Version 0.7.17
[userspace-rcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
52 * - An index of bucket nodes is kept. These bucket nodes are the hash
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
64 * - Split-counters are used to keep track of the number of
65 * nodes within the hash table for automatic resize triggering.
66 * - Resize operation initiated by long chain detection is executed by a
67 * call_rcu thread, which keeps lock-freedom of add and remove.
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
89 * linked-list (the start node is never removed) and that it does not
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
114 *
115 * Ordering Guarantees:
116 *
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
120 * cds_lfht_add_unique (failure).
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
131 *
132 * We define "write" operations as any of cds_lfht_add,
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
206 *
207 * Bucket node tables:
208 *
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
220 * When growing/shrinking, we only focus on the last bucket node table
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
226 *
227 * A bit of ascii art explanation:
228 *
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
231 *
232 * This shows the nodes for a small table ordered by reversed bits:
233 *
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
245 * reversed-bit order.
246 *
247 * order bits reverse
248 * 0 0 000 000
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
251 * | | | 3 011 110 | <- |
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
256 */
257
258 #define _LGPL_SOURCE
259 #define _GNU_SOURCE
260 #include <stdlib.h>
261 #include <errno.h>
262 #include <assert.h>
263 #include <stdio.h>
264 #include <stdint.h>
265 #include <string.h>
266 #include <sched.h>
267
268 #include "config.h"
269 #include <urcu.h>
270 #include <urcu-call-rcu.h>
271 #include <urcu-flavor.h>
272 #include <urcu/arch.h>
273 #include <urcu/uatomic.h>
274 #include <urcu/compiler.h>
275 #include <urcu/rculfhash.h>
276 #include <rculfhash-internal.h>
277 #include <stdio.h>
278 #include <pthread.h>
279
280 /*
281 * Split-counters lazily update the global counter each 1024
282 * addition/removal. It automatically keeps track of resize required.
283 * We use the bucket length as indicator for need to expand for small
284 * tables and machines lacking per-cpu data suppport.
285 */
286 #define COUNT_COMMIT_ORDER 10
287 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
288 #define CHAIN_LEN_TARGET 1
289 #define CHAIN_LEN_RESIZE_THRESHOLD 3
290
291 /*
292 * Define the minimum table size.
293 */
294 #define MIN_TABLE_ORDER 0
295 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
296
297 /*
298 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
299 */
300 #define MIN_PARTITION_PER_THREAD_ORDER 12
301 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
302
303 /*
304 * The removed flag needs to be updated atomically with the pointer.
305 * It indicates that no node must attach to the node scheduled for
306 * removal, and that node garbage collection must be performed.
307 * The bucket flag does not require to be updated atomically with the
308 * pointer, but it is added as a pointer low bit flag to save space.
309 * The "removal owner" flag is used to detect which of the "del"
310 * operation that has set the "removed flag" gets to return the removed
311 * node to its caller. Note that the replace operation does not need to
312 * iteract with the "removal owner" flag, because it validates that
313 * the "removed" flag is not set before performing its cmpxchg.
314 */
315 #define REMOVED_FLAG (1UL << 0)
316 #define BUCKET_FLAG (1UL << 1)
317 #define REMOVAL_OWNER_FLAG (1UL << 2)
318 #define FLAGS_MASK ((1UL << 3) - 1)
319
320 /* Value of the end pointer. Should not interact with flags. */
321 #define END_VALUE NULL
322
323 /*
324 * ht_items_count: Split-counters counting the number of node addition
325 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
326 * is set at hash table creation.
327 *
328 * These are free-running counters, never reset to zero. They count the
329 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
330 * operations to update the global counter. We choose a power-of-2 value
331 * for the trigger to deal with 32 or 64-bit overflow of the counter.
332 */
333 struct ht_items_count {
334 unsigned long add, del;
335 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
336
337 /*
338 * rcu_resize_work: Contains arguments passed to RCU worker thread
339 * responsible for performing lazy resize.
340 */
341 struct rcu_resize_work {
342 struct rcu_head head;
343 struct cds_lfht *ht;
344 };
345
346 /*
347 * partition_resize_work: Contains arguments passed to worker threads
348 * executing the hash table resize on partitions of the hash table
349 * assigned to each processor's worker thread.
350 */
351 struct partition_resize_work {
352 pthread_t thread_id;
353 struct cds_lfht *ht;
354 unsigned long i, start, len;
355 void (*fct)(struct cds_lfht *ht, unsigned long i,
356 unsigned long start, unsigned long len);
357 };
358
359 /*
360 * Algorithm to reverse bits in a word by lookup table, extended to
361 * 64-bit words.
362 * Source:
363 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
364 * Originally from Public Domain.
365 */
366
367 static const uint8_t BitReverseTable256[256] =
368 {
369 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
370 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
371 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
372 R6(0), R6(2), R6(1), R6(3)
373 };
374 #undef R2
375 #undef R4
376 #undef R6
377
378 static
379 uint8_t bit_reverse_u8(uint8_t v)
380 {
381 return BitReverseTable256[v];
382 }
383
384 static __attribute__((unused))
385 uint32_t bit_reverse_u32(uint32_t v)
386 {
387 return ((uint32_t) bit_reverse_u8(v) << 24) |
388 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
389 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
390 ((uint32_t) bit_reverse_u8(v >> 24));
391 }
392
393 static __attribute__((unused))
394 uint64_t bit_reverse_u64(uint64_t v)
395 {
396 return ((uint64_t) bit_reverse_u8(v) << 56) |
397 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
398 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
399 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
400 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
401 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
402 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
403 ((uint64_t) bit_reverse_u8(v >> 56));
404 }
405
406 static
407 unsigned long bit_reverse_ulong(unsigned long v)
408 {
409 #if (CAA_BITS_PER_LONG == 32)
410 return bit_reverse_u32(v);
411 #else
412 return bit_reverse_u64(v);
413 #endif
414 }
415
416 /*
417 * fls: returns the position of the most significant bit.
418 * Returns 0 if no bit is set, else returns the position of the most
419 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
420 */
421 #if defined(__i386) || defined(__x86_64)
422 static inline
423 unsigned int fls_u32(uint32_t x)
424 {
425 int r;
426
427 asm("bsrl %1,%0\n\t"
428 "jnz 1f\n\t"
429 "movl $-1,%0\n\t"
430 "1:\n\t"
431 : "=r" (r) : "rm" (x));
432 return r + 1;
433 }
434 #define HAS_FLS_U32
435 #endif
436
437 #if defined(__x86_64)
438 static inline
439 unsigned int fls_u64(uint64_t x)
440 {
441 long r;
442
443 asm("bsrq %1,%0\n\t"
444 "jnz 1f\n\t"
445 "movq $-1,%0\n\t"
446 "1:\n\t"
447 : "=r" (r) : "rm" (x));
448 return r + 1;
449 }
450 #define HAS_FLS_U64
451 #endif
452
453 #ifndef HAS_FLS_U64
454 static __attribute__((unused))
455 unsigned int fls_u64(uint64_t x)
456 {
457 unsigned int r = 64;
458
459 if (!x)
460 return 0;
461
462 if (!(x & 0xFFFFFFFF00000000ULL)) {
463 x <<= 32;
464 r -= 32;
465 }
466 if (!(x & 0xFFFF000000000000ULL)) {
467 x <<= 16;
468 r -= 16;
469 }
470 if (!(x & 0xFF00000000000000ULL)) {
471 x <<= 8;
472 r -= 8;
473 }
474 if (!(x & 0xF000000000000000ULL)) {
475 x <<= 4;
476 r -= 4;
477 }
478 if (!(x & 0xC000000000000000ULL)) {
479 x <<= 2;
480 r -= 2;
481 }
482 if (!(x & 0x8000000000000000ULL)) {
483 x <<= 1;
484 r -= 1;
485 }
486 return r;
487 }
488 #endif
489
490 #ifndef HAS_FLS_U32
491 static __attribute__((unused))
492 unsigned int fls_u32(uint32_t x)
493 {
494 unsigned int r = 32;
495
496 if (!x)
497 return 0;
498 if (!(x & 0xFFFF0000U)) {
499 x <<= 16;
500 r -= 16;
501 }
502 if (!(x & 0xFF000000U)) {
503 x <<= 8;
504 r -= 8;
505 }
506 if (!(x & 0xF0000000U)) {
507 x <<= 4;
508 r -= 4;
509 }
510 if (!(x & 0xC0000000U)) {
511 x <<= 2;
512 r -= 2;
513 }
514 if (!(x & 0x80000000U)) {
515 x <<= 1;
516 r -= 1;
517 }
518 return r;
519 }
520 #endif
521
522 unsigned int cds_lfht_fls_ulong(unsigned long x)
523 {
524 #if (CAA_BITS_PER_LONG == 32)
525 return fls_u32(x);
526 #else
527 return fls_u64(x);
528 #endif
529 }
530
531 /*
532 * Return the minimum order for which x <= (1UL << order).
533 * Return -1 if x is 0.
534 */
535 int cds_lfht_get_count_order_u32(uint32_t x)
536 {
537 if (!x)
538 return -1;
539
540 return fls_u32(x - 1);
541 }
542
543 /*
544 * Return the minimum order for which x <= (1UL << order).
545 * Return -1 if x is 0.
546 */
547 int cds_lfht_get_count_order_ulong(unsigned long x)
548 {
549 if (!x)
550 return -1;
551
552 return cds_lfht_fls_ulong(x - 1);
553 }
554
555 static
556 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
557
558 static
559 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
560 unsigned long count);
561
562 static long nr_cpus_mask = -1;
563 static long split_count_mask = -1;
564 static int split_count_order = -1;
565
566 #if defined(HAVE_SYSCONF)
567 static void ht_init_nr_cpus_mask(void)
568 {
569 long maxcpus;
570
571 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
572 if (maxcpus <= 0) {
573 nr_cpus_mask = -2;
574 return;
575 }
576 /*
577 * round up number of CPUs to next power of two, so we
578 * can use & for modulo.
579 */
580 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
581 nr_cpus_mask = maxcpus - 1;
582 }
583 #else /* #if defined(HAVE_SYSCONF) */
584 static void ht_init_nr_cpus_mask(void)
585 {
586 nr_cpus_mask = -2;
587 }
588 #endif /* #else #if defined(HAVE_SYSCONF) */
589
590 static
591 void alloc_split_items_count(struct cds_lfht *ht)
592 {
593 struct ht_items_count *count;
594
595 if (nr_cpus_mask == -1) {
596 ht_init_nr_cpus_mask();
597 if (nr_cpus_mask < 0)
598 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
599 else
600 split_count_mask = nr_cpus_mask;
601 split_count_order =
602 cds_lfht_get_count_order_ulong(split_count_mask + 1);
603 }
604
605 assert(split_count_mask >= 0);
606
607 if (ht->flags & CDS_LFHT_ACCOUNTING) {
608 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
609 assert(ht->split_count);
610 } else {
611 ht->split_count = NULL;
612 }
613 }
614
615 static
616 void free_split_items_count(struct cds_lfht *ht)
617 {
618 poison_free(ht->split_count);
619 }
620
621 #if defined(HAVE_SCHED_GETCPU)
622 static
623 int ht_get_split_count_index(unsigned long hash)
624 {
625 int cpu;
626
627 assert(split_count_mask >= 0);
628 cpu = sched_getcpu();
629 if (caa_unlikely(cpu < 0))
630 return hash & split_count_mask;
631 else
632 return cpu & split_count_mask;
633 }
634 #else /* #if defined(HAVE_SCHED_GETCPU) */
635 static
636 int ht_get_split_count_index(unsigned long hash)
637 {
638 return hash & split_count_mask;
639 }
640 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
641
642 static
643 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
644 {
645 unsigned long split_count;
646 int index;
647 long count;
648
649 if (caa_unlikely(!ht->split_count))
650 return;
651 index = ht_get_split_count_index(hash);
652 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
653 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
654 return;
655 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
656
657 dbg_printf("add split count %lu\n", split_count);
658 count = uatomic_add_return(&ht->count,
659 1UL << COUNT_COMMIT_ORDER);
660 if (caa_likely(count & (count - 1)))
661 return;
662 /* Only if global count is power of 2 */
663
664 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
665 return;
666 dbg_printf("add set global %ld\n", count);
667 cds_lfht_resize_lazy_count(ht, size,
668 count >> (CHAIN_LEN_TARGET - 1));
669 }
670
671 static
672 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
673 {
674 unsigned long split_count;
675 int index;
676 long count;
677
678 if (caa_unlikely(!ht->split_count))
679 return;
680 index = ht_get_split_count_index(hash);
681 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
682 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
683 return;
684 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
685
686 dbg_printf("del split count %lu\n", split_count);
687 count = uatomic_add_return(&ht->count,
688 -(1UL << COUNT_COMMIT_ORDER));
689 if (caa_likely(count & (count - 1)))
690 return;
691 /* Only if global count is power of 2 */
692
693 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
694 return;
695 dbg_printf("del set global %ld\n", count);
696 /*
697 * Don't shrink table if the number of nodes is below a
698 * certain threshold.
699 */
700 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
701 return;
702 cds_lfht_resize_lazy_count(ht, size,
703 count >> (CHAIN_LEN_TARGET - 1));
704 }
705
706 static
707 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
708 {
709 unsigned long count;
710
711 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
712 return;
713 count = uatomic_read(&ht->count);
714 /*
715 * Use bucket-local length for small table expand and for
716 * environments lacking per-cpu data support.
717 */
718 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
719 return;
720 if (chain_len > 100)
721 dbg_printf("WARNING: large chain length: %u.\n",
722 chain_len);
723 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
724 int growth;
725
726 /*
727 * Ideal growth calculated based on chain length.
728 */
729 growth = cds_lfht_get_count_order_u32(chain_len
730 - (CHAIN_LEN_TARGET - 1));
731 if ((ht->flags & CDS_LFHT_ACCOUNTING)
732 && (size << growth)
733 >= (1UL << (COUNT_COMMIT_ORDER
734 + split_count_order))) {
735 /*
736 * If ideal growth expands the hash table size
737 * beyond the "small hash table" sizes, use the
738 * maximum small hash table size to attempt
739 * expanding the hash table. This only applies
740 * when node accounting is available, otherwise
741 * the chain length is used to expand the hash
742 * table in every case.
743 */
744 growth = COUNT_COMMIT_ORDER + split_count_order
745 - cds_lfht_get_count_order_ulong(size);
746 if (growth <= 0)
747 return;
748 }
749 cds_lfht_resize_lazy_grow(ht, size, growth);
750 }
751 }
752
753 static
754 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
755 {
756 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
757 }
758
759 static
760 int is_removed(struct cds_lfht_node *node)
761 {
762 return ((unsigned long) node) & REMOVED_FLAG;
763 }
764
765 static
766 int is_bucket(struct cds_lfht_node *node)
767 {
768 return ((unsigned long) node) & BUCKET_FLAG;
769 }
770
771 static
772 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
773 {
774 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
775 }
776
777 static
778 int is_removal_owner(struct cds_lfht_node *node)
779 {
780 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
781 }
782
783 static
784 struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
785 {
786 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
787 }
788
789 static
790 struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
791 {
792 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
793 }
794
795 static
796 struct cds_lfht_node *get_end(void)
797 {
798 return (struct cds_lfht_node *) END_VALUE;
799 }
800
801 static
802 int is_end(struct cds_lfht_node *node)
803 {
804 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
805 }
806
807 static
808 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
809 unsigned long v)
810 {
811 unsigned long old1, old2;
812
813 old1 = uatomic_read(ptr);
814 do {
815 old2 = old1;
816 if (old2 >= v)
817 return old2;
818 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
819 return old2;
820 }
821
822 static
823 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
824 {
825 return ht->mm->alloc_bucket_table(ht, order);
826 }
827
828 /*
829 * cds_lfht_free_bucket_table() should be called with decreasing order.
830 * When cds_lfht_free_bucket_table(0) is called, it means the whole
831 * lfht is destroyed.
832 */
833 static
834 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
835 {
836 return ht->mm->free_bucket_table(ht, order);
837 }
838
839 static inline
840 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
841 {
842 return ht->bucket_at(ht, index);
843 }
844
845 static inline
846 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
847 unsigned long hash)
848 {
849 assert(size > 0);
850 return bucket_at(ht, hash & (size - 1));
851 }
852
853 /*
854 * Remove all logically deleted nodes from a bucket up to a certain node key.
855 */
856 static
857 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
858 {
859 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
860
861 assert(!is_bucket(bucket));
862 assert(!is_removed(bucket));
863 assert(!is_removal_owner(bucket));
864 assert(!is_bucket(node));
865 assert(!is_removed(node));
866 assert(!is_removal_owner(node));
867 for (;;) {
868 iter_prev = bucket;
869 /* We can always skip the bucket node initially */
870 iter = rcu_dereference(iter_prev->next);
871 assert(!is_removed(iter));
872 assert(!is_removal_owner(iter));
873 assert(iter_prev->reverse_hash <= node->reverse_hash);
874 /*
875 * We should never be called with bucket (start of chain)
876 * and logically removed node (end of path compression
877 * marker) being the actual same node. This would be a
878 * bug in the algorithm implementation.
879 */
880 assert(bucket != node);
881 for (;;) {
882 if (caa_unlikely(is_end(iter)))
883 return;
884 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
885 return;
886 next = rcu_dereference(clear_flag(iter)->next);
887 if (caa_likely(is_removed(next)))
888 break;
889 iter_prev = clear_flag(iter);
890 iter = next;
891 }
892 assert(!is_removed(iter));
893 assert(!is_removal_owner(iter));
894 if (is_bucket(iter))
895 new_next = flag_bucket(clear_flag(next));
896 else
897 new_next = clear_flag(next);
898 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
899 }
900 }
901
902 static
903 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
904 struct cds_lfht_node *old_node,
905 struct cds_lfht_node *old_next,
906 struct cds_lfht_node *new_node)
907 {
908 struct cds_lfht_node *bucket, *ret_next;
909
910 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
911 return -ENOENT;
912
913 assert(!is_removed(old_node));
914 assert(!is_removal_owner(old_node));
915 assert(!is_bucket(old_node));
916 assert(!is_removed(new_node));
917 assert(!is_removal_owner(new_node));
918 assert(!is_bucket(new_node));
919 assert(new_node != old_node);
920 for (;;) {
921 /* Insert after node to be replaced */
922 if (is_removed(old_next)) {
923 /*
924 * Too late, the old node has been removed under us
925 * between lookup and replace. Fail.
926 */
927 return -ENOENT;
928 }
929 assert(old_next == clear_flag(old_next));
930 assert(new_node != old_next);
931 /*
932 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
933 * flag. It is either set atomically at the same time
934 * (replace) or after (del).
935 */
936 assert(!is_removal_owner(old_next));
937 new_node->next = old_next;
938 /*
939 * Here is the whole trick for lock-free replace: we add
940 * the replacement node _after_ the node we want to
941 * replace by atomically setting its next pointer at the
942 * same time we set its removal flag. Given that
943 * the lookups/get next use an iterator aware of the
944 * next pointer, they will either skip the old node due
945 * to the removal flag and see the new node, or use
946 * the old node, but will not see the new one.
947 * This is a replacement of a node with another node
948 * that has the same value: we are therefore not
949 * removing a value from the hash table. We set both the
950 * REMOVED and REMOVAL_OWNER flags atomically so we own
951 * the node after successful cmpxchg.
952 */
953 ret_next = uatomic_cmpxchg(&old_node->next,
954 old_next, flag_removed_or_removal_owner(new_node));
955 if (ret_next == old_next)
956 break; /* We performed the replacement. */
957 old_next = ret_next;
958 }
959
960 /*
961 * Ensure that the old node is not visible to readers anymore:
962 * lookup for the node, and remove it (along with any other
963 * logically removed node) if found.
964 */
965 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
966 _cds_lfht_gc_bucket(bucket, new_node);
967
968 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
969 return 0;
970 }
971
972 /*
973 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
974 * mode. A NULL unique_ret allows creation of duplicate keys.
975 */
976 static
977 void _cds_lfht_add(struct cds_lfht *ht,
978 unsigned long hash,
979 cds_lfht_match_fct match,
980 const void *key,
981 unsigned long size,
982 struct cds_lfht_node *node,
983 struct cds_lfht_iter *unique_ret,
984 int bucket_flag)
985 {
986 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
987 *return_node;
988 struct cds_lfht_node *bucket;
989
990 assert(!is_bucket(node));
991 assert(!is_removed(node));
992 assert(!is_removal_owner(node));
993 bucket = lookup_bucket(ht, size, hash);
994 for (;;) {
995 uint32_t chain_len = 0;
996
997 /*
998 * iter_prev points to the non-removed node prior to the
999 * insert location.
1000 */
1001 iter_prev = bucket;
1002 /* We can always skip the bucket node initially */
1003 iter = rcu_dereference(iter_prev->next);
1004 assert(iter_prev->reverse_hash <= node->reverse_hash);
1005 for (;;) {
1006 if (caa_unlikely(is_end(iter)))
1007 goto insert;
1008 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
1009 goto insert;
1010
1011 /* bucket node is the first node of the identical-hash-value chain */
1012 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
1013 goto insert;
1014
1015 next = rcu_dereference(clear_flag(iter)->next);
1016 if (caa_unlikely(is_removed(next)))
1017 goto gc_node;
1018
1019 /* uniquely add */
1020 if (unique_ret
1021 && !is_bucket(next)
1022 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
1023 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
1024
1025 /*
1026 * uniquely adding inserts the node as the first
1027 * node of the identical-hash-value node chain.
1028 *
1029 * This semantic ensures no duplicated keys
1030 * should ever be observable in the table
1031 * (including traversing the table node by
1032 * node by forward iterations)
1033 */
1034 cds_lfht_next_duplicate(ht, match, key, &d_iter);
1035 if (!d_iter.node)
1036 goto insert;
1037
1038 *unique_ret = d_iter;
1039 return;
1040 }
1041
1042 /* Only account for identical reverse hash once */
1043 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1044 && !is_bucket(next))
1045 check_resize(ht, size, ++chain_len);
1046 iter_prev = clear_flag(iter);
1047 iter = next;
1048 }
1049
1050 insert:
1051 assert(node != clear_flag(iter));
1052 assert(!is_removed(iter_prev));
1053 assert(!is_removal_owner(iter_prev));
1054 assert(!is_removed(iter));
1055 assert(!is_removal_owner(iter));
1056 assert(iter_prev != node);
1057 if (!bucket_flag)
1058 node->next = clear_flag(iter);
1059 else
1060 node->next = flag_bucket(clear_flag(iter));
1061 if (is_bucket(iter))
1062 new_node = flag_bucket(node);
1063 else
1064 new_node = node;
1065 if (uatomic_cmpxchg(&iter_prev->next, iter,
1066 new_node) != iter) {
1067 continue; /* retry */
1068 } else {
1069 return_node = node;
1070 goto end;
1071 }
1072
1073 gc_node:
1074 assert(!is_removed(iter));
1075 assert(!is_removal_owner(iter));
1076 if (is_bucket(iter))
1077 new_next = flag_bucket(clear_flag(next));
1078 else
1079 new_next = clear_flag(next);
1080 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1081 /* retry */
1082 }
1083 end:
1084 if (unique_ret) {
1085 unique_ret->node = return_node;
1086 /* unique_ret->next left unset, never used. */
1087 }
1088 }
1089
1090 static
1091 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1092 struct cds_lfht_node *node)
1093 {
1094 struct cds_lfht_node *bucket, *next;
1095
1096 if (!node) /* Return -ENOENT if asked to delete NULL node */
1097 return -ENOENT;
1098
1099 /* logically delete the node */
1100 assert(!is_bucket(node));
1101 assert(!is_removed(node));
1102 assert(!is_removal_owner(node));
1103
1104 /*
1105 * We are first checking if the node had previously been
1106 * logically removed (this check is not atomic with setting the
1107 * logical removal flag). Return -ENOENT if the node had
1108 * previously been removed.
1109 */
1110 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
1111 if (caa_unlikely(is_removed(next)))
1112 return -ENOENT;
1113 assert(!is_bucket(next));
1114 /*
1115 * The del operation semantic guarantees a full memory barrier
1116 * before the uatomic_or atomic commit of the deletion flag.
1117 */
1118 cmm_smp_mb__before_uatomic_or();
1119 /*
1120 * We set the REMOVED_FLAG unconditionally. Note that there may
1121 * be more than one concurrent thread setting this flag.
1122 * Knowing which wins the race will be known after the garbage
1123 * collection phase, stay tuned!
1124 */
1125 uatomic_or(&node->next, REMOVED_FLAG);
1126 /* We performed the (logical) deletion. */
1127
1128 /*
1129 * Ensure that the node is not visible to readers anymore: lookup for
1130 * the node, and remove it (along with any other logically removed node)
1131 * if found.
1132 */
1133 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1134 _cds_lfht_gc_bucket(bucket, node);
1135
1136 assert(is_removed(CMM_LOAD_SHARED(node->next)));
1137 /*
1138 * Last phase: atomically exchange node->next with a version
1139 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1140 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1141 * the node and win the removal race.
1142 * It is interesting to note that all "add" paths are forbidden
1143 * to change the next pointer starting from the point where the
1144 * REMOVED_FLAG is set, so here using a read, followed by a
1145 * xchg() suffice to guarantee that the xchg() will ever only
1146 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1147 * was already set).
1148 */
1149 if (!is_removal_owner(uatomic_xchg(&node->next,
1150 flag_removal_owner(node->next))))
1151 return 0;
1152 else
1153 return -ENOENT;
1154 }
1155
1156 static
1157 void *partition_resize_thread(void *arg)
1158 {
1159 struct partition_resize_work *work = arg;
1160
1161 work->ht->flavor->register_thread();
1162 work->fct(work->ht, work->i, work->start, work->len);
1163 work->ht->flavor->unregister_thread();
1164 return NULL;
1165 }
1166
1167 static
1168 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1169 unsigned long len,
1170 void (*fct)(struct cds_lfht *ht, unsigned long i,
1171 unsigned long start, unsigned long len))
1172 {
1173 unsigned long partition_len, start = 0;
1174 struct partition_resize_work *work;
1175 int thread, ret;
1176 unsigned long nr_threads;
1177
1178 assert(nr_cpus_mask != -1);
1179 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD)
1180 goto fallback;
1181
1182 /*
1183 * Note: nr_cpus_mask + 1 is always power of 2.
1184 * We spawn just the number of threads we need to satisfy the minimum
1185 * partition size, up to the number of CPUs in the system.
1186 */
1187 if (nr_cpus_mask > 0) {
1188 nr_threads = min(nr_cpus_mask + 1,
1189 len >> MIN_PARTITION_PER_THREAD_ORDER);
1190 } else {
1191 nr_threads = 1;
1192 }
1193 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
1194 work = calloc(nr_threads, sizeof(*work));
1195 if (!work) {
1196 dbg_printf("error allocating for resize, single-threading\n");
1197 goto fallback;
1198 }
1199 for (thread = 0; thread < nr_threads; thread++) {
1200 work[thread].ht = ht;
1201 work[thread].i = i;
1202 work[thread].len = partition_len;
1203 work[thread].start = thread * partition_len;
1204 work[thread].fct = fct;
1205 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1206 partition_resize_thread, &work[thread]);
1207 if (ret == EAGAIN) {
1208 /*
1209 * Out of resources: wait and join the threads
1210 * we've created, then handle leftovers.
1211 */
1212 dbg_printf("error spawning for resize, single-threading\n");
1213 start = work[thread].start;
1214 len -= start;
1215 nr_threads = thread;
1216 break;
1217 }
1218 assert(!ret);
1219 }
1220 for (thread = 0; thread < nr_threads; thread++) {
1221 ret = pthread_join(work[thread].thread_id, NULL);
1222 assert(!ret);
1223 }
1224 free(work);
1225
1226 /*
1227 * A pthread_create failure above will either lead in us having
1228 * no threads to join or starting at a non-zero offset,
1229 * fallback to single thread processing of leftovers.
1230 */
1231 if (start == 0 && nr_threads > 0)
1232 return;
1233 fallback:
1234 ht->flavor->thread_online();
1235 fct(ht, i, start, len);
1236 ht->flavor->thread_offline();
1237 }
1238
1239 /*
1240 * Holding RCU read lock to protect _cds_lfht_add against memory
1241 * reclaim that could be performed by other call_rcu worker threads (ABA
1242 * problem).
1243 *
1244 * When we reach a certain length, we can split this population phase over
1245 * many worker threads, based on the number of CPUs available in the system.
1246 * This should therefore take care of not having the expand lagging behind too
1247 * many concurrent insertion threads by using the scheduler's ability to
1248 * schedule bucket node population fairly with insertions.
1249 */
1250 static
1251 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1252 unsigned long start, unsigned long len)
1253 {
1254 unsigned long j, size = 1UL << (i - 1);
1255
1256 assert(i > MIN_TABLE_ORDER);
1257 ht->flavor->read_lock();
1258 for (j = size + start; j < size + start + len; j++) {
1259 struct cds_lfht_node *new_node = bucket_at(ht, j);
1260
1261 assert(j >= size && j < (size << 1));
1262 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1263 i, j, j);
1264 new_node->reverse_hash = bit_reverse_ulong(j);
1265 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
1266 }
1267 ht->flavor->read_unlock();
1268 }
1269
1270 static
1271 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1272 unsigned long len)
1273 {
1274 partition_resize_helper(ht, i, len, init_table_populate_partition);
1275 }
1276
1277 static
1278 void init_table(struct cds_lfht *ht,
1279 unsigned long first_order, unsigned long last_order)
1280 {
1281 unsigned long i;
1282
1283 dbg_printf("init table: first_order %lu last_order %lu\n",
1284 first_order, last_order);
1285 assert(first_order > MIN_TABLE_ORDER);
1286 for (i = first_order; i <= last_order; i++) {
1287 unsigned long len;
1288
1289 len = 1UL << (i - 1);
1290 dbg_printf("init order %lu len: %lu\n", i, len);
1291
1292 /* Stop expand if the resize target changes under us */
1293 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1294 break;
1295
1296 cds_lfht_alloc_bucket_table(ht, i);
1297
1298 /*
1299 * Set all bucket nodes reverse hash values for a level and
1300 * link all bucket nodes into the table.
1301 */
1302 init_table_populate(ht, i, len);
1303
1304 /*
1305 * Update table size.
1306 */
1307 cmm_smp_wmb(); /* populate data before RCU size */
1308 CMM_STORE_SHARED(ht->size, 1UL << i);
1309
1310 dbg_printf("init new size: %lu\n", 1UL << i);
1311 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1312 break;
1313 }
1314 }
1315
1316 /*
1317 * Holding RCU read lock to protect _cds_lfht_remove against memory
1318 * reclaim that could be performed by other call_rcu worker threads (ABA
1319 * problem).
1320 * For a single level, we logically remove and garbage collect each node.
1321 *
1322 * As a design choice, we perform logical removal and garbage collection on a
1323 * node-per-node basis to simplify this algorithm. We also assume keeping good
1324 * cache locality of the operation would overweight possible performance gain
1325 * that could be achieved by batching garbage collection for multiple levels.
1326 * However, this would have to be justified by benchmarks.
1327 *
1328 * Concurrent removal and add operations are helping us perform garbage
1329 * collection of logically removed nodes. We guarantee that all logically
1330 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1331 * invoked to free a hole level of bucket nodes (after a grace period).
1332 *
1333 * Logical removal and garbage collection can therefore be done in batch
1334 * or on a node-per-node basis, as long as the guarantee above holds.
1335 *
1336 * When we reach a certain length, we can split this removal over many worker
1337 * threads, based on the number of CPUs available in the system. This should
1338 * take care of not letting resize process lag behind too many concurrent
1339 * updater threads actively inserting into the hash table.
1340 */
1341 static
1342 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1343 unsigned long start, unsigned long len)
1344 {
1345 unsigned long j, size = 1UL << (i - 1);
1346
1347 assert(i > MIN_TABLE_ORDER);
1348 ht->flavor->read_lock();
1349 for (j = size + start; j < size + start + len; j++) {
1350 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1351 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
1352
1353 assert(j >= size && j < (size << 1));
1354 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1355 i, j, j);
1356 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1357 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1358 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
1359 }
1360 ht->flavor->read_unlock();
1361 }
1362
1363 static
1364 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1365 {
1366 partition_resize_helper(ht, i, len, remove_table_partition);
1367 }
1368
1369 /*
1370 * fini_table() is never called for first_order == 0, which is why
1371 * free_by_rcu_order == 0 can be used as criterion to know if free must
1372 * be called.
1373 */
1374 static
1375 void fini_table(struct cds_lfht *ht,
1376 unsigned long first_order, unsigned long last_order)
1377 {
1378 long i;
1379 unsigned long free_by_rcu_order = 0;
1380
1381 dbg_printf("fini table: first_order %lu last_order %lu\n",
1382 first_order, last_order);
1383 assert(first_order > MIN_TABLE_ORDER);
1384 for (i = last_order; i >= first_order; i--) {
1385 unsigned long len;
1386
1387 len = 1UL << (i - 1);
1388 dbg_printf("fini order %ld len: %lu\n", i, len);
1389
1390 /* Stop shrink if the resize target changes under us */
1391 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1392 break;
1393
1394 cmm_smp_wmb(); /* populate data before RCU size */
1395 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1396
1397 /*
1398 * We need to wait for all add operations to reach Q.S. (and
1399 * thus use the new table for lookups) before we can start
1400 * releasing the old bucket nodes. Otherwise their lookup will
1401 * return a logically removed node as insert position.
1402 */
1403 ht->flavor->update_synchronize_rcu();
1404 if (free_by_rcu_order)
1405 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1406
1407 /*
1408 * Set "removed" flag in bucket nodes about to be removed.
1409 * Unlink all now-logically-removed bucket node pointers.
1410 * Concurrent add/remove operation are helping us doing
1411 * the gc.
1412 */
1413 remove_table(ht, i, len);
1414
1415 free_by_rcu_order = i;
1416
1417 dbg_printf("fini new size: %lu\n", 1UL << i);
1418 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1419 break;
1420 }
1421
1422 if (free_by_rcu_order) {
1423 ht->flavor->update_synchronize_rcu();
1424 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1425 }
1426 }
1427
1428 static
1429 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1430 {
1431 struct cds_lfht_node *prev, *node;
1432 unsigned long order, len, i;
1433
1434 cds_lfht_alloc_bucket_table(ht, 0);
1435
1436 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1437 node = bucket_at(ht, 0);
1438 node->next = flag_bucket(get_end());
1439 node->reverse_hash = 0;
1440
1441 for (order = 1; order < cds_lfht_get_count_order_ulong(size) + 1; order++) {
1442 len = 1UL << (order - 1);
1443 cds_lfht_alloc_bucket_table(ht, order);
1444
1445 for (i = 0; i < len; i++) {
1446 /*
1447 * Now, we are trying to init the node with the
1448 * hash=(len+i) (which is also a bucket with the
1449 * index=(len+i)) and insert it into the hash table,
1450 * so this node has to be inserted after the bucket
1451 * with the index=(len+i)&(len-1)=i. And because there
1452 * is no other non-bucket node nor bucket node with
1453 * larger index/hash inserted, so the bucket node
1454 * being inserted should be inserted directly linked
1455 * after the bucket node with index=i.
1456 */
1457 prev = bucket_at(ht, i);
1458 node = bucket_at(ht, len + i);
1459
1460 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1461 order, len + i, len + i);
1462 node->reverse_hash = bit_reverse_ulong(len + i);
1463
1464 /* insert after prev */
1465 assert(is_bucket(prev->next));
1466 node->next = prev->next;
1467 prev->next = flag_bucket(node);
1468 }
1469 }
1470 }
1471
1472 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1473 unsigned long min_nr_alloc_buckets,
1474 unsigned long max_nr_buckets,
1475 int flags,
1476 const struct cds_lfht_mm_type *mm,
1477 const struct rcu_flavor_struct *flavor,
1478 pthread_attr_t *attr)
1479 {
1480 struct cds_lfht *ht;
1481 unsigned long order;
1482
1483 /* min_nr_alloc_buckets must be power of two */
1484 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1485 return NULL;
1486
1487 /* init_size must be power of two */
1488 if (!init_size || (init_size & (init_size - 1)))
1489 return NULL;
1490
1491 /*
1492 * Memory management plugin default.
1493 */
1494 if (!mm) {
1495 if (CAA_BITS_PER_LONG > 32
1496 && max_nr_buckets
1497 && max_nr_buckets <= (1ULL << 32)) {
1498 /*
1499 * For 64-bit architectures, with max number of
1500 * buckets small enough not to use the entire
1501 * 64-bit memory mapping space (and allowing a
1502 * fair number of hash table instances), use the
1503 * mmap allocator, which is faster than the
1504 * order allocator.
1505 */
1506 mm = &cds_lfht_mm_mmap;
1507 } else {
1508 /*
1509 * The fallback is to use the order allocator.
1510 */
1511 mm = &cds_lfht_mm_order;
1512 }
1513 }
1514
1515 /* max_nr_buckets == 0 for order based mm means infinite */
1516 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1517 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1518
1519 /* max_nr_buckets must be power of two */
1520 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1521 return NULL;
1522
1523 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1524 init_size = max(init_size, MIN_TABLE_SIZE);
1525 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1526 init_size = min(init_size, max_nr_buckets);
1527
1528 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
1529 assert(ht);
1530 assert(ht->mm == mm);
1531 assert(ht->bucket_at == mm->bucket_at);
1532
1533 ht->flags = flags;
1534 ht->flavor = flavor;
1535 ht->resize_attr = attr;
1536 alloc_split_items_count(ht);
1537 /* this mutex should not nest in read-side C.S. */
1538 pthread_mutex_init(&ht->resize_mutex, NULL);
1539 order = cds_lfht_get_count_order_ulong(init_size);
1540 ht->resize_target = 1UL << order;
1541 cds_lfht_create_bucket(ht, 1UL << order);
1542 ht->size = 1UL << order;
1543 return ht;
1544 }
1545
1546 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1547 cds_lfht_match_fct match, const void *key,
1548 struct cds_lfht_iter *iter)
1549 {
1550 struct cds_lfht_node *node, *next, *bucket;
1551 unsigned long reverse_hash, size;
1552
1553 reverse_hash = bit_reverse_ulong(hash);
1554
1555 size = rcu_dereference(ht->size);
1556 bucket = lookup_bucket(ht, size, hash);
1557 /* We can always skip the bucket node initially */
1558 node = rcu_dereference(bucket->next);
1559 node = clear_flag(node);
1560 for (;;) {
1561 if (caa_unlikely(is_end(node))) {
1562 node = next = NULL;
1563 break;
1564 }
1565 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1566 node = next = NULL;
1567 break;
1568 }
1569 next = rcu_dereference(node->next);
1570 assert(node == clear_flag(node));
1571 if (caa_likely(!is_removed(next))
1572 && !is_bucket(next)
1573 && node->reverse_hash == reverse_hash
1574 && caa_likely(match(node, key))) {
1575 break;
1576 }
1577 node = clear_flag(next);
1578 }
1579 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1580 iter->node = node;
1581 iter->next = next;
1582 }
1583
1584 void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1585 const void *key, struct cds_lfht_iter *iter)
1586 {
1587 struct cds_lfht_node *node, *next;
1588 unsigned long reverse_hash;
1589
1590 node = iter->node;
1591 reverse_hash = node->reverse_hash;
1592 next = iter->next;
1593 node = clear_flag(next);
1594
1595 for (;;) {
1596 if (caa_unlikely(is_end(node))) {
1597 node = next = NULL;
1598 break;
1599 }
1600 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1601 node = next = NULL;
1602 break;
1603 }
1604 next = rcu_dereference(node->next);
1605 if (caa_likely(!is_removed(next))
1606 && !is_bucket(next)
1607 && caa_likely(match(node, key))) {
1608 break;
1609 }
1610 node = clear_flag(next);
1611 }
1612 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1613 iter->node = node;
1614 iter->next = next;
1615 }
1616
1617 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1618 {
1619 struct cds_lfht_node *node, *next;
1620
1621 node = clear_flag(iter->next);
1622 for (;;) {
1623 if (caa_unlikely(is_end(node))) {
1624 node = next = NULL;
1625 break;
1626 }
1627 next = rcu_dereference(node->next);
1628 if (caa_likely(!is_removed(next))
1629 && !is_bucket(next)) {
1630 break;
1631 }
1632 node = clear_flag(next);
1633 }
1634 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1635 iter->node = node;
1636 iter->next = next;
1637 }
1638
1639 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1640 {
1641 /*
1642 * Get next after first bucket node. The first bucket node is the
1643 * first node of the linked list.
1644 */
1645 iter->next = bucket_at(ht, 0)->next;
1646 cds_lfht_next(ht, iter);
1647 }
1648
1649 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1650 struct cds_lfht_node *node)
1651 {
1652 unsigned long size;
1653
1654 node->reverse_hash = bit_reverse_ulong(hash);
1655 size = rcu_dereference(ht->size);
1656 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1657 ht_count_add(ht, size, hash);
1658 }
1659
1660 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1661 unsigned long hash,
1662 cds_lfht_match_fct match,
1663 const void *key,
1664 struct cds_lfht_node *node)
1665 {
1666 unsigned long size;
1667 struct cds_lfht_iter iter;
1668
1669 node->reverse_hash = bit_reverse_ulong(hash);
1670 size = rcu_dereference(ht->size);
1671 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1672 if (iter.node == node)
1673 ht_count_add(ht, size, hash);
1674 return iter.node;
1675 }
1676
1677 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1678 unsigned long hash,
1679 cds_lfht_match_fct match,
1680 const void *key,
1681 struct cds_lfht_node *node)
1682 {
1683 unsigned long size;
1684 struct cds_lfht_iter iter;
1685
1686 node->reverse_hash = bit_reverse_ulong(hash);
1687 size = rcu_dereference(ht->size);
1688 for (;;) {
1689 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1690 if (iter.node == node) {
1691 ht_count_add(ht, size, hash);
1692 return NULL;
1693 }
1694
1695 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1696 return iter.node;
1697 }
1698 }
1699
1700 int cds_lfht_replace(struct cds_lfht *ht,
1701 struct cds_lfht_iter *old_iter,
1702 unsigned long hash,
1703 cds_lfht_match_fct match,
1704 const void *key,
1705 struct cds_lfht_node *new_node)
1706 {
1707 unsigned long size;
1708
1709 new_node->reverse_hash = bit_reverse_ulong(hash);
1710 if (!old_iter->node)
1711 return -ENOENT;
1712 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1713 return -EINVAL;
1714 if (caa_unlikely(!match(old_iter->node, key)))
1715 return -EINVAL;
1716 size = rcu_dereference(ht->size);
1717 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1718 new_node);
1719 }
1720
1721 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1722 {
1723 unsigned long size, hash;
1724 int ret;
1725
1726 size = rcu_dereference(ht->size);
1727 ret = _cds_lfht_del(ht, size, node);
1728 if (!ret) {
1729 hash = bit_reverse_ulong(node->reverse_hash);
1730 ht_count_del(ht, size, hash);
1731 }
1732 return ret;
1733 }
1734
1735 int cds_lfht_is_node_deleted(struct cds_lfht_node *node)
1736 {
1737 return is_removed(CMM_LOAD_SHARED(node->next));
1738 }
1739
1740 static
1741 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1742 {
1743 struct cds_lfht_node *node;
1744 unsigned long order, i, size;
1745
1746 /* Check that the table is empty */
1747 node = bucket_at(ht, 0);
1748 do {
1749 node = clear_flag(node)->next;
1750 if (!is_bucket(node))
1751 return -EPERM;
1752 assert(!is_removed(node));
1753 assert(!is_removal_owner(node));
1754 } while (!is_end(node));
1755 /*
1756 * size accessed without rcu_dereference because hash table is
1757 * being destroyed.
1758 */
1759 size = ht->size;
1760 /* Internal sanity check: all nodes left should be buckets */
1761 for (i = 0; i < size; i++) {
1762 node = bucket_at(ht, i);
1763 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1764 i, i, bit_reverse_ulong(node->reverse_hash));
1765 assert(is_bucket(node->next));
1766 }
1767
1768 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1769 cds_lfht_free_bucket_table(ht, order);
1770
1771 return 0;
1772 }
1773
1774 /*
1775 * Should only be called when no more concurrent readers nor writers can
1776 * possibly access the table.
1777 */
1778 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1779 {
1780 int ret;
1781
1782 /* Wait for in-flight resize operations to complete */
1783 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1784 cmm_smp_mb(); /* Store destroy before load resize */
1785 ht->flavor->thread_offline();
1786 while (uatomic_read(&ht->in_progress_resize))
1787 poll(NULL, 0, 100); /* wait for 100ms */
1788 ht->flavor->thread_online();
1789 ret = cds_lfht_delete_bucket(ht);
1790 if (ret)
1791 return ret;
1792 free_split_items_count(ht);
1793 if (attr)
1794 *attr = ht->resize_attr;
1795 poison_free(ht);
1796 return ret;
1797 }
1798
1799 void cds_lfht_count_nodes(struct cds_lfht *ht,
1800 long *approx_before,
1801 unsigned long *count,
1802 long *approx_after)
1803 {
1804 struct cds_lfht_node *node, *next;
1805 unsigned long nr_bucket = 0, nr_removed = 0;
1806
1807 *approx_before = 0;
1808 if (ht->split_count) {
1809 int i;
1810
1811 for (i = 0; i < split_count_mask + 1; i++) {
1812 *approx_before += uatomic_read(&ht->split_count[i].add);
1813 *approx_before -= uatomic_read(&ht->split_count[i].del);
1814 }
1815 }
1816
1817 *count = 0;
1818
1819 /* Count non-bucket nodes in the table */
1820 node = bucket_at(ht, 0);
1821 do {
1822 next = rcu_dereference(node->next);
1823 if (is_removed(next)) {
1824 if (!is_bucket(next))
1825 (nr_removed)++;
1826 else
1827 (nr_bucket)++;
1828 } else if (!is_bucket(next))
1829 (*count)++;
1830 else
1831 (nr_bucket)++;
1832 node = clear_flag(next);
1833 } while (!is_end(node));
1834 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1835 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1836 *approx_after = 0;
1837 if (ht->split_count) {
1838 int i;
1839
1840 for (i = 0; i < split_count_mask + 1; i++) {
1841 *approx_after += uatomic_read(&ht->split_count[i].add);
1842 *approx_after -= uatomic_read(&ht->split_count[i].del);
1843 }
1844 }
1845 }
1846
1847 /* called with resize mutex held */
1848 static
1849 void _do_cds_lfht_grow(struct cds_lfht *ht,
1850 unsigned long old_size, unsigned long new_size)
1851 {
1852 unsigned long old_order, new_order;
1853
1854 old_order = cds_lfht_get_count_order_ulong(old_size);
1855 new_order = cds_lfht_get_count_order_ulong(new_size);
1856 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1857 old_size, old_order, new_size, new_order);
1858 assert(new_size > old_size);
1859 init_table(ht, old_order + 1, new_order);
1860 }
1861
1862 /* called with resize mutex held */
1863 static
1864 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1865 unsigned long old_size, unsigned long new_size)
1866 {
1867 unsigned long old_order, new_order;
1868
1869 new_size = max(new_size, MIN_TABLE_SIZE);
1870 old_order = cds_lfht_get_count_order_ulong(old_size);
1871 new_order = cds_lfht_get_count_order_ulong(new_size);
1872 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1873 old_size, old_order, new_size, new_order);
1874 assert(new_size < old_size);
1875
1876 /* Remove and unlink all bucket nodes to remove. */
1877 fini_table(ht, new_order + 1, old_order);
1878 }
1879
1880
1881 /* called with resize mutex held */
1882 static
1883 void _do_cds_lfht_resize(struct cds_lfht *ht)
1884 {
1885 unsigned long new_size, old_size;
1886
1887 /*
1888 * Resize table, re-do if the target size has changed under us.
1889 */
1890 do {
1891 assert(uatomic_read(&ht->in_progress_resize));
1892 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1893 break;
1894 ht->resize_initiated = 1;
1895 old_size = ht->size;
1896 new_size = CMM_LOAD_SHARED(ht->resize_target);
1897 if (old_size < new_size)
1898 _do_cds_lfht_grow(ht, old_size, new_size);
1899 else if (old_size > new_size)
1900 _do_cds_lfht_shrink(ht, old_size, new_size);
1901 ht->resize_initiated = 0;
1902 /* write resize_initiated before read resize_target */
1903 cmm_smp_mb();
1904 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1905 }
1906
1907 static
1908 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1909 {
1910 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
1911 }
1912
1913 static
1914 void resize_target_update_count(struct cds_lfht *ht,
1915 unsigned long count)
1916 {
1917 count = max(count, MIN_TABLE_SIZE);
1918 count = min(count, ht->max_nr_buckets);
1919 uatomic_set(&ht->resize_target, count);
1920 }
1921
1922 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1923 {
1924 resize_target_update_count(ht, new_size);
1925 CMM_STORE_SHARED(ht->resize_initiated, 1);
1926 ht->flavor->thread_offline();
1927 pthread_mutex_lock(&ht->resize_mutex);
1928 _do_cds_lfht_resize(ht);
1929 pthread_mutex_unlock(&ht->resize_mutex);
1930 ht->flavor->thread_online();
1931 }
1932
1933 static
1934 void do_resize_cb(struct rcu_head *head)
1935 {
1936 struct rcu_resize_work *work =
1937 caa_container_of(head, struct rcu_resize_work, head);
1938 struct cds_lfht *ht = work->ht;
1939
1940 ht->flavor->thread_offline();
1941 pthread_mutex_lock(&ht->resize_mutex);
1942 _do_cds_lfht_resize(ht);
1943 pthread_mutex_unlock(&ht->resize_mutex);
1944 ht->flavor->thread_online();
1945 poison_free(work);
1946 cmm_smp_mb(); /* finish resize before decrement */
1947 uatomic_dec(&ht->in_progress_resize);
1948 }
1949
1950 static
1951 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1952 {
1953 struct rcu_resize_work *work;
1954
1955 /* Store resize_target before read resize_initiated */
1956 cmm_smp_mb();
1957 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
1958 uatomic_inc(&ht->in_progress_resize);
1959 cmm_smp_mb(); /* increment resize count before load destroy */
1960 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1961 uatomic_dec(&ht->in_progress_resize);
1962 return;
1963 }
1964 work = malloc(sizeof(*work));
1965 if (work == NULL) {
1966 dbg_printf("error allocating resize work, bailing out\n");
1967 uatomic_dec(&ht->in_progress_resize);
1968 return;
1969 }
1970 work->ht = ht;
1971 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
1972 CMM_STORE_SHARED(ht->resize_initiated, 1);
1973 }
1974 }
1975
1976 static
1977 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1978 {
1979 unsigned long target_size = size << growth;
1980
1981 target_size = min(target_size, ht->max_nr_buckets);
1982 if (resize_target_grow(ht, target_size) >= target_size)
1983 return;
1984
1985 __cds_lfht_resize_lazy_launch(ht);
1986 }
1987
1988 /*
1989 * We favor grow operations over shrink. A shrink operation never occurs
1990 * if a grow operation is queued for lazy execution. A grow operation
1991 * cancels any pending shrink lazy execution.
1992 */
1993 static
1994 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1995 unsigned long count)
1996 {
1997 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1998 return;
1999 count = max(count, MIN_TABLE_SIZE);
2000 count = min(count, ht->max_nr_buckets);
2001 if (count == size)
2002 return; /* Already the right size, no resize needed */
2003 if (count > size) { /* lazy grow */
2004 if (resize_target_grow(ht, count) >= count)
2005 return;
2006 } else { /* lazy shrink */
2007 for (;;) {
2008 unsigned long s;
2009
2010 s = uatomic_cmpxchg(&ht->resize_target, size, count);
2011 if (s == size)
2012 break; /* no resize needed */
2013 if (s > size)
2014 return; /* growing is/(was just) in progress */
2015 if (s <= count)
2016 return; /* some other thread do shrink */
2017 size = s;
2018 }
2019 }
2020 __cds_lfht_resize_lazy_launch(ht);
2021 }
This page took 0.102212 seconds and 4 git commands to generate.