given by the function
2546 or method name you use at the log statement site: `debug()`,
2547 `info()`, `warn()`, `error()`, and so on.
2548 * In LTTng-UST, you statically assign the log level to a tracepoint
2549 definition; any `tracepoint()` macro invocation which refers to
2550 this definition has this log level.
2551
2552 You can assign a log level to a tracepoint definition with the
2553 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2554 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2555 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2556 tracepoint.
2557
2558 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2559
2560 [source,c]
2561 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2562 ----
2563 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2564 ----
2565
2566 Replace:
2567
2568 * `provider_name` with the tracepoint provider name.
2569 * `tracepoint_name` with the tracepoint name.
2570 * `log_level` with the log level to assign to the tracepoint
2571 definition named `tracepoint_name` in the `provider_name`
2572 tracepoint provider.
2573 +
2574 See man:lttng-ust(3) for a list of available log level names.
2575
2576 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2577 ====
2578 [source,c]
2579 ----
2580 /* Tracepoint definition */
2581 TRACEPOINT_EVENT(
2582 my_app,
2583 get_transaction,
2584 TP_ARGS(
2585 int, userid,
2586 size_t, len
2587 ),
2588 TP_FIELDS(
2589 ctf_integer(int, userid, userid)
2590 ctf_integer(size_t, len, len)
2591 )
2592 )
2593
2594 /* Log level assignment */
2595 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2596 ----
2597 ====
2598
2599
2600 [[tpp-source]]
2601 ===== Create a tracepoint provider package source file
2602
2603 A _tracepoint provider package source file_ is a C source file which
2604 includes a <<tpp-header,tracepoint provider header file>> to expand its
2605 macros into event serialization and other functions.
2606
2607 You can always use the following tracepoint provider package source
2608 file template:
2609
2610 [source,c]
2611 .Tracepoint provider package source file template.
2612 ----
2613 #define TRACEPOINT_CREATE_PROBES
2614
2615 #include "tp.h"
2616 ----
2617
2618 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2619 header file>> name. You may also include more than one tracepoint
2620 provider header file here to create a tracepoint provider package
2621 holding more than one tracepoint providers.
2622
2623
2624 [[probing-the-application-source-code]]
2625 ==== Add tracepoints to an application's source code
2626
2627 Once you <<tpp-header,create a tracepoint provider header file>>, you
2628 can use the `tracepoint()` macro in your application's
2629 source code to insert the tracepoints that this header
2630 <<defining-tracepoints,defined>> defines.
2631
2632 The `tracepoint()` macro takes at least two parameters: the tracepoint
2633 provider name and the tracepoint name. The corresponding tracepoint
2634 definition defines the other parameters.
2635
2636 .`tracepoint()` usage.
2637 ====
2638 The following <<defining-tracepoints,tracepoint definition>> defines a
2639 tracepoint which takes two input arguments and has two output event
2640 fields.
2641
2642 [source,c]
2643 .Tracepoint provider header file.
2644 ----
2645 #include "my-custom-structure.h"
2646
2647 TRACEPOINT_EVENT(
2648 my_provider,
2649 my_tracepoint,
2650 TP_ARGS(
2651 int, argc,
2652 const char*, cmd_name
2653 ),
2654 TP_FIELDS(
2655 ctf_string(cmd_name, cmd_name)
2656 ctf_integer(int, number_of_args, argc)
2657 )
2658 )
2659 ----
2660
2661 You can refer to this tracepoint definition with the `tracepoint()`
2662 macro in your application's source code like this:
2663
2664 [source,c]
2665 .Application's source file.
2666 ----
2667 #include "tp.h"
2668
2669 int main(int argc, char* argv[])
2670 {
2671 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2672
2673 return 0;
2674 }
2675 ----
2676
2677 Note how the application's source code includes
2678 the tracepoint provider header file containing the tracepoint
2679 definitions to use, path:{tp.h}.
2680 ====
2681
2682 .`tracepoint()` usage with a complex tracepoint definition.
2683 ====
2684 Consider this complex tracepoint definition, where multiple event
2685 fields refer to the same input arguments in their argument expression
2686 parameter:
2687
2688 [source,c]
2689 .Tracepoint provider header file.
2690 ----
2691 /* For `struct stat` */
2692 #include <sys/types.h>
2693 #include <sys/stat.h>
2694 #include <unistd.h>
2695
2696 TRACEPOINT_EVENT(
2697 my_provider,
2698 my_tracepoint,
2699 TP_ARGS(
2700 int, my_int_arg,
2701 char*, my_str_arg,
2702 struct stat*, st
2703 ),
2704 TP_FIELDS(
2705 ctf_integer(int, my_constant_field, 23 + 17)
2706 ctf_integer(int, my_int_arg_field, my_int_arg)
2707 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2708 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2709 my_str_arg[2] + my_str_arg[3])
2710 ctf_string(my_str_arg_field, my_str_arg)
2711 ctf_integer_hex(off_t, size_field, st->st_size)
2712 ctf_float(double, size_dbl_field, (double) st->st_size)
2713 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2714 size_t, strlen(my_str_arg) / 2)
2715 )
2716 )
2717 ----
2718
2719 You can refer to this tracepoint definition with the `tracepoint()`
2720 macro in your application's source code like this:
2721
2722 [source,c]
2723 .Application's source file.
2724 ----
2725 #define TRACEPOINT_DEFINE
2726 #include "tp.h"
2727
2728 int main(void)
2729 {
2730 struct stat s;
2731
2732 stat("/etc/fstab", &s);
2733 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2734
2735 return 0;
2736 }
2737 ----
2738
2739 If you look at the event record that LTTng writes when tracing this
2740 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2741 it should look like this:
2742
2743 .Event record fields
2744 |====
2745 |Field's name |Field's value
2746 |`my_constant_field` |40
2747 |`my_int_arg_field` |23
2748 |`my_int_arg_field2` |529
2749 |`sum4_field` |389
2750 |`my_str_arg_field` |`Hello, World!`
2751 |`size_field` |0x12d
2752 |`size_dbl_field` |301.0
2753 |`half_my_str_arg_field` |`Hello,`
2754 |====
2755 ====
2756
2757 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2758 compute--they use the call stack, for example. To avoid this
2759 computation when the tracepoint is disabled, you can use the
2760 `tracepoint_enabled()` and `do_tracepoint()` macros.
2761
2762 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2763 is:
2764
2765 [source,c]
2766 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2767 ----
2768 tracepoint_enabled(provider_name, tracepoint_name)
2769 do_tracepoint(provider_name, tracepoint_name, ...)
2770 ----
2771
2772 Replace:
2773
2774 * `provider_name` with the tracepoint provider name.
2775 * `tracepoint_name` with the tracepoint name.
2776
2777 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2778 `tracepoint_name` from the provider named `provider_name` is enabled
2779 **at run time**.
2780
2781 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2782 if the tracepoint is enabled. Using `tracepoint()` with
2783 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2784 the `tracepoint_enabled()` check, thus a race condition is
2785 possible in this situation:
2786
2787 [source,c]
2788 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2789 ----
2790 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2791 stuff = prepare_stuff();
2792 }
2793
2794 tracepoint(my_provider, my_tracepoint, stuff);
2795 ----
2796
2797 If the tracepoint is enabled after the condition, then `stuff` is not
2798 prepared: the emitted event will either contain wrong data, or the whole
2799 application could crash (segmentation fault, for example).
2800
2801 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2802 `STAP_PROBEV()` call. If you need it, you must emit
2803 this call yourself.
2804
2805
2806 [[building-tracepoint-providers-and-user-application]]
2807 ==== Build and link a tracepoint provider package and an application
2808
2809 Once you have one or more <<tpp-header,tracepoint provider header
2810 files>> and a <<tpp-source,tracepoint provider package source file>>,
2811 you can create the tracepoint provider package by compiling its source
2812 file. From here, multiple build and run scenarios are possible. The
2813 following table shows common application and library configurations
2814 along with the required command lines to achieve them.
2815
2816 In the following diagrams, we use the following file names:
2817
2818 `app`::
2819 Executable application.
2820
2821 `app.o`::
2822 Application's object file.
2823
2824 `tpp.o`::
2825 Tracepoint provider package object file.
2826
2827 `tpp.a`::
2828 Tracepoint provider package archive file.
2829
2830 `libtpp.so`::
2831 Tracepoint provider package shared object file.
2832
2833 `emon.o`::
2834 User library object file.
2835
2836 `libemon.so`::
2837 User library shared object file.
2838
2839 The red star indicates that this object file is instrumented
2840 (contains code which uses the `tracepoint()` macro). The spring
2841 symbol between the application and a library means the application is
2842 linked with the library at build time.
2843
2844 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2845 variable in the following instructions.
2846
2847 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2848 .Common tracepoint provider package scenarios.
2849 |====
2850 |Scenario |Instructions
2851
2852 |
2853 The instrumented application is statically linked with
2854 the tracepoint provider package object.
2855
2856 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2857
2858 |
2859 include::../common/ust-sit-step-tp-o.txt[]
2860
2861 To build the instrumented application:
2862
2863 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2864 +
2865 --
2866 [source,c]
2867 ----
2868 #define TRACEPOINT_DEFINE
2869 ----
2870 --
2871
2872 . Compile the application source file:
2873 +
2874 --
2875 [role="term"]
2876 ----
2877 gcc -c app.c
2878 ----
2879 --
2880
2881 . Build the application:
2882 +
2883 --
2884 [role="term"]
2885 ----
2886 gcc -o app app.o tpp.o -llttng-ust -ldl
2887 ----
2888 --
2889
2890 To run the instrumented application:
2891
2892 * Start the application:
2893 +
2894 --
2895 [role="term"]
2896 ----
2897 ./app
2898 ----
2899 --
2900
2901 |
2902 The instrumented application is statically linked with the
2903 tracepoint provider package archive file.
2904
2905 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2906
2907 |
2908 To create the tracepoint provider package archive file:
2909
2910 . Compile the <<tpp-source,tracepoint provider package source file>>:
2911 +
2912 --
2913 [role="term"]
2914 ----
2915 gcc -I. -c tpp.c
2916 ----
2917 --
2918
2919 . Create the tracepoint provider package archive file:
2920 +
2921 --
2922 [role="term"]
2923 ----
2924 ar rcs tpp.a tpp.o
2925 ----
2926 --
2927
2928 To build the instrumented application:
2929
2930 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2931 +
2932 --
2933 [source,c]
2934 ----
2935 #define TRACEPOINT_DEFINE
2936 ----
2937 --
2938
2939 . Compile the application source file:
2940 +
2941 --
2942 [role="term"]
2943 ----
2944 gcc -c app.c
2945 ----
2946 --
2947
2948 . Build the application:
2949 +
2950 --
2951 [role="term"]
2952 ----
2953 gcc -o app app.o tpp.a -llttng-ust -ldl
2954 ----
2955 --
2956
2957 To run the instrumented application:
2958
2959 * Start the application:
2960 +
2961 --
2962 [role="term"]
2963 ----
2964 ./app
2965 ----
2966 --
2967
2968 |
2969 The instrumented application is linked with the tracepoint provider
2970 package shared object.
2971
2972 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2973
2974 |
2975 include::../common/ust-sit-step-tp-so.txt[]
2976
2977 To build the instrumented application:
2978
2979 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2980 +
2981 --
2982 [source,c]
2983 ----
2984 #define TRACEPOINT_DEFINE
2985 ----
2986 --
2987
2988 . Compile the application source file:
2989 +
2990 --
2991 [role="term"]
2992 ----
2993 gcc -c app.c
2994 ----
2995 --
2996
2997 . Build the application:
2998 +
2999 --
3000 [role="term"]
3001 ----
3002 gcc -o app app.o -ldl -L. -ltpp
3003 ----
3004 --
3005
3006 To run the instrumented application:
3007
3008 * Start the application:
3009 +
3010 --
3011 [role="term"]
3012 ----
3013 ./app
3014 ----
3015 --
3016
3017 |
3018 The tracepoint provider package shared object is preloaded before the
3019 instrumented application starts.
3020
3021 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
3022
3023 |
3024 include::../common/ust-sit-step-tp-so.txt[]
3025
3026 To build the instrumented application:
3027
3028 . In path:{app.c}, before including path:{tpp.h}, add the
3029 following lines:
3030 +
3031 --
3032 [source,c]
3033 ----
3034 #define TRACEPOINT_DEFINE
3035 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3036 ----
3037 --
3038
3039 . Compile the application source file:
3040 +
3041 --
3042 [role="term"]
3043 ----
3044 gcc -c app.c
3045 ----
3046 --
3047
3048 . Build the application:
3049 +
3050 --
3051 [role="term"]
3052 ----
3053 gcc -o app app.o -ldl
3054 ----
3055 --
3056
3057 To run the instrumented application with tracing support:
3058
3059 * Preload the tracepoint provider package shared object and
3060 start the application:
3061 +
3062 --
3063 [role="term"]
3064 ----
3065 LD_PRELOAD=./libtpp.so ./app
3066 ----
3067 --
3068
3069 To run the instrumented application without tracing support:
3070
3071 * Start the application:
3072 +
3073 --
3074 [role="term"]
3075 ----
3076 ./app
3077 ----
3078 --
3079
3080 |
3081 The instrumented application dynamically loads the tracepoint provider
3082 package shared object.
3083
3084 See the <<dlclose-warning,warning about `dlclose()`>>.
3085
3086 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
3087
3088 |
3089 include::../common/ust-sit-step-tp-so.txt[]
3090
3091 To build the instrumented application:
3092
3093 . In path:{app.c}, before including path:{tpp.h}, add the
3094 following lines:
3095 +
3096 --
3097 [source,c]
3098 ----
3099 #define TRACEPOINT_DEFINE
3100 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3101 ----
3102 --
3103
3104 . Compile the application source file:
3105 +
3106 --
3107 [role="term"]
3108 ----
3109 gcc -c app.c
3110 ----
3111 --
3112
3113 . Build the application:
3114 +
3115 --
3116 [role="term"]
3117 ----
3118 gcc -o app app.o -ldl
3119 ----
3120 --
3121
3122 To run the instrumented application:
3123
3124 * Start the application:
3125 +
3126 --
3127 [role="term"]
3128 ----
3129 ./app
3130 ----
3131 --
3132
3133 |
3134 The application is linked with the instrumented user library.
3135
3136 The instrumented user library is statically linked with the tracepoint
3137 provider package object file.
3138
3139 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
3140
3141 |
3142 include::../common/ust-sit-step-tp-o-fpic.txt[]
3143
3144 To build the instrumented user library:
3145
3146 . In path:{emon.c}, before including path:{tpp.h}, add the
3147 following line:
3148 +
3149 --
3150 [source,c]
3151 ----
3152 #define TRACEPOINT_DEFINE
3153 ----
3154 --
3155
3156 . Compile the user library source file:
3157 +
3158 --
3159 [role="term"]
3160 ----
3161 gcc -I. -fpic -c emon.c
3162 ----
3163 --
3164
3165 . Build the user library shared object:
3166 +
3167 --
3168 [role="term"]
3169 ----
3170 gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
3171 ----
3172 --
3173
3174 To build the application:
3175
3176 . Compile the application source file:
3177 +
3178 --
3179 [role="term"]
3180 ----
3181 gcc -c app.c
3182 ----
3183 --
3184
3185 . Build the application:
3186 +
3187 --
3188 [role="term"]
3189 ----
3190 gcc -o app app.o -L. -lemon
3191 ----
3192 --
3193
3194 To run the application:
3195
3196 * Start the application:
3197 +
3198 --
3199 [role="term"]
3200 ----
3201 ./app
3202 ----
3203 --
3204
3205 |
3206 The application is linked with the instrumented user library.
3207
3208 The instrumented user library is linked with the tracepoint provider
3209 package shared object.
3210
3211 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3212
3213 |
3214 include::../common/ust-sit-step-tp-so.txt[]
3215
3216 To build the instrumented user library:
3217
3218 . In path:{emon.c}, before including path:{tpp.h}, add the
3219 following line:
3220 +
3221 --
3222 [source,c]
3223 ----
3224 #define TRACEPOINT_DEFINE
3225 ----
3226 --
3227
3228 . Compile the user library source file:
3229 +
3230 --
3231 [role="term"]
3232 ----
3233 gcc -I. -fpic -c emon.c
3234 ----
3235 --
3236
3237 . Build the user library shared object:
3238 +
3239 --
3240 [role="term"]
3241 ----
3242 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3243 ----
3244 --
3245
3246 To build the application:
3247
3248 . Compile the application source file:
3249 +
3250 --
3251 [role="term"]
3252 ----
3253 gcc -c app.c
3254 ----
3255 --
3256
3257 . Build the application:
3258 +
3259 --
3260 [role="term"]
3261 ----
3262 gcc -o app app.o -L. -lemon
3263 ----
3264 --
3265
3266 To run the application:
3267
3268 * Start the application:
3269 +
3270 --
3271 [role="term"]
3272 ----
3273 ./app
3274 ----
3275 --
3276
3277 |
3278 The tracepoint provider package shared object is preloaded before the
3279 application starts.
3280
3281 The application is linked with the instrumented user library.
3282
3283 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3284
3285 |
3286 include::../common/ust-sit-step-tp-so.txt[]
3287
3288 To build the instrumented user library:
3289
3290 . In path:{emon.c}, before including path:{tpp.h}, add the
3291 following line:
3292 +
3293 --
3294 [source,c]
3295 ----
3296 #define TRACEPOINT_DEFINE
3297 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3298 ----
3299 --
3300
3301 . Compile the user library source file:
3302 +
3303 --
3304 [role="term"]
3305 ----
3306 gcc -I. -fpic -c emon.c
3307 ----
3308 --
3309
3310 . Build the user library shared object:
3311 +
3312 --
3313 [role="term"]
3314 ----
3315 gcc -shared -o libemon.so emon.o -ldl
3316 ----
3317 --
3318
3319 To build the application:
3320
3321 . Compile the application source file:
3322 +
3323 --
3324 [role="term"]
3325 ----
3326 gcc -c app.c
3327 ----
3328 --
3329
3330 . Build the application:
3331 +
3332 --
3333 [role="term"]
3334 ----
3335 gcc -o app app.o -L. -lemon
3336 ----
3337 --
3338
3339 To run the application with tracing support:
3340
3341 * Preload the tracepoint provider package shared object and
3342 start the application:
3343 +
3344 --
3345 [role="term"]
3346 ----
3347 LD_PRELOAD=./libtpp.so ./app
3348 ----
3349 --
3350
3351 To run the application without tracing support:
3352
3353 * Start the application:
3354 +
3355 --
3356 [role="term"]
3357 ----
3358 ./app
3359 ----
3360 --
3361
3362 |
3363 The application is linked with the instrumented user library.
3364
3365 The instrumented user library dynamically loads the tracepoint provider
3366 package shared object.
3367
3368 See the <<dlclose-warning,warning about `dlclose()`>>.
3369
3370 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3371
3372 |
3373 include::../common/ust-sit-step-tp-so.txt[]
3374
3375 To build the instrumented user library:
3376
3377 . In path:{emon.c}, before including path:{tpp.h}, add the
3378 following line:
3379 +
3380 --
3381 [source,c]
3382 ----
3383 #define TRACEPOINT_DEFINE
3384 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3385 ----
3386 --
3387
3388 . Compile the user library source file:
3389 +
3390 --
3391 [role="term"]
3392 ----
3393 gcc -I. -fpic -c emon.c
3394 ----
3395 --
3396
3397 . Build the user library shared object:
3398 +
3399 --
3400 [role="term"]
3401 ----
3402 gcc -shared -o libemon.so emon.o -ldl
3403 ----
3404 --
3405
3406 To build the application:
3407
3408 . Compile the application source file:
3409 +
3410 --
3411 [role="term"]
3412 ----
3413 gcc -c app.c
3414 ----
3415 --
3416
3417 . Build the application:
3418 +
3419 --
3420 [role="term"]
3421 ----
3422 gcc -o app app.o -L. -lemon
3423 ----
3424 --
3425
3426 To run the application:
3427
3428 * Start the application:
3429 +
3430 --
3431 [role="term"]
3432 ----
3433 ./app
3434 ----
3435 --
3436
3437 |
3438 The application dynamically loads the instrumented user library.
3439
3440 The instrumented user library is linked with the tracepoint provider
3441 package shared object.
3442
3443 See the <<dlclose-warning,warning about `dlclose()`>>.
3444
3445 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3446
3447 |
3448 include::../common/ust-sit-step-tp-so.txt[]
3449
3450 To build the instrumented user library:
3451
3452 . In path:{emon.c}, before including path:{tpp.h}, add the
3453 following line:
3454 +
3455 --
3456 [source,c]
3457 ----
3458 #define TRACEPOINT_DEFINE
3459 ----
3460 --
3461
3462 . Compile the user library source file:
3463 +
3464 --
3465 [role="term"]
3466 ----
3467 gcc -I. -fpic -c emon.c
3468 ----
3469 --
3470
3471 . Build the user library shared object:
3472 +
3473 --
3474 [role="term"]
3475 ----
3476 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3477 ----
3478 --
3479
3480 To build the application:
3481
3482 . Compile the application source file:
3483 +
3484 --
3485 [role="term"]
3486 ----
3487 gcc -c app.c
3488 ----
3489 --
3490
3491 . Build the application:
3492 +
3493 --
3494 [role="term"]
3495 ----
3496 gcc -o app app.o -ldl -L. -lemon
3497 ----
3498 --
3499
3500 To run the application:
3501
3502 * Start the application:
3503 +
3504 --
3505 [role="term"]
3506 ----
3507 ./app
3508 ----
3509 --
3510
3511 |
3512 The application dynamically loads the instrumented user library.
3513
3514 The instrumented user library dynamically loads the tracepoint provider
3515 package shared object.
3516
3517 See the <<dlclose-warning,warning about `dlclose()`>>.
3518
3519 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3520
3521 |
3522 include::../common/ust-sit-step-tp-so.txt[]
3523
3524 To build the instrumented user library:
3525
3526 . In path:{emon.c}, before including path:{tpp.h}, add the
3527 following line:
3528 +
3529 --
3530 [source,c]
3531 ----
3532 #define TRACEPOINT_DEFINE
3533 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3534 ----
3535 --
3536
3537 . Compile the user library source file:
3538 +
3539 --
3540 [role="term"]
3541 ----
3542 gcc -I. -fpic -c emon.c
3543 ----
3544 --
3545
3546 . Build the user library shared object:
3547 +
3548 --
3549 [role="term"]
3550 ----
3551 gcc -shared -o libemon.so emon.o -ldl
3552 ----
3553 --
3554
3555 To build the application:
3556
3557 . Compile the application source file:
3558 +
3559 --
3560 [role="term"]
3561 ----
3562 gcc -c app.c
3563 ----
3564 --
3565
3566 . Build the application:
3567 +
3568 --
3569 [role="term"]
3570 ----
3571 gcc -o app app.o -ldl -L. -lemon
3572 ----
3573 --
3574
3575 To run the application:
3576
3577 * Start the application:
3578 +
3579 --
3580 [role="term"]
3581 ----
3582 ./app
3583 ----
3584 --
3585
3586 |
3587 The tracepoint provider package shared object is preloaded before the
3588 application starts.
3589
3590 The application dynamically loads the instrumented user library.
3591
3592 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3593
3594 |
3595 include::../common/ust-sit-step-tp-so.txt[]
3596
3597 To build the instrumented user library:
3598
3599 . In path:{emon.c}, before including path:{tpp.h}, add the
3600 following line:
3601 +
3602 --
3603 [source,c]
3604 ----
3605 #define TRACEPOINT_DEFINE
3606 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3607 ----
3608 --
3609
3610 . Compile the user library source file:
3611 +
3612 --
3613 [role="term"]
3614 ----
3615 gcc -I. -fpic -c emon.c
3616 ----
3617 --
3618
3619 . Build the user library shared object:
3620 +
3621 --
3622 [role="term"]
3623 ----
3624 gcc -shared -o libemon.so emon.o -ldl
3625 ----
3626 --
3627
3628 To build the application:
3629
3630 . Compile the application source file:
3631 +
3632 --
3633 [role="term"]
3634 ----
3635 gcc -c app.c
3636 ----
3637 --
3638
3639 . Build the application:
3640 +
3641 --
3642 [role="term"]
3643 ----
3644 gcc -o app app.o -L. -lemon
3645 ----
3646 --
3647
3648 To run the application with tracing support:
3649
3650 * Preload the tracepoint provider package shared object and
3651 start the application:
3652 +
3653 --
3654 [role="term"]
3655 ----
3656 LD_PRELOAD=./libtpp.so ./app
3657 ----
3658 --
3659
3660 To run the application without tracing support:
3661
3662 * Start the application:
3663 +
3664 --
3665 [role="term"]
3666 ----
3667 ./app
3668 ----
3669 --
3670
3671 |
3672 The application is statically linked with the tracepoint provider
3673 package object file.
3674
3675 The application is linked with the instrumented user library.
3676
3677 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3678
3679 |
3680 include::../common/ust-sit-step-tp-o.txt[]
3681
3682 To build the instrumented user library:
3683
3684 . In path:{emon.c}, before including path:{tpp.h}, add the
3685 following line:
3686 +
3687 --
3688 [source,c]
3689 ----
3690 #define TRACEPOINT_DEFINE
3691 ----
3692 --
3693
3694 . Compile the user library source file:
3695 +
3696 --
3697 [role="term"]
3698 ----
3699 gcc -I. -fpic -c emon.c
3700 ----
3701 --
3702
3703 . Build the user library shared object:
3704 +
3705 --
3706 [role="term"]
3707 ----
3708 gcc -shared -o libemon.so emon.o
3709 ----
3710 --
3711
3712 To build the application:
3713
3714 . Compile the application source file:
3715 +
3716 --
3717 [role="term"]
3718 ----
3719 gcc -c app.c
3720 ----
3721 --
3722
3723 . Build the application:
3724 +
3725 --
3726 [role="term"]
3727 ----
3728 gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3729 ----
3730 --
3731
3732 To run the instrumented application:
3733
3734 * Start the application:
3735 +
3736 --
3737 [role="term"]
3738 ----
3739 ./app
3740 ----
3741 --
3742
3743 |
3744 The application is statically linked with the tracepoint provider
3745 package object file.
3746
3747 The application dynamically loads the instrumented user library.
3748
3749 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3750
3751 |
3752 include::../common/ust-sit-step-tp-o.txt[]
3753
3754 To build the application:
3755
3756 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3757 +
3758 --
3759 [source,c]
3760 ----
3761 #define TRACEPOINT_DEFINE
3762 ----
3763 --
3764
3765 . Compile the application source file:
3766 +
3767 --
3768 [role="term"]
3769 ----
3770 gcc -c app.c
3771 ----
3772 --
3773
3774 . Build the application:
3775 +
3776 --
3777 [role="term"]
3778 ----
3779 gcc -Wl,--export-dynamic -o app app.o tpp.o \
3780 -llttng-ust -ldl
3781 ----
3782 --
3783 +
3784 The `--export-dynamic` option passed to the linker is necessary for the
3785 dynamically loaded library to ``see'' the tracepoint symbols defined in
3786 the application.
3787
3788 To build the instrumented user library:
3789
3790 . Compile the user library source file:
3791 +
3792 --
3793 [role="term"]
3794 ----
3795 gcc -I. -fpic -c emon.c
3796 ----
3797 --
3798
3799 . Build the user library shared object:
3800 +
3801 --
3802 [role="term"]
3803 ----
3804 gcc -shared -o libemon.so emon.o
3805 ----
3806 --
3807
3808 To run the application:
3809
3810 * Start the application:
3811 +
3812 --
3813 [role="term"]
3814 ----
3815 ./app
3816 ----
3817 --
3818 |====
3819
3820 [[dlclose-warning]]
3821 [IMPORTANT]
3822 .Do not use man:dlclose(3) on a tracepoint provider package
3823 ====
3824 Never use man:dlclose(3) on any shared object which:
3825
3826 * Is linked with, statically or dynamically, a tracepoint provider
3827 package.
3828 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3829 package shared object.
3830
3831 This is currently considered **unsafe** due to a lack of reference
3832 counting from LTTng-UST to the shared object.
3833
3834 A known workaround (available since glibc 2.2) is to use the
3835 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3836 effect of not unloading the loaded shared object, even if man:dlclose(3)
3837 is called.
3838
3839 You can also preload the tracepoint provider package shared object with
3840 the env:LD_PRELOAD environment variable to overcome this limitation.
3841 ====
3842
3843
3844 [[using-lttng-ust-with-daemons]]
3845 ===== Use noch:{LTTng-UST} with daemons
3846
3847 If your instrumented application calls man:fork(2), man:clone(2),
3848 or BSD's man:rfork(2), without a following man:exec(3)-family
3849 system call, you must preload the path:{liblttng-ust-fork.so} shared
3850 object when starting the application.
3851
3852 [role="term"]
3853 ----
3854 LD_PRELOAD=liblttng-ust-fork.so ./my-app
3855 ----
3856
3857 If your tracepoint provider package is
3858 a shared library which you also preload, you must put both
3859 shared objects in env:LD_PRELOAD:
3860
3861 [role="term"]
3862 ----
3863 LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3864 ----
3865
3866
3867 [[lttng-ust-pkg-config]]
3868 ===== Use noch:{pkg-config}
3869
3870 On some distributions, LTTng-UST ships with a
3871 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3872 metadata file. If this is your case, then you can use cmd:pkg-config to
3873 build an application on the command line:
3874
3875 [role="term"]
3876 ----
3877 gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3878 ----
3879
3880
3881 [[instrumenting-32-bit-app-on-64-bit-system]]
3882 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3883
3884 In order to trace a 32-bit application running on a 64-bit system,
3885 LTTng must use a dedicated 32-bit
3886 <<lttng-consumerd,consumer daemon>>.
3887
3888 The following steps show how to build and install a 32-bit consumer
3889 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3890 build and install the 32-bit LTTng-UST libraries, and how to build and
3891 link an instrumented 32-bit application in that context.
3892
3893 To build a 32-bit instrumented application for a 64-bit target system,
3894 assuming you have a fresh target system with no installed Userspace RCU
3895 or LTTng packages:
3896
3897 . Download, build, and install a 32-bit version of Userspace RCU:
3898 +
3899 --
3900 [role="term"]
3901 ----
3902 cd $(mktemp -d) &&
3903 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3904 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3905 cd userspace-rcu-0.9.* &&
3906 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3907 make &&
3908 sudo make install &&
3909 sudo ldconfig
3910 ----
3911 --
3912
3913 . Using your distribution's package manager, or from source, install
3914 the following 32-bit versions of the following dependencies of
3915 LTTng-tools and LTTng-UST:
3916 +
3917 --
3918 * https://sourceforge.net/projects/libuuid/[libuuid]
3919 * http://directory.fsf.org/wiki/Popt[popt]
3920 * http://www.xmlsoft.org/[libxml2]
3921 --
3922
3923 . Download, build, and install a 32-bit version of the latest
3924 LTTng-UST{nbsp}{revision}:
3925 +
3926 --
3927 [role="term"]
3928 ----
3929 cd $(mktemp -d) &&
3930 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.8.tar.bz2 &&
3931 tar -xf lttng-ust-latest-2.8.tar.bz2 &&
3932 cd lttng-ust-2.8.* &&
3933 ./configure --libdir=/usr/local/lib32 \
3934 CFLAGS=-m32 CXXFLAGS=-m32 \
3935 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3936 make &&
3937 sudo make install &&
3938 sudo ldconfig
3939 ----
3940 --
3941 +
3942 [NOTE]
3943 ====
3944 Depending on your distribution,
3945 32-bit libraries could be installed at a different location than
3946 `/usr/lib32`. For example, Debian is known to install
3947 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3948
3949 In this case, make sure to set `LDFLAGS` to all the
3950 relevant 32-bit library paths, for example:
3951
3952 [role="term"]
3953 ----
3954 LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3955 ----
3956 ====
3957
3958 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3959 the 32-bit consumer daemon:
3960 +
3961 --
3962 [role="term"]
3963 ----
3964 cd $(mktemp -d) &&
3965 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
3966 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
3967 cd lttng-tools-2.8.* &&
3968 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3969 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3970 make &&
3971 cd src/bin/lttng-consumerd &&
3972 sudo make install &&
3973 sudo ldconfig
3974 ----
3975 --
3976
3977 . From your distribution or from source,
3978 <<installing-lttng,install>> the 64-bit versions of
3979 LTTng-UST and Userspace RCU.
3980 . Download, build, and install the 64-bit version of the
3981 latest LTTng-tools{nbsp}{revision}:
3982 +
3983 --
3984 [role="term"]
3985 ----
3986 cd $(mktemp -d) &&
3987 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
3988 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
3989 cd lttng-tools-2.8.* &&
3990 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
3991 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
3992 make &&
3993 sudo make install &&
3994 sudo ldconfig
3995 ----
3996 --
3997
3998 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
3999 when linking your 32-bit application:
4000 +
4001 ----
4002 -m32 -L/usr/lib32 -L/usr/local/lib32 \
4003 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
4004 ----
4005 +
4006 For example, let's rebuild the quick start example in
4007 <<tracing-your-own-user-application,Trace a user application>> as an
4008 instrumented 32-bit application:
4009 +
4010 --
4011 [role="term"]
4012 ----
4013 gcc -m32 -c -I. hello-tp.c
4014 gcc -m32 -c hello.c
4015 gcc -m32 -o hello hello.o hello-tp.o \
4016 -L/usr/lib32 -L/usr/local/lib32 \
4017 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
4018 -llttng-ust -ldl
4019 ----
4020 --
4021
4022 No special action is required to execute the 32-bit application and
4023 to trace it: use the command-line man:lttng(1) tool as usual.
4024
4025
4026 [role="since-2.5"]
4027 [[tracef]]
4028 ==== Use `tracef()`
4029
4030 man:tracef(3) is a small LTTng-UST API designed for quick,
4031 man:printf(3)-like instrumentation without the burden of
4032 <<tracepoint-provider,creating>> and
4033 <<building-tracepoint-providers-and-user-application,building>>
4034 a tracepoint provider package.
4035
4036 To use `tracef()` in your application:
4037
4038 . In the C or C++ source files where you need to use `tracef()`,
4039 include `<lttng/tracef.h>`:
4040 +
4041 --
4042 [source,c]
4043 ----
4044 #include <lttng/tracef.h>
4045 ----
4046 --
4047
4048 . In the application's source code, use `tracef()` like you would use
4049 man:printf(3):
4050 +
4051 --
4052 [source,c]
4053 ----
4054 /* ... */
4055
4056 tracef("my message: %d (%s)", my_integer, my_string);
4057
4058 /* ... */
4059 ----
4060 --
4061
4062 . Link your application with `liblttng-ust`:
4063 +
4064 --
4065 [role="term"]
4066 ----
4067 gcc -o app app.c -llttng-ust
4068 ----
4069 --
4070
4071 To trace the events that `tracef()` calls emit:
4072
4073 * <<enabling-disabling-events,Create an event rule>> which matches the
4074 `lttng_ust_tracef:*` event name:
4075 +
4076 --
4077 [role="term"]
4078 ----
4079 lttng enable-event --userspace 'lttng_ust_tracef:*'
4080 ----
4081 --
4082
4083 [IMPORTANT]
4084 .Limitations of `tracef()`
4085 ====
4086 The `tracef()` utility function was developed to make user space tracing
4087 super simple, albeit with notable disadvantages compared to
4088 <<defining-tracepoints,user-defined tracepoints>>:
4089
4090 * All the emitted events have the same tracepoint provider and
4091 tracepoint names, respectively `lttng_ust_tracef` and `event`.
4092 * There is no static type checking.
4093 * The only event record field you actually get, named `msg`, is a string
4094 potentially containing the values you passed to `tracef()`
4095 using your own format string. This also means that you cannot filter
4096 events with a custom expression at run time because there are no
4097 isolated fields.
4098 * Since `tracef()` uses the C standard library's man:vasprintf(3)
4099 function behind the scenes to format the strings at run time, its
4100 expected performance is lower than with user-defined tracepoints,
4101 which do not require a conversion to a string.
4102
4103 Taking this into consideration, `tracef()` is useful for some quick
4104 prototyping and debugging, but you should not consider it for any
4105 permanent and serious applicative instrumentation.
4106 ====
4107
4108
4109 [role="since-2.7"]
4110 [[tracelog]]
4111 ==== Use `tracelog()`
4112
4113 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
4114 the difference that it accepts an additional log level parameter.
4115
4116 The goal of `tracelog()` is to ease the migration from logging to
4117 tracing.
4118
4119 To use `tracelog()` in your application:
4120
4121 . In the C or C++ source files where you need to use `tracelog()`,
4122 include `<lttng/tracelog.h>`:
4123 +
4124 --
4125 [source,c]
4126 ----
4127 #include <lttng/tracelog.h>
4128 ----
4129 --
4130
4131 . In the application's source code, use `tracelog()` like you would use
4132 man:printf(3), except for the first parameter which is the log
4133 level:
4134 +
4135 --
4136 [source,c]
4137 ----
4138 /* ... */
4139
4140 tracelog(TRACE_WARNING, "my message: %d (%s)",
4141 my_integer, my_string);
4142
4143 /* ... */
4144 ----
4145 --
4146 +
4147 See man:lttng-ust(3) for a list of available log level names.
4148
4149 . Link your application with `liblttng-ust`:
4150 +
4151 --
4152 [role="term"]
4153 ----
4154 gcc -o app app.c -llttng-ust
4155 ----
4156 --
4157
4158 To trace the events that `tracelog()` calls emit with a log level
4159 _as severe as_ a specific log level:
4160
4161 * <<enabling-disabling-events,Create an event rule>> which matches the
4162 `lttng_ust_tracelog:*` event name and a minimum level
4163 of severity:
4164 +
4165 --
4166 [role="term"]
4167 ----
4168 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4169 --loglevel=TRACE_WARNING
4170 ----
4171 --
4172
4173 To trace the events that `tracelog()` calls emit with a
4174 _specific log level_:
4175
4176 * Create an event rule which matches the `lttng_ust_tracelog:*`
4177 event name and a specific log level:
4178 +
4179 --
4180 [role="term"]
4181 ----
4182 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4183 --loglevel-only=TRACE_INFO
4184 ----
4185 --
4186
4187
4188 [[prebuilt-ust-helpers]]
4189 === Prebuilt user space tracing helpers
4190
4191 The LTTng-UST package provides a few helpers in the form or preloadable
4192 shared objects which automatically instrument system functions and
4193 calls.
4194
4195 The helper shared objects are normally found in dir:{/usr/lib}. If you
4196 built LTTng-UST <<building-from-source,from source>>, they are probably
4197 located in dir:{/usr/local/lib}.
4198
4199 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4200 are:
4201
4202 path:{liblttng-ust-libc-wrapper.so}::
4203 path:{liblttng-ust-pthread-wrapper.so}::
4204 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4205 memory and POSIX threads function tracing>>.
4206
4207 path:{liblttng-ust-cyg-profile.so}::
4208 path:{liblttng-ust-cyg-profile-fast.so}::
4209 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4210
4211 path:{liblttng-ust-dl.so}::
4212 <<liblttng-ust-dl,Dynamic linker tracing>>.
4213
4214 To use a user space tracing helper with any user application:
4215
4216 * Preload the helper shared object when you start the application:
4217 +
4218 --
4219 [role="term"]
4220 ----
4221 LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4222 ----
4223 --
4224 +
4225 You can preload more than one helper:
4226 +
4227 --
4228 [role="term"]
4229 ----
4230 LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4231 ----
4232 --
4233
4234
4235 [role="since-2.3"]
4236 [[liblttng-ust-libc-pthread-wrapper]]
4237 ==== Instrument C standard library memory and POSIX threads functions
4238
4239 The path:{liblttng-ust-libc-wrapper.so} and
4240 path:{liblttng-ust-pthread-wrapper.so} helpers
4241 add instrumentation to some C standard library and POSIX
4242 threads functions.
4243
4244 [role="growable"]
4245 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4246 |====
4247 |TP provider name |TP name |Instrumented function
4248
4249 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4250 |`calloc` |man:calloc(3)
4251 |`realloc` |man:realloc(3)
4252 |`free` |man:free(3)
4253 |`memalign` |man:memalign(3)
4254 |`posix_memalign` |man:posix_memalign(3)
4255 |====
4256
4257 [role="growable"]
4258 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4259 |====
4260 |TP provider name |TP name |Instrumented function
4261
4262 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4263 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4264 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4265 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4266 |====
4267
4268 When you preload the shared object, it replaces the functions listed
4269 in the previous tables by wrappers which contain tracepoints and call
4270 the replaced functions.
4271
4272
4273 [[liblttng-ust-cyg-profile]]
4274 ==== Instrument function entry and exit
4275
4276 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4277 to the entry and exit points of functions.
4278
4279 man:gcc(1) and man:clang(1) have an option named
4280 https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html[`-finstrument-functions`]
4281 which generates instrumentation calls for entry and exit to functions.
4282 The LTTng-UST function tracing helpers,
4283 path:{liblttng-ust-cyg-profile.so} and
4284 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4285 to add tracepoints to the two generated functions (which contain
4286 `cyg_profile` in their names, hence the helper's name).
4287
4288 To use the LTTng-UST function tracing helper, the source files to
4289 instrument must be built using the `-finstrument-functions` compiler
4290 flag.
4291
4292 There are two versions of the LTTng-UST function tracing helper:
4293
4294 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4295 that you should only use when it can be _guaranteed_ that the
4296 complete event stream is recorded without any lost event record.
4297 Any kind of duplicate information is left out.
4298 +
4299 Assuming no event record is lost, having only the function addresses on
4300 entry is enough to create a call graph, since an event record always
4301 contains the ID of the CPU that generated it.
4302 +
4303 You can use a tool like
4304 https://sourceware.org/binutils/docs/binutils/addr2line.html[cmd:addr2line]
4305 to convert function addresses back to source file names and
4306 line numbers.
4307
4308 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4309 which also works in use cases where event records might get discarded or
4310 not recorded from application startup.
4311 In these cases, the trace analyzer needs more information to be
4312 able to reconstruct the program flow.
4313
4314 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4315 points of this helper.
4316
4317 All the tracepoints that this helper provides have the
4318 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4319
4320 TIP: It's sometimes a good idea to limit the number of source files that
4321 you compile with the `-finstrument-functions` option to prevent LTTng
4322 from writing an excessive amount of trace data at run time. When using
4323 man:gcc(1), you can use the
4324 `-finstrument-functions-exclude-function-list` option to avoid
4325 instrument entries and exits of specific function names.
4326
4327
4328 [role="since-2.4"]
4329 [[liblttng-ust-dl]]
4330 ==== Instrument the dynamic linker
4331
4332 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4333 man:dlopen(3) and man:dlclose(3) function calls.
4334
4335 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4336 of this helper.
4337
4338
4339 [role="since-2.4"]
4340 [[java-application]]
4341 === User space Java agent
4342
4343 You can instrument any Java application which uses one of the following
4344 logging frameworks:
4345
4346 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4347 (JUL) core logging facilities.
4348 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4349 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4350
4351 [role="img-100"]
4352 .LTTng-UST Java agent imported by a Java application.
4353 image::java-app.png[]
4354
4355 Note that the methods described below are new in LTTng{nbsp}{revision}.
4356 Previous LTTng versions use another technique.
4357
4358 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4359 and https://ci.lttng.org/[continuous integration], thus this version is
4360 directly supported. However, the LTTng-UST Java agent is also tested
4361 with OpenJDK{nbsp}7.
4362
4363
4364 [role="since-2.8"]
4365 [[jul]]
4366 ==== Use the LTTng-UST Java agent for `java.util.logging`
4367
4368 To use the LTTng-UST Java agent in a Java application which uses
4369 `java.util.logging` (JUL):
4370
4371 . In the Java application's source code, import the LTTng-UST
4372 log handler package for `java.util.logging`:
4373 +
4374 --
4375 [source,java]
4376 ----
4377 import org.lttng.ust.agent.jul.LttngLogHandler;
4378 ----
4379 --
4380
4381 . Create an LTTng-UST JUL log handler:
4382 +
4383 --
4384 [source,java]
4385 ----
4386 Handler lttngUstLogHandler = new LttngLogHandler();
4387 ----
4388 --
4389
4390 . Add this handler to the JUL loggers which should emit LTTng events:
4391 +
4392 --
4393 [source,java]
4394 ----
4395 Logger myLogger = Logger.getLogger("some-logger");
4396
4397 myLogger.addHandler(lttngUstLogHandler);
4398 ----
4399 --
4400
4401 . Use `java.util.logging` log statements and configuration as usual.
4402 The loggers with an attached LTTng-UST log handler can emit
4403 LTTng events.
4404
4405 . Before exiting the application, remove the LTTng-UST log handler from
4406 the loggers attached to it and call its `close()` method:
4407 +
4408 --
4409 [source,java]
4410 ----
4411 myLogger.removeHandler(lttngUstLogHandler);
4412 lttngUstLogHandler.close();
4413 ----
4414 --
4415 +
4416 This is not strictly necessary, but it is recommended for a clean
4417 disposal of the handler's resources.
4418
4419 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4420 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4421 in the
4422 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4423 path] when you build the Java application.
4424 +
4425 The JAR files are typically located in dir:{/usr/share/java}.
4426 +
4427 IMPORTANT: The LTTng-UST Java agent must be
4428 <<installing-lttng,installed>> for the logging framework your
4429 application uses.
4430
4431 .Use the LTTng-UST Java agent for `java.util.logging`.
4432 ====
4433 [source,java]
4434 .path:{Test.java}
4435 ----
4436 import java.io.IOException;
4437 import java.util.logging.Handler;
4438 import java.util.logging.Logger;
4439 import org.lttng.ust.agent.jul.LttngLogHandler;
4440
4441 public class Test
4442 {
4443 private static final int answer = 42;
4444
4445 public static void main(String[] argv) throws Exception
4446 {
4447 // Create a logger
4448 Logger logger = Logger.getLogger("jello");
4449
4450 // Create an LTTng-UST log handler
4451 Handler lttngUstLogHandler = new LttngLogHandler();
4452
4453 // Add the LTTng-UST log handler to our logger
4454 logger.addHandler(lttngUstLogHandler);
4455
4456 // Log at will!
4457 logger.info("some info");
4458 logger.warning("some warning");
4459 Thread.sleep(500);
4460 logger.finer("finer information; the answer is " + answer);
4461 Thread.sleep(123);
4462 logger.severe("error!");
4463
4464 // Not mandatory, but cleaner
4465 logger.removeHandler(lttngUstLogHandler);
4466 lttngUstLogHandler.close();
4467 }
4468 }
4469 ----
4470
4471 Build this example:
4472
4473 [role="term"]
4474 ----
4475 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4476 ----
4477
4478 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4479 <<enabling-disabling-events,create an event rule>> matching the
4480 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4481
4482 [role="term"]
4483 ----
4484 lttng create
4485 lttng enable-event --jul jello
4486 lttng start
4487 ----
4488
4489 Run the compiled class:
4490
4491 [role="term"]
4492 ----
4493 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4494 ----
4495
4496 <<basic-tracing-session-control,Stop tracing>> and inspect the
4497 recorded events:
4498
4499 [role="term"]
4500 ----
4501 lttng stop
4502 lttng view
4503 ----
4504 ====
4505
4506 You can use the opt:lttng-enable-event(1):--loglevel or
4507 opt:lttng-enable-event(1):--loglevel-only option of the
4508 man:lttng-enable-event(1) command to target a range of JUL log levels
4509 or a specific JUL log level.
4510
4511
4512 [role="since-2.8"]
4513 [[log4j]]
4514 ==== Use the LTTng-UST Java agent for Apache log4j
4515
4516 To use the LTTng-UST Java agent in a Java application which uses
4517 Apache log4j 1.2:
4518
4519 . In the Java application's source code, import the LTTng-UST
4520 log appender package for Apache log4j:
4521 +
4522 --
4523 [source,java]
4524 ----
4525 import org.lttng.ust.agent.log4j.LttngLogAppender;
4526 ----
4527 --
4528
4529 . Create an LTTng-UST log4j log appender:
4530 +
4531 --
4532 [source,java]
4533 ----
4534 Appender lttngUstLogAppender = new LttngLogAppender();
4535 ----
4536 --
4537
4538 . Add this appender to the log4j loggers which should emit LTTng events:
4539 +
4540 --
4541 [source,java]
4542 ----
4543 Logger myLogger = Logger.getLogger("some-logger");
4544
4545 myLogger.addAppender(lttngUstLogAppender);
4546 ----
4547 --
4548
4549 . Use Apache log4j log statements and configuration as usual. The
4550 loggers with an attached LTTng-UST log appender can emit LTTng events.
4551
4552 . Before exiting the application, remove the LTTng-UST log appender from
4553 the loggers attached to it and call its `close()` method:
4554 +
4555 --
4556 [source,java]
4557 ----
4558 myLogger.removeAppender(lttngUstLogAppender);
4559 lttngUstLogAppender.close();
4560 ----
4561 --
4562 +
4563 This is not strictly necessary, but it is recommended for a clean
4564 disposal of the appender's resources.
4565
4566 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4567 files, path:{lttng-ust-agent-common.jar} and
4568 path:{lttng-ust-agent-log4j.jar}, in the
4569 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4570 path] when you build the Java application.
4571 +
4572 The JAR files are typically located in dir:{/usr/share/java}.
4573 +
4574 IMPORTANT: The LTTng-UST Java agent must be
4575 <<installing-lttng,installed>> for the logging framework your
4576 application uses.
4577
4578 .Use the LTTng-UST Java agent for Apache log4j.
4579 ====
4580 [source,java]
4581 .path:{Test.java}
4582 ----
4583 import org.apache.log4j.Appender;
4584 import org.apache.log4j.Logger;
4585 import org.lttng.ust.agent.log4j.LttngLogAppender;
4586
4587 public class Test
4588 {
4589 private static final int answer = 42;
4590
4591 public static void main(String[] argv) throws Exception
4592 {
4593 // Create a logger
4594 Logger logger = Logger.getLogger("jello");
4595
4596 // Create an LTTng-UST log appender
4597 Appender lttngUstLogAppender = new LttngLogAppender();
4598
4599 // Add the LTTng-UST log appender to our logger
4600 logger.addAppender(lttngUstLogAppender);
4601
4602 // Log at will!
4603 logger.info("some info");
4604 logger.warn("some warning");
4605 Thread.sleep(500);
4606 logger.debug("debug information; the answer is " + answer);
4607 Thread.sleep(123);
4608 logger.fatal("error!");
4609
4610 // Not mandatory, but cleaner
4611 logger.removeAppender(lttngUstLogAppender);
4612 lttngUstLogAppender.close();
4613 }
4614 }
4615
4616 ----
4617
4618 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4619 file):
4620
4621 [role="term"]
4622 ----
4623 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4624 ----
4625
4626 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4627 <<enabling-disabling-events,create an event rule>> matching the
4628 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4629
4630 [role="term"]
4631 ----
4632 lttng create
4633 lttng enable-event --log4j jello
4634 lttng start
4635 ----
4636
4637 Run the compiled class:
4638
4639 [role="term"]
4640 ----
4641 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4642 ----
4643
4644 <<basic-tracing-session-control,Stop tracing>> and inspect the
4645 recorded events:
4646
4647 [role="term"]
4648 ----
4649 lttng stop
4650 lttng view
4651 ----
4652 ====
4653
4654 You can use the opt:lttng-enable-event(1):--loglevel or
4655 opt:lttng-enable-event(1):--loglevel-only option of the
4656 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4657 or a specific log4j log level.
4658
4659
4660 [role="since-2.8"]
4661 [[java-application-context]]
4662 ==== Provide application-specific context fields in a Java application
4663
4664 A Java application-specific context field is a piece of state provided
4665 by the application which <<adding-context,you can add>>, using the
4666 man:lttng-add-context(1) command, to each <<event,event record>>
4667 produced by the log statements of this application.
4668
4669 For example, a given object might have a current request ID variable.
4670 You can create a context information retriever for this object and
4671 assign a name to this current request ID. You can then, using the
4672 man:lttng-add-context(1) command, add this context field by name to
4673 the JUL or log4j <<channel,channel>>.
4674
4675 To provide application-specific context fields in a Java application:
4676
4677 . In the Java application's source code, import the LTTng-UST
4678 Java agent context classes and interfaces:
4679 +
4680 --
4681 [source,java]
4682 ----
4683 import org.lttng.ust.agent.context.ContextInfoManager;
4684 import org.lttng.ust.agent.context.IContextInfoRetriever;
4685 ----
4686 --
4687
4688 . Create a context information retriever class, that is, a class which
4689 implements the `IContextInfoRetriever` interface:
4690 +
4691 --
4692 [source,java]
4693 ----
4694 class MyContextInfoRetriever implements IContextInfoRetriever
4695 {
4696 @Override
4697 public Object retrieveContextInfo(String key)
4698 {
4699 if (key.equals("intCtx")) {
4700 return (short) 17;
4701 } else if (key.equals("strContext")) {
4702 return "context value!";
4703 } else {
4704 return null;
4705 }
4706 }
4707 }
4708 ----
4709 --
4710 +
4711 This `retrieveContextInfo()` method is the only member of the
4712 `IContextInfoRetriever` interface. Its role is to return the current
4713 value of a state by name to create a context field. The names of the
4714 context fields and which state variables they return depends on your
4715 specific scenario.
4716 +
4717 All primitive types and objects are supported as context fields.
4718 When `retrieveContextInfo()` returns an object, the context field
4719 serializer calls its `toString()` method to add a string field to
4720 event records. The method can also return `null`, which means that
4721 no context field is available for the required name.
4722
4723 . Register an instance of your context information retriever class to
4724 the context information manager singleton:
4725 +
4726 --
4727 [source,java]
4728 ----
4729 IContextInfoRetriever cir = new MyContextInfoRetriever();
4730 ContextInfoManager cim = ContextInfoManager.getInstance();
4731 cim.registerContextInfoRetriever("retrieverName", cir);
4732 ----
4733 --
4734
4735 . Before exiting the application, remove your context information
4736 retriever from the context information manager singleton:
4737 +
4738 --
4739 [source,java]
4740 ----
4741 ContextInfoManager cim = ContextInfoManager.getInstance();
4742 cim.unregisterContextInfoRetriever("retrieverName");
4743 ----
4744 --
4745 +
4746 This is not strictly necessary, but it is recommended for a clean
4747 disposal of some manager's resources.
4748
4749 . Build your Java application with LTTng-UST Java agent support as
4750 usual, following the procedure for either the <<jul,JUL>> or
4751 <<log4j,Apache log4j>> framework.
4752
4753
4754 .Provide application-specific context fields in a Java application.
4755 ====
4756 [source,java]
4757 .path:{Test.java}
4758 ----
4759 import java.util.logging.Handler;
4760 import java.util.logging.Logger;
4761 import org.lttng.ust.agent.jul.LttngLogHandler;
4762 import org.lttng.ust.agent.context.ContextInfoManager;
4763 import org.lttng.ust.agent.context.IContextInfoRetriever;
4764
4765 public class Test
4766 {
4767 // Our context information retriever class
4768 private static class MyContextInfoRetriever
4769 implements IContextInfoRetriever
4770 {
4771 @Override
4772 public Object retrieveContextInfo(String key) {
4773 if (key.equals("intCtx")) {
4774 return (short) 17;
4775 } else if (key.equals("strContext")) {
4776 return "context value!";
4777 } else {
4778 return null;
4779 }
4780 }
4781 }
4782
4783 private static final int answer = 42;
4784
4785 public static void main(String args[]) throws Exception
4786 {
4787 // Get the context information manager instance
4788 ContextInfoManager cim = ContextInfoManager.getInstance();
4789
4790 // Create and register our context information retriever
4791 IContextInfoRetriever cir = new MyContextInfoRetriever();
4792 cim.registerContextInfoRetriever("myRetriever", cir);
4793
4794 // Create a logger
4795 Logger logger = Logger.getLogger("jello");
4796
4797 // Create an LTTng-UST log handler
4798 Handler lttngUstLogHandler = new LttngLogHandler();
4799
4800 // Add the LTTng-UST log handler to our logger
4801 logger.addHandler(lttngUstLogHandler);
4802
4803 // Log at will!
4804 logger.info("some info");
4805 logger.warning("some warning");
4806 Thread.sleep(500);
4807 logger.finer("finer information; the answer is " + answer);
4808 Thread.sleep(123);
4809 logger.severe("error!");
4810
4811 // Not mandatory, but cleaner
4812 logger.removeHandler(lttngUstLogHandler);
4813 lttngUstLogHandler.close();
4814 cim.unregisterContextInfoRetriever("myRetriever");
4815 }
4816 }
4817 ----
4818
4819 Build this example:
4820
4821 [role="term"]
4822 ----
4823 javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4824 ----
4825
4826 <<creating-destroying-tracing-sessions,Create a tracing session>>
4827 and <<enabling-disabling-events,create an event rule>> matching the
4828 `jello` JUL logger:
4829
4830 [role="term"]
4831 ----
4832 lttng create
4833 lttng enable-event --jul jello
4834 ----
4835
4836 <<adding-context,Add the application-specific context fields>> to the
4837 JUL channel:
4838
4839 [role="term"]
4840 ----
4841 lttng add-context --jul --type='$app.myRetriever:intCtx'
4842 lttng add-context --jul --type='$app.myRetriever:strContext'
4843 ----
4844
4845 <<basic-tracing-session-control,Start tracing>>:
4846
4847 [role="term"]
4848 ----
4849 lttng start
4850 ----
4851
4852 Run the compiled class:
4853
4854 [role="term"]
4855 ----
4856 java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4857 ----
4858
4859 <<basic-tracing-session-control,Stop tracing>> and inspect the
4860 recorded events:
4861
4862 [role="term"]
4863 ----
4864 lttng stop
4865 lttng view
4866 ----
4867 ====
4868
4869
4870 [role="since-2.7"]
4871 [[python-application]]
4872 === User space Python agent
4873
4874 You can instrument a Python 2 or Python 3 application which uses the
4875 standard https://docs.python.org/3/library/logging.html[`logging`]
4876 package.
4877
4878 Each log statement emits an LTTng event once the
4879 application module imports the
4880 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4881
4882 [role="img-100"]
4883 .A Python application importing the LTTng-UST Python agent.
4884 image::python-app.png[]
4885
4886 To use the LTTng-UST Python agent:
4887
4888 . In the Python application's source code, import the LTTng-UST Python
4889 agent:
4890 +
4891 --
4892 [source,python]
4893 ----
4894 import lttngust
4895 ----
4896 --
4897 +
4898 The LTTng-UST Python agent automatically adds its logging handler to the
4899 root logger at import time.
4900 +
4901 Any log statement that the application executes before this import does
4902 not emit an LTTng event.
4903 +
4904 IMPORTANT: The LTTng-UST Python agent must be
4905 <<installing-lttng,installed>>.
4906
4907 . Use log statements and logging configuration as usual.
4908 Since the LTTng-UST Python agent adds a handler to the _root_
4909 logger, you can trace any log statement from any logger.
4910
4911 .Use the LTTng-UST Python agent.
4912 ====
4913 [source,python]
4914 .path:{test.py}
4915 ----
4916 import lttngust
4917 import logging
4918 import time
4919
4920
4921 def example():
4922 logging.basicConfig()
4923 logger = logging.getLogger('my-logger')
4924
4925 while True:
4926 logger.debug('debug message')
4927 logger.info('info message')
4928 logger.warn('warn message')
4929 logger.error('error message')
4930 logger.critical('critical message')
4931 time.sleep(1)
4932
4933
4934 if __name__ == '__main__':
4935 example()
4936 ----
4937
4938 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
4939 logging handler which prints to the standard error stream, is not
4940 strictly required for LTTng-UST tracing to work, but in versions of
4941 Python preceding 3.2, you could see a warning message which indicates
4942 that no handler exists for the logger `my-logger`.
4943
4944 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4945 <<enabling-disabling-events,create an event rule>> matching the
4946 `my-logger` Python logger, and <<basic-tracing-session-control,start
4947 tracing>>:
4948
4949 [role="term"]
4950 ----
4951 lttng create
4952 lttng enable-event --python my-logger
4953 lttng start
4954 ----
4955
4956 Run the Python script:
4957
4958 [role="term"]
4959 ----
4960 python test.py
4961 ----
4962
4963 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4964 events:
4965
4966 [role="term"]
4967 ----
4968 lttng stop
4969 lttng view
4970 ----
4971 ====
4972
4973 You can use the opt:lttng-enable-event(1):--loglevel or
4974 opt:lttng-enable-event(1):--loglevel-only option of the
4975 man:lttng-enable-event(1) command to target a range of Python log levels
4976 or a specific Python log level.
4977
4978 When an application imports the LTTng-UST Python agent, the agent tries
4979 to register to a <<lttng-sessiond,session daemon>>. Note that you must
4980 <<start-sessiond,start the session daemon>> _before_ you run the Python
4981 application. If a session daemon is found, the agent tries to register
4982 to it during 5{nbsp}seconds, after which the application continues
4983 without LTTng tracing support. You can override this timeout value with
4984 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
4985 (milliseconds).
4986
4987 If the session daemon stops while a Python application with an imported
4988 LTTng-UST Python agent runs, the agent retries to connect and to
4989 register to a session daemon every 3{nbsp}seconds. You can override this
4990 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
4991 variable.
4992
4993
4994 [role="since-2.5"]
4995 [[proc-lttng-logger-abi]]
4996 === LTTng logger
4997
4998 The `lttng-tracer` Linux kernel module, part of
4999 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
5000 path:{/proc/lttng-logger} when it's loaded. Any application can write
5001 text data to this file to emit an LTTng event.
5002
5003 [role="img-100"]
5004 .An application writes to the LTTng logger file to emit an LTTng event.
5005 image::lttng-logger.png[]
5006
5007 The LTTng logger is the quickest method--not the most efficient,
5008 however--to add instrumentation to an application. It is designed
5009 mostly to instrument shell scripts:
5010
5011 [role="term"]
5012 ----
5013 echo "Some message, some $variable" > /proc/lttng-logger
5014 ----
5015
5016 Any event that the LTTng logger emits is named `lttng_logger` and
5017 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
5018 other instrumentation points in the kernel tracing domain, **any Unix
5019 user** can <<enabling-disabling-events,create an event rule>> which
5020 matches its event name, not only the root user or users in the tracing
5021 group.
5022
5023 To use the LTTng logger:
5024
5025 * From any application, write text data to the path:{/proc/lttng-logger}
5026 file.
5027
5028 The `msg` field of `lttng_logger` event records contains the
5029 recorded message.
5030
5031 NOTE: The maximum message length of an LTTng logger event is
5032 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
5033 than one event to contain the remaining data.
5034
5035 You should not use the LTTng logger to trace a user application which
5036 can be instrumented in a more efficient way, namely:
5037
5038 * <<c-application,C and $$C++$$ applications>>.
5039 * <<java-application,Java applications>>.
5040 * <<python-application,Python applications>>.
5041
5042 .Use the LTTng logger.
5043 ====
5044 [source,bash]
5045 .path:{test.bash}
5046 ----
5047 echo 'Hello, World!' > /proc/lttng-logger
5048 sleep 2
5049 df --human-readable --print-type / > /proc/lttng-logger
5050 ----
5051
5052 <<creating-destroying-tracing-sessions,Create a tracing session>>,
5053 <<enabling-disabling-events,create an event rule>> matching the
5054 `lttng_logger` Linux kernel tracepoint, and
5055 <<basic-tracing-session-control,start tracing>>:
5056
5057 [role="term"]
5058 ----
5059 lttng create
5060 lttng enable-event --kernel lttng_logger
5061 lttng start
5062 ----
5063
5064 Run the Bash script:
5065
5066 [role="term"]
5067 ----
5068 bash test.bash
5069 ----
5070
5071 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5072 events:
5073
5074 [role="term"]
5075 ----
5076 lttng stop
5077 lttng view
5078 ----
5079 ====
5080
5081
5082 [[instrumenting-linux-kernel]]
5083 === LTTng kernel tracepoints
5084
5085 NOTE: This section shows how to _add_ instrumentation points to the
5086 Linux kernel. The kernel's subsystems are already thoroughly
5087 instrumented at strategic places for LTTng when you
5088 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
5089 package.
5090
5091 ////
5092 There are two methods to instrument the Linux kernel:
5093
5094 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
5095 tracepoint which uses the `TRACE_EVENT()` API.
5096 +
5097 Choose this if you want to instrumentation a Linux kernel tree with an
5098 instrumentation point compatible with ftrace, perf, and SystemTap.
5099
5100 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
5101 instrument an out-of-tree kernel module.
5102 +
5103 Choose this if you don't need ftrace, perf, or SystemTap support.
5104 ////
5105
5106
5107 [[linux-add-lttng-layer]]
5108 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
5109
5110 This section shows how to add an LTTng layer to existing ftrace
5111 instrumentation using the `TRACE_EVENT()` API.
5112
5113 This section does not document the `TRACE_EVENT()` macro. You can
5114 read the following articles to learn more about this API:
5115
5116 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
5117 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
5118 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
5119
5120 The following procedure assumes that your ftrace tracepoints are
5121 correctly defined in their own header and that they are created in
5122 one source file using the `CREATE_TRACE_POINTS` definition.
5123
5124 To add an LTTng layer over an existing ftrace tracepoint:
5125
5126 . Make sure the following kernel configuration options are
5127 enabled:
5128 +
5129 --
5130 * `CONFIG_MODULES`
5131 * `CONFIG_KALLSYMS`
5132 * `CONFIG_HIGH_RES_TIMERS`
5133 * `CONFIG_TRACEPOINTS`
5134 --
5135
5136 . Build the Linux source tree with your custom ftrace tracepoints.
5137 . Boot the resulting Linux image on your target system.
5138 +
5139 Confirm that the tracepoints exist by looking for their names in the
5140 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5141 is your subsystem's name.
5142
5143 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5144 +
5145 --
5146 [role="term"]
5147 ----
5148 cd $(mktemp -d) &&
5149 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
5150 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
5151 cd lttng-modules-2.8.*
5152 ----
5153 --
5154
5155 . In dir:{instrumentation/events/lttng-module}, relative to the root
5156 of the LTTng-modules source tree, create a header file named
5157 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5158 LTTng-modules tracepoint definitions using the LTTng-modules
5159 macros in it.
5160 +
5161 Start with this template:
5162 +
5163 --
5164 [source,c]
5165 .path:{instrumentation/events/lttng-module/my_subsys.h}
5166 ----
5167 #undef TRACE_SYSTEM
5168 #define TRACE_SYSTEM my_subsys
5169
5170 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5171 #define _LTTNG_MY_SUBSYS_H
5172
5173 #include "../../../probes/lttng-tracepoint-event.h"
5174 #include <linux/tracepoint.h>
5175
5176 LTTNG_TRACEPOINT_EVENT(
5177 /*
5178 * Format is identical to TRACE_EVENT()'s version for the three
5179 * following macro parameters:
5180 */
5181 my_subsys_my_event,
5182 TP_PROTO(int my_int, const char *my_string),
5183 TP_ARGS(my_int, my_string),
5184
5185 /* LTTng-modules specific macros */
5186 TP_FIELDS(
5187 ctf_integer(int, my_int_field, my_int)
5188 ctf_string(my_bar_field, my_bar)
5189 )
5190 )
5191
5192 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5193
5194 #include "../../../probes/define_trace.h"
5195 ----
5196 --
5197 +
5198 The entries in the `TP_FIELDS()` section are the list of fields for the
5199 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5200 ftrace's `TRACE_EVENT()` macro.
5201 +
5202 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5203 complete description of the available `ctf_*()` macros.
5204
5205 . Create the LTTng-modules probe's kernel module C source file,
5206 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5207 subsystem name:
5208 +
5209 --
5210 [source,c]
5211 .path:{probes/lttng-probe-my-subsys.c}
5212 ----
5213 #include <linux/module.h>
5214 #include "../lttng-tracer.h"
5215
5216 /*
5217 * Build-time verification of mismatch between mainline
5218 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5219 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5220 */
5221 #include <trace/events/my_subsys.h>
5222
5223 /* Create LTTng tracepoint probes */
5224 #define LTTNG_PACKAGE_BUILD
5225 #define CREATE_TRACE_POINTS
5226 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5227
5228 #include "../instrumentation/events/lttng-module/my_subsys.h"
5229
5230 MODULE_LICENSE("GPL and additional rights");
5231 MODULE_AUTHOR("Your name <your-email>");
5232 MODULE_DESCRIPTION("LTTng my_subsys probes");
5233 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5234 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5235 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5236 LTTNG_MODULES_EXTRAVERSION);
5237 ----
5238 --
5239
5240 . Edit path:{probes/Makefile} and add your new kernel module object
5241 next to the existing ones:
5242 +
5243 --
5244 [source,make]
5245 .path:{probes/Makefile}
5246 ----
5247 # ...
5248
5249 obj-m += lttng-probe-module.o
5250 obj-m += lttng-probe-power.o
5251
5252 obj-m += lttng-probe-my-subsys.o
5253
5254 # ...
5255 ----
5256 --
5257
5258 . Build and install the LTTng kernel modules:
5259 +
5260 --
5261 [role="term"]
5262 ----
5263 make KERNELDIR=/path/to/linux
5264 sudo make modules_install
5265 ----
5266 --
5267 +
5268 Replace `/path/to/linux` with the path to the Linux source tree where
5269 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5270
5271 Note that you can also use the
5272 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5273 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5274 C code that need to be executed before the event fields are recorded.
5275
5276 The best way to learn how to use the previous LTTng-modules macros is to
5277 inspect the existing LTTng-modules tracepoint definitions in the
5278 dir:{instrumentation/events/lttng-module} header files. Compare them
5279 with the Linux kernel mainline versions in the
5280 dir:{include/trace/events} directory of the Linux source tree.
5281
5282
5283 [role="since-2.7"]
5284 [[lttng-tracepoint-event-code]]
5285 ===== Use custom C code to access the data for tracepoint fields
5286
5287 Although we recommended to always use the
5288 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5289 the arguments and fields of an LTTng-modules tracepoint when possible,
5290 sometimes you need a more complex process to access the data that the
5291 tracer records as event record fields. In other words, you need local
5292 variables and multiple C{nbsp}statements instead of simple
5293 argument-based expressions that you pass to the
5294 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5295
5296 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5297 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5298 a block of C{nbsp}code to be executed before LTTng records the fields.
5299 The structure of this macro is:
5300
5301 [source,c]
5302 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5303 ----
5304 LTTNG_TRACEPOINT_EVENT_CODE(
5305 /*
5306 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5307 * version for the following three macro parameters:
5308 */
5309 my_subsys_my_event,
5310 TP_PROTO(int my_int, const char *my_string),
5311 TP_ARGS(my_int, my_string),
5312
5313 /* Declarations of custom local variables */
5314 TP_locvar(
5315 int a = 0;
5316 unsigned long b = 0;
5317 const char *name = "(undefined)";
5318 struct my_struct *my_struct;
5319 ),
5320
5321 /*
5322 * Custom code which uses both tracepoint arguments
5323 * (in TP_ARGS()) and local variables (in TP_locvar()).
5324 *
5325 * Local variables are actually members of a structure pointed
5326 * to by the special variable tp_locvar.
5327 */
5328 TP_code(
5329 if (my_int) {
5330 tp_locvar->a = my_int + 17;
5331 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5332 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5333 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5334 put_my_struct(tp_locvar->my_struct);
5335
5336 if (tp_locvar->b) {
5337 tp_locvar->a = 1;
5338 }
5339 }
5340 ),
5341
5342 /*
5343 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5344 * version for this, except that tp_locvar members can be
5345 * used in the argument expression parameters of
5346 * the ctf_*() macros.
5347 */
5348 TP_FIELDS(
5349 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5350 ctf_integer(int, my_struct_a, tp_locvar->a)
5351 ctf_string(my_string_field, my_string)
5352 ctf_string(my_struct_name, tp_locvar->name)
5353 )
5354 )
5355 ----
5356
5357 IMPORTANT: The C code defined in `TP_code()` must not have any side
5358 effects when executed. In particular, the code must not allocate
5359 memory or get resources without deallocating this memory or putting
5360 those resources afterwards.
5361
5362
5363 [[instrumenting-linux-kernel-tracing]]
5364 ==== Load and unload a custom probe kernel module
5365
5366 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5367 kernel module>> in the kernel before it can emit LTTng events.
5368
5369 To load the default probe kernel modules and a custom probe kernel
5370 module:
5371
5372 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5373 probe modules to load when starting a root <<lttng-sessiond,session
5374 daemon>>:
5375 +
5376 --
5377 .Load the `my_subsys`, `usb`, and the default probe modules.
5378 ====
5379 [role="term"]
5380 ----
5381 sudo lttng-sessiond --extra-kmod-probes=my_subsys,usb
5382 ----
5383 ====
5384 --
5385 +
5386 You only need to pass the subsystem name, not the whole kernel module
5387 name.
5388
5389 To load _only_ a given custom probe kernel module:
5390
5391 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5392 modules to load when starting a root session daemon:
5393 +
5394 --
5395 .Load only the `my_subsys` and `usb` probe modules.
5396 ====
5397 [role="term"]
5398 ----
5399 sudo lttng-sessiond --kmod-probes=my_subsys,usb
5400 ----
5401 ====
5402 --
5403
5404 To confirm that a probe module is loaded:
5405
5406 * Use man:lsmod(8):
5407 +
5408 --
5409 [role="term"]
5410 ----
5411 lsmod | grep lttng_probe_usb
5412 ----
5413 --
5414
5415 To unload the loaded probe modules:
5416
5417 * Kill the session daemon with `SIGTERM`:
5418 +
5419 --
5420 [role="term"]
5421 ----
5422 sudo pkill lttng-sessiond
5423 ----
5424 --
5425 +
5426 You can also use man:modprobe(8)'s `--remove` option if the session
5427 daemon terminates abnormally.
5428
5429
5430 [[controlling-tracing]]
5431 == Tracing control
5432
5433 Once an application or a Linux kernel is
5434 <<instrumenting,instrumented>> for LTTng tracing,
5435 you can _trace_ it.
5436
5437 This section is divided in topics on how to use the various
5438 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5439 command-line tool>>, to _control_ the LTTng daemons and tracers.
5440
5441 NOTE: In the following subsections, we refer to an man:lttng(1) command
5442 using its man page name. For example, instead of _Run the `create`
5443 command to..._, we use _Run the man:lttng-create(1) command to..._.
5444
5445
5446 [[start-sessiond]]
5447 === Start a session daemon
5448
5449 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5450 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5451 command-line tool.
5452
5453 You will see the following error when you run a command while no session
5454 daemon is running:
5455
5456 ----
5457 Error: No session daemon is available
5458 ----
5459
5460 The only command that automatically runs a session daemon is
5461 man:lttng-create(1), which you use to
5462 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5463 this is most of the time the first operation that you do, sometimes it's
5464 not. Some examples are:
5465
5466 * <<list-instrumentation-points,List the available instrumentation points>>.
5467 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5468
5469 [[tracing-group]] Each Unix user must have its own running session
5470 daemon to trace user applications. The session daemon that the root user
5471 starts is the only one allowed to control the LTTng kernel tracer. Users
5472 that are part of the _tracing group_ can control the root session
5473 daemon. The default tracing group name is `tracing`; you can set it to
5474 something else with the opt:lttng-sessiond(8):--group option when you
5475 start the root session daemon.
5476
5477 To start a user session daemon:
5478
5479 * Run man:lttng-sessiond(8):
5480 +
5481 --
5482 [role="term"]
5483 ----
5484 lttng-sessiond --daemonize
5485 ----
5486 --
5487
5488 To start the root session daemon:
5489
5490 * Run man:lttng-sessiond(8) as the root user:
5491 +
5492 --
5493 [role="term"]
5494 ----
5495 sudo lttng-sessiond --daemonize
5496 ----
5497 --
5498
5499 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5500 start the session daemon in foreground.
5501
5502 To stop a session daemon, use man:kill(1) on its process ID (standard
5503 `TERM` signal).
5504
5505 Note that some Linux distributions could manage the LTTng session daemon
5506 as a service. In this case, you should use the service manager to
5507 start, restart, and stop session daemons.
5508
5509
5510 [[creating-destroying-tracing-sessions]]
5511 === Create and destroy a tracing session
5512
5513 Almost all the LTTng control operations happen in the scope of
5514 a <<tracing-session,tracing session>>, which is the dialogue between the
5515 <<lttng-sessiond,session daemon>> and you.
5516
5517 To create a tracing session with a generated name:
5518
5519 * Use the man:lttng-create(1) command:
5520 +
5521 --
5522 [role="term"]
5523 ----
5524 lttng create
5525 ----
5526 --
5527
5528 The created tracing session's name is `auto` followed by the
5529 creation date.
5530
5531 To create a tracing session with a specific name:
5532
5533 * Use the optional argument of the man:lttng-create(1) command:
5534 +
5535 --
5536 [role="term"]
5537 ----
5538 lttng create my-session
5539 ----
5540 --
5541 +
5542 Replace `my-session` with the specific tracing session name.
5543
5544 LTTng appends the creation date to the created tracing session's name.
5545
5546 LTTng writes the traces of a tracing session in
5547 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5548 name of the tracing session. Note that the env:LTTNG_HOME environment
5549 variable defaults to `$HOME` if not set.
5550
5551 To output LTTng traces to a non-default location:
5552
5553 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5554 +
5555 --
5556 [role="term"]
5557 ----
5558 lttng create --output=/tmp/some-directory my-session
5559 ----
5560 --
5561
5562 You may create as many tracing sessions as you wish.
5563
5564 To list all the existing tracing sessions for your Unix user:
5565
5566 * Use the man:lttng-list(1) command:
5567 +
5568 --
5569 [role="term"]
5570 ----
5571 lttng list
5572 ----
5573 --
5574
5575 When you create a tracing session, it is set as the _current tracing
5576 session_. The following man:lttng(1) commands operate on the current
5577 tracing session when you don't specify one:
5578
5579 [role="list-3-cols"]
5580 * `add-context`
5581 * `destroy`
5582 * `disable-channel`
5583 * `disable-event`
5584 * `enable-channel`
5585 * `enable-event`
5586 * `load`
5587 * `save`
5588 * `snapshot`
5589 * `start`
5590 * `stop`
5591 * `track`
5592 * `untrack`
5593 * `view`
5594
5595 To change the current tracing session:
5596
5597 * Use the man:lttng-set-session(1) command:
5598 +
5599 --
5600 [role="term"]
5601 ----
5602 lttng set-session new-session
5603 ----
5604 --
5605 +
5606 Replace `new-session` by the name of the new current tracing session.
5607
5608 When you are done tracing in a given tracing session, you can destroy
5609 it. This operation frees the resources taken by the tracing session
5610 to destroy; it does not destroy the trace data that LTTng wrote for
5611 this tracing session.
5612
5613 To destroy the current tracing session:
5614
5615 * Use the man:lttng-destroy(1) command:
5616 +
5617 --
5618 [role="term"]
5619 ----
5620 lttng destroy
5621 ----
5622 --
5623
5624
5625 [[list-instrumentation-points]]
5626 === List the available instrumentation points
5627
5628 The <<lttng-sessiond,session daemon>> can query the running instrumented
5629 user applications and the Linux kernel to get a list of available
5630 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5631 they are tracepoints and system calls. For the user space tracing
5632 domain, they are tracepoints. For the other tracing domains, they are
5633 logger names.
5634
5635 To list the available instrumentation points:
5636
5637 * Use the man:lttng-list(1) command with the requested tracing domain's
5638 option amongst:
5639 +
5640 --
5641 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5642 must be a root user, or it must be a member of the
5643 <<tracing-group,tracing group>>).
5644 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5645 kernel system calls (your Unix user must be a root user, or it must be
5646 a member of the tracing group).
5647 * opt:lttng-list(1):--userspace: user space tracepoints.
5648 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5649 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5650 * opt:lttng-list(1):--python: Python loggers.
5651 --
5652
5653 .List the available user space tracepoints.
5654 ====
5655 [role="term"]
5656 ----
5657 lttng list --userspace
5658 ----
5659 ====
5660
5661 .List the available Linux kernel system call tracepoints.
5662 ====
5663 [role="term"]
5664 ----
5665 lttng list --kernel --syscall
5666 ----
5667 ====
5668
5669
5670 [[enabling-disabling-events]]
5671 === Create and enable an event rule
5672
5673 Once you <<creating-destroying-tracing-sessions,create a tracing
5674 session>>, you can create <<event,event rules>> with the
5675 man:lttng-enable-event(1) command.
5676
5677 You specify each condition with a command-line option. The available
5678 condition options are shown in the following table.
5679
5680 [role="growable",cols="asciidoc,asciidoc,default"]
5681 .Condition command-line options for the man:lttng-enable-event(1) command.
5682 |====
5683 |Option |Description |Applicable tracing domains
5684
5685 |
5686 One of:
5687
5688 . `--syscall`
5689 . +--probe=__ADDR__+
5690 . +--function=__ADDR__+
5691
5692 |
5693 Instead of using the default _tracepoint_ instrumentation type, use:
5694
5695 . A Linux system call.
5696 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5697 . The entry and return points of a Linux function (symbol or address).
5698
5699 |Linux kernel.
5700
5701 |First positional argument.
5702
5703 |
5704 Tracepoint or system call name. In the case of a Linux KProbe or
5705 function, this is a custom name given to the event rule. With the
5706 JUL, log4j, and Python domains, this is a logger name.
5707
5708 With a tracepoint, logger, or system call name, the last character
5709 can be `*` to match anything that remains.
5710
5711 |All.
5712
5713 |
5714 One of:
5715
5716 . +--loglevel=__LEVEL__+
5717 . +--loglevel-only=__LEVEL__+
5718
5719 |
5720 . Match only tracepoints or log statements with a logging level at
5721 least as severe as +__LEVEL__+.
5722 . Match only tracepoints or log statements with a logging level
5723 equal to +__LEVEL__+.
5724
5725 See man:lttng-enable-event(1) for the list of available logging level
5726 names.
5727
5728 |User space, JUL, log4j, and Python.
5729
5730 |+--exclude=__EXCLUSIONS__+
5731
5732 |
5733 When you use a `*` character at the end of the tracepoint or logger
5734 name (first positional argument), exclude the specific names in the
5735 comma-delimited list +__EXCLUSIONS__+.
5736
5737 |
5738 User space, JUL, log4j, and Python.
5739
5740 |+--filter=__EXPR__+
5741
5742 |
5743 Match only events which satisfy the expression +__EXPR__+.
5744
5745 See man:lttng-enable-event(1) to learn more about the syntax of a
5746 filter expression.
5747
5748 |All.
5749
5750 |====
5751
5752 You attach an event rule to a <<channel,channel>> on creation. If you do
5753 not specify the channel with the opt:lttng-enable-event(1):--channel
5754 option, and if the event rule to create is the first in its
5755 <<domain,tracing domain>> for a given tracing session, then LTTng
5756 creates a _default channel_ for you. This default channel is reused in
5757 subsequent invocations of the man:lttng-enable-event(1) command for the
5758 same tracing domain.
5759
5760 An event rule is always enabled at creation time.
5761
5762 The following examples show how you can combine the previous
5763 command-line options to create simple to more complex event rules.
5764
5765 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5766 ====
5767 [role="term"]
5768 ----
5769 lttng enable-event --kernel sched_switch
5770 ----
5771 ====
5772
5773 .Create an event rule matching four Linux kernel system calls (default channel).
5774 ====
5775 [role="term"]
5776 ----
5777 lttng enable-event --kernel --syscall open,write,read,close
5778 ----
5779 ====
5780
5781 .Create event rules matching tracepoints with filter expressions (default channel).
5782 ====
5783 [role="term"]
5784 ----
5785 lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5786 ----
5787
5788 [role="term"]
5789 ----
5790 lttng enable-event --kernel --all \
5791 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5792 ----
5793
5794 [role="term"]
5795 ----
5796 lttng enable-event --jul my_logger \
5797 --filter='$app.retriever:cur_msg_id > 3'
5798 ----
5799
5800 IMPORTANT: Make sure to always quote the filter string when you
5801 use man:lttng(1) from a shell.
5802 ====
5803
5804 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5805 ====
5806 [role="term"]
5807 ----
5808 lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5809 ----
5810
5811 IMPORTANT: Make sure to always quote the wildcard character when you
5812 use man:lttng(1) from a shell.
5813 ====
5814
5815 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5816 ====
5817 [role="term"]
5818 ----
5819 lttng enable-event --python my-app.'*' \
5820 --exclude='my-app.module,my-app.hello'
5821 ----
5822 ====
5823
5824 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5825 ====
5826 [role="term"]
5827 ----
5828 lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5829 ----
5830 ====
5831
5832 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5833 ====
5834 [role="term"]
5835 ----
5836 lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5837 ----
5838 ====
5839
5840 The event rules of a given channel form a whitelist: as soon as an
5841 emitted event passes one of them, LTTng can record the event. For
5842 example, an event named `my_app:my_tracepoint` emitted from a user space
5843 tracepoint with a `TRACE_ERROR` log level passes both of the following
5844 rules:
5845
5846 [role="term"]
5847 ----
5848 lttng enable-event --userspace my_app:my_tracepoint
5849 lttng enable-event --userspace my_app:my_tracepoint \
5850 --loglevel=TRACE_INFO
5851 ----
5852
5853 The second event rule is redundant: the first one includes
5854 the second one.
5855
5856
5857 [[disable-event-rule]]
5858 === Disable an event rule
5859
5860 To disable an event rule that you <<enabling-disabling-events,created>>
5861 previously, use the man:lttng-disable-event(1) command. This command
5862 disables _all_ the event rules (of a given tracing domain and channel)
5863 which match an instrumentation point. The other conditions are not
5864 supported as of LTTng{nbsp}{revision}.
5865
5866 The LTTng tracer does not record an emitted event which passes
5867 a _disabled_ event rule.
5868
5869 .Disable an event rule matching a Python logger (default channel).
5870 ====
5871 [role="term"]
5872 ----
5873 lttng disable-event --python my-logger
5874 ----
5875 ====
5876
5877 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5878 ====
5879 [role="term"]
5880 ----
5881 lttng disable-event --jul '*'
5882 ----
5883 ====
5884
5885 .Disable _all_ the event rules of the default channel.
5886 ====
5887 The opt:lttng-disable-event(1):--all-events option is not, like the
5888 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5889 equivalent of the event name `*` (wildcard): it disables _all_ the event
5890 rules of a given channel.
5891
5892 [role="term"]
5893 ----
5894 lttng disable-event --jul --all-events
5895 ----
5896 ====
5897
5898 NOTE: You cannot delete an event rule once you create it.
5899
5900
5901 [[status]]
5902 === Get the status of a tracing session
5903
5904 To get the status of the current tracing session, that is, its
5905 parameters, its channels, event rules, and their attributes:
5906
5907 * Use the man:lttng-status(1) command:
5908 +
5909 --
5910 [role="term"]
5911 ----
5912 lttng status
5913 ----
5914 --
5915 +
5916
5917 To get the status of any tracing session:
5918
5919 * Use the man:lttng-list(1) command with the tracing session's name:
5920 +
5921 --
5922 [role="term"]
5923 ----
5924 lttng list my-session
5925 ----
5926 --
5927 +
5928 Replace `my-session` with the desired tracing session's name.
5929
5930
5931 [[basic-tracing-session-control]]
5932 === Start and stop a tracing session
5933
5934 Once you <<creating-destroying-tracing-sessions,create a tracing
5935 session>> and
5936 <<enabling-disabling-events,create one or more event rules>>,
5937 you can start and stop the tracers for this tracing session.
5938
5939 To start tracing in the current tracing session:
5940
5941 * Use the man:lttng-start(1) command:
5942 +
5943 --
5944 [role="term"]
5945 ----
5946 lttng start
5947 ----
5948 --
5949
5950 LTTng is very flexible: you can launch user applications before
5951 or after the you start the tracers. The tracers only record the events
5952 if they pass enabled event rules and if they occur while the tracers are
5953 started.
5954
5955 To stop tracing in the current tracing session:
5956
5957 * Use the man:lttng-stop(1) command:
5958 +
5959 --
5960 [role="term"]
5961 ----
5962 lttng stop
5963 ----
5964 --
5965 +
5966 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
5967 records>> or lost sub-buffers since the last time you ran
5968 man:lttng-start(1), warnings are printed when you run the
5969 man:lttng-stop(1) command.
5970
5971
5972 [[enabling-disabling-channels]]
5973 === Create a channel
5974
5975 Once you create a tracing session, you can create a <<channel,channel>>
5976 with the man:lttng-enable-channel(1) command.
5977
5978 Note that LTTng automatically creates a default channel when, for a
5979 given <<domain,tracing domain>>, no channels exist and you
5980 <<enabling-disabling-events,create>> the first event rule. This default
5981 channel is named `channel0` and its attributes are set to reasonable
5982 values. Therefore, you only need to create a channel when you need
5983 non-default attributes.
5984
5985 You specify each non-default channel attribute with a command-line
5986 option when you use the man:lttng-enable-channel(1) command. The
5987 available command-line options are:
5988
5989 [role="growable",cols="asciidoc,asciidoc"]
5990 .Command-line options for the man:lttng-enable-channel(1) command.
5991 |====
5992 |Option |Description
5993
5994 |`--overwrite`
5995
5996 |
5997 Use the _overwrite_
5998 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
5999 the default _discard_ mode.
6000
6001 |`--buffers-pid` (user space tracing domain only)
6002
6003 |
6004 Use the per-process <<channel-buffering-schemes,buffering scheme>>
6005 instead of the default per-user buffering scheme.
6006
6007 |+--subbuf-size=__SIZE__+
6008
6009 |
6010 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
6011 either for each Unix user (default), or for each instrumented process.
6012
6013 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6014
6015 |+--num-subbuf=__COUNT__+
6016
6017 |
6018 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
6019 for each Unix user (default), or for each instrumented process.
6020
6021 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6022
6023 |+--tracefile-size=__SIZE__+
6024
6025 |
6026 Set the maximum size of each trace file that this channel writes within
6027 a stream to +__SIZE__+ bytes instead of no maximum.
6028
6029 See <<tracefile-rotation,Trace file count and size>>.
6030
6031 |+--tracefile-count=__COUNT__+
6032
6033 |
6034 Limit the number of trace files that this channel creates to
6035 +__COUNT__+ channels instead of no limit.
6036
6037 See <<tracefile-rotation,Trace file count and size>>.
6038
6039 |+--switch-timer=__PERIODUS__+
6040
6041 |
6042 Set the <<channel-switch-timer,switch timer period>>
6043 to +__PERIODUS__+{nbsp}µs.
6044
6045 |+--read-timer=__PERIODUS__+
6046
6047 |
6048 Set the <<channel-read-timer,read timer period>>
6049 to +__PERIODUS__+{nbsp}µs.
6050
6051 |+--output=__TYPE__+ (Linux kernel tracing domain only)
6052
6053 |
6054 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
6055
6056 |====
6057
6058 You can only create a channel in the Linux kernel and user space
6059 <<domain,tracing domains>>: other tracing domains have their own channel
6060 created on the fly when <<enabling-disabling-events,creating event
6061 rules>>.
6062
6063 [IMPORTANT]
6064 ====
6065 Because of a current LTTng limitation, you must create all channels
6066 _before_ you <<basic-tracing-session-control,start tracing>> in a given
6067 tracing session, that is, before the first time you run
6068 man:lttng-start(1).
6069
6070 Since LTTng automatically creates a default channel when you use the
6071 man:lttng-enable-event(1) command with a specific tracing domain, you
6072 cannot, for example, create a Linux kernel event rule, start tracing,
6073 and then create a user space event rule, because no user space channel
6074 exists yet and it's too late to create one.
6075
6076 For this reason, make sure to configure your channels properly
6077 before starting the tracers for the first time!
6078 ====
6079
6080 The following examples show how you can combine the previous
6081 command-line options to create simple to more complex channels.
6082
6083 .Create a Linux kernel channel with default attributes.
6084 ====
6085 [role="term"]
6086 ----
6087 lttng enable-channel --kernel my-channel
6088 ----
6089 ====
6090
6091 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6092 ====
6093 [role="term"]
6094 ----
6095 lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6096 --buffers-pid my-channel
6097 ----
6098 ====
6099
6100 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
6101 ====
6102 [role="term"]
6103 ----
6104 lttng enable-channel --kernel --tracefile-count=8 \
6105 --tracefile-size=4194304 my-channel
6106 ----
6107 ====
6108
6109 .Create a user space channel in overwrite (or _flight recorder_) mode.
6110 ====
6111 [role="term"]
6112 ----
6113 lttng enable-channel --userspace --overwrite my-channel
6114 ----
6115 ====
6116
6117 You can <<enabling-disabling-events,create>> the same event rule in
6118 two different channels:
6119
6120 [role="term"]
6121 ----
6122 lttng enable-event --userspace --channel=my-channel app:tp
6123 lttng enable-event --userspace --channel=other-channel app:tp
6124 ----
6125
6126 If both channels are enabled, when a tracepoint named `app:tp` is
6127 reached, LTTng records two events, one for each channel.
6128
6129
6130 [[disable-channel]]
6131 === Disable a channel
6132
6133 To disable a specific channel that you <<enabling-disabling-channels,created>>
6134 previously, use the man:lttng-disable-channel(1) command.
6135
6136 .Disable a specific Linux kernel channel.
6137 ====
6138 [role="term"]
6139 ----
6140 lttng disable-channel --kernel my-channel
6141 ----
6142 ====
6143
6144 The state of a channel precedes the individual states of event rules
6145 attached to it: event rules which belong to a disabled channel, even if
6146 they are enabled, are also considered disabled.
6147
6148
6149 [[adding-context]]
6150 === Add context fields to a channel
6151
6152 Event record fields in trace files provide important information about
6153 events that occured previously, but sometimes some external context may
6154 help you solve a problem faster. Examples of context fields are:
6155
6156 * The **process ID**, **thread ID**, **process name**, and
6157 **process priority** of the thread in which the event occurs.
6158 * The **hostname** of the system on which the event occurs.
6159 * The current values of many possible **performance counters** using
6160 perf, for example:
6161 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6162 ** Cache misses.
6163 ** Branch instructions, misses, and loads.
6164 ** CPU faults.
6165 * Any context defined at the application level (supported for the
6166 JUL and log4j <<domain,tracing domains>>).
6167
6168 To get the full list of available context fields, see
6169 `lttng add-context --list`. Some context fields are reserved for a
6170 specific <<domain,tracing domain>> (Linux kernel or user space).
6171
6172 You add context fields to <<channel,channels>>. All the events
6173 that a channel with added context fields records contain those fields.
6174
6175 To add context fields to one or all the channels of a given tracing
6176 session:
6177
6178 * Use the man:lttng-add-context(1) command.
6179
6180 .Add context fields to all the channels of the current tracing session.
6181 ====
6182 The following command line adds the virtual process identifier and
6183 the per-thread CPU cycles count fields to all the user space channels
6184 of the current tracing session.
6185
6186 [role="term"]
6187 ----
6188 lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6189 ----
6190 ====
6191
6192 .Add a context field to a specific channel.
6193 ====
6194 The following command line adds the thread identifier context field
6195 to the Linux kernel channel named `my-channel` in the current
6196 tracing session.
6197
6198 [role="term"]
6199 ----
6200 lttng add-context --kernel --channel=my-channel --type=tid
6201 ----
6202 ====
6203
6204 .Add an application-specific context field to a specific channel.
6205 ====
6206 The following command line adds the `cur_msg_id` context field of the
6207 `retriever` context retriever for all the instrumented
6208 <<java-application,Java applications>> recording <<event,event records>>
6209 in the channel named `my-channel`:
6210
6211 [role="term"]
6212 ----
6213 lttng add-context --kernel --channel=my-channel \
6214 --type='$app:retriever:cur_msg_id'
6215 ----
6216
6217 IMPORTANT: Make sure to always quote the `$` character when you
6218 use man:lttng-add-context(1) from a shell.
6219 ====
6220
6221 NOTE: You cannot remove context fields from a channel once you add it.
6222
6223
6224 [role="since-2.7"]
6225 [[pid-tracking]]
6226 === Track process IDs
6227
6228 It's often useful to allow only specific process IDs (PIDs) to emit
6229 events. For example, you may wish to record all the system calls made by
6230 a given process (à la http://linux.die.net/man/1/strace[strace]).
6231
6232 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6233 purpose. Both commands operate on a whitelist of process IDs. You _add_
6234 entries to this whitelist with the man:lttng-track(1) command and remove
6235 entries with the man:lttng-untrack(1) command. Any process which has one
6236 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6237 an enabled <<event,event rule>>.
6238
6239 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6240 process with a given tracked ID exit and another process be given this
6241 ID, then the latter would also be allowed to emit events.
6242
6243 .Track and untrack process IDs.
6244 ====
6245 For the sake of the following example, assume the target system has 16
6246 possible PIDs.
6247
6248 When you
6249 <<creating-destroying-tracing-sessions,create a tracing session>>,
6250 the whitelist contains all the possible PIDs:
6251
6252 [role="img-100"]
6253 .All PIDs are tracked.
6254 image::track-all.png[]
6255
6256 When the whitelist is full and you use the man:lttng-track(1) command to
6257 specify some PIDs to track, LTTng first clears the whitelist, then it
6258 tracks the specific PIDs. After:
6259
6260 [role="term"]
6261 ----
6262 lttng track --pid=3,4,7,10,13
6263 ----
6264
6265 the whitelist is:
6266
6267 [role="img-100"]
6268 .PIDs 3, 4, 7, 10, and 13 are tracked.
6269 image::track-3-4-7-10-13.png[]
6270
6271 You can add more PIDs to the whitelist afterwards:
6272
6273 [role="term"]
6274 ----
6275 lttng track --pid=1,15,16
6276 ----
6277
6278 The result is:
6279
6280 [role="img-100"]
6281 .PIDs 1, 15, and 16 are added to the whitelist.
6282 image::track-1-3-4-7-10-13-15-16.png[]
6283
6284 The man:lttng-untrack(1) command removes entries from the PID tracker's
6285 whitelist. Given the previous example, the following command:
6286
6287 [role="term"]
6288 ----
6289 lttng untrack --pid=3,7,10,13
6290 ----
6291
6292 leads to this whitelist:
6293
6294 [role="img-100"]
6295 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6296 image::track-1-4-15-16.png[]
6297
6298 LTTng can track all possible PIDs again using the opt:track(1):--all
6299 option:
6300
6301 [role="term"]
6302 ----
6303 lttng track --pid --all
6304 ----
6305
6306 The result is, again:
6307
6308 [role="img-100"]
6309 .All PIDs are tracked.
6310 image::track-all.png[]
6311 ====
6312
6313 .Track only specific PIDs
6314 ====
6315 A very typical use case with PID tracking is to start with an empty
6316 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6317 then add PIDs manually while tracers are active. You can accomplish this
6318 by using the opt:lttng-untrack(1):--all option of the
6319 man:lttng-untrack(1) command to clear the whitelist after you
6320 <<creating-destroying-tracing-sessions,create a tracing session>>:
6321
6322 [role="term"]
6323 ----
6324 lttng untrack --pid --all
6325 ----
6326
6327 gives:
6328
6329 [role="img-100"]
6330 .No PIDs are tracked.
6331 image::untrack-all.png[]
6332
6333 If you trace with this whitelist configuration, the tracer records no
6334 events for this <<domain,tracing domain>> because no processes are
6335 tracked. You can use the man:lttng-track(1) command as usual to track
6336 specific PIDs, for example:
6337
6338 [role="term"]
6339 ----
6340 lttng track --pid=6,11
6341 ----
6342
6343 Result:
6344
6345 [role="img-100"]
6346 .PIDs 6 and 11 are tracked.
6347 image::track-6-11.png[]
6348 ====
6349
6350
6351 [role="since-2.5"]
6352 [[saving-loading-tracing-session]]
6353 === Save and load tracing session configurations
6354
6355 Configuring a <<tracing-session,tracing session>> can be long. Some of
6356 the tasks involved are:
6357
6358 * <<enabling-disabling-channels,Create channels>> with
6359 specific attributes.
6360 * <<adding-context,Add context fields>> to specific channels.
6361 * <<enabling-disabling-events,Create event rules>> with specific log
6362 level and filter conditions.
6363
6364 If you use LTTng to solve real world problems, chances are you have to
6365 record events using the same tracing session setup over and over,
6366 modifying a few variables each time in your instrumented program
6367 or environment. To avoid constant tracing session reconfiguration,
6368 the man:lttng(1) command-line tool can save and load tracing session
6369 configurations to/from XML files.
6370
6371 To save a given tracing session configuration:
6372
6373 * Use the man:lttng-save(1) command:
6374 +
6375 --
6376 [role="term"]
6377 ----
6378 lttng save my-session
6379 ----
6380 --
6381 +
6382 Replace `my-session` with the name of the tracing session to save.
6383
6384 LTTng saves tracing session configurations to
6385 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6386 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6387 the opt:lttng-save(1):--output-path option to change this destination
6388 directory.
6389
6390 LTTng saves all configuration parameters, for example:
6391
6392 * The tracing session name.
6393 * The trace data output path.
6394 * The channels with their state and all their attributes.
6395 * The context fields you added to channels.
6396 * The event rules with their state, log level and filter conditions.
6397
6398 To load a tracing session:
6399
6400 * Use the man:lttng-load(1) command:
6401 +
6402 --
6403 [role="term"]
6404 ----
6405 lttng load my-session
6406 ----
6407 --
6408 +
6409 Replace `my-session` with the name of the tracing session to load.
6410
6411 When LTTng loads a configuration, it restores your saved tracing session
6412 as if you just configured it manually.
6413
6414 See man:lttng(1) for the complete list of command-line options. You
6415 can also save and load all many sessions at a time, and decide in which
6416 directory to output the XML files.
6417
6418
6419 [[sending-trace-data-over-the-network]]
6420 === Send trace data over the network
6421
6422 LTTng can send the recorded trace data to a remote system over the
6423 network instead of writing it to the local file system.
6424
6425 To send the trace data over the network:
6426
6427 . On the _remote_ system (which can also be the target system),
6428 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6429 +
6430 --
6431 [role="term"]
6432 ----
6433 lttng-relayd
6434 ----
6435 --
6436
6437 . On the _target_ system, create a tracing session configured to
6438 send trace data over the network:
6439 +
6440 --
6441 [role="term"]
6442 ----
6443 lttng create my-session --set-url=net://remote-system
6444 ----
6445 --
6446 +
6447 Replace `remote-system` by the host name or IP address of the
6448 remote system. See man:lttng-create(1) for the exact URL format.
6449
6450 . On the target system, use the man:lttng(1) command-line tool as usual.
6451 When tracing is active, the target's consumer daemon sends sub-buffers
6452 to the relay daemon running on the remote system intead of flushing
6453 them to the local file system. The relay daemon writes the received
6454 packets to the local file system.
6455
6456 The relay daemon writes trace files to
6457 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6458 +__hostname__+ is the host name of the target system and +__session__+
6459 is the tracing session name. Note that the env:LTTNG_HOME environment
6460 variable defaults to `$HOME` if not set. Use the
6461 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6462 trace files to another base directory.
6463
6464
6465 [role="since-2.4"]
6466 [[lttng-live]]
6467 === View events as LTTng emits them (noch:{LTTng} live)
6468
6469 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6470 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6471 display events as LTTng emits them on the target system while tracing is
6472 active.
6473
6474 The relay daemon creates a _tee_: it forwards the trace data to both
6475 the local file system and to connected live viewers:
6476
6477 [role="img-90"]
6478 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6479 image::live.png[]
6480
6481 To use LTTng live:
6482
6483 . On the _target system_, create a <<tracing-session,tracing session>>
6484 in _live mode_:
6485 +
6486 --
6487 [role="term"]
6488 ----
6489 lttng create --live my-session
6490 ----
6491 --
6492 +
6493 This spawns a local relay daemon.
6494
6495 . Start the live viewer and configure it to connect to the relay
6496 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6497 +
6498 --
6499 [role="term"]
6500 ----
6501 babeltrace --input-format=lttng-live net://localhost/host/hostname/my-session
6502 ----
6503 --
6504 +
6505 Replace:
6506 +
6507 --
6508 * `hostname` with the host name of the target system.
6509 * `my-session` with the name of the tracing session to view.
6510 --
6511
6512 . Configure the tracing session as usual with the man:lttng(1)
6513 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6514
6515 You can list the available live tracing sessions with Babeltrace:
6516
6517 [role="term"]
6518 ----
6519 babeltrace --input-format=lttng-live net://localhost
6520 ----
6521
6522 You can start the relay daemon on another system. In this case, you need
6523 to specify the relay daemon's URL when you create the tracing session
6524 with the opt:lttng-create(1):--set-url option. You also need to replace
6525 `localhost` in the procedure above with the host name of the system on
6526 which the relay daemon is running.
6527
6528 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6529 command-line options.
6530
6531
6532 [role="since-2.3"]
6533 [[taking-a-snapshot]]
6534 === Take a snapshot of the current sub-buffers of a tracing session
6535
6536 The normal behavior of LTTng is to append full sub-buffers to growing
6537 trace data files. This is ideal to keep a full history of the events
6538 that occurred on the target system, but it can
6539 represent too much data in some situations. For example, you may wish
6540 to trace your application continuously until some critical situation
6541 happens, in which case you only need the latest few recorded
6542 events to perform the desired analysis, not multi-gigabyte trace files.
6543
6544 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6545 current sub-buffers of a given <<tracing-session,tracing session>>.
6546 LTTng can write the snapshot to the local file system or send it over
6547 the network.
6548
6549 To take a snapshot:
6550
6551 . Create a tracing session in _snapshot mode_:
6552 +
6553 --
6554 [role="term"]
6555 ----
6556 lttng create --snapshot my-session
6557 ----
6558 --
6559 +
6560 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6561 <<channel,channels>> created in this mode is automatically set to
6562 _overwrite_ (flight recorder mode).
6563
6564 . Configure the tracing session as usual with the man:lttng(1)
6565 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6566
6567 . **Optional**: When you need to take a snapshot,
6568 <<basic-tracing-session-control,stop tracing>>.
6569 +
6570 You can take a snapshot when the tracers are active, but if you stop
6571 them first, you are sure that the data in the sub-buffers does not
6572 change before you actually take the snapshot.
6573
6574 . Take a snapshot:
6575 +
6576 --
6577 [role="term"]
6578 ----
6579 lttng snapshot record --name=my-first-snapshot
6580 ----
6581 --
6582 +
6583 LTTng writes the current sub-buffers of all the current tracing
6584 session's channels to trace files on the local file system. Those trace
6585 files have `my-first-snapshot` in their name.
6586
6587 There is no difference between the format of a normal trace file and the
6588 format of a snapshot: viewers of LTTng traces also support LTTng
6589 snapshots.
6590
6591 By default, LTTng writes snapshot files to the path shown by
6592 `lttng snapshot list-output`. You can change this path or decide to send
6593 snapshots over the network using either:
6594
6595 . An output path or URL that you specify when you create the
6596 tracing session.
6597 . An snapshot output path or URL that you add using
6598 `lttng snapshot add-output`
6599 . An output path or URL that you provide directly to the
6600 `lttng snapshot record` command.
6601
6602 Method 3 overrides method 2, which overrides method 1. When you
6603 specify a URL, a relay daemon must listen on a remote system (see
6604 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6605
6606
6607 [role="since-2.6"]
6608 [[mi]]
6609 === Use the machine interface
6610
6611 With any command of the man:lttng(1) command-line tool, you can set the
6612 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6613 XML machine interface output, for example:
6614
6615 [role="term"]
6616 ----
6617 lttng --mi=xml enable-event --kernel --syscall open
6618 ----
6619
6620 A schema definition (XSD) is
6621 https://github.com/lttng/lttng-tools/blob/stable-2.8/src/common/mi-lttng-3.0.xsd[available]
6622 to ease the integration with external tools as much as possible.
6623
6624
6625 [role="since-2.8"]
6626 [[metadata-regenerate]]
6627 === Regenerate the metadata of an LTTng trace
6628
6629 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6630 data stream files and a metadata file. This metadata file contains,
6631 amongst other things, information about the offset of the clock sources
6632 used to timestamp <<event,event records>> when tracing.
6633
6634 If, once a <<tracing-session,tracing session>> is
6635 <<basic-tracing-session-control,started>>, a major
6636 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6637 happens, the trace's clock offset also needs to be updated. You
6638 can use the man:lttng-metadata(1) command to do so.
6639
6640 The main use case of this command is to allow a system to boot with
6641 an incorrect wall time and trace it with LTTng before its wall time
6642 is corrected. Once the system is known to be in a state where its
6643 wall time is correct, it can run `lttng metadata regenerate`.
6644
6645 To regenerate the metadata of an LTTng trace:
6646
6647 * Use the `regenerate` action of the man:lttng-metadata(1) command:
6648 +
6649 --
6650 [role="term"]
6651 ----
6652 lttng metadata regenerate
6653 ----
6654 --
6655
6656 [IMPORTANT]
6657 ====
6658 `lttng metadata regenerate` has the following limitations:
6659
6660 * Tracing session <<creating-destroying-tracing-sessions,created>>
6661 in non-live mode.
6662 * User space <<channel,channels>>, if any, using
6663 <<channel-buffering-schemes,per-user buffering>>.
6664 ====
6665
6666
6667 [role="since-2.7"]
6668 [[persistent-memory-file-systems]]
6669 === Record trace data on persistent memory file systems
6670
6671 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6672 (NVRAM) is random-access memory that retains its information when power
6673 is turned off (non-volatile). Systems with such memory can store data
6674 structures in RAM and retrieve them after a reboot, without flushing
6675 to typical _storage_.
6676
6677 Linux supports NVRAM file systems thanks to either
6678 http://pramfs.sourceforge.net/[PRAMFS] or
6679 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6680 (requires Linux 4.1+).
6681
6682 This section does not describe how to operate such file systems;
6683 we assume that you have a working persistent memory file system.
6684
6685 When you create a <<tracing-session,tracing session>>, you can specify
6686 the path of the shared memory holding the sub-buffers. If you specify a
6687 location on an NVRAM file system, then you can retrieve the latest
6688 recorded trace data when the system reboots after a crash.
6689
6690 To record trace data on a persistent memory file system and retrieve the
6691 trace data after a system crash:
6692
6693 . Create a tracing session with a sub-buffer shared memory path located
6694 on an NVRAM file system:
6695 +
6696 --
6697 [role="term"]
6698 ----
6699 lttng create --shm-path=/path/to/shm
6700 ----
6701 --
6702
6703 . Configure the tracing session as usual with the man:lttng(1)
6704 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6705
6706 . After a system crash, use the man:lttng-crash(1) command-line tool to
6707 view the trace data recorded on the NVRAM file system:
6708 +
6709 --
6710 [role="term"]
6711 ----
6712 lttng-crash /path/to/shm
6713 ----
6714 --
6715
6716 The binary layout of the ring buffer files is not exactly the same as
6717 the trace files layout. This is why you need to use man:lttng-crash(1)
6718 instead of your preferred trace viewer directly.
6719
6720 To convert the ring buffer files to LTTng trace files:
6721
6722 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6723 +
6724 --
6725 [role="term"]
6726 ----
6727 lttng-crash --extract=/path/to/trace /path/to/shm
6728 ----
6729 --
6730
6731
6732 [[reference]]
6733 == Reference
6734
6735 [[lttng-modules-ref]]
6736 === noch:{LTTng-modules}
6737
6738 [role="since-2.7"]
6739 [[lttng-modules-tp-fields]]
6740 ==== Tracepoint fields macros (for `TP_FIELDS()`)
6741
6742 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
6743 tracepoint fields, which must be listed within `TP_FIELDS()` in
6744 `LTTNG_TRACEPOINT_EVENT()`, are:
6745
6746 [role="func-desc growable",cols="asciidoc,asciidoc"]
6747 .Available macros to define LTTng-modules tracepoint fields
6748 |====
6749 |Macro |Description and parameters
6750
6751 |
6752 +ctf_integer(__t__, __n__, __e__)+
6753
6754 +ctf_integer_nowrite(__t__, __n__, __e__)+
6755
6756 +ctf_user_integer(__t__, __n__, __e__)+
6757
6758 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
6759 |
6760 Standard integer, displayed in base 10.
6761
6762 +__t__+::
6763 Integer C type (`int`, `long`, `size_t`, ...).
6764
6765 +__n__+::
6766 Field name.
6767
6768 +__e__+::
6769 Argument expression.
6770
6771 |
6772 +ctf_integer_hex(__t__, __n__, __e__)+
6773
6774 +ctf_user_integer_hex(__t__, __n__, __e__)+
6775 |
6776 Standard integer, displayed in base 16.
6777
6778 +__t__+::
6779 Integer C type.
6780
6781 +__n__+::
6782 Field name.
6783
6784 +__e__+::
6785 Argument expression.
6786
6787 |+ctf_integer_oct(__t__, __n__, __e__)+
6788 |
6789 Standard integer, displayed in base 8.
6790
6791 +__t__+::
6792 Integer C type.
6793
6794 +__n__+::
6795 Field name.
6796
6797 +__e__+::
6798 Argument expression.
6799
6800 |
6801 +ctf_integer_network(__t__, __n__, __e__)+
6802
6803 +ctf_user_integer_network(__t__, __n__, __e__)+
6804 |
6805 Integer in network byte order (big-endian), displayed in base 10.
6806
6807 +__t__+::
6808 Integer C type.
6809
6810 +__n__+::
6811 Field name.
6812
6813 +__e__+::
6814 Argument expression.
6815
6816 |
6817 +ctf_integer_network_hex(__t__, __n__, __e__)+
6818
6819 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
6820 |
6821 Integer in network byte order, displayed in base 16.
6822
6823 +__t__+::
6824 Integer C type.
6825
6826 +__n__+::
6827 Field name.
6828
6829 +__e__+::
6830 Argument expression.
6831
6832 |
6833 +ctf_string(__n__, __e__)+
6834
6835 +ctf_string_nowrite(__n__, __e__)+
6836
6837 +ctf_user_string(__n__, __e__)+
6838
6839 +ctf_user_string_nowrite(__n__, __e__)+
6840 |
6841 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
6842
6843 +__n__+::
6844 Field name.
6845
6846 +__e__+::
6847 Argument expression.
6848
6849 |
6850 +ctf_array(__t__, __n__, __e__, __s__)+
6851
6852 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
6853
6854 +ctf_user_array(__t__, __n__, __e__, __s__)+
6855
6856 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
6857 |
6858 Statically-sized array of integers.
6859
6860 +__t__+::
6861 Array element C type.
6862
6863 +__n__+::
6864 Field name.
6865
6866 +__e__+::
6867 Argument expression.
6868
6869 +__s__+::
6870 Number of elements.
6871
6872 |
6873 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
6874
6875 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6876
6877 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
6878
6879 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6880 |
6881 Statically-sized array of bits.
6882
6883 The type of +__e__+ must be an integer type. +__s__+ is the number
6884 of elements of such type in +__e__+, not the number of bits.
6885
6886 +__t__+::
6887 Array element C type.
6888
6889 +__n__+::
6890 Field name.
6891
6892 +__e__+::
6893 Argument expression.
6894
6895 +__s__+::
6896 Number of elements.
6897
6898 |
6899 +ctf_array_text(__t__, __n__, __e__, __s__)+
6900
6901 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
6902
6903 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
6904
6905 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
6906 |
6907 Statically-sized array, printed as text.
6908
6909 The string does not need to be null-terminated.
6910
6911 +__t__+::
6912 Array element C type (always `char`).
6913
6914 +__n__+::
6915 Field name.
6916
6917 +__e__+::
6918 Argument expression.
6919
6920 +__s__+::
6921 Number of elements.
6922
6923 |
6924 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
6925
6926 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
6927
6928 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
6929
6930 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
6931 |
6932 Dynamically-sized array of integers.
6933
6934 The type of +__E__+ must be unsigned.
6935
6936 +__t__+::
6937 Array element C type.
6938
6939 +__n__+::
6940 Field name.
6941
6942 +__e__+::
6943 Argument expression.
6944
6945 +__T__+::
6946 Length expression C type.
6947
6948 +__E__+::
6949 Length expression.
6950
6951 |
6952 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
6953
6954 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
6955 |
6956 Dynamically-sized array of integers, displayed in base 16.
6957
6958 The type of +__E__+ must be unsigned.
6959
6960 +__t__+::
6961 Array element C type.
6962
6963 +__n__+::
6964 Field name.
6965
6966 +__e__+::
6967 Argument expression.
6968
6969 +__T__+::
6970 Length expression C type.
6971
6972 +__E__+::
6973 Length expression.
6974
6975 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
6976 |
6977 Dynamically-sized array of integers in network byte order (big-endian),
6978 displayed in base 10.
6979
6980 The type of +__E__+ must be unsigned.
6981
6982 +__t__+::
6983 Array element C type.
6984
6985 +__n__+::
6986 Field name.
6987
6988 +__e__+::
6989 Argument expression.
6990
6991 +__T__+::
6992 Length expression C type.
6993
6994 +__E__+::
6995 Length expression.
6996
6997 |
6998 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
6999
7000 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7001
7002 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7003
7004 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7005 |
7006 Dynamically-sized array of bits.
7007
7008 The type of +__e__+ must be an integer type. +__s__+ is the number
7009 of elements of such type in +__e__+, not the number of bits.
7010
7011 The type of +__E__+ must be unsigned.
7012
7013 +__t__+::
7014 Array element C type.
7015
7016 +__n__+::
7017 Field name.
7018
7019 +__e__+::
7020 Argument expression.
7021
7022 +__T__+::
7023 Length expression C type.
7024
7025 +__E__+::
7026 Length expression.
7027
7028 |
7029 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7030
7031 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7032
7033 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7034
7035 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7036 |
7037 Dynamically-sized array, displayed as text.
7038
7039 The string does not need to be null-terminated.
7040
7041 The type of +__E__+ must be unsigned.
7042
7043 The behaviour is undefined if +__e__+ is `NULL`.
7044
7045 +__t__+::
7046 Sequence element C type (always `char`).
7047
7048 +__n__+::
7049 Field name.
7050
7051 +__e__+::
7052 Argument expression.
7053
7054 +__T__+::
7055 Length expression C type.
7056
7057 +__E__+::
7058 Length expression.
7059 |====
7060
7061 Use the `_user` versions when the argument expression, `e`, is
7062 a user space address. In the cases of `ctf_user_integer*()` and
7063 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7064 be addressable.
7065
7066 The `_nowrite` versions omit themselves from the session trace, but are
7067 otherwise identical. This means the `_nowrite` fields won't be written
7068 in the recorded trace. Their primary purpose is to make some
7069 of the event context available to the
7070 <<enabling-disabling-events,event filters>> without having to
7071 commit the data to sub-buffers.
7072
7073
7074 [[glossary]]
7075 == Glossary
7076
7077 Terms related to LTTng and to tracing in general:
7078
7079 Babeltrace::
7080 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7081 the cmd:babeltrace command, some libraries, and Python bindings.
7082
7083 <<channel-buffering-schemes,buffering scheme>>::
7084 A layout of sub-buffers applied to a given channel.
7085
7086 <<channel,channel>>::
7087 An entity which is responsible for a set of ring buffers.
7088 +
7089 <<event,Event rules>> are always attached to a specific channel.
7090
7091 clock::
7092 A reference of time for a tracer.
7093
7094 <<lttng-consumerd,consumer daemon>>::
7095 A process which is responsible for consuming the full sub-buffers
7096 and write them to a file system or send them over the network.
7097
7098 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7099 mode in which the tracer _discards_ new event records when there's no
7100 sub-buffer space left to store them.
7101
7102 event::
7103 The consequence of the execution of an instrumentation
7104 point, like a tracepoint that you manually place in some source code,
7105 or a Linux kernel KProbe.
7106 +
7107 An event is said to _occur_ at a specific time. Different actions can
7108 be taken upon the occurance of an event, like record the event's payload
7109 to a sub-buffer.
7110
7111 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7112 The mechanism by which event records of a given channel are lost
7113 (not recorded) when there is no sub-buffer space left to store them.
7114
7115 [[def-event-name]]event name::
7116 The name of an event, which is also the name of the event record.
7117 This is also called the _instrumentation point name_.
7118
7119 event record::
7120 A record, in a trace, of the payload of an event which occured.
7121
7122 <<event,event rule>>::
7123 Set of conditions which must be satisfied for one or more occuring
7124 events to be recorded.
7125
7126 `java.util.logging`::
7127 Java platform's
7128 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7129
7130 <<instrumenting,instrumentation>>::
7131 The use of LTTng probes to make a piece of software traceable.
7132
7133 instrumentation point::
7134 A point in the execution path of a piece of software that, when
7135 reached by this execution, can emit an event.
7136
7137 instrumentation point name::
7138 See _<<def-event-name,event name>>_.
7139
7140 log4j::
7141 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7142 developed by the Apache Software Foundation.
7143
7144 log level::
7145 Level of severity of a log statement or user space
7146 instrumentation point.
7147
7148 LTTng::
7149 The _Linux Trace Toolkit: next generation_ project.
7150
7151 <<lttng-cli,cmd:lttng>>::
7152 A command-line tool provided by the LTTng-tools project which you
7153 can use to send and receive control messages to and from a
7154 session daemon.
7155
7156 LTTng analyses::
7157 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7158 which is a set of analyzing programs that are used to obtain a
7159 higher level view of an LTTng trace.
7160
7161 cmd:lttng-consumerd::
7162 The name of the consumer daemon program.
7163
7164 cmd:lttng-crash::
7165 A utility provided by the LTTng-tools project which can convert
7166 ring buffer files (usually
7167 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7168 to trace files.
7169
7170 LTTng Documentation::
7171 This document.
7172
7173 <<lttng-live,LTTng live>>::
7174 A communication protocol between the relay daemon and live viewers
7175 which makes it possible to see events "live", as they are received by
7176 the relay daemon.
7177
7178 <<lttng-modules,LTTng-modules>>::
7179 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7180 which contains the Linux kernel modules to make the Linux kernel
7181 instrumentation points available for LTTng tracing.
7182
7183 cmd:lttng-relayd::
7184 The name of the relay daemon program.
7185
7186 cmd:lttng-sessiond::
7187 The name of the session daemon program.
7188
7189 LTTng-tools::
7190 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7191 contains the various programs and libraries used to
7192 <<controlling-tracing,control tracing>>.
7193
7194 <<lttng-ust,LTTng-UST>>::
7195 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7196 contains libraries to instrument user applications.
7197
7198 <<lttng-ust-agents,LTTng-UST Java agent>>::
7199 A Java package provided by the LTTng-UST project to allow the
7200 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7201 logging statements.
7202
7203 <<lttng-ust-agents,LTTng-UST Python agent>>::
7204 A Python package provided by the LTTng-UST project to allow the
7205 LTTng instrumentation of Python logging statements.
7206
7207 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7208 The event loss mode in which new event records overwrite older
7209 event records when there's no sub-buffer space left to store them.
7210
7211 <<channel-buffering-schemes,per-process buffering>>::
7212 A buffering scheme in which each instrumented process has its own
7213 sub-buffers for a given user space channel.
7214
7215 <<channel-buffering-schemes,per-user buffering>>::
7216 A buffering scheme in which all the processes of a Unix user share the
7217 same sub-buffer for a given user space channel.
7218
7219 <<lttng-relayd,relay daemon>>::
7220 A process which is responsible for receiving the trace data sent by
7221 a distant consumer daemon.
7222
7223 ring buffer::
7224 A set of sub-buffers.
7225
7226 <<lttng-sessiond,session daemon>>::
7227 A process which receives control commands from you and orchestrates
7228 the tracers and various LTTng daemons.
7229
7230 <<taking-a-snapshot,snapshot>>::
7231 A copy of the current data of all the sub-buffers of a given tracing
7232 session, saved as trace files.
7233
7234 sub-buffer::
7235 One part of an LTTng ring buffer which contains event records.
7236
7237 timestamp::
7238 The time information attached to an event when it is emitted.
7239
7240 trace (_noun_)::
7241 A set of files which are the concatenations of one or more
7242 flushed sub-buffers.
7243
7244 trace (_verb_)::
7245 The action of recording the events emitted by an application
7246 or by a system, or to initiate such recording by controlling
7247 a tracer.
7248
7249 Trace Compass::
7250 The http://tracecompass.org[Trace Compass] project and application.
7251
7252 tracepoint::
7253 An instrumentation point using the tracepoint mechanism of the Linux
7254 kernel or of LTTng-UST.
7255
7256 tracepoint definition::
7257 The definition of a single tracepoint.
7258
7259 tracepoint name::
7260 The name of a tracepoint.
7261
7262 tracepoint provider::
7263 A set of functions providing tracepoints to an instrumented user
7264 application.
7265 +
7266 Not to be confused with a _tracepoint provider package_: many tracepoint
7267 providers can exist within a tracepoint provider package.
7268
7269 tracepoint provider package::
7270 One or more tracepoint providers compiled as an object file or as
7271 a shared library.
7272
7273 tracer::
7274 A software which records emitted events.
7275
7276 <<domain,tracing domain>>::
7277 A namespace for event sources.
7278
7279 tracing group::
7280 The Unix group in which a Unix user can be to be allowed to trace the
7281 Linux kernel.
7282
7283 <<tracing-session,tracing session>>::
7284 A stateful dialogue between you and a <<lttng-sessiond,session
7285 daemon>>.
7286
7287 user application::
7288 An application running in user space, as opposed to a Linux kernel
7289 module, for example.
This page took 0.433771 seconds and 5 git commands to generate.