0b94ebee5dc3093858b4195baeb761b239f27992
[lttng-docs.git] / 2.10 / lttng-docs-2.10.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.10, 25 July 2017
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/welcome.txt[]
11
12
13 include::../common/audience.txt[]
14
15
16 [[chapters]]
17 === What's in this documentation?
18
19 The LTTng Documentation is divided into the following sections:
20
21 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24 +
25 You can skip this section if you’re familiar with software tracing and
26 with the LTTng project.
27
28 * **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31 +
32 You can skip this section if you already properly installed LTTng on
33 your target system.
34
35 * **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37 +
38 We recommend this section if you're new to LTTng or to software tracing
39 in general.
40 +
41 You can skip this section if you're not new to LTTng.
42
43 * **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45 +
46 It's a good idea to become familiar with the core concepts
47 before attempting to use the toolkit.
48
49 * **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52 * **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54 +
55 Instrumenting source code is essential to provide a meaningful
56 source of events.
57 +
58 You can skip this section if you do not have a programming background.
59
60 * **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63 * **<<reference,Reference>>** contains reference tables.
64 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68 include::../common/convention.txt[]
69
70
71 include::../common/acknowledgements.txt[]
72
73
74 [[whats-new]]
75 == What's new in LTTng {revision}?
76
77 LTTng{nbsp}{revision} bears the name _KeKriek_. From
78 http://brasseriedunham.com/[Brasserie Dunham], the _**KeKriek**_ is a
79 sour mashed golden wheat ale fermented with local sour cherries from
80 Tougas orchards. Fresh sweet cherry notes with some tartness, lively
81 carbonation with a dry finish.
82
83 New features and changes in LTTng{nbsp}{revision}:
84
85 * **Tracing control**:
86 ** You can put more than one wildcard special character (`*`), and not
87 only at the end, when you <<enabling-disabling-events,create an event
88 rule>>, in both the instrumentation point name and the literal
89 strings of
90 link:http://lttng.org/man/1/lttng-enable-event/v{revision}/#doc-filter-syntax[filter expressions]:
91 +
92 --
93 [role="term"]
94 ----
95 # lttng enable-event --kernel 'x86_*_local_timer_*' \
96 --filter='name == "*a*b*c*d*e" && count >= 23'
97 ----
98 --
99 +
100 --
101 [role="term"]
102 ----
103 $ lttng enable-event --userspace '*_my_org:*msg*'
104 ----
105 --
106
107 ** New trigger and notification API for
108 <<liblttng-ctl-lttng,`liblttng-ctl`>>. This new subsystem allows you
109 to register triggers which emit a notification when a given
110 condition is satisfied. As of LTTng{nbsp}{revision}, only
111 <<channel,channel>> buffer usage conditions are available.
112 Documentation is available in the
113 https://github.com/lttng/lttng-tools/tree/stable-{revision}/include/lttng[`liblttng-ctl`
114 header files].
115
116 ** You can now embed the whole textual LTTng-tools man pages into the
117 executables at build time with the `--enable-embedded-help`
118 configuration option. Thanks to this option, you don't need the
119 http://www.methods.co.nz/asciidoc/[AsciiDoc] and
120 https://directory.fsf.org/wiki/Xmlto[xmlto] tools at build time, and
121 a manual pager at run time, to get access to this documentation.
122
123 * **User space tracing**:
124 ** New blocking mode: an LTTng-UST tracepoint can now block until
125 <<channel,sub-buffer>> space is available instead of discarding event
126 records in <<channel-overwrite-mode-vs-discard-mode,discard mode>>.
127 With this feature, you can be sure that no event records are
128 discarded during your application's execution at the expense of
129 performance.
130 +
131 For example, the following command lines create a user space tracing
132 channel with an infinite blocking timeout and run an application
133 instrumented with LTTng-UST which is explicitly allowed to block:
134 +
135 --
136 [role="term"]
137 ----
138 $ lttng create
139 $ lttng enable-channel --userspace --blocking-timeout=-1 blocking-channel
140 $ lttng enable-event --userspace --channel=blocking-channel --all
141 $ lttng start
142 $ LTTNG_UST_ALLOW_BLOCKING=1 my-app
143 ----
144 --
145 +
146 See the complete <<blocking-timeout-example,blocking timeout example>>.
147
148 * **Linux kernel tracing**:
149 ** Linux 4.10, 4.11, and 4.12 support.
150 ** The thread state dump events recorded by LTTng-modules now contain
151 the task's CPU identifier. This improves the precision of the
152 scheduler model for analyses.
153 ** Extended man:socketpair(2) system call tracing data.
154
155
156 [[nuts-and-bolts]]
157 == Nuts and bolts
158
159 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
160 generation_ is a modern toolkit for tracing Linux systems and
161 applications. So your first question might be:
162 **what is tracing?**
163
164
165 [[what-is-tracing]]
166 === What is tracing?
167
168 As the history of software engineering progressed and led to what
169 we now take for granted--complex, numerous and
170 interdependent software applications running in parallel on
171 sophisticated operating systems like Linux--the authors of such
172 components, software developers, began feeling a natural
173 urge to have tools that would ensure the robustness and good performance
174 of their masterpieces.
175
176 One major achievement in this field is, inarguably, the
177 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
178 an essential tool for developers to find and fix bugs. But even the best
179 debugger won't help make your software run faster, and nowadays, faster
180 software means either more work done by the same hardware, or cheaper
181 hardware for the same work.
182
183 A _profiler_ is often the tool of choice to identify performance
184 bottlenecks. Profiling is suitable to identify _where_ performance is
185 lost in a given software. The profiler outputs a profile, a statistical
186 summary of observed events, which you may use to discover which
187 functions took the most time to execute. However, a profiler won't
188 report _why_ some identified functions are the bottleneck. Bottlenecks
189 might only occur when specific conditions are met, conditions that are
190 sometimes impossible to capture by a statistical profiler, or impossible
191 to reproduce with an application altered by the overhead of an
192 event-based profiler. For a thorough investigation of software
193 performance issues, a history of execution is essential, with the
194 recorded values of variables and context fields you choose, and
195 with as little influence as possible on the instrumented software. This
196 is where tracing comes in handy.
197
198 _Tracing_ is a technique used to understand what goes on in a running
199 software system. The software used for tracing is called a _tracer_,
200 which is conceptually similar to a tape recorder. When recording,
201 specific instrumentation points placed in the software source code
202 generate events that are saved on a giant tape: a _trace_ file. You
203 can trace user applications and the operating system at the same time,
204 opening the possibility of resolving a wide range of problems that would
205 otherwise be extremely challenging.
206
207 Tracing is often compared to _logging_. However, tracers and loggers are
208 two different tools, serving two different purposes. Tracers are
209 designed to record much lower-level events that occur much more
210 frequently than log messages, often in the range of thousands per
211 second, with very little execution overhead. Logging is more appropriate
212 for a very high-level analysis of less frequent events: user accesses,
213 exceptional conditions (errors and warnings, for example), database
214 transactions, instant messaging communications, and such. Simply put,
215 logging is one of the many use cases that can be satisfied with tracing.
216
217 The list of recorded events inside a trace file can be read manually
218 like a log file for the maximum level of detail, but it is generally
219 much more interesting to perform application-specific analyses to
220 produce reduced statistics and graphs that are useful to resolve a
221 given problem. Trace viewers and analyzers are specialized tools
222 designed to do this.
223
224 In the end, this is what LTTng is: a powerful, open source set of
225 tools to trace the Linux kernel and user applications at the same time.
226 LTTng is composed of several components actively maintained and
227 developed by its link:/community/#where[community].
228
229
230 [[lttng-alternatives]]
231 === Alternatives to noch:{LTTng}
232
233 Excluding proprietary solutions, a few competing software tracers
234 exist for Linux:
235
236 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
237 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
238 user scripts and is responsible for loading code into the
239 Linux kernel for further execution and collecting the outputted data.
240 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
241 subsystem in the Linux kernel in which a virtual machine can execute
242 programs passed from the user space to the kernel. You can attach
243 such programs to tracepoints and KProbes thanks to a system call, and
244 they can output data to the user space when executed thanks to
245 different mechanisms (pipe, VM register values, and eBPF maps, to name
246 a few).
247 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
248 is the de facto function tracer of the Linux kernel. Its user
249 interface is a set of special files in sysfs.
250 * https://perf.wiki.kernel.org/[perf] is
251 a performance analyzing tool for Linux which supports hardware
252 performance counters, tracepoints, as well as other counters and
253 types of probes. perf's controlling utility is the cmd:perf command
254 line/curses tool.
255 * http://linux.die.net/man/1/strace[strace]
256 is a command-line utility which records system calls made by a
257 user process, as well as signal deliveries and changes of process
258 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
259 to fulfill its function.
260 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
261 analyze Linux kernel events. You write scripts, or _chisels_ in
262 sysdig's jargon, in Lua and sysdig executes them while the system is
263 being traced or afterwards. sysdig's interface is the cmd:sysdig
264 command-line tool as well as the curses-based cmd:csysdig tool.
265 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
266 user space tracer which uses custom user scripts to produce plain text
267 traces. SystemTap converts the scripts to the C language, and then
268 compiles them as Linux kernel modules which are loaded to produce
269 trace data. SystemTap's primary user interface is the cmd:stap
270 command-line tool.
271
272 The main distinctive features of LTTng is that it produces correlated
273 kernel and user space traces, as well as doing so with the lowest
274 overhead amongst other solutions. It produces trace files in the
275 http://diamon.org/ctf[CTF] format, a file format optimized
276 for the production and analyses of multi-gigabyte data.
277
278 LTTng is the result of more than 10 years of active open source
279 development by a community of passionate developers.
280 LTTng{nbsp}{revision} is currently available on major desktop and server
281 Linux distributions.
282
283 The main interface for tracing control is a single command-line tool
284 named cmd:lttng. The latter can create several tracing sessions, enable
285 and disable events on the fly, filter events efficiently with custom
286 user expressions, start and stop tracing, and much more. LTTng can
287 record the traces on the file system or send them over the network, and
288 keep them totally or partially. You can view the traces once tracing
289 becomes inactive or in real-time.
290
291 <<installing-lttng,Install LTTng now>> and
292 <<getting-started,start tracing>>!
293
294
295 [[installing-lttng]]
296 == Installation
297
298 **LTTng** is a set of software <<plumbing,components>> which interact to
299 <<instrumenting,instrument>> the Linux kernel and user applications, and
300 to <<controlling-tracing,control tracing>> (start and stop
301 tracing, enable and disable event rules, and the rest). Those
302 components are bundled into the following packages:
303
304 * **LTTng-tools**: Libraries and command-line interface to
305 control tracing.
306 * **LTTng-modules**: Linux kernel modules to instrument and
307 trace the kernel.
308 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
309 trace user applications.
310
311 Most distributions mark the LTTng-modules and LTTng-UST packages as
312 optional when installing LTTng-tools (which is always required). In the
313 following sections, we always provide the steps to install all three,
314 but note that:
315
316 * You only need to install LTTng-modules if you intend to trace the
317 Linux kernel.
318 * You only need to install LTTng-UST if you intend to trace user
319 applications.
320
321 [role="growable"]
322 .Availability of LTTng{nbsp}{revision} for major Linux distributions as of 25 July 2017.
323 |====
324 |Distribution |Available in releases |Alternatives
325
326 |https://www.ubuntu.com/[Ubuntu]
327 |Ubuntu{nbsp}14.04 _Trusty Tahr_ and Ubuntu{nbsp}16.04 _Xenial Xerus_:
328 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
329 |link:/docs/v2.9#doc-ubuntu[LTTng{nbsp}2.9 for Ubuntu{nbsp}17.04 _Zesty Zapus_].
330
331 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
332 other Ubuntu releases.
333
334 |https://getfedora.org/[Fedora]
335 |_Not available_
336 |link:/docs/v2.9#doc-fedora[LTTng{nbsp}2.9 for Fedora 26].
337
338 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
339
340 |https://www.debian.org/[Debian]
341 |_Not available_
342 |link:/docs/v2.9#doc-debian[LTTng{nbsp}2.9 for Debian "stretch"
343 (stable), Debian "buster" (testing), and Debian "sid" (unstable)].
344
345 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
346
347 |https://www.archlinux.org/[Arch Linux]
348 |_Not available_
349 |link:/docs/v2.9#doc-arch-linux[LTTng{nbsp}2.9 in the latest AUR packages].
350
351 |https://alpinelinux.org/[Alpine Linux]
352 |_Not available_
353 |link:/docs/v2.9#doc-alpine-linux[LTTng{nbsp}2.9 for Alpine Linux "edge"].
354
355 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
356
357 |https://www.redhat.com/[RHEL] and https://www.suse.com/[SLES]
358 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
359 |
360
361 |https://buildroot.org/[Buildroot]
362 |_Not available_
363 |link:/docs/v2.9#doc-buildroot[LTTng{nbsp}2.9 for Buildroot{nbsp}2017.02 and
364 Buildroot{nbsp}2017.05].
365
366 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
367
368 |http://www.openembedded.org/wiki/Main_Page[OpenEmbedded] and
369 https://www.yoctoproject.org/[Yocto]
370 |_Not available_
371 |link:/docs/v2.9#doc-oe-yocto[LTTng{nbsp}2.9 for Yocto Project{nbsp}2.3 _Pyro_]
372 (`openembedded-core` layer).
373
374 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
375 |====
376
377
378 [[ubuntu]]
379 === [[ubuntu-official-repositories]]Ubuntu
380
381 [[ubuntu-ppa]]
382 ==== noch:{LTTng} Stable {revision} PPA
383
384 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
385 Stable{nbsp}{revision} PPA] offers the latest stable
386 LTTng{nbsp}{revision} packages for:
387
388 * Ubuntu{nbsp}14.04 _Trusty Tahr_
389 * Ubuntu{nbsp}16.04 _Xenial Xerus_
390
391 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
392
393 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
394 list of packages:
395 +
396 --
397 [role="term"]
398 ----
399 # apt-add-repository ppa:lttng/stable-2.10
400 # apt-get update
401 ----
402 --
403
404 . Install the main LTTng{nbsp}{revision} packages:
405 +
406 --
407 [role="term"]
408 ----
409 # apt-get install lttng-tools
410 # apt-get install lttng-modules-dkms
411 # apt-get install liblttng-ust-dev
412 ----
413 --
414
415 . **If you need to instrument and trace
416 <<java-application,Java applications>>**, install the LTTng-UST
417 Java agent:
418 +
419 --
420 [role="term"]
421 ----
422 # apt-get install liblttng-ust-agent-java
423 ----
424 --
425
426 . **If you need to instrument and trace
427 <<python-application,Python{nbsp}3 applications>>**, install the
428 LTTng-UST Python agent:
429 +
430 --
431 [role="term"]
432 ----
433 # apt-get install python3-lttngust
434 ----
435 --
436
437
438 [[enterprise-distributions]]
439 === RHEL, SUSE, and other enterprise distributions
440
441 To install LTTng on enterprise Linux distributions, such as Red Hat
442 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
443 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
444
445
446 [[building-from-source]]
447 === Build from source
448
449 To build and install LTTng{nbsp}{revision} from source:
450
451 . Using your distribution's package manager, or from source, install
452 the following dependencies of LTTng-tools and LTTng-UST:
453 +
454 --
455 * https://sourceforge.net/projects/libuuid/[libuuid]
456 * http://directory.fsf.org/wiki/Popt[popt]
457 * http://liburcu.org/[Userspace RCU]
458 * http://www.xmlsoft.org/[libxml2]
459 --
460
461 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
462 +
463 --
464 [role="term"]
465 ----
466 $ cd $(mktemp -d) &&
467 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
468 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
469 cd lttng-modules-2.10.* &&
470 make &&
471 sudo make modules_install &&
472 sudo depmod -a
473 ----
474 --
475
476 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
477 +
478 --
479 [role="term"]
480 ----
481 $ cd $(mktemp -d) &&
482 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.10.tar.bz2 &&
483 tar -xf lttng-ust-latest-2.10.tar.bz2 &&
484 cd lttng-ust-2.10.* &&
485 ./configure &&
486 make &&
487 sudo make install &&
488 sudo ldconfig
489 ----
490 --
491 +
492 --
493 [IMPORTANT]
494 .Java and Python application tracing
495 ====
496 If you need to instrument and trace <<java-application,Java
497 applications>>, pass the `--enable-java-agent-jul`,
498 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
499 `configure` script, depending on which Java logging framework you use.
500
501 If you need to instrument and trace <<python-application,Python
502 applications>>, pass the `--enable-python-agent` option to the
503 `configure` script. You can set the `PYTHON` environment variable to the
504 path to the Python interpreter for which to install the LTTng-UST Python
505 agent package.
506 ====
507 --
508 +
509 --
510 [NOTE]
511 ====
512 By default, LTTng-UST libraries are installed to
513 dir:{/usr/local/lib}, which is the de facto directory in which to
514 keep self-compiled and third-party libraries.
515
516 When <<building-tracepoint-providers-and-user-application,linking an
517 instrumented user application with `liblttng-ust`>>:
518
519 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
520 variable.
521 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
522 man:gcc(1), man:g++(1), or man:clang(1).
523 ====
524 --
525
526 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
527 +
528 --
529 [role="term"]
530 ----
531 $ cd $(mktemp -d) &&
532 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
533 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
534 cd lttng-tools-2.10.* &&
535 ./configure &&
536 make &&
537 sudo make install &&
538 sudo ldconfig
539 ----
540 --
541
542 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
543 previous steps automatically for a given version of LTTng and confine
544 the installed files in a specific directory. This can be useful to test
545 LTTng without installing it on your system.
546
547
548 [[getting-started]]
549 == Quick start
550
551 This is a short guide to get started quickly with LTTng kernel and user
552 space tracing.
553
554 Before you follow this guide, make sure to <<installing-lttng,install>>
555 LTTng.
556
557 This tutorial walks you through the steps to:
558
559 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
560 . <<tracing-your-own-user-application,Trace a user application>> written
561 in C.
562 . <<viewing-and-analyzing-your-traces,View and analyze the
563 recorded events>>.
564
565
566 [[tracing-the-linux-kernel]]
567 === Trace the Linux kernel
568
569 The following command lines start with the `#` prompt because you need
570 root privileges to trace the Linux kernel. You can also trace the kernel
571 as a regular user if your Unix user is a member of the
572 <<tracing-group,tracing group>>.
573
574 . Create a <<tracing-session,tracing session>> which writes its traces
575 to dir:{/tmp/my-kernel-trace}:
576 +
577 --
578 [role="term"]
579 ----
580 # lttng create my-kernel-session --output=/tmp/my-kernel-trace
581 ----
582 --
583
584 . List the available kernel tracepoints and system calls:
585 +
586 --
587 [role="term"]
588 ----
589 # lttng list --kernel
590 # lttng list --kernel --syscall
591 ----
592 --
593
594 . Create <<event,event rules>> which match the desired instrumentation
595 point names, for example the `sched_switch` and `sched_process_fork`
596 tracepoints, and the man:open(2) and man:close(2) system calls:
597 +
598 --
599 [role="term"]
600 ----
601 # lttng enable-event --kernel sched_switch,sched_process_fork
602 # lttng enable-event --kernel --syscall open,close
603 ----
604 --
605 +
606 You can also create an event rule which matches _all_ the Linux kernel
607 tracepoints (this will generate a lot of data when tracing):
608 +
609 --
610 [role="term"]
611 ----
612 # lttng enable-event --kernel --all
613 ----
614 --
615
616 . <<basic-tracing-session-control,Start tracing>>:
617 +
618 --
619 [role="term"]
620 ----
621 # lttng start
622 ----
623 --
624
625 . Do some operation on your system for a few seconds. For example,
626 load a website, or list the files of a directory.
627 . <<basic-tracing-session-control,Stop tracing>> and destroy the
628 tracing session:
629 +
630 --
631 [role="term"]
632 ----
633 # lttng stop
634 # lttng destroy
635 ----
636 --
637 +
638 The man:lttng-destroy(1) command does not destroy the trace data; it
639 only destroys the state of the tracing session.
640
641 . For the sake of this example, make the recorded trace accessible to
642 the non-root users:
643 +
644 --
645 [role="term"]
646 ----
647 # chown -R $(whoami) /tmp/my-kernel-trace
648 ----
649 --
650
651 See <<viewing-and-analyzing-your-traces,View and analyze the
652 recorded events>> to view the recorded events.
653
654
655 [[tracing-your-own-user-application]]
656 === Trace a user application
657
658 This section steps you through a simple example to trace a
659 _Hello world_ program written in C.
660
661 To create the traceable user application:
662
663 . Create the tracepoint provider header file, which defines the
664 tracepoints and the events they can generate:
665 +
666 --
667 [source,c]
668 .path:{hello-tp.h}
669 ----
670 #undef TRACEPOINT_PROVIDER
671 #define TRACEPOINT_PROVIDER hello_world
672
673 #undef TRACEPOINT_INCLUDE
674 #define TRACEPOINT_INCLUDE "./hello-tp.h"
675
676 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
677 #define _HELLO_TP_H
678
679 #include <lttng/tracepoint.h>
680
681 TRACEPOINT_EVENT(
682 hello_world,
683 my_first_tracepoint,
684 TP_ARGS(
685 int, my_integer_arg,
686 char*, my_string_arg
687 ),
688 TP_FIELDS(
689 ctf_string(my_string_field, my_string_arg)
690 ctf_integer(int, my_integer_field, my_integer_arg)
691 )
692 )
693
694 #endif /* _HELLO_TP_H */
695
696 #include <lttng/tracepoint-event.h>
697 ----
698 --
699
700 . Create the tracepoint provider package source file:
701 +
702 --
703 [source,c]
704 .path:{hello-tp.c}
705 ----
706 #define TRACEPOINT_CREATE_PROBES
707 #define TRACEPOINT_DEFINE
708
709 #include "hello-tp.h"
710 ----
711 --
712
713 . Build the tracepoint provider package:
714 +
715 --
716 [role="term"]
717 ----
718 $ gcc -c -I. hello-tp.c
719 ----
720 --
721
722 . Create the _Hello World_ application source file:
723 +
724 --
725 [source,c]
726 .path:{hello.c}
727 ----
728 #include <stdio.h>
729 #include "hello-tp.h"
730
731 int main(int argc, char *argv[])
732 {
733 int x;
734
735 puts("Hello, World!\nPress Enter to continue...");
736
737 /*
738 * The following getchar() call is only placed here for the purpose
739 * of this demonstration, to pause the application in order for
740 * you to have time to list its tracepoints. It is not
741 * needed otherwise.
742 */
743 getchar();
744
745 /*
746 * A tracepoint() call.
747 *
748 * Arguments, as defined in hello-tp.h:
749 *
750 * 1. Tracepoint provider name (required)
751 * 2. Tracepoint name (required)
752 * 3. my_integer_arg (first user-defined argument)
753 * 4. my_string_arg (second user-defined argument)
754 *
755 * Notice the tracepoint provider and tracepoint names are
756 * NOT strings: they are in fact parts of variables that the
757 * macros in hello-tp.h create.
758 */
759 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
760
761 for (x = 0; x < argc; ++x) {
762 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
763 }
764
765 puts("Quitting now!");
766 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
767
768 return 0;
769 }
770 ----
771 --
772
773 . Build the application:
774 +
775 --
776 [role="term"]
777 ----
778 $ gcc -c hello.c
779 ----
780 --
781
782 . Link the application with the tracepoint provider package,
783 `liblttng-ust`, and `libdl`:
784 +
785 --
786 [role="term"]
787 ----
788 $ gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
789 ----
790 --
791
792 Here's the whole build process:
793
794 [role="img-100"]
795 .User space tracing tutorial's build steps.
796 image::ust-flow.png[]
797
798 To trace the user application:
799
800 . Run the application with a few arguments:
801 +
802 --
803 [role="term"]
804 ----
805 $ ./hello world and beyond
806 ----
807 --
808 +
809 You see:
810 +
811 --
812 ----
813 Hello, World!
814 Press Enter to continue...
815 ----
816 --
817
818 . Start an LTTng <<lttng-sessiond,session daemon>>:
819 +
820 --
821 [role="term"]
822 ----
823 $ lttng-sessiond --daemonize
824 ----
825 --
826 +
827 Note that a session daemon might already be running, for example as
828 a service that the distribution's service manager started.
829
830 . List the available user space tracepoints:
831 +
832 --
833 [role="term"]
834 ----
835 $ lttng list --userspace
836 ----
837 --
838 +
839 You see the `hello_world:my_first_tracepoint` tracepoint listed
840 under the `./hello` process.
841
842 . Create a <<tracing-session,tracing session>>:
843 +
844 --
845 [role="term"]
846 ----
847 $ lttng create my-user-space-session
848 ----
849 --
850
851 . Create an <<event,event rule>> which matches the
852 `hello_world:my_first_tracepoint` event name:
853 +
854 --
855 [role="term"]
856 ----
857 $ lttng enable-event --userspace hello_world:my_first_tracepoint
858 ----
859 --
860
861 . <<basic-tracing-session-control,Start tracing>>:
862 +
863 --
864 [role="term"]
865 ----
866 $ lttng start
867 ----
868 --
869
870 . Go back to the running `hello` application and press Enter. The
871 program executes all `tracepoint()` instrumentation points and exits.
872 . <<basic-tracing-session-control,Stop tracing>> and destroy the
873 tracing session:
874 +
875 --
876 [role="term"]
877 ----
878 $ lttng stop
879 $ lttng destroy
880 ----
881 --
882 +
883 The man:lttng-destroy(1) command does not destroy the trace data; it
884 only destroys the state of the tracing session.
885
886 By default, LTTng saves the traces in
887 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
888 where +__name__+ is the tracing session name. The
889 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
890
891 See <<viewing-and-analyzing-your-traces,View and analyze the
892 recorded events>> to view the recorded events.
893
894
895 [[viewing-and-analyzing-your-traces]]
896 === View and analyze the recorded events
897
898 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
899 kernel>> and <<tracing-your-own-user-application,Trace a user
900 application>> tutorials, you can inspect the recorded events.
901
902 Many tools are available to read LTTng traces:
903
904 * **cmd:babeltrace** is a command-line utility which converts trace
905 formats; it supports the format that LTTng produces, CTF, as well as a
906 basic text output which can be ++grep++ed. The cmd:babeltrace command
907 is part of the http://diamon.org/babeltrace[Babeltrace] project.
908 * Babeltrace also includes
909 **https://www.python.org/[Python] bindings** so
910 that you can easily open and read an LTTng trace with your own script,
911 benefiting from the power of Python.
912 * http://tracecompass.org/[**Trace Compass**]
913 is a graphical user interface for viewing and analyzing any type of
914 logs or traces, including LTTng's.
915 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
916 project which includes many high-level analyses of LTTng kernel
917 traces, like scheduling statistics, interrupt frequency distribution,
918 top CPU usage, and more.
919
920 NOTE: This section assumes that the traces recorded during the previous
921 tutorials were saved to their default location, in the
922 dir:{$LTTNG_HOME/lttng-traces} directory. The env:LTTNG_HOME
923 environment variable defaults to `$HOME` if not set.
924
925
926 [[viewing-and-analyzing-your-traces-bt]]
927 ==== Use the cmd:babeltrace command-line tool
928
929 The simplest way to list all the recorded events of a trace is to pass
930 its path to cmd:babeltrace with no options:
931
932 [role="term"]
933 ----
934 $ babeltrace ~/lttng-traces/my-user-space-session*
935 ----
936
937 cmd:babeltrace finds all traces recursively within the given path and
938 prints all their events, merging them in chronological order.
939
940 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
941 further filtering:
942
943 [role="term"]
944 ----
945 $ babeltrace /tmp/my-kernel-trace | grep _switch
946 ----
947
948 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
949 count the recorded events:
950
951 [role="term"]
952 ----
953 $ babeltrace /tmp/my-kernel-trace | grep _open | wc --lines
954 ----
955
956
957 [[viewing-and-analyzing-your-traces-bt-python]]
958 ==== Use the Babeltrace Python bindings
959
960 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
961 is useful to isolate events by simple matching using man:grep(1) and
962 similar utilities. However, more elaborate filters, such as keeping only
963 event records with a field value falling within a specific range, are
964 not trivial to write using a shell. Moreover, reductions and even the
965 most basic computations involving multiple event records are virtually
966 impossible to implement.
967
968 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
969 to read the event records of an LTTng trace sequentially and compute the
970 desired information.
971
972 The following script accepts an LTTng Linux kernel trace path as its
973 first argument and prints the short names of the top 5 running processes
974 on CPU 0 during the whole trace:
975
976 [source,python]
977 .path:{top5proc.py}
978 ----
979 from collections import Counter
980 import babeltrace
981 import sys
982
983
984 def top5proc():
985 if len(sys.argv) != 2:
986 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
987 print(msg, file=sys.stderr)
988 return False
989
990 # A trace collection contains one or more traces
991 col = babeltrace.TraceCollection()
992
993 # Add the trace provided by the user (LTTng traces always have
994 # the 'ctf' format)
995 if col.add_trace(sys.argv[1], 'ctf') is None:
996 raise RuntimeError('Cannot add trace')
997
998 # This counter dict contains execution times:
999 #
1000 # task command name -> total execution time (ns)
1001 exec_times = Counter()
1002
1003 # This contains the last `sched_switch` timestamp
1004 last_ts = None
1005
1006 # Iterate on events
1007 for event in col.events:
1008 # Keep only `sched_switch` events
1009 if event.name != 'sched_switch':
1010 continue
1011
1012 # Keep only events which happened on CPU 0
1013 if event['cpu_id'] != 0:
1014 continue
1015
1016 # Event timestamp
1017 cur_ts = event.timestamp
1018
1019 if last_ts is None:
1020 # We start here
1021 last_ts = cur_ts
1022
1023 # Previous task command (short) name
1024 prev_comm = event['prev_comm']
1025
1026 # Initialize entry in our dict if not yet done
1027 if prev_comm not in exec_times:
1028 exec_times[prev_comm] = 0
1029
1030 # Compute previous command execution time
1031 diff = cur_ts - last_ts
1032
1033 # Update execution time of this command
1034 exec_times[prev_comm] += diff
1035
1036 # Update last timestamp
1037 last_ts = cur_ts
1038
1039 # Display top 5
1040 for name, ns in exec_times.most_common(5):
1041 s = ns / 1000000000
1042 print('{:20}{} s'.format(name, s))
1043
1044 return True
1045
1046
1047 if __name__ == '__main__':
1048 sys.exit(0 if top5proc() else 1)
1049 ----
1050
1051 Run this script:
1052
1053 [role="term"]
1054 ----
1055 $ python3 top5proc.py /tmp/my-kernel-trace/kernel
1056 ----
1057
1058 Output example:
1059
1060 ----
1061 swapper/0 48.607245889 s
1062 chromium 7.192738188 s
1063 pavucontrol 0.709894415 s
1064 Compositor 0.660867933 s
1065 Xorg.bin 0.616753786 s
1066 ----
1067
1068 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1069 weren't using the CPU that much when tracing, its first position in the
1070 list makes sense.
1071
1072
1073 [[core-concepts]]
1074 == [[understanding-lttng]]Core concepts
1075
1076 From a user's perspective, the LTTng system is built on a few concepts,
1077 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1078 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1079 Understanding how those objects relate to eachother is key in mastering
1080 the toolkit.
1081
1082 The core concepts are:
1083
1084 * <<tracing-session,Tracing session>>
1085 * <<domain,Tracing domain>>
1086 * <<channel,Channel and ring buffer>>
1087 * <<"event","Instrumentation point, event rule, event, and event record">>
1088
1089
1090 [[tracing-session]]
1091 === Tracing session
1092
1093 A _tracing session_ is a stateful dialogue between you and
1094 a <<lttng-sessiond,session daemon>>. You can
1095 <<creating-destroying-tracing-sessions,create a new tracing
1096 session>> with the `lttng create` command.
1097
1098 Anything that you do when you control LTTng tracers happens within a
1099 tracing session. In particular, a tracing session:
1100
1101 * Has its own name.
1102 * Has its own set of trace files.
1103 * Has its own state of activity (started or stopped).
1104 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1105 snapshot, or live).
1106 * Has its own <<channel,channels>> which have their own
1107 <<event,event rules>>.
1108
1109 [role="img-100"]
1110 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1111 image::concepts.png[]
1112
1113 Those attributes and objects are completely isolated between different
1114 tracing sessions.
1115
1116 A tracing session is analogous to a cash machine session:
1117 the operations you do on the banking system through the cash machine do
1118 not alter the data of other users of the same system. In the case of
1119 the cash machine, a session lasts as long as your bank card is inside.
1120 In the case of LTTng, a tracing session lasts from the `lttng create`
1121 command to the `lttng destroy` command.
1122
1123 [role="img-100"]
1124 .Each Unix user has its own set of tracing sessions.
1125 image::many-sessions.png[]
1126
1127
1128 [[tracing-session-mode]]
1129 ==== Tracing session mode
1130
1131 LTTng can send the generated trace data to different locations. The
1132 _tracing session mode_ dictates where to send it. The following modes
1133 are available in LTTng{nbsp}{revision}:
1134
1135 Local mode::
1136 LTTng writes the traces to the file system of the machine being traced
1137 (target system).
1138
1139 Network streaming mode::
1140 LTTng sends the traces over the network to a
1141 <<lttng-relayd,relay daemon>> running on a remote system.
1142
1143 Snapshot mode::
1144 LTTng does not write the traces by default. Instead, you can request
1145 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1146 current tracing buffers, and to write it to the target's file system
1147 or to send it over the network to a <<lttng-relayd,relay daemon>>
1148 running on a remote system.
1149
1150 Live mode::
1151 This mode is similar to the network streaming mode, but a live
1152 trace viewer can connect to the distant relay daemon to
1153 <<lttng-live,view event records as LTTng generates them>> by
1154 the tracers.
1155
1156
1157 [[domain]]
1158 === Tracing domain
1159
1160 A _tracing domain_ is a namespace for event sources. A tracing domain
1161 has its own properties and features.
1162
1163 There are currently five available tracing domains:
1164
1165 * Linux kernel
1166 * User space
1167 * `java.util.logging` (JUL)
1168 * log4j
1169 * Python
1170
1171 You must specify a tracing domain when using some commands to avoid
1172 ambiguity. For example, since all the domains support named tracepoints
1173 as event sources (instrumentation points that you manually insert in the
1174 source code), you need to specify a tracing domain when
1175 <<enabling-disabling-events,creating an event rule>> because all the
1176 tracing domains could have tracepoints with the same names.
1177
1178 Some features are reserved to specific tracing domains. Dynamic function
1179 entry and return instrumentation points, for example, are currently only
1180 supported in the Linux kernel tracing domain, but support for other
1181 tracing domains could be added in the future.
1182
1183 You can create <<channel,channels>> in the Linux kernel and user space
1184 tracing domains. The other tracing domains have a single default
1185 channel.
1186
1187
1188 [[channel]]
1189 === Channel and ring buffer
1190
1191 A _channel_ is an object which is responsible for a set of ring buffers.
1192 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1193 tracer emits an event, it can record it to one or more
1194 sub-buffers. The attributes of a channel determine what to do when
1195 there's no space left for a new event record because all sub-buffers
1196 are full, where to send a full sub-buffer, and other behaviours.
1197
1198 A channel is always associated to a <<domain,tracing domain>>. The
1199 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1200 a default channel which you cannot configure.
1201
1202 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1203 an event, it records it to the sub-buffers of all
1204 the enabled channels with a satisfied event rule, as long as those
1205 channels are part of active <<tracing-session,tracing sessions>>.
1206
1207
1208 [[channel-buffering-schemes]]
1209 ==== Per-user vs. per-process buffering schemes
1210
1211 A channel has at least one ring buffer _per CPU_. LTTng always
1212 records an event to the ring buffer associated to the CPU on which it
1213 occurred.
1214
1215 Two _buffering schemes_ are available when you
1216 <<enabling-disabling-channels,create a channel>> in the
1217 user space <<domain,tracing domain>>:
1218
1219 Per-user buffering::
1220 Allocate one set of ring buffers--one per CPU--shared by all the
1221 instrumented processes of each Unix user.
1222 +
1223 --
1224 [role="img-100"]
1225 .Per-user buffering scheme.
1226 image::per-user-buffering.png[]
1227 --
1228
1229 Per-process buffering::
1230 Allocate one set of ring buffers--one per CPU--for each
1231 instrumented process.
1232 +
1233 --
1234 [role="img-100"]
1235 .Per-process buffering scheme.
1236 image::per-process-buffering.png[]
1237 --
1238 +
1239 The per-process buffering scheme tends to consume more memory than the
1240 per-user option because systems generally have more instrumented
1241 processes than Unix users running instrumented processes. However, the
1242 per-process buffering scheme ensures that one process having a high
1243 event throughput won't fill all the shared sub-buffers of the same
1244 user, only its own.
1245
1246 The Linux kernel tracing domain has only one available buffering scheme
1247 which is to allocate a single set of ring buffers for the whole system.
1248 This scheme is similar to the per-user option, but with a single, global
1249 user "running" the kernel.
1250
1251
1252 [[channel-overwrite-mode-vs-discard-mode]]
1253 ==== Overwrite vs. discard event loss modes
1254
1255 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1256 arc in the following animation) of a specific channel's ring buffer.
1257 When there's no space left in a sub-buffer, the tracer marks it as
1258 consumable (red) and another, empty sub-buffer starts receiving the
1259 following event records. A <<lttng-consumerd,consumer daemon>>
1260 eventually consumes the marked sub-buffer (returns to white).
1261
1262 [NOTE]
1263 [role="docsvg-channel-subbuf-anim"]
1264 ====
1265 {note-no-anim}
1266 ====
1267
1268 In an ideal world, sub-buffers are consumed faster than they are filled,
1269 as is the case in the previous animation. In the real world,
1270 however, all sub-buffers can be full at some point, leaving no space to
1271 record the following events.
1272
1273 By default, LTTng-modules and LTTng-UST are _non-blocking_ tracers: when
1274 no empty sub-buffer is available, it is acceptable to lose event records
1275 when the alternative would be to cause substantial delays in the
1276 instrumented application's execution. LTTng privileges performance over
1277 integrity; it aims at perturbing the traced system as little as possible
1278 in order to make tracing of subtle race conditions and rare interrupt
1279 cascades possible.
1280
1281 Starting from LTTng{nbsp}2.10, the LTTng user space tracer, LTTng-UST,
1282 supports a _blocking mode_. See the <<blocking-timeout-example,blocking
1283 timeout example>> to learn how to use the blocking mode.
1284
1285 When it comes to losing event records because no empty sub-buffer is
1286 available, or because the <<opt-blocking-timeout,blocking timeout>> is
1287 reached, the channel's _event loss mode_ determines what to do. The
1288 available event loss modes are:
1289
1290 Discard mode::
1291 Drop the newest event records until a the tracer
1292 releases a sub-buffer.
1293
1294 Overwrite mode::
1295 Clear the sub-buffer containing the oldest event records and start
1296 writing the newest event records there.
1297 +
1298 This mode is sometimes called _flight recorder mode_ because it's
1299 similar to a
1300 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1301 always keep a fixed amount of the latest data.
1302
1303 Which mechanism you should choose depends on your context: prioritize
1304 the newest or the oldest event records in the ring buffer?
1305
1306 Beware that, in overwrite mode, the tracer abandons a whole sub-buffer
1307 as soon as a there's no space left for a new event record, whereas in
1308 discard mode, the tracer only discards the event record that doesn't
1309 fit.
1310
1311 In discard mode, LTTng increments a count of lost event records when
1312 an event record is lost and saves this count to the trace. In
1313 overwrite mode, LTTng keeps no information when it overwrites a
1314 sub-buffer before consuming it.
1315
1316 There are a few ways to decrease your probability of losing event
1317 records.
1318 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1319 how you can fine-une the sub-buffer count and size of a channel to
1320 virtually stop losing event records, though at the cost of greater
1321 memory usage.
1322
1323
1324 [[channel-subbuf-size-vs-subbuf-count]]
1325 ==== Sub-buffer count and size
1326
1327 When you <<enabling-disabling-channels,create a channel>>, you can
1328 set its number of sub-buffers and their size.
1329
1330 Note that there is noticeable CPU overhead introduced when
1331 switching sub-buffers (marking a full one as consumable and switching
1332 to an empty one for the following events to be recorded). Knowing this,
1333 the following list presents a few practical situations along with how
1334 to configure the sub-buffer count and size for them:
1335
1336 * **High event throughput**: In general, prefer bigger sub-buffers to
1337 lower the risk of losing event records.
1338 +
1339 Having bigger sub-buffers also ensures a lower
1340 <<channel-switch-timer,sub-buffer switching frequency>>.
1341 +
1342 The number of sub-buffers is only meaningful if you create the channel
1343 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1344 other sub-buffers are left unaltered.
1345
1346 * **Low event throughput**: In general, prefer smaller sub-buffers
1347 since the risk of losing event records is low.
1348 +
1349 Because events occur less frequently, the sub-buffer switching frequency
1350 should remain low and thus the tracer's overhead should not be a
1351 problem.
1352
1353 * **Low memory system**: If your target system has a low memory
1354 limit, prefer fewer first, then smaller sub-buffers.
1355 +
1356 Even if the system is limited in memory, you want to keep the
1357 sub-buffers as big as possible to avoid a high sub-buffer switching
1358 frequency.
1359
1360 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1361 which means event data is very compact. For example, the average
1362 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1363 sub-buffer size of 1{nbsp}MiB is considered big.
1364
1365 The previous situations highlight the major trade-off between a few big
1366 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1367 frequency vs. how much data is lost in overwrite mode. Assuming a
1368 constant event throughput and using the overwrite mode, the two
1369 following configurations have the same ring buffer total size:
1370
1371 [NOTE]
1372 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1373 ====
1374 {note-no-anim}
1375 ====
1376
1377 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1378 switching frequency, but if a sub-buffer overwrite happens, half of
1379 the event records so far (4{nbsp}MiB) are definitely lost.
1380 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1381 overhead as the previous configuration, but if a sub-buffer
1382 overwrite happens, only the eighth of event records so far are
1383 definitely lost.
1384
1385 In discard mode, the sub-buffers count parameter is pointless: use two
1386 sub-buffers and set their size according to the requirements of your
1387 situation.
1388
1389
1390 [[channel-switch-timer]]
1391 ==== Switch timer period
1392
1393 The _switch timer period_ is an important configurable attribute of
1394 a channel to ensure periodic sub-buffer flushing.
1395
1396 When the _switch timer_ expires, a sub-buffer switch happens. You can
1397 set the switch timer period attribute when you
1398 <<enabling-disabling-channels,create a channel>> to ensure that event
1399 data is consumed and committed to trace files or to a distant relay
1400 daemon periodically in case of a low event throughput.
1401
1402 [NOTE]
1403 [role="docsvg-channel-switch-timer"]
1404 ====
1405 {note-no-anim}
1406 ====
1407
1408 This attribute is also convenient when you use big sub-buffers to cope
1409 with a sporadic high event throughput, even if the throughput is
1410 normally low.
1411
1412
1413 [[channel-read-timer]]
1414 ==== Read timer period
1415
1416 By default, the LTTng tracers use a notification mechanism to signal a
1417 full sub-buffer so that a consumer daemon can consume it. When such
1418 notifications must be avoided, for example in real-time applications,
1419 you can use the channel's _read timer_ instead. When the read timer
1420 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1421 consumable sub-buffers.
1422
1423
1424 [[tracefile-rotation]]
1425 ==== Trace file count and size
1426
1427 By default, trace files can grow as large as needed. You can set the
1428 maximum size of each trace file that a channel writes when you
1429 <<enabling-disabling-channels,create a channel>>. When the size of
1430 a trace file reaches the channel's fixed maximum size, LTTng creates
1431 another file to contain the next event records. LTTng appends a file
1432 count to each trace file name in this case.
1433
1434 If you set the trace file size attribute when you create a channel, the
1435 maximum number of trace files that LTTng creates is _unlimited_ by
1436 default. To limit them, you can also set a maximum number of trace
1437 files. When the number of trace files reaches the channel's fixed
1438 maximum count, the oldest trace file is overwritten. This mechanism is
1439 called _trace file rotation_.
1440
1441
1442 [[event]]
1443 === Instrumentation point, event rule, event, and event record
1444
1445 An _event rule_ is a set of conditions which must be **all** satisfied
1446 for LTTng to record an occuring event.
1447
1448 You set the conditions when you <<enabling-disabling-events,create
1449 an event rule>>.
1450
1451 You always attach an event rule to <<channel,channel>> when you create
1452 it.
1453
1454 When an event passes the conditions of an event rule, LTTng records it
1455 in one of the attached channel's sub-buffers.
1456
1457 The available conditions, as of LTTng{nbsp}{revision}, are:
1458
1459 * The event rule _is enabled_.
1460 * The instrumentation point's type _is{nbsp}T_.
1461 * The instrumentation point's name (sometimes called _event name_)
1462 _matches{nbsp}N_, but _is not{nbsp}E_.
1463 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1464 _is exactly{nbsp}L_.
1465 * The fields of the event's payload _satisfy_ a filter
1466 expression{nbsp}__F__.
1467
1468 As you can see, all the conditions but the dynamic filter are related to
1469 the event rule's status or to the instrumentation point, not to the
1470 occurring events. This is why, without a filter, checking if an event
1471 passes an event rule is not a dynamic task: when you create or modify an
1472 event rule, all the tracers of its tracing domain enable or disable the
1473 instrumentation points themselves once. This is possible because the
1474 attributes of an instrumentation point (type, name, and log level) are
1475 defined statically. In other words, without a dynamic filter, the tracer
1476 _does not evaluate_ the arguments of an instrumentation point unless it
1477 matches an enabled event rule.
1478
1479 Note that, for LTTng to record an event, the <<channel,channel>> to
1480 which a matching event rule is attached must also be enabled, and the
1481 tracing session owning this channel must be active.
1482
1483 [role="img-100"]
1484 .Logical path from an instrumentation point to an event record.
1485 image::event-rule.png[]
1486
1487 .Event, event record, or event rule?
1488 ****
1489 With so many similar terms, it's easy to get confused.
1490
1491 An **event** is the consequence of the execution of an _instrumentation
1492 point_, like a tracepoint that you manually place in some source code,
1493 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1494 time. Different actions can be taken upon the occurrence of an event,
1495 like record the event's payload to a buffer.
1496
1497 An **event record** is the representation of an event in a sub-buffer. A
1498 tracer is responsible for capturing the payload of an event, current
1499 context variables, the event's ID, and the event's timestamp. LTTng
1500 can append this sub-buffer to a trace file.
1501
1502 An **event rule** is a set of conditions which must all be satisfied for
1503 LTTng to record an occuring event. Events still occur without
1504 satisfying event rules, but LTTng does not record them.
1505 ****
1506
1507
1508 [[plumbing]]
1509 == Components of noch:{LTTng}
1510
1511 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1512 to call LTTng a simple _tool_ since it is composed of multiple
1513 interacting components. This section describes those components,
1514 explains their respective roles, and shows how they connect together to
1515 form the LTTng ecosystem.
1516
1517 The following diagram shows how the most important components of LTTng
1518 interact with user applications, the Linux kernel, and you:
1519
1520 [role="img-100"]
1521 .Control and trace data paths between LTTng components.
1522 image::plumbing.png[]
1523
1524 The LTTng project incorporates:
1525
1526 * **LTTng-tools**: Libraries and command-line interface to
1527 control tracing sessions.
1528 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1529 ** <<lttng-consumerd,Consumer daemon>> (man:lttng-consumerd(8)).
1530 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1531 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1532 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1533 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1534 applications.
1535 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1536 headers to instrument and trace any native user application.
1537 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1538 *** `liblttng-ust-libc-wrapper`
1539 *** `liblttng-ust-pthread-wrapper`
1540 *** `liblttng-ust-cyg-profile`
1541 *** `liblttng-ust-cyg-profile-fast`
1542 *** `liblttng-ust-dl`
1543 ** User space tracepoint provider source files generator command-line
1544 tool (man:lttng-gen-tp(1)).
1545 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1546 Java applications using `java.util.logging` or
1547 Apache log4j 1.2 logging.
1548 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1549 Python applications using the standard `logging` package.
1550 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1551 the kernel.
1552 ** LTTng kernel tracer module.
1553 ** Tracing ring buffer kernel modules.
1554 ** Probe kernel modules.
1555 ** LTTng logger kernel module.
1556
1557
1558 [[lttng-cli]]
1559 === Tracing control command-line interface
1560
1561 [role="img-100"]
1562 .The tracing control command-line interface.
1563 image::plumbing-lttng-cli.png[]
1564
1565 The _man:lttng(1) command-line tool_ is the standard user interface to
1566 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1567 is part of LTTng-tools.
1568
1569 The cmd:lttng tool is linked with
1570 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1571 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1572
1573 The cmd:lttng tool has a Git-like interface:
1574
1575 [role="term"]
1576 ----
1577 $ lttng <GENERAL OPTIONS> <COMMAND> <COMMAND OPTIONS>
1578 ----
1579
1580 The <<controlling-tracing,Tracing control>> section explores the
1581 available features of LTTng using the cmd:lttng tool.
1582
1583
1584 [[liblttng-ctl-lttng]]
1585 === Tracing control library
1586
1587 [role="img-100"]
1588 .The tracing control library.
1589 image::plumbing-liblttng-ctl.png[]
1590
1591 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1592 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1593 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1594
1595 The <<lttng-cli,cmd:lttng command-line tool>>
1596 is linked with `liblttng-ctl`.
1597
1598 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1599 "master" header:
1600
1601 [source,c]
1602 ----
1603 #include <lttng/lttng.h>
1604 ----
1605
1606 Some objects are referenced by name (C string), such as tracing
1607 sessions, but most of them require to create a handle first using
1608 `lttng_create_handle()`.
1609
1610 The best available developer documentation for `liblttng-ctl` is, as of
1611 LTTng{nbsp}{revision}, its installed header files. Every function and
1612 structure is thoroughly documented.
1613
1614
1615 [[lttng-ust]]
1616 === User space tracing library
1617
1618 [role="img-100"]
1619 .The user space tracing library.
1620 image::plumbing-liblttng-ust.png[]
1621
1622 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1623 is the LTTng user space tracer. It receives commands from a
1624 <<lttng-sessiond,session daemon>>, for example to
1625 enable and disable specific instrumentation points, and writes event
1626 records to ring buffers shared with a
1627 <<lttng-consumerd,consumer daemon>>.
1628 `liblttng-ust` is part of LTTng-UST.
1629
1630 Public C header files are installed beside `liblttng-ust` to
1631 instrument any <<c-application,C or $$C++$$ application>>.
1632
1633 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1634 packages, use their own library providing tracepoints which is
1635 linked with `liblttng-ust`.
1636
1637 An application or library does not have to initialize `liblttng-ust`
1638 manually: its constructor does the necessary tasks to properly register
1639 to a session daemon. The initialization phase also enables the
1640 instrumentation points matching the <<event,event rules>> that you
1641 already created.
1642
1643
1644 [[lttng-ust-agents]]
1645 === User space tracing agents
1646
1647 [role="img-100"]
1648 .The user space tracing agents.
1649 image::plumbing-lttng-ust-agents.png[]
1650
1651 The _LTTng-UST Java and Python agents_ are regular Java and Python
1652 packages which add LTTng tracing capabilities to the
1653 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1654
1655 In the case of Java, the
1656 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1657 core logging facilities] and
1658 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1659 Note that Apache Log4{nbsp}2 is not supported.
1660
1661 In the case of Python, the standard
1662 https://docs.python.org/3/library/logging.html[`logging`] package
1663 is supported. Both Python 2 and Python 3 modules can import the
1664 LTTng-UST Python agent package.
1665
1666 The applications using the LTTng-UST agents are in the
1667 `java.util.logging` (JUL),
1668 log4j, and Python <<domain,tracing domains>>.
1669
1670 Both agents use the same mechanism to trace the log statements. When an
1671 agent is initialized, it creates a log handler that attaches to the root
1672 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1673 When the application executes a log statement, it is passed to the
1674 agent's log handler by the root logger. The agent's log handler calls a
1675 native function in a tracepoint provider package shared library linked
1676 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1677 other fields, like its logger name and its log level. This native
1678 function contains a user space instrumentation point, hence tracing the
1679 log statement.
1680
1681 The log level condition of an
1682 <<event,event rule>> is considered when tracing
1683 a Java or a Python application, and it's compatible with the standard
1684 JUL, log4j, and Python log levels.
1685
1686
1687 [[lttng-modules]]
1688 === LTTng kernel modules
1689
1690 [role="img-100"]
1691 .The LTTng kernel modules.
1692 image::plumbing-lttng-modules.png[]
1693
1694 The _LTTng kernel modules_ are a set of Linux kernel modules
1695 which implement the kernel tracer of the LTTng project. The LTTng
1696 kernel modules are part of LTTng-modules.
1697
1698 The LTTng kernel modules include:
1699
1700 * A set of _probe_ modules.
1701 +
1702 Each module attaches to a specific subsystem
1703 of the Linux kernel using its tracepoint instrument points. There are
1704 also modules to attach to the entry and return points of the Linux
1705 system call functions.
1706
1707 * _Ring buffer_ modules.
1708 +
1709 A ring buffer implementation is provided as kernel modules. The LTTng
1710 kernel tracer writes to the ring buffer; a
1711 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1712
1713 * The _LTTng kernel tracer_ module.
1714 * The _LTTng logger_ module.
1715 +
1716 The LTTng logger module implements the special path:{/proc/lttng-logger}
1717 file so that any executable can generate LTTng events by opening and
1718 writing to this file.
1719 +
1720 See <<proc-lttng-logger-abi,LTTng logger>>.
1721
1722 Generally, you do not have to load the LTTng kernel modules manually
1723 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1724 daemon>> loads the necessary modules when starting. If you have extra
1725 probe modules, you can specify to load them to the session daemon on
1726 the command line.
1727
1728 The LTTng kernel modules are installed in
1729 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1730 the kernel release (see `uname --kernel-release`).
1731
1732
1733 [[lttng-sessiond]]
1734 === Session daemon
1735
1736 [role="img-100"]
1737 .The session daemon.
1738 image::plumbing-sessiond.png[]
1739
1740 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1741 managing tracing sessions and for controlling the various components of
1742 LTTng. The session daemon is part of LTTng-tools.
1743
1744 The session daemon sends control requests to and receives control
1745 responses from:
1746
1747 * The <<lttng-ust,user space tracing library>>.
1748 +
1749 Any instance of the user space tracing library first registers to
1750 a session daemon. Then, the session daemon can send requests to
1751 this instance, such as:
1752 +
1753 --
1754 ** Get the list of tracepoints.
1755 ** Share an <<event,event rule>> so that the user space tracing library
1756 can enable or disable tracepoints. Amongst the possible conditions
1757 of an event rule is a filter expression which `liblttng-ust` evalutes
1758 when an event occurs.
1759 ** Share <<channel,channel>> attributes and ring buffer locations.
1760 --
1761 +
1762 The session daemon and the user space tracing library use a Unix
1763 domain socket for their communication.
1764
1765 * The <<lttng-ust-agents,user space tracing agents>>.
1766 +
1767 Any instance of a user space tracing agent first registers to
1768 a session daemon. Then, the session daemon can send requests to
1769 this instance, such as:
1770 +
1771 --
1772 ** Get the list of loggers.
1773 ** Enable or disable a specific logger.
1774 --
1775 +
1776 The session daemon and the user space tracing agent use a TCP connection
1777 for their communication.
1778
1779 * The <<lttng-modules,LTTng kernel tracer>>.
1780 * The <<lttng-consumerd,consumer daemon>>.
1781 +
1782 The session daemon sends requests to the consumer daemon to instruct
1783 it where to send the trace data streams, amongst other information.
1784
1785 * The <<lttng-relayd,relay daemon>>.
1786
1787 The session daemon receives commands from the
1788 <<liblttng-ctl-lttng,tracing control library>>.
1789
1790 The root session daemon loads the appropriate
1791 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
1792 a <<lttng-consumerd,consumer daemon>> as soon as you create
1793 an <<event,event rule>>.
1794
1795 The session daemon does not send and receive trace data: this is the
1796 role of the <<lttng-consumerd,consumer daemon>> and
1797 <<lttng-relayd,relay daemon>>. It does, however, generate the
1798 http://diamon.org/ctf/[CTF] metadata stream.
1799
1800 Each Unix user can have its own session daemon instance. The
1801 tracing sessions managed by different session daemons are completely
1802 independent.
1803
1804 The root user's session daemon is the only one which is
1805 allowed to control the LTTng kernel tracer, and its spawned consumer
1806 daemon is the only one which is allowed to consume trace data from the
1807 LTTng kernel tracer. Note, however, that any Unix user which is a member
1808 of the <<tracing-group,tracing group>> is allowed
1809 to create <<channel,channels>> in the
1810 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
1811 kernel.
1812
1813 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
1814 session daemon when using its `create` command if none is currently
1815 running. You can also start the session daemon manually.
1816
1817
1818 [[lttng-consumerd]]
1819 === Consumer daemon
1820
1821 [role="img-100"]
1822 .The consumer daemon.
1823 image::plumbing-consumerd.png[]
1824
1825 The _consumer daemon_, man:lttng-consumerd(8), is a daemon which shares
1826 ring buffers with user applications or with the LTTng kernel modules to
1827 collect trace data and send it to some location (on disk or to a
1828 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
1829 is part of LTTng-tools.
1830
1831 You do not start a consumer daemon manually: a consumer daemon is always
1832 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
1833 <<event,event rule>>, that is, before you start tracing. When you kill
1834 its owner session daemon, the consumer daemon also exits because it is
1835 the session daemon's child process. Command-line options of
1836 man:lttng-sessiond(8) target the consumer daemon process.
1837
1838 There are up to two running consumer daemons per Unix user, whereas only
1839 one session daemon can run per user. This is because each process can be
1840 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
1841 and 64-bit processes, it is more efficient to have separate
1842 corresponding 32-bit and 64-bit consumer daemons. The root user is an
1843 exception: it can have up to _three_ running consumer daemons: 32-bit
1844 and 64-bit instances for its user applications, and one more
1845 reserved for collecting kernel trace data.
1846
1847
1848 [[lttng-relayd]]
1849 === Relay daemon
1850
1851 [role="img-100"]
1852 .The relay daemon.
1853 image::plumbing-relayd.png[]
1854
1855 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
1856 between remote session and consumer daemons, local trace files, and a
1857 remote live trace viewer. The relay daemon is part of LTTng-tools.
1858
1859 The main purpose of the relay daemon is to implement a receiver of
1860 <<sending-trace-data-over-the-network,trace data over the network>>.
1861 This is useful when the target system does not have much file system
1862 space to record trace files locally.
1863
1864 The relay daemon is also a server to which a
1865 <<lttng-live,live trace viewer>> can
1866 connect. The live trace viewer sends requests to the relay daemon to
1867 receive trace data as the target system emits events. The
1868 communication protocol is named _LTTng live_; it is used over TCP
1869 connections.
1870
1871 Note that you can start the relay daemon on the target system directly.
1872 This is the setup of choice when the use case is to view events as
1873 the target system emits them without the need of a remote system.
1874
1875
1876 [[instrumenting]]
1877 == [[using-lttng]]Instrumentation
1878
1879 There are many examples of tracing and monitoring in our everyday life:
1880
1881 * You have access to real-time and historical weather reports and
1882 forecasts thanks to weather stations installed around the country.
1883 * You know your heart is safe thanks to an electrocardiogram.
1884 * You make sure not to drive your car too fast and to have enough fuel
1885 to reach your destination thanks to gauges visible on your dashboard.
1886
1887 All the previous examples have something in common: they rely on
1888 **instruments**. Without the electrodes attached to the surface of your
1889 body's skin, cardiac monitoring is futile.
1890
1891 LTTng, as a tracer, is no different from those real life examples. If
1892 you're about to trace a software system or, in other words, record its
1893 history of execution, you better have **instrumentation points** in the
1894 subject you're tracing, that is, the actual software.
1895
1896 Various ways were developed to instrument a piece of software for LTTng
1897 tracing. The most straightforward one is to manually place
1898 instrumentation points, called _tracepoints_, in the software's source
1899 code. It is also possible to add instrumentation points dynamically in
1900 the Linux kernel <<domain,tracing domain>>.
1901
1902 If you're only interested in tracing the Linux kernel, your
1903 instrumentation needs are probably already covered by LTTng's built-in
1904 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
1905 user application which is already instrumented for LTTng tracing.
1906 In such cases, you can skip this whole section and read the topics of
1907 the <<controlling-tracing,Tracing control>> section.
1908
1909 Many methods are available to instrument a piece of software for LTTng
1910 tracing. They are:
1911
1912 * <<c-application,User space instrumentation for C and $$C++$$
1913 applications>>.
1914 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
1915 * <<java-application,User space Java agent>>.
1916 * <<python-application,User space Python agent>>.
1917 * <<proc-lttng-logger-abi,LTTng logger>>.
1918 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
1919
1920
1921 [[c-application]]
1922 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
1923
1924 The procedure to instrument a C or $$C++$$ user application with
1925 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
1926
1927 . <<tracepoint-provider,Create the source files of a tracepoint provider
1928 package>>.
1929 . <<probing-the-application-source-code,Add tracepoints to
1930 the application's source code>>.
1931 . <<building-tracepoint-providers-and-user-application,Build and link
1932 a tracepoint provider package and the user application>>.
1933
1934 If you need quick, man:printf(3)-like instrumentation, you can skip
1935 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
1936 instead.
1937
1938 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
1939 instrument a user application with `liblttng-ust`.
1940
1941
1942 [[tracepoint-provider]]
1943 ==== Create the source files of a tracepoint provider package
1944
1945 A _tracepoint provider_ is a set of compiled functions which provide
1946 **tracepoints** to an application, the type of instrumentation point
1947 supported by LTTng-UST. Those functions can emit events with
1948 user-defined fields and serialize those events as event records to one
1949 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
1950 macro, which you <<probing-the-application-source-code,insert in a user
1951 application's source code>>, calls those functions.
1952
1953 A _tracepoint provider package_ is an object file (`.o`) or a shared
1954 library (`.so`) which contains one or more tracepoint providers.
1955 Its source files are:
1956
1957 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
1958 * A <<tpp-source,tracepoint provider package source>> (`.c`).
1959
1960 A tracepoint provider package is dynamically linked with `liblttng-ust`,
1961 the LTTng user space tracer, at run time.
1962
1963 [role="img-100"]
1964 .User application linked with `liblttng-ust` and containing a tracepoint provider.
1965 image::ust-app.png[]
1966
1967 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
1968 skip creating and using a tracepoint provider and use
1969 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
1970
1971
1972 [[tpp-header]]
1973 ===== Create a tracepoint provider header file template
1974
1975 A _tracepoint provider header file_ contains the tracepoint
1976 definitions of a tracepoint provider.
1977
1978 To create a tracepoint provider header file:
1979
1980 . Start from this template:
1981 +
1982 --
1983 [source,c]
1984 .Tracepoint provider header file template (`.h` file extension).
1985 ----
1986 #undef TRACEPOINT_PROVIDER
1987 #define TRACEPOINT_PROVIDER provider_name
1988
1989 #undef TRACEPOINT_INCLUDE
1990 #define TRACEPOINT_INCLUDE "./tp.h"
1991
1992 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
1993 #define _TP_H
1994
1995 #include <lttng/tracepoint.h>
1996
1997 /*
1998 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
1999 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2000 */
2001
2002 #endif /* _TP_H */
2003
2004 #include <lttng/tracepoint-event.h>
2005 ----
2006 --
2007
2008 . Replace:
2009 +
2010 * `provider_name` with the name of your tracepoint provider.
2011 * `"tp.h"` with the name of your tracepoint provider header file.
2012
2013 . Below the `#include <lttng/tracepoint.h>` line, put your
2014 <<defining-tracepoints,tracepoint definitions>>.
2015
2016 Your tracepoint provider name must be unique amongst all the possible
2017 tracepoint provider names used on the same target system. We
2018 suggest to include the name of your project or company in the name,
2019 for example, `org_lttng_my_project_tpp`.
2020
2021 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2022 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2023 write are the <<defining-tracepoints,tracepoint definitions>>.
2024
2025
2026 [[defining-tracepoints]]
2027 ===== Create a tracepoint definition
2028
2029 A _tracepoint definition_ defines, for a given tracepoint:
2030
2031 * Its **input arguments**. They are the macro parameters that the
2032 `tracepoint()` macro accepts for this particular tracepoint
2033 in the user application's source code.
2034 * Its **output event fields**. They are the sources of event fields
2035 that form the payload of any event that the execution of the
2036 `tracepoint()` macro emits for this particular tracepoint.
2037
2038 You can create a tracepoint definition by using the
2039 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2040 line in the
2041 <<tpp-header,tracepoint provider header file template>>.
2042
2043 The syntax of the `TRACEPOINT_EVENT()` macro is:
2044
2045 [source,c]
2046 .`TRACEPOINT_EVENT()` macro syntax.
2047 ----
2048 TRACEPOINT_EVENT(
2049 /* Tracepoint provider name */
2050 provider_name,
2051
2052 /* Tracepoint name */
2053 tracepoint_name,
2054
2055 /* Input arguments */
2056 TP_ARGS(
2057 arguments
2058 ),
2059
2060 /* Output event fields */
2061 TP_FIELDS(
2062 fields
2063 )
2064 )
2065 ----
2066
2067 Replace:
2068
2069 * `provider_name` with your tracepoint provider name.
2070 * `tracepoint_name` with your tracepoint name.
2071 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2072 * `fields` with the <<tpp-def-output-fields,output event field>>
2073 definitions.
2074
2075 This tracepoint emits events named `provider_name:tracepoint_name`.
2076
2077 [IMPORTANT]
2078 .Event name's length limitation
2079 ====
2080 The concatenation of the tracepoint provider name and the
2081 tracepoint name must not exceed **254 characters**. If it does, the
2082 instrumented application compiles and runs, but LTTng throws multiple
2083 warnings and you could experience serious issues.
2084 ====
2085
2086 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2087
2088 [source,c]
2089 .`TP_ARGS()` macro syntax.
2090 ----
2091 TP_ARGS(
2092 type, arg_name
2093 )
2094 ----
2095
2096 Replace:
2097
2098 * `type` with the C type of the argument.
2099 * `arg_name` with the argument name.
2100
2101 You can repeat `type` and `arg_name` up to 10 times to have
2102 more than one argument.
2103
2104 .`TP_ARGS()` usage with three arguments.
2105 ====
2106 [source,c]
2107 ----
2108 TP_ARGS(
2109 int, count,
2110 float, ratio,
2111 const char*, query
2112 )
2113 ----
2114 ====
2115
2116 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2117 tracepoint definition with no input arguments.
2118
2119 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2120 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2121 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2122 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2123 one event field.
2124
2125 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2126 C expression that the tracer evalutes at the `tracepoint()` macro site
2127 in the application's source code. This expression provides a field's
2128 source of data. The argument expression can include input argument names
2129 listed in the `TP_ARGS()` macro.
2130
2131 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2132 must be unique within a given tracepoint definition.
2133
2134 Here's a complete tracepoint definition example:
2135
2136 .Tracepoint definition.
2137 ====
2138 The following tracepoint definition defines a tracepoint which takes
2139 three input arguments and has four output event fields.
2140
2141 [source,c]
2142 ----
2143 #include "my-custom-structure.h"
2144
2145 TRACEPOINT_EVENT(
2146 my_provider,
2147 my_tracepoint,
2148 TP_ARGS(
2149 const struct my_custom_structure*, my_custom_structure,
2150 float, ratio,
2151 const char*, query
2152 ),
2153 TP_FIELDS(
2154 ctf_string(query_field, query)
2155 ctf_float(double, ratio_field, ratio)
2156 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2157 ctf_integer(int, send_size, my_custom_structure->send_size)
2158 )
2159 )
2160 ----
2161
2162 You can refer to this tracepoint definition with the `tracepoint()`
2163 macro in your application's source code like this:
2164
2165 [source,c]
2166 ----
2167 tracepoint(my_provider, my_tracepoint,
2168 my_structure, some_ratio, the_query);
2169 ----
2170 ====
2171
2172 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2173 if they satisfy an enabled <<event,event rule>>.
2174
2175
2176 [[using-tracepoint-classes]]
2177 ===== Use a tracepoint class
2178
2179 A _tracepoint class_ is a class of tracepoints which share the same
2180 output event field definitions. A _tracepoint instance_ is one
2181 instance of such a defined tracepoint class, with its own tracepoint
2182 name.
2183
2184 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2185 shorthand which defines both a tracepoint class and a tracepoint
2186 instance at the same time.
2187
2188 When you build a tracepoint provider package, the C or $$C++$$ compiler
2189 creates one serialization function for each **tracepoint class**. A
2190 serialization function is responsible for serializing the event fields
2191 of a tracepoint to a sub-buffer when tracing.
2192
2193 For various performance reasons, when your situation requires multiple
2194 tracepoint definitions with different names, but with the same event
2195 fields, we recommend that you manually create a tracepoint class
2196 and instantiate as many tracepoint instances as needed. One positive
2197 effect of such a design, amongst other advantages, is that all
2198 tracepoint instances of the same tracepoint class reuse the same
2199 serialization function, thus reducing
2200 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2201
2202 .Use a tracepoint class and tracepoint instances.
2203 ====
2204 Consider the following three tracepoint definitions:
2205
2206 [source,c]
2207 ----
2208 TRACEPOINT_EVENT(
2209 my_app,
2210 get_account,
2211 TP_ARGS(
2212 int, userid,
2213 size_t, len
2214 ),
2215 TP_FIELDS(
2216 ctf_integer(int, userid, userid)
2217 ctf_integer(size_t, len, len)
2218 )
2219 )
2220
2221 TRACEPOINT_EVENT(
2222 my_app,
2223 get_settings,
2224 TP_ARGS(
2225 int, userid,
2226 size_t, len
2227 ),
2228 TP_FIELDS(
2229 ctf_integer(int, userid, userid)
2230 ctf_integer(size_t, len, len)
2231 )
2232 )
2233
2234 TRACEPOINT_EVENT(
2235 my_app,
2236 get_transaction,
2237 TP_ARGS(
2238 int, userid,
2239 size_t, len
2240 ),
2241 TP_FIELDS(
2242 ctf_integer(int, userid, userid)
2243 ctf_integer(size_t, len, len)
2244 )
2245 )
2246 ----
2247
2248 In this case, we create three tracepoint classes, with one implicit
2249 tracepoint instance for each of them: `get_account`, `get_settings`, and
2250 `get_transaction`. However, they all share the same event field names
2251 and types. Hence three identical, yet independent serialization
2252 functions are created when you build the tracepoint provider package.
2253
2254 A better design choice is to define a single tracepoint class and three
2255 tracepoint instances:
2256
2257 [source,c]
2258 ----
2259 /* The tracepoint class */
2260 TRACEPOINT_EVENT_CLASS(
2261 /* Tracepoint provider name */
2262 my_app,
2263
2264 /* Tracepoint class name */
2265 my_class,
2266
2267 /* Input arguments */
2268 TP_ARGS(
2269 int, userid,
2270 size_t, len
2271 ),
2272
2273 /* Output event fields */
2274 TP_FIELDS(
2275 ctf_integer(int, userid, userid)
2276 ctf_integer(size_t, len, len)
2277 )
2278 )
2279
2280 /* The tracepoint instances */
2281 TRACEPOINT_EVENT_INSTANCE(
2282 /* Tracepoint provider name */
2283 my_app,
2284
2285 /* Tracepoint class name */
2286 my_class,
2287
2288 /* Tracepoint name */
2289 get_account,
2290
2291 /* Input arguments */
2292 TP_ARGS(
2293 int, userid,
2294 size_t, len
2295 )
2296 )
2297 TRACEPOINT_EVENT_INSTANCE(
2298 my_app,
2299 my_class,
2300 get_settings,
2301 TP_ARGS(
2302 int, userid,
2303 size_t, len
2304 )
2305 )
2306 TRACEPOINT_EVENT_INSTANCE(
2307 my_app,
2308 my_class,
2309 get_transaction,
2310 TP_ARGS(
2311 int, userid,
2312 size_t, len
2313 )
2314 )
2315 ----
2316 ====
2317
2318
2319 [[assigning-log-levels]]
2320 ===== Assign a log level to a tracepoint definition
2321
2322 You can assign an optional _log level_ to a
2323 <<defining-tracepoints,tracepoint definition>>.
2324
2325 Assigning different levels of severity to tracepoint definitions can
2326 be useful: when you <<enabling-disabling-events,create an event rule>>,
2327 you can target tracepoints having a log level as severe as a specific
2328 value.
2329
2330 The concept of LTTng-UST log levels is similar to the levels found
2331 in typical logging frameworks:
2332
2333 * In a logging framework, the log level is given by the function
2334 or method name you use at the log statement site: `debug()`,
2335 `info()`, `warn()`, `error()`, and so on.
2336 * In LTTng-UST, you statically assign the log level to a tracepoint
2337 definition; any `tracepoint()` macro invocation which refers to
2338 this definition has this log level.
2339
2340 You can assign a log level to a tracepoint definition with the
2341 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2342 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2343 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2344 tracepoint.
2345
2346 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2347
2348 [source,c]
2349 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2350 ----
2351 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2352 ----
2353
2354 Replace:
2355
2356 * `provider_name` with the tracepoint provider name.
2357 * `tracepoint_name` with the tracepoint name.
2358 * `log_level` with the log level to assign to the tracepoint
2359 definition named `tracepoint_name` in the `provider_name`
2360 tracepoint provider.
2361 +
2362 See man:lttng-ust(3) for a list of available log level names.
2363
2364 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2365 ====
2366 [source,c]
2367 ----
2368 /* Tracepoint definition */
2369 TRACEPOINT_EVENT(
2370 my_app,
2371 get_transaction,
2372 TP_ARGS(
2373 int, userid,
2374 size_t, len
2375 ),
2376 TP_FIELDS(
2377 ctf_integer(int, userid, userid)
2378 ctf_integer(size_t, len, len)
2379 )
2380 )
2381
2382 /* Log level assignment */
2383 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2384 ----
2385 ====
2386
2387
2388 [[tpp-source]]
2389 ===== Create a tracepoint provider package source file
2390
2391 A _tracepoint provider package source file_ is a C source file which
2392 includes a <<tpp-header,tracepoint provider header file>> to expand its
2393 macros into event serialization and other functions.
2394
2395 You can always use the following tracepoint provider package source
2396 file template:
2397
2398 [source,c]
2399 .Tracepoint provider package source file template.
2400 ----
2401 #define TRACEPOINT_CREATE_PROBES
2402
2403 #include "tp.h"
2404 ----
2405
2406 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2407 header file>> name. You may also include more than one tracepoint
2408 provider header file here to create a tracepoint provider package
2409 holding more than one tracepoint providers.
2410
2411
2412 [[probing-the-application-source-code]]
2413 ==== Add tracepoints to an application's source code
2414
2415 Once you <<tpp-header,create a tracepoint provider header file>>, you
2416 can use the `tracepoint()` macro in your application's
2417 source code to insert the tracepoints that this header
2418 <<defining-tracepoints,defines>>.
2419
2420 The `tracepoint()` macro takes at least two parameters: the tracepoint
2421 provider name and the tracepoint name. The corresponding tracepoint
2422 definition defines the other parameters.
2423
2424 .`tracepoint()` usage.
2425 ====
2426 The following <<defining-tracepoints,tracepoint definition>> defines a
2427 tracepoint which takes two input arguments and has two output event
2428 fields.
2429
2430 [source,c]
2431 .Tracepoint provider header file.
2432 ----
2433 #include "my-custom-structure.h"
2434
2435 TRACEPOINT_EVENT(
2436 my_provider,
2437 my_tracepoint,
2438 TP_ARGS(
2439 int, argc,
2440 const char*, cmd_name
2441 ),
2442 TP_FIELDS(
2443 ctf_string(cmd_name, cmd_name)
2444 ctf_integer(int, number_of_args, argc)
2445 )
2446 )
2447 ----
2448
2449 You can refer to this tracepoint definition with the `tracepoint()`
2450 macro in your application's source code like this:
2451
2452 [source,c]
2453 .Application's source file.
2454 ----
2455 #include "tp.h"
2456
2457 int main(int argc, char* argv[])
2458 {
2459 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2460
2461 return 0;
2462 }
2463 ----
2464
2465 Note how the application's source code includes
2466 the tracepoint provider header file containing the tracepoint
2467 definitions to use, path:{tp.h}.
2468 ====
2469
2470 .`tracepoint()` usage with a complex tracepoint definition.
2471 ====
2472 Consider this complex tracepoint definition, where multiple event
2473 fields refer to the same input arguments in their argument expression
2474 parameter:
2475
2476 [source,c]
2477 .Tracepoint provider header file.
2478 ----
2479 /* For `struct stat` */
2480 #include <sys/types.h>
2481 #include <sys/stat.h>
2482 #include <unistd.h>
2483
2484 TRACEPOINT_EVENT(
2485 my_provider,
2486 my_tracepoint,
2487 TP_ARGS(
2488 int, my_int_arg,
2489 char*, my_str_arg,
2490 struct stat*, st
2491 ),
2492 TP_FIELDS(
2493 ctf_integer(int, my_constant_field, 23 + 17)
2494 ctf_integer(int, my_int_arg_field, my_int_arg)
2495 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2496 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2497 my_str_arg[2] + my_str_arg[3])
2498 ctf_string(my_str_arg_field, my_str_arg)
2499 ctf_integer_hex(off_t, size_field, st->st_size)
2500 ctf_float(double, size_dbl_field, (double) st->st_size)
2501 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2502 size_t, strlen(my_str_arg) / 2)
2503 )
2504 )
2505 ----
2506
2507 You can refer to this tracepoint definition with the `tracepoint()`
2508 macro in your application's source code like this:
2509
2510 [source,c]
2511 .Application's source file.
2512 ----
2513 #define TRACEPOINT_DEFINE
2514 #include "tp.h"
2515
2516 int main(void)
2517 {
2518 struct stat s;
2519
2520 stat("/etc/fstab", &s);
2521 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2522
2523 return 0;
2524 }
2525 ----
2526
2527 If you look at the event record that LTTng writes when tracing this
2528 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2529 it should look like this:
2530
2531 .Event record fields
2532 |====
2533 |Field's name |Field's value
2534 |`my_constant_field` |40
2535 |`my_int_arg_field` |23
2536 |`my_int_arg_field2` |529
2537 |`sum4_field` |389
2538 |`my_str_arg_field` |`Hello, World!`
2539 |`size_field` |0x12d
2540 |`size_dbl_field` |301.0
2541 |`half_my_str_arg_field` |`Hello,`
2542 |====
2543 ====
2544
2545 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2546 compute--they use the call stack, for example. To avoid this
2547 computation when the tracepoint is disabled, you can use the
2548 `tracepoint_enabled()` and `do_tracepoint()` macros.
2549
2550 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2551 is:
2552
2553 [source,c]
2554 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2555 ----
2556 tracepoint_enabled(provider_name, tracepoint_name)
2557 do_tracepoint(provider_name, tracepoint_name, ...)
2558 ----
2559
2560 Replace:
2561
2562 * `provider_name` with the tracepoint provider name.
2563 * `tracepoint_name` with the tracepoint name.
2564
2565 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2566 `tracepoint_name` from the provider named `provider_name` is enabled
2567 **at run time**.
2568
2569 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2570 if the tracepoint is enabled. Using `tracepoint()` with
2571 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2572 the `tracepoint_enabled()` check, thus a race condition is
2573 possible in this situation:
2574
2575 [source,c]
2576 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2577 ----
2578 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2579 stuff = prepare_stuff();
2580 }
2581
2582 tracepoint(my_provider, my_tracepoint, stuff);
2583 ----
2584
2585 If the tracepoint is enabled after the condition, then `stuff` is not
2586 prepared: the emitted event will either contain wrong data, or the whole
2587 application could crash (segmentation fault, for example).
2588
2589 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2590 `STAP_PROBEV()` call. If you need it, you must emit
2591 this call yourself.
2592
2593
2594 [[building-tracepoint-providers-and-user-application]]
2595 ==== Build and link a tracepoint provider package and an application
2596
2597 Once you have one or more <<tpp-header,tracepoint provider header
2598 files>> and a <<tpp-source,tracepoint provider package source file>>,
2599 you can create the tracepoint provider package by compiling its source
2600 file. From here, multiple build and run scenarios are possible. The
2601 following table shows common application and library configurations
2602 along with the required command lines to achieve them.
2603
2604 In the following diagrams, we use the following file names:
2605
2606 `app`::
2607 Executable application.
2608
2609 `app.o`::
2610 Application's object file.
2611
2612 `tpp.o`::
2613 Tracepoint provider package object file.
2614
2615 `tpp.a`::
2616 Tracepoint provider package archive file.
2617
2618 `libtpp.so`::
2619 Tracepoint provider package shared object file.
2620
2621 `emon.o`::
2622 User library object file.
2623
2624 `libemon.so`::
2625 User library shared object file.
2626
2627 We use the following symbols in the diagrams of table below:
2628
2629 [role="img-100"]
2630 .Symbols used in the build scenario diagrams.
2631 image::ust-sit-symbols.png[]
2632
2633 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2634 variable in the following instructions.
2635
2636 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2637 .Common tracepoint provider package scenarios.
2638 |====
2639 |Scenario |Instructions
2640
2641 |
2642 The instrumented application is statically linked with
2643 the tracepoint provider package object.
2644
2645 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2646
2647 |
2648 include::../common/ust-sit-step-tp-o.txt[]
2649
2650 To build the instrumented application:
2651
2652 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2653 +
2654 --
2655 [source,c]
2656 ----
2657 #define TRACEPOINT_DEFINE
2658 ----
2659 --
2660
2661 . Compile the application source file:
2662 +
2663 --
2664 [role="term"]
2665 ----
2666 $ gcc -c app.c
2667 ----
2668 --
2669
2670 . Build the application:
2671 +
2672 --
2673 [role="term"]
2674 ----
2675 $ gcc -o app app.o tpp.o -llttng-ust -ldl
2676 ----
2677 --
2678
2679 To run the instrumented application:
2680
2681 * Start the application:
2682 +
2683 --
2684 [role="term"]
2685 ----
2686 $ ./app
2687 ----
2688 --
2689
2690 |
2691 The instrumented application is statically linked with the
2692 tracepoint provider package archive file.
2693
2694 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2695
2696 |
2697 To create the tracepoint provider package archive file:
2698
2699 . Compile the <<tpp-source,tracepoint provider package source file>>:
2700 +
2701 --
2702 [role="term"]
2703 ----
2704 $ gcc -I. -c tpp.c
2705 ----
2706 --
2707
2708 . Create the tracepoint provider package archive file:
2709 +
2710 --
2711 [role="term"]
2712 ----
2713 $ ar rcs tpp.a tpp.o
2714 ----
2715 --
2716
2717 To build the instrumented application:
2718
2719 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2720 +
2721 --
2722 [source,c]
2723 ----
2724 #define TRACEPOINT_DEFINE
2725 ----
2726 --
2727
2728 . Compile the application source file:
2729 +
2730 --
2731 [role="term"]
2732 ----
2733 $ gcc -c app.c
2734 ----
2735 --
2736
2737 . Build the application:
2738 +
2739 --
2740 [role="term"]
2741 ----
2742 $ gcc -o app app.o tpp.a -llttng-ust -ldl
2743 ----
2744 --
2745
2746 To run the instrumented application:
2747
2748 * Start the application:
2749 +
2750 --
2751 [role="term"]
2752 ----
2753 $ ./app
2754 ----
2755 --
2756
2757 |
2758 The instrumented application is linked with the tracepoint provider
2759 package shared object.
2760
2761 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2762
2763 |
2764 include::../common/ust-sit-step-tp-so.txt[]
2765
2766 To build the instrumented application:
2767
2768 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2769 +
2770 --
2771 [source,c]
2772 ----
2773 #define TRACEPOINT_DEFINE
2774 ----
2775 --
2776
2777 . Compile the application source file:
2778 +
2779 --
2780 [role="term"]
2781 ----
2782 $ gcc -c app.c
2783 ----
2784 --
2785
2786 . Build the application:
2787 +
2788 --
2789 [role="term"]
2790 ----
2791 $ gcc -o app app.o -ldl -L. -ltpp
2792 ----
2793 --
2794
2795 To run the instrumented application:
2796
2797 * Start the application:
2798 +
2799 --
2800 [role="term"]
2801 ----
2802 $ ./app
2803 ----
2804 --
2805
2806 |
2807 The tracepoint provider package shared object is preloaded before the
2808 instrumented application starts.
2809
2810 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
2811
2812 |
2813 include::../common/ust-sit-step-tp-so.txt[]
2814
2815 To build the instrumented application:
2816
2817 . In path:{app.c}, before including path:{tpp.h}, add the
2818 following lines:
2819 +
2820 --
2821 [source,c]
2822 ----
2823 #define TRACEPOINT_DEFINE
2824 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2825 ----
2826 --
2827
2828 . Compile the application source file:
2829 +
2830 --
2831 [role="term"]
2832 ----
2833 $ gcc -c app.c
2834 ----
2835 --
2836
2837 . Build the application:
2838 +
2839 --
2840 [role="term"]
2841 ----
2842 $ gcc -o app app.o -ldl
2843 ----
2844 --
2845
2846 To run the instrumented application with tracing support:
2847
2848 * Preload the tracepoint provider package shared object and
2849 start the application:
2850 +
2851 --
2852 [role="term"]
2853 ----
2854 $ LD_PRELOAD=./libtpp.so ./app
2855 ----
2856 --
2857
2858 To run the instrumented application without tracing support:
2859
2860 * Start the application:
2861 +
2862 --
2863 [role="term"]
2864 ----
2865 $ ./app
2866 ----
2867 --
2868
2869 |
2870 The instrumented application dynamically loads the tracepoint provider
2871 package shared object.
2872
2873 See the <<dlclose-warning,warning about `dlclose()`>>.
2874
2875 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
2876
2877 |
2878 include::../common/ust-sit-step-tp-so.txt[]
2879
2880 To build the instrumented application:
2881
2882 . In path:{app.c}, before including path:{tpp.h}, add the
2883 following lines:
2884 +
2885 --
2886 [source,c]
2887 ----
2888 #define TRACEPOINT_DEFINE
2889 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2890 ----
2891 --
2892
2893 . Compile the application source file:
2894 +
2895 --
2896 [role="term"]
2897 ----
2898 $ gcc -c app.c
2899 ----
2900 --
2901
2902 . Build the application:
2903 +
2904 --
2905 [role="term"]
2906 ----
2907 $ gcc -o app app.o -ldl
2908 ----
2909 --
2910
2911 To run the instrumented application:
2912
2913 * Start the application:
2914 +
2915 --
2916 [role="term"]
2917 ----
2918 $ ./app
2919 ----
2920 --
2921
2922 |
2923 The application is linked with the instrumented user library.
2924
2925 The instrumented user library is statically linked with the tracepoint
2926 provider package object file.
2927
2928 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
2929
2930 |
2931 include::../common/ust-sit-step-tp-o-fpic.txt[]
2932
2933 To build the instrumented user library:
2934
2935 . In path:{emon.c}, before including path:{tpp.h}, add the
2936 following line:
2937 +
2938 --
2939 [source,c]
2940 ----
2941 #define TRACEPOINT_DEFINE
2942 ----
2943 --
2944
2945 . Compile the user library source file:
2946 +
2947 --
2948 [role="term"]
2949 ----
2950 $ gcc -I. -fpic -c emon.c
2951 ----
2952 --
2953
2954 . Build the user library shared object:
2955 +
2956 --
2957 [role="term"]
2958 ----
2959 $ gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
2960 ----
2961 --
2962
2963 To build the application:
2964
2965 . Compile the application source file:
2966 +
2967 --
2968 [role="term"]
2969 ----
2970 $ gcc -c app.c
2971 ----
2972 --
2973
2974 . Build the application:
2975 +
2976 --
2977 [role="term"]
2978 ----
2979 $ gcc -o app app.o -L. -lemon
2980 ----
2981 --
2982
2983 To run the application:
2984
2985 * Start the application:
2986 +
2987 --
2988 [role="term"]
2989 ----
2990 $ ./app
2991 ----
2992 --
2993
2994 |
2995 The application is linked with the instrumented user library.
2996
2997 The instrumented user library is linked with the tracepoint provider
2998 package shared object.
2999
3000 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3001
3002 |
3003 include::../common/ust-sit-step-tp-so.txt[]
3004
3005 To build the instrumented user library:
3006
3007 . In path:{emon.c}, before including path:{tpp.h}, add the
3008 following line:
3009 +
3010 --
3011 [source,c]
3012 ----
3013 #define TRACEPOINT_DEFINE
3014 ----
3015 --
3016
3017 . Compile the user library source file:
3018 +
3019 --
3020 [role="term"]
3021 ----
3022 $ gcc -I. -fpic -c emon.c
3023 ----
3024 --
3025
3026 . Build the user library shared object:
3027 +
3028 --
3029 [role="term"]
3030 ----
3031 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3032 ----
3033 --
3034
3035 To build the application:
3036
3037 . Compile the application source file:
3038 +
3039 --
3040 [role="term"]
3041 ----
3042 $ gcc -c app.c
3043 ----
3044 --
3045
3046 . Build the application:
3047 +
3048 --
3049 [role="term"]
3050 ----
3051 $ gcc -o app app.o -L. -lemon
3052 ----
3053 --
3054
3055 To run the application:
3056
3057 * Start the application:
3058 +
3059 --
3060 [role="term"]
3061 ----
3062 $ ./app
3063 ----
3064 --
3065
3066 |
3067 The tracepoint provider package shared object is preloaded before the
3068 application starts.
3069
3070 The application is linked with the instrumented user library.
3071
3072 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3073
3074 |
3075 include::../common/ust-sit-step-tp-so.txt[]
3076
3077 To build the instrumented user library:
3078
3079 . In path:{emon.c}, before including path:{tpp.h}, add the
3080 following lines:
3081 +
3082 --
3083 [source,c]
3084 ----
3085 #define TRACEPOINT_DEFINE
3086 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3087 ----
3088 --
3089
3090 . Compile the user library source file:
3091 +
3092 --
3093 [role="term"]
3094 ----
3095 $ gcc -I. -fpic -c emon.c
3096 ----
3097 --
3098
3099 . Build the user library shared object:
3100 +
3101 --
3102 [role="term"]
3103 ----
3104 $ gcc -shared -o libemon.so emon.o -ldl
3105 ----
3106 --
3107
3108 To build the application:
3109
3110 . Compile the application source file:
3111 +
3112 --
3113 [role="term"]
3114 ----
3115 $ gcc -c app.c
3116 ----
3117 --
3118
3119 . Build the application:
3120 +
3121 --
3122 [role="term"]
3123 ----
3124 $ gcc -o app app.o -L. -lemon
3125 ----
3126 --
3127
3128 To run the application with tracing support:
3129
3130 * Preload the tracepoint provider package shared object and
3131 start the application:
3132 +
3133 --
3134 [role="term"]
3135 ----
3136 $ LD_PRELOAD=./libtpp.so ./app
3137 ----
3138 --
3139
3140 To run the application without tracing support:
3141
3142 * Start the application:
3143 +
3144 --
3145 [role="term"]
3146 ----
3147 $ ./app
3148 ----
3149 --
3150
3151 |
3152 The application is linked with the instrumented user library.
3153
3154 The instrumented user library dynamically loads the tracepoint provider
3155 package shared object.
3156
3157 See the <<dlclose-warning,warning about `dlclose()`>>.
3158
3159 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3160
3161 |
3162 include::../common/ust-sit-step-tp-so.txt[]
3163
3164 To build the instrumented user library:
3165
3166 . In path:{emon.c}, before including path:{tpp.h}, add the
3167 following lines:
3168 +
3169 --
3170 [source,c]
3171 ----
3172 #define TRACEPOINT_DEFINE
3173 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3174 ----
3175 --
3176
3177 . Compile the user library source file:
3178 +
3179 --
3180 [role="term"]
3181 ----
3182 $ gcc -I. -fpic -c emon.c
3183 ----
3184 --
3185
3186 . Build the user library shared object:
3187 +
3188 --
3189 [role="term"]
3190 ----
3191 $ gcc -shared -o libemon.so emon.o -ldl
3192 ----
3193 --
3194
3195 To build the application:
3196
3197 . Compile the application source file:
3198 +
3199 --
3200 [role="term"]
3201 ----
3202 $ gcc -c app.c
3203 ----
3204 --
3205
3206 . Build the application:
3207 +
3208 --
3209 [role="term"]
3210 ----
3211 $ gcc -o app app.o -L. -lemon
3212 ----
3213 --
3214
3215 To run the application:
3216
3217 * Start the application:
3218 +
3219 --
3220 [role="term"]
3221 ----
3222 $ ./app
3223 ----
3224 --
3225
3226 |
3227 The application dynamically loads the instrumented user library.
3228
3229 The instrumented user library is linked with the tracepoint provider
3230 package shared object.
3231
3232 See the <<dlclose-warning,warning about `dlclose()`>>.
3233
3234 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3235
3236 |
3237 include::../common/ust-sit-step-tp-so.txt[]
3238
3239 To build the instrumented user library:
3240
3241 . In path:{emon.c}, before including path:{tpp.h}, add the
3242 following line:
3243 +
3244 --
3245 [source,c]
3246 ----
3247 #define TRACEPOINT_DEFINE
3248 ----
3249 --
3250
3251 . Compile the user library source file:
3252 +
3253 --
3254 [role="term"]
3255 ----
3256 $ gcc -I. -fpic -c emon.c
3257 ----
3258 --
3259
3260 . Build the user library shared object:
3261 +
3262 --
3263 [role="term"]
3264 ----
3265 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3266 ----
3267 --
3268
3269 To build the application:
3270
3271 . Compile the application source file:
3272 +
3273 --
3274 [role="term"]
3275 ----
3276 $ gcc -c app.c
3277 ----
3278 --
3279
3280 . Build the application:
3281 +
3282 --
3283 [role="term"]
3284 ----
3285 $ gcc -o app app.o -ldl -L. -lemon
3286 ----
3287 --
3288
3289 To run the application:
3290
3291 * Start the application:
3292 +
3293 --
3294 [role="term"]
3295 ----
3296 $ ./app
3297 ----
3298 --
3299
3300 |
3301 The application dynamically loads the instrumented user library.
3302
3303 The instrumented user library dynamically loads the tracepoint provider
3304 package shared object.
3305
3306 See the <<dlclose-warning,warning about `dlclose()`>>.
3307
3308 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3309
3310 |
3311 include::../common/ust-sit-step-tp-so.txt[]
3312
3313 To build the instrumented user library:
3314
3315 . In path:{emon.c}, before including path:{tpp.h}, add the
3316 following lines:
3317 +
3318 --
3319 [source,c]
3320 ----
3321 #define TRACEPOINT_DEFINE
3322 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3323 ----
3324 --
3325
3326 . Compile the user library source file:
3327 +
3328 --
3329 [role="term"]
3330 ----
3331 $ gcc -I. -fpic -c emon.c
3332 ----
3333 --
3334
3335 . Build the user library shared object:
3336 +
3337 --
3338 [role="term"]
3339 ----
3340 $ gcc -shared -o libemon.so emon.o -ldl
3341 ----
3342 --
3343
3344 To build the application:
3345
3346 . Compile the application source file:
3347 +
3348 --
3349 [role="term"]
3350 ----
3351 $ gcc -c app.c
3352 ----
3353 --
3354
3355 . Build the application:
3356 +
3357 --
3358 [role="term"]
3359 ----
3360 $ gcc -o app app.o -ldl -L. -lemon
3361 ----
3362 --
3363
3364 To run the application:
3365
3366 * Start the application:
3367 +
3368 --
3369 [role="term"]
3370 ----
3371 $ ./app
3372 ----
3373 --
3374
3375 |
3376 The tracepoint provider package shared object is preloaded before the
3377 application starts.
3378
3379 The application dynamically loads the instrumented user library.
3380
3381 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3382
3383 |
3384 include::../common/ust-sit-step-tp-so.txt[]
3385
3386 To build the instrumented user library:
3387
3388 . In path:{emon.c}, before including path:{tpp.h}, add the
3389 following lines:
3390 +
3391 --
3392 [source,c]
3393 ----
3394 #define TRACEPOINT_DEFINE
3395 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3396 ----
3397 --
3398
3399 . Compile the user library source file:
3400 +
3401 --
3402 [role="term"]
3403 ----
3404 $ gcc -I. -fpic -c emon.c
3405 ----
3406 --
3407
3408 . Build the user library shared object:
3409 +
3410 --
3411 [role="term"]
3412 ----
3413 $ gcc -shared -o libemon.so emon.o -ldl
3414 ----
3415 --
3416
3417 To build the application:
3418
3419 . Compile the application source file:
3420 +
3421 --
3422 [role="term"]
3423 ----
3424 $ gcc -c app.c
3425 ----
3426 --
3427
3428 . Build the application:
3429 +
3430 --
3431 [role="term"]
3432 ----
3433 $ gcc -o app app.o -L. -lemon
3434 ----
3435 --
3436
3437 To run the application with tracing support:
3438
3439 * Preload the tracepoint provider package shared object and
3440 start the application:
3441 +
3442 --
3443 [role="term"]
3444 ----
3445 $ LD_PRELOAD=./libtpp.so ./app
3446 ----
3447 --
3448
3449 To run the application without tracing support:
3450
3451 * Start the application:
3452 +
3453 --
3454 [role="term"]
3455 ----
3456 $ ./app
3457 ----
3458 --
3459
3460 |
3461 The application is statically linked with the tracepoint provider
3462 package object file.
3463
3464 The application is linked with the instrumented user library.
3465
3466 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3467
3468 |
3469 include::../common/ust-sit-step-tp-o.txt[]
3470
3471 To build the instrumented user library:
3472
3473 . In path:{emon.c}, before including path:{tpp.h}, add the
3474 following line:
3475 +
3476 --
3477 [source,c]
3478 ----
3479 #define TRACEPOINT_DEFINE
3480 ----
3481 --
3482
3483 . Compile the user library source file:
3484 +
3485 --
3486 [role="term"]
3487 ----
3488 $ gcc -I. -fpic -c emon.c
3489 ----
3490 --
3491
3492 . Build the user library shared object:
3493 +
3494 --
3495 [role="term"]
3496 ----
3497 $ gcc -shared -o libemon.so emon.o
3498 ----
3499 --
3500
3501 To build the application:
3502
3503 . Compile the application source file:
3504 +
3505 --
3506 [role="term"]
3507 ----
3508 $ gcc -c app.c
3509 ----
3510 --
3511
3512 . Build the application:
3513 +
3514 --
3515 [role="term"]
3516 ----
3517 $ gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3518 ----
3519 --
3520
3521 To run the instrumented application:
3522
3523 * Start the application:
3524 +
3525 --
3526 [role="term"]
3527 ----
3528 $ ./app
3529 ----
3530 --
3531
3532 |
3533 The application is statically linked with the tracepoint provider
3534 package object file.
3535
3536 The application dynamically loads the instrumented user library.
3537
3538 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3539
3540 |
3541 include::../common/ust-sit-step-tp-o.txt[]
3542
3543 To build the application:
3544
3545 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3546 +
3547 --
3548 [source,c]
3549 ----
3550 #define TRACEPOINT_DEFINE
3551 ----
3552 --
3553
3554 . Compile the application source file:
3555 +
3556 --
3557 [role="term"]
3558 ----
3559 $ gcc -c app.c
3560 ----
3561 --
3562
3563 . Build the application:
3564 +
3565 --
3566 [role="term"]
3567 ----
3568 $ gcc -Wl,--export-dynamic -o app app.o tpp.o \
3569 -llttng-ust -ldl
3570 ----
3571 --
3572 +
3573 The `--export-dynamic` option passed to the linker is necessary for the
3574 dynamically loaded library to ``see'' the tracepoint symbols defined in
3575 the application.
3576
3577 To build the instrumented user library:
3578
3579 . Compile the user library source file:
3580 +
3581 --
3582 [role="term"]
3583 ----
3584 $ gcc -I. -fpic -c emon.c
3585 ----
3586 --
3587
3588 . Build the user library shared object:
3589 +
3590 --
3591 [role="term"]
3592 ----
3593 $ gcc -shared -o libemon.so emon.o
3594 ----
3595 --
3596
3597 To run the application:
3598
3599 * Start the application:
3600 +
3601 --
3602 [role="term"]
3603 ----
3604 $ ./app
3605 ----
3606 --
3607 |====
3608
3609 [[dlclose-warning]]
3610 [IMPORTANT]
3611 .Do not use man:dlclose(3) on a tracepoint provider package
3612 ====
3613 Never use man:dlclose(3) on any shared object which:
3614
3615 * Is linked with, statically or dynamically, a tracepoint provider
3616 package.
3617 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3618 package shared object.
3619
3620 This is currently considered **unsafe** due to a lack of reference
3621 counting from LTTng-UST to the shared object.
3622
3623 A known workaround (available since glibc 2.2) is to use the
3624 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3625 effect of not unloading the loaded shared object, even if man:dlclose(3)
3626 is called.
3627
3628 You can also preload the tracepoint provider package shared object with
3629 the env:LD_PRELOAD environment variable to overcome this limitation.
3630 ====
3631
3632
3633 [[using-lttng-ust-with-daemons]]
3634 ===== Use noch:{LTTng-UST} with daemons
3635
3636 If your instrumented application calls man:fork(2), man:clone(2),
3637 or BSD's man:rfork(2), without a following man:exec(3)-family
3638 system call, you must preload the path:{liblttng-ust-fork.so} shared
3639 object when you start the application.
3640
3641 [role="term"]
3642 ----
3643 $ LD_PRELOAD=liblttng-ust-fork.so ./my-app
3644 ----
3645
3646 If your tracepoint provider package is
3647 a shared library which you also preload, you must put both
3648 shared objects in env:LD_PRELOAD:
3649
3650 [role="term"]
3651 ----
3652 $ LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3653 ----
3654
3655
3656 [role="since-2.9"]
3657 [[liblttng-ust-fd]]
3658 ===== Use noch:{LTTng-UST} with applications which close file descriptors that don't belong to them
3659
3660 If your instrumented application closes one or more file descriptors
3661 which it did not open itself, you must preload the
3662 path:{liblttng-ust-fd.so} shared object when you start the application:
3663
3664 [role="term"]
3665 ----
3666 $ LD_PRELOAD=liblttng-ust-fd.so ./my-app
3667 ----
3668
3669 Typical use cases include closing all the file descriptors after
3670 man:fork(2) or man:rfork(2) and buggy applications doing
3671 ``double closes''.
3672
3673
3674 [[lttng-ust-pkg-config]]
3675 ===== Use noch:{pkg-config}
3676
3677 On some distributions, LTTng-UST ships with a
3678 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3679 metadata file. If this is your case, then you can use cmd:pkg-config to
3680 build an application on the command line:
3681
3682 [role="term"]
3683 ----
3684 $ gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3685 ----
3686
3687
3688 [[instrumenting-32-bit-app-on-64-bit-system]]
3689 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3690
3691 In order to trace a 32-bit application running on a 64-bit system,
3692 LTTng must use a dedicated 32-bit
3693 <<lttng-consumerd,consumer daemon>>.
3694
3695 The following steps show how to build and install a 32-bit consumer
3696 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3697 build and install the 32-bit LTTng-UST libraries, and how to build and
3698 link an instrumented 32-bit application in that context.
3699
3700 To build a 32-bit instrumented application for a 64-bit target system,
3701 assuming you have a fresh target system with no installed Userspace RCU
3702 or LTTng packages:
3703
3704 . Download, build, and install a 32-bit version of Userspace RCU:
3705 +
3706 --
3707 [role="term"]
3708 ----
3709 $ cd $(mktemp -d) &&
3710 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3711 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3712 cd userspace-rcu-0.9.* &&
3713 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3714 make &&
3715 sudo make install &&
3716 sudo ldconfig
3717 ----
3718 --
3719
3720 . Using your distribution's package manager, or from source, install
3721 the following 32-bit versions of the following dependencies of
3722 LTTng-tools and LTTng-UST:
3723 +
3724 --
3725 * https://sourceforge.net/projects/libuuid/[libuuid]
3726 * http://directory.fsf.org/wiki/Popt[popt]
3727 * http://www.xmlsoft.org/[libxml2]
3728 --
3729
3730 . Download, build, and install a 32-bit version of the latest
3731 LTTng-UST{nbsp}{revision}:
3732 +
3733 --
3734 [role="term"]
3735 ----
3736 $ cd $(mktemp -d) &&
3737 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.10.tar.bz2 &&
3738 tar -xf lttng-ust-latest-2.10.tar.bz2 &&
3739 cd lttng-ust-2.10.* &&
3740 ./configure --libdir=/usr/local/lib32 \
3741 CFLAGS=-m32 CXXFLAGS=-m32 \
3742 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3743 make &&
3744 sudo make install &&
3745 sudo ldconfig
3746 ----
3747 --
3748 +
3749 [NOTE]
3750 ====
3751 Depending on your distribution,
3752 32-bit libraries could be installed at a different location than
3753 `/usr/lib32`. For example, Debian is known to install
3754 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3755
3756 In this case, make sure to set `LDFLAGS` to all the
3757 relevant 32-bit library paths, for example:
3758
3759 [role="term"]
3760 ----
3761 $ LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3762 ----
3763 ====
3764
3765 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3766 the 32-bit consumer daemon:
3767 +
3768 --
3769 [role="term"]
3770 ----
3771 $ cd $(mktemp -d) &&
3772 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
3773 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
3774 cd lttng-tools-2.10.* &&
3775 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3776 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' \
3777 --disable-bin-lttng --disable-bin-lttng-crash \
3778 --disable-bin-lttng-relayd --disable-bin-lttng-sessiond &&
3779 make &&
3780 cd src/bin/lttng-consumerd &&
3781 sudo make install &&
3782 sudo ldconfig
3783 ----
3784 --
3785
3786 . From your distribution or from source,
3787 <<installing-lttng,install>> the 64-bit versions of
3788 LTTng-UST and Userspace RCU.
3789 . Download, build, and install the 64-bit version of the
3790 latest LTTng-tools{nbsp}{revision}:
3791 +
3792 --
3793 [role="term"]
3794 ----
3795 $ cd $(mktemp -d) &&
3796 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
3797 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
3798 cd lttng-tools-2.10.* &&
3799 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
3800 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
3801 make &&
3802 sudo make install &&
3803 sudo ldconfig
3804 ----
3805 --
3806
3807 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
3808 when linking your 32-bit application:
3809 +
3810 ----
3811 -m32 -L/usr/lib32 -L/usr/local/lib32 \
3812 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
3813 ----
3814 +
3815 For example, let's rebuild the quick start example in
3816 <<tracing-your-own-user-application,Trace a user application>> as an
3817 instrumented 32-bit application:
3818 +
3819 --
3820 [role="term"]
3821 ----
3822 $ gcc -m32 -c -I. hello-tp.c
3823 $ gcc -m32 -c hello.c
3824 $ gcc -m32 -o hello hello.o hello-tp.o \
3825 -L/usr/lib32 -L/usr/local/lib32 \
3826 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
3827 -llttng-ust -ldl
3828 ----
3829 --
3830
3831 No special action is required to execute the 32-bit application and
3832 to trace it: use the command-line man:lttng(1) tool as usual.
3833
3834
3835 [role="since-2.5"]
3836 [[tracef]]
3837 ==== Use `tracef()`
3838
3839 man:tracef(3) is a small LTTng-UST API designed for quick,
3840 man:printf(3)-like instrumentation without the burden of
3841 <<tracepoint-provider,creating>> and
3842 <<building-tracepoint-providers-and-user-application,building>>
3843 a tracepoint provider package.
3844
3845 To use `tracef()` in your application:
3846
3847 . In the C or C++ source files where you need to use `tracef()`,
3848 include `<lttng/tracef.h>`:
3849 +
3850 --
3851 [source,c]
3852 ----
3853 #include <lttng/tracef.h>
3854 ----
3855 --
3856
3857 . In the application's source code, use `tracef()` like you would use
3858 man:printf(3):
3859 +
3860 --
3861 [source,c]
3862 ----
3863 /* ... */
3864
3865 tracef("my message: %d (%s)", my_integer, my_string);
3866
3867 /* ... */
3868 ----
3869 --
3870
3871 . Link your application with `liblttng-ust`:
3872 +
3873 --
3874 [role="term"]
3875 ----
3876 $ gcc -o app app.c -llttng-ust
3877 ----
3878 --
3879
3880 To trace the events that `tracef()` calls emit:
3881
3882 * <<enabling-disabling-events,Create an event rule>> which matches the
3883 `lttng_ust_tracef:*` event name:
3884 +
3885 --
3886 [role="term"]
3887 ----
3888 $ lttng enable-event --userspace 'lttng_ust_tracef:*'
3889 ----
3890 --
3891
3892 [IMPORTANT]
3893 .Limitations of `tracef()`
3894 ====
3895 The `tracef()` utility function was developed to make user space tracing
3896 super simple, albeit with notable disadvantages compared to
3897 <<defining-tracepoints,user-defined tracepoints>>:
3898
3899 * All the emitted events have the same tracepoint provider and
3900 tracepoint names, respectively `lttng_ust_tracef` and `event`.
3901 * There is no static type checking.
3902 * The only event record field you actually get, named `msg`, is a string
3903 potentially containing the values you passed to `tracef()`
3904 using your own format string. This also means that you cannot filter
3905 events with a custom expression at run time because there are no
3906 isolated fields.
3907 * Since `tracef()` uses the C standard library's man:vasprintf(3)
3908 function behind the scenes to format the strings at run time, its
3909 expected performance is lower than with user-defined tracepoints,
3910 which do not require a conversion to a string.
3911
3912 Taking this into consideration, `tracef()` is useful for some quick
3913 prototyping and debugging, but you should not consider it for any
3914 permanent and serious applicative instrumentation.
3915 ====
3916
3917
3918 [role="since-2.7"]
3919 [[tracelog]]
3920 ==== Use `tracelog()`
3921
3922 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
3923 the difference that it accepts an additional log level parameter.
3924
3925 The goal of `tracelog()` is to ease the migration from logging to
3926 tracing.
3927
3928 To use `tracelog()` in your application:
3929
3930 . In the C or C++ source files where you need to use `tracelog()`,
3931 include `<lttng/tracelog.h>`:
3932 +
3933 --
3934 [source,c]
3935 ----
3936 #include <lttng/tracelog.h>
3937 ----
3938 --
3939
3940 . In the application's source code, use `tracelog()` like you would use
3941 man:printf(3), except for the first parameter which is the log
3942 level:
3943 +
3944 --
3945 [source,c]
3946 ----
3947 /* ... */
3948
3949 tracelog(TRACE_WARNING, "my message: %d (%s)",
3950 my_integer, my_string);
3951
3952 /* ... */
3953 ----
3954 --
3955 +
3956 See man:lttng-ust(3) for a list of available log level names.
3957
3958 . Link your application with `liblttng-ust`:
3959 +
3960 --
3961 [role="term"]
3962 ----
3963 $ gcc -o app app.c -llttng-ust
3964 ----
3965 --
3966
3967 To trace the events that `tracelog()` calls emit with a log level
3968 _as severe as_ a specific log level:
3969
3970 * <<enabling-disabling-events,Create an event rule>> which matches the
3971 `lttng_ust_tracelog:*` event name and a minimum level
3972 of severity:
3973 +
3974 --
3975 [role="term"]
3976 ----
3977 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
3978 --loglevel=TRACE_WARNING
3979 ----
3980 --
3981
3982 To trace the events that `tracelog()` calls emit with a
3983 _specific log level_:
3984
3985 * Create an event rule which matches the `lttng_ust_tracelog:*`
3986 event name and a specific log level:
3987 +
3988 --
3989 [role="term"]
3990 ----
3991 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
3992 --loglevel-only=TRACE_INFO
3993 ----
3994 --
3995
3996
3997 [[prebuilt-ust-helpers]]
3998 === Prebuilt user space tracing helpers
3999
4000 The LTTng-UST package provides a few helpers in the form or preloadable
4001 shared objects which automatically instrument system functions and
4002 calls.
4003
4004 The helper shared objects are normally found in dir:{/usr/lib}. If you
4005 built LTTng-UST <<building-from-source,from source>>, they are probably
4006 located in dir:{/usr/local/lib}.
4007
4008 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4009 are:
4010
4011 path:{liblttng-ust-libc-wrapper.so}::
4012 path:{liblttng-ust-pthread-wrapper.so}::
4013 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4014 memory and POSIX threads function tracing>>.
4015
4016 path:{liblttng-ust-cyg-profile.so}::
4017 path:{liblttng-ust-cyg-profile-fast.so}::
4018 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4019
4020 path:{liblttng-ust-dl.so}::
4021 <<liblttng-ust-dl,Dynamic linker tracing>>.
4022
4023 To use a user space tracing helper with any user application:
4024
4025 * Preload the helper shared object when you start the application:
4026 +
4027 --
4028 [role="term"]
4029 ----
4030 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4031 ----
4032 --
4033 +
4034 You can preload more than one helper:
4035 +
4036 --
4037 [role="term"]
4038 ----
4039 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4040 ----
4041 --
4042
4043
4044 [role="since-2.3"]
4045 [[liblttng-ust-libc-pthread-wrapper]]
4046 ==== Instrument C standard library memory and POSIX threads functions
4047
4048 The path:{liblttng-ust-libc-wrapper.so} and
4049 path:{liblttng-ust-pthread-wrapper.so} helpers
4050 add instrumentation to some C standard library and POSIX
4051 threads functions.
4052
4053 [role="growable"]
4054 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4055 |====
4056 |TP provider name |TP name |Instrumented function
4057
4058 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4059 |`calloc` |man:calloc(3)
4060 |`realloc` |man:realloc(3)
4061 |`free` |man:free(3)
4062 |`memalign` |man:memalign(3)
4063 |`posix_memalign` |man:posix_memalign(3)
4064 |====
4065
4066 [role="growable"]
4067 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4068 |====
4069 |TP provider name |TP name |Instrumented function
4070
4071 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4072 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4073 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4074 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4075 |====
4076
4077 When you preload the shared object, it replaces the functions listed
4078 in the previous tables by wrappers which contain tracepoints and call
4079 the replaced functions.
4080
4081
4082 [[liblttng-ust-cyg-profile]]
4083 ==== Instrument function entry and exit
4084
4085 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4086 to the entry and exit points of functions.
4087
4088 man:gcc(1) and man:clang(1) have an option named
4089 https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html[`-finstrument-functions`]
4090 which generates instrumentation calls for entry and exit to functions.
4091 The LTTng-UST function tracing helpers,
4092 path:{liblttng-ust-cyg-profile.so} and
4093 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4094 to add tracepoints to the two generated functions (which contain
4095 `cyg_profile` in their names, hence the helper's name).
4096
4097 To use the LTTng-UST function tracing helper, the source files to
4098 instrument must be built using the `-finstrument-functions` compiler
4099 flag.
4100
4101 There are two versions of the LTTng-UST function tracing helper:
4102
4103 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4104 that you should only use when it can be _guaranteed_ that the
4105 complete event stream is recorded without any lost event record.
4106 Any kind of duplicate information is left out.
4107 +
4108 Assuming no event record is lost, having only the function addresses on
4109 entry is enough to create a call graph, since an event record always
4110 contains the ID of the CPU that generated it.
4111 +
4112 You can use a tool like man:addr2line(1) to convert function addresses
4113 back to source file names and line numbers.
4114
4115 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4116 which also works in use cases where event records might get discarded or
4117 not recorded from application startup.
4118 In these cases, the trace analyzer needs more information to be
4119 able to reconstruct the program flow.
4120
4121 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4122 points of this helper.
4123
4124 All the tracepoints that this helper provides have the
4125 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4126
4127 TIP: It's sometimes a good idea to limit the number of source files that
4128 you compile with the `-finstrument-functions` option to prevent LTTng
4129 from writing an excessive amount of trace data at run time. When using
4130 man:gcc(1), you can use the
4131 `-finstrument-functions-exclude-function-list` option to avoid
4132 instrument entries and exits of specific function names.
4133
4134
4135 [role="since-2.4"]
4136 [[liblttng-ust-dl]]
4137 ==== Instrument the dynamic linker
4138
4139 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4140 man:dlopen(3) and man:dlclose(3) function calls.
4141
4142 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4143 of this helper.
4144
4145
4146 [role="since-2.4"]
4147 [[java-application]]
4148 === User space Java agent
4149
4150 You can instrument any Java application which uses one of the following
4151 logging frameworks:
4152
4153 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4154 (JUL) core logging facilities.
4155 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4156 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4157
4158 [role="img-100"]
4159 .LTTng-UST Java agent imported by a Java application.
4160 image::java-app.png[]
4161
4162 Note that the methods described below are new in LTTng{nbsp}{revision}.
4163 Previous LTTng versions use another technique.
4164
4165 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4166 and https://ci.lttng.org/[continuous integration], thus this version is
4167 directly supported. However, the LTTng-UST Java agent is also tested
4168 with OpenJDK{nbsp}7.
4169
4170
4171 [role="since-2.8"]
4172 [[jul]]
4173 ==== Use the LTTng-UST Java agent for `java.util.logging`
4174
4175 To use the LTTng-UST Java agent in a Java application which uses
4176 `java.util.logging` (JUL):
4177
4178 . In the Java application's source code, import the LTTng-UST
4179 log handler package for `java.util.logging`:
4180 +
4181 --
4182 [source,java]
4183 ----
4184 import org.lttng.ust.agent.jul.LttngLogHandler;
4185 ----
4186 --
4187
4188 . Create an LTTng-UST JUL log handler:
4189 +
4190 --
4191 [source,java]
4192 ----
4193 Handler lttngUstLogHandler = new LttngLogHandler();
4194 ----
4195 --
4196
4197 . Add this handler to the JUL loggers which should emit LTTng events:
4198 +
4199 --
4200 [source,java]
4201 ----
4202 Logger myLogger = Logger.getLogger("some-logger");
4203
4204 myLogger.addHandler(lttngUstLogHandler);
4205 ----
4206 --
4207
4208 . Use `java.util.logging` log statements and configuration as usual.
4209 The loggers with an attached LTTng-UST log handler can emit
4210 LTTng events.
4211
4212 . Before exiting the application, remove the LTTng-UST log handler from
4213 the loggers attached to it and call its `close()` method:
4214 +
4215 --
4216 [source,java]
4217 ----
4218 myLogger.removeHandler(lttngUstLogHandler);
4219 lttngUstLogHandler.close();
4220 ----
4221 --
4222 +
4223 This is not strictly necessary, but it is recommended for a clean
4224 disposal of the handler's resources.
4225
4226 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4227 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4228 in the
4229 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4230 path] when you build the Java application.
4231 +
4232 The JAR files are typically located in dir:{/usr/share/java}.
4233 +
4234 IMPORTANT: The LTTng-UST Java agent must be
4235 <<installing-lttng,installed>> for the logging framework your
4236 application uses.
4237
4238 .Use the LTTng-UST Java agent for `java.util.logging`.
4239 ====
4240 [source,java]
4241 .path:{Test.java}
4242 ----
4243 import java.io.IOException;
4244 import java.util.logging.Handler;
4245 import java.util.logging.Logger;
4246 import org.lttng.ust.agent.jul.LttngLogHandler;
4247
4248 public class Test
4249 {
4250 private static final int answer = 42;
4251
4252 public static void main(String[] argv) throws Exception
4253 {
4254 // Create a logger
4255 Logger logger = Logger.getLogger("jello");
4256
4257 // Create an LTTng-UST log handler
4258 Handler lttngUstLogHandler = new LttngLogHandler();
4259
4260 // Add the LTTng-UST log handler to our logger
4261 logger.addHandler(lttngUstLogHandler);
4262
4263 // Log at will!
4264 logger.info("some info");
4265 logger.warning("some warning");
4266 Thread.sleep(500);
4267 logger.finer("finer information; the answer is " + answer);
4268 Thread.sleep(123);
4269 logger.severe("error!");
4270
4271 // Not mandatory, but cleaner
4272 logger.removeHandler(lttngUstLogHandler);
4273 lttngUstLogHandler.close();
4274 }
4275 }
4276 ----
4277
4278 Build this example:
4279
4280 [role="term"]
4281 ----
4282 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4283 ----
4284
4285 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4286 <<enabling-disabling-events,create an event rule>> matching the
4287 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4288
4289 [role="term"]
4290 ----
4291 $ lttng create
4292 $ lttng enable-event --jul jello
4293 $ lttng start
4294 ----
4295
4296 Run the compiled class:
4297
4298 [role="term"]
4299 ----
4300 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4301 ----
4302
4303 <<basic-tracing-session-control,Stop tracing>> and inspect the
4304 recorded events:
4305
4306 [role="term"]
4307 ----
4308 $ lttng stop
4309 $ lttng view
4310 ----
4311 ====
4312
4313 In the resulting trace, an <<event,event record>> generated by a Java
4314 application using `java.util.logging` is named `lttng_jul:event` and
4315 has the following fields:
4316
4317 `msg`::
4318 Log record's message.
4319
4320 `logger_name`::
4321 Logger name.
4322
4323 `class_name`::
4324 Name of the class in which the log statement was executed.
4325
4326 `method_name`::
4327 Name of the method in which the log statement was executed.
4328
4329 `long_millis`::
4330 Logging time (timestamp in milliseconds).
4331
4332 `int_loglevel`::
4333 Log level integer value.
4334
4335 `int_threadid`::
4336 ID of the thread in which the log statement was executed.
4337
4338 You can use the opt:lttng-enable-event(1):--loglevel or
4339 opt:lttng-enable-event(1):--loglevel-only option of the
4340 man:lttng-enable-event(1) command to target a range of JUL log levels
4341 or a specific JUL log level.
4342
4343
4344 [role="since-2.8"]
4345 [[log4j]]
4346 ==== Use the LTTng-UST Java agent for Apache log4j
4347
4348 To use the LTTng-UST Java agent in a Java application which uses
4349 Apache log4j 1.2:
4350
4351 . In the Java application's source code, import the LTTng-UST
4352 log appender package for Apache log4j:
4353 +
4354 --
4355 [source,java]
4356 ----
4357 import org.lttng.ust.agent.log4j.LttngLogAppender;
4358 ----
4359 --
4360
4361 . Create an LTTng-UST log4j log appender:
4362 +
4363 --
4364 [source,java]
4365 ----
4366 Appender lttngUstLogAppender = new LttngLogAppender();
4367 ----
4368 --
4369
4370 . Add this appender to the log4j loggers which should emit LTTng events:
4371 +
4372 --
4373 [source,java]
4374 ----
4375 Logger myLogger = Logger.getLogger("some-logger");
4376
4377 myLogger.addAppender(lttngUstLogAppender);
4378 ----
4379 --
4380
4381 . Use Apache log4j log statements and configuration as usual. The
4382 loggers with an attached LTTng-UST log appender can emit LTTng events.
4383
4384 . Before exiting the application, remove the LTTng-UST log appender from
4385 the loggers attached to it and call its `close()` method:
4386 +
4387 --
4388 [source,java]
4389 ----
4390 myLogger.removeAppender(lttngUstLogAppender);
4391 lttngUstLogAppender.close();
4392 ----
4393 --
4394 +
4395 This is not strictly necessary, but it is recommended for a clean
4396 disposal of the appender's resources.
4397
4398 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4399 files, path:{lttng-ust-agent-common.jar} and
4400 path:{lttng-ust-agent-log4j.jar}, in the
4401 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4402 path] when you build the Java application.
4403 +
4404 The JAR files are typically located in dir:{/usr/share/java}.
4405 +
4406 IMPORTANT: The LTTng-UST Java agent must be
4407 <<installing-lttng,installed>> for the logging framework your
4408 application uses.
4409
4410 .Use the LTTng-UST Java agent for Apache log4j.
4411 ====
4412 [source,java]
4413 .path:{Test.java}
4414 ----
4415 import org.apache.log4j.Appender;
4416 import org.apache.log4j.Logger;
4417 import org.lttng.ust.agent.log4j.LttngLogAppender;
4418
4419 public class Test
4420 {
4421 private static final int answer = 42;
4422
4423 public static void main(String[] argv) throws Exception
4424 {
4425 // Create a logger
4426 Logger logger = Logger.getLogger("jello");
4427
4428 // Create an LTTng-UST log appender
4429 Appender lttngUstLogAppender = new LttngLogAppender();
4430
4431 // Add the LTTng-UST log appender to our logger
4432 logger.addAppender(lttngUstLogAppender);
4433
4434 // Log at will!
4435 logger.info("some info");
4436 logger.warn("some warning");
4437 Thread.sleep(500);
4438 logger.debug("debug information; the answer is " + answer);
4439 Thread.sleep(123);
4440 logger.fatal("error!");
4441
4442 // Not mandatory, but cleaner
4443 logger.removeAppender(lttngUstLogAppender);
4444 lttngUstLogAppender.close();
4445 }
4446 }
4447
4448 ----
4449
4450 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4451 file):
4452
4453 [role="term"]
4454 ----
4455 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4456 ----
4457
4458 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4459 <<enabling-disabling-events,create an event rule>> matching the
4460 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4461
4462 [role="term"]
4463 ----
4464 $ lttng create
4465 $ lttng enable-event --log4j jello
4466 $ lttng start
4467 ----
4468
4469 Run the compiled class:
4470
4471 [role="term"]
4472 ----
4473 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4474 ----
4475
4476 <<basic-tracing-session-control,Stop tracing>> and inspect the
4477 recorded events:
4478
4479 [role="term"]
4480 ----
4481 $ lttng stop
4482 $ lttng view
4483 ----
4484 ====
4485
4486 In the resulting trace, an <<event,event record>> generated by a Java
4487 application using log4j is named `lttng_log4j:event` and
4488 has the following fields:
4489
4490 `msg`::
4491 Log record's message.
4492
4493 `logger_name`::
4494 Logger name.
4495
4496 `class_name`::
4497 Name of the class in which the log statement was executed.
4498
4499 `method_name`::
4500 Name of the method in which the log statement was executed.
4501
4502 `filename`::
4503 Name of the file in which the executed log statement is located.
4504
4505 `line_number`::
4506 Line number at which the log statement was executed.
4507
4508 `timestamp`::
4509 Logging timestamp.
4510
4511 `int_loglevel`::
4512 Log level integer value.
4513
4514 `thread_name`::
4515 Name of the Java thread in which the log statement was executed.
4516
4517 You can use the opt:lttng-enable-event(1):--loglevel or
4518 opt:lttng-enable-event(1):--loglevel-only option of the
4519 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4520 or a specific log4j log level.
4521
4522
4523 [role="since-2.8"]
4524 [[java-application-context]]
4525 ==== Provide application-specific context fields in a Java application
4526
4527 A Java application-specific context field is a piece of state provided
4528 by the application which <<adding-context,you can add>>, using the
4529 man:lttng-add-context(1) command, to each <<event,event record>>
4530 produced by the log statements of this application.
4531
4532 For example, a given object might have a current request ID variable.
4533 You can create a context information retriever for this object and
4534 assign a name to this current request ID. You can then, using the
4535 man:lttng-add-context(1) command, add this context field by name to
4536 the JUL or log4j <<channel,channel>>.
4537
4538 To provide application-specific context fields in a Java application:
4539
4540 . In the Java application's source code, import the LTTng-UST
4541 Java agent context classes and interfaces:
4542 +
4543 --
4544 [source,java]
4545 ----
4546 import org.lttng.ust.agent.context.ContextInfoManager;
4547 import org.lttng.ust.agent.context.IContextInfoRetriever;
4548 ----
4549 --
4550
4551 . Create a context information retriever class, that is, a class which
4552 implements the `IContextInfoRetriever` interface:
4553 +
4554 --
4555 [source,java]
4556 ----
4557 class MyContextInfoRetriever implements IContextInfoRetriever
4558 {
4559 @Override
4560 public Object retrieveContextInfo(String key)
4561 {
4562 if (key.equals("intCtx")) {
4563 return (short) 17;
4564 } else if (key.equals("strContext")) {
4565 return "context value!";
4566 } else {
4567 return null;
4568 }
4569 }
4570 }
4571 ----
4572 --
4573 +
4574 This `retrieveContextInfo()` method is the only member of the
4575 `IContextInfoRetriever` interface. Its role is to return the current
4576 value of a state by name to create a context field. The names of the
4577 context fields and which state variables they return depends on your
4578 specific scenario.
4579 +
4580 All primitive types and objects are supported as context fields.
4581 When `retrieveContextInfo()` returns an object, the context field
4582 serializer calls its `toString()` method to add a string field to
4583 event records. The method can also return `null`, which means that
4584 no context field is available for the required name.
4585
4586 . Register an instance of your context information retriever class to
4587 the context information manager singleton:
4588 +
4589 --
4590 [source,java]
4591 ----
4592 IContextInfoRetriever cir = new MyContextInfoRetriever();
4593 ContextInfoManager cim = ContextInfoManager.getInstance();
4594 cim.registerContextInfoRetriever("retrieverName", cir);
4595 ----
4596 --
4597
4598 . Before exiting the application, remove your context information
4599 retriever from the context information manager singleton:
4600 +
4601 --
4602 [source,java]
4603 ----
4604 ContextInfoManager cim = ContextInfoManager.getInstance();
4605 cim.unregisterContextInfoRetriever("retrieverName");
4606 ----
4607 --
4608 +
4609 This is not strictly necessary, but it is recommended for a clean
4610 disposal of some manager's resources.
4611
4612 . Build your Java application with LTTng-UST Java agent support as
4613 usual, following the procedure for either the <<jul,JUL>> or
4614 <<log4j,Apache log4j>> framework.
4615
4616
4617 .Provide application-specific context fields in a Java application.
4618 ====
4619 [source,java]
4620 .path:{Test.java}
4621 ----
4622 import java.util.logging.Handler;
4623 import java.util.logging.Logger;
4624 import org.lttng.ust.agent.jul.LttngLogHandler;
4625 import org.lttng.ust.agent.context.ContextInfoManager;
4626 import org.lttng.ust.agent.context.IContextInfoRetriever;
4627
4628 public class Test
4629 {
4630 // Our context information retriever class
4631 private static class MyContextInfoRetriever
4632 implements IContextInfoRetriever
4633 {
4634 @Override
4635 public Object retrieveContextInfo(String key) {
4636 if (key.equals("intCtx")) {
4637 return (short) 17;
4638 } else if (key.equals("strContext")) {
4639 return "context value!";
4640 } else {
4641 return null;
4642 }
4643 }
4644 }
4645
4646 private static final int answer = 42;
4647
4648 public static void main(String args[]) throws Exception
4649 {
4650 // Get the context information manager instance
4651 ContextInfoManager cim = ContextInfoManager.getInstance();
4652
4653 // Create and register our context information retriever
4654 IContextInfoRetriever cir = new MyContextInfoRetriever();
4655 cim.registerContextInfoRetriever("myRetriever", cir);
4656
4657 // Create a logger
4658 Logger logger = Logger.getLogger("jello");
4659
4660 // Create an LTTng-UST log handler
4661 Handler lttngUstLogHandler = new LttngLogHandler();
4662
4663 // Add the LTTng-UST log handler to our logger
4664 logger.addHandler(lttngUstLogHandler);
4665
4666 // Log at will!
4667 logger.info("some info");
4668 logger.warning("some warning");
4669 Thread.sleep(500);
4670 logger.finer("finer information; the answer is " + answer);
4671 Thread.sleep(123);
4672 logger.severe("error!");
4673
4674 // Not mandatory, but cleaner
4675 logger.removeHandler(lttngUstLogHandler);
4676 lttngUstLogHandler.close();
4677 cim.unregisterContextInfoRetriever("myRetriever");
4678 }
4679 }
4680 ----
4681
4682 Build this example:
4683
4684 [role="term"]
4685 ----
4686 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4687 ----
4688
4689 <<creating-destroying-tracing-sessions,Create a tracing session>>
4690 and <<enabling-disabling-events,create an event rule>> matching the
4691 `jello` JUL logger:
4692
4693 [role="term"]
4694 ----
4695 $ lttng create
4696 $ lttng enable-event --jul jello
4697 ----
4698
4699 <<adding-context,Add the application-specific context fields>> to the
4700 JUL channel:
4701
4702 [role="term"]
4703 ----
4704 $ lttng add-context --jul --type='$app.myRetriever:intCtx'
4705 $ lttng add-context --jul --type='$app.myRetriever:strContext'
4706 ----
4707
4708 <<basic-tracing-session-control,Start tracing>>:
4709
4710 [role="term"]
4711 ----
4712 $ lttng start
4713 ----
4714
4715 Run the compiled class:
4716
4717 [role="term"]
4718 ----
4719 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4720 ----
4721
4722 <<basic-tracing-session-control,Stop tracing>> and inspect the
4723 recorded events:
4724
4725 [role="term"]
4726 ----
4727 $ lttng stop
4728 $ lttng view
4729 ----
4730 ====
4731
4732
4733 [role="since-2.7"]
4734 [[python-application]]
4735 === User space Python agent
4736
4737 You can instrument a Python 2 or Python 3 application which uses the
4738 standard https://docs.python.org/3/library/logging.html[`logging`]
4739 package.
4740
4741 Each log statement emits an LTTng event once the
4742 application module imports the
4743 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4744
4745 [role="img-100"]
4746 .A Python application importing the LTTng-UST Python agent.
4747 image::python-app.png[]
4748
4749 To use the LTTng-UST Python agent:
4750
4751 . In the Python application's source code, import the LTTng-UST Python
4752 agent:
4753 +
4754 --
4755 [source,python]
4756 ----
4757 import lttngust
4758 ----
4759 --
4760 +
4761 The LTTng-UST Python agent automatically adds its logging handler to the
4762 root logger at import time.
4763 +
4764 Any log statement that the application executes before this import does
4765 not emit an LTTng event.
4766 +
4767 IMPORTANT: The LTTng-UST Python agent must be
4768 <<installing-lttng,installed>>.
4769
4770 . Use log statements and logging configuration as usual.
4771 Since the LTTng-UST Python agent adds a handler to the _root_
4772 logger, you can trace any log statement from any logger.
4773
4774 .Use the LTTng-UST Python agent.
4775 ====
4776 [source,python]
4777 .path:{test.py}
4778 ----
4779 import lttngust
4780 import logging
4781 import time
4782
4783
4784 def example():
4785 logging.basicConfig()
4786 logger = logging.getLogger('my-logger')
4787
4788 while True:
4789 logger.debug('debug message')
4790 logger.info('info message')
4791 logger.warn('warn message')
4792 logger.error('error message')
4793 logger.critical('critical message')
4794 time.sleep(1)
4795
4796
4797 if __name__ == '__main__':
4798 example()
4799 ----
4800
4801 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
4802 logging handler which prints to the standard error stream, is not
4803 strictly required for LTTng-UST tracing to work, but in versions of
4804 Python preceding 3.2, you could see a warning message which indicates
4805 that no handler exists for the logger `my-logger`.
4806
4807 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4808 <<enabling-disabling-events,create an event rule>> matching the
4809 `my-logger` Python logger, and <<basic-tracing-session-control,start
4810 tracing>>:
4811
4812 [role="term"]
4813 ----
4814 $ lttng create
4815 $ lttng enable-event --python my-logger
4816 $ lttng start
4817 ----
4818
4819 Run the Python script:
4820
4821 [role="term"]
4822 ----
4823 $ python test.py
4824 ----
4825
4826 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4827 events:
4828
4829 [role="term"]
4830 ----
4831 $ lttng stop
4832 $ lttng view
4833 ----
4834 ====
4835
4836 In the resulting trace, an <<event,event record>> generated by a Python
4837 application is named `lttng_python:event` and has the following fields:
4838
4839 `asctime`::
4840 Logging time (string).
4841
4842 `msg`::
4843 Log record's message.
4844
4845 `logger_name`::
4846 Logger name.
4847
4848 `funcName`::
4849 Name of the function in which the log statement was executed.
4850
4851 `lineno`::
4852 Line number at which the log statement was executed.
4853
4854 `int_loglevel`::
4855 Log level integer value.
4856
4857 `thread`::
4858 ID of the Python thread in which the log statement was executed.
4859
4860 `threadName`::
4861 Name of the Python thread in which the log statement was executed.
4862
4863 You can use the opt:lttng-enable-event(1):--loglevel or
4864 opt:lttng-enable-event(1):--loglevel-only option of the
4865 man:lttng-enable-event(1) command to target a range of Python log levels
4866 or a specific Python log level.
4867
4868 When an application imports the LTTng-UST Python agent, the agent tries
4869 to register to a <<lttng-sessiond,session daemon>>. Note that you must
4870 <<start-sessiond,start the session daemon>> _before_ you run the Python
4871 application. If a session daemon is found, the agent tries to register
4872 to it during 5{nbsp}seconds, after which the application continues
4873 without LTTng tracing support. You can override this timeout value with
4874 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
4875 (milliseconds).
4876
4877 If the session daemon stops while a Python application with an imported
4878 LTTng-UST Python agent runs, the agent retries to connect and to
4879 register to a session daemon every 3{nbsp}seconds. You can override this
4880 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
4881 variable.
4882
4883
4884 [role="since-2.5"]
4885 [[proc-lttng-logger-abi]]
4886 === LTTng logger
4887
4888 The `lttng-tracer` Linux kernel module, part of
4889 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
4890 path:{/proc/lttng-logger} when it's loaded. Any application can write
4891 text data to this file to emit an LTTng event.
4892
4893 [role="img-100"]
4894 .An application writes to the LTTng logger file to emit an LTTng event.
4895 image::lttng-logger.png[]
4896
4897 The LTTng logger is the quickest method--not the most efficient,
4898 however--to add instrumentation to an application. It is designed
4899 mostly to instrument shell scripts:
4900
4901 [role="term"]
4902 ----
4903 $ echo "Some message, some $variable" > /proc/lttng-logger
4904 ----
4905
4906 Any event that the LTTng logger emits is named `lttng_logger` and
4907 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
4908 other instrumentation points in the kernel tracing domain, **any Unix
4909 user** can <<enabling-disabling-events,create an event rule>> which
4910 matches its event name, not only the root user or users in the
4911 <<tracing-group,tracing group>>.
4912
4913 To use the LTTng logger:
4914
4915 * From any application, write text data to the path:{/proc/lttng-logger}
4916 file.
4917
4918 The `msg` field of `lttng_logger` event records contains the
4919 recorded message.
4920
4921 NOTE: The maximum message length of an LTTng logger event is
4922 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
4923 than one event to contain the remaining data.
4924
4925 You should not use the LTTng logger to trace a user application which
4926 can be instrumented in a more efficient way, namely:
4927
4928 * <<c-application,C and $$C++$$ applications>>.
4929 * <<java-application,Java applications>>.
4930 * <<python-application,Python applications>>.
4931
4932 .Use the LTTng logger.
4933 ====
4934 [source,bash]
4935 .path:{test.bash}
4936 ----
4937 echo 'Hello, World!' > /proc/lttng-logger
4938 sleep 2
4939 df --human-readable --print-type / > /proc/lttng-logger
4940 ----
4941
4942 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4943 <<enabling-disabling-events,create an event rule>> matching the
4944 `lttng_logger` Linux kernel tracepoint, and
4945 <<basic-tracing-session-control,start tracing>>:
4946
4947 [role="term"]
4948 ----
4949 $ lttng create
4950 $ lttng enable-event --kernel lttng_logger
4951 $ lttng start
4952 ----
4953
4954 Run the Bash script:
4955
4956 [role="term"]
4957 ----
4958 $ bash test.bash
4959 ----
4960
4961 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4962 events:
4963
4964 [role="term"]
4965 ----
4966 $ lttng stop
4967 $ lttng view
4968 ----
4969 ====
4970
4971
4972 [[instrumenting-linux-kernel]]
4973 === LTTng kernel tracepoints
4974
4975 NOTE: This section shows how to _add_ instrumentation points to the
4976 Linux kernel. The kernel's subsystems are already thoroughly
4977 instrumented at strategic places for LTTng when you
4978 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
4979 package.
4980
4981 ////
4982 There are two methods to instrument the Linux kernel:
4983
4984 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
4985 tracepoint which uses the `TRACE_EVENT()` API.
4986 +
4987 Choose this if you want to instrumentation a Linux kernel tree with an
4988 instrumentation point compatible with ftrace, perf, and SystemTap.
4989
4990 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
4991 instrument an out-of-tree kernel module.
4992 +
4993 Choose this if you don't need ftrace, perf, or SystemTap support.
4994 ////
4995
4996
4997 [[linux-add-lttng-layer]]
4998 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
4999
5000 This section shows how to add an LTTng layer to existing ftrace
5001 instrumentation using the `TRACE_EVENT()` API.
5002
5003 This section does not document the `TRACE_EVENT()` macro. You can
5004 read the following articles to learn more about this API:
5005
5006 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
5007 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
5008 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
5009
5010 The following procedure assumes that your ftrace tracepoints are
5011 correctly defined in their own header and that they are created in
5012 one source file using the `CREATE_TRACE_POINTS` definition.
5013
5014 To add an LTTng layer over an existing ftrace tracepoint:
5015
5016 . Make sure the following kernel configuration options are
5017 enabled:
5018 +
5019 --
5020 * `CONFIG_MODULES`
5021 * `CONFIG_KALLSYMS`
5022 * `CONFIG_HIGH_RES_TIMERS`
5023 * `CONFIG_TRACEPOINTS`
5024 --
5025
5026 . Build the Linux source tree with your custom ftrace tracepoints.
5027 . Boot the resulting Linux image on your target system.
5028 +
5029 Confirm that the tracepoints exist by looking for their names in the
5030 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5031 is your subsystem's name.
5032
5033 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5034 +
5035 --
5036 [role="term"]
5037 ----
5038 $ cd $(mktemp -d) &&
5039 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
5040 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
5041 cd lttng-modules-2.10.*
5042 ----
5043 --
5044
5045 . In dir:{instrumentation/events/lttng-module}, relative to the root
5046 of the LTTng-modules source tree, create a header file named
5047 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5048 LTTng-modules tracepoint definitions using the LTTng-modules
5049 macros in it.
5050 +
5051 Start with this template:
5052 +
5053 --
5054 [source,c]
5055 .path:{instrumentation/events/lttng-module/my_subsys.h}
5056 ----
5057 #undef TRACE_SYSTEM
5058 #define TRACE_SYSTEM my_subsys
5059
5060 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5061 #define _LTTNG_MY_SUBSYS_H
5062
5063 #include "../../../probes/lttng-tracepoint-event.h"
5064 #include <linux/tracepoint.h>
5065
5066 LTTNG_TRACEPOINT_EVENT(
5067 /*
5068 * Format is identical to TRACE_EVENT()'s version for the three
5069 * following macro parameters:
5070 */
5071 my_subsys_my_event,
5072 TP_PROTO(int my_int, const char *my_string),
5073 TP_ARGS(my_int, my_string),
5074
5075 /* LTTng-modules specific macros */
5076 TP_FIELDS(
5077 ctf_integer(int, my_int_field, my_int)
5078 ctf_string(my_bar_field, my_bar)
5079 )
5080 )
5081
5082 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5083
5084 #include "../../../probes/define_trace.h"
5085 ----
5086 --
5087 +
5088 The entries in the `TP_FIELDS()` section are the list of fields for the
5089 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5090 ftrace's `TRACE_EVENT()` macro.
5091 +
5092 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5093 complete description of the available `ctf_*()` macros.
5094
5095 . Create the LTTng-modules probe's kernel module C source file,
5096 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5097 subsystem name:
5098 +
5099 --
5100 [source,c]
5101 .path:{probes/lttng-probe-my-subsys.c}
5102 ----
5103 #include <linux/module.h>
5104 #include "../lttng-tracer.h"
5105
5106 /*
5107 * Build-time verification of mismatch between mainline
5108 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5109 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5110 */
5111 #include <trace/events/my_subsys.h>
5112
5113 /* Create LTTng tracepoint probes */
5114 #define LTTNG_PACKAGE_BUILD
5115 #define CREATE_TRACE_POINTS
5116 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5117
5118 #include "../instrumentation/events/lttng-module/my_subsys.h"
5119
5120 MODULE_LICENSE("GPL and additional rights");
5121 MODULE_AUTHOR("Your name <your-email>");
5122 MODULE_DESCRIPTION("LTTng my_subsys probes");
5123 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5124 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5125 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5126 LTTNG_MODULES_EXTRAVERSION);
5127 ----
5128 --
5129
5130 . Edit path:{probes/KBuild} and add your new kernel module object
5131 next to the existing ones:
5132 +
5133 --
5134 [source,make]
5135 .path:{probes/KBuild}
5136 ----
5137 # ...
5138
5139 obj-m += lttng-probe-module.o
5140 obj-m += lttng-probe-power.o
5141
5142 obj-m += lttng-probe-my-subsys.o
5143
5144 # ...
5145 ----
5146 --
5147
5148 . Build and install the LTTng kernel modules:
5149 +
5150 --
5151 [role="term"]
5152 ----
5153 $ make KERNELDIR=/path/to/linux
5154 # make modules_install && depmod -a
5155 ----
5156 --
5157 +
5158 Replace `/path/to/linux` with the path to the Linux source tree where
5159 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5160
5161 Note that you can also use the
5162 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5163 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5164 C code that need to be executed before the event fields are recorded.
5165
5166 The best way to learn how to use the previous LTTng-modules macros is to
5167 inspect the existing LTTng-modules tracepoint definitions in the
5168 dir:{instrumentation/events/lttng-module} header files. Compare them
5169 with the Linux kernel mainline versions in the
5170 dir:{include/trace/events} directory of the Linux source tree.
5171
5172
5173 [role="since-2.7"]
5174 [[lttng-tracepoint-event-code]]
5175 ===== Use custom C code to access the data for tracepoint fields
5176
5177 Although we recommended to always use the
5178 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5179 the arguments and fields of an LTTng-modules tracepoint when possible,
5180 sometimes you need a more complex process to access the data that the
5181 tracer records as event record fields. In other words, you need local
5182 variables and multiple C{nbsp}statements instead of simple
5183 argument-based expressions that you pass to the
5184 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5185
5186 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5187 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5188 a block of C{nbsp}code to be executed before LTTng records the fields.
5189 The structure of this macro is:
5190
5191 [source,c]
5192 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5193 ----
5194 LTTNG_TRACEPOINT_EVENT_CODE(
5195 /*
5196 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5197 * version for the following three macro parameters:
5198 */
5199 my_subsys_my_event,
5200 TP_PROTO(int my_int, const char *my_string),
5201 TP_ARGS(my_int, my_string),
5202
5203 /* Declarations of custom local variables */
5204 TP_locvar(
5205 int a = 0;
5206 unsigned long b = 0;
5207 const char *name = "(undefined)";
5208 struct my_struct *my_struct;
5209 ),
5210
5211 /*
5212 * Custom code which uses both tracepoint arguments
5213 * (in TP_ARGS()) and local variables (in TP_locvar()).
5214 *
5215 * Local variables are actually members of a structure pointed
5216 * to by the special variable tp_locvar.
5217 */
5218 TP_code(
5219 if (my_int) {
5220 tp_locvar->a = my_int + 17;
5221 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5222 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5223 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5224 put_my_struct(tp_locvar->my_struct);
5225
5226 if (tp_locvar->b) {
5227 tp_locvar->a = 1;
5228 }
5229 }
5230 ),
5231
5232 /*
5233 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5234 * version for this, except that tp_locvar members can be
5235 * used in the argument expression parameters of
5236 * the ctf_*() macros.
5237 */
5238 TP_FIELDS(
5239 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5240 ctf_integer(int, my_struct_a, tp_locvar->a)
5241 ctf_string(my_string_field, my_string)
5242 ctf_string(my_struct_name, tp_locvar->name)
5243 )
5244 )
5245 ----
5246
5247 IMPORTANT: The C code defined in `TP_code()` must not have any side
5248 effects when executed. In particular, the code must not allocate
5249 memory or get resources without deallocating this memory or putting
5250 those resources afterwards.
5251
5252
5253 [[instrumenting-linux-kernel-tracing]]
5254 ==== Load and unload a custom probe kernel module
5255
5256 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5257 kernel module>> in the kernel before it can emit LTTng events.
5258
5259 To load the default probe kernel modules and a custom probe kernel
5260 module:
5261
5262 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5263 probe modules to load when starting a root <<lttng-sessiond,session
5264 daemon>>:
5265 +
5266 --
5267 .Load the `my_subsys`, `usb`, and the default probe modules.
5268 ====
5269 [role="term"]
5270 ----
5271 # lttng-sessiond --extra-kmod-probes=my_subsys,usb
5272 ----
5273 ====
5274 --
5275 +
5276 You only need to pass the subsystem name, not the whole kernel module
5277 name.
5278
5279 To load _only_ a given custom probe kernel module:
5280
5281 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5282 modules to load when starting a root session daemon:
5283 +
5284 --
5285 .Load only the `my_subsys` and `usb` probe modules.
5286 ====
5287 [role="term"]
5288 ----
5289 # lttng-sessiond --kmod-probes=my_subsys,usb
5290 ----
5291 ====
5292 --
5293
5294 To confirm that a probe module is loaded:
5295
5296 * Use man:lsmod(8):
5297 +
5298 --
5299 [role="term"]
5300 ----
5301 $ lsmod | grep lttng_probe_usb
5302 ----
5303 --
5304
5305 To unload the loaded probe modules:
5306
5307 * Kill the session daemon with `SIGTERM`:
5308 +
5309 --
5310 [role="term"]
5311 ----
5312 # pkill lttng-sessiond
5313 ----
5314 --
5315 +
5316 You can also use man:modprobe(8)'s `--remove` option if the session
5317 daemon terminates abnormally.
5318
5319
5320 [[controlling-tracing]]
5321 == Tracing control
5322
5323 Once an application or a Linux kernel is
5324 <<instrumenting,instrumented>> for LTTng tracing,
5325 you can _trace_ it.
5326
5327 This section is divided in topics on how to use the various
5328 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5329 command-line tool>>, to _control_ the LTTng daemons and tracers.
5330
5331 NOTE: In the following subsections, we refer to an man:lttng(1) command
5332 using its man page name. For example, instead of _Run the `create`
5333 command to..._, we use _Run the man:lttng-create(1) command to..._.
5334
5335
5336 [[start-sessiond]]
5337 === Start a session daemon
5338
5339 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5340 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5341 command-line tool.
5342
5343 You will see the following error when you run a command while no session
5344 daemon is running:
5345
5346 ----
5347 Error: No session daemon is available
5348 ----
5349
5350 The only command that automatically runs a session daemon is
5351 man:lttng-create(1), which you use to
5352 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5353 this is most of the time the first operation that you do, sometimes it's
5354 not. Some examples are:
5355
5356 * <<list-instrumentation-points,List the available instrumentation points>>.
5357 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5358
5359 [[tracing-group]] Each Unix user must have its own running session
5360 daemon to trace user applications. The session daemon that the root user
5361 starts is the only one allowed to control the LTTng kernel tracer. Users
5362 that are part of the _tracing group_ can control the root session
5363 daemon. The default tracing group name is `tracing`; you can set it to
5364 something else with the opt:lttng-sessiond(8):--group option when you
5365 start the root session daemon.
5366
5367 To start a user session daemon:
5368
5369 * Run man:lttng-sessiond(8):
5370 +
5371 --
5372 [role="term"]
5373 ----
5374 $ lttng-sessiond --daemonize
5375 ----
5376 --
5377
5378 To start the root session daemon:
5379
5380 * Run man:lttng-sessiond(8) as the root user:
5381 +
5382 --
5383 [role="term"]
5384 ----
5385 # lttng-sessiond --daemonize
5386 ----
5387 --
5388
5389 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5390 start the session daemon in foreground.
5391
5392 To stop a session daemon, use man:kill(1) on its process ID (standard
5393 `TERM` signal).
5394
5395 Note that some Linux distributions could manage the LTTng session daemon
5396 as a service. In this case, you should use the service manager to
5397 start, restart, and stop session daemons.
5398
5399
5400 [[creating-destroying-tracing-sessions]]
5401 === Create and destroy a tracing session
5402
5403 Almost all the LTTng control operations happen in the scope of
5404 a <<tracing-session,tracing session>>, which is the dialogue between the
5405 <<lttng-sessiond,session daemon>> and you.
5406
5407 To create a tracing session with a generated name:
5408
5409 * Use the man:lttng-create(1) command:
5410 +
5411 --
5412 [role="term"]
5413 ----
5414 $ lttng create
5415 ----
5416 --
5417
5418 The created tracing session's name is `auto` followed by the
5419 creation date.
5420
5421 To create a tracing session with a specific name:
5422
5423 * Use the optional argument of the man:lttng-create(1) command:
5424 +
5425 --
5426 [role="term"]
5427 ----
5428 $ lttng create my-session
5429 ----
5430 --
5431 +
5432 Replace `my-session` with the specific tracing session name.
5433
5434 LTTng appends the creation date to the created tracing session's name.
5435
5436 LTTng writes the traces of a tracing session in
5437 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5438 name of the tracing session. Note that the env:LTTNG_HOME environment
5439 variable defaults to `$HOME` if not set.
5440
5441 To output LTTng traces to a non-default location:
5442
5443 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5444 +
5445 --
5446 [role="term"]
5447 ----
5448 $ lttng create my-session --output=/tmp/some-directory
5449 ----
5450 --
5451
5452 You may create as many tracing sessions as you wish.
5453
5454 To list all the existing tracing sessions for your Unix user:
5455
5456 * Use the man:lttng-list(1) command:
5457 +
5458 --
5459 [role="term"]
5460 ----
5461 $ lttng list
5462 ----
5463 --
5464
5465 When you create a tracing session, it is set as the _current tracing
5466 session_. The following man:lttng(1) commands operate on the current
5467 tracing session when you don't specify one:
5468
5469 [role="list-3-cols"]
5470 * `add-context`
5471 * `destroy`
5472 * `disable-channel`
5473 * `disable-event`
5474 * `enable-channel`
5475 * `enable-event`
5476 * `load`
5477 * `regenerate`
5478 * `save`
5479 * `snapshot`
5480 * `start`
5481 * `stop`
5482 * `track`
5483 * `untrack`
5484 * `view`
5485
5486 To change the current tracing session:
5487
5488 * Use the man:lttng-set-session(1) command:
5489 +
5490 --
5491 [role="term"]
5492 ----
5493 $ lttng set-session new-session
5494 ----
5495 --
5496 +
5497 Replace `new-session` by the name of the new current tracing session.
5498
5499 When you are done tracing in a given tracing session, you can destroy
5500 it. This operation frees the resources taken by the tracing session
5501 to destroy; it does not destroy the trace data that LTTng wrote for
5502 this tracing session.
5503
5504 To destroy the current tracing session:
5505
5506 * Use the man:lttng-destroy(1) command:
5507 +
5508 --
5509 [role="term"]
5510 ----
5511 $ lttng destroy
5512 ----
5513 --
5514
5515
5516 [[list-instrumentation-points]]
5517 === List the available instrumentation points
5518
5519 The <<lttng-sessiond,session daemon>> can query the running instrumented
5520 user applications and the Linux kernel to get a list of available
5521 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5522 they are tracepoints and system calls. For the user space tracing
5523 domain, they are tracepoints. For the other tracing domains, they are
5524 logger names.
5525
5526 To list the available instrumentation points:
5527
5528 * Use the man:lttng-list(1) command with the requested tracing domain's
5529 option amongst:
5530 +
5531 --
5532 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5533 must be a root user, or it must be a member of the
5534 <<tracing-group,tracing group>>).
5535 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5536 kernel system calls (your Unix user must be a root user, or it must be
5537 a member of the tracing group).
5538 * opt:lttng-list(1):--userspace: user space tracepoints.
5539 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5540 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5541 * opt:lttng-list(1):--python: Python loggers.
5542 --
5543
5544 .List the available user space tracepoints.
5545 ====
5546 [role="term"]
5547 ----
5548 $ lttng list --userspace
5549 ----
5550 ====
5551
5552 .List the available Linux kernel system call tracepoints.
5553 ====
5554 [role="term"]
5555 ----
5556 $ lttng list --kernel --syscall
5557 ----
5558 ====
5559
5560
5561 [[enabling-disabling-events]]
5562 === Create and enable an event rule
5563
5564 Once you <<creating-destroying-tracing-sessions,create a tracing
5565 session>>, you can create <<event,event rules>> with the
5566 man:lttng-enable-event(1) command.
5567
5568 You specify each condition with a command-line option. The available
5569 condition options are shown in the following table.
5570
5571 [role="growable",cols="asciidoc,asciidoc,default"]
5572 .Condition command-line options for the man:lttng-enable-event(1) command.
5573 |====
5574 |Option |Description |Applicable tracing domains
5575
5576 |
5577 One of:
5578
5579 . `--syscall`
5580 . +--probe=__ADDR__+
5581 . +--function=__ADDR__+
5582
5583 |
5584 Instead of using the default _tracepoint_ instrumentation type, use:
5585
5586 . A Linux system call.
5587 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5588 . The entry and return points of a Linux function (symbol or address).
5589
5590 |Linux kernel.
5591
5592 |First positional argument.
5593
5594 |
5595 Tracepoint or system call name. In the case of a Linux KProbe or
5596 function, this is a custom name given to the event rule. With the
5597 JUL, log4j, and Python domains, this is a logger name.
5598
5599 With a tracepoint, logger, or system call name, the last character
5600 can be `*` to match anything that remains.
5601
5602 |All.
5603
5604 |
5605 One of:
5606
5607 . +--loglevel=__LEVEL__+
5608 . +--loglevel-only=__LEVEL__+
5609
5610 |
5611 . Match only tracepoints or log statements with a logging level at
5612 least as severe as +__LEVEL__+.
5613 . Match only tracepoints or log statements with a logging level
5614 equal to +__LEVEL__+.
5615
5616 See man:lttng-enable-event(1) for the list of available logging level
5617 names.
5618
5619 |User space, JUL, log4j, and Python.
5620
5621 |+--exclude=__EXCLUSIONS__+
5622
5623 |
5624 When you use a `*` character at the end of the tracepoint or logger
5625 name (first positional argument), exclude the specific names in the
5626 comma-delimited list +__EXCLUSIONS__+.
5627
5628 |
5629 User space, JUL, log4j, and Python.
5630
5631 |+--filter=__EXPR__+
5632
5633 |
5634 Match only events which satisfy the expression +__EXPR__+.
5635
5636 See man:lttng-enable-event(1) to learn more about the syntax of a
5637 filter expression.
5638
5639 |All.
5640
5641 |====
5642
5643 You attach an event rule to a <<channel,channel>> on creation. If you do
5644 not specify the channel with the opt:lttng-enable-event(1):--channel
5645 option, and if the event rule to create is the first in its
5646 <<domain,tracing domain>> for a given tracing session, then LTTng
5647 creates a _default channel_ for you. This default channel is reused in
5648 subsequent invocations of the man:lttng-enable-event(1) command for the
5649 same tracing domain.
5650
5651 An event rule is always enabled at creation time.
5652
5653 The following examples show how you can combine the previous
5654 command-line options to create simple to more complex event rules.
5655
5656 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5657 ====
5658 [role="term"]
5659 ----
5660 $ lttng enable-event --kernel sched_switch
5661 ----
5662 ====
5663
5664 .Create an event rule matching four Linux kernel system calls (default channel).
5665 ====
5666 [role="term"]
5667 ----
5668 $ lttng enable-event --kernel --syscall open,write,read,close
5669 ----
5670 ====
5671
5672 .Create event rules matching tracepoints with filter expressions (default channel).
5673 ====
5674 [role="term"]
5675 ----
5676 $ lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5677 ----
5678
5679 [role="term"]
5680 ----
5681 $ lttng enable-event --kernel --all \
5682 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5683 ----
5684
5685 [role="term"]
5686 ----
5687 $ lttng enable-event --jul my_logger \
5688 --filter='$app.retriever:cur_msg_id > 3'
5689 ----
5690
5691 IMPORTANT: Make sure to always quote the filter string when you
5692 use man:lttng(1) from a shell.
5693 ====
5694
5695 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5696 ====
5697 [role="term"]
5698 ----
5699 $ lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5700 ----
5701
5702 IMPORTANT: Make sure to always quote the wildcard character when you
5703 use man:lttng(1) from a shell.
5704 ====
5705
5706 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5707 ====
5708 [role="term"]
5709 ----
5710 $ lttng enable-event --python my-app.'*' \
5711 --exclude='my-app.module,my-app.hello'
5712 ----
5713 ====
5714
5715 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5716 ====
5717 [role="term"]
5718 ----
5719 $ lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5720 ----
5721 ====
5722
5723 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5724 ====
5725 [role="term"]
5726 ----
5727 $ lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5728 ----
5729 ====
5730
5731 The event rules of a given channel form a whitelist: as soon as an
5732 emitted event passes one of them, LTTng can record the event. For
5733 example, an event named `my_app:my_tracepoint` emitted from a user space
5734 tracepoint with a `TRACE_ERROR` log level passes both of the following
5735 rules:
5736
5737 [role="term"]
5738 ----
5739 $ lttng enable-event --userspace my_app:my_tracepoint
5740 $ lttng enable-event --userspace my_app:my_tracepoint \
5741 --loglevel=TRACE_INFO
5742 ----
5743
5744 The second event rule is redundant: the first one includes
5745 the second one.
5746
5747
5748 [[disable-event-rule]]
5749 === Disable an event rule
5750
5751 To disable an event rule that you <<enabling-disabling-events,created>>
5752 previously, use the man:lttng-disable-event(1) command. This command
5753 disables _all_ the event rules (of a given tracing domain and channel)
5754 which match an instrumentation point. The other conditions are not
5755 supported as of LTTng{nbsp}{revision}.
5756
5757 The LTTng tracer does not record an emitted event which passes
5758 a _disabled_ event rule.
5759
5760 .Disable an event rule matching a Python logger (default channel).
5761 ====
5762 [role="term"]
5763 ----
5764 $ lttng disable-event --python my-logger
5765 ----
5766 ====
5767
5768 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5769 ====
5770 [role="term"]
5771 ----
5772 $ lttng disable-event --jul '*'
5773 ----
5774 ====
5775
5776 .Disable _all_ the event rules of the default channel.
5777 ====
5778 The opt:lttng-disable-event(1):--all-events option is not, like the
5779 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5780 equivalent of the event name `*` (wildcard): it disables _all_ the event
5781 rules of a given channel.
5782
5783 [role="term"]
5784 ----
5785 $ lttng disable-event --jul --all-events
5786 ----
5787 ====
5788
5789 NOTE: You cannot delete an event rule once you create it.
5790
5791
5792 [[status]]
5793 === Get the status of a tracing session
5794
5795 To get the status of the current tracing session, that is, its
5796 parameters, its channels, event rules, and their attributes:
5797
5798 * Use the man:lttng-status(1) command:
5799 +
5800 --
5801 [role="term"]
5802 ----
5803 $ lttng status
5804 ----
5805 --
5806 +
5807
5808 To get the status of any tracing session:
5809
5810 * Use the man:lttng-list(1) command with the tracing session's name:
5811 +
5812 --
5813 [role="term"]
5814 ----
5815 $ lttng list my-session
5816 ----
5817 --
5818 +
5819 Replace `my-session` with the desired tracing session's name.
5820
5821
5822 [[basic-tracing-session-control]]
5823 === Start and stop a tracing session
5824
5825 Once you <<creating-destroying-tracing-sessions,create a tracing
5826 session>> and
5827 <<enabling-disabling-events,create one or more event rules>>,
5828 you can start and stop the tracers for this tracing session.
5829
5830 To start tracing in the current tracing session:
5831
5832 * Use the man:lttng-start(1) command:
5833 +
5834 --
5835 [role="term"]
5836 ----
5837 $ lttng start
5838 ----
5839 --
5840
5841 LTTng is very flexible: you can launch user applications before
5842 or after the you start the tracers. The tracers only record the events
5843 if they pass enabled event rules and if they occur while the tracers are
5844 started.
5845
5846 To stop tracing in the current tracing session:
5847
5848 * Use the man:lttng-stop(1) command:
5849 +
5850 --
5851 [role="term"]
5852 ----
5853 $ lttng stop
5854 ----
5855 --
5856 +
5857 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
5858 records>> or lost sub-buffers since the last time you ran
5859 man:lttng-start(1), warnings are printed when you run the
5860 man:lttng-stop(1) command.
5861
5862
5863 [[enabling-disabling-channels]]
5864 === Create a channel
5865
5866 Once you create a tracing session, you can create a <<channel,channel>>
5867 with the man:lttng-enable-channel(1) command.
5868
5869 Note that LTTng automatically creates a default channel when, for a
5870 given <<domain,tracing domain>>, no channels exist and you
5871 <<enabling-disabling-events,create>> the first event rule. This default
5872 channel is named `channel0` and its attributes are set to reasonable
5873 values. Therefore, you only need to create a channel when you need
5874 non-default attributes.
5875
5876 You specify each non-default channel attribute with a command-line
5877 option when you use the man:lttng-enable-channel(1) command. The
5878 available command-line options are:
5879
5880 [role="growable",cols="asciidoc,asciidoc"]
5881 .Command-line options for the man:lttng-enable-channel(1) command.
5882 |====
5883 |Option |Description
5884
5885 |`--overwrite`
5886
5887 |
5888 Use the _overwrite_
5889 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
5890 the default _discard_ mode.
5891
5892 |`--buffers-pid` (user space tracing domain only)
5893
5894 |
5895 Use the per-process <<channel-buffering-schemes,buffering scheme>>
5896 instead of the default per-user buffering scheme.
5897
5898 |+--subbuf-size=__SIZE__+
5899
5900 |
5901 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
5902 either for each Unix user (default), or for each instrumented process.
5903
5904 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5905
5906 |+--num-subbuf=__COUNT__+
5907
5908 |
5909 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
5910 for each Unix user (default), or for each instrumented process.
5911
5912 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5913
5914 |+--tracefile-size=__SIZE__+
5915
5916 |
5917 Set the maximum size of each trace file that this channel writes within
5918 a stream to +__SIZE__+ bytes instead of no maximum.
5919
5920 See <<tracefile-rotation,Trace file count and size>>.
5921
5922 |+--tracefile-count=__COUNT__+
5923
5924 |
5925 Limit the number of trace files that this channel creates to
5926 +__COUNT__+ channels instead of no limit.
5927
5928 See <<tracefile-rotation,Trace file count and size>>.
5929
5930 |+--switch-timer=__PERIODUS__+
5931
5932 |
5933 Set the <<channel-switch-timer,switch timer period>>
5934 to +__PERIODUS__+{nbsp}µs.
5935
5936 |+--read-timer=__PERIODUS__+
5937
5938 |
5939 Set the <<channel-read-timer,read timer period>>
5940 to +__PERIODUS__+{nbsp}µs.
5941
5942 |[[opt-blocking-timeout]]+--blocking-timeout=__TIMEOUTUS__+
5943
5944 |
5945 Set the timeout of user space applications which load LTTng-UST
5946 in blocking mode to +__TIMEOUTUS__+:
5947
5948 0 (default)::
5949 Never block (non-blocking mode).
5950
5951 -1::
5952 Block forever until space is available in a sub-buffer to record
5953 the event.
5954
5955 __n__, a positive value::
5956 Wait for at most __n__ µs when trying to write into a sub-buffer.
5957
5958 Note that, for this option to have any effect on an instrumented
5959 user space application, you need to run the application with a set
5960 env:LTTNG_UST_ALLOW_BLOCKING environment variable.
5961
5962 |+--output=__TYPE__+ (Linux kernel tracing domain only)
5963
5964 |
5965 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
5966
5967 |====
5968
5969 You can only create a channel in the Linux kernel and user space
5970 <<domain,tracing domains>>: other tracing domains have their own channel
5971 created on the fly when <<enabling-disabling-events,creating event
5972 rules>>.
5973
5974 [IMPORTANT]
5975 ====
5976 Because of a current LTTng limitation, you must create all channels
5977 _before_ you <<basic-tracing-session-control,start tracing>> in a given
5978 tracing session, that is, before the first time you run
5979 man:lttng-start(1).
5980
5981 Since LTTng automatically creates a default channel when you use the
5982 man:lttng-enable-event(1) command with a specific tracing domain, you
5983 cannot, for example, create a Linux kernel event rule, start tracing,
5984 and then create a user space event rule, because no user space channel
5985 exists yet and it's too late to create one.
5986
5987 For this reason, make sure to configure your channels properly
5988 before starting the tracers for the first time!
5989 ====
5990
5991 The following examples show how you can combine the previous
5992 command-line options to create simple to more complex channels.
5993
5994 .Create a Linux kernel channel with default attributes.
5995 ====
5996 [role="term"]
5997 ----
5998 $ lttng enable-channel --kernel my-channel
5999 ----
6000 ====
6001
6002 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6003 ====
6004 [role="term"]
6005 ----
6006 $ lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6007 --buffers-pid my-channel
6008 ----
6009 ====
6010
6011 .[[blocking-timeout-example]]Create a default user space channel with an infinite blocking timeout:
6012 ====
6013 <<creating-destroying-tracing-sessions,Create a tracing-session>>,
6014 create the channel, <<enabling-disabling-events,create an event rule>>,
6015 and <<basic-tracing-session-control,start tracing>>:
6016
6017 [role="term"]
6018 ----
6019 $ lttng create
6020 $ lttng enable-channel --userspace --blocking-timeout=-1 blocking-channel
6021 $ lttng enable-event --userspace --channel=blocking-channel --all
6022 $ lttng start
6023 ----
6024
6025 Run an application instrumented with LTTng-UST and allow it to block:
6026
6027 [role="term"]
6028 ----
6029 $ LTTNG_UST_ALLOW_BLOCKING=1 my-app
6030 ----
6031 ====
6032
6033 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
6034 ====
6035 [role="term"]
6036 ----
6037 $ lttng enable-channel --kernel --tracefile-count=8 \
6038 --tracefile-size=4194304 my-channel
6039 ----
6040 ====
6041
6042 .Create a user space channel in overwrite (or _flight recorder_) mode.
6043 ====
6044 [role="term"]
6045 ----
6046 $ lttng enable-channel --userspace --overwrite my-channel
6047 ----
6048 ====
6049
6050 You can <<enabling-disabling-events,create>> the same event rule in
6051 two different channels:
6052
6053 [role="term"]
6054 ----
6055 $ lttng enable-event --userspace --channel=my-channel app:tp
6056 $ lttng enable-event --userspace --channel=other-channel app:tp
6057 ----
6058
6059 If both channels are enabled, when a tracepoint named `app:tp` is
6060 reached, LTTng records two events, one for each channel.
6061
6062
6063 [[disable-channel]]
6064 === Disable a channel
6065
6066 To disable a specific channel that you <<enabling-disabling-channels,created>>
6067 previously, use the man:lttng-disable-channel(1) command.
6068
6069 .Disable a specific Linux kernel channel.
6070 ====
6071 [role="term"]
6072 ----
6073 $ lttng disable-channel --kernel my-channel
6074 ----
6075 ====
6076
6077 The state of a channel precedes the individual states of event rules
6078 attached to it: event rules which belong to a disabled channel, even if
6079 they are enabled, are also considered disabled.
6080
6081
6082 [[adding-context]]
6083 === Add context fields to a channel
6084
6085 Event record fields in trace files provide important information about
6086 events that occured previously, but sometimes some external context may
6087 help you solve a problem faster. Examples of context fields are:
6088
6089 * The **process ID**, **thread ID**, **process name**, and
6090 **process priority** of the thread in which the event occurs.
6091 * The **hostname** of the system on which the event occurs.
6092 * The current values of many possible **performance counters** using
6093 perf, for example:
6094 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6095 ** Cache misses.
6096 ** Branch instructions, misses, and loads.
6097 ** CPU faults.
6098 * Any context defined at the application level (supported for the
6099 JUL and log4j <<domain,tracing domains>>).
6100
6101 To get the full list of available context fields, see
6102 `lttng add-context --list`. Some context fields are reserved for a
6103 specific <<domain,tracing domain>> (Linux kernel or user space).
6104
6105 You add context fields to <<channel,channels>>. All the events
6106 that a channel with added context fields records contain those fields.
6107
6108 To add context fields to one or all the channels of a given tracing
6109 session:
6110
6111 * Use the man:lttng-add-context(1) command.
6112
6113 .Add context fields to all the channels of the current tracing session.
6114 ====
6115 The following command line adds the virtual process identifier and
6116 the per-thread CPU cycles count fields to all the user space channels
6117 of the current tracing session.
6118
6119 [role="term"]
6120 ----
6121 $ lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6122 ----
6123 ====
6124
6125 .Add performance counter context fields by raw ID
6126 ====
6127 See man:lttng-add-context(1) for the exact format of the context field
6128 type, which is partly compatible with the format used in
6129 man:perf-record(1).
6130
6131 [role="term"]
6132 ----
6133 $ lttng add-context --userspace --type=perf:thread:raw:r0110:test
6134 $ lttng add-context --kernel --type=perf:cpu:raw:r0013c:x86unhalted
6135 ----
6136 ====
6137
6138 .Add a context field to a specific channel.
6139 ====
6140 The following command line adds the thread identifier context field
6141 to the Linux kernel channel named `my-channel` in the current
6142 tracing session.
6143
6144 [role="term"]
6145 ----
6146 $ lttng add-context --kernel --channel=my-channel --type=tid
6147 ----
6148 ====
6149
6150 .Add an application-specific context field to a specific channel.
6151 ====
6152 The following command line adds the `cur_msg_id` context field of the
6153 `retriever` context retriever for all the instrumented
6154 <<java-application,Java applications>> recording <<event,event records>>
6155 in the channel named `my-channel`:
6156
6157 [role="term"]
6158 ----
6159 $ lttng add-context --kernel --channel=my-channel \
6160 --type='$app:retriever:cur_msg_id'
6161 ----
6162
6163 IMPORTANT: Make sure to always quote the `$` character when you
6164 use man:lttng-add-context(1) from a shell.
6165 ====
6166
6167 NOTE: You cannot remove context fields from a channel once you add it.
6168
6169
6170 [role="since-2.7"]
6171 [[pid-tracking]]
6172 === Track process IDs
6173
6174 It's often useful to allow only specific process IDs (PIDs) to emit
6175 events. For example, you may wish to record all the system calls made by
6176 a given process (Ă  la http://linux.die.net/man/1/strace[strace]).
6177
6178 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6179 purpose. Both commands operate on a whitelist of process IDs. You _add_
6180 entries to this whitelist with the man:lttng-track(1) command and remove
6181 entries with the man:lttng-untrack(1) command. Any process which has one
6182 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6183 an enabled <<event,event rule>>.
6184
6185 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6186 process with a given tracked ID exit and another process be given this
6187 ID, then the latter would also be allowed to emit events.
6188
6189 .Track and untrack process IDs.
6190 ====
6191 For the sake of the following example, assume the target system has 16
6192 possible PIDs.
6193
6194 When you
6195 <<creating-destroying-tracing-sessions,create a tracing session>>,
6196 the whitelist contains all the possible PIDs:
6197
6198 [role="img-100"]
6199 .All PIDs are tracked.
6200 image::track-all.png[]
6201
6202 When the whitelist is full and you use the man:lttng-track(1) command to
6203 specify some PIDs to track, LTTng first clears the whitelist, then it
6204 tracks the specific PIDs. After:
6205
6206 [role="term"]
6207 ----
6208 $ lttng track --pid=3,4,7,10,13
6209 ----
6210
6211 the whitelist is:
6212
6213 [role="img-100"]
6214 .PIDs 3, 4, 7, 10, and 13 are tracked.
6215 image::track-3-4-7-10-13.png[]
6216
6217 You can add more PIDs to the whitelist afterwards:
6218
6219 [role="term"]
6220 ----
6221 $ lttng track --pid=1,15,16
6222 ----
6223
6224 The result is:
6225
6226 [role="img-100"]
6227 .PIDs 1, 15, and 16 are added to the whitelist.
6228 image::track-1-3-4-7-10-13-15-16.png[]
6229
6230 The man:lttng-untrack(1) command removes entries from the PID tracker's
6231 whitelist. Given the previous example, the following command:
6232
6233 [role="term"]
6234 ----
6235 $ lttng untrack --pid=3,7,10,13
6236 ----
6237
6238 leads to this whitelist:
6239
6240 [role="img-100"]
6241 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6242 image::track-1-4-15-16.png[]
6243
6244 LTTng can track all possible PIDs again using the opt:track(1):--all
6245 option:
6246
6247 [role="term"]
6248 ----
6249 $ lttng track --pid --all
6250 ----
6251
6252 The result is, again:
6253
6254 [role="img-100"]
6255 .All PIDs are tracked.
6256 image::track-all.png[]
6257 ====
6258
6259 .Track only specific PIDs
6260 ====
6261 A very typical use case with PID tracking is to start with an empty
6262 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6263 then add PIDs manually while tracers are active. You can accomplish this
6264 by using the opt:lttng-untrack(1):--all option of the
6265 man:lttng-untrack(1) command to clear the whitelist after you
6266 <<creating-destroying-tracing-sessions,create a tracing session>>:
6267
6268 [role="term"]
6269 ----
6270 $ lttng untrack --pid --all
6271 ----
6272
6273 gives:
6274
6275 [role="img-100"]
6276 .No PIDs are tracked.
6277 image::untrack-all.png[]
6278
6279 If you trace with this whitelist configuration, the tracer records no
6280 events for this <<domain,tracing domain>> because no processes are
6281 tracked. You can use the man:lttng-track(1) command as usual to track
6282 specific PIDs, for example:
6283
6284 [role="term"]
6285 ----
6286 $ lttng track --pid=6,11
6287 ----
6288
6289 Result:
6290
6291 [role="img-100"]
6292 .PIDs 6 and 11 are tracked.
6293 image::track-6-11.png[]
6294 ====
6295
6296
6297 [role="since-2.5"]
6298 [[saving-loading-tracing-session]]
6299 === Save and load tracing session configurations
6300
6301 Configuring a <<tracing-session,tracing session>> can be long. Some of
6302 the tasks involved are:
6303
6304 * <<enabling-disabling-channels,Create channels>> with
6305 specific attributes.
6306 * <<adding-context,Add context fields>> to specific channels.
6307 * <<enabling-disabling-events,Create event rules>> with specific log
6308 level and filter conditions.
6309
6310 If you use LTTng to solve real world problems, chances are you have to
6311 record events using the same tracing session setup over and over,
6312 modifying a few variables each time in your instrumented program
6313 or environment. To avoid constant tracing session reconfiguration,
6314 the man:lttng(1) command-line tool can save and load tracing session
6315 configurations to/from XML files.
6316
6317 To save a given tracing session configuration:
6318
6319 * Use the man:lttng-save(1) command:
6320 +
6321 --
6322 [role="term"]
6323 ----
6324 $ lttng save my-session
6325 ----
6326 --
6327 +
6328 Replace `my-session` with the name of the tracing session to save.
6329
6330 LTTng saves tracing session configurations to
6331 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6332 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6333 the opt:lttng-save(1):--output-path option to change this destination
6334 directory.
6335
6336 LTTng saves all configuration parameters, for example:
6337
6338 * The tracing session name.
6339 * The trace data output path.
6340 * The channels with their state and all their attributes.
6341 * The context fields you added to channels.
6342 * The event rules with their state, log level and filter conditions.
6343
6344 To load a tracing session:
6345
6346 * Use the man:lttng-load(1) command:
6347 +
6348 --
6349 [role="term"]
6350 ----
6351 $ lttng load my-session
6352 ----
6353 --
6354 +
6355 Replace `my-session` with the name of the tracing session to load.
6356
6357 When LTTng loads a configuration, it restores your saved tracing session
6358 as if you just configured it manually.
6359
6360 See man:lttng(1) for the complete list of command-line options. You
6361 can also save and load all many sessions at a time, and decide in which
6362 directory to output the XML files.
6363
6364
6365 [[sending-trace-data-over-the-network]]
6366 === Send trace data over the network
6367
6368 LTTng can send the recorded trace data to a remote system over the
6369 network instead of writing it to the local file system.
6370
6371 To send the trace data over the network:
6372
6373 . On the _remote_ system (which can also be the target system),
6374 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6375 +
6376 --
6377 [role="term"]
6378 ----
6379 $ lttng-relayd
6380 ----
6381 --
6382
6383 . On the _target_ system, create a tracing session configured to
6384 send trace data over the network:
6385 +
6386 --
6387 [role="term"]
6388 ----
6389 $ lttng create my-session --set-url=net://remote-system
6390 ----
6391 --
6392 +
6393 Replace `remote-system` by the host name or IP address of the
6394 remote system. See man:lttng-create(1) for the exact URL format.
6395
6396 . On the target system, use the man:lttng(1) command-line tool as usual.
6397 When tracing is active, the target's consumer daemon sends sub-buffers
6398 to the relay daemon running on the remote system instead of flushing
6399 them to the local file system. The relay daemon writes the received
6400 packets to the local file system.
6401
6402 The relay daemon writes trace files to
6403 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6404 +__hostname__+ is the host name of the target system and +__session__+
6405 is the tracing session name. Note that the env:LTTNG_HOME environment
6406 variable defaults to `$HOME` if not set. Use the
6407 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6408 trace files to another base directory.
6409
6410
6411 [role="since-2.4"]
6412 [[lttng-live]]
6413 === View events as LTTng emits them (noch:{LTTng} live)
6414
6415 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6416 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6417 display events as LTTng emits them on the target system while tracing is
6418 active.
6419
6420 The relay daemon creates a _tee_: it forwards the trace data to both
6421 the local file system and to connected live viewers:
6422
6423 [role="img-90"]
6424 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6425 image::live.png[]
6426
6427 To use LTTng live:
6428
6429 . On the _target system_, create a <<tracing-session,tracing session>>
6430 in _live mode_:
6431 +
6432 --
6433 [role="term"]
6434 ----
6435 $ lttng create my-session --live
6436 ----
6437 --
6438 +
6439 This spawns a local relay daemon.
6440
6441 . Start the live viewer and configure it to connect to the relay
6442 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6443 +
6444 --
6445 [role="term"]
6446 ----
6447 $ babeltrace --input-format=lttng-live \
6448 net://localhost/host/hostname/my-session
6449 ----
6450 --
6451 +
6452 Replace:
6453 +
6454 --
6455 * `hostname` with the host name of the target system.
6456 * `my-session` with the name of the tracing session to view.
6457 --
6458
6459 . Configure the tracing session as usual with the man:lttng(1)
6460 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6461
6462 You can list the available live tracing sessions with Babeltrace:
6463
6464 [role="term"]
6465 ----
6466 $ babeltrace --input-format=lttng-live net://localhost
6467 ----
6468
6469 You can start the relay daemon on another system. In this case, you need
6470 to specify the relay daemon's URL when you create the tracing session
6471 with the opt:lttng-create(1):--set-url option. You also need to replace
6472 `localhost` in the procedure above with the host name of the system on
6473 which the relay daemon is running.
6474
6475 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6476 command-line options.
6477
6478
6479 [role="since-2.3"]
6480 [[taking-a-snapshot]]
6481 === Take a snapshot of the current sub-buffers of a tracing session
6482
6483 The normal behavior of LTTng is to append full sub-buffers to growing
6484 trace data files. This is ideal to keep a full history of the events
6485 that occurred on the target system, but it can
6486 represent too much data in some situations. For example, you may wish
6487 to trace your application continuously until some critical situation
6488 happens, in which case you only need the latest few recorded
6489 events to perform the desired analysis, not multi-gigabyte trace files.
6490
6491 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6492 current sub-buffers of a given <<tracing-session,tracing session>>.
6493 LTTng can write the snapshot to the local file system or send it over
6494 the network.
6495
6496 To take a snapshot:
6497
6498 . Create a tracing session in _snapshot mode_:
6499 +
6500 --
6501 [role="term"]
6502 ----
6503 $ lttng create my-session --snapshot
6504 ----
6505 --
6506 +
6507 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6508 <<channel,channels>> created in this mode is automatically set to
6509 _overwrite_ (flight recorder mode).
6510
6511 . Configure the tracing session as usual with the man:lttng(1)
6512 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6513
6514 . **Optional**: When you need to take a snapshot,
6515 <<basic-tracing-session-control,stop tracing>>.
6516 +
6517 You can take a snapshot when the tracers are active, but if you stop
6518 them first, you are sure that the data in the sub-buffers does not
6519 change before you actually take the snapshot.
6520
6521 . Take a snapshot:
6522 +
6523 --
6524 [role="term"]
6525 ----
6526 $ lttng snapshot record --name=my-first-snapshot
6527 ----
6528 --
6529 +
6530 LTTng writes the current sub-buffers of all the current tracing
6531 session's channels to trace files on the local file system. Those trace
6532 files have `my-first-snapshot` in their name.
6533
6534 There is no difference between the format of a normal trace file and the
6535 format of a snapshot: viewers of LTTng traces also support LTTng
6536 snapshots.
6537
6538 By default, LTTng writes snapshot files to the path shown by
6539 `lttng snapshot list-output`. You can change this path or decide to send
6540 snapshots over the network using either:
6541
6542 . An output path or URL that you specify when you create the
6543 tracing session.
6544 . An snapshot output path or URL that you add using
6545 `lttng snapshot add-output`
6546 . An output path or URL that you provide directly to the
6547 `lttng snapshot record` command.
6548
6549 Method 3 overrides method 2, which overrides method 1. When you
6550 specify a URL, a relay daemon must listen on a remote system (see
6551 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6552
6553
6554 [role="since-2.6"]
6555 [[mi]]
6556 === Use the machine interface
6557
6558 With any command of the man:lttng(1) command-line tool, you can set the
6559 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6560 XML machine interface output, for example:
6561
6562 [role="term"]
6563 ----
6564 $ lttng --mi=xml enable-event --kernel --syscall open
6565 ----
6566
6567 A schema definition (XSD) is
6568 https://github.com/lttng/lttng-tools/blob/stable-2.10/src/common/mi-lttng-3.0.xsd[available]
6569 to ease the integration with external tools as much as possible.
6570
6571
6572 [role="since-2.8"]
6573 [[metadata-regenerate]]
6574 === Regenerate the metadata of an LTTng trace
6575
6576 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6577 data stream files and a metadata file. This metadata file contains,
6578 amongst other things, information about the offset of the clock sources
6579 used to timestamp <<event,event records>> when tracing.
6580
6581 If, once a <<tracing-session,tracing session>> is
6582 <<basic-tracing-session-control,started>>, a major
6583 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6584 happens, the trace's clock offset also needs to be updated. You
6585 can use the `metadata` item of the man:lttng-regenerate(1) command
6586 to do so.
6587
6588 The main use case of this command is to allow a system to boot with
6589 an incorrect wall time and trace it with LTTng before its wall time
6590 is corrected. Once the system is known to be in a state where its
6591 wall time is correct, it can run `lttng regenerate metadata`.
6592
6593 To regenerate the metadata of an LTTng trace:
6594
6595 * Use the `metadata` item of the man:lttng-regenerate(1) command:
6596 +
6597 --
6598 [role="term"]
6599 ----
6600 $ lttng regenerate metadata
6601 ----
6602 --
6603
6604 [IMPORTANT]
6605 ====
6606 `lttng regenerate metadata` has the following limitations:
6607
6608 * Tracing session <<creating-destroying-tracing-sessions,created>>
6609 in non-live mode.
6610 * User space <<channel,channels>>, if any, are using
6611 <<channel-buffering-schemes,per-user buffering>>.
6612 ====
6613
6614
6615 [role="since-2.9"]
6616 [[regenerate-statedump]]
6617 === Regenerate the state dump of a tracing session
6618
6619 The LTTng kernel and user space tracers generate state dump
6620 <<event,event records>> when the application starts or when you
6621 <<basic-tracing-session-control,start a tracing session>>. An analysis
6622 can use the state dump event records to set an initial state before it
6623 builds the rest of the state from the following event records.
6624 http://tracecompass.org/[Trace Compass] is a notable example of an
6625 application which uses the state dump of an LTTng trace.
6626
6627 When you <<taking-a-snapshot,take a snapshot>>, it's possible that the
6628 state dump event records are not included in the snapshot because they
6629 were recorded to a sub-buffer that has been consumed or overwritten
6630 already.
6631
6632 You can use the `lttng regenerate statedump` command to emit the state
6633 dump event records again.
6634
6635 To regenerate the state dump of the current tracing session, provided
6636 create it in snapshot mode, before you take a snapshot:
6637
6638 . Use the `statedump` item of the man:lttng-regenerate(1) command:
6639 +
6640 --
6641 [role="term"]
6642 ----
6643 $ lttng regenerate statedump
6644 ----
6645 --
6646
6647 . <<basic-tracing-session-control,Stop the tracing session>>:
6648 +
6649 --
6650 [role="term"]
6651 ----
6652 $ lttng stop
6653 ----
6654 --
6655
6656 . <<taking-a-snapshot,Take a snapshot>>:
6657 +
6658 --
6659 [role="term"]
6660 ----
6661 $ lttng snapshot record --name=my-snapshot
6662 ----
6663 --
6664
6665 Depending on the event throughput, you should run steps 1 and 2
6666 as closely as possible.
6667
6668 NOTE: To record the state dump events, you need to
6669 <<enabling-disabling-events,create event rules>> which enable them.
6670 LTTng-UST state dump tracepoints start with `lttng_ust_statedump:`.
6671 LTTng-modules state dump tracepoints start with `lttng_statedump_`.
6672
6673
6674 [role="since-2.7"]
6675 [[persistent-memory-file-systems]]
6676 === Record trace data on persistent memory file systems
6677
6678 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6679 (NVRAM) is random-access memory that retains its information when power
6680 is turned off (non-volatile). Systems with such memory can store data
6681 structures in RAM and retrieve them after a reboot, without flushing
6682 to typical _storage_.
6683
6684 Linux supports NVRAM file systems thanks to either
6685 http://pramfs.sourceforge.net/[PRAMFS] or
6686 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6687 (requires Linux 4.1+).
6688
6689 This section does not describe how to operate such file systems;
6690 we assume that you have a working persistent memory file system.
6691
6692 When you create a <<tracing-session,tracing session>>, you can specify
6693 the path of the shared memory holding the sub-buffers. If you specify a
6694 location on an NVRAM file system, then you can retrieve the latest
6695 recorded trace data when the system reboots after a crash.
6696
6697 To record trace data on a persistent memory file system and retrieve the
6698 trace data after a system crash:
6699
6700 . Create a tracing session with a sub-buffer shared memory path located
6701 on an NVRAM file system:
6702 +
6703 --
6704 [role="term"]
6705 ----
6706 $ lttng create my-session --shm-path=/path/to/shm
6707 ----
6708 --
6709
6710 . Configure the tracing session as usual with the man:lttng(1)
6711 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6712
6713 . After a system crash, use the man:lttng-crash(1) command-line tool to
6714 view the trace data recorded on the NVRAM file system:
6715 +
6716 --
6717 [role="term"]
6718 ----
6719 $ lttng-crash /path/to/shm
6720 ----
6721 --
6722
6723 The binary layout of the ring buffer files is not exactly the same as
6724 the trace files layout. This is why you need to use man:lttng-crash(1)
6725 instead of your preferred trace viewer directly.
6726
6727 To convert the ring buffer files to LTTng trace files:
6728
6729 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6730 +
6731 --
6732 [role="term"]
6733 ----
6734 $ lttng-crash --extract=/path/to/trace /path/to/shm
6735 ----
6736 --
6737
6738
6739 [[reference]]
6740 == Reference
6741
6742 [[lttng-modules-ref]]
6743 === noch:{LTTng-modules}
6744
6745
6746 [role="since-2.9"]
6747 [[lttng-tracepoint-enum]]
6748 ==== `LTTNG_TRACEPOINT_ENUM()` usage
6749
6750 Use the `LTTNG_TRACEPOINT_ENUM()` macro to define an enumeration:
6751
6752 [source,c]
6753 ----
6754 LTTNG_TRACEPOINT_ENUM(name, TP_ENUM_VALUES(entries))
6755 ----
6756
6757 Replace:
6758
6759 * `name` with the name of the enumeration (C identifier, unique
6760 amongst all the defined enumerations).
6761 * `entries` with a list of enumeration entries.
6762
6763 The available enumeration entry macros are:
6764
6765 +ctf_enum_value(__name__, __value__)+::
6766 Entry named +__name__+ mapped to the integral value +__value__+.
6767
6768 +ctf_enum_range(__name__, __begin__, __end__)+::
6769 Entry named +__name__+ mapped to the range of integral values between
6770 +__begin__+ (included) and +__end__+ (included).
6771
6772 +ctf_enum_auto(__name__)+::
6773 Entry named +__name__+ mapped to the integral value following the
6774 last mapping's value.
6775 +
6776 The last value of a `ctf_enum_value()` entry is its +__value__+
6777 parameter.
6778 +
6779 The last value of a `ctf_enum_range()` entry is its +__end__+ parameter.
6780 +
6781 If `ctf_enum_auto()` is the first entry in the list, its integral
6782 value is 0.
6783
6784 Use the `ctf_enum()` <<lttng-modules-tp-fields,field definition macro>>
6785 to use a defined enumeration as a tracepoint field.
6786
6787 .Define an enumeration with `LTTNG_TRACEPOINT_ENUM()`.
6788 ====
6789 [source,c]
6790 ----
6791 LTTNG_TRACEPOINT_ENUM(
6792 my_enum,
6793 TP_ENUM_VALUES(
6794 ctf_enum_auto("AUTO: EXPECT 0")
6795 ctf_enum_value("VALUE: 23", 23)
6796 ctf_enum_value("VALUE: 27", 27)
6797 ctf_enum_auto("AUTO: EXPECT 28")
6798 ctf_enum_range("RANGE: 101 TO 303", 101, 303)
6799 ctf_enum_auto("AUTO: EXPECT 304")
6800 )
6801 )
6802 ----
6803 ====
6804
6805
6806 [role="since-2.7"]
6807 [[lttng-modules-tp-fields]]
6808 ==== Tracepoint fields macros (for `TP_FIELDS()`)
6809
6810 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
6811 tracepoint fields, which must be listed within `TP_FIELDS()` in
6812 `LTTNG_TRACEPOINT_EVENT()`, are:
6813
6814 [role="func-desc growable",cols="asciidoc,asciidoc"]
6815 .Available macros to define LTTng-modules tracepoint fields
6816 |====
6817 |Macro |Description and parameters
6818
6819 |
6820 +ctf_integer(__t__, __n__, __e__)+
6821
6822 +ctf_integer_nowrite(__t__, __n__, __e__)+
6823
6824 +ctf_user_integer(__t__, __n__, __e__)+
6825
6826 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
6827 |
6828 Standard integer, displayed in base 10.
6829
6830 +__t__+::
6831 Integer C type (`int`, `long`, `size_t`, ...).
6832
6833 +__n__+::
6834 Field name.
6835
6836 +__e__+::
6837 Argument expression.
6838
6839 |
6840 +ctf_integer_hex(__t__, __n__, __e__)+
6841
6842 +ctf_user_integer_hex(__t__, __n__, __e__)+
6843 |
6844 Standard integer, displayed in base 16.
6845
6846 +__t__+::
6847 Integer C type.
6848
6849 +__n__+::
6850 Field name.
6851
6852 +__e__+::
6853 Argument expression.
6854
6855 |+ctf_integer_oct(__t__, __n__, __e__)+
6856 |
6857 Standard integer, displayed in base 8.
6858
6859 +__t__+::
6860 Integer C type.
6861
6862 +__n__+::
6863 Field name.
6864
6865 +__e__+::
6866 Argument expression.
6867
6868 |
6869 +ctf_integer_network(__t__, __n__, __e__)+
6870
6871 +ctf_user_integer_network(__t__, __n__, __e__)+
6872 |
6873 Integer in network byte order (big-endian), displayed in base 10.
6874
6875 +__t__+::
6876 Integer C type.
6877
6878 +__n__+::
6879 Field name.
6880
6881 +__e__+::
6882 Argument expression.
6883
6884 |
6885 +ctf_integer_network_hex(__t__, __n__, __e__)+
6886
6887 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
6888 |
6889 Integer in network byte order, displayed in base 16.
6890
6891 +__t__+::
6892 Integer C type.
6893
6894 +__n__+::
6895 Field name.
6896
6897 +__e__+::
6898 Argument expression.
6899
6900 |
6901 +ctf_enum(__N__, __t__, __n__, __e__)+
6902
6903 +ctf_enum_nowrite(__N__, __t__, __n__, __e__)+
6904
6905 +ctf_user_enum(__N__, __t__, __n__, __e__)+
6906
6907 +ctf_user_enum_nowrite(__N__, __t__, __n__, __e__)+
6908 |
6909 Enumeration.
6910
6911 +__N__+::
6912 Name of a <<lttng-tracepoint-enum,previously defined enumeration>>.
6913
6914 +__t__+::
6915 Integer C type (`int`, `long`, `size_t`, ...).
6916
6917 +__n__+::
6918 Field name.
6919
6920 +__e__+::
6921 Argument expression.
6922
6923 |
6924 +ctf_string(__n__, __e__)+
6925
6926 +ctf_string_nowrite(__n__, __e__)+
6927
6928 +ctf_user_string(__n__, __e__)+
6929
6930 +ctf_user_string_nowrite(__n__, __e__)+
6931 |
6932 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
6933
6934 +__n__+::
6935 Field name.
6936
6937 +__e__+::
6938 Argument expression.
6939
6940 |
6941 +ctf_array(__t__, __n__, __e__, __s__)+
6942
6943 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
6944
6945 +ctf_user_array(__t__, __n__, __e__, __s__)+
6946
6947 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
6948 |
6949 Statically-sized array of integers.
6950
6951 +__t__+::
6952 Array element C type.
6953
6954 +__n__+::
6955 Field name.
6956
6957 +__e__+::
6958 Argument expression.
6959
6960 +__s__+::
6961 Number of elements.
6962
6963 |
6964 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
6965
6966 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6967
6968 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
6969
6970 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6971 |
6972 Statically-sized array of bits.
6973
6974 The type of +__e__+ must be an integer type. +__s__+ is the number
6975 of elements of such type in +__e__+, not the number of bits.
6976
6977 +__t__+::
6978 Array element C type.
6979
6980 +__n__+::
6981 Field name.
6982
6983 +__e__+::
6984 Argument expression.
6985
6986 +__s__+::
6987 Number of elements.
6988
6989 |
6990 +ctf_array_text(__t__, __n__, __e__, __s__)+
6991
6992 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
6993
6994 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
6995
6996 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
6997 |
6998 Statically-sized array, printed as text.
6999
7000 The string does not need to be null-terminated.
7001
7002 +__t__+::
7003 Array element C type (always `char`).
7004
7005 +__n__+::
7006 Field name.
7007
7008 +__e__+::
7009 Argument expression.
7010
7011 +__s__+::
7012 Number of elements.
7013
7014 |
7015 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
7016
7017 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7018
7019 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
7020
7021 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7022 |
7023 Dynamically-sized array of integers.
7024
7025 The type of +__E__+ must be unsigned.
7026
7027 +__t__+::
7028 Array element C type.
7029
7030 +__n__+::
7031 Field name.
7032
7033 +__e__+::
7034 Argument expression.
7035
7036 +__T__+::
7037 Length expression C type.
7038
7039 +__E__+::
7040 Length expression.
7041
7042 |
7043 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7044
7045 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7046 |
7047 Dynamically-sized array of integers, displayed in base 16.
7048
7049 The type of +__E__+ must be unsigned.
7050
7051 +__t__+::
7052 Array element C type.
7053
7054 +__n__+::
7055 Field name.
7056
7057 +__e__+::
7058 Argument expression.
7059
7060 +__T__+::
7061 Length expression C type.
7062
7063 +__E__+::
7064 Length expression.
7065
7066 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
7067 |
7068 Dynamically-sized array of integers in network byte order (big-endian),
7069 displayed in base 10.
7070
7071 The type of +__E__+ must be unsigned.
7072
7073 +__t__+::
7074 Array element C type.
7075
7076 +__n__+::
7077 Field name.
7078
7079 +__e__+::
7080 Argument expression.
7081
7082 +__T__+::
7083 Length expression C type.
7084
7085 +__E__+::
7086 Length expression.
7087
7088 |
7089 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7090
7091 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7092
7093 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7094
7095 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7096 |
7097 Dynamically-sized array of bits.
7098
7099 The type of +__e__+ must be an integer type. +__s__+ is the number
7100 of elements of such type in +__e__+, not the number of bits.
7101
7102 The type of +__E__+ must be unsigned.
7103
7104 +__t__+::
7105 Array element C type.
7106
7107 +__n__+::
7108 Field name.
7109
7110 +__e__+::
7111 Argument expression.
7112
7113 +__T__+::
7114 Length expression C type.
7115
7116 +__E__+::
7117 Length expression.
7118
7119 |
7120 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7121
7122 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7123
7124 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7125
7126 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7127 |
7128 Dynamically-sized array, displayed as text.
7129
7130 The string does not need to be null-terminated.
7131
7132 The type of +__E__+ must be unsigned.
7133
7134 The behaviour is undefined if +__e__+ is `NULL`.
7135
7136 +__t__+::
7137 Sequence element C type (always `char`).
7138
7139 +__n__+::
7140 Field name.
7141
7142 +__e__+::
7143 Argument expression.
7144
7145 +__T__+::
7146 Length expression C type.
7147
7148 +__E__+::
7149 Length expression.
7150 |====
7151
7152 Use the `_user` versions when the argument expression, `e`, is
7153 a user space address. In the cases of `ctf_user_integer*()` and
7154 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7155 be addressable.
7156
7157 The `_nowrite` versions omit themselves from the session trace, but are
7158 otherwise identical. This means the `_nowrite` fields won't be written
7159 in the recorded trace. Their primary purpose is to make some
7160 of the event context available to the
7161 <<enabling-disabling-events,event filters>> without having to
7162 commit the data to sub-buffers.
7163
7164
7165 [[glossary]]
7166 == Glossary
7167
7168 Terms related to LTTng and to tracing in general:
7169
7170 Babeltrace::
7171 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7172 the cmd:babeltrace command, some libraries, and Python bindings.
7173
7174 <<channel-buffering-schemes,buffering scheme>>::
7175 A layout of sub-buffers applied to a given channel.
7176
7177 <<channel,channel>>::
7178 An entity which is responsible for a set of ring buffers.
7179 +
7180 <<event,Event rules>> are always attached to a specific channel.
7181
7182 clock::
7183 A reference of time for a tracer.
7184
7185 <<lttng-consumerd,consumer daemon>>::
7186 A process which is responsible for consuming the full sub-buffers
7187 and write them to a file system or send them over the network.
7188
7189 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7190 mode in which the tracer _discards_ new event records when there's no
7191 sub-buffer space left to store them.
7192
7193 event::
7194 The consequence of the execution of an instrumentation
7195 point, like a tracepoint that you manually place in some source code,
7196 or a Linux kernel KProbe.
7197 +
7198 An event is said to _occur_ at a specific time. Different actions can
7199 be taken upon the occurrence of an event, like record the event's payload
7200 to a sub-buffer.
7201
7202 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7203 The mechanism by which event records of a given channel are lost
7204 (not recorded) when there is no sub-buffer space left to store them.
7205
7206 [[def-event-name]]event name::
7207 The name of an event, which is also the name of the event record.
7208 This is also called the _instrumentation point name_.
7209
7210 event record::
7211 A record, in a trace, of the payload of an event which occured.
7212
7213 <<event,event rule>>::
7214 Set of conditions which must be satisfied for one or more occuring
7215 events to be recorded.
7216
7217 `java.util.logging`::
7218 Java platform's
7219 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7220
7221 <<instrumenting,instrumentation>>::
7222 The use of LTTng probes to make a piece of software traceable.
7223
7224 instrumentation point::
7225 A point in the execution path of a piece of software that, when
7226 reached by this execution, can emit an event.
7227
7228 instrumentation point name::
7229 See _<<def-event-name,event name>>_.
7230
7231 log4j::
7232 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7233 developed by the Apache Software Foundation.
7234
7235 log level::
7236 Level of severity of a log statement or user space
7237 instrumentation point.
7238
7239 LTTng::
7240 The _Linux Trace Toolkit: next generation_ project.
7241
7242 <<lttng-cli,cmd:lttng>>::
7243 A command-line tool provided by the LTTng-tools project which you
7244 can use to send and receive control messages to and from a
7245 session daemon.
7246
7247 LTTng analyses::
7248 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7249 which is a set of analyzing programs that are used to obtain a
7250 higher level view of an LTTng trace.
7251
7252 cmd:lttng-consumerd::
7253 The name of the consumer daemon program.
7254
7255 cmd:lttng-crash::
7256 A utility provided by the LTTng-tools project which can convert
7257 ring buffer files (usually
7258 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7259 to trace files.
7260
7261 LTTng Documentation::
7262 This document.
7263
7264 <<lttng-live,LTTng live>>::
7265 A communication protocol between the relay daemon and live viewers
7266 which makes it possible to see events "live", as they are received by
7267 the relay daemon.
7268
7269 <<lttng-modules,LTTng-modules>>::
7270 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7271 which contains the Linux kernel modules to make the Linux kernel
7272 instrumentation points available for LTTng tracing.
7273
7274 cmd:lttng-relayd::
7275 The name of the relay daemon program.
7276
7277 cmd:lttng-sessiond::
7278 The name of the session daemon program.
7279
7280 LTTng-tools::
7281 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7282 contains the various programs and libraries used to
7283 <<controlling-tracing,control tracing>>.
7284
7285 <<lttng-ust,LTTng-UST>>::
7286 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7287 contains libraries to instrument user applications.
7288
7289 <<lttng-ust-agents,LTTng-UST Java agent>>::
7290 A Java package provided by the LTTng-UST project to allow the
7291 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7292 logging statements.
7293
7294 <<lttng-ust-agents,LTTng-UST Python agent>>::
7295 A Python package provided by the LTTng-UST project to allow the
7296 LTTng instrumentation of Python logging statements.
7297
7298 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7299 The event loss mode in which new event records overwrite older
7300 event records when there's no sub-buffer space left to store them.
7301
7302 <<channel-buffering-schemes,per-process buffering>>::
7303 A buffering scheme in which each instrumented process has its own
7304 sub-buffers for a given user space channel.
7305
7306 <<channel-buffering-schemes,per-user buffering>>::
7307 A buffering scheme in which all the processes of a Unix user share the
7308 same sub-buffer for a given user space channel.
7309
7310 <<lttng-relayd,relay daemon>>::
7311 A process which is responsible for receiving the trace data sent by
7312 a distant consumer daemon.
7313
7314 ring buffer::
7315 A set of sub-buffers.
7316
7317 <<lttng-sessiond,session daemon>>::
7318 A process which receives control commands from you and orchestrates
7319 the tracers and various LTTng daemons.
7320
7321 <<taking-a-snapshot,snapshot>>::
7322 A copy of the current data of all the sub-buffers of a given tracing
7323 session, saved as trace files.
7324
7325 sub-buffer::
7326 One part of an LTTng ring buffer which contains event records.
7327
7328 timestamp::
7329 The time information attached to an event when it is emitted.
7330
7331 trace (_noun_)::
7332 A set of files which are the concatenations of one or more
7333 flushed sub-buffers.
7334
7335 trace (_verb_)::
7336 The action of recording the events emitted by an application
7337 or by a system, or to initiate such recording by controlling
7338 a tracer.
7339
7340 Trace Compass::
7341 The http://tracecompass.org[Trace Compass] project and application.
7342
7343 tracepoint::
7344 An instrumentation point using the tracepoint mechanism of the Linux
7345 kernel or of LTTng-UST.
7346
7347 tracepoint definition::
7348 The definition of a single tracepoint.
7349
7350 tracepoint name::
7351 The name of a tracepoint.
7352
7353 tracepoint provider::
7354 A set of functions providing tracepoints to an instrumented user
7355 application.
7356 +
7357 Not to be confused with a _tracepoint provider package_: many tracepoint
7358 providers can exist within a tracepoint provider package.
7359
7360 tracepoint provider package::
7361 One or more tracepoint providers compiled as an object file or as
7362 a shared library.
7363
7364 tracer::
7365 A software which records emitted events.
7366
7367 <<domain,tracing domain>>::
7368 A namespace for event sources.
7369
7370 <<tracing-group,tracing group>>::
7371 The Unix group in which a Unix user can be to be allowed to trace the
7372 Linux kernel.
7373
7374 <<tracing-session,tracing session>>::
7375 A stateful dialogue between you and a <<lttng-sessiond,session
7376 daemon>>.
7377
7378 user application::
7379 An application running in user space, as opposed to a Linux kernel
7380 module, for example.
This page took 0.167372 seconds and 3 git commands to generate.