2.8, 2.9, 2.10: since 2.8, LTTng keeps lost sub-buffer count in overwrite mode
[lttng-docs.git] / 2.8 / lttng-docs-2.8.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.8, 24 July 2017
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/warning-not-maintained.txt[]
11
12
13 include::../common/welcome.txt[]
14
15
16 include::../common/audience.txt[]
17
18
19 [[chapters]]
20 === What's in this documentation?
21
22 The LTTng Documentation is divided into the following sections:
23
24 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
25 rudiments of software tracing and the rationale behind the
26 LTTng project.
27 +
28 You can skip this section if you’re familiar with software tracing and
29 with the LTTng project.
30
31 * **<<installing-lttng,Installation>>** describes the steps to
32 install the LTTng packages on common Linux distributions and from
33 their sources.
34 +
35 You can skip this section if you already properly installed LTTng on
36 your target system.
37
38 * **<<getting-started,Quick start>>** is a concise guide to
39 getting started quickly with LTTng kernel and user space tracing.
40 +
41 We recommend this section if you're new to LTTng or to software tracing
42 in general.
43 +
44 You can skip this section if you're not new to LTTng.
45
46 * **<<core-concepts,Core concepts>>** explains the concepts at
47 the heart of LTTng.
48 +
49 It's a good idea to become familiar with the core concepts
50 before attempting to use the toolkit.
51
52 * **<<plumbing,Components of LTTng>>** describes the various components
53 of the LTTng machinery, like the daemons, the libraries, and the
54 command-line interface.
55 * **<<instrumenting,Instrumentation>>** shows different ways to
56 instrument user applications and the Linux kernel.
57 +
58 Instrumenting source code is essential to provide a meaningful
59 source of events.
60 +
61 You can skip this section if you do not have a programming background.
62
63 * **<<controlling-tracing,Tracing control>>** is divided into topics
64 which demonstrate how to use the vast array of features that
65 LTTng{nbsp}{revision} offers.
66 * **<<reference,Reference>>** contains reference tables.
67 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
68 to LTTng or to the field of software tracing.
69
70
71 include::../common/convention.txt[]
72
73
74 include::../common/acknowledgements.txt[]
75
76
77 [[whats-new]]
78 == What's new in LTTng {revision}?
79
80 LTTng{nbsp}{revision} bears the name _Isseki Nicho_. The result of a
81 collaboration between http://www.dieuduciel.com/[Dieu du Ciel!] and
82 Nagano-based Shiga Kogen,
83 https://www.beeradvocate.com/beer/profile/1141/53111/[_**Isseki
84 Nicho**_] is a strong Imperial Dark Saison offering a rich roasted malt
85 flavor combined with a complex fruity finish typical of Saison yeasts.
86
87 New features and changes in LTTng{nbsp}{revision}:
88
89 * **Tracing control**:
90 ** You can attach <<java-application-context,Java application-specific
91 context fields>> to a <<channel,channel>> with the
92 man:lttng-add-context(1) command:
93 +
94 --
95 [role="term"]
96 ----
97 $ lttng add-context --jul --type='$app.retriever:cur_msg_id'
98 ----
99 --
100 +
101 Here, `$app` is the prefix of all application-specific context fields,
102 `retriever` names a _context information retriever_ defined at the
103 application level, and `cur_msg_id` names a context field read from this
104 retriever.
105 +
106 Both the `java.util.logging` and Apache log4j <<domain,tracing domains>>
107 are supported.
108
109 ** You can use Java application-specific <<adding-context,context>>
110 fields in the <<enabling-disabling-events,filter expression>> of an
111 <<event,event rule>>:
112 +
113 --
114 [role="term"]
115 ----
116 $ lttng enable-event --log4j my_logger \
117 --filter='$app.retriever:cur_msg_id == 23'
118 ----
119 --
120
121 ** New `lttng status` command which is the equivalent of +lttng list
122 __CUR__+, where +__CUR__+ is the name of the current
123 <<tracing-session,tracing session>>.
124 +
125 See man:lttng-status(1).
126
127 ** New `lttng metadata regenerate` command to
128 <<metadata-regenerate,regenerate the metadata file of an LTTng
129 trace>> at any moment. This command is meant to be used to resample
130 the wall time following a major
131 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
132 so that a system which boots with an incorrect wall time can be
133 traced before its wall time is NTP-corrected.
134 +
135 See man:lttng-metadata(1).
136
137 ** New command-line interface warnings when <<event,event records>> or
138 whole sub-buffers are
139 <<channel-overwrite-mode-vs-discard-mode,lost>>. The warning messages
140 are printed when a <<tracing-session,tracing session>> is
141 <<basic-tracing-session-control,stopped>> (man:lttng-stop(1)
142 command).
143
144 * **User space tracing**:
145 ** Shared object base address dump in order to map <<event,event
146 records>> to original source location (file and line number).
147 +
148 If you attach the `ip` and `vpid` <<adding-context,context fields>> to a
149 user space <<channel,channel>> and if you use the
150 <<liblttng-ust-dl,path:{liblttng-ust-dl.so} helper>>, you can retrieve
151 the source location where a given event record was generated.
152 +
153 The http://diamon.org/babeltrace/[Babeltrace] trace viewer supports this
154 state dump and those context fields since version 1.4 to print the
155 source location of a given event record. http://tracecompass.org/[Trace
156 Compass] also supports this since version 2.0.
157
158 ** A <<java-application,Java application>> which uses
159 `java.util.logging` now adds an LTTng-UST log handler to the desired
160 JUL loggers.
161 +
162 The previous workflow was to initialize the LTTng-UST Java agent
163 by calling `LTTngAgent.getLTTngAgent()`. This had the effect of adding
164 an LTTng-UST log handler to the root loggers.
165
166 ** A <<java-application,Java application>> which uses Apache log4j now
167 adds an LTTng-UST log appender to the desired log4j loggers.
168 +
169 The previous workflow was to initialize the LTTng-UST Java agent
170 by calling `LTTngAgent.getLTTngAgent()`. This had the effect of adding
171 an LTTng-UST appender to the root loggers.
172
173 ** Any <<java-application,Java application>> can provide
174 <<java-application-context,dynamic context fields>> while running
175 thanks to a new API provided by the <<lttng-ust-agents,LTTng-UST Java
176 agent>>. You can require LTTng to record specific context fields in
177 event records, and you can use them in the filter expression of
178 <<event,event rules>>.
179
180 * **Linux kernel tracing**:
181 ** The LTTng kernel modules can now be built into a Linux kernel image,
182 that is, not as loadable modules.
183 +
184 Follow the project's
185 https://github.com/lttng/lttng-modules/blob/stable-{revision}/README.md#kernel-built-in-support[`README.md`]
186 file to learn how.
187
188 ** New instrumentation:
189 *** ARM64 architecture support.
190 *** x86 page faults.
191 *** x86 `irq_vectors`.
192 ** New <<adding-context,context fields>>:
193 *** `interruptible`
194 *** `preemptible`
195 *** `need_reschedule`
196 *** `migratable` (specific to RT-Preempt)
197 ** Clock source plugin support for advanced cases where a custom source
198 of time is needed to timestamp LTTng event records.
199 +
200 See https://github.com/lttng/lttng-modules/blob/stable-{revision}/lttng-clock.h[`lttng-clock.h`]
201 for an overview of the small API.
202
203 * **Documentation**:
204 ** The link:/man[man pages] of the man:lttng(1) command-line tool are
205 split into one man page per command (à la Git), for example:
206 +
207 --
208 [role="term"]
209 ----
210 $ man lttng-enable-event
211 ----
212 --
213 +
214 You can also use the `--help` option of any man:lttng(1) command to
215 open its man page.
216 +
217 The content and formatting of all the LTTng man pages has improved
218 dramatically.
219
220
221 [[nuts-and-bolts]]
222 == Nuts and bolts
223
224 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
225 generation_ is a modern toolkit for tracing Linux systems and
226 applications. So your first question might be:
227 **what is tracing?**
228
229
230 [[what-is-tracing]]
231 === What is tracing?
232
233 As the history of software engineering progressed and led to what
234 we now take for granted--complex, numerous and
235 interdependent software applications running in parallel on
236 sophisticated operating systems like Linux--the authors of such
237 components, software developers, began feeling a natural
238 urge to have tools that would ensure the robustness and good performance
239 of their masterpieces.
240
241 One major achievement in this field is, inarguably, the
242 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
243 an essential tool for developers to find and fix bugs. But even the best
244 debugger won't help make your software run faster, and nowadays, faster
245 software means either more work done by the same hardware, or cheaper
246 hardware for the same work.
247
248 A _profiler_ is often the tool of choice to identify performance
249 bottlenecks. Profiling is suitable to identify _where_ performance is
250 lost in a given software. The profiler outputs a profile, a statistical
251 summary of observed events, which you may use to discover which
252 functions took the most time to execute. However, a profiler won't
253 report _why_ some identified functions are the bottleneck. Bottlenecks
254 might only occur when specific conditions are met, conditions that are
255 sometimes impossible to capture by a statistical profiler, or impossible
256 to reproduce with an application altered by the overhead of an
257 event-based profiler. For a thorough investigation of software
258 performance issues, a history of execution is essential, with the
259 recorded values of variables and context fields you choose, and
260 with as little influence as possible on the instrumented software. This
261 is where tracing comes in handy.
262
263 _Tracing_ is a technique used to understand what goes on in a running
264 software system. The software used for tracing is called a _tracer_,
265 which is conceptually similar to a tape recorder. When recording,
266 specific instrumentation points placed in the software source code
267 generate events that are saved on a giant tape: a _trace_ file. You
268 can trace user applications and the operating system at the same time,
269 opening the possibility of resolving a wide range of problems that would
270 otherwise be extremely challenging.
271
272 Tracing is often compared to _logging_. However, tracers and loggers are
273 two different tools, serving two different purposes. Tracers are
274 designed to record much lower-level events that occur much more
275 frequently than log messages, often in the range of thousands per
276 second, with very little execution overhead. Logging is more appropriate
277 for a very high-level analysis of less frequent events: user accesses,
278 exceptional conditions (errors and warnings, for example), database
279 transactions, instant messaging communications, and such. Simply put,
280 logging is one of the many use cases that can be satisfied with tracing.
281
282 The list of recorded events inside a trace file can be read manually
283 like a log file for the maximum level of detail, but it is generally
284 much more interesting to perform application-specific analyses to
285 produce reduced statistics and graphs that are useful to resolve a
286 given problem. Trace viewers and analyzers are specialized tools
287 designed to do this.
288
289 In the end, this is what LTTng is: a powerful, open source set of
290 tools to trace the Linux kernel and user applications at the same time.
291 LTTng is composed of several components actively maintained and
292 developed by its link:/community/#where[community].
293
294
295 [[lttng-alternatives]]
296 === Alternatives to noch:{LTTng}
297
298 Excluding proprietary solutions, a few competing software tracers
299 exist for Linux:
300
301 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
302 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
303 user scripts and is responsible for loading code into the
304 Linux kernel for further execution and collecting the outputted data.
305 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
306 subsystem in the Linux kernel in which a virtual machine can execute
307 programs passed from the user space to the kernel. You can attach
308 such programs to tracepoints and KProbes thanks to a system call, and
309 they can output data to the user space when executed thanks to
310 different mechanisms (pipe, VM register values, and eBPF maps, to name
311 a few).
312 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
313 is the de facto function tracer of the Linux kernel. Its user
314 interface is a set of special files in sysfs.
315 * https://perf.wiki.kernel.org/[perf] is
316 a performance analyzing tool for Linux which supports hardware
317 performance counters, tracepoints, as well as other counters and
318 types of probes. perf's controlling utility is the cmd:perf command
319 line/curses tool.
320 * http://linux.die.net/man/1/strace[strace]
321 is a command-line utility which records system calls made by a
322 user process, as well as signal deliveries and changes of process
323 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
324 to fulfill its function.
325 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
326 analyze Linux kernel events. You write scripts, or _chisels_ in
327 sysdig's jargon, in Lua and sysdig executes them while the system is
328 being traced or afterwards. sysdig's interface is the cmd:sysdig
329 command-line tool as well as the curses-based cmd:csysdig tool.
330 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
331 user space tracer which uses custom user scripts to produce plain text
332 traces. SystemTap converts the scripts to the C language, and then
333 compiles them as Linux kernel modules which are loaded to produce
334 trace data. SystemTap's primary user interface is the cmd:stap
335 command-line tool.
336
337 The main distinctive features of LTTng is that it produces correlated
338 kernel and user space traces, as well as doing so with the lowest
339 overhead amongst other solutions. It produces trace files in the
340 http://diamon.org/ctf[CTF] format, a file format optimized
341 for the production and analyses of multi-gigabyte data.
342
343 LTTng is the result of more than 10 years of active open source
344 development by a community of passionate developers.
345 LTTng{nbsp}{revision} is currently available on major desktop and server
346 Linux distributions.
347
348 The main interface for tracing control is a single command-line tool
349 named cmd:lttng. The latter can create several tracing sessions, enable
350 and disable events on the fly, filter events efficiently with custom
351 user expressions, start and stop tracing, and much more. LTTng can
352 record the traces on the file system or send them over the network, and
353 keep them totally or partially. You can view the traces once tracing
354 becomes inactive or in real-time.
355
356 <<installing-lttng,Install LTTng now>> and
357 <<getting-started,start tracing>>!
358
359
360 [[installing-lttng]]
361 == Installation
362
363 include::../common/warning-installation-outdated.txt[]
364
365 **LTTng** is a set of software <<plumbing,components>> which interact to
366 <<instrumenting,instrument>> the Linux kernel and user applications, and
367 to <<controlling-tracing,control tracing>> (start and stop
368 tracing, enable and disable event rules, and the rest). Those
369 components are bundled into the following packages:
370
371 * **LTTng-tools**: Libraries and command-line interface to
372 control tracing.
373 * **LTTng-modules**: Linux kernel modules to instrument and
374 trace the kernel.
375 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
376 trace user applications.
377
378 Most distributions mark the LTTng-modules and LTTng-UST packages as
379 optional when installing LTTng-tools (which is always required). In the
380 following sections, we always provide the steps to install all three,
381 but note that:
382
383 * You only need to install LTTng-modules if you intend to trace the
384 Linux kernel.
385 * You only need to install LTTng-UST if you intend to trace user
386 applications.
387
388 [role="growable"]
389 .Availability of LTTng{nbsp}{revision} for major Linux distributions as of 14 March 2017.
390 |====
391 |Distribution |Available in releases |Alternatives
392
393 |https://www.ubuntu.com/[Ubuntu]
394 |<<ubuntu,Ubuntu{nbsp}16.10 _Yakkety Yak_>>.
395 |LTTng{nbsp}{revision} for Ubuntu{nbsp}14.04 _Trusty Tahr_
396 and Ubuntu{nbsp}16.04 _Xenial Xerus_:
397 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
398
399 LTTng{nbsp}2.9 for Ubuntu{nbsp}14.04 _Trusty Tahr_
400 and Ubuntu{nbsp}16.04 _Xenial Xerus_:
401 link:/docs/v2.9#doc-ubuntu-ppa[use the LTTng Stable{nbsp}2.9 PPA].
402
403 LTTng{nbsp}2.9 for Ubuntu{nbsp}17.04 _Zesty Zapus_ (not released
404 yet).
405
406 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
407 other Ubuntu releases.
408
409 |https://getfedora.org/[Fedora]
410 |<<fedora,Fedora{nbsp}25>>.
411 |<<building-from-source,Build LTTng{nbsp}{revision} from source>> for
412 other Fedora releases.
413
414 |https://www.debian.org/[Debian]
415 |_Not available_
416 |link:/docs/v2.9#doc-debian[LTTng{nbsp}2.9 for Debian "stretch" (testing)
417 and Debian "sid" (unstable)].
418
419 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
420
421 |https://www.opensuse.org/[openSUSE]
422 |_Not available_
423 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
424
425 |https://www.archlinux.org/[Arch Linux]
426 |_Not available_
427 |link:/docs/v2.9#doc-arch-linux[LTTng{nbsp}2.9 from the AUR].
428
429 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
430
431 |https://alpinelinux.org/[Alpine Linux]
432 |_Not available_
433 |link:/docs/v2.9#doc-alpine-linux[LTTng{nbsp}2.9 for Alpine Linux "edge"].
434
435 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
436
437 |https://www.redhat.com/[RHEL] and https://www.suse.com/[SLES]
438 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
439 |
440
441 |https://buildroot.org/[Buildroot]
442 |<<buildroot,Buildroot 2016.11>>.
443 |link:/docs/v2.9#doc-buildroot[LTTng{nbsp}2.9 for Buildroot 2017.02].
444
445 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
446 other Buildroot releases.
447
448 |http://www.openembedded.org/wiki/Main_Page[OpenEmbedded] and
449 https://www.yoctoproject.org/[Yocto]
450 |<<oe-yocto,Yocto Project{nbsp}2.2 _Morty_>> (`openembedded-core` layer).
451 |LTTng{nbsp}2.9 for Yocto Project{nbsp}2.3 _Pyro_
452 (`openembedded-core` layer) (not released yet).
453
454 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
455 other OpenEmbedded releases.
456 |====
457
458
459 [[ubuntu]]
460 === [[ubuntu-official-repositories]]Ubuntu
461
462 LTTng{nbsp}{revision} is available on Ubuntu{nbsp}16.10 _Yakkety Yak_.
463 For previous releases of Ubuntu, <<ubuntu-ppa,use the LTTng
464 Stable{nbsp}{revision} PPA>>.
465
466 To install LTTng{nbsp}{revision} on Ubuntu{nbsp}16.10 _Yakkety Yak_:
467
468 . Install the main LTTng{nbsp}{revision} packages:
469 +
470 --
471 [role="term"]
472 ----
473 # apt-get install lttng-tools
474 # apt-get install lttng-modules-dkms
475 # apt-get install liblttng-ust-dev
476 ----
477 --
478
479 . **If you need to instrument and trace
480 <<java-application,Java applications>>**, install the LTTng-UST
481 Java agent:
482 +
483 --
484 [role="term"]
485 ----
486 # apt-get install liblttng-ust-agent-java
487 ----
488 --
489
490 . **If you need to instrument and trace
491 <<python-application,Python{nbsp}3 applications>>**, install the
492 LTTng-UST Python agent:
493 +
494 --
495 [role="term"]
496 ----
497 # apt-get install python3-lttngust
498 ----
499 --
500
501
502 [[ubuntu-ppa]]
503 ==== noch:{LTTng} Stable {revision} PPA
504
505 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
506 Stable{nbsp}{revision} PPA] offers the latest stable
507 LTTng{nbsp}{revision} packages for:
508
509 * Ubuntu{nbsp}14.04 _Trusty Tahr_
510 * Ubuntu{nbsp}16.04 _Xenial Xerus_
511
512 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
513
514 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
515 list of packages:
516 +
517 --
518 [role="term"]
519 ----
520 # apt-add-repository ppa:lttng/stable-2.8
521 # apt-get update
522 ----
523 --
524
525 . Install the main LTTng{nbsp}{revision} packages:
526 +
527 --
528 [role="term"]
529 ----
530 # apt-get install lttng-tools
531 # apt-get install lttng-modules-dkms
532 # apt-get install liblttng-ust-dev
533 ----
534 --
535
536 . **If you need to instrument and trace
537 <<java-application,Java applications>>**, install the LTTng-UST
538 Java agent:
539 +
540 --
541 [role="term"]
542 ----
543 # apt-get install liblttng-ust-agent-java
544 ----
545 --
546
547 . **If you need to instrument and trace
548 <<python-application,Python{nbsp}3 applications>>**, install the
549 LTTng-UST Python agent:
550 +
551 --
552 [role="term"]
553 ----
554 # apt-get install python3-lttngust
555 ----
556 --
557
558
559 [[fedora]]
560 === Fedora
561
562 To install LTTng{nbsp}{revision} on Fedora{nbsp}25:
563
564 . Install the LTTng-tools{nbsp}{revision} and LTTng-UST{nbsp}{revision}
565 packages:
566 +
567 --
568 [role="term"]
569 ----
570 # yum install lttng-tools
571 # yum install lttng-ust
572 ----
573 --
574
575 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
576 +
577 --
578 [role="term"]
579 ----
580 $ cd $(mktemp -d) &&
581 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
582 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
583 cd lttng-modules-2.8.* &&
584 make &&
585 sudo make modules_install &&
586 sudo depmod -a
587 ----
588 --
589
590 [IMPORTANT]
591 .Java and Python application instrumentation and tracing
592 ====
593 If you need to instrument and trace <<java-application,Java
594 applications>> on Fedora, you need to build and install
595 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
596 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
597 `--enable-java-agent-all` options to the `configure` script, depending
598 on which Java logging framework you use.
599
600 If you need to instrument and trace <<python-application,Python
601 applications>> on Fedora, you need to build and install
602 LTTng-UST{nbsp}{revision} from source and pass the
603 `--enable-python-agent` option to the `configure` script.
604 ====
605
606
607 [[enterprise-distributions]]
608 === RHEL, SUSE, and other enterprise distributions
609
610 To install LTTng on enterprise Linux distributions, such as Red Hat
611 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
612 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
613
614
615 [[buildroot]]
616 === Buildroot
617
618 To install LTTng{nbsp}{revision} on Buildroot{nbsp}2016.11:
619
620 . Launch the Buildroot configuration tool:
621 +
622 --
623 [role="term"]
624 ----
625 $ make menuconfig
626 ----
627 --
628
629 . In **Kernel**, check **Linux kernel**.
630 . In **Toolchain**, check **Enable WCHAR support**.
631 . In **Target packages**{nbsp}&#8594; **Debugging, profiling and benchmark**,
632 check **lttng-modules** and **lttng-tools**.
633 . In **Target packages**{nbsp}&#8594; **Libraries**{nbsp}&#8594;
634 **Other**, check **lttng-libust**.
635
636
637 [[oe-yocto]]
638 === OpenEmbedded and Yocto
639
640 LTTng{nbsp}{revision} recipes are available in the
641 http://layers.openembedded.org/layerindex/branch/master/layer/openembedded-core/[`openembedded-core`]
642 layer for Yocto Project{nbsp}2.2 _Morty_ under the following names:
643
644 * `lttng-tools`
645 * `lttng-modules`
646 * `lttng-ust`
647
648 With BitBake, the simplest way to include LTTng recipes in your target
649 image is to add them to `IMAGE_INSTALL_append` in path:{conf/local.conf}:
650
651 ----
652 IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"
653 ----
654
655 If you use Hob:
656
657 . Select a machine and an image recipe.
658 . Click **Edit image recipe**.
659 . Under the **All recipes** tab, search for **lttng**.
660 . Check the desired LTTng recipes.
661
662 [IMPORTANT]
663 .Java and Python application instrumentation and tracing
664 ====
665 If you need to instrument and trace <<java-application,Java
666 applications>> on Yocto/OpenEmbedded, you need to build and install
667 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
668 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
669 `--enable-java-agent-all` options to the `configure` script, depending
670 on which Java logging framework you use.
671
672 If you need to instrument and trace <<python-application,Python
673 applications>> on Yocto/OpenEmbedded, you need to build and install
674 LTTng-UST{nbsp}{revision} from source and pass the
675 `--enable-python-agent` option to the `configure` script.
676 ====
677
678
679 [[building-from-source]]
680 === Build from source
681
682 To build and install LTTng{nbsp}{revision} from source:
683
684 . Using your distribution's package manager, or from source, install
685 the following dependencies of LTTng-tools and LTTng-UST:
686 +
687 --
688 * https://sourceforge.net/projects/libuuid/[libuuid]
689 * http://directory.fsf.org/wiki/Popt[popt]
690 * http://liburcu.org/[Userspace RCU]
691 * http://www.xmlsoft.org/[libxml2]
692 --
693
694 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
695 +
696 --
697 [role="term"]
698 ----
699 $ cd $(mktemp -d) &&
700 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
701 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
702 cd lttng-modules-2.8.* &&
703 make &&
704 sudo make modules_install &&
705 sudo depmod -a
706 ----
707 --
708
709 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
710 +
711 --
712 [role="term"]
713 ----
714 $ cd $(mktemp -d) &&
715 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.8.tar.bz2 &&
716 tar -xf lttng-ust-latest-2.8.tar.bz2 &&
717 cd lttng-ust-2.8.* &&
718 ./configure &&
719 make &&
720 sudo make install &&
721 sudo ldconfig
722 ----
723 --
724 +
725 --
726 [IMPORTANT]
727 .Java and Python application tracing
728 ====
729 If you need to instrument and trace <<java-application,Java
730 applications>>, pass the `--enable-java-agent-jul`,
731 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
732 `configure` script, depending on which Java logging framework you use.
733
734 If you need to instrument and trace <<python-application,Python
735 applications>>, pass the `--enable-python-agent` option to the
736 `configure` script. You can set the `PYTHON` environment variable to the
737 path to the Python interpreter for which to install the LTTng-UST Python
738 agent package.
739 ====
740 --
741 +
742 --
743 [NOTE]
744 ====
745 By default, LTTng-UST libraries are installed to
746 dir:{/usr/local/lib}, which is the de facto directory in which to
747 keep self-compiled and third-party libraries.
748
749 When <<building-tracepoint-providers-and-user-application,linking an
750 instrumented user application with `liblttng-ust`>>:
751
752 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
753 variable.
754 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
755 man:gcc(1), man:g++(1), or man:clang(1).
756 ====
757 --
758
759 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
760 +
761 --
762 [role="term"]
763 ----
764 $ cd $(mktemp -d) &&
765 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
766 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
767 cd lttng-tools-2.8.* &&
768 ./configure &&
769 make &&
770 sudo make install &&
771 sudo ldconfig
772 ----
773 --
774
775 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
776 previous steps automatically for a given version of LTTng and confine
777 the installed files in a specific directory. This can be useful to test
778 LTTng without installing it on your system.
779
780
781 [[getting-started]]
782 == Quick start
783
784 This is a short guide to get started quickly with LTTng kernel and user
785 space tracing.
786
787 Before you follow this guide, make sure to <<installing-lttng,install>>
788 LTTng.
789
790 This tutorial walks you through the steps to:
791
792 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
793 . <<tracing-your-own-user-application,Trace a user application>> written
794 in C.
795 . <<viewing-and-analyzing-your-traces,View and analyze the
796 recorded events>>.
797
798
799 [[tracing-the-linux-kernel]]
800 === Trace the Linux kernel
801
802 The following command lines start with the `#` prompt because you need
803 root privileges to trace the Linux kernel. You can also trace the kernel
804 as a regular user if your Unix user is a member of the
805 <<tracing-group,tracing group>>.
806
807 . Create a <<tracing-session,tracing session>> which writes its traces
808 to dir:{/tmp/my-kernel-trace}:
809 +
810 --
811 [role="term"]
812 ----
813 # lttng create my-kernel-session --output=/tmp/my-kernel-trace
814 ----
815 --
816
817 . List the available kernel tracepoints and system calls:
818 +
819 --
820 [role="term"]
821 ----
822 # lttng list --kernel
823 # lttng list --kernel --syscall
824 ----
825 --
826
827 . Create <<event,event rules>> which match the desired instrumentation
828 point names, for example the `sched_switch` and `sched_process_fork`
829 tracepoints, and the man:open(2) and man:close(2) system calls:
830 +
831 --
832 [role="term"]
833 ----
834 # lttng enable-event --kernel sched_switch,sched_process_fork
835 # lttng enable-event --kernel --syscall open,close
836 ----
837 --
838 +
839 You can also create an event rule which matches _all_ the Linux kernel
840 tracepoints (this will generate a lot of data when tracing):
841 +
842 --
843 [role="term"]
844 ----
845 # lttng enable-event --kernel --all
846 ----
847 --
848
849 . <<basic-tracing-session-control,Start tracing>>:
850 +
851 --
852 [role="term"]
853 ----
854 # lttng start
855 ----
856 --
857
858 . Do some operation on your system for a few seconds. For example,
859 load a website, or list the files of a directory.
860 . <<basic-tracing-session-control,Stop tracing>> and destroy the
861 tracing session:
862 +
863 --
864 [role="term"]
865 ----
866 sudo lttng stop
867 sudo lttng destroy
868 ----
869 --
870 +
871 The man:lttng-destroy(1) command does not destroy the trace data; it
872 only destroys the state of the tracing session.
873
874 . For the sake of this example, make the recorded trace accessible to
875 the non-root users:
876 +
877 --
878 [role="term"]
879 ----
880 sudo chown -R $(whoami) /tmp/my-kernel-trace
881 ----
882 --
883
884 See <<viewing-and-analyzing-your-traces,View and analyze the
885 recorded events>> to view the recorded events.
886
887
888 [[tracing-your-own-user-application]]
889 === Trace a user application
890
891 This section steps you through a simple example to trace a
892 _Hello world_ program written in C.
893
894 To create the traceable user application:
895
896 . Create the tracepoint provider header file, which defines the
897 tracepoints and the events they can generate:
898 +
899 --
900 [source,c]
901 .path:{hello-tp.h}
902 ----
903 #undef TRACEPOINT_PROVIDER
904 #define TRACEPOINT_PROVIDER hello_world
905
906 #undef TRACEPOINT_INCLUDE
907 #define TRACEPOINT_INCLUDE "./hello-tp.h"
908
909 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
910 #define _HELLO_TP_H
911
912 #include <lttng/tracepoint.h>
913
914 TRACEPOINT_EVENT(
915 hello_world,
916 my_first_tracepoint,
917 TP_ARGS(
918 int, my_integer_arg,
919 char*, my_string_arg
920 ),
921 TP_FIELDS(
922 ctf_string(my_string_field, my_string_arg)
923 ctf_integer(int, my_integer_field, my_integer_arg)
924 )
925 )
926
927 #endif /* _HELLO_TP_H */
928
929 #include <lttng/tracepoint-event.h>
930 ----
931 --
932
933 . Create the tracepoint provider package source file:
934 +
935 --
936 [source,c]
937 .path:{hello-tp.c}
938 ----
939 #define TRACEPOINT_CREATE_PROBES
940 #define TRACEPOINT_DEFINE
941
942 #include "hello-tp.h"
943 ----
944 --
945
946 . Build the tracepoint provider package:
947 +
948 --
949 [role="term"]
950 ----
951 $ gcc -c -I. hello-tp.c
952 ----
953 --
954
955 . Create the _Hello World_ application source file:
956 +
957 --
958 [source,c]
959 .path:{hello.c}
960 ----
961 #include <stdio.h>
962 #include "hello-tp.h"
963
964 int main(int argc, char *argv[])
965 {
966 int x;
967
968 puts("Hello, World!\nPress Enter to continue...");
969
970 /*
971 * The following getchar() call is only placed here for the purpose
972 * of this demonstration, to pause the application in order for
973 * you to have time to list its tracepoints. It is not
974 * needed otherwise.
975 */
976 getchar();
977
978 /*
979 * A tracepoint() call.
980 *
981 * Arguments, as defined in hello-tp.h:
982 *
983 * 1. Tracepoint provider name (required)
984 * 2. Tracepoint name (required)
985 * 3. my_integer_arg (first user-defined argument)
986 * 4. my_string_arg (second user-defined argument)
987 *
988 * Notice the tracepoint provider and tracepoint names are
989 * NOT strings: they are in fact parts of variables that the
990 * macros in hello-tp.h create.
991 */
992 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
993
994 for (x = 0; x < argc; ++x) {
995 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
996 }
997
998 puts("Quitting now!");
999 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
1000
1001 return 0;
1002 }
1003 ----
1004 --
1005
1006 . Build the application:
1007 +
1008 --
1009 [role="term"]
1010 ----
1011 $ gcc -c hello.c
1012 ----
1013 --
1014
1015 . Link the application with the tracepoint provider package,
1016 `liblttng-ust`, and `libdl`:
1017 +
1018 --
1019 [role="term"]
1020 ----
1021 $ gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
1022 ----
1023 --
1024
1025 Here's the whole build process:
1026
1027 [role="img-100"]
1028 .User space tracing tutorial's build steps.
1029 image::ust-flow.png[]
1030
1031 To trace the user application:
1032
1033 . Run the application with a few arguments:
1034 +
1035 --
1036 [role="term"]
1037 ----
1038 $ ./hello world and beyond
1039 ----
1040 --
1041 +
1042 You see:
1043 +
1044 --
1045 ----
1046 Hello, World!
1047 Press Enter to continue...
1048 ----
1049 --
1050
1051 . Start an LTTng <<lttng-sessiond,session daemon>>:
1052 +
1053 --
1054 [role="term"]
1055 ----
1056 $ lttng-sessiond --daemonize
1057 ----
1058 --
1059 +
1060 Note that a session daemon might already be running, for example as
1061 a service that the distribution's service manager started.
1062
1063 . List the available user space tracepoints:
1064 +
1065 --
1066 [role="term"]
1067 ----
1068 $ lttng list --userspace
1069 ----
1070 --
1071 +
1072 You see the `hello_world:my_first_tracepoint` tracepoint listed
1073 under the `./hello` process.
1074
1075 . Create a <<tracing-session,tracing session>>:
1076 +
1077 --
1078 [role="term"]
1079 ----
1080 $ lttng create my-user-space-session
1081 ----
1082 --
1083
1084 . Create an <<event,event rule>> which matches the
1085 `hello_world:my_first_tracepoint` event name:
1086 +
1087 --
1088 [role="term"]
1089 ----
1090 $ lttng enable-event --userspace hello_world:my_first_tracepoint
1091 ----
1092 --
1093
1094 . <<basic-tracing-session-control,Start tracing>>:
1095 +
1096 --
1097 [role="term"]
1098 ----
1099 $ lttng start
1100 ----
1101 --
1102
1103 . Go back to the running `hello` application and press Enter. The
1104 program executes all `tracepoint()` instrumentation points and exits.
1105 . <<basic-tracing-session-control,Stop tracing>> and destroy the
1106 tracing session:
1107 +
1108 --
1109 [role="term"]
1110 ----
1111 $ lttng stop
1112 $ lttng destroy
1113 ----
1114 --
1115 +
1116 The man:lttng-destroy(1) command does not destroy the trace data; it
1117 only destroys the state of the tracing session.
1118
1119 By default, LTTng saves the traces in
1120 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
1121 where +__name__+ is the tracing session name. The
1122 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
1123
1124 See <<viewing-and-analyzing-your-traces,View and analyze the
1125 recorded events>> to view the recorded events.
1126
1127
1128 [[viewing-and-analyzing-your-traces]]
1129 === View and analyze the recorded events
1130
1131 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
1132 kernel>> and <<tracing-your-own-user-application,Trace a user
1133 application>> tutorials, you can inspect the recorded events.
1134
1135 Many tools are available to read LTTng traces:
1136
1137 * **cmd:babeltrace** is a command-line utility which converts trace
1138 formats; it supports the format that LTTng produces, CTF, as well as a
1139 basic text output which can be ++grep++ed. The cmd:babeltrace command
1140 is part of the http://diamon.org/babeltrace[Babeltrace] project.
1141 * Babeltrace also includes
1142 **https://www.python.org/[Python] bindings** so
1143 that you can easily open and read an LTTng trace with your own script,
1144 benefiting from the power of Python.
1145 * http://tracecompass.org/[**Trace Compass**]
1146 is a graphical user interface for viewing and analyzing any type of
1147 logs or traces, including LTTng's.
1148 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
1149 project which includes many high-level analyses of LTTng kernel
1150 traces, like scheduling statistics, interrupt frequency distribution,
1151 top CPU usage, and more.
1152
1153 NOTE: This section assumes that the traces recorded during the previous
1154 tutorials were saved to their default location, in the
1155 dir:{$LTTNG_HOME/lttng-traces} directory. The env:LTTNG_HOME
1156 environment variable defaults to `$HOME` if not set.
1157
1158
1159 [[viewing-and-analyzing-your-traces-bt]]
1160 ==== Use the cmd:babeltrace command-line tool
1161
1162 The simplest way to list all the recorded events of a trace is to pass
1163 its path to cmd:babeltrace with no options:
1164
1165 [role="term"]
1166 ----
1167 $ babeltrace ~/lttng-traces/my-user-space-session*
1168 ----
1169
1170 cmd:babeltrace finds all traces recursively within the given path and
1171 prints all their events, merging them in chronological order.
1172
1173 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
1174 further filtering:
1175
1176 [role="term"]
1177 ----
1178 $ babeltrace /tmp/my-kernel-trace | grep _switch
1179 ----
1180
1181 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
1182 count the recorded events:
1183
1184 [role="term"]
1185 ----
1186 $ babeltrace /tmp/my-kernel-trace | grep _open | wc --lines
1187 ----
1188
1189
1190 [[viewing-and-analyzing-your-traces-bt-python]]
1191 ==== Use the Babeltrace Python bindings
1192
1193 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
1194 is useful to isolate events by simple matching using man:grep(1) and
1195 similar utilities. However, more elaborate filters, such as keeping only
1196 event records with a field value falling within a specific range, are
1197 not trivial to write using a shell. Moreover, reductions and even the
1198 most basic computations involving multiple event records are virtually
1199 impossible to implement.
1200
1201 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
1202 to read the event records of an LTTng trace sequentially and compute the
1203 desired information.
1204
1205 The following script accepts an LTTng Linux kernel trace path as its
1206 first argument and prints the short names of the top 5 running processes
1207 on CPU 0 during the whole trace:
1208
1209 [source,python]
1210 .path:{top5proc.py}
1211 ----
1212 from collections import Counter
1213 import babeltrace
1214 import sys
1215
1216
1217 def top5proc():
1218 if len(sys.argv) != 2:
1219 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
1220 print(msg, file=sys.stderr)
1221 return False
1222
1223 # A trace collection contains one or more traces
1224 col = babeltrace.TraceCollection()
1225
1226 # Add the trace provided by the user (LTTng traces always have
1227 # the 'ctf' format)
1228 if col.add_trace(sys.argv[1], 'ctf') is None:
1229 raise RuntimeError('Cannot add trace')
1230
1231 # This counter dict contains execution times:
1232 #
1233 # task command name -> total execution time (ns)
1234 exec_times = Counter()
1235
1236 # This contains the last `sched_switch` timestamp
1237 last_ts = None
1238
1239 # Iterate on events
1240 for event in col.events:
1241 # Keep only `sched_switch` events
1242 if event.name != 'sched_switch':
1243 continue
1244
1245 # Keep only events which happened on CPU 0
1246 if event['cpu_id'] != 0:
1247 continue
1248
1249 # Event timestamp
1250 cur_ts = event.timestamp
1251
1252 if last_ts is None:
1253 # We start here
1254 last_ts = cur_ts
1255
1256 # Previous task command (short) name
1257 prev_comm = event['prev_comm']
1258
1259 # Initialize entry in our dict if not yet done
1260 if prev_comm not in exec_times:
1261 exec_times[prev_comm] = 0
1262
1263 # Compute previous command execution time
1264 diff = cur_ts - last_ts
1265
1266 # Update execution time of this command
1267 exec_times[prev_comm] += diff
1268
1269 # Update last timestamp
1270 last_ts = cur_ts
1271
1272 # Display top 5
1273 for name, ns in exec_times.most_common(5):
1274 s = ns / 1000000000
1275 print('{:20}{} s'.format(name, s))
1276
1277 return True
1278
1279
1280 if __name__ == '__main__':
1281 sys.exit(0 if top5proc() else 1)
1282 ----
1283
1284 Run this script:
1285
1286 [role="term"]
1287 ----
1288 $ python3 top5proc.py /tmp/my-kernel-trace/kernel
1289 ----
1290
1291 Output example:
1292
1293 ----
1294 swapper/0 48.607245889 s
1295 chromium 7.192738188 s
1296 pavucontrol 0.709894415 s
1297 Compositor 0.660867933 s
1298 Xorg.bin 0.616753786 s
1299 ----
1300
1301 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1302 weren't using the CPU that much when tracing, its first position in the
1303 list makes sense.
1304
1305
1306 [[core-concepts]]
1307 == [[understanding-lttng]]Core concepts
1308
1309 From a user's perspective, the LTTng system is built on a few concepts,
1310 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1311 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1312 Understanding how those objects relate to eachother is key in mastering
1313 the toolkit.
1314
1315 The core concepts are:
1316
1317 * <<tracing-session,Tracing session>>
1318 * <<domain,Tracing domain>>
1319 * <<channel,Channel and ring buffer>>
1320 * <<"event","Instrumentation point, event rule, event, and event record">>
1321
1322
1323 [[tracing-session]]
1324 === Tracing session
1325
1326 A _tracing session_ is a stateful dialogue between you and
1327 a <<lttng-sessiond,session daemon>>. You can
1328 <<creating-destroying-tracing-sessions,create a new tracing
1329 session>> with the `lttng create` command.
1330
1331 Anything that you do when you control LTTng tracers happens within a
1332 tracing session. In particular, a tracing session:
1333
1334 * Has its own name.
1335 * Has its own set of trace files.
1336 * Has its own state of activity (started or stopped).
1337 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1338 snapshot, or live).
1339 * Has its own <<channel,channels>> which have their own
1340 <<event,event rules>>.
1341
1342 [role="img-100"]
1343 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1344 image::concepts.png[]
1345
1346 Those attributes and objects are completely isolated between different
1347 tracing sessions.
1348
1349 A tracing session is analogous to a cash machine session:
1350 the operations you do on the banking system through the cash machine do
1351 not alter the data of other users of the same system. In the case of
1352 the cash machine, a session lasts as long as your bank card is inside.
1353 In the case of LTTng, a tracing session lasts from the `lttng create`
1354 command to the `lttng destroy` command.
1355
1356 [role="img-100"]
1357 .Each Unix user has its own set of tracing sessions.
1358 image::many-sessions.png[]
1359
1360
1361 [[tracing-session-mode]]
1362 ==== Tracing session mode
1363
1364 LTTng can send the generated trace data to different locations. The
1365 _tracing session mode_ dictates where to send it. The following modes
1366 are available in LTTng{nbsp}{revision}:
1367
1368 Local mode::
1369 LTTng writes the traces to the file system of the machine being traced
1370 (target system).
1371
1372 Network streaming mode::
1373 LTTng sends the traces over the network to a
1374 <<lttng-relayd,relay daemon>> running on a remote system.
1375
1376 Snapshot mode::
1377 LTTng does not write the traces by default. Instead, you can request
1378 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1379 current tracing buffers, and to write it to the target's file system
1380 or to send it over the network to a <<lttng-relayd,relay daemon>>
1381 running on a remote system.
1382
1383 Live mode::
1384 This mode is similar to the network streaming mode, but a live
1385 trace viewer can connect to the distant relay daemon to
1386 <<lttng-live,view event records as LTTng generates them>> by
1387 the tracers.
1388
1389
1390 [[domain]]
1391 === Tracing domain
1392
1393 A _tracing domain_ is a namespace for event sources. A tracing domain
1394 has its own properties and features.
1395
1396 There are currently five available tracing domains:
1397
1398 * Linux kernel
1399 * User space
1400 * `java.util.logging` (JUL)
1401 * log4j
1402 * Python
1403
1404 You must specify a tracing domain when using some commands to avoid
1405 ambiguity. For example, since all the domains support named tracepoints
1406 as event sources (instrumentation points that you manually insert in the
1407 source code), you need to specify a tracing domain when
1408 <<enabling-disabling-events,creating an event rule>> because all the
1409 tracing domains could have tracepoints with the same names.
1410
1411 Some features are reserved to specific tracing domains. Dynamic function
1412 entry and return instrumentation points, for example, are currently only
1413 supported in the Linux kernel tracing domain, but support for other
1414 tracing domains could be added in the future.
1415
1416 You can create <<channel,channels>> in the Linux kernel and user space
1417 tracing domains. The other tracing domains have a single default
1418 channel.
1419
1420
1421 [[channel]]
1422 === Channel and ring buffer
1423
1424 A _channel_ is an object which is responsible for a set of ring buffers.
1425 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1426 tracer emits an event, it can record it to one or more
1427 sub-buffers. The attributes of a channel determine what to do when
1428 there's no space left for a new event record because all sub-buffers
1429 are full, where to send a full sub-buffer, and other behaviours.
1430
1431 A channel is always associated to a <<domain,tracing domain>>. The
1432 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1433 a default channel which you cannot configure.
1434
1435 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1436 an event, it records it to the sub-buffers of all
1437 the enabled channels with a satisfied event rule, as long as those
1438 channels are part of active <<tracing-session,tracing sessions>>.
1439
1440
1441 [[channel-buffering-schemes]]
1442 ==== Per-user vs. per-process buffering schemes
1443
1444 A channel has at least one ring buffer _per CPU_. LTTng always
1445 records an event to the ring buffer associated to the CPU on which it
1446 occurred.
1447
1448 Two _buffering schemes_ are available when you
1449 <<enabling-disabling-channels,create a channel>> in the
1450 user space <<domain,tracing domain>>:
1451
1452 Per-user buffering::
1453 Allocate one set of ring buffers--one per CPU--shared by all the
1454 instrumented processes of each Unix user.
1455 +
1456 --
1457 [role="img-100"]
1458 .Per-user buffering scheme.
1459 image::per-user-buffering.png[]
1460 --
1461
1462 Per-process buffering::
1463 Allocate one set of ring buffers--one per CPU--for each
1464 instrumented process.
1465 +
1466 --
1467 [role="img-100"]
1468 .Per-process buffering scheme.
1469 image::per-process-buffering.png[]
1470 --
1471 +
1472 The per-process buffering scheme tends to consume more memory than the
1473 per-user option because systems generally have more instrumented
1474 processes than Unix users running instrumented processes. However, the
1475 per-process buffering scheme ensures that one process having a high
1476 event throughput won't fill all the shared sub-buffers of the same
1477 user, only its own.
1478
1479 The Linux kernel tracing domain has only one available buffering scheme
1480 which is to allocate a single set of ring buffers for the whole system.
1481 This scheme is similar to the per-user option, but with a single, global
1482 user "running" the kernel.
1483
1484
1485 [[channel-overwrite-mode-vs-discard-mode]]
1486 ==== Overwrite vs. discard event loss modes
1487
1488 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1489 arc in the following animation) of a specific channel's ring buffer.
1490 When there's no space left in a sub-buffer, the tracer marks it as
1491 consumable (red) and another, empty sub-buffer starts receiving the
1492 following event records. A <<lttng-consumerd,consumer daemon>>
1493 eventually consumes the marked sub-buffer (returns to white).
1494
1495 [NOTE]
1496 [role="docsvg-channel-subbuf-anim"]
1497 ====
1498 {note-no-anim}
1499 ====
1500
1501 In an ideal world, sub-buffers are consumed faster than they are filled,
1502 as is the case in the previous animation. In the real world,
1503 however, all sub-buffers can be full at some point, leaving no space to
1504 record the following events.
1505
1506 By design, LTTng is a _non-blocking_ tracer: when no empty sub-buffer is
1507 available, it is acceptable to lose event records when the alternative
1508 would be to cause substantial delays in the instrumented application's
1509 execution. LTTng privileges performance over integrity; it aims at
1510 perturbing the traced system as little as possible in order to make
1511 tracing of subtle race conditions and rare interrupt cascades possible.
1512
1513 When it comes to losing event records because no empty sub-buffer is
1514 available, the channel's _event loss mode_ determines what to do. The
1515 available event loss modes are:
1516
1517 Discard mode::
1518 Drop the newest event records until a the tracer
1519 releases a sub-buffer.
1520
1521 Overwrite mode::
1522 Clear the sub-buffer containing the oldest event records and start
1523 writing the newest event records there.
1524 +
1525 This mode is sometimes called _flight recorder mode_ because it's
1526 similar to a
1527 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1528 always keep a fixed amount of the latest data.
1529
1530 Which mechanism you should choose depends on your context: prioritize
1531 the newest or the oldest event records in the ring buffer?
1532
1533 Beware that, in overwrite mode, the tracer abandons a whole sub-buffer
1534 as soon as a there's no space left for a new event record, whereas in
1535 discard mode, the tracer only discards the event record that doesn't
1536 fit.
1537
1538 In discard mode, LTTng increments a count of lost event records when an
1539 event record is lost and saves this count to the trace. In overwrite
1540 mode, since LTTng 2.8, LTTng increments a count of lost sub-buffers when
1541 a sub-buffer is lost and saves this count to the trace. In this mode,
1542 the exact number of lost event records in those lost sub-buffers is not
1543 saved to the trace. Trace analyses can use the trace's saved discarded
1544 event record and sub-buffer counts to decide whether or not to perform
1545 the analyses even if trace data is known to be missing.
1546
1547 There are a few ways to decrease your probability of losing event
1548 records.
1549 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1550 how you can fine-une the sub-buffer count and size of a channel to
1551 virtually stop losing event records, though at the cost of greater
1552 memory usage.
1553
1554
1555 [[channel-subbuf-size-vs-subbuf-count]]
1556 ==== Sub-buffer count and size
1557
1558 When you <<enabling-disabling-channels,create a channel>>, you can
1559 set its number of sub-buffers and their size.
1560
1561 Note that there is noticeable CPU overhead introduced when
1562 switching sub-buffers (marking a full one as consumable and switching
1563 to an empty one for the following events to be recorded). Knowing this,
1564 the following list presents a few practical situations along with how
1565 to configure the sub-buffer count and size for them:
1566
1567 * **High event throughput**: In general, prefer bigger sub-buffers to
1568 lower the risk of losing event records.
1569 +
1570 Having bigger sub-buffers also ensures a lower
1571 <<channel-switch-timer,sub-buffer switching frequency>>.
1572 +
1573 The number of sub-buffers is only meaningful if you create the channel
1574 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1575 other sub-buffers are left unaltered.
1576
1577 * **Low event throughput**: In general, prefer smaller sub-buffers
1578 since the risk of losing event records is low.
1579 +
1580 Because events occur less frequently, the sub-buffer switching frequency
1581 should remain low and thus the tracer's overhead should not be a
1582 problem.
1583
1584 * **Low memory system**: If your target system has a low memory
1585 limit, prefer fewer first, then smaller sub-buffers.
1586 +
1587 Even if the system is limited in memory, you want to keep the
1588 sub-buffers as big as possible to avoid a high sub-buffer switching
1589 frequency.
1590
1591 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1592 which means event data is very compact. For example, the average
1593 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1594 sub-buffer size of 1{nbsp}MiB is considered big.
1595
1596 The previous situations highlight the major trade-off between a few big
1597 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1598 frequency vs. how much data is lost in overwrite mode. Assuming a
1599 constant event throughput and using the overwrite mode, the two
1600 following configurations have the same ring buffer total size:
1601
1602 [NOTE]
1603 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1604 ====
1605 {note-no-anim}
1606 ====
1607
1608 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1609 switching frequency, but if a sub-buffer overwrite happens, half of
1610 the event records so far (4{nbsp}MiB) are definitely lost.
1611 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1612 overhead as the previous configuration, but if a sub-buffer
1613 overwrite happens, only the eighth of event records so far are
1614 definitely lost.
1615
1616 In discard mode, the sub-buffers count parameter is pointless: use two
1617 sub-buffers and set their size according to the requirements of your
1618 situation.
1619
1620
1621 [[channel-switch-timer]]
1622 ==== Switch timer period
1623
1624 The _switch timer period_ is an important configurable attribute of
1625 a channel to ensure periodic sub-buffer flushing.
1626
1627 When the _switch timer_ expires, a sub-buffer switch happens. You can
1628 set the switch timer period attribute when you
1629 <<enabling-disabling-channels,create a channel>> to ensure that event
1630 data is consumed and committed to trace files or to a distant relay
1631 daemon periodically in case of a low event throughput.
1632
1633 [NOTE]
1634 [role="docsvg-channel-switch-timer"]
1635 ====
1636 {note-no-anim}
1637 ====
1638
1639 This attribute is also convenient when you use big sub-buffers to cope
1640 with a sporadic high event throughput, even if the throughput is
1641 normally low.
1642
1643
1644 [[channel-read-timer]]
1645 ==== Read timer period
1646
1647 By default, the LTTng tracers use a notification mechanism to signal a
1648 full sub-buffer so that a consumer daemon can consume it. When such
1649 notifications must be avoided, for example in real-time applications,
1650 you can use the channel's _read timer_ instead. When the read timer
1651 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1652 consumable sub-buffers.
1653
1654
1655 [[tracefile-rotation]]
1656 ==== Trace file count and size
1657
1658 By default, trace files can grow as large as needed. You can set the
1659 maximum size of each trace file that a channel writes when you
1660 <<enabling-disabling-channels,create a channel>>. When the size of
1661 a trace file reaches the channel's fixed maximum size, LTTng creates
1662 another file to contain the next event records. LTTng appends a file
1663 count to each trace file name in this case.
1664
1665 If you set the trace file size attribute when you create a channel, the
1666 maximum number of trace files that LTTng creates is _unlimited_ by
1667 default. To limit them, you can also set a maximum number of trace
1668 files. When the number of trace files reaches the channel's fixed
1669 maximum count, the oldest trace file is overwritten. This mechanism is
1670 called _trace file rotation_.
1671
1672
1673 [[event]]
1674 === Instrumentation point, event rule, event, and event record
1675
1676 An _event rule_ is a set of conditions which must be **all** satisfied
1677 for LTTng to record an occuring event.
1678
1679 You set the conditions when you <<enabling-disabling-events,create
1680 an event rule>>.
1681
1682 You always attach an event rule to <<channel,channel>> when you create
1683 it.
1684
1685 When an event passes the conditions of an event rule, LTTng records it
1686 in one of the attached channel's sub-buffers.
1687
1688 The available conditions, as of LTTng{nbsp}{revision}, are:
1689
1690 * The event rule _is enabled_.
1691 * The instrumentation point's type _is{nbsp}T_.
1692 * The instrumentation point's name (sometimes called _event name_)
1693 _matches{nbsp}N_, but _is not{nbsp}E_.
1694 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1695 _is exactly{nbsp}L_.
1696 * The fields of the event's payload _satisfy_ a filter
1697 expression{nbsp}__F__.
1698
1699 As you can see, all the conditions but the dynamic filter are related to
1700 the event rule's status or to the instrumentation point, not to the
1701 occurring events. This is why, without a filter, checking if an event
1702 passes an event rule is not a dynamic task: when you create or modify an
1703 event rule, all the tracers of its tracing domain enable or disable the
1704 instrumentation points themselves once. This is possible because the
1705 attributes of an instrumentation point (type, name, and log level) are
1706 defined statically. In other words, without a dynamic filter, the tracer
1707 _does not evaluate_ the arguments of an instrumentation point unless it
1708 matches an enabled event rule.
1709
1710 Note that, for LTTng to record an event, the <<channel,channel>> to
1711 which a matching event rule is attached must also be enabled, and the
1712 tracing session owning this channel must be active.
1713
1714 [role="img-100"]
1715 .Logical path from an instrumentation point to an event record.
1716 image::event-rule.png[]
1717
1718 .Event, event record, or event rule?
1719 ****
1720 With so many similar terms, it's easy to get confused.
1721
1722 An **event** is the consequence of the execution of an _instrumentation
1723 point_, like a tracepoint that you manually place in some source code,
1724 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1725 time. Different actions can be taken upon the occurrence of an event,
1726 like record the event's payload to a buffer.
1727
1728 An **event record** is the representation of an event in a sub-buffer. A
1729 tracer is responsible for capturing the payload of an event, current
1730 context variables, the event's ID, and the event's timestamp. LTTng
1731 can append this sub-buffer to a trace file.
1732
1733 An **event rule** is a set of conditions which must all be satisfied for
1734 LTTng to record an occuring event. Events still occur without
1735 satisfying event rules, but LTTng does not record them.
1736 ****
1737
1738
1739 [[plumbing]]
1740 == Components of noch:{LTTng}
1741
1742 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1743 to call LTTng a simple _tool_ since it is composed of multiple
1744 interacting components. This section describes those components,
1745 explains their respective roles, and shows how they connect together to
1746 form the LTTng ecosystem.
1747
1748 The following diagram shows how the most important components of LTTng
1749 interact with user applications, the Linux kernel, and you:
1750
1751 [role="img-100"]
1752 .Control and trace data paths between LTTng components.
1753 image::plumbing.png[]
1754
1755 The LTTng project incorporates:
1756
1757 * **LTTng-tools**: Libraries and command-line interface to
1758 control tracing sessions.
1759 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1760 ** <<lttng-consumerd,Consumer daemon>> (man:lttng-consumerd(8)).
1761 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1762 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1763 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1764 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1765 applications.
1766 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1767 headers to instrument and trace any native user application.
1768 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1769 *** `liblttng-ust-libc-wrapper`
1770 *** `liblttng-ust-pthread-wrapper`
1771 *** `liblttng-ust-cyg-profile`
1772 *** `liblttng-ust-cyg-profile-fast`
1773 *** `liblttng-ust-dl`
1774 ** User space tracepoint provider source files generator command-line
1775 tool (man:lttng-gen-tp(1)).
1776 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1777 Java applications using `java.util.logging` or
1778 Apache log4j 1.2 logging.
1779 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1780 Python applications using the standard `logging` package.
1781 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1782 the kernel.
1783 ** LTTng kernel tracer module.
1784 ** Tracing ring buffer kernel modules.
1785 ** Probe kernel modules.
1786 ** LTTng logger kernel module.
1787
1788
1789 [[lttng-cli]]
1790 === Tracing control command-line interface
1791
1792 [role="img-100"]
1793 .The tracing control command-line interface.
1794 image::plumbing-lttng-cli.png[]
1795
1796 The _man:lttng(1) command-line tool_ is the standard user interface to
1797 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1798 is part of LTTng-tools.
1799
1800 The cmd:lttng tool is linked with
1801 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1802 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1803
1804 The cmd:lttng tool has a Git-like interface:
1805
1806 [role="term"]
1807 ----
1808 $ lttng <GENERAL OPTIONS> <COMMAND> <COMMAND OPTIONS>
1809 ----
1810
1811 The <<controlling-tracing,Tracing control>> section explores the
1812 available features of LTTng using the cmd:lttng tool.
1813
1814
1815 [[liblttng-ctl-lttng]]
1816 === Tracing control library
1817
1818 [role="img-100"]
1819 .The tracing control library.
1820 image::plumbing-liblttng-ctl.png[]
1821
1822 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1823 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1824 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1825
1826 The <<lttng-cli,cmd:lttng command-line tool>>
1827 is linked with `liblttng-ctl`.
1828
1829 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1830 "master" header:
1831
1832 [source,c]
1833 ----
1834 #include <lttng/lttng.h>
1835 ----
1836
1837 Some objects are referenced by name (C string), such as tracing
1838 sessions, but most of them require to create a handle first using
1839 `lttng_create_handle()`.
1840
1841 The best available developer documentation for `liblttng-ctl` is, as of
1842 LTTng{nbsp}{revision}, its installed header files. Every function and
1843 structure is thoroughly documented.
1844
1845
1846 [[lttng-ust]]
1847 === User space tracing library
1848
1849 [role="img-100"]
1850 .The user space tracing library.
1851 image::plumbing-liblttng-ust.png[]
1852
1853 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1854 is the LTTng user space tracer. It receives commands from a
1855 <<lttng-sessiond,session daemon>>, for example to
1856 enable and disable specific instrumentation points, and writes event
1857 records to ring buffers shared with a
1858 <<lttng-consumerd,consumer daemon>>.
1859 `liblttng-ust` is part of LTTng-UST.
1860
1861 Public C header files are installed beside `liblttng-ust` to
1862 instrument any <<c-application,C or $$C++$$ application>>.
1863
1864 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1865 packages, use their own library providing tracepoints which is
1866 linked with `liblttng-ust`.
1867
1868 An application or library does not have to initialize `liblttng-ust`
1869 manually: its constructor does the necessary tasks to properly register
1870 to a session daemon. The initialization phase also enables the
1871 instrumentation points matching the <<event,event rules>> that you
1872 already created.
1873
1874
1875 [[lttng-ust-agents]]
1876 === User space tracing agents
1877
1878 [role="img-100"]
1879 .The user space tracing agents.
1880 image::plumbing-lttng-ust-agents.png[]
1881
1882 The _LTTng-UST Java and Python agents_ are regular Java and Python
1883 packages which add LTTng tracing capabilities to the
1884 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1885
1886 In the case of Java, the
1887 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1888 core logging facilities] and
1889 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1890 Note that Apache Log4{nbsp}2 is not supported.
1891
1892 In the case of Python, the standard
1893 https://docs.python.org/3/library/logging.html[`logging`] package
1894 is supported. Both Python 2 and Python 3 modules can import the
1895 LTTng-UST Python agent package.
1896
1897 The applications using the LTTng-UST agents are in the
1898 `java.util.logging` (JUL),
1899 log4j, and Python <<domain,tracing domains>>.
1900
1901 Both agents use the same mechanism to trace the log statements. When an
1902 agent is initialized, it creates a log handler that attaches to the root
1903 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1904 When the application executes a log statement, it is passed to the
1905 agent's log handler by the root logger. The agent's log handler calls a
1906 native function in a tracepoint provider package shared library linked
1907 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1908 other fields, like its logger name and its log level. This native
1909 function contains a user space instrumentation point, hence tracing the
1910 log statement.
1911
1912 The log level condition of an
1913 <<event,event rule>> is considered when tracing
1914 a Java or a Python application, and it's compatible with the standard
1915 JUL, log4j, and Python log levels.
1916
1917
1918 [[lttng-modules]]
1919 === LTTng kernel modules
1920
1921 [role="img-100"]
1922 .The LTTng kernel modules.
1923 image::plumbing-lttng-modules.png[]
1924
1925 The _LTTng kernel modules_ are a set of Linux kernel modules
1926 which implement the kernel tracer of the LTTng project. The LTTng
1927 kernel modules are part of LTTng-modules.
1928
1929 The LTTng kernel modules include:
1930
1931 * A set of _probe_ modules.
1932 +
1933 Each module attaches to a specific subsystem
1934 of the Linux kernel using its tracepoint instrument points. There are
1935 also modules to attach to the entry and return points of the Linux
1936 system call functions.
1937
1938 * _Ring buffer_ modules.
1939 +
1940 A ring buffer implementation is provided as kernel modules. The LTTng
1941 kernel tracer writes to the ring buffer; a
1942 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1943
1944 * The _LTTng kernel tracer_ module.
1945 * The _LTTng logger_ module.
1946 +
1947 The LTTng logger module implements the special path:{/proc/lttng-logger}
1948 file so that any executable can generate LTTng events by opening and
1949 writing to this file.
1950 +
1951 See <<proc-lttng-logger-abi,LTTng logger>>.
1952
1953 Generally, you do not have to load the LTTng kernel modules manually
1954 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1955 daemon>> loads the necessary modules when starting. If you have extra
1956 probe modules, you can specify to load them to the session daemon on
1957 the command line.
1958
1959 The LTTng kernel modules are installed in
1960 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1961 the kernel release (see `uname --kernel-release`).
1962
1963
1964 [[lttng-sessiond]]
1965 === Session daemon
1966
1967 [role="img-100"]
1968 .The session daemon.
1969 image::plumbing-sessiond.png[]
1970
1971 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1972 managing tracing sessions and for controlling the various components of
1973 LTTng. The session daemon is part of LTTng-tools.
1974
1975 The session daemon sends control requests to and receives control
1976 responses from:
1977
1978 * The <<lttng-ust,user space tracing library>>.
1979 +
1980 Any instance of the user space tracing library first registers to
1981 a session daemon. Then, the session daemon can send requests to
1982 this instance, such as:
1983 +
1984 --
1985 ** Get the list of tracepoints.
1986 ** Share an <<event,event rule>> so that the user space tracing library
1987 can enable or disable tracepoints. Amongst the possible conditions
1988 of an event rule is a filter expression which `liblttng-ust` evalutes
1989 when an event occurs.
1990 ** Share <<channel,channel>> attributes and ring buffer locations.
1991 --
1992 +
1993 The session daemon and the user space tracing library use a Unix
1994 domain socket for their communication.
1995
1996 * The <<lttng-ust-agents,user space tracing agents>>.
1997 +
1998 Any instance of a user space tracing agent first registers to
1999 a session daemon. Then, the session daemon can send requests to
2000 this instance, such as:
2001 +
2002 --
2003 ** Get the list of loggers.
2004 ** Enable or disable a specific logger.
2005 --
2006 +
2007 The session daemon and the user space tracing agent use a TCP connection
2008 for their communication.
2009
2010 * The <<lttng-modules,LTTng kernel tracer>>.
2011 * The <<lttng-consumerd,consumer daemon>>.
2012 +
2013 The session daemon sends requests to the consumer daemon to instruct
2014 it where to send the trace data streams, amongst other information.
2015
2016 * The <<lttng-relayd,relay daemon>>.
2017
2018 The session daemon receives commands from the
2019 <<liblttng-ctl-lttng,tracing control library>>.
2020
2021 The root session daemon loads the appropriate
2022 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
2023 a <<lttng-consumerd,consumer daemon>> as soon as you create
2024 an <<event,event rule>>.
2025
2026 The session daemon does not send and receive trace data: this is the
2027 role of the <<lttng-consumerd,consumer daemon>> and
2028 <<lttng-relayd,relay daemon>>. It does, however, generate the
2029 http://diamon.org/ctf/[CTF] metadata stream.
2030
2031 Each Unix user can have its own session daemon instance. The
2032 tracing sessions managed by different session daemons are completely
2033 independent.
2034
2035 The root user's session daemon is the only one which is
2036 allowed to control the LTTng kernel tracer, and its spawned consumer
2037 daemon is the only one which is allowed to consume trace data from the
2038 LTTng kernel tracer. Note, however, that any Unix user which is a member
2039 of the <<tracing-group,tracing group>> is allowed
2040 to create <<channel,channels>> in the
2041 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
2042 kernel.
2043
2044 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
2045 session daemon when using its `create` command if none is currently
2046 running. You can also start the session daemon manually.
2047
2048
2049 [[lttng-consumerd]]
2050 === Consumer daemon
2051
2052 [role="img-100"]
2053 .The consumer daemon.
2054 image::plumbing-consumerd.png[]
2055
2056 The _consumer daemon_, man:lttng-consumerd(8), is a daemon which shares
2057 ring buffers with user applications or with the LTTng kernel modules to
2058 collect trace data and send it to some location (on disk or to a
2059 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
2060 is part of LTTng-tools.
2061
2062 You do not start a consumer daemon manually: a consumer daemon is always
2063 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
2064 <<event,event rule>>, that is, before you start tracing. When you kill
2065 its owner session daemon, the consumer daemon also exits because it is
2066 the session daemon's child process. Command-line options of
2067 man:lttng-sessiond(8) target the consumer daemon process.
2068
2069 There are up to two running consumer daemons per Unix user, whereas only
2070 one session daemon can run per user. This is because each process can be
2071 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
2072 and 64-bit processes, it is more efficient to have separate
2073 corresponding 32-bit and 64-bit consumer daemons. The root user is an
2074 exception: it can have up to _three_ running consumer daemons: 32-bit
2075 and 64-bit instances for its user applications, and one more
2076 reserved for collecting kernel trace data.
2077
2078
2079 [[lttng-relayd]]
2080 === Relay daemon
2081
2082 [role="img-100"]
2083 .The relay daemon.
2084 image::plumbing-relayd.png[]
2085
2086 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
2087 between remote session and consumer daemons, local trace files, and a
2088 remote live trace viewer. The relay daemon is part of LTTng-tools.
2089
2090 The main purpose of the relay daemon is to implement a receiver of
2091 <<sending-trace-data-over-the-network,trace data over the network>>.
2092 This is useful when the target system does not have much file system
2093 space to record trace files locally.
2094
2095 The relay daemon is also a server to which a
2096 <<lttng-live,live trace viewer>> can
2097 connect. The live trace viewer sends requests to the relay daemon to
2098 receive trace data as the target system emits events. The
2099 communication protocol is named _LTTng live_; it is used over TCP
2100 connections.
2101
2102 Note that you can start the relay daemon on the target system directly.
2103 This is the setup of choice when the use case is to view events as
2104 the target system emits them without the need of a remote system.
2105
2106
2107 [[instrumenting]]
2108 == [[using-lttng]]Instrumentation
2109
2110 There are many examples of tracing and monitoring in our everyday life:
2111
2112 * You have access to real-time and historical weather reports and
2113 forecasts thanks to weather stations installed around the country.
2114 * You know your heart is safe thanks to an electrocardiogram.
2115 * You make sure not to drive your car too fast and to have enough fuel
2116 to reach your destination thanks to gauges visible on your dashboard.
2117
2118 All the previous examples have something in common: they rely on
2119 **instruments**. Without the electrodes attached to the surface of your
2120 body's skin, cardiac monitoring is futile.
2121
2122 LTTng, as a tracer, is no different from those real life examples. If
2123 you're about to trace a software system or, in other words, record its
2124 history of execution, you better have **instrumentation points** in the
2125 subject you're tracing, that is, the actual software.
2126
2127 Various ways were developed to instrument a piece of software for LTTng
2128 tracing. The most straightforward one is to manually place
2129 instrumentation points, called _tracepoints_, in the software's source
2130 code. It is also possible to add instrumentation points dynamically in
2131 the Linux kernel <<domain,tracing domain>>.
2132
2133 If you're only interested in tracing the Linux kernel, your
2134 instrumentation needs are probably already covered by LTTng's built-in
2135 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
2136 user application which is already instrumented for LTTng tracing.
2137 In such cases, you can skip this whole section and read the topics of
2138 the <<controlling-tracing,Tracing control>> section.
2139
2140 Many methods are available to instrument a piece of software for LTTng
2141 tracing. They are:
2142
2143 * <<c-application,User space instrumentation for C and $$C++$$
2144 applications>>.
2145 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
2146 * <<java-application,User space Java agent>>.
2147 * <<python-application,User space Python agent>>.
2148 * <<proc-lttng-logger-abi,LTTng logger>>.
2149 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
2150
2151
2152 [[c-application]]
2153 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
2154
2155 The procedure to instrument a C or $$C++$$ user application with
2156 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
2157
2158 . <<tracepoint-provider,Create the source files of a tracepoint provider
2159 package>>.
2160 . <<probing-the-application-source-code,Add tracepoints to
2161 the application's source code>>.
2162 . <<building-tracepoint-providers-and-user-application,Build and link
2163 a tracepoint provider package and the user application>>.
2164
2165 If you need quick, man:printf(3)-like instrumentation, you can skip
2166 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
2167 instead.
2168
2169 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
2170 instrument a user application with `liblttng-ust`.
2171
2172
2173 [[tracepoint-provider]]
2174 ==== Create the source files of a tracepoint provider package
2175
2176 A _tracepoint provider_ is a set of compiled functions which provide
2177 **tracepoints** to an application, the type of instrumentation point
2178 supported by LTTng-UST. Those functions can emit events with
2179 user-defined fields and serialize those events as event records to one
2180 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
2181 macro, which you <<probing-the-application-source-code,insert in a user
2182 application's source code>>, calls those functions.
2183
2184 A _tracepoint provider package_ is an object file (`.o`) or a shared
2185 library (`.so`) which contains one or more tracepoint providers.
2186 Its source files are:
2187
2188 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
2189 * A <<tpp-source,tracepoint provider package source>> (`.c`).
2190
2191 A tracepoint provider package is dynamically linked with `liblttng-ust`,
2192 the LTTng user space tracer, at run time.
2193
2194 [role="img-100"]
2195 .User application linked with `liblttng-ust` and containing a tracepoint provider.
2196 image::ust-app.png[]
2197
2198 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
2199 skip creating and using a tracepoint provider and use
2200 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
2201
2202
2203 [[tpp-header]]
2204 ===== Create a tracepoint provider header file template
2205
2206 A _tracepoint provider header file_ contains the tracepoint
2207 definitions of a tracepoint provider.
2208
2209 To create a tracepoint provider header file:
2210
2211 . Start from this template:
2212 +
2213 --
2214 [source,c]
2215 .Tracepoint provider header file template (`.h` file extension).
2216 ----
2217 #undef TRACEPOINT_PROVIDER
2218 #define TRACEPOINT_PROVIDER provider_name
2219
2220 #undef TRACEPOINT_INCLUDE
2221 #define TRACEPOINT_INCLUDE "./tp.h"
2222
2223 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2224 #define _TP_H
2225
2226 #include <lttng/tracepoint.h>
2227
2228 /*
2229 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2230 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2231 */
2232
2233 #endif /* _TP_H */
2234
2235 #include <lttng/tracepoint-event.h>
2236 ----
2237 --
2238
2239 . Replace:
2240 +
2241 * `provider_name` with the name of your tracepoint provider.
2242 * `"tp.h"` with the name of your tracepoint provider header file.
2243
2244 . Below the `#include <lttng/tracepoint.h>` line, put your
2245 <<defining-tracepoints,tracepoint definitions>>.
2246
2247 Your tracepoint provider name must be unique amongst all the possible
2248 tracepoint provider names used on the same target system. We
2249 suggest to include the name of your project or company in the name,
2250 for example, `org_lttng_my_project_tpp`.
2251
2252 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2253 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2254 write are the <<defining-tracepoints,tracepoint definitions>>.
2255
2256
2257 [[defining-tracepoints]]
2258 ===== Create a tracepoint definition
2259
2260 A _tracepoint definition_ defines, for a given tracepoint:
2261
2262 * Its **input arguments**. They are the macro parameters that the
2263 `tracepoint()` macro accepts for this particular tracepoint
2264 in the user application's source code.
2265 * Its **output event fields**. They are the sources of event fields
2266 that form the payload of any event that the execution of the
2267 `tracepoint()` macro emits for this particular tracepoint.
2268
2269 You can create a tracepoint definition by using the
2270 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2271 line in the
2272 <<tpp-header,tracepoint provider header file template>>.
2273
2274 The syntax of the `TRACEPOINT_EVENT()` macro is:
2275
2276 [source,c]
2277 .`TRACEPOINT_EVENT()` macro syntax.
2278 ----
2279 TRACEPOINT_EVENT(
2280 /* Tracepoint provider name */
2281 provider_name,
2282
2283 /* Tracepoint name */
2284 tracepoint_name,
2285
2286 /* Input arguments */
2287 TP_ARGS(
2288 arguments
2289 ),
2290
2291 /* Output event fields */
2292 TP_FIELDS(
2293 fields
2294 )
2295 )
2296 ----
2297
2298 Replace:
2299
2300 * `provider_name` with your tracepoint provider name.
2301 * `tracepoint_name` with your tracepoint name.
2302 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2303 * `fields` with the <<tpp-def-output-fields,output event field>>
2304 definitions.
2305
2306 This tracepoint emits events named `provider_name:tracepoint_name`.
2307
2308 [IMPORTANT]
2309 .Event name's length limitation
2310 ====
2311 The concatenation of the tracepoint provider name and the
2312 tracepoint name must not exceed **254 characters**. If it does, the
2313 instrumented application compiles and runs, but LTTng throws multiple
2314 warnings and you could experience serious issues.
2315 ====
2316
2317 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2318
2319 [source,c]
2320 .`TP_ARGS()` macro syntax.
2321 ----
2322 TP_ARGS(
2323 type, arg_name
2324 )
2325 ----
2326
2327 Replace:
2328
2329 * `type` with the C type of the argument.
2330 * `arg_name` with the argument name.
2331
2332 You can repeat `type` and `arg_name` up to 10 times to have
2333 more than one argument.
2334
2335 .`TP_ARGS()` usage with three arguments.
2336 ====
2337 [source,c]
2338 ----
2339 TP_ARGS(
2340 int, count,
2341 float, ratio,
2342 const char*, query
2343 )
2344 ----
2345 ====
2346
2347 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2348 tracepoint definition with no input arguments.
2349
2350 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2351 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2352 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2353 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2354 one event field.
2355
2356 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2357 C expression that the tracer evalutes at the `tracepoint()` macro site
2358 in the application's source code. This expression provides a field's
2359 source of data. The argument expression can include input argument names
2360 listed in the `TP_ARGS()` macro.
2361
2362 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2363 must be unique within a given tracepoint definition.
2364
2365 Here's a complete tracepoint definition example:
2366
2367 .Tracepoint definition.
2368 ====
2369 The following tracepoint definition defines a tracepoint which takes
2370 three input arguments and has four output event fields.
2371
2372 [source,c]
2373 ----
2374 #include "my-custom-structure.h"
2375
2376 TRACEPOINT_EVENT(
2377 my_provider,
2378 my_tracepoint,
2379 TP_ARGS(
2380 const struct my_custom_structure*, my_custom_structure,
2381 float, ratio,
2382 const char*, query
2383 ),
2384 TP_FIELDS(
2385 ctf_string(query_field, query)
2386 ctf_float(double, ratio_field, ratio)
2387 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2388 ctf_integer(int, send_size, my_custom_structure->send_size)
2389 )
2390 )
2391 ----
2392
2393 You can refer to this tracepoint definition with the `tracepoint()`
2394 macro in your application's source code like this:
2395
2396 [source,c]
2397 ----
2398 tracepoint(my_provider, my_tracepoint,
2399 my_structure, some_ratio, the_query);
2400 ----
2401 ====
2402
2403 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2404 if they satisfy an enabled <<event,event rule>>.
2405
2406
2407 [[using-tracepoint-classes]]
2408 ===== Use a tracepoint class
2409
2410 A _tracepoint class_ is a class of tracepoints which share the same
2411 output event field definitions. A _tracepoint instance_ is one
2412 instance of such a defined tracepoint class, with its own tracepoint
2413 name.
2414
2415 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2416 shorthand which defines both a tracepoint class and a tracepoint
2417 instance at the same time.
2418
2419 When you build a tracepoint provider package, the C or $$C++$$ compiler
2420 creates one serialization function for each **tracepoint class**. A
2421 serialization function is responsible for serializing the event fields
2422 of a tracepoint to a sub-buffer when tracing.
2423
2424 For various performance reasons, when your situation requires multiple
2425 tracepoint definitions with different names, but with the same event
2426 fields, we recommend that you manually create a tracepoint class
2427 and instantiate as many tracepoint instances as needed. One positive
2428 effect of such a design, amongst other advantages, is that all
2429 tracepoint instances of the same tracepoint class reuse the same
2430 serialization function, thus reducing
2431 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2432
2433 .Use a tracepoint class and tracepoint instances.
2434 ====
2435 Consider the following three tracepoint definitions:
2436
2437 [source,c]
2438 ----
2439 TRACEPOINT_EVENT(
2440 my_app,
2441 get_account,
2442 TP_ARGS(
2443 int, userid,
2444 size_t, len
2445 ),
2446 TP_FIELDS(
2447 ctf_integer(int, userid, userid)
2448 ctf_integer(size_t, len, len)
2449 )
2450 )
2451
2452 TRACEPOINT_EVENT(
2453 my_app,
2454 get_settings,
2455 TP_ARGS(
2456 int, userid,
2457 size_t, len
2458 ),
2459 TP_FIELDS(
2460 ctf_integer(int, userid, userid)
2461 ctf_integer(size_t, len, len)
2462 )
2463 )
2464
2465 TRACEPOINT_EVENT(
2466 my_app,
2467 get_transaction,
2468 TP_ARGS(
2469 int, userid,
2470 size_t, len
2471 ),
2472 TP_FIELDS(
2473 ctf_integer(int, userid, userid)
2474 ctf_integer(size_t, len, len)
2475 )
2476 )
2477 ----
2478
2479 In this case, we create three tracepoint classes, with one implicit
2480 tracepoint instance for each of them: `get_account`, `get_settings`, and
2481 `get_transaction`. However, they all share the same event field names
2482 and types. Hence three identical, yet independent serialization
2483 functions are created when you build the tracepoint provider package.
2484
2485 A better design choice is to define a single tracepoint class and three
2486 tracepoint instances:
2487
2488 [source,c]
2489 ----
2490 /* The tracepoint class */
2491 TRACEPOINT_EVENT_CLASS(
2492 /* Tracepoint provider name */
2493 my_app,
2494
2495 /* Tracepoint class name */
2496 my_class,
2497
2498 /* Input arguments */
2499 TP_ARGS(
2500 int, userid,
2501 size_t, len
2502 ),
2503
2504 /* Output event fields */
2505 TP_FIELDS(
2506 ctf_integer(int, userid, userid)
2507 ctf_integer(size_t, len, len)
2508 )
2509 )
2510
2511 /* The tracepoint instances */
2512 TRACEPOINT_EVENT_INSTANCE(
2513 /* Tracepoint provider name */
2514 my_app,
2515
2516 /* Tracepoint class name */
2517 my_class,
2518
2519 /* Tracepoint name */
2520 get_account,
2521
2522 /* Input arguments */
2523 TP_ARGS(
2524 int, userid,
2525 size_t, len
2526 )
2527 )
2528 TRACEPOINT_EVENT_INSTANCE(
2529 my_app,
2530 my_class,
2531 get_settings,
2532 TP_ARGS(
2533 int, userid,
2534 size_t, len
2535 )
2536 )
2537 TRACEPOINT_EVENT_INSTANCE(
2538 my_app,
2539 my_class,
2540 get_transaction,
2541 TP_ARGS(
2542 int, userid,
2543 size_t, len
2544 )
2545 )
2546 ----
2547 ====
2548
2549
2550 [[assigning-log-levels]]
2551 ===== Assign a log level to a tracepoint definition
2552
2553 You can assign an optional _log level_ to a
2554 <<defining-tracepoints,tracepoint definition>>.
2555
2556 Assigning different levels of severity to tracepoint definitions can
2557 be useful: when you <<enabling-disabling-events,create an event rule>>,
2558 you can target tracepoints having a log level as severe as a specific
2559 value.
2560
2561 The concept of LTTng-UST log levels is similar to the levels found
2562 in typical logging frameworks:
2563
2564 * In a logging framework, the log level is given by the function
2565 or method name you use at the log statement site: `debug()`,
2566 `info()`, `warn()`, `error()`, and so on.
2567 * In LTTng-UST, you statically assign the log level to a tracepoint
2568 definition; any `tracepoint()` macro invocation which refers to
2569 this definition has this log level.
2570
2571 You can assign a log level to a tracepoint definition with the
2572 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2573 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2574 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2575 tracepoint.
2576
2577 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2578
2579 [source,c]
2580 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2581 ----
2582 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2583 ----
2584
2585 Replace:
2586
2587 * `provider_name` with the tracepoint provider name.
2588 * `tracepoint_name` with the tracepoint name.
2589 * `log_level` with the log level to assign to the tracepoint
2590 definition named `tracepoint_name` in the `provider_name`
2591 tracepoint provider.
2592 +
2593 See man:lttng-ust(3) for a list of available log level names.
2594
2595 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2596 ====
2597 [source,c]
2598 ----
2599 /* Tracepoint definition */
2600 TRACEPOINT_EVENT(
2601 my_app,
2602 get_transaction,
2603 TP_ARGS(
2604 int, userid,
2605 size_t, len
2606 ),
2607 TP_FIELDS(
2608 ctf_integer(int, userid, userid)
2609 ctf_integer(size_t, len, len)
2610 )
2611 )
2612
2613 /* Log level assignment */
2614 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2615 ----
2616 ====
2617
2618
2619 [[tpp-source]]
2620 ===== Create a tracepoint provider package source file
2621
2622 A _tracepoint provider package source file_ is a C source file which
2623 includes a <<tpp-header,tracepoint provider header file>> to expand its
2624 macros into event serialization and other functions.
2625
2626 You can always use the following tracepoint provider package source
2627 file template:
2628
2629 [source,c]
2630 .Tracepoint provider package source file template.
2631 ----
2632 #define TRACEPOINT_CREATE_PROBES
2633
2634 #include "tp.h"
2635 ----
2636
2637 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2638 header file>> name. You may also include more than one tracepoint
2639 provider header file here to create a tracepoint provider package
2640 holding more than one tracepoint providers.
2641
2642
2643 [[probing-the-application-source-code]]
2644 ==== Add tracepoints to an application's source code
2645
2646 Once you <<tpp-header,create a tracepoint provider header file>>, you
2647 can use the `tracepoint()` macro in your application's
2648 source code to insert the tracepoints that this header
2649 <<defining-tracepoints,defines>>.
2650
2651 The `tracepoint()` macro takes at least two parameters: the tracepoint
2652 provider name and the tracepoint name. The corresponding tracepoint
2653 definition defines the other parameters.
2654
2655 .`tracepoint()` usage.
2656 ====
2657 The following <<defining-tracepoints,tracepoint definition>> defines a
2658 tracepoint which takes two input arguments and has two output event
2659 fields.
2660
2661 [source,c]
2662 .Tracepoint provider header file.
2663 ----
2664 #include "my-custom-structure.h"
2665
2666 TRACEPOINT_EVENT(
2667 my_provider,
2668 my_tracepoint,
2669 TP_ARGS(
2670 int, argc,
2671 const char*, cmd_name
2672 ),
2673 TP_FIELDS(
2674 ctf_string(cmd_name, cmd_name)
2675 ctf_integer(int, number_of_args, argc)
2676 )
2677 )
2678 ----
2679
2680 You can refer to this tracepoint definition with the `tracepoint()`
2681 macro in your application's source code like this:
2682
2683 [source,c]
2684 .Application's source file.
2685 ----
2686 #include "tp.h"
2687
2688 int main(int argc, char* argv[])
2689 {
2690 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2691
2692 return 0;
2693 }
2694 ----
2695
2696 Note how the application's source code includes
2697 the tracepoint provider header file containing the tracepoint
2698 definitions to use, path:{tp.h}.
2699 ====
2700
2701 .`tracepoint()` usage with a complex tracepoint definition.
2702 ====
2703 Consider this complex tracepoint definition, where multiple event
2704 fields refer to the same input arguments in their argument expression
2705 parameter:
2706
2707 [source,c]
2708 .Tracepoint provider header file.
2709 ----
2710 /* For `struct stat` */
2711 #include <sys/types.h>
2712 #include <sys/stat.h>
2713 #include <unistd.h>
2714
2715 TRACEPOINT_EVENT(
2716 my_provider,
2717 my_tracepoint,
2718 TP_ARGS(
2719 int, my_int_arg,
2720 char*, my_str_arg,
2721 struct stat*, st
2722 ),
2723 TP_FIELDS(
2724 ctf_integer(int, my_constant_field, 23 + 17)
2725 ctf_integer(int, my_int_arg_field, my_int_arg)
2726 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2727 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2728 my_str_arg[2] + my_str_arg[3])
2729 ctf_string(my_str_arg_field, my_str_arg)
2730 ctf_integer_hex(off_t, size_field, st->st_size)
2731 ctf_float(double, size_dbl_field, (double) st->st_size)
2732 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2733 size_t, strlen(my_str_arg) / 2)
2734 )
2735 )
2736 ----
2737
2738 You can refer to this tracepoint definition with the `tracepoint()`
2739 macro in your application's source code like this:
2740
2741 [source,c]
2742 .Application's source file.
2743 ----
2744 #define TRACEPOINT_DEFINE
2745 #include "tp.h"
2746
2747 int main(void)
2748 {
2749 struct stat s;
2750
2751 stat("/etc/fstab", &s);
2752 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2753
2754 return 0;
2755 }
2756 ----
2757
2758 If you look at the event record that LTTng writes when tracing this
2759 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2760 it should look like this:
2761
2762 .Event record fields
2763 |====
2764 |Field's name |Field's value
2765 |`my_constant_field` |40
2766 |`my_int_arg_field` |23
2767 |`my_int_arg_field2` |529
2768 |`sum4_field` |389
2769 |`my_str_arg_field` |`Hello, World!`
2770 |`size_field` |0x12d
2771 |`size_dbl_field` |301.0
2772 |`half_my_str_arg_field` |`Hello,`
2773 |====
2774 ====
2775
2776 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2777 compute--they use the call stack, for example. To avoid this
2778 computation when the tracepoint is disabled, you can use the
2779 `tracepoint_enabled()` and `do_tracepoint()` macros.
2780
2781 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2782 is:
2783
2784 [source,c]
2785 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2786 ----
2787 tracepoint_enabled(provider_name, tracepoint_name)
2788 do_tracepoint(provider_name, tracepoint_name, ...)
2789 ----
2790
2791 Replace:
2792
2793 * `provider_name` with the tracepoint provider name.
2794 * `tracepoint_name` with the tracepoint name.
2795
2796 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2797 `tracepoint_name` from the provider named `provider_name` is enabled
2798 **at run time**.
2799
2800 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2801 if the tracepoint is enabled. Using `tracepoint()` with
2802 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2803 the `tracepoint_enabled()` check, thus a race condition is
2804 possible in this situation:
2805
2806 [source,c]
2807 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2808 ----
2809 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2810 stuff = prepare_stuff();
2811 }
2812
2813 tracepoint(my_provider, my_tracepoint, stuff);
2814 ----
2815
2816 If the tracepoint is enabled after the condition, then `stuff` is not
2817 prepared: the emitted event will either contain wrong data, or the whole
2818 application could crash (segmentation fault, for example).
2819
2820 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2821 `STAP_PROBEV()` call. If you need it, you must emit
2822 this call yourself.
2823
2824
2825 [[building-tracepoint-providers-and-user-application]]
2826 ==== Build and link a tracepoint provider package and an application
2827
2828 Once you have one or more <<tpp-header,tracepoint provider header
2829 files>> and a <<tpp-source,tracepoint provider package source file>>,
2830 you can create the tracepoint provider package by compiling its source
2831 file. From here, multiple build and run scenarios are possible. The
2832 following table shows common application and library configurations
2833 along with the required command lines to achieve them.
2834
2835 In the following diagrams, we use the following file names:
2836
2837 `app`::
2838 Executable application.
2839
2840 `app.o`::
2841 Application's object file.
2842
2843 `tpp.o`::
2844 Tracepoint provider package object file.
2845
2846 `tpp.a`::
2847 Tracepoint provider package archive file.
2848
2849 `libtpp.so`::
2850 Tracepoint provider package shared object file.
2851
2852 `emon.o`::
2853 User library object file.
2854
2855 `libemon.so`::
2856 User library shared object file.
2857
2858 We use the following symbols in the diagrams of table below:
2859
2860 [role="img-100"]
2861 .Symbols used in the build scenario diagrams.
2862 image::ust-sit-symbols.png[]
2863
2864 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2865 variable in the following instructions.
2866
2867 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2868 .Common tracepoint provider package scenarios.
2869 |====
2870 |Scenario |Instructions
2871
2872 |
2873 The instrumented application is statically linked with
2874 the tracepoint provider package object.
2875
2876 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2877
2878 |
2879 include::../common/ust-sit-step-tp-o.txt[]
2880
2881 To build the instrumented application:
2882
2883 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2884 +
2885 --
2886 [source,c]
2887 ----
2888 #define TRACEPOINT_DEFINE
2889 ----
2890 --
2891
2892 . Compile the application source file:
2893 +
2894 --
2895 [role="term"]
2896 ----
2897 $ gcc -c app.c
2898 ----
2899 --
2900
2901 . Build the application:
2902 +
2903 --
2904 [role="term"]
2905 ----
2906 $ gcc -o app app.o tpp.o -llttng-ust -ldl
2907 ----
2908 --
2909
2910 To run the instrumented application:
2911
2912 * Start the application:
2913 +
2914 --
2915 [role="term"]
2916 ----
2917 $ ./app
2918 ----
2919 --
2920
2921 |
2922 The instrumented application is statically linked with the
2923 tracepoint provider package archive file.
2924
2925 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2926
2927 |
2928 To create the tracepoint provider package archive file:
2929
2930 . Compile the <<tpp-source,tracepoint provider package source file>>:
2931 +
2932 --
2933 [role="term"]
2934 ----
2935 $ gcc -I. -c tpp.c
2936 ----
2937 --
2938
2939 . Create the tracepoint provider package archive file:
2940 +
2941 --
2942 [role="term"]
2943 ----
2944 $ ar rcs tpp.a tpp.o
2945 ----
2946 --
2947
2948 To build the instrumented application:
2949
2950 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2951 +
2952 --
2953 [source,c]
2954 ----
2955 #define TRACEPOINT_DEFINE
2956 ----
2957 --
2958
2959 . Compile the application source file:
2960 +
2961 --
2962 [role="term"]
2963 ----
2964 $ gcc -c app.c
2965 ----
2966 --
2967
2968 . Build the application:
2969 +
2970 --
2971 [role="term"]
2972 ----
2973 $ gcc -o app app.o tpp.a -llttng-ust -ldl
2974 ----
2975 --
2976
2977 To run the instrumented application:
2978
2979 * Start the application:
2980 +
2981 --
2982 [role="term"]
2983 ----
2984 $ ./app
2985 ----
2986 --
2987
2988 |
2989 The instrumented application is linked with the tracepoint provider
2990 package shared object.
2991
2992 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2993
2994 |
2995 include::../common/ust-sit-step-tp-so.txt[]
2996
2997 To build the instrumented application:
2998
2999 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3000 +
3001 --
3002 [source,c]
3003 ----
3004 #define TRACEPOINT_DEFINE
3005 ----
3006 --
3007
3008 . Compile the application source file:
3009 +
3010 --
3011 [role="term"]
3012 ----
3013 $ gcc -c app.c
3014 ----
3015 --
3016
3017 . Build the application:
3018 +
3019 --
3020 [role="term"]
3021 ----
3022 $ gcc -o app app.o -ldl -L. -ltpp
3023 ----
3024 --
3025
3026 To run the instrumented application:
3027
3028 * Start the application:
3029 +
3030 --
3031 [role="term"]
3032 ----
3033 $ ./app
3034 ----
3035 --
3036
3037 |
3038 The tracepoint provider package shared object is preloaded before the
3039 instrumented application starts.
3040
3041 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
3042
3043 |
3044 include::../common/ust-sit-step-tp-so.txt[]
3045
3046 To build the instrumented application:
3047
3048 . In path:{app.c}, before including path:{tpp.h}, add the
3049 following lines:
3050 +
3051 --
3052 [source,c]
3053 ----
3054 #define TRACEPOINT_DEFINE
3055 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3056 ----
3057 --
3058
3059 . Compile the application source file:
3060 +
3061 --
3062 [role="term"]
3063 ----
3064 $ gcc -c app.c
3065 ----
3066 --
3067
3068 . Build the application:
3069 +
3070 --
3071 [role="term"]
3072 ----
3073 $ gcc -o app app.o -ldl
3074 ----
3075 --
3076
3077 To run the instrumented application with tracing support:
3078
3079 * Preload the tracepoint provider package shared object and
3080 start the application:
3081 +
3082 --
3083 [role="term"]
3084 ----
3085 $ LD_PRELOAD=./libtpp.so ./app
3086 ----
3087 --
3088
3089 To run the instrumented application without tracing support:
3090
3091 * Start the application:
3092 +
3093 --
3094 [role="term"]
3095 ----
3096 $ ./app
3097 ----
3098 --
3099
3100 |
3101 The instrumented application dynamically loads the tracepoint provider
3102 package shared object.
3103
3104 See the <<dlclose-warning,warning about `dlclose()`>>.
3105
3106 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
3107
3108 |
3109 include::../common/ust-sit-step-tp-so.txt[]
3110
3111 To build the instrumented application:
3112
3113 . In path:{app.c}, before including path:{tpp.h}, add the
3114 following lines:
3115 +
3116 --
3117 [source,c]
3118 ----
3119 #define TRACEPOINT_DEFINE
3120 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3121 ----
3122 --
3123
3124 . Compile the application source file:
3125 +
3126 --
3127 [role="term"]
3128 ----
3129 $ gcc -c app.c
3130 ----
3131 --
3132
3133 . Build the application:
3134 +
3135 --
3136 [role="term"]
3137 ----
3138 $ gcc -o app app.o -ldl
3139 ----
3140 --
3141
3142 To run the instrumented application:
3143
3144 * Start the application:
3145 +
3146 --
3147 [role="term"]
3148 ----
3149 $ ./app
3150 ----
3151 --
3152
3153 |
3154 The application is linked with the instrumented user library.
3155
3156 The instrumented user library is statically linked with the tracepoint
3157 provider package object file.
3158
3159 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
3160
3161 |
3162 include::../common/ust-sit-step-tp-o-fpic.txt[]
3163
3164 To build the instrumented user library:
3165
3166 . In path:{emon.c}, before including path:{tpp.h}, add the
3167 following line:
3168 +
3169 --
3170 [source,c]
3171 ----
3172 #define TRACEPOINT_DEFINE
3173 ----
3174 --
3175
3176 . Compile the user library source file:
3177 +
3178 --
3179 [role="term"]
3180 ----
3181 $ gcc -I. -fpic -c emon.c
3182 ----
3183 --
3184
3185 . Build the user library shared object:
3186 +
3187 --
3188 [role="term"]
3189 ----
3190 $ gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
3191 ----
3192 --
3193
3194 To build the application:
3195
3196 . Compile the application source file:
3197 +
3198 --
3199 [role="term"]
3200 ----
3201 $ gcc -c app.c
3202 ----
3203 --
3204
3205 . Build the application:
3206 +
3207 --
3208 [role="term"]
3209 ----
3210 $ gcc -o app app.o -L. -lemon
3211 ----
3212 --
3213
3214 To run the application:
3215
3216 * Start the application:
3217 +
3218 --
3219 [role="term"]
3220 ----
3221 $ ./app
3222 ----
3223 --
3224
3225 |
3226 The application is linked with the instrumented user library.
3227
3228 The instrumented user library is linked with the tracepoint provider
3229 package shared object.
3230
3231 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3232
3233 |
3234 include::../common/ust-sit-step-tp-so.txt[]
3235
3236 To build the instrumented user library:
3237
3238 . In path:{emon.c}, before including path:{tpp.h}, add the
3239 following line:
3240 +
3241 --
3242 [source,c]
3243 ----
3244 #define TRACEPOINT_DEFINE
3245 ----
3246 --
3247
3248 . Compile the user library source file:
3249 +
3250 --
3251 [role="term"]
3252 ----
3253 $ gcc -I. -fpic -c emon.c
3254 ----
3255 --
3256
3257 . Build the user library shared object:
3258 +
3259 --
3260 [role="term"]
3261 ----
3262 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3263 ----
3264 --
3265
3266 To build the application:
3267
3268 . Compile the application source file:
3269 +
3270 --
3271 [role="term"]
3272 ----
3273 $ gcc -c app.c
3274 ----
3275 --
3276
3277 . Build the application:
3278 +
3279 --
3280 [role="term"]
3281 ----
3282 $ gcc -o app app.o -L. -lemon
3283 ----
3284 --
3285
3286 To run the application:
3287
3288 * Start the application:
3289 +
3290 --
3291 [role="term"]
3292 ----
3293 $ ./app
3294 ----
3295 --
3296
3297 |
3298 The tracepoint provider package shared object is preloaded before the
3299 application starts.
3300
3301 The application is linked with the instrumented user library.
3302
3303 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3304
3305 |
3306 include::../common/ust-sit-step-tp-so.txt[]
3307
3308 To build the instrumented user library:
3309
3310 . In path:{emon.c}, before including path:{tpp.h}, add the
3311 following lines:
3312 +
3313 --
3314 [source,c]
3315 ----
3316 #define TRACEPOINT_DEFINE
3317 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3318 ----
3319 --
3320
3321 . Compile the user library source file:
3322 +
3323 --
3324 [role="term"]
3325 ----
3326 $ gcc -I. -fpic -c emon.c
3327 ----
3328 --
3329
3330 . Build the user library shared object:
3331 +
3332 --
3333 [role="term"]
3334 ----
3335 $ gcc -shared -o libemon.so emon.o -ldl
3336 ----
3337 --
3338
3339 To build the application:
3340
3341 . Compile the application source file:
3342 +
3343 --
3344 [role="term"]
3345 ----
3346 $ gcc -c app.c
3347 ----
3348 --
3349
3350 . Build the application:
3351 +
3352 --
3353 [role="term"]
3354 ----
3355 $ gcc -o app app.o -L. -lemon
3356 ----
3357 --
3358
3359 To run the application with tracing support:
3360
3361 * Preload the tracepoint provider package shared object and
3362 start the application:
3363 +
3364 --
3365 [role="term"]
3366 ----
3367 $ LD_PRELOAD=./libtpp.so ./app
3368 ----
3369 --
3370
3371 To run the application without tracing support:
3372
3373 * Start the application:
3374 +
3375 --
3376 [role="term"]
3377 ----
3378 $ ./app
3379 ----
3380 --
3381
3382 |
3383 The application is linked with the instrumented user library.
3384
3385 The instrumented user library dynamically loads the tracepoint provider
3386 package shared object.
3387
3388 See the <<dlclose-warning,warning about `dlclose()`>>.
3389
3390 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3391
3392 |
3393 include::../common/ust-sit-step-tp-so.txt[]
3394
3395 To build the instrumented user library:
3396
3397 . In path:{emon.c}, before including path:{tpp.h}, add the
3398 following lines:
3399 +
3400 --
3401 [source,c]
3402 ----
3403 #define TRACEPOINT_DEFINE
3404 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3405 ----
3406 --
3407
3408 . Compile the user library source file:
3409 +
3410 --
3411 [role="term"]
3412 ----
3413 $ gcc -I. -fpic -c emon.c
3414 ----
3415 --
3416
3417 . Build the user library shared object:
3418 +
3419 --
3420 [role="term"]
3421 ----
3422 $ gcc -shared -o libemon.so emon.o -ldl
3423 ----
3424 --
3425
3426 To build the application:
3427
3428 . Compile the application source file:
3429 +
3430 --
3431 [role="term"]
3432 ----
3433 $ gcc -c app.c
3434 ----
3435 --
3436
3437 . Build the application:
3438 +
3439 --
3440 [role="term"]
3441 ----
3442 $ gcc -o app app.o -L. -lemon
3443 ----
3444 --
3445
3446 To run the application:
3447
3448 * Start the application:
3449 +
3450 --
3451 [role="term"]
3452 ----
3453 $ ./app
3454 ----
3455 --
3456
3457 |
3458 The application dynamically loads the instrumented user library.
3459
3460 The instrumented user library is linked with the tracepoint provider
3461 package shared object.
3462
3463 See the <<dlclose-warning,warning about `dlclose()`>>.
3464
3465 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3466
3467 |
3468 include::../common/ust-sit-step-tp-so.txt[]
3469
3470 To build the instrumented user library:
3471
3472 . In path:{emon.c}, before including path:{tpp.h}, add the
3473 following line:
3474 +
3475 --
3476 [source,c]
3477 ----
3478 #define TRACEPOINT_DEFINE
3479 ----
3480 --
3481
3482 . Compile the user library source file:
3483 +
3484 --
3485 [role="term"]
3486 ----
3487 $ gcc -I. -fpic -c emon.c
3488 ----
3489 --
3490
3491 . Build the user library shared object:
3492 +
3493 --
3494 [role="term"]
3495 ----
3496 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3497 ----
3498 --
3499
3500 To build the application:
3501
3502 . Compile the application source file:
3503 +
3504 --
3505 [role="term"]
3506 ----
3507 $ gcc -c app.c
3508 ----
3509 --
3510
3511 . Build the application:
3512 +
3513 --
3514 [role="term"]
3515 ----
3516 $ gcc -o app app.o -ldl -L. -lemon
3517 ----
3518 --
3519
3520 To run the application:
3521
3522 * Start the application:
3523 +
3524 --
3525 [role="term"]
3526 ----
3527 $ ./app
3528 ----
3529 --
3530
3531 |
3532 The application dynamically loads the instrumented user library.
3533
3534 The instrumented user library dynamically loads the tracepoint provider
3535 package shared object.
3536
3537 See the <<dlclose-warning,warning about `dlclose()`>>.
3538
3539 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3540
3541 |
3542 include::../common/ust-sit-step-tp-so.txt[]
3543
3544 To build the instrumented user library:
3545
3546 . In path:{emon.c}, before including path:{tpp.h}, add the
3547 following lines:
3548 +
3549 --
3550 [source,c]
3551 ----
3552 #define TRACEPOINT_DEFINE
3553 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3554 ----
3555 --
3556
3557 . Compile the user library source file:
3558 +
3559 --
3560 [role="term"]
3561 ----
3562 $ gcc -I. -fpic -c emon.c
3563 ----
3564 --
3565
3566 . Build the user library shared object:
3567 +
3568 --
3569 [role="term"]
3570 ----
3571 $ gcc -shared -o libemon.so emon.o -ldl
3572 ----
3573 --
3574
3575 To build the application:
3576
3577 . Compile the application source file:
3578 +
3579 --
3580 [role="term"]
3581 ----
3582 $ gcc -c app.c
3583 ----
3584 --
3585
3586 . Build the application:
3587 +
3588 --
3589 [role="term"]
3590 ----
3591 $ gcc -o app app.o -ldl -L. -lemon
3592 ----
3593 --
3594
3595 To run the application:
3596
3597 * Start the application:
3598 +
3599 --
3600 [role="term"]
3601 ----
3602 $ ./app
3603 ----
3604 --
3605
3606 |
3607 The tracepoint provider package shared object is preloaded before the
3608 application starts.
3609
3610 The application dynamically loads the instrumented user library.
3611
3612 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3613
3614 |
3615 include::../common/ust-sit-step-tp-so.txt[]
3616
3617 To build the instrumented user library:
3618
3619 . In path:{emon.c}, before including path:{tpp.h}, add the
3620 following lines:
3621 +
3622 --
3623 [source,c]
3624 ----
3625 #define TRACEPOINT_DEFINE
3626 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3627 ----
3628 --
3629
3630 . Compile the user library source file:
3631 +
3632 --
3633 [role="term"]
3634 ----
3635 $ gcc -I. -fpic -c emon.c
3636 ----
3637 --
3638
3639 . Build the user library shared object:
3640 +
3641 --
3642 [role="term"]
3643 ----
3644 $ gcc -shared -o libemon.so emon.o -ldl
3645 ----
3646 --
3647
3648 To build the application:
3649
3650 . Compile the application source file:
3651 +
3652 --
3653 [role="term"]
3654 ----
3655 $ gcc -c app.c
3656 ----
3657 --
3658
3659 . Build the application:
3660 +
3661 --
3662 [role="term"]
3663 ----
3664 $ gcc -o app app.o -L. -lemon
3665 ----
3666 --
3667
3668 To run the application with tracing support:
3669
3670 * Preload the tracepoint provider package shared object and
3671 start the application:
3672 +
3673 --
3674 [role="term"]
3675 ----
3676 $ LD_PRELOAD=./libtpp.so ./app
3677 ----
3678 --
3679
3680 To run the application without tracing support:
3681
3682 * Start the application:
3683 +
3684 --
3685 [role="term"]
3686 ----
3687 $ ./app
3688 ----
3689 --
3690
3691 |
3692 The application is statically linked with the tracepoint provider
3693 package object file.
3694
3695 The application is linked with the instrumented user library.
3696
3697 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3698
3699 |
3700 include::../common/ust-sit-step-tp-o.txt[]
3701
3702 To build the instrumented user library:
3703
3704 . In path:{emon.c}, before including path:{tpp.h}, add the
3705 following line:
3706 +
3707 --
3708 [source,c]
3709 ----
3710 #define TRACEPOINT_DEFINE
3711 ----
3712 --
3713
3714 . Compile the user library source file:
3715 +
3716 --
3717 [role="term"]
3718 ----
3719 $ gcc -I. -fpic -c emon.c
3720 ----
3721 --
3722
3723 . Build the user library shared object:
3724 +
3725 --
3726 [role="term"]
3727 ----
3728 $ gcc -shared -o libemon.so emon.o
3729 ----
3730 --
3731
3732 To build the application:
3733
3734 . Compile the application source file:
3735 +
3736 --
3737 [role="term"]
3738 ----
3739 $ gcc -c app.c
3740 ----
3741 --
3742
3743 . Build the application:
3744 +
3745 --
3746 [role="term"]
3747 ----
3748 $ gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3749 ----
3750 --
3751
3752 To run the instrumented application:
3753
3754 * Start the application:
3755 +
3756 --
3757 [role="term"]
3758 ----
3759 $ ./app
3760 ----
3761 --
3762
3763 |
3764 The application is statically linked with the tracepoint provider
3765 package object file.
3766
3767 The application dynamically loads the instrumented user library.
3768
3769 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3770
3771 |
3772 include::../common/ust-sit-step-tp-o.txt[]
3773
3774 To build the application:
3775
3776 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3777 +
3778 --
3779 [source,c]
3780 ----
3781 #define TRACEPOINT_DEFINE
3782 ----
3783 --
3784
3785 . Compile the application source file:
3786 +
3787 --
3788 [role="term"]
3789 ----
3790 $ gcc -c app.c
3791 ----
3792 --
3793
3794 . Build the application:
3795 +
3796 --
3797 [role="term"]
3798 ----
3799 $ gcc -Wl,--export-dynamic -o app app.o tpp.o \
3800 -llttng-ust -ldl
3801 ----
3802 --
3803 +
3804 The `--export-dynamic` option passed to the linker is necessary for the
3805 dynamically loaded library to ``see'' the tracepoint symbols defined in
3806 the application.
3807
3808 To build the instrumented user library:
3809
3810 . Compile the user library source file:
3811 +
3812 --
3813 [role="term"]
3814 ----
3815 $ gcc -I. -fpic -c emon.c
3816 ----
3817 --
3818
3819 . Build the user library shared object:
3820 +
3821 --
3822 [role="term"]
3823 ----
3824 $ gcc -shared -o libemon.so emon.o
3825 ----
3826 --
3827
3828 To run the application:
3829
3830 * Start the application:
3831 +
3832 --
3833 [role="term"]
3834 ----
3835 $ ./app
3836 ----
3837 --
3838 |====
3839
3840 [[dlclose-warning]]
3841 [IMPORTANT]
3842 .Do not use man:dlclose(3) on a tracepoint provider package
3843 ====
3844 Never use man:dlclose(3) on any shared object which:
3845
3846 * Is linked with, statically or dynamically, a tracepoint provider
3847 package.
3848 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3849 package shared object.
3850
3851 This is currently considered **unsafe** due to a lack of reference
3852 counting from LTTng-UST to the shared object.
3853
3854 A known workaround (available since glibc 2.2) is to use the
3855 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3856 effect of not unloading the loaded shared object, even if man:dlclose(3)
3857 is called.
3858
3859 You can also preload the tracepoint provider package shared object with
3860 the env:LD_PRELOAD environment variable to overcome this limitation.
3861 ====
3862
3863
3864 [[using-lttng-ust-with-daemons]]
3865 ===== Use noch:{LTTng-UST} with daemons
3866
3867 If your instrumented application calls man:fork(2), man:clone(2),
3868 or BSD's man:rfork(2), without a following man:exec(3)-family
3869 system call, you must preload the path:{liblttng-ust-fork.so} shared
3870 object when starting the application.
3871
3872 [role="term"]
3873 ----
3874 $ LD_PRELOAD=liblttng-ust-fork.so ./my-app
3875 ----
3876
3877 If your tracepoint provider package is
3878 a shared library which you also preload, you must put both
3879 shared objects in env:LD_PRELOAD:
3880
3881 [role="term"]
3882 ----
3883 $ LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3884 ----
3885
3886
3887 [[lttng-ust-pkg-config]]
3888 ===== Use noch:{pkg-config}
3889
3890 On some distributions, LTTng-UST ships with a
3891 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3892 metadata file. If this is your case, then you can use cmd:pkg-config to
3893 build an application on the command line:
3894
3895 [role="term"]
3896 ----
3897 $ gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3898 ----
3899
3900
3901 [[instrumenting-32-bit-app-on-64-bit-system]]
3902 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3903
3904 In order to trace a 32-bit application running on a 64-bit system,
3905 LTTng must use a dedicated 32-bit
3906 <<lttng-consumerd,consumer daemon>>.
3907
3908 The following steps show how to build and install a 32-bit consumer
3909 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3910 build and install the 32-bit LTTng-UST libraries, and how to build and
3911 link an instrumented 32-bit application in that context.
3912
3913 To build a 32-bit instrumented application for a 64-bit target system,
3914 assuming you have a fresh target system with no installed Userspace RCU
3915 or LTTng packages:
3916
3917 . Download, build, and install a 32-bit version of Userspace RCU:
3918 +
3919 --
3920 [role="term"]
3921 ----
3922 $ cd $(mktemp -d) &&
3923 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3924 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3925 cd userspace-rcu-0.9.* &&
3926 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3927 make &&
3928 sudo make install &&
3929 sudo ldconfig
3930 ----
3931 --
3932
3933 . Using your distribution's package manager, or from source, install
3934 the following 32-bit versions of the following dependencies of
3935 LTTng-tools and LTTng-UST:
3936 +
3937 --
3938 * https://sourceforge.net/projects/libuuid/[libuuid]
3939 * http://directory.fsf.org/wiki/Popt[popt]
3940 * http://www.xmlsoft.org/[libxml2]
3941 --
3942
3943 . Download, build, and install a 32-bit version of the latest
3944 LTTng-UST{nbsp}{revision}:
3945 +
3946 --
3947 [role="term"]
3948 ----
3949 $ cd $(mktemp -d) &&
3950 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.8.tar.bz2 &&
3951 tar -xf lttng-ust-latest-2.8.tar.bz2 &&
3952 cd lttng-ust-2.8.* &&
3953 ./configure --libdir=/usr/local/lib32 \
3954 CFLAGS=-m32 CXXFLAGS=-m32 \
3955 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3956 make &&
3957 sudo make install &&
3958 sudo ldconfig
3959 ----
3960 --
3961 +
3962 [NOTE]
3963 ====
3964 Depending on your distribution,
3965 32-bit libraries could be installed at a different location than
3966 `/usr/lib32`. For example, Debian is known to install
3967 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3968
3969 In this case, make sure to set `LDFLAGS` to all the
3970 relevant 32-bit library paths, for example:
3971
3972 [role="term"]
3973 ----
3974 $ LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3975 ----
3976 ====
3977
3978 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3979 the 32-bit consumer daemon:
3980 +
3981 --
3982 [role="term"]
3983 ----
3984 $ cd $(mktemp -d) &&
3985 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
3986 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
3987 cd lttng-tools-2.8.* &&
3988 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3989 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' \
3990 --disable-bin-lttng --disable-bin-lttng-crash \
3991 --disable-bin-lttng-relayd --disable-bin-lttng-sessiond &&
3992 make &&
3993 cd src/bin/lttng-consumerd &&
3994 sudo make install &&
3995 sudo ldconfig
3996 ----
3997 --
3998
3999 . From your distribution or from source,
4000 <<installing-lttng,install>> the 64-bit versions of
4001 LTTng-UST and Userspace RCU.
4002 . Download, build, and install the 64-bit version of the
4003 latest LTTng-tools{nbsp}{revision}:
4004 +
4005 --
4006 [role="term"]
4007 ----
4008 $ cd $(mktemp -d) &&
4009 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
4010 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
4011 cd lttng-tools-2.8.* &&
4012 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
4013 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
4014 make &&
4015 sudo make install &&
4016 sudo ldconfig
4017 ----
4018 --
4019
4020 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
4021 when linking your 32-bit application:
4022 +
4023 ----
4024 -m32 -L/usr/lib32 -L/usr/local/lib32 \
4025 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
4026 ----
4027 +
4028 For example, let's rebuild the quick start example in
4029 <<tracing-your-own-user-application,Trace a user application>> as an
4030 instrumented 32-bit application:
4031 +
4032 --
4033 [role="term"]
4034 ----
4035 $ gcc -m32 -c -I. hello-tp.c
4036 $ gcc -m32 -c hello.c
4037 $ gcc -m32 -o hello hello.o hello-tp.o \
4038 -L/usr/lib32 -L/usr/local/lib32 \
4039 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
4040 -llttng-ust -ldl
4041 ----
4042 --
4043
4044 No special action is required to execute the 32-bit application and
4045 to trace it: use the command-line man:lttng(1) tool as usual.
4046
4047
4048 [role="since-2.5"]
4049 [[tracef]]
4050 ==== Use `tracef()`
4051
4052 man:tracef(3) is a small LTTng-UST API designed for quick,
4053 man:printf(3)-like instrumentation without the burden of
4054 <<tracepoint-provider,creating>> and
4055 <<building-tracepoint-providers-and-user-application,building>>
4056 a tracepoint provider package.
4057
4058 To use `tracef()` in your application:
4059
4060 . In the C or C++ source files where you need to use `tracef()`,
4061 include `<lttng/tracef.h>`:
4062 +
4063 --
4064 [source,c]
4065 ----
4066 #include <lttng/tracef.h>
4067 ----
4068 --
4069
4070 . In the application's source code, use `tracef()` like you would use
4071 man:printf(3):
4072 +
4073 --
4074 [source,c]
4075 ----
4076 /* ... */
4077
4078 tracef("my message: %d (%s)", my_integer, my_string);
4079
4080 /* ... */
4081 ----
4082 --
4083
4084 . Link your application with `liblttng-ust`:
4085 +
4086 --
4087 [role="term"]
4088 ----
4089 $ gcc -o app app.c -llttng-ust
4090 ----
4091 --
4092
4093 To trace the events that `tracef()` calls emit:
4094
4095 * <<enabling-disabling-events,Create an event rule>> which matches the
4096 `lttng_ust_tracef:*` event name:
4097 +
4098 --
4099 [role="term"]
4100 ----
4101 $ lttng enable-event --userspace 'lttng_ust_tracef:*'
4102 ----
4103 --
4104
4105 [IMPORTANT]
4106 .Limitations of `tracef()`
4107 ====
4108 The `tracef()` utility function was developed to make user space tracing
4109 super simple, albeit with notable disadvantages compared to
4110 <<defining-tracepoints,user-defined tracepoints>>:
4111
4112 * All the emitted events have the same tracepoint provider and
4113 tracepoint names, respectively `lttng_ust_tracef` and `event`.
4114 * There is no static type checking.
4115 * The only event record field you actually get, named `msg`, is a string
4116 potentially containing the values you passed to `tracef()`
4117 using your own format string. This also means that you cannot filter
4118 events with a custom expression at run time because there are no
4119 isolated fields.
4120 * Since `tracef()` uses the C standard library's man:vasprintf(3)
4121 function behind the scenes to format the strings at run time, its
4122 expected performance is lower than with user-defined tracepoints,
4123 which do not require a conversion to a string.
4124
4125 Taking this into consideration, `tracef()` is useful for some quick
4126 prototyping and debugging, but you should not consider it for any
4127 permanent and serious applicative instrumentation.
4128 ====
4129
4130
4131 [role="since-2.7"]
4132 [[tracelog]]
4133 ==== Use `tracelog()`
4134
4135 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
4136 the difference that it accepts an additional log level parameter.
4137
4138 The goal of `tracelog()` is to ease the migration from logging to
4139 tracing.
4140
4141 To use `tracelog()` in your application:
4142
4143 . In the C or C++ source files where you need to use `tracelog()`,
4144 include `<lttng/tracelog.h>`:
4145 +
4146 --
4147 [source,c]
4148 ----
4149 #include <lttng/tracelog.h>
4150 ----
4151 --
4152
4153 . In the application's source code, use `tracelog()` like you would use
4154 man:printf(3), except for the first parameter which is the log
4155 level:
4156 +
4157 --
4158 [source,c]
4159 ----
4160 /* ... */
4161
4162 tracelog(TRACE_WARNING, "my message: %d (%s)",
4163 my_integer, my_string);
4164
4165 /* ... */
4166 ----
4167 --
4168 +
4169 See man:lttng-ust(3) for a list of available log level names.
4170
4171 . Link your application with `liblttng-ust`:
4172 +
4173 --
4174 [role="term"]
4175 ----
4176 $ gcc -o app app.c -llttng-ust
4177 ----
4178 --
4179
4180 To trace the events that `tracelog()` calls emit with a log level
4181 _as severe as_ a specific log level:
4182
4183 * <<enabling-disabling-events,Create an event rule>> which matches the
4184 `lttng_ust_tracelog:*` event name and a minimum level
4185 of severity:
4186 +
4187 --
4188 [role="term"]
4189 ----
4190 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
4191 --loglevel=TRACE_WARNING
4192 ----
4193 --
4194
4195 To trace the events that `tracelog()` calls emit with a
4196 _specific log level_:
4197
4198 * Create an event rule which matches the `lttng_ust_tracelog:*`
4199 event name and a specific log level:
4200 +
4201 --
4202 [role="term"]
4203 ----
4204 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
4205 --loglevel-only=TRACE_INFO
4206 ----
4207 --
4208
4209
4210 [[prebuilt-ust-helpers]]
4211 === Prebuilt user space tracing helpers
4212
4213 The LTTng-UST package provides a few helpers in the form or preloadable
4214 shared objects which automatically instrument system functions and
4215 calls.
4216
4217 The helper shared objects are normally found in dir:{/usr/lib}. If you
4218 built LTTng-UST <<building-from-source,from source>>, they are probably
4219 located in dir:{/usr/local/lib}.
4220
4221 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4222 are:
4223
4224 path:{liblttng-ust-libc-wrapper.so}::
4225 path:{liblttng-ust-pthread-wrapper.so}::
4226 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4227 memory and POSIX threads function tracing>>.
4228
4229 path:{liblttng-ust-cyg-profile.so}::
4230 path:{liblttng-ust-cyg-profile-fast.so}::
4231 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4232
4233 path:{liblttng-ust-dl.so}::
4234 <<liblttng-ust-dl,Dynamic linker tracing>>.
4235
4236 To use a user space tracing helper with any user application:
4237
4238 * Preload the helper shared object when you start the application:
4239 +
4240 --
4241 [role="term"]
4242 ----
4243 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4244 ----
4245 --
4246 +
4247 You can preload more than one helper:
4248 +
4249 --
4250 [role="term"]
4251 ----
4252 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4253 ----
4254 --
4255
4256
4257 [role="since-2.3"]
4258 [[liblttng-ust-libc-pthread-wrapper]]
4259 ==== Instrument C standard library memory and POSIX threads functions
4260
4261 The path:{liblttng-ust-libc-wrapper.so} and
4262 path:{liblttng-ust-pthread-wrapper.so} helpers
4263 add instrumentation to some C standard library and POSIX
4264 threads functions.
4265
4266 [role="growable"]
4267 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4268 |====
4269 |TP provider name |TP name |Instrumented function
4270
4271 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4272 |`calloc` |man:calloc(3)
4273 |`realloc` |man:realloc(3)
4274 |`free` |man:free(3)
4275 |`memalign` |man:memalign(3)
4276 |`posix_memalign` |man:posix_memalign(3)
4277 |====
4278
4279 [role="growable"]
4280 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4281 |====
4282 |TP provider name |TP name |Instrumented function
4283
4284 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4285 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4286 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4287 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4288 |====
4289
4290 When you preload the shared object, it replaces the functions listed
4291 in the previous tables by wrappers which contain tracepoints and call
4292 the replaced functions.
4293
4294
4295 [[liblttng-ust-cyg-profile]]
4296 ==== Instrument function entry and exit
4297
4298 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4299 to the entry and exit points of functions.
4300
4301 man:gcc(1) and man:clang(1) have an option named
4302 https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html[`-finstrument-functions`]
4303 which generates instrumentation calls for entry and exit to functions.
4304 The LTTng-UST function tracing helpers,
4305 path:{liblttng-ust-cyg-profile.so} and
4306 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4307 to add tracepoints to the two generated functions (which contain
4308 `cyg_profile` in their names, hence the helper's name).
4309
4310 To use the LTTng-UST function tracing helper, the source files to
4311 instrument must be built using the `-finstrument-functions` compiler
4312 flag.
4313
4314 There are two versions of the LTTng-UST function tracing helper:
4315
4316 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4317 that you should only use when it can be _guaranteed_ that the
4318 complete event stream is recorded without any lost event record.
4319 Any kind of duplicate information is left out.
4320 +
4321 Assuming no event record is lost, having only the function addresses on
4322 entry is enough to create a call graph, since an event record always
4323 contains the ID of the CPU that generated it.
4324 +
4325 You can use a tool like man:addr2line(1) to convert function addresses
4326 back to source file names and line numbers.
4327
4328 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4329 which also works in use cases where event records might get discarded or
4330 not recorded from application startup.
4331 In these cases, the trace analyzer needs more information to be
4332 able to reconstruct the program flow.
4333
4334 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4335 points of this helper.
4336
4337 All the tracepoints that this helper provides have the
4338 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4339
4340 TIP: It's sometimes a good idea to limit the number of source files that
4341 you compile with the `-finstrument-functions` option to prevent LTTng
4342 from writing an excessive amount of trace data at run time. When using
4343 man:gcc(1), you can use the
4344 `-finstrument-functions-exclude-function-list` option to avoid
4345 instrument entries and exits of specific function names.
4346
4347
4348 [role="since-2.4"]
4349 [[liblttng-ust-dl]]
4350 ==== Instrument the dynamic linker
4351
4352 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4353 man:dlopen(3) and man:dlclose(3) function calls.
4354
4355 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4356 of this helper.
4357
4358
4359 [role="since-2.4"]
4360 [[java-application]]
4361 === User space Java agent
4362
4363 You can instrument any Java application which uses one of the following
4364 logging frameworks:
4365
4366 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4367 (JUL) core logging facilities.
4368 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4369 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4370
4371 [role="img-100"]
4372 .LTTng-UST Java agent imported by a Java application.
4373 image::java-app.png[]
4374
4375 Note that the methods described below are new in LTTng{nbsp}{revision}.
4376 Previous LTTng versions use another technique.
4377
4378 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4379 and https://ci.lttng.org/[continuous integration], thus this version is
4380 directly supported. However, the LTTng-UST Java agent is also tested
4381 with OpenJDK{nbsp}7.
4382
4383
4384 [role="since-2.8"]
4385 [[jul]]
4386 ==== Use the LTTng-UST Java agent for `java.util.logging`
4387
4388 To use the LTTng-UST Java agent in a Java application which uses
4389 `java.util.logging` (JUL):
4390
4391 . In the Java application's source code, import the LTTng-UST
4392 log handler package for `java.util.logging`:
4393 +
4394 --
4395 [source,java]
4396 ----
4397 import org.lttng.ust.agent.jul.LttngLogHandler;
4398 ----
4399 --
4400
4401 . Create an LTTng-UST JUL log handler:
4402 +
4403 --
4404 [source,java]
4405 ----
4406 Handler lttngUstLogHandler = new LttngLogHandler();
4407 ----
4408 --
4409
4410 . Add this handler to the JUL loggers which should emit LTTng events:
4411 +
4412 --
4413 [source,java]
4414 ----
4415 Logger myLogger = Logger.getLogger("some-logger");
4416
4417 myLogger.addHandler(lttngUstLogHandler);
4418 ----
4419 --
4420
4421 . Use `java.util.logging` log statements and configuration as usual.
4422 The loggers with an attached LTTng-UST log handler can emit
4423 LTTng events.
4424
4425 . Before exiting the application, remove the LTTng-UST log handler from
4426 the loggers attached to it and call its `close()` method:
4427 +
4428 --
4429 [source,java]
4430 ----
4431 myLogger.removeHandler(lttngUstLogHandler);
4432 lttngUstLogHandler.close();
4433 ----
4434 --
4435 +
4436 This is not strictly necessary, but it is recommended for a clean
4437 disposal of the handler's resources.
4438
4439 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4440 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4441 in the
4442 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4443 path] when you build the Java application.
4444 +
4445 The JAR files are typically located in dir:{/usr/share/java}.
4446 +
4447 IMPORTANT: The LTTng-UST Java agent must be
4448 <<installing-lttng,installed>> for the logging framework your
4449 application uses.
4450
4451 .Use the LTTng-UST Java agent for `java.util.logging`.
4452 ====
4453 [source,java]
4454 .path:{Test.java}
4455 ----
4456 import java.io.IOException;
4457 import java.util.logging.Handler;
4458 import java.util.logging.Logger;
4459 import org.lttng.ust.agent.jul.LttngLogHandler;
4460
4461 public class Test
4462 {
4463 private static final int answer = 42;
4464
4465 public static void main(String[] argv) throws Exception
4466 {
4467 // Create a logger
4468 Logger logger = Logger.getLogger("jello");
4469
4470 // Create an LTTng-UST log handler
4471 Handler lttngUstLogHandler = new LttngLogHandler();
4472
4473 // Add the LTTng-UST log handler to our logger
4474 logger.addHandler(lttngUstLogHandler);
4475
4476 // Log at will!
4477 logger.info("some info");
4478 logger.warning("some warning");
4479 Thread.sleep(500);
4480 logger.finer("finer information; the answer is " + answer);
4481 Thread.sleep(123);
4482 logger.severe("error!");
4483
4484 // Not mandatory, but cleaner
4485 logger.removeHandler(lttngUstLogHandler);
4486 lttngUstLogHandler.close();
4487 }
4488 }
4489 ----
4490
4491 Build this example:
4492
4493 [role="term"]
4494 ----
4495 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4496 ----
4497
4498 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4499 <<enabling-disabling-events,create an event rule>> matching the
4500 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4501
4502 [role="term"]
4503 ----
4504 $ lttng create
4505 $ lttng enable-event --jul jello
4506 $ lttng start
4507 ----
4508
4509 Run the compiled class:
4510
4511 [role="term"]
4512 ----
4513 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4514 ----
4515
4516 <<basic-tracing-session-control,Stop tracing>> and inspect the
4517 recorded events:
4518
4519 [role="term"]
4520 ----
4521 $ lttng stop
4522 $ lttng view
4523 ----
4524 ====
4525
4526 In the resulting trace, an <<event,event record>> generated by a Java
4527 application using `java.util.logging` is named `lttng_jul:event` and
4528 has the following fields:
4529
4530 `msg`::
4531 Log record's message.
4532
4533 `logger_name`::
4534 Logger name.
4535
4536 `class_name`::
4537 Name of the class in which the log statement was executed.
4538
4539 `method_name`::
4540 Name of the method in which the log statement was executed.
4541
4542 `long_millis`::
4543 Logging time (timestamp in milliseconds).
4544
4545 `int_loglevel`::
4546 Log level integer value.
4547
4548 `int_threadid`::
4549 ID of the thread in which the log statement was executed.
4550
4551 You can use the opt:lttng-enable-event(1):--loglevel or
4552 opt:lttng-enable-event(1):--loglevel-only option of the
4553 man:lttng-enable-event(1) command to target a range of JUL log levels
4554 or a specific JUL log level.
4555
4556
4557 [role="since-2.8"]
4558 [[log4j]]
4559 ==== Use the LTTng-UST Java agent for Apache log4j
4560
4561 To use the LTTng-UST Java agent in a Java application which uses
4562 Apache log4j 1.2:
4563
4564 . In the Java application's source code, import the LTTng-UST
4565 log appender package for Apache log4j:
4566 +
4567 --
4568 [source,java]
4569 ----
4570 import org.lttng.ust.agent.log4j.LttngLogAppender;
4571 ----
4572 --
4573
4574 . Create an LTTng-UST log4j log appender:
4575 +
4576 --
4577 [source,java]
4578 ----
4579 Appender lttngUstLogAppender = new LttngLogAppender();
4580 ----
4581 --
4582
4583 . Add this appender to the log4j loggers which should emit LTTng events:
4584 +
4585 --
4586 [source,java]
4587 ----
4588 Logger myLogger = Logger.getLogger("some-logger");
4589
4590 myLogger.addAppender(lttngUstLogAppender);
4591 ----
4592 --
4593
4594 . Use Apache log4j log statements and configuration as usual. The
4595 loggers with an attached LTTng-UST log appender can emit LTTng events.
4596
4597 . Before exiting the application, remove the LTTng-UST log appender from
4598 the loggers attached to it and call its `close()` method:
4599 +
4600 --
4601 [source,java]
4602 ----
4603 myLogger.removeAppender(lttngUstLogAppender);
4604 lttngUstLogAppender.close();
4605 ----
4606 --
4607 +
4608 This is not strictly necessary, but it is recommended for a clean
4609 disposal of the appender's resources.
4610
4611 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4612 files, path:{lttng-ust-agent-common.jar} and
4613 path:{lttng-ust-agent-log4j.jar}, in the
4614 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4615 path] when you build the Java application.
4616 +
4617 The JAR files are typically located in dir:{/usr/share/java}.
4618 +
4619 IMPORTANT: The LTTng-UST Java agent must be
4620 <<installing-lttng,installed>> for the logging framework your
4621 application uses.
4622
4623 .Use the LTTng-UST Java agent for Apache log4j.
4624 ====
4625 [source,java]
4626 .path:{Test.java}
4627 ----
4628 import org.apache.log4j.Appender;
4629 import org.apache.log4j.Logger;
4630 import org.lttng.ust.agent.log4j.LttngLogAppender;
4631
4632 public class Test
4633 {
4634 private static final int answer = 42;
4635
4636 public static void main(String[] argv) throws Exception
4637 {
4638 // Create a logger
4639 Logger logger = Logger.getLogger("jello");
4640
4641 // Create an LTTng-UST log appender
4642 Appender lttngUstLogAppender = new LttngLogAppender();
4643
4644 // Add the LTTng-UST log appender to our logger
4645 logger.addAppender(lttngUstLogAppender);
4646
4647 // Log at will!
4648 logger.info("some info");
4649 logger.warn("some warning");
4650 Thread.sleep(500);
4651 logger.debug("debug information; the answer is " + answer);
4652 Thread.sleep(123);
4653 logger.fatal("error!");
4654
4655 // Not mandatory, but cleaner
4656 logger.removeAppender(lttngUstLogAppender);
4657 lttngUstLogAppender.close();
4658 }
4659 }
4660
4661 ----
4662
4663 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4664 file):
4665
4666 [role="term"]
4667 ----
4668 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4669 ----
4670
4671 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4672 <<enabling-disabling-events,create an event rule>> matching the
4673 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4674
4675 [role="term"]
4676 ----
4677 $ lttng create
4678 $ lttng enable-event --log4j jello
4679 $ lttng start
4680 ----
4681
4682 Run the compiled class:
4683
4684 [role="term"]
4685 ----
4686 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4687 ----
4688
4689 <<basic-tracing-session-control,Stop tracing>> and inspect the
4690 recorded events:
4691
4692 [role="term"]
4693 ----
4694 $ lttng stop
4695 $ lttng view
4696 ----
4697 ====
4698
4699 In the resulting trace, an <<event,event record>> generated by a Java
4700 application using log4j is named `lttng_log4j:event` and
4701 has the following fields:
4702
4703 `msg`::
4704 Log record's message.
4705
4706 `logger_name`::
4707 Logger name.
4708
4709 `class_name`::
4710 Name of the class in which the log statement was executed.
4711
4712 `method_name`::
4713 Name of the method in which the log statement was executed.
4714
4715 `filename`::
4716 Name of the file in which the executed log statement is located.
4717
4718 `line_number`::
4719 Line number at which the log statement was executed.
4720
4721 `timestamp`::
4722 Logging timestamp.
4723
4724 `int_loglevel`::
4725 Log level integer value.
4726
4727 `thread_name`::
4728 Name of the Java thread in which the log statement was executed.
4729
4730 You can use the opt:lttng-enable-event(1):--loglevel or
4731 opt:lttng-enable-event(1):--loglevel-only option of the
4732 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4733 or a specific log4j log level.
4734
4735
4736 [role="since-2.8"]
4737 [[java-application-context]]
4738 ==== Provide application-specific context fields in a Java application
4739
4740 A Java application-specific context field is a piece of state provided
4741 by the application which <<adding-context,you can add>>, using the
4742 man:lttng-add-context(1) command, to each <<event,event record>>
4743 produced by the log statements of this application.
4744
4745 For example, a given object might have a current request ID variable.
4746 You can create a context information retriever for this object and
4747 assign a name to this current request ID. You can then, using the
4748 man:lttng-add-context(1) command, add this context field by name to
4749 the JUL or log4j <<channel,channel>>.
4750
4751 To provide application-specific context fields in a Java application:
4752
4753 . In the Java application's source code, import the LTTng-UST
4754 Java agent context classes and interfaces:
4755 +
4756 --
4757 [source,java]
4758 ----
4759 import org.lttng.ust.agent.context.ContextInfoManager;
4760 import org.lttng.ust.agent.context.IContextInfoRetriever;
4761 ----
4762 --
4763
4764 . Create a context information retriever class, that is, a class which
4765 implements the `IContextInfoRetriever` interface:
4766 +
4767 --
4768 [source,java]
4769 ----
4770 class MyContextInfoRetriever implements IContextInfoRetriever
4771 {
4772 @Override
4773 public Object retrieveContextInfo(String key)
4774 {
4775 if (key.equals("intCtx")) {
4776 return (short) 17;
4777 } else if (key.equals("strContext")) {
4778 return "context value!";
4779 } else {
4780 return null;
4781 }
4782 }
4783 }
4784 ----
4785 --
4786 +
4787 This `retrieveContextInfo()` method is the only member of the
4788 `IContextInfoRetriever` interface. Its role is to return the current
4789 value of a state by name to create a context field. The names of the
4790 context fields and which state variables they return depends on your
4791 specific scenario.
4792 +
4793 All primitive types and objects are supported as context fields.
4794 When `retrieveContextInfo()` returns an object, the context field
4795 serializer calls its `toString()` method to add a string field to
4796 event records. The method can also return `null`, which means that
4797 no context field is available for the required name.
4798
4799 . Register an instance of your context information retriever class to
4800 the context information manager singleton:
4801 +
4802 --
4803 [source,java]
4804 ----
4805 IContextInfoRetriever cir = new MyContextInfoRetriever();
4806 ContextInfoManager cim = ContextInfoManager.getInstance();
4807 cim.registerContextInfoRetriever("retrieverName", cir);
4808 ----
4809 --
4810
4811 . Before exiting the application, remove your context information
4812 retriever from the context information manager singleton:
4813 +
4814 --
4815 [source,java]
4816 ----
4817 ContextInfoManager cim = ContextInfoManager.getInstance();
4818 cim.unregisterContextInfoRetriever("retrieverName");
4819 ----
4820 --
4821 +
4822 This is not strictly necessary, but it is recommended for a clean
4823 disposal of some manager's resources.
4824
4825 . Build your Java application with LTTng-UST Java agent support as
4826 usual, following the procedure for either the <<jul,JUL>> or
4827 <<log4j,Apache log4j>> framework.
4828
4829
4830 .Provide application-specific context fields in a Java application.
4831 ====
4832 [source,java]
4833 .path:{Test.java}
4834 ----
4835 import java.util.logging.Handler;
4836 import java.util.logging.Logger;
4837 import org.lttng.ust.agent.jul.LttngLogHandler;
4838 import org.lttng.ust.agent.context.ContextInfoManager;
4839 import org.lttng.ust.agent.context.IContextInfoRetriever;
4840
4841 public class Test
4842 {
4843 // Our context information retriever class
4844 private static class MyContextInfoRetriever
4845 implements IContextInfoRetriever
4846 {
4847 @Override
4848 public Object retrieveContextInfo(String key) {
4849 if (key.equals("intCtx")) {
4850 return (short) 17;
4851 } else if (key.equals("strContext")) {
4852 return "context value!";
4853 } else {
4854 return null;
4855 }
4856 }
4857 }
4858
4859 private static final int answer = 42;
4860
4861 public static void main(String args[]) throws Exception
4862 {
4863 // Get the context information manager instance
4864 ContextInfoManager cim = ContextInfoManager.getInstance();
4865
4866 // Create and register our context information retriever
4867 IContextInfoRetriever cir = new MyContextInfoRetriever();
4868 cim.registerContextInfoRetriever("myRetriever", cir);
4869
4870 // Create a logger
4871 Logger logger = Logger.getLogger("jello");
4872
4873 // Create an LTTng-UST log handler
4874 Handler lttngUstLogHandler = new LttngLogHandler();
4875
4876 // Add the LTTng-UST log handler to our logger
4877 logger.addHandler(lttngUstLogHandler);
4878
4879 // Log at will!
4880 logger.info("some info");
4881 logger.warning("some warning");
4882 Thread.sleep(500);
4883 logger.finer("finer information; the answer is " + answer);
4884 Thread.sleep(123);
4885 logger.severe("error!");
4886
4887 // Not mandatory, but cleaner
4888 logger.removeHandler(lttngUstLogHandler);
4889 lttngUstLogHandler.close();
4890 cim.unregisterContextInfoRetriever("myRetriever");
4891 }
4892 }
4893 ----
4894
4895 Build this example:
4896
4897 [role="term"]
4898 ----
4899 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4900 ----
4901
4902 <<creating-destroying-tracing-sessions,Create a tracing session>>
4903 and <<enabling-disabling-events,create an event rule>> matching the
4904 `jello` JUL logger:
4905
4906 [role="term"]
4907 ----
4908 $ lttng create
4909 $ lttng enable-event --jul jello
4910 ----
4911
4912 <<adding-context,Add the application-specific context fields>> to the
4913 JUL channel:
4914
4915 [role="term"]
4916 ----
4917 $ lttng add-context --jul --type='$app.myRetriever:intCtx'
4918 $ lttng add-context --jul --type='$app.myRetriever:strContext'
4919 ----
4920
4921 <<basic-tracing-session-control,Start tracing>>:
4922
4923 [role="term"]
4924 ----
4925 $ lttng start
4926 ----
4927
4928 Run the compiled class:
4929
4930 [role="term"]
4931 ----
4932 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4933 ----
4934
4935 <<basic-tracing-session-control,Stop tracing>> and inspect the
4936 recorded events:
4937
4938 [role="term"]
4939 ----
4940 $ lttng stop
4941 $ lttng view
4942 ----
4943 ====
4944
4945
4946 [role="since-2.7"]
4947 [[python-application]]
4948 === User space Python agent
4949
4950 You can instrument a Python 2 or Python 3 application which uses the
4951 standard https://docs.python.org/3/library/logging.html[`logging`]
4952 package.
4953
4954 Each log statement emits an LTTng event once the
4955 application module imports the
4956 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4957
4958 [role="img-100"]
4959 .A Python application importing the LTTng-UST Python agent.
4960 image::python-app.png[]
4961
4962 To use the LTTng-UST Python agent:
4963
4964 . In the Python application's source code, import the LTTng-UST Python
4965 agent:
4966 +
4967 --
4968 [source,python]
4969 ----
4970 import lttngust
4971 ----
4972 --
4973 +
4974 The LTTng-UST Python agent automatically adds its logging handler to the
4975 root logger at import time.
4976 +
4977 Any log statement that the application executes before this import does
4978 not emit an LTTng event.
4979 +
4980 IMPORTANT: The LTTng-UST Python agent must be
4981 <<installing-lttng,installed>>.
4982
4983 . Use log statements and logging configuration as usual.
4984 Since the LTTng-UST Python agent adds a handler to the _root_
4985 logger, you can trace any log statement from any logger.
4986
4987 .Use the LTTng-UST Python agent.
4988 ====
4989 [source,python]
4990 .path:{test.py}
4991 ----
4992 import lttngust
4993 import logging
4994 import time
4995
4996
4997 def example():
4998 logging.basicConfig()
4999 logger = logging.getLogger('my-logger')
5000
5001 while True:
5002 logger.debug('debug message')
5003 logger.info('info message')
5004 logger.warn('warn message')
5005 logger.error('error message')
5006 logger.critical('critical message')
5007 time.sleep(1)
5008
5009
5010 if __name__ == '__main__':
5011 example()
5012 ----
5013
5014 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
5015 logging handler which prints to the standard error stream, is not
5016 strictly required for LTTng-UST tracing to work, but in versions of
5017 Python preceding 3.2, you could see a warning message which indicates
5018 that no handler exists for the logger `my-logger`.
5019
5020 <<creating-destroying-tracing-sessions,Create a tracing session>>,
5021 <<enabling-disabling-events,create an event rule>> matching the
5022 `my-logger` Python logger, and <<basic-tracing-session-control,start
5023 tracing>>:
5024
5025 [role="term"]
5026 ----
5027 $ lttng create
5028 $ lttng enable-event --python my-logger
5029 $ lttng start
5030 ----
5031
5032 Run the Python script:
5033
5034 [role="term"]
5035 ----
5036 $ python test.py
5037 ----
5038
5039 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5040 events:
5041
5042 [role="term"]
5043 ----
5044 $ lttng stop
5045 $ lttng view
5046 ----
5047 ====
5048
5049 In the resulting trace, an <<event,event record>> generated by a Python
5050 application is named `lttng_python:event` and has the following fields:
5051
5052 `asctime`::
5053 Logging time (string).
5054
5055 `msg`::
5056 Log record's message.
5057
5058 `logger_name`::
5059 Logger name.
5060
5061 `funcName`::
5062 Name of the function in which the log statement was executed.
5063
5064 `lineno`::
5065 Line number at which the log statement was executed.
5066
5067 `int_loglevel`::
5068 Log level integer value.
5069
5070 `thread`::
5071 ID of the Python thread in which the log statement was executed.
5072
5073 `threadName`::
5074 Name of the Python thread in which the log statement was executed.
5075
5076 You can use the opt:lttng-enable-event(1):--loglevel or
5077 opt:lttng-enable-event(1):--loglevel-only option of the
5078 man:lttng-enable-event(1) command to target a range of Python log levels
5079 or a specific Python log level.
5080
5081 When an application imports the LTTng-UST Python agent, the agent tries
5082 to register to a <<lttng-sessiond,session daemon>>. Note that you must
5083 <<start-sessiond,start the session daemon>> _before_ you run the Python
5084 application. If a session daemon is found, the agent tries to register
5085 to it during 5{nbsp}seconds, after which the application continues
5086 without LTTng tracing support. You can override this timeout value with
5087 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
5088 (milliseconds).
5089
5090 If the session daemon stops while a Python application with an imported
5091 LTTng-UST Python agent runs, the agent retries to connect and to
5092 register to a session daemon every 3{nbsp}seconds. You can override this
5093 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
5094 variable.
5095
5096
5097 [role="since-2.5"]
5098 [[proc-lttng-logger-abi]]
5099 === LTTng logger
5100
5101 The `lttng-tracer` Linux kernel module, part of
5102 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
5103 path:{/proc/lttng-logger} when it's loaded. Any application can write
5104 text data to this file to emit an LTTng event.
5105
5106 [role="img-100"]
5107 .An application writes to the LTTng logger file to emit an LTTng event.
5108 image::lttng-logger.png[]
5109
5110 The LTTng logger is the quickest method--not the most efficient,
5111 however--to add instrumentation to an application. It is designed
5112 mostly to instrument shell scripts:
5113
5114 [role="term"]
5115 ----
5116 $ echo "Some message, some $variable" > /proc/lttng-logger
5117 ----
5118
5119 Any event that the LTTng logger emits is named `lttng_logger` and
5120 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
5121 other instrumentation points in the kernel tracing domain, **any Unix
5122 user** can <<enabling-disabling-events,create an event rule>> which
5123 matches its event name, not only the root user or users in the
5124 <<tracing-group,tracing group>>.
5125
5126 To use the LTTng logger:
5127
5128 * From any application, write text data to the path:{/proc/lttng-logger}
5129 file.
5130
5131 The `msg` field of `lttng_logger` event records contains the
5132 recorded message.
5133
5134 NOTE: The maximum message length of an LTTng logger event is
5135 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
5136 than one event to contain the remaining data.
5137
5138 You should not use the LTTng logger to trace a user application which
5139 can be instrumented in a more efficient way, namely:
5140
5141 * <<c-application,C and $$C++$$ applications>>.
5142 * <<java-application,Java applications>>.
5143 * <<python-application,Python applications>>.
5144
5145 .Use the LTTng logger.
5146 ====
5147 [source,bash]
5148 .path:{test.bash}
5149 ----
5150 echo 'Hello, World!' > /proc/lttng-logger
5151 sleep 2
5152 df --human-readable --print-type / > /proc/lttng-logger
5153 ----
5154
5155 <<creating-destroying-tracing-sessions,Create a tracing session>>,
5156 <<enabling-disabling-events,create an event rule>> matching the
5157 `lttng_logger` Linux kernel tracepoint, and
5158 <<basic-tracing-session-control,start tracing>>:
5159
5160 [role="term"]
5161 ----
5162 $ lttng create
5163 $ lttng enable-event --kernel lttng_logger
5164 $ lttng start
5165 ----
5166
5167 Run the Bash script:
5168
5169 [role="term"]
5170 ----
5171 $ bash test.bash
5172 ----
5173
5174 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5175 events:
5176
5177 [role="term"]
5178 ----
5179 $ lttng stop
5180 $ lttng view
5181 ----
5182 ====
5183
5184
5185 [[instrumenting-linux-kernel]]
5186 === LTTng kernel tracepoints
5187
5188 NOTE: This section shows how to _add_ instrumentation points to the
5189 Linux kernel. The kernel's subsystems are already thoroughly
5190 instrumented at strategic places for LTTng when you
5191 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
5192 package.
5193
5194 ////
5195 There are two methods to instrument the Linux kernel:
5196
5197 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
5198 tracepoint which uses the `TRACE_EVENT()` API.
5199 +
5200 Choose this if you want to instrumentation a Linux kernel tree with an
5201 instrumentation point compatible with ftrace, perf, and SystemTap.
5202
5203 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
5204 instrument an out-of-tree kernel module.
5205 +
5206 Choose this if you don't need ftrace, perf, or SystemTap support.
5207 ////
5208
5209
5210 [[linux-add-lttng-layer]]
5211 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
5212
5213 This section shows how to add an LTTng layer to existing ftrace
5214 instrumentation using the `TRACE_EVENT()` API.
5215
5216 This section does not document the `TRACE_EVENT()` macro. You can
5217 read the following articles to learn more about this API:
5218
5219 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
5220 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
5221 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
5222
5223 The following procedure assumes that your ftrace tracepoints are
5224 correctly defined in their own header and that they are created in
5225 one source file using the `CREATE_TRACE_POINTS` definition.
5226
5227 To add an LTTng layer over an existing ftrace tracepoint:
5228
5229 . Make sure the following kernel configuration options are
5230 enabled:
5231 +
5232 --
5233 * `CONFIG_MODULES`
5234 * `CONFIG_KALLSYMS`
5235 * `CONFIG_HIGH_RES_TIMERS`
5236 * `CONFIG_TRACEPOINTS`
5237 --
5238
5239 . Build the Linux source tree with your custom ftrace tracepoints.
5240 . Boot the resulting Linux image on your target system.
5241 +
5242 Confirm that the tracepoints exist by looking for their names in the
5243 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5244 is your subsystem's name.
5245
5246 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5247 +
5248 --
5249 [role="term"]
5250 ----
5251 $ cd $(mktemp -d) &&
5252 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
5253 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
5254 cd lttng-modules-2.8.*
5255 ----
5256 --
5257
5258 . In dir:{instrumentation/events/lttng-module}, relative to the root
5259 of the LTTng-modules source tree, create a header file named
5260 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5261 LTTng-modules tracepoint definitions using the LTTng-modules
5262 macros in it.
5263 +
5264 Start with this template:
5265 +
5266 --
5267 [source,c]
5268 .path:{instrumentation/events/lttng-module/my_subsys.h}
5269 ----
5270 #undef TRACE_SYSTEM
5271 #define TRACE_SYSTEM my_subsys
5272
5273 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5274 #define _LTTNG_MY_SUBSYS_H
5275
5276 #include "../../../probes/lttng-tracepoint-event.h"
5277 #include <linux/tracepoint.h>
5278
5279 LTTNG_TRACEPOINT_EVENT(
5280 /*
5281 * Format is identical to TRACE_EVENT()'s version for the three
5282 * following macro parameters:
5283 */
5284 my_subsys_my_event,
5285 TP_PROTO(int my_int, const char *my_string),
5286 TP_ARGS(my_int, my_string),
5287
5288 /* LTTng-modules specific macros */
5289 TP_FIELDS(
5290 ctf_integer(int, my_int_field, my_int)
5291 ctf_string(my_bar_field, my_bar)
5292 )
5293 )
5294
5295 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5296
5297 #include "../../../probes/define_trace.h"
5298 ----
5299 --
5300 +
5301 The entries in the `TP_FIELDS()` section are the list of fields for the
5302 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5303 ftrace's `TRACE_EVENT()` macro.
5304 +
5305 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5306 complete description of the available `ctf_*()` macros.
5307
5308 . Create the LTTng-modules probe's kernel module C source file,
5309 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5310 subsystem name:
5311 +
5312 --
5313 [source,c]
5314 .path:{probes/lttng-probe-my-subsys.c}
5315 ----
5316 #include <linux/module.h>
5317 #include "../lttng-tracer.h"
5318
5319 /*
5320 * Build-time verification of mismatch between mainline
5321 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5322 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5323 */
5324 #include <trace/events/my_subsys.h>
5325
5326 /* Create LTTng tracepoint probes */
5327 #define LTTNG_PACKAGE_BUILD
5328 #define CREATE_TRACE_POINTS
5329 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5330
5331 #include "../instrumentation/events/lttng-module/my_subsys.h"
5332
5333 MODULE_LICENSE("GPL and additional rights");
5334 MODULE_AUTHOR("Your name <your-email>");
5335 MODULE_DESCRIPTION("LTTng my_subsys probes");
5336 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5337 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5338 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5339 LTTNG_MODULES_EXTRAVERSION);
5340 ----
5341 --
5342
5343 . Edit path:{probes/KBuild} and add your new kernel module object
5344 next to the existing ones:
5345 +
5346 --
5347 [source,make]
5348 .path:{probes/KBuild}
5349 ----
5350 # ...
5351
5352 obj-m += lttng-probe-module.o
5353 obj-m += lttng-probe-power.o
5354
5355 obj-m += lttng-probe-my-subsys.o
5356
5357 # ...
5358 ----
5359 --
5360
5361 . Build and install the LTTng kernel modules:
5362 +
5363 --
5364 [role="term"]
5365 ----
5366 $ make KERNELDIR=/path/to/linux
5367 # make modules_install && depmod -a
5368 ----
5369 --
5370 +
5371 Replace `/path/to/linux` with the path to the Linux source tree where
5372 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5373
5374 Note that you can also use the
5375 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5376 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5377 C code that need to be executed before the event fields are recorded.
5378
5379 The best way to learn how to use the previous LTTng-modules macros is to
5380 inspect the existing LTTng-modules tracepoint definitions in the
5381 dir:{instrumentation/events/lttng-module} header files. Compare them
5382 with the Linux kernel mainline versions in the
5383 dir:{include/trace/events} directory of the Linux source tree.
5384
5385
5386 [role="since-2.7"]
5387 [[lttng-tracepoint-event-code]]
5388 ===== Use custom C code to access the data for tracepoint fields
5389
5390 Although we recommended to always use the
5391 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5392 the arguments and fields of an LTTng-modules tracepoint when possible,
5393 sometimes you need a more complex process to access the data that the
5394 tracer records as event record fields. In other words, you need local
5395 variables and multiple C{nbsp}statements instead of simple
5396 argument-based expressions that you pass to the
5397 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5398
5399 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5400 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5401 a block of C{nbsp}code to be executed before LTTng records the fields.
5402 The structure of this macro is:
5403
5404 [source,c]
5405 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5406 ----
5407 LTTNG_TRACEPOINT_EVENT_CODE(
5408 /*
5409 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5410 * version for the following three macro parameters:
5411 */
5412 my_subsys_my_event,
5413 TP_PROTO(int my_int, const char *my_string),
5414 TP_ARGS(my_int, my_string),
5415
5416 /* Declarations of custom local variables */
5417 TP_locvar(
5418 int a = 0;
5419 unsigned long b = 0;
5420 const char *name = "(undefined)";
5421 struct my_struct *my_struct;
5422 ),
5423
5424 /*
5425 * Custom code which uses both tracepoint arguments
5426 * (in TP_ARGS()) and local variables (in TP_locvar()).
5427 *
5428 * Local variables are actually members of a structure pointed
5429 * to by the special variable tp_locvar.
5430 */
5431 TP_code(
5432 if (my_int) {
5433 tp_locvar->a = my_int + 17;
5434 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5435 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5436 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5437 put_my_struct(tp_locvar->my_struct);
5438
5439 if (tp_locvar->b) {
5440 tp_locvar->a = 1;
5441 }
5442 }
5443 ),
5444
5445 /*
5446 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5447 * version for this, except that tp_locvar members can be
5448 * used in the argument expression parameters of
5449 * the ctf_*() macros.
5450 */
5451 TP_FIELDS(
5452 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5453 ctf_integer(int, my_struct_a, tp_locvar->a)
5454 ctf_string(my_string_field, my_string)
5455 ctf_string(my_struct_name, tp_locvar->name)
5456 )
5457 )
5458 ----
5459
5460 IMPORTANT: The C code defined in `TP_code()` must not have any side
5461 effects when executed. In particular, the code must not allocate
5462 memory or get resources without deallocating this memory or putting
5463 those resources afterwards.
5464
5465
5466 [[instrumenting-linux-kernel-tracing]]
5467 ==== Load and unload a custom probe kernel module
5468
5469 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5470 kernel module>> in the kernel before it can emit LTTng events.
5471
5472 To load the default probe kernel modules and a custom probe kernel
5473 module:
5474
5475 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5476 probe modules to load when starting a root <<lttng-sessiond,session
5477 daemon>>:
5478 +
5479 --
5480 .Load the `my_subsys`, `usb`, and the default probe modules.
5481 ====
5482 [role="term"]
5483 ----
5484 # lttng-sessiond --extra-kmod-probes=my_subsys,usb
5485 ----
5486 ====
5487 --
5488 +
5489 You only need to pass the subsystem name, not the whole kernel module
5490 name.
5491
5492 To load _only_ a given custom probe kernel module:
5493
5494 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5495 modules to load when starting a root session daemon:
5496 +
5497 --
5498 .Load only the `my_subsys` and `usb` probe modules.
5499 ====
5500 [role="term"]
5501 ----
5502 # lttng-sessiond --kmod-probes=my_subsys,usb
5503 ----
5504 ====
5505 --
5506
5507 To confirm that a probe module is loaded:
5508
5509 * Use man:lsmod(8):
5510 +
5511 --
5512 [role="term"]
5513 ----
5514 $ lsmod | grep lttng_probe_usb
5515 ----
5516 --
5517
5518 To unload the loaded probe modules:
5519
5520 * Kill the session daemon with `SIGTERM`:
5521 +
5522 --
5523 [role="term"]
5524 ----
5525 # pkill lttng-sessiond
5526 ----
5527 --
5528 +
5529 You can also use man:modprobe(8)'s `--remove` option if the session
5530 daemon terminates abnormally.
5531
5532
5533 [[controlling-tracing]]
5534 == Tracing control
5535
5536 Once an application or a Linux kernel is
5537 <<instrumenting,instrumented>> for LTTng tracing,
5538 you can _trace_ it.
5539
5540 This section is divided in topics on how to use the various
5541 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5542 command-line tool>>, to _control_ the LTTng daemons and tracers.
5543
5544 NOTE: In the following subsections, we refer to an man:lttng(1) command
5545 using its man page name. For example, instead of _Run the `create`
5546 command to..._, we use _Run the man:lttng-create(1) command to..._.
5547
5548
5549 [[start-sessiond]]
5550 === Start a session daemon
5551
5552 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5553 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5554 command-line tool.
5555
5556 You will see the following error when you run a command while no session
5557 daemon is running:
5558
5559 ----
5560 Error: No session daemon is available
5561 ----
5562
5563 The only command that automatically runs a session daemon is
5564 man:lttng-create(1), which you use to
5565 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5566 this is most of the time the first operation that you do, sometimes it's
5567 not. Some examples are:
5568
5569 * <<list-instrumentation-points,List the available instrumentation points>>.
5570 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5571
5572 [[tracing-group]] Each Unix user must have its own running session
5573 daemon to trace user applications. The session daemon that the root user
5574 starts is the only one allowed to control the LTTng kernel tracer. Users
5575 that are part of the _tracing group_ can control the root session
5576 daemon. The default tracing group name is `tracing`; you can set it to
5577 something else with the opt:lttng-sessiond(8):--group option when you
5578 start the root session daemon.
5579
5580 To start a user session daemon:
5581
5582 * Run man:lttng-sessiond(8):
5583 +
5584 --
5585 [role="term"]
5586 ----
5587 $ lttng-sessiond --daemonize
5588 ----
5589 --
5590
5591 To start the root session daemon:
5592
5593 * Run man:lttng-sessiond(8) as the root user:
5594 +
5595 --
5596 [role="term"]
5597 ----
5598 # lttng-sessiond --daemonize
5599 ----
5600 --
5601
5602 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5603 start the session daemon in foreground.
5604
5605 To stop a session daemon, use man:kill(1) on its process ID (standard
5606 `TERM` signal).
5607
5608 Note that some Linux distributions could manage the LTTng session daemon
5609 as a service. In this case, you should use the service manager to
5610 start, restart, and stop session daemons.
5611
5612
5613 [[creating-destroying-tracing-sessions]]
5614 === Create and destroy a tracing session
5615
5616 Almost all the LTTng control operations happen in the scope of
5617 a <<tracing-session,tracing session>>, which is the dialogue between the
5618 <<lttng-sessiond,session daemon>> and you.
5619
5620 To create a tracing session with a generated name:
5621
5622 * Use the man:lttng-create(1) command:
5623 +
5624 --
5625 [role="term"]
5626 ----
5627 $ lttng create
5628 ----
5629 --
5630
5631 The created tracing session's name is `auto` followed by the
5632 creation date.
5633
5634 To create a tracing session with a specific name:
5635
5636 * Use the optional argument of the man:lttng-create(1) command:
5637 +
5638 --
5639 [role="term"]
5640 ----
5641 $ lttng create my-session
5642 ----
5643 --
5644 +
5645 Replace `my-session` with the specific tracing session name.
5646
5647 LTTng appends the creation date to the created tracing session's name.
5648
5649 LTTng writes the traces of a tracing session in
5650 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5651 name of the tracing session. Note that the env:LTTNG_HOME environment
5652 variable defaults to `$HOME` if not set.
5653
5654 To output LTTng traces to a non-default location:
5655
5656 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5657 +
5658 --
5659 [role="term"]
5660 ----
5661 $ lttng create my-session --output=/tmp/some-directory
5662 ----
5663 --
5664
5665 You may create as many tracing sessions as you wish.
5666
5667 To list all the existing tracing sessions for your Unix user:
5668
5669 * Use the man:lttng-list(1) command:
5670 +
5671 --
5672 [role="term"]
5673 ----
5674 $ lttng list
5675 ----
5676 --
5677
5678 When you create a tracing session, it is set as the _current tracing
5679 session_. The following man:lttng(1) commands operate on the current
5680 tracing session when you don't specify one:
5681
5682 [role="list-3-cols"]
5683 * `add-context`
5684 * `destroy`
5685 * `disable-channel`
5686 * `disable-event`
5687 * `enable-channel`
5688 * `enable-event`
5689 * `load`
5690 * `save`
5691 * `snapshot`
5692 * `start`
5693 * `stop`
5694 * `track`
5695 * `untrack`
5696 * `view`
5697
5698 To change the current tracing session:
5699
5700 * Use the man:lttng-set-session(1) command:
5701 +
5702 --
5703 [role="term"]
5704 ----
5705 $ lttng set-session new-session
5706 ----
5707 --
5708 +
5709 Replace `new-session` by the name of the new current tracing session.
5710
5711 When you are done tracing in a given tracing session, you can destroy
5712 it. This operation frees the resources taken by the tracing session
5713 to destroy; it does not destroy the trace data that LTTng wrote for
5714 this tracing session.
5715
5716 To destroy the current tracing session:
5717
5718 * Use the man:lttng-destroy(1) command:
5719 +
5720 --
5721 [role="term"]
5722 ----
5723 $ lttng destroy
5724 ----
5725 --
5726
5727
5728 [[list-instrumentation-points]]
5729 === List the available instrumentation points
5730
5731 The <<lttng-sessiond,session daemon>> can query the running instrumented
5732 user applications and the Linux kernel to get a list of available
5733 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5734 they are tracepoints and system calls. For the user space tracing
5735 domain, they are tracepoints. For the other tracing domains, they are
5736 logger names.
5737
5738 To list the available instrumentation points:
5739
5740 * Use the man:lttng-list(1) command with the requested tracing domain's
5741 option amongst:
5742 +
5743 --
5744 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5745 must be a root user, or it must be a member of the
5746 <<tracing-group,tracing group>>).
5747 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5748 kernel system calls (your Unix user must be a root user, or it must be
5749 a member of the tracing group).
5750 * opt:lttng-list(1):--userspace: user space tracepoints.
5751 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5752 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5753 * opt:lttng-list(1):--python: Python loggers.
5754 --
5755
5756 .List the available user space tracepoints.
5757 ====
5758 [role="term"]
5759 ----
5760 $ lttng list --userspace
5761 ----
5762 ====
5763
5764 .List the available Linux kernel system call tracepoints.
5765 ====
5766 [role="term"]
5767 ----
5768 $ lttng list --kernel --syscall
5769 ----
5770 ====
5771
5772
5773 [[enabling-disabling-events]]
5774 === Create and enable an event rule
5775
5776 Once you <<creating-destroying-tracing-sessions,create a tracing
5777 session>>, you can create <<event,event rules>> with the
5778 man:lttng-enable-event(1) command.
5779
5780 You specify each condition with a command-line option. The available
5781 condition options are shown in the following table.
5782
5783 [role="growable",cols="asciidoc,asciidoc,default"]
5784 .Condition command-line options for the man:lttng-enable-event(1) command.
5785 |====
5786 |Option |Description |Applicable tracing domains
5787
5788 |
5789 One of:
5790
5791 . `--syscall`
5792 . +--probe=__ADDR__+
5793 . +--function=__ADDR__+
5794
5795 |
5796 Instead of using the default _tracepoint_ instrumentation type, use:
5797
5798 . A Linux system call.
5799 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5800 . The entry and return points of a Linux function (symbol or address).
5801
5802 |Linux kernel.
5803
5804 |First positional argument.
5805
5806 |
5807 Tracepoint or system call name. In the case of a Linux KProbe or
5808 function, this is a custom name given to the event rule. With the
5809 JUL, log4j, and Python domains, this is a logger name.
5810
5811 With a tracepoint, logger, or system call name, the last character
5812 can be `*` to match anything that remains.
5813
5814 |All.
5815
5816 |
5817 One of:
5818
5819 . +--loglevel=__LEVEL__+
5820 . +--loglevel-only=__LEVEL__+
5821
5822 |
5823 . Match only tracepoints or log statements with a logging level at
5824 least as severe as +__LEVEL__+.
5825 . Match only tracepoints or log statements with a logging level
5826 equal to +__LEVEL__+.
5827
5828 See man:lttng-enable-event(1) for the list of available logging level
5829 names.
5830
5831 |User space, JUL, log4j, and Python.
5832
5833 |+--exclude=__EXCLUSIONS__+
5834
5835 |
5836 When you use a `*` character at the end of the tracepoint or logger
5837 name (first positional argument), exclude the specific names in the
5838 comma-delimited list +__EXCLUSIONS__+.
5839
5840 |
5841 User space, JUL, log4j, and Python.
5842
5843 |+--filter=__EXPR__+
5844
5845 |
5846 Match only events which satisfy the expression +__EXPR__+.
5847
5848 See man:lttng-enable-event(1) to learn more about the syntax of a
5849 filter expression.
5850
5851 |All.
5852
5853 |====
5854
5855 You attach an event rule to a <<channel,channel>> on creation. If you do
5856 not specify the channel with the opt:lttng-enable-event(1):--channel
5857 option, and if the event rule to create is the first in its
5858 <<domain,tracing domain>> for a given tracing session, then LTTng
5859 creates a _default channel_ for you. This default channel is reused in
5860 subsequent invocations of the man:lttng-enable-event(1) command for the
5861 same tracing domain.
5862
5863 An event rule is always enabled at creation time.
5864
5865 The following examples show how you can combine the previous
5866 command-line options to create simple to more complex event rules.
5867
5868 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5869 ====
5870 [role="term"]
5871 ----
5872 $ lttng enable-event --kernel sched_switch
5873 ----
5874 ====
5875
5876 .Create an event rule matching four Linux kernel system calls (default channel).
5877 ====
5878 [role="term"]
5879 ----
5880 $ lttng enable-event --kernel --syscall open,write,read,close
5881 ----
5882 ====
5883
5884 .Create event rules matching tracepoints with filter expressions (default channel).
5885 ====
5886 [role="term"]
5887 ----
5888 $ lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5889 ----
5890
5891 [role="term"]
5892 ----
5893 $ lttng enable-event --kernel --all \
5894 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5895 ----
5896
5897 [role="term"]
5898 ----
5899 $ lttng enable-event --jul my_logger \
5900 --filter='$app.retriever:cur_msg_id > 3'
5901 ----
5902
5903 IMPORTANT: Make sure to always quote the filter string when you
5904 use man:lttng(1) from a shell.
5905 ====
5906
5907 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5908 ====
5909 [role="term"]
5910 ----
5911 $ lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5912 ----
5913
5914 IMPORTANT: Make sure to always quote the wildcard character when you
5915 use man:lttng(1) from a shell.
5916 ====
5917
5918 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5919 ====
5920 [role="term"]
5921 ----
5922 $ lttng enable-event --python my-app.'*' \
5923 --exclude='my-app.module,my-app.hello'
5924 ----
5925 ====
5926
5927 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5928 ====
5929 [role="term"]
5930 ----
5931 $ lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5932 ----
5933 ====
5934
5935 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5936 ====
5937 [role="term"]
5938 ----
5939 $ lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5940 ----
5941 ====
5942
5943 The event rules of a given channel form a whitelist: as soon as an
5944 emitted event passes one of them, LTTng can record the event. For
5945 example, an event named `my_app:my_tracepoint` emitted from a user space
5946 tracepoint with a `TRACE_ERROR` log level passes both of the following
5947 rules:
5948
5949 [role="term"]
5950 ----
5951 $ lttng enable-event --userspace my_app:my_tracepoint
5952 $ lttng enable-event --userspace my_app:my_tracepoint \
5953 --loglevel=TRACE_INFO
5954 ----
5955
5956 The second event rule is redundant: the first one includes
5957 the second one.
5958
5959
5960 [[disable-event-rule]]
5961 === Disable an event rule
5962
5963 To disable an event rule that you <<enabling-disabling-events,created>>
5964 previously, use the man:lttng-disable-event(1) command. This command
5965 disables _all_ the event rules (of a given tracing domain and channel)
5966 which match an instrumentation point. The other conditions are not
5967 supported as of LTTng{nbsp}{revision}.
5968
5969 The LTTng tracer does not record an emitted event which passes
5970 a _disabled_ event rule.
5971
5972 .Disable an event rule matching a Python logger (default channel).
5973 ====
5974 [role="term"]
5975 ----
5976 $ lttng disable-event --python my-logger
5977 ----
5978 ====
5979
5980 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5981 ====
5982 [role="term"]
5983 ----
5984 $ lttng disable-event --jul '*'
5985 ----
5986 ====
5987
5988 .Disable _all_ the event rules of the default channel.
5989 ====
5990 The opt:lttng-disable-event(1):--all-events option is not, like the
5991 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5992 equivalent of the event name `*` (wildcard): it disables _all_ the event
5993 rules of a given channel.
5994
5995 [role="term"]
5996 ----
5997 $ lttng disable-event --jul --all-events
5998 ----
5999 ====
6000
6001 NOTE: You cannot delete an event rule once you create it.
6002
6003
6004 [[status]]
6005 === Get the status of a tracing session
6006
6007 To get the status of the current tracing session, that is, its
6008 parameters, its channels, event rules, and their attributes:
6009
6010 * Use the man:lttng-status(1) command:
6011 +
6012 --
6013 [role="term"]
6014 ----
6015 $ lttng status
6016 ----
6017 --
6018 +
6019
6020 To get the status of any tracing session:
6021
6022 * Use the man:lttng-list(1) command with the tracing session's name:
6023 +
6024 --
6025 [role="term"]
6026 ----
6027 $ lttng list my-session
6028 ----
6029 --
6030 +
6031 Replace `my-session` with the desired tracing session's name.
6032
6033
6034 [[basic-tracing-session-control]]
6035 === Start and stop a tracing session
6036
6037 Once you <<creating-destroying-tracing-sessions,create a tracing
6038 session>> and
6039 <<enabling-disabling-events,create one or more event rules>>,
6040 you can start and stop the tracers for this tracing session.
6041
6042 To start tracing in the current tracing session:
6043
6044 * Use the man:lttng-start(1) command:
6045 +
6046 --
6047 [role="term"]
6048 ----
6049 $ lttng start
6050 ----
6051 --
6052
6053 LTTng is very flexible: you can launch user applications before
6054 or after the you start the tracers. The tracers only record the events
6055 if they pass enabled event rules and if they occur while the tracers are
6056 started.
6057
6058 To stop tracing in the current tracing session:
6059
6060 * Use the man:lttng-stop(1) command:
6061 +
6062 --
6063 [role="term"]
6064 ----
6065 $ lttng stop
6066 ----
6067 --
6068 +
6069 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
6070 records>> or lost sub-buffers since the last time you ran
6071 man:lttng-start(1), warnings are printed when you run the
6072 man:lttng-stop(1) command.
6073
6074
6075 [[enabling-disabling-channels]]
6076 === Create a channel
6077
6078 Once you create a tracing session, you can create a <<channel,channel>>
6079 with the man:lttng-enable-channel(1) command.
6080
6081 Note that LTTng automatically creates a default channel when, for a
6082 given <<domain,tracing domain>>, no channels exist and you
6083 <<enabling-disabling-events,create>> the first event rule. This default
6084 channel is named `channel0` and its attributes are set to reasonable
6085 values. Therefore, you only need to create a channel when you need
6086 non-default attributes.
6087
6088 You specify each non-default channel attribute with a command-line
6089 option when you use the man:lttng-enable-channel(1) command. The
6090 available command-line options are:
6091
6092 [role="growable",cols="asciidoc,asciidoc"]
6093 .Command-line options for the man:lttng-enable-channel(1) command.
6094 |====
6095 |Option |Description
6096
6097 |`--overwrite`
6098
6099 |
6100 Use the _overwrite_
6101 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
6102 the default _discard_ mode.
6103
6104 |`--buffers-pid` (user space tracing domain only)
6105
6106 |
6107 Use the per-process <<channel-buffering-schemes,buffering scheme>>
6108 instead of the default per-user buffering scheme.
6109
6110 |+--subbuf-size=__SIZE__+
6111
6112 |
6113 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
6114 either for each Unix user (default), or for each instrumented process.
6115
6116 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6117
6118 |+--num-subbuf=__COUNT__+
6119
6120 |
6121 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
6122 for each Unix user (default), or for each instrumented process.
6123
6124 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6125
6126 |+--tracefile-size=__SIZE__+
6127
6128 |
6129 Set the maximum size of each trace file that this channel writes within
6130 a stream to +__SIZE__+ bytes instead of no maximum.
6131
6132 See <<tracefile-rotation,Trace file count and size>>.
6133
6134 |+--tracefile-count=__COUNT__+
6135
6136 |
6137 Limit the number of trace files that this channel creates to
6138 +__COUNT__+ channels instead of no limit.
6139
6140 See <<tracefile-rotation,Trace file count and size>>.
6141
6142 |+--switch-timer=__PERIODUS__+
6143
6144 |
6145 Set the <<channel-switch-timer,switch timer period>>
6146 to +__PERIODUS__+{nbsp}µs.
6147
6148 |+--read-timer=__PERIODUS__+
6149
6150 |
6151 Set the <<channel-read-timer,read timer period>>
6152 to +__PERIODUS__+{nbsp}µs.
6153
6154 |+--output=__TYPE__+ (Linux kernel tracing domain only)
6155
6156 |
6157 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
6158
6159 |====
6160
6161 You can only create a channel in the Linux kernel and user space
6162 <<domain,tracing domains>>: other tracing domains have their own channel
6163 created on the fly when <<enabling-disabling-events,creating event
6164 rules>>.
6165
6166 [IMPORTANT]
6167 ====
6168 Because of a current LTTng limitation, you must create all channels
6169 _before_ you <<basic-tracing-session-control,start tracing>> in a given
6170 tracing session, that is, before the first time you run
6171 man:lttng-start(1).
6172
6173 Since LTTng automatically creates a default channel when you use the
6174 man:lttng-enable-event(1) command with a specific tracing domain, you
6175 cannot, for example, create a Linux kernel event rule, start tracing,
6176 and then create a user space event rule, because no user space channel
6177 exists yet and it's too late to create one.
6178
6179 For this reason, make sure to configure your channels properly
6180 before starting the tracers for the first time!
6181 ====
6182
6183 The following examples show how you can combine the previous
6184 command-line options to create simple to more complex channels.
6185
6186 .Create a Linux kernel channel with default attributes.
6187 ====
6188 [role="term"]
6189 ----
6190 $ lttng enable-channel --kernel my-channel
6191 ----
6192 ====
6193
6194 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6195 ====
6196 [role="term"]
6197 ----
6198 $ lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6199 --buffers-pid my-channel
6200 ----
6201 ====
6202
6203 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
6204 ====
6205 [role="term"]
6206 ----
6207 $ lttng enable-channel --kernel --tracefile-count=8 \
6208 --tracefile-size=4194304 my-channel
6209 ----
6210 ====
6211
6212 .Create a user space channel in overwrite (or _flight recorder_) mode.
6213 ====
6214 [role="term"]
6215 ----
6216 $ lttng enable-channel --userspace --overwrite my-channel
6217 ----
6218 ====
6219
6220 You can <<enabling-disabling-events,create>> the same event rule in
6221 two different channels:
6222
6223 [role="term"]
6224 ----
6225 $ lttng enable-event --userspace --channel=my-channel app:tp
6226 $ lttng enable-event --userspace --channel=other-channel app:tp
6227 ----
6228
6229 If both channels are enabled, when a tracepoint named `app:tp` is
6230 reached, LTTng records two events, one for each channel.
6231
6232
6233 [[disable-channel]]
6234 === Disable a channel
6235
6236 To disable a specific channel that you <<enabling-disabling-channels,created>>
6237 previously, use the man:lttng-disable-channel(1) command.
6238
6239 .Disable a specific Linux kernel channel.
6240 ====
6241 [role="term"]
6242 ----
6243 $ lttng disable-channel --kernel my-channel
6244 ----
6245 ====
6246
6247 The state of a channel precedes the individual states of event rules
6248 attached to it: event rules which belong to a disabled channel, even if
6249 they are enabled, are also considered disabled.
6250
6251
6252 [[adding-context]]
6253 === Add context fields to a channel
6254
6255 Event record fields in trace files provide important information about
6256 events that occured previously, but sometimes some external context may
6257 help you solve a problem faster. Examples of context fields are:
6258
6259 * The **process ID**, **thread ID**, **process name**, and
6260 **process priority** of the thread in which the event occurs.
6261 * The **hostname** of the system on which the event occurs.
6262 * The current values of many possible **performance counters** using
6263 perf, for example:
6264 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6265 ** Cache misses.
6266 ** Branch instructions, misses, and loads.
6267 ** CPU faults.
6268 * Any context defined at the application level (supported for the
6269 JUL and log4j <<domain,tracing domains>>).
6270
6271 To get the full list of available context fields, see
6272 `lttng add-context --list`. Some context fields are reserved for a
6273 specific <<domain,tracing domain>> (Linux kernel or user space).
6274
6275 You add context fields to <<channel,channels>>. All the events
6276 that a channel with added context fields records contain those fields.
6277
6278 To add context fields to one or all the channels of a given tracing
6279 session:
6280
6281 * Use the man:lttng-add-context(1) command.
6282
6283 .Add context fields to all the channels of the current tracing session.
6284 ====
6285 The following command line adds the virtual process identifier and
6286 the per-thread CPU cycles count fields to all the user space channels
6287 of the current tracing session.
6288
6289 [role="term"]
6290 ----
6291 $ lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6292 ----
6293 ====
6294
6295 .Add a context field to a specific channel.
6296 ====
6297 The following command line adds the thread identifier context field
6298 to the Linux kernel channel named `my-channel` in the current
6299 tracing session.
6300
6301 [role="term"]
6302 ----
6303 $ lttng add-context --kernel --channel=my-channel --type=tid
6304 ----
6305 ====
6306
6307 .Add an application-specific context field to a specific channel.
6308 ====
6309 The following command line adds the `cur_msg_id` context field of the
6310 `retriever` context retriever for all the instrumented
6311 <<java-application,Java applications>> recording <<event,event records>>
6312 in the channel named `my-channel`:
6313
6314 [role="term"]
6315 ----
6316 $ lttng add-context --kernel --channel=my-channel \
6317 --type='$app:retriever:cur_msg_id'
6318 ----
6319
6320 IMPORTANT: Make sure to always quote the `$` character when you
6321 use man:lttng-add-context(1) from a shell.
6322 ====
6323
6324 NOTE: You cannot remove context fields from a channel once you add it.
6325
6326
6327 [role="since-2.7"]
6328 [[pid-tracking]]
6329 === Track process IDs
6330
6331 It's often useful to allow only specific process IDs (PIDs) to emit
6332 events. For example, you may wish to record all the system calls made by
6333 a given process (à la http://linux.die.net/man/1/strace[strace]).
6334
6335 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6336 purpose. Both commands operate on a whitelist of process IDs. You _add_
6337 entries to this whitelist with the man:lttng-track(1) command and remove
6338 entries with the man:lttng-untrack(1) command. Any process which has one
6339 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6340 an enabled <<event,event rule>>.
6341
6342 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6343 process with a given tracked ID exit and another process be given this
6344 ID, then the latter would also be allowed to emit events.
6345
6346 .Track and untrack process IDs.
6347 ====
6348 For the sake of the following example, assume the target system has 16
6349 possible PIDs.
6350
6351 When you
6352 <<creating-destroying-tracing-sessions,create a tracing session>>,
6353 the whitelist contains all the possible PIDs:
6354
6355 [role="img-100"]
6356 .All PIDs are tracked.
6357 image::track-all.png[]
6358
6359 When the whitelist is full and you use the man:lttng-track(1) command to
6360 specify some PIDs to track, LTTng first clears the whitelist, then it
6361 tracks the specific PIDs. After:
6362
6363 [role="term"]
6364 ----
6365 $ lttng track --pid=3,4,7,10,13
6366 ----
6367
6368 the whitelist is:
6369
6370 [role="img-100"]
6371 .PIDs 3, 4, 7, 10, and 13 are tracked.
6372 image::track-3-4-7-10-13.png[]
6373
6374 You can add more PIDs to the whitelist afterwards:
6375
6376 [role="term"]
6377 ----
6378 $ lttng track --pid=1,15,16
6379 ----
6380
6381 The result is:
6382
6383 [role="img-100"]
6384 .PIDs 1, 15, and 16 are added to the whitelist.
6385 image::track-1-3-4-7-10-13-15-16.png[]
6386
6387 The man:lttng-untrack(1) command removes entries from the PID tracker's
6388 whitelist. Given the previous example, the following command:
6389
6390 [role="term"]
6391 ----
6392 $ lttng untrack --pid=3,7,10,13
6393 ----
6394
6395 leads to this whitelist:
6396
6397 [role="img-100"]
6398 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6399 image::track-1-4-15-16.png[]
6400
6401 LTTng can track all possible PIDs again using the opt:track(1):--all
6402 option:
6403
6404 [role="term"]
6405 ----
6406 $ lttng track --pid --all
6407 ----
6408
6409 The result is, again:
6410
6411 [role="img-100"]
6412 .All PIDs are tracked.
6413 image::track-all.png[]
6414 ====
6415
6416 .Track only specific PIDs
6417 ====
6418 A very typical use case with PID tracking is to start with an empty
6419 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6420 then add PIDs manually while tracers are active. You can accomplish this
6421 by using the opt:lttng-untrack(1):--all option of the
6422 man:lttng-untrack(1) command to clear the whitelist after you
6423 <<creating-destroying-tracing-sessions,create a tracing session>>:
6424
6425 [role="term"]
6426 ----
6427 $ lttng untrack --pid --all
6428 ----
6429
6430 gives:
6431
6432 [role="img-100"]
6433 .No PIDs are tracked.
6434 image::untrack-all.png[]
6435
6436 If you trace with this whitelist configuration, the tracer records no
6437 events for this <<domain,tracing domain>> because no processes are
6438 tracked. You can use the man:lttng-track(1) command as usual to track
6439 specific PIDs, for example:
6440
6441 [role="term"]
6442 ----
6443 $ lttng track --pid=6,11
6444 ----
6445
6446 Result:
6447
6448 [role="img-100"]
6449 .PIDs 6 and 11 are tracked.
6450 image::track-6-11.png[]
6451 ====
6452
6453
6454 [role="since-2.5"]
6455 [[saving-loading-tracing-session]]
6456 === Save and load tracing session configurations
6457
6458 Configuring a <<tracing-session,tracing session>> can be long. Some of
6459 the tasks involved are:
6460
6461 * <<enabling-disabling-channels,Create channels>> with
6462 specific attributes.
6463 * <<adding-context,Add context fields>> to specific channels.
6464 * <<enabling-disabling-events,Create event rules>> with specific log
6465 level and filter conditions.
6466
6467 If you use LTTng to solve real world problems, chances are you have to
6468 record events using the same tracing session setup over and over,
6469 modifying a few variables each time in your instrumented program
6470 or environment. To avoid constant tracing session reconfiguration,
6471 the man:lttng(1) command-line tool can save and load tracing session
6472 configurations to/from XML files.
6473
6474 To save a given tracing session configuration:
6475
6476 * Use the man:lttng-save(1) command:
6477 +
6478 --
6479 [role="term"]
6480 ----
6481 $ lttng save my-session
6482 ----
6483 --
6484 +
6485 Replace `my-session` with the name of the tracing session to save.
6486
6487 LTTng saves tracing session configurations to
6488 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6489 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6490 the opt:lttng-save(1):--output-path option to change this destination
6491 directory.
6492
6493 LTTng saves all configuration parameters, for example:
6494
6495 * The tracing session name.
6496 * The trace data output path.
6497 * The channels with their state and all their attributes.
6498 * The context fields you added to channels.
6499 * The event rules with their state, log level and filter conditions.
6500
6501 To load a tracing session:
6502
6503 * Use the man:lttng-load(1) command:
6504 +
6505 --
6506 [role="term"]
6507 ----
6508 $ lttng load my-session
6509 ----
6510 --
6511 +
6512 Replace `my-session` with the name of the tracing session to load.
6513
6514 When LTTng loads a configuration, it restores your saved tracing session
6515 as if you just configured it manually.
6516
6517 See man:lttng(1) for the complete list of command-line options. You
6518 can also save and load all many sessions at a time, and decide in which
6519 directory to output the XML files.
6520
6521
6522 [[sending-trace-data-over-the-network]]
6523 === Send trace data over the network
6524
6525 LTTng can send the recorded trace data to a remote system over the
6526 network instead of writing it to the local file system.
6527
6528 To send the trace data over the network:
6529
6530 . On the _remote_ system (which can also be the target system),
6531 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6532 +
6533 --
6534 [role="term"]
6535 ----
6536 $ lttng-relayd
6537 ----
6538 --
6539
6540 . On the _target_ system, create a tracing session configured to
6541 send trace data over the network:
6542 +
6543 --
6544 [role="term"]
6545 ----
6546 $ lttng create my-session --set-url=net://remote-system
6547 ----
6548 --
6549 +
6550 Replace `remote-system` by the host name or IP address of the
6551 remote system. See man:lttng-create(1) for the exact URL format.
6552
6553 . On the target system, use the man:lttng(1) command-line tool as usual.
6554 When tracing is active, the target's consumer daemon sends sub-buffers
6555 to the relay daemon running on the remote system instead of flushing
6556 them to the local file system. The relay daemon writes the received
6557 packets to the local file system.
6558
6559 The relay daemon writes trace files to
6560 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6561 +__hostname__+ is the host name of the target system and +__session__+
6562 is the tracing session name. Note that the env:LTTNG_HOME environment
6563 variable defaults to `$HOME` if not set. Use the
6564 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6565 trace files to another base directory.
6566
6567
6568 [role="since-2.4"]
6569 [[lttng-live]]
6570 === View events as LTTng emits them (noch:{LTTng} live)
6571
6572 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6573 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6574 display events as LTTng emits them on the target system while tracing is
6575 active.
6576
6577 The relay daemon creates a _tee_: it forwards the trace data to both
6578 the local file system and to connected live viewers:
6579
6580 [role="img-90"]
6581 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6582 image::live.png[]
6583
6584 To use LTTng live:
6585
6586 . On the _target system_, create a <<tracing-session,tracing session>>
6587 in _live mode_:
6588 +
6589 --
6590 [role="term"]
6591 ----
6592 $ lttng create my-session --live
6593 ----
6594 --
6595 +
6596 This spawns a local relay daemon.
6597
6598 . Start the live viewer and configure it to connect to the relay
6599 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6600 +
6601 --
6602 [role="term"]
6603 ----
6604 $ babeltrace --input-format=lttng-live
6605 net://localhost/host/hostname/my-session
6606 ----
6607 --
6608 +
6609 Replace:
6610 +
6611 --
6612 * `hostname` with the host name of the target system.
6613 * `my-session` with the name of the tracing session to view.
6614 --
6615
6616 . Configure the tracing session as usual with the man:lttng(1)
6617 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6618
6619 You can list the available live tracing sessions with Babeltrace:
6620
6621 [role="term"]
6622 ----
6623 $ babeltrace --input-format=lttng-live net://localhost
6624 ----
6625
6626 You can start the relay daemon on another system. In this case, you need
6627 to specify the relay daemon's URL when you create the tracing session
6628 with the opt:lttng-create(1):--set-url option. You also need to replace
6629 `localhost` in the procedure above with the host name of the system on
6630 which the relay daemon is running.
6631
6632 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6633 command-line options.
6634
6635
6636 [role="since-2.3"]
6637 [[taking-a-snapshot]]
6638 === Take a snapshot of the current sub-buffers of a tracing session
6639
6640 The normal behavior of LTTng is to append full sub-buffers to growing
6641 trace data files. This is ideal to keep a full history of the events
6642 that occurred on the target system, but it can
6643 represent too much data in some situations. For example, you may wish
6644 to trace your application continuously until some critical situation
6645 happens, in which case you only need the latest few recorded
6646 events to perform the desired analysis, not multi-gigabyte trace files.
6647
6648 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6649 current sub-buffers of a given <<tracing-session,tracing session>>.
6650 LTTng can write the snapshot to the local file system or send it over
6651 the network.
6652
6653 To take a snapshot:
6654
6655 . Create a tracing session in _snapshot mode_:
6656 +
6657 --
6658 [role="term"]
6659 ----
6660 $ lttng create my-session --snapshot
6661 ----
6662 --
6663 +
6664 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6665 <<channel,channels>> created in this mode is automatically set to
6666 _overwrite_ (flight recorder mode).
6667
6668 . Configure the tracing session as usual with the man:lttng(1)
6669 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6670
6671 . **Optional**: When you need to take a snapshot,
6672 <<basic-tracing-session-control,stop tracing>>.
6673 +
6674 You can take a snapshot when the tracers are active, but if you stop
6675 them first, you are sure that the data in the sub-buffers does not
6676 change before you actually take the snapshot.
6677
6678 . Take a snapshot:
6679 +
6680 --
6681 [role="term"]
6682 ----
6683 $ lttng snapshot record --name=my-first-snapshot
6684 ----
6685 --
6686 +
6687 LTTng writes the current sub-buffers of all the current tracing
6688 session's channels to trace files on the local file system. Those trace
6689 files have `my-first-snapshot` in their name.
6690
6691 There is no difference between the format of a normal trace file and the
6692 format of a snapshot: viewers of LTTng traces also support LTTng
6693 snapshots.
6694
6695 By default, LTTng writes snapshot files to the path shown by
6696 `lttng snapshot list-output`. You can change this path or decide to send
6697 snapshots over the network using either:
6698
6699 . An output path or URL that you specify when you create the
6700 tracing session.
6701 . An snapshot output path or URL that you add using
6702 `lttng snapshot add-output`
6703 . An output path or URL that you provide directly to the
6704 `lttng snapshot record` command.
6705
6706 Method 3 overrides method 2, which overrides method 1. When you
6707 specify a URL, a relay daemon must listen on a remote system (see
6708 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6709
6710
6711 [role="since-2.6"]
6712 [[mi]]
6713 === Use the machine interface
6714
6715 With any command of the man:lttng(1) command-line tool, you can set the
6716 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6717 XML machine interface output, for example:
6718
6719 [role="term"]
6720 ----
6721 $ lttng --mi=xml enable-event --kernel --syscall open
6722 ----
6723
6724 A schema definition (XSD) is
6725 https://github.com/lttng/lttng-tools/blob/stable-2.8/src/common/mi-lttng-3.0.xsd[available]
6726 to ease the integration with external tools as much as possible.
6727
6728
6729 [role="since-2.8"]
6730 [[metadata-regenerate]]
6731 === Regenerate the metadata of an LTTng trace
6732
6733 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6734 data stream files and a metadata file. This metadata file contains,
6735 amongst other things, information about the offset of the clock sources
6736 used to timestamp <<event,event records>> when tracing.
6737
6738 If, once a <<tracing-session,tracing session>> is
6739 <<basic-tracing-session-control,started>>, a major
6740 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6741 happens, the trace's clock offset also needs to be updated. You
6742 can use the man:lttng-metadata(1) command to do so.
6743
6744 The main use case of this command is to allow a system to boot with
6745 an incorrect wall time and trace it with LTTng before its wall time
6746 is corrected. Once the system is known to be in a state where its
6747 wall time is correct, it can run `lttng metadata regenerate`.
6748
6749 To regenerate the metadata of an LTTng trace:
6750
6751 * Use the `regenerate` action of the man:lttng-metadata(1) command:
6752 +
6753 --
6754 [role="term"]
6755 ----
6756 $ lttng metadata regenerate
6757 ----
6758 --
6759
6760 [IMPORTANT]
6761 ====
6762 `lttng metadata regenerate` has the following limitations:
6763
6764 * Tracing session <<creating-destroying-tracing-sessions,created>>
6765 in non-live mode.
6766 * User space <<channel,channels>>, if any, using
6767 <<channel-buffering-schemes,per-user buffering>>.
6768 ====
6769
6770
6771 [role="since-2.7"]
6772 [[persistent-memory-file-systems]]
6773 === Record trace data on persistent memory file systems
6774
6775 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6776 (NVRAM) is random-access memory that retains its information when power
6777 is turned off (non-volatile). Systems with such memory can store data
6778 structures in RAM and retrieve them after a reboot, without flushing
6779 to typical _storage_.
6780
6781 Linux supports NVRAM file systems thanks to either
6782 http://pramfs.sourceforge.net/[PRAMFS] or
6783 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6784 (requires Linux 4.1+).
6785
6786 This section does not describe how to operate such file systems;
6787 we assume that you have a working persistent memory file system.
6788
6789 When you create a <<tracing-session,tracing session>>, you can specify
6790 the path of the shared memory holding the sub-buffers. If you specify a
6791 location on an NVRAM file system, then you can retrieve the latest
6792 recorded trace data when the system reboots after a crash.
6793
6794 To record trace data on a persistent memory file system and retrieve the
6795 trace data after a system crash:
6796
6797 . Create a tracing session with a sub-buffer shared memory path located
6798 on an NVRAM file system:
6799 +
6800 --
6801 [role="term"]
6802 ----
6803 $ lttng create my-session --shm-path=/path/to/shm
6804 ----
6805 --
6806
6807 . Configure the tracing session as usual with the man:lttng(1)
6808 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6809
6810 . After a system crash, use the man:lttng-crash(1) command-line tool to
6811 view the trace data recorded on the NVRAM file system:
6812 +
6813 --
6814 [role="term"]
6815 ----
6816 $ lttng-crash /path/to/shm
6817 ----
6818 --
6819
6820 The binary layout of the ring buffer files is not exactly the same as
6821 the trace files layout. This is why you need to use man:lttng-crash(1)
6822 instead of your preferred trace viewer directly.
6823
6824 To convert the ring buffer files to LTTng trace files:
6825
6826 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6827 +
6828 --
6829 [role="term"]
6830 ----
6831 $ lttng-crash --extract=/path/to/trace /path/to/shm
6832 ----
6833 --
6834
6835
6836 [[reference]]
6837 == Reference
6838
6839 [[lttng-modules-ref]]
6840 === noch:{LTTng-modules}
6841
6842 [role="since-2.7"]
6843 [[lttng-modules-tp-fields]]
6844 ==== Tracepoint fields macros (for `TP_FIELDS()`)
6845
6846 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
6847 tracepoint fields, which must be listed within `TP_FIELDS()` in
6848 `LTTNG_TRACEPOINT_EVENT()`, are:
6849
6850 [role="func-desc growable",cols="asciidoc,asciidoc"]
6851 .Available macros to define LTTng-modules tracepoint fields
6852 |====
6853 |Macro |Description and parameters
6854
6855 |
6856 +ctf_integer(__t__, __n__, __e__)+
6857
6858 +ctf_integer_nowrite(__t__, __n__, __e__)+
6859
6860 +ctf_user_integer(__t__, __n__, __e__)+
6861
6862 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
6863 |
6864 Standard integer, displayed in base 10.
6865
6866 +__t__+::
6867 Integer C type (`int`, `long`, `size_t`, ...).
6868
6869 +__n__+::
6870 Field name.
6871
6872 +__e__+::
6873 Argument expression.
6874
6875 |
6876 +ctf_integer_hex(__t__, __n__, __e__)+
6877
6878 +ctf_user_integer_hex(__t__, __n__, __e__)+
6879 |
6880 Standard integer, displayed in base 16.
6881
6882 +__t__+::
6883 Integer C type.
6884
6885 +__n__+::
6886 Field name.
6887
6888 +__e__+::
6889 Argument expression.
6890
6891 |+ctf_integer_oct(__t__, __n__, __e__)+
6892 |
6893 Standard integer, displayed in base 8.
6894
6895 +__t__+::
6896 Integer C type.
6897
6898 +__n__+::
6899 Field name.
6900
6901 +__e__+::
6902 Argument expression.
6903
6904 |
6905 +ctf_integer_network(__t__, __n__, __e__)+
6906
6907 +ctf_user_integer_network(__t__, __n__, __e__)+
6908 |
6909 Integer in network byte order (big-endian), displayed in base 10.
6910
6911 +__t__+::
6912 Integer C type.
6913
6914 +__n__+::
6915 Field name.
6916
6917 +__e__+::
6918 Argument expression.
6919
6920 |
6921 +ctf_integer_network_hex(__t__, __n__, __e__)+
6922
6923 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
6924 |
6925 Integer in network byte order, displayed in base 16.
6926
6927 +__t__+::
6928 Integer C type.
6929
6930 +__n__+::
6931 Field name.
6932
6933 +__e__+::
6934 Argument expression.
6935
6936 |
6937 +ctf_string(__n__, __e__)+
6938
6939 +ctf_string_nowrite(__n__, __e__)+
6940
6941 +ctf_user_string(__n__, __e__)+
6942
6943 +ctf_user_string_nowrite(__n__, __e__)+
6944 |
6945 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
6946
6947 +__n__+::
6948 Field name.
6949
6950 +__e__+::
6951 Argument expression.
6952
6953 |
6954 +ctf_array(__t__, __n__, __e__, __s__)+
6955
6956 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
6957
6958 +ctf_user_array(__t__, __n__, __e__, __s__)+
6959
6960 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
6961 |
6962 Statically-sized array of integers.
6963
6964 +__t__+::
6965 Array element C type.
6966
6967 +__n__+::
6968 Field name.
6969
6970 +__e__+::
6971 Argument expression.
6972
6973 +__s__+::
6974 Number of elements.
6975
6976 |
6977 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
6978
6979 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6980
6981 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
6982
6983 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6984 |
6985 Statically-sized array of bits.
6986
6987 The type of +__e__+ must be an integer type. +__s__+ is the number
6988 of elements of such type in +__e__+, not the number of bits.
6989
6990 +__t__+::
6991 Array element C type.
6992
6993 +__n__+::
6994 Field name.
6995
6996 +__e__+::
6997 Argument expression.
6998
6999 +__s__+::
7000 Number of elements.
7001
7002 |
7003 +ctf_array_text(__t__, __n__, __e__, __s__)+
7004
7005 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
7006
7007 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
7008
7009 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
7010 |
7011 Statically-sized array, printed as text.
7012
7013 The string does not need to be null-terminated.
7014
7015 +__t__+::
7016 Array element C type (always `char`).
7017
7018 +__n__+::
7019 Field name.
7020
7021 +__e__+::
7022 Argument expression.
7023
7024 +__s__+::
7025 Number of elements.
7026
7027 |
7028 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
7029
7030 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7031
7032 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
7033
7034 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7035 |
7036 Dynamically-sized array of integers.
7037
7038 The type of +__E__+ must be unsigned.
7039
7040 +__t__+::
7041 Array element C type.
7042
7043 +__n__+::
7044 Field name.
7045
7046 +__e__+::
7047 Argument expression.
7048
7049 +__T__+::
7050 Length expression C type.
7051
7052 +__E__+::
7053 Length expression.
7054
7055 |
7056 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7057
7058 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7059 |
7060 Dynamically-sized array of integers, displayed in base 16.
7061
7062 The type of +__E__+ must be unsigned.
7063
7064 +__t__+::
7065 Array element C type.
7066
7067 +__n__+::
7068 Field name.
7069
7070 +__e__+::
7071 Argument expression.
7072
7073 +__T__+::
7074 Length expression C type.
7075
7076 +__E__+::
7077 Length expression.
7078
7079 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
7080 |
7081 Dynamically-sized array of integers in network byte order (big-endian),
7082 displayed in base 10.
7083
7084 The type of +__E__+ must be unsigned.
7085
7086 +__t__+::
7087 Array element C type.
7088
7089 +__n__+::
7090 Field name.
7091
7092 +__e__+::
7093 Argument expression.
7094
7095 +__T__+::
7096 Length expression C type.
7097
7098 +__E__+::
7099 Length expression.
7100
7101 |
7102 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7103
7104 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7105
7106 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7107
7108 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7109 |
7110 Dynamically-sized array of bits.
7111
7112 The type of +__e__+ must be an integer type. +__s__+ is the number
7113 of elements of such type in +__e__+, not the number of bits.
7114
7115 The type of +__E__+ must be unsigned.
7116
7117 +__t__+::
7118 Array element C type.
7119
7120 +__n__+::
7121 Field name.
7122
7123 +__e__+::
7124 Argument expression.
7125
7126 +__T__+::
7127 Length expression C type.
7128
7129 +__E__+::
7130 Length expression.
7131
7132 |
7133 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7134
7135 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7136
7137 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7138
7139 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7140 |
7141 Dynamically-sized array, displayed as text.
7142
7143 The string does not need to be null-terminated.
7144
7145 The type of +__E__+ must be unsigned.
7146
7147 The behaviour is undefined if +__e__+ is `NULL`.
7148
7149 +__t__+::
7150 Sequence element C type (always `char`).
7151
7152 +__n__+::
7153 Field name.
7154
7155 +__e__+::
7156 Argument expression.
7157
7158 +__T__+::
7159 Length expression C type.
7160
7161 +__E__+::
7162 Length expression.
7163 |====
7164
7165 Use the `_user` versions when the argument expression, `e`, is
7166 a user space address. In the cases of `ctf_user_integer*()` and
7167 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7168 be addressable.
7169
7170 The `_nowrite` versions omit themselves from the session trace, but are
7171 otherwise identical. This means the `_nowrite` fields won't be written
7172 in the recorded trace. Their primary purpose is to make some
7173 of the event context available to the
7174 <<enabling-disabling-events,event filters>> without having to
7175 commit the data to sub-buffers.
7176
7177
7178 [[glossary]]
7179 == Glossary
7180
7181 Terms related to LTTng and to tracing in general:
7182
7183 Babeltrace::
7184 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7185 the cmd:babeltrace command, some libraries, and Python bindings.
7186
7187 <<channel-buffering-schemes,buffering scheme>>::
7188 A layout of sub-buffers applied to a given channel.
7189
7190 <<channel,channel>>::
7191 An entity which is responsible for a set of ring buffers.
7192 +
7193 <<event,Event rules>> are always attached to a specific channel.
7194
7195 clock::
7196 A reference of time for a tracer.
7197
7198 <<lttng-consumerd,consumer daemon>>::
7199 A process which is responsible for consuming the full sub-buffers
7200 and write them to a file system or send them over the network.
7201
7202 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7203 mode in which the tracer _discards_ new event records when there's no
7204 sub-buffer space left to store them.
7205
7206 event::
7207 The consequence of the execution of an instrumentation
7208 point, like a tracepoint that you manually place in some source code,
7209 or a Linux kernel KProbe.
7210 +
7211 An event is said to _occur_ at a specific time. Different actions can
7212 be taken upon the occurrence of an event, like record the event's payload
7213 to a sub-buffer.
7214
7215 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7216 The mechanism by which event records of a given channel are lost
7217 (not recorded) when there is no sub-buffer space left to store them.
7218
7219 [[def-event-name]]event name::
7220 The name of an event, which is also the name of the event record.
7221 This is also called the _instrumentation point name_.
7222
7223 event record::
7224 A record, in a trace, of the payload of an event which occured.
7225
7226 <<event,event rule>>::
7227 Set of conditions which must be satisfied for one or more occuring
7228 events to be recorded.
7229
7230 `java.util.logging`::
7231 Java platform's
7232 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7233
7234 <<instrumenting,instrumentation>>::
7235 The use of LTTng probes to make a piece of software traceable.
7236
7237 instrumentation point::
7238 A point in the execution path of a piece of software that, when
7239 reached by this execution, can emit an event.
7240
7241 instrumentation point name::
7242 See _<<def-event-name,event name>>_.
7243
7244 log4j::
7245 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7246 developed by the Apache Software Foundation.
7247
7248 log level::
7249 Level of severity of a log statement or user space
7250 instrumentation point.
7251
7252 LTTng::
7253 The _Linux Trace Toolkit: next generation_ project.
7254
7255 <<lttng-cli,cmd:lttng>>::
7256 A command-line tool provided by the LTTng-tools project which you
7257 can use to send and receive control messages to and from a
7258 session daemon.
7259
7260 LTTng analyses::
7261 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7262 which is a set of analyzing programs that are used to obtain a
7263 higher level view of an LTTng trace.
7264
7265 cmd:lttng-consumerd::
7266 The name of the consumer daemon program.
7267
7268 cmd:lttng-crash::
7269 A utility provided by the LTTng-tools project which can convert
7270 ring buffer files (usually
7271 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7272 to trace files.
7273
7274 LTTng Documentation::
7275 This document.
7276
7277 <<lttng-live,LTTng live>>::
7278 A communication protocol between the relay daemon and live viewers
7279 which makes it possible to see events "live", as they are received by
7280 the relay daemon.
7281
7282 <<lttng-modules,LTTng-modules>>::
7283 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7284 which contains the Linux kernel modules to make the Linux kernel
7285 instrumentation points available for LTTng tracing.
7286
7287 cmd:lttng-relayd::
7288 The name of the relay daemon program.
7289
7290 cmd:lttng-sessiond::
7291 The name of the session daemon program.
7292
7293 LTTng-tools::
7294 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7295 contains the various programs and libraries used to
7296 <<controlling-tracing,control tracing>>.
7297
7298 <<lttng-ust,LTTng-UST>>::
7299 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7300 contains libraries to instrument user applications.
7301
7302 <<lttng-ust-agents,LTTng-UST Java agent>>::
7303 A Java package provided by the LTTng-UST project to allow the
7304 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7305 logging statements.
7306
7307 <<lttng-ust-agents,LTTng-UST Python agent>>::
7308 A Python package provided by the LTTng-UST project to allow the
7309 LTTng instrumentation of Python logging statements.
7310
7311 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7312 The event loss mode in which new event records overwrite older
7313 event records when there's no sub-buffer space left to store them.
7314
7315 <<channel-buffering-schemes,per-process buffering>>::
7316 A buffering scheme in which each instrumented process has its own
7317 sub-buffers for a given user space channel.
7318
7319 <<channel-buffering-schemes,per-user buffering>>::
7320 A buffering scheme in which all the processes of a Unix user share the
7321 same sub-buffer for a given user space channel.
7322
7323 <<lttng-relayd,relay daemon>>::
7324 A process which is responsible for receiving the trace data sent by
7325 a distant consumer daemon.
7326
7327 ring buffer::
7328 A set of sub-buffers.
7329
7330 <<lttng-sessiond,session daemon>>::
7331 A process which receives control commands from you and orchestrates
7332 the tracers and various LTTng daemons.
7333
7334 <<taking-a-snapshot,snapshot>>::
7335 A copy of the current data of all the sub-buffers of a given tracing
7336 session, saved as trace files.
7337
7338 sub-buffer::
7339 One part of an LTTng ring buffer which contains event records.
7340
7341 timestamp::
7342 The time information attached to an event when it is emitted.
7343
7344 trace (_noun_)::
7345 A set of files which are the concatenations of one or more
7346 flushed sub-buffers.
7347
7348 trace (_verb_)::
7349 The action of recording the events emitted by an application
7350 or by a system, or to initiate such recording by controlling
7351 a tracer.
7352
7353 Trace Compass::
7354 The http://tracecompass.org[Trace Compass] project and application.
7355
7356 tracepoint::
7357 An instrumentation point using the tracepoint mechanism of the Linux
7358 kernel or of LTTng-UST.
7359
7360 tracepoint definition::
7361 The definition of a single tracepoint.
7362
7363 tracepoint name::
7364 The name of a tracepoint.
7365
7366 tracepoint provider::
7367 A set of functions providing tracepoints to an instrumented user
7368 application.
7369 +
7370 Not to be confused with a _tracepoint provider package_: many tracepoint
7371 providers can exist within a tracepoint provider package.
7372
7373 tracepoint provider package::
7374 One or more tracepoint providers compiled as an object file or as
7375 a shared library.
7376
7377 tracer::
7378 A software which records emitted events.
7379
7380 <<domain,tracing domain>>::
7381 A namespace for event sources.
7382
7383 <<tracing-group,tracing group>>::
7384 The Unix group in which a Unix user can be to be allowed to trace the
7385 Linux kernel.
7386
7387 <<tracing-session,tracing session>>::
7388 A stateful dialogue between you and a <<lttng-sessiond,session
7389 daemon>>.
7390
7391 user application::
7392 An application running in user space, as opposed to a Linux kernel
7393 module, for example.
This page took 0.180883 seconds and 4 git commands to generate.