Version 0.7.11
[userspace-rcu.git] / rculfhash.c
CommitLineData
5e28c532 1/*
abc490a1
MD
2 * rculfhash.c
3 *
1475579c 4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
abc490a1
MD
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
0dcf4847 7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
abc490a1
MD
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
5e28c532
MD
22 */
23
e753ff5a
MD
24/*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
1475579c 33 * Some specificities of this Lock-Free Resizable RCU Hash Table
e753ff5a
MD
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
1f67ba50
MD
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
e753ff5a
MD
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
1f67ba50
MD
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
e753ff5a
MD
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
1ee8f000 52 * - An index of bucket nodes is kept. These bucket nodes are the hash
1f67ba50
MD
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
1475579c
MD
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
4c42f1b8 64 * - Split-counters are used to keep track of the number of
1475579c 65 * nodes within the hash table for automatic resize triggering.
e753ff5a
MD
66 * - Resize operation initiated by long chain detection is executed by a
67 * call_rcu thread, which keeps lock-freedom of add and remove.
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
5c4ca589
MD
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
1f67ba50 89 * linked-list (the start node is never removed) and that it does not
5c4ca589
MD
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
1f67ba50
MD
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
29e669f6
MD
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
1f67ba50
MD
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
5f177b1c 113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
93d46c39 114 *
7f949215 115 * Ordering Guarantees:
0f5543cb 116 *
7f949215
MD
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
120 * cds_lfht_add_unique (failure).
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
0f5543cb 124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
7f949215
MD
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
0f5543cb
MD
131 *
132 * We define "write" operations as any of cds_lfht_add,
7f949215
MD
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
0f5543cb 206 *
1ee8f000 207 * Bucket node tables:
93d46c39 208 *
1ee8f000
LJ
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
93d46c39
LJ
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
1ee8f000 220 * When growing/shrinking, we only focus on the last bucket node table
93d46c39
LJ
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
1ee8f000
LJ
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
93d46c39 226 *
1475579c
MD
227 * A bit of ascii art explanation:
228 *
1f67ba50
MD
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
1475579c
MD
231 *
232 * This shows the nodes for a small table ordered by reversed bits:
233 *
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
245 * reversed-bit order.
246 *
247 * order bits reverse
248 * 0 0 000 000
0adc36a8
LJ
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
f6fdd688 251 * | | | 3 011 110 | <- |
1475579c
MD
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
e753ff5a
MD
256 */
257
2ed95849 258#define _LGPL_SOURCE
125f41db 259#define _GNU_SOURCE
2ed95849 260#include <stdlib.h>
e0ba718a
MD
261#include <errno.h>
262#include <assert.h>
263#include <stdio.h>
abc490a1 264#include <stdint.h>
f000907d 265#include <string.h>
125f41db 266#include <sched.h>
e0ba718a 267
15cfbec7 268#include "config.h"
2ed95849 269#include <urcu.h>
abc490a1 270#include <urcu-call-rcu.h>
7b17c13e 271#include <urcu-flavor.h>
a42cc659
MD
272#include <urcu/arch.h>
273#include <urcu/uatomic.h>
a42cc659 274#include <urcu/compiler.h>
abc490a1 275#include <urcu/rculfhash.h>
0b6aa001 276#include <rculfhash-internal.h>
5e28c532 277#include <stdio.h>
464a1ec9 278#include <pthread.h>
44395fb7 279
f8994aee 280/*
4c42f1b8 281 * Split-counters lazily update the global counter each 1024
f8994aee
MD
282 * addition/removal. It automatically keeps track of resize required.
283 * We use the bucket length as indicator for need to expand for small
284 * tables and machines lacking per-cpu data suppport.
285 */
286#define COUNT_COMMIT_ORDER 10
4ddbb355 287#define DEFAULT_SPLIT_COUNT_MASK 0xFUL
6ea6bc67
MD
288#define CHAIN_LEN_TARGET 1
289#define CHAIN_LEN_RESIZE_THRESHOLD 3
2ed95849 290
cd95516d 291/*
76a73da8 292 * Define the minimum table size.
cd95516d 293 */
d0d8f9aa
LJ
294#define MIN_TABLE_ORDER 0
295#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
cd95516d 296
b7d619b0 297/*
1ee8f000 298 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
b7d619b0 299 */
6083a889
MD
300#define MIN_PARTITION_PER_THREAD_ORDER 12
301#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
b7d619b0 302
d95bd160
MD
303/*
304 * The removed flag needs to be updated atomically with the pointer.
48ed1c18 305 * It indicates that no node must attach to the node scheduled for
b198f0fd 306 * removal, and that node garbage collection must be performed.
1ee8f000 307 * The bucket flag does not require to be updated atomically with the
d95bd160 308 * pointer, but it is added as a pointer low bit flag to save space.
1f67ba50
MD
309 * The "removal owner" flag is used to detect which of the "del"
310 * operation that has set the "removed flag" gets to return the removed
311 * node to its caller. Note that the replace operation does not need to
312 * iteract with the "removal owner" flag, because it validates that
313 * the "removed" flag is not set before performing its cmpxchg.
d95bd160 314 */
d37166c6 315#define REMOVED_FLAG (1UL << 0)
1ee8f000 316#define BUCKET_FLAG (1UL << 1)
db00ccc3
MD
317#define REMOVAL_OWNER_FLAG (1UL << 2)
318#define FLAGS_MASK ((1UL << 3) - 1)
d37166c6 319
bb7b2f26 320/* Value of the end pointer. Should not interact with flags. */
f9c80341 321#define END_VALUE NULL
bb7b2f26 322
7f52427b
MD
323/*
324 * ht_items_count: Split-counters counting the number of node addition
325 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
326 * is set at hash table creation.
327 *
328 * These are free-running counters, never reset to zero. They count the
329 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
330 * operations to update the global counter. We choose a power-of-2 value
331 * for the trigger to deal with 32 or 64-bit overflow of the counter.
332 */
df44348d 333struct ht_items_count {
860d07e8 334 unsigned long add, del;
df44348d
MD
335} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
336
7f52427b
MD
337/*
338 * rcu_resize_work: Contains arguments passed to RCU worker thread
339 * responsible for performing lazy resize.
340 */
abc490a1
MD
341struct rcu_resize_work {
342 struct rcu_head head;
14044b37 343 struct cds_lfht *ht;
abc490a1 344};
2ed95849 345
7f52427b
MD
346/*
347 * partition_resize_work: Contains arguments passed to worker threads
348 * executing the hash table resize on partitions of the hash table
349 * assigned to each processor's worker thread.
350 */
b7d619b0 351struct partition_resize_work {
1af6e26e 352 pthread_t thread_id;
b7d619b0
MD
353 struct cds_lfht *ht;
354 unsigned long i, start, len;
355 void (*fct)(struct cds_lfht *ht, unsigned long i,
356 unsigned long start, unsigned long len);
357};
358
abc490a1
MD
359/*
360 * Algorithm to reverse bits in a word by lookup table, extended to
361 * 64-bit words.
f9830efd 362 * Source:
abc490a1 363 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
f9830efd 364 * Originally from Public Domain.
abc490a1
MD
365 */
366
367static const uint8_t BitReverseTable256[256] =
2ed95849 368{
abc490a1
MD
369#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
370#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
371#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
372 R6(0), R6(2), R6(1), R6(3)
373};
374#undef R2
375#undef R4
376#undef R6
2ed95849 377
abc490a1
MD
378static
379uint8_t bit_reverse_u8(uint8_t v)
380{
381 return BitReverseTable256[v];
382}
ab7d5fc6 383
abc490a1
MD
384static __attribute__((unused))
385uint32_t bit_reverse_u32(uint32_t v)
386{
387 return ((uint32_t) bit_reverse_u8(v) << 24) |
388 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
389 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
390 ((uint32_t) bit_reverse_u8(v >> 24));
2ed95849
MD
391}
392
abc490a1
MD
393static __attribute__((unused))
394uint64_t bit_reverse_u64(uint64_t v)
2ed95849 395{
abc490a1
MD
396 return ((uint64_t) bit_reverse_u8(v) << 56) |
397 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
398 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
399 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
400 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
401 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
402 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
403 ((uint64_t) bit_reverse_u8(v >> 56));
404}
405
406static
407unsigned long bit_reverse_ulong(unsigned long v)
408{
409#if (CAA_BITS_PER_LONG == 32)
410 return bit_reverse_u32(v);
411#else
412 return bit_reverse_u64(v);
413#endif
414}
415
f9830efd 416/*
24365af7
MD
417 * fls: returns the position of the most significant bit.
418 * Returns 0 if no bit is set, else returns the position of the most
419 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
f9830efd 420 */
24365af7
MD
421#if defined(__i386) || defined(__x86_64)
422static inline
423unsigned int fls_u32(uint32_t x)
f9830efd 424{
24365af7
MD
425 int r;
426
427 asm("bsrl %1,%0\n\t"
428 "jnz 1f\n\t"
429 "movl $-1,%0\n\t"
430 "1:\n\t"
431 : "=r" (r) : "rm" (x));
432 return r + 1;
433}
434#define HAS_FLS_U32
435#endif
436
437#if defined(__x86_64)
438static inline
439unsigned int fls_u64(uint64_t x)
440{
441 long r;
442
443 asm("bsrq %1,%0\n\t"
444 "jnz 1f\n\t"
445 "movq $-1,%0\n\t"
446 "1:\n\t"
447 : "=r" (r) : "rm" (x));
448 return r + 1;
449}
450#define HAS_FLS_U64
451#endif
452
453#ifndef HAS_FLS_U64
454static __attribute__((unused))
455unsigned int fls_u64(uint64_t x)
456{
457 unsigned int r = 64;
458
459 if (!x)
460 return 0;
461
462 if (!(x & 0xFFFFFFFF00000000ULL)) {
463 x <<= 32;
464 r -= 32;
465 }
466 if (!(x & 0xFFFF000000000000ULL)) {
467 x <<= 16;
468 r -= 16;
469 }
470 if (!(x & 0xFF00000000000000ULL)) {
471 x <<= 8;
472 r -= 8;
473 }
474 if (!(x & 0xF000000000000000ULL)) {
475 x <<= 4;
476 r -= 4;
477 }
478 if (!(x & 0xC000000000000000ULL)) {
479 x <<= 2;
480 r -= 2;
481 }
482 if (!(x & 0x8000000000000000ULL)) {
483 x <<= 1;
484 r -= 1;
485 }
486 return r;
487}
488#endif
489
490#ifndef HAS_FLS_U32
491static __attribute__((unused))
492unsigned int fls_u32(uint32_t x)
493{
494 unsigned int r = 32;
f9830efd 495
24365af7
MD
496 if (!x)
497 return 0;
498 if (!(x & 0xFFFF0000U)) {
499 x <<= 16;
500 r -= 16;
501 }
502 if (!(x & 0xFF000000U)) {
503 x <<= 8;
504 r -= 8;
505 }
506 if (!(x & 0xF0000000U)) {
507 x <<= 4;
508 r -= 4;
509 }
510 if (!(x & 0xC0000000U)) {
511 x <<= 2;
512 r -= 2;
513 }
514 if (!(x & 0x80000000U)) {
515 x <<= 1;
516 r -= 1;
517 }
518 return r;
519}
520#endif
521
5bc6b66f 522unsigned int cds_lfht_fls_ulong(unsigned long x)
f9830efd 523{
6887cc5e 524#if (CAA_BITS_PER_LONG == 32)
24365af7
MD
525 return fls_u32(x);
526#else
527 return fls_u64(x);
528#endif
529}
f9830efd 530
920f8ef6
LJ
531/*
532 * Return the minimum order for which x <= (1UL << order).
533 * Return -1 if x is 0.
534 */
5bc6b66f 535int cds_lfht_get_count_order_u32(uint32_t x)
24365af7 536{
920f8ef6
LJ
537 if (!x)
538 return -1;
24365af7 539
920f8ef6 540 return fls_u32(x - 1);
24365af7
MD
541}
542
920f8ef6
LJ
543/*
544 * Return the minimum order for which x <= (1UL << order).
545 * Return -1 if x is 0.
546 */
5bc6b66f 547int cds_lfht_get_count_order_ulong(unsigned long x)
24365af7 548{
920f8ef6
LJ
549 if (!x)
550 return -1;
24365af7 551
5bc6b66f 552 return cds_lfht_fls_ulong(x - 1);
f9830efd
MD
553}
554
555static
ab65b890 556void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
f9830efd 557
f8994aee 558static
4105056a 559void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
f8994aee
MD
560 unsigned long count);
561
df44348d 562static long nr_cpus_mask = -1;
4c42f1b8 563static long split_count_mask = -1;
89cceffe 564static int split_count_order = -1;
4c42f1b8 565
4ddbb355 566#if defined(HAVE_SYSCONF)
4c42f1b8
LJ
567static void ht_init_nr_cpus_mask(void)
568{
569 long maxcpus;
570
571 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
572 if (maxcpus <= 0) {
573 nr_cpus_mask = -2;
574 return;
575 }
576 /*
577 * round up number of CPUs to next power of two, so we
578 * can use & for modulo.
579 */
5bc6b66f 580 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
4c42f1b8
LJ
581 nr_cpus_mask = maxcpus - 1;
582}
4ddbb355
LJ
583#else /* #if defined(HAVE_SYSCONF) */
584static void ht_init_nr_cpus_mask(void)
585{
586 nr_cpus_mask = -2;
587}
588#endif /* #else #if defined(HAVE_SYSCONF) */
df44348d
MD
589
590static
5afadd12 591void alloc_split_items_count(struct cds_lfht *ht)
df44348d
MD
592{
593 struct ht_items_count *count;
594
4c42f1b8
LJ
595 if (nr_cpus_mask == -1) {
596 ht_init_nr_cpus_mask();
4ddbb355
LJ
597 if (nr_cpus_mask < 0)
598 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
599 else
600 split_count_mask = nr_cpus_mask;
89cceffe
MD
601 split_count_order =
602 cds_lfht_get_count_order_ulong(split_count_mask + 1);
df44348d 603 }
4c42f1b8 604
4ddbb355 605 assert(split_count_mask >= 0);
5afadd12
LJ
606
607 if (ht->flags & CDS_LFHT_ACCOUNTING) {
608 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
609 assert(ht->split_count);
610 } else {
611 ht->split_count = NULL;
612 }
df44348d
MD
613}
614
615static
5afadd12 616void free_split_items_count(struct cds_lfht *ht)
df44348d 617{
5afadd12 618 poison_free(ht->split_count);
df44348d
MD
619}
620
14360f1c 621#if defined(HAVE_SCHED_GETCPU)
df44348d 622static
14360f1c 623int ht_get_split_count_index(unsigned long hash)
df44348d
MD
624{
625 int cpu;
626
4c42f1b8 627 assert(split_count_mask >= 0);
df44348d 628 cpu = sched_getcpu();
8ed51e04 629 if (caa_unlikely(cpu < 0))
14360f1c 630 return hash & split_count_mask;
df44348d 631 else
4c42f1b8 632 return cpu & split_count_mask;
df44348d 633}
14360f1c
LJ
634#else /* #if defined(HAVE_SCHED_GETCPU) */
635static
636int ht_get_split_count_index(unsigned long hash)
637{
638 return hash & split_count_mask;
639}
640#endif /* #else #if defined(HAVE_SCHED_GETCPU) */
df44348d
MD
641
642static
14360f1c 643void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 644{
4c42f1b8
LJ
645 unsigned long split_count;
646 int index;
314558bf 647 long count;
df44348d 648
8ed51e04 649 if (caa_unlikely(!ht->split_count))
3171717f 650 return;
14360f1c 651 index = ht_get_split_count_index(hash);
4c42f1b8 652 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
314558bf
MD
653 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
654 return;
655 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
656
657 dbg_printf("add split count %lu\n", split_count);
658 count = uatomic_add_return(&ht->count,
659 1UL << COUNT_COMMIT_ORDER);
4c299dcb 660 if (caa_likely(count & (count - 1)))
314558bf
MD
661 return;
662 /* Only if global count is power of 2 */
663
664 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
665 return;
666 dbg_printf("add set global %ld\n", count);
667 cds_lfht_resize_lazy_count(ht, size,
668 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
669}
670
671static
14360f1c 672void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
df44348d 673{
4c42f1b8
LJ
674 unsigned long split_count;
675 int index;
314558bf 676 long count;
df44348d 677
8ed51e04 678 if (caa_unlikely(!ht->split_count))
3171717f 679 return;
14360f1c 680 index = ht_get_split_count_index(hash);
4c42f1b8 681 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
314558bf
MD
682 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
683 return;
684 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
685
686 dbg_printf("del split count %lu\n", split_count);
687 count = uatomic_add_return(&ht->count,
688 -(1UL << COUNT_COMMIT_ORDER));
4c299dcb 689 if (caa_likely(count & (count - 1)))
314558bf
MD
690 return;
691 /* Only if global count is power of 2 */
692
693 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
694 return;
695 dbg_printf("del set global %ld\n", count);
696 /*
697 * Don't shrink table if the number of nodes is below a
698 * certain threshold.
699 */
700 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
701 return;
702 cds_lfht_resize_lazy_count(ht, size,
703 count >> (CHAIN_LEN_TARGET - 1));
df44348d
MD
704}
705
f9830efd 706static
4105056a 707void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
f9830efd 708{
f8994aee
MD
709 unsigned long count;
710
b8af5011
MD
711 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
712 return;
f8994aee
MD
713 count = uatomic_read(&ht->count);
714 /*
715 * Use bucket-local length for small table expand and for
716 * environments lacking per-cpu data support.
717 */
89cceffe 718 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
f8994aee 719 return;
24365af7 720 if (chain_len > 100)
f0c29ed7 721 dbg_printf("WARNING: large chain length: %u.\n",
24365af7 722 chain_len);
89cceffe
MD
723 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
724 int growth;
725
726 /*
727 * Ideal growth calculated based on chain length.
728 */
729 growth = cds_lfht_get_count_order_u32(chain_len
730 - (CHAIN_LEN_TARGET - 1));
731 if ((ht->flags & CDS_LFHT_ACCOUNTING)
732 && (size << growth)
733 >= (1UL << (COUNT_COMMIT_ORDER
734 + split_count_order))) {
735 /*
736 * If ideal growth expands the hash table size
737 * beyond the "small hash table" sizes, use the
738 * maximum small hash table size to attempt
739 * expanding the hash table. This only applies
740 * when node accounting is available, otherwise
741 * the chain length is used to expand the hash
742 * table in every case.
743 */
744 growth = COUNT_COMMIT_ORDER + split_count_order
745 - cds_lfht_get_count_order_ulong(size);
746 if (growth <= 0)
747 return;
748 }
749 cds_lfht_resize_lazy_grow(ht, size, growth);
750 }
f9830efd
MD
751}
752
abc490a1 753static
14044b37 754struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
abc490a1 755{
14044b37 756 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
abc490a1
MD
757}
758
759static
14044b37 760int is_removed(struct cds_lfht_node *node)
abc490a1 761{
d37166c6 762 return ((unsigned long) node) & REMOVED_FLAG;
abc490a1
MD
763}
764
f5596c94 765static
1ee8f000 766int is_bucket(struct cds_lfht_node *node)
f5596c94 767{
1ee8f000 768 return ((unsigned long) node) & BUCKET_FLAG;
f5596c94
MD
769}
770
771static
1ee8f000 772struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
f5596c94 773{
1ee8f000 774 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
f5596c94 775}
bb7b2f26 776
db00ccc3
MD
777static
778int is_removal_owner(struct cds_lfht_node *node)
779{
780 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
781}
782
783static
784struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
785{
786 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
787}
788
71bb3aca
MD
789static
790struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
791{
792 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
793}
794
bb7b2f26
MD
795static
796struct cds_lfht_node *get_end(void)
797{
798 return (struct cds_lfht_node *) END_VALUE;
799}
800
801static
802int is_end(struct cds_lfht_node *node)
803{
804 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
805}
806
abc490a1 807static
ab65b890
LJ
808unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
809 unsigned long v)
abc490a1
MD
810{
811 unsigned long old1, old2;
812
813 old1 = uatomic_read(ptr);
814 do {
815 old2 = old1;
816 if (old2 >= v)
f9830efd 817 return old2;
abc490a1 818 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
ab65b890 819 return old2;
abc490a1
MD
820}
821
48f1b16d
LJ
822static
823void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
824{
0b6aa001 825 return ht->mm->alloc_bucket_table(ht, order);
48f1b16d
LJ
826}
827
828/*
829 * cds_lfht_free_bucket_table() should be called with decreasing order.
830 * When cds_lfht_free_bucket_table(0) is called, it means the whole
831 * lfht is destroyed.
832 */
833static
834void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
835{
0b6aa001 836 return ht->mm->free_bucket_table(ht, order);
48f1b16d
LJ
837}
838
9d72a73f
LJ
839static inline
840struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
f4a9cc0b 841{
0b6aa001 842 return ht->bucket_at(ht, index);
f4a9cc0b
LJ
843}
844
9d72a73f
LJ
845static inline
846struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
847 unsigned long hash)
848{
849 assert(size > 0);
850 return bucket_at(ht, hash & (size - 1));
851}
852
273399de
MD
853/*
854 * Remove all logically deleted nodes from a bucket up to a certain node key.
855 */
856static
1ee8f000 857void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
273399de 858{
14044b37 859 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
273399de 860
1ee8f000
LJ
861 assert(!is_bucket(bucket));
862 assert(!is_removed(bucket));
9343f28f 863 assert(!is_removal_owner(bucket));
1ee8f000 864 assert(!is_bucket(node));
c90201ac 865 assert(!is_removed(node));
9343f28f 866 assert(!is_removal_owner(node));
273399de 867 for (;;) {
1ee8f000
LJ
868 iter_prev = bucket;
869 /* We can always skip the bucket node initially */
04db56f8 870 iter = rcu_dereference(iter_prev->next);
b4cb483f 871 assert(!is_removed(iter));
9343f28f 872 assert(!is_removal_owner(iter));
04db56f8 873 assert(iter_prev->reverse_hash <= node->reverse_hash);
bd4db153 874 /*
1ee8f000 875 * We should never be called with bucket (start of chain)
bd4db153
MD
876 * and logically removed node (end of path compression
877 * marker) being the actual same node. This would be a
878 * bug in the algorithm implementation.
879 */
1ee8f000 880 assert(bucket != node);
273399de 881 for (;;) {
8ed51e04 882 if (caa_unlikely(is_end(iter)))
f9c80341 883 return;
04db56f8 884 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
f9c80341 885 return;
04db56f8 886 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 887 if (caa_likely(is_removed(next)))
273399de 888 break;
b453eae1 889 iter_prev = clear_flag(iter);
273399de
MD
890 iter = next;
891 }
b198f0fd 892 assert(!is_removed(iter));
9343f28f 893 assert(!is_removal_owner(iter));
1ee8f000
LJ
894 if (is_bucket(iter))
895 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
896 else
897 new_next = clear_flag(next);
04db56f8 898 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de
MD
899 }
900}
901
9357c415
MD
902static
903int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
904 struct cds_lfht_node *old_node,
3fb86f26 905 struct cds_lfht_node *old_next,
9357c415
MD
906 struct cds_lfht_node *new_node)
907{
04db56f8 908 struct cds_lfht_node *bucket, *ret_next;
9357c415
MD
909
910 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
7801dadd 911 return -ENOENT;
9357c415
MD
912
913 assert(!is_removed(old_node));
9343f28f 914 assert(!is_removal_owner(old_node));
1ee8f000 915 assert(!is_bucket(old_node));
9357c415 916 assert(!is_removed(new_node));
9343f28f 917 assert(!is_removal_owner(new_node));
1ee8f000 918 assert(!is_bucket(new_node));
9357c415 919 assert(new_node != old_node);
3fb86f26 920 for (;;) {
9357c415 921 /* Insert after node to be replaced */
9357c415
MD
922 if (is_removed(old_next)) {
923 /*
924 * Too late, the old node has been removed under us
925 * between lookup and replace. Fail.
926 */
7801dadd 927 return -ENOENT;
9357c415 928 }
feda2722
LJ
929 assert(old_next == clear_flag(old_next));
930 assert(new_node != old_next);
71bb3aca
MD
931 /*
932 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
933 * flag. It is either set atomically at the same time
934 * (replace) or after (del).
935 */
936 assert(!is_removal_owner(old_next));
feda2722 937 new_node->next = old_next;
9357c415
MD
938 /*
939 * Here is the whole trick for lock-free replace: we add
940 * the replacement node _after_ the node we want to
941 * replace by atomically setting its next pointer at the
942 * same time we set its removal flag. Given that
943 * the lookups/get next use an iterator aware of the
944 * next pointer, they will either skip the old node due
945 * to the removal flag and see the new node, or use
946 * the old node, but will not see the new one.
db00ccc3
MD
947 * This is a replacement of a node with another node
948 * that has the same value: we are therefore not
71bb3aca
MD
949 * removing a value from the hash table. We set both the
950 * REMOVED and REMOVAL_OWNER flags atomically so we own
951 * the node after successful cmpxchg.
9357c415 952 */
04db56f8 953 ret_next = uatomic_cmpxchg(&old_node->next,
71bb3aca 954 old_next, flag_removed_or_removal_owner(new_node));
3fb86f26 955 if (ret_next == old_next)
7801dadd 956 break; /* We performed the replacement. */
3fb86f26
LJ
957 old_next = ret_next;
958 }
9357c415 959
9357c415
MD
960 /*
961 * Ensure that the old node is not visible to readers anymore:
962 * lookup for the node, and remove it (along with any other
963 * logically removed node) if found.
964 */
04db56f8
LJ
965 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
966 _cds_lfht_gc_bucket(bucket, new_node);
7801dadd 967
a85eff52 968 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
7801dadd 969 return 0;
9357c415
MD
970}
971
83beee94
MD
972/*
973 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
974 * mode. A NULL unique_ret allows creation of duplicate keys.
975 */
abc490a1 976static
83beee94 977void _cds_lfht_add(struct cds_lfht *ht,
91a75cc5 978 unsigned long hash,
0422d92c 979 cds_lfht_match_fct match,
996ff57c 980 const void *key,
83beee94
MD
981 unsigned long size,
982 struct cds_lfht_node *node,
983 struct cds_lfht_iter *unique_ret,
1ee8f000 984 int bucket_flag)
abc490a1 985{
14044b37 986 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
960c9e4f 987 *return_node;
04db56f8 988 struct cds_lfht_node *bucket;
abc490a1 989
1ee8f000 990 assert(!is_bucket(node));
c90201ac 991 assert(!is_removed(node));
9343f28f 992 assert(!is_removal_owner(node));
91a75cc5 993 bucket = lookup_bucket(ht, size, hash);
abc490a1 994 for (;;) {
adc0de68 995 uint32_t chain_len = 0;
abc490a1 996
11519af6
MD
997 /*
998 * iter_prev points to the non-removed node prior to the
999 * insert location.
11519af6 1000 */
04db56f8 1001 iter_prev = bucket;
1ee8f000 1002 /* We can always skip the bucket node initially */
04db56f8
LJ
1003 iter = rcu_dereference(iter_prev->next);
1004 assert(iter_prev->reverse_hash <= node->reverse_hash);
abc490a1 1005 for (;;) {
8ed51e04 1006 if (caa_unlikely(is_end(iter)))
273399de 1007 goto insert;
04db56f8 1008 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
273399de 1009 goto insert;
238cc06e 1010
1ee8f000
LJ
1011 /* bucket node is the first node of the identical-hash-value chain */
1012 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
194fdbd1 1013 goto insert;
238cc06e 1014
04db56f8 1015 next = rcu_dereference(clear_flag(iter)->next);
8ed51e04 1016 if (caa_unlikely(is_removed(next)))
9dba85be 1017 goto gc_node;
238cc06e
LJ
1018
1019 /* uniquely add */
83beee94 1020 if (unique_ret
1ee8f000 1021 && !is_bucket(next)
04db56f8 1022 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
238cc06e
LJ
1023 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
1024
1025 /*
1026 * uniquely adding inserts the node as the first
1027 * node of the identical-hash-value node chain.
1028 *
1029 * This semantic ensures no duplicated keys
1030 * should ever be observable in the table
1f67ba50
MD
1031 * (including traversing the table node by
1032 * node by forward iterations)
238cc06e 1033 */
04db56f8 1034 cds_lfht_next_duplicate(ht, match, key, &d_iter);
238cc06e
LJ
1035 if (!d_iter.node)
1036 goto insert;
1037
1038 *unique_ret = d_iter;
83beee94 1039 return;
48ed1c18 1040 }
238cc06e 1041
11519af6 1042 /* Only account for identical reverse hash once */
04db56f8 1043 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1ee8f000 1044 && !is_bucket(next))
4105056a 1045 check_resize(ht, size, ++chain_len);
11519af6 1046 iter_prev = clear_flag(iter);
273399de 1047 iter = next;
abc490a1 1048 }
48ed1c18 1049
273399de 1050 insert:
7ec59d3b 1051 assert(node != clear_flag(iter));
11519af6 1052 assert(!is_removed(iter_prev));
9343f28f 1053 assert(!is_removal_owner(iter_prev));
c90201ac 1054 assert(!is_removed(iter));
9343f28f 1055 assert(!is_removal_owner(iter));
f000907d 1056 assert(iter_prev != node);
1ee8f000 1057 if (!bucket_flag)
04db56f8 1058 node->next = clear_flag(iter);
f9c80341 1059 else
1ee8f000
LJ
1060 node->next = flag_bucket(clear_flag(iter));
1061 if (is_bucket(iter))
1062 new_node = flag_bucket(node);
f5596c94
MD
1063 else
1064 new_node = node;
04db56f8 1065 if (uatomic_cmpxchg(&iter_prev->next, iter,
48ed1c18 1066 new_node) != iter) {
273399de 1067 continue; /* retry */
48ed1c18 1068 } else {
83beee94 1069 return_node = node;
960c9e4f 1070 goto end;
48ed1c18
MD
1071 }
1072
9dba85be
MD
1073 gc_node:
1074 assert(!is_removed(iter));
9343f28f 1075 assert(!is_removal_owner(iter));
1ee8f000
LJ
1076 if (is_bucket(iter))
1077 new_next = flag_bucket(clear_flag(next));
f5596c94
MD
1078 else
1079 new_next = clear_flag(next);
04db56f8 1080 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
273399de 1081 /* retry */
464a1ec9 1082 }
9357c415 1083end:
83beee94
MD
1084 if (unique_ret) {
1085 unique_ret->node = return_node;
1086 /* unique_ret->next left unset, never used. */
1087 }
abc490a1 1088}
464a1ec9 1089
abc490a1 1090static
860d07e8 1091int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
b65ec430 1092 struct cds_lfht_node *node)
abc490a1 1093{
db00ccc3 1094 struct cds_lfht_node *bucket, *next;
5e28c532 1095
9357c415 1096 if (!node) /* Return -ENOENT if asked to delete NULL node */
743f9143 1097 return -ENOENT;
9357c415 1098
7ec59d3b 1099 /* logically delete the node */
1ee8f000 1100 assert(!is_bucket(node));
c90201ac 1101 assert(!is_removed(node));
db00ccc3 1102 assert(!is_removal_owner(node));
48ed1c18 1103
db00ccc3
MD
1104 /*
1105 * We are first checking if the node had previously been
1106 * logically removed (this check is not atomic with setting the
1107 * logical removal flag). Return -ENOENT if the node had
1108 * previously been removed.
1109 */
a85eff52 1110 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
db00ccc3
MD
1111 if (caa_unlikely(is_removed(next)))
1112 return -ENOENT;
b65ec430 1113 assert(!is_bucket(next));
196f4fab
MD
1114 /*
1115 * The del operation semantic guarantees a full memory barrier
1116 * before the uatomic_or atomic commit of the deletion flag.
1117 */
1118 cmm_smp_mb__before_uatomic_or();
db00ccc3
MD
1119 /*
1120 * We set the REMOVED_FLAG unconditionally. Note that there may
1121 * be more than one concurrent thread setting this flag.
1122 * Knowing which wins the race will be known after the garbage
1123 * collection phase, stay tuned!
1124 */
1125 uatomic_or(&node->next, REMOVED_FLAG);
7ec59d3b 1126 /* We performed the (logical) deletion. */
7ec59d3b
MD
1127
1128 /*
1129 * Ensure that the node is not visible to readers anymore: lookup for
273399de
MD
1130 * the node, and remove it (along with any other logically removed node)
1131 * if found.
11519af6 1132 */
04db56f8
LJ
1133 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1134 _cds_lfht_gc_bucket(bucket, node);
743f9143 1135
a85eff52 1136 assert(is_removed(CMM_LOAD_SHARED(node->next)));
db00ccc3
MD
1137 /*
1138 * Last phase: atomically exchange node->next with a version
1139 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1140 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1141 * the node and win the removal race.
1142 * It is interesting to note that all "add" paths are forbidden
1143 * to change the next pointer starting from the point where the
1144 * REMOVED_FLAG is set, so here using a read, followed by a
1145 * xchg() suffice to guarantee that the xchg() will ever only
1146 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1147 * was already set).
1148 */
1149 if (!is_removal_owner(uatomic_xchg(&node->next,
1150 flag_removal_owner(node->next))))
1151 return 0;
1152 else
1153 return -ENOENT;
abc490a1 1154}
2ed95849 1155
b7d619b0
MD
1156static
1157void *partition_resize_thread(void *arg)
1158{
1159 struct partition_resize_work *work = arg;
1160
7b17c13e 1161 work->ht->flavor->register_thread();
b7d619b0 1162 work->fct(work->ht, work->i, work->start, work->len);
7b17c13e 1163 work->ht->flavor->unregister_thread();
b7d619b0
MD
1164 return NULL;
1165}
1166
1167static
1168void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1169 unsigned long len,
1170 void (*fct)(struct cds_lfht *ht, unsigned long i,
1171 unsigned long start, unsigned long len))
1172{
1173 unsigned long partition_len;
1174 struct partition_resize_work *work;
6083a889
MD
1175 int thread, ret;
1176 unsigned long nr_threads;
b7d619b0 1177
6083a889
MD
1178 /*
1179 * Note: nr_cpus_mask + 1 is always power of 2.
1180 * We spawn just the number of threads we need to satisfy the minimum
1181 * partition size, up to the number of CPUs in the system.
1182 */
91452a6a
MD
1183 if (nr_cpus_mask > 0) {
1184 nr_threads = min(nr_cpus_mask + 1,
1185 len >> MIN_PARTITION_PER_THREAD_ORDER);
1186 } else {
1187 nr_threads = 1;
1188 }
5bc6b66f 1189 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
6083a889 1190 work = calloc(nr_threads, sizeof(*work));
b7d619b0 1191 assert(work);
6083a889
MD
1192 for (thread = 0; thread < nr_threads; thread++) {
1193 work[thread].ht = ht;
1194 work[thread].i = i;
1195 work[thread].len = partition_len;
1196 work[thread].start = thread * partition_len;
1197 work[thread].fct = fct;
1af6e26e 1198 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
6083a889 1199 partition_resize_thread, &work[thread]);
b7d619b0
MD
1200 assert(!ret);
1201 }
6083a889 1202 for (thread = 0; thread < nr_threads; thread++) {
1af6e26e 1203 ret = pthread_join(work[thread].thread_id, NULL);
b7d619b0
MD
1204 assert(!ret);
1205 }
1206 free(work);
b7d619b0
MD
1207}
1208
e8de508e
MD
1209/*
1210 * Holding RCU read lock to protect _cds_lfht_add against memory
1211 * reclaim that could be performed by other call_rcu worker threads (ABA
1212 * problem).
9ee0fc9a 1213 *
b7d619b0 1214 * When we reach a certain length, we can split this population phase over
9ee0fc9a
MD
1215 * many worker threads, based on the number of CPUs available in the system.
1216 * This should therefore take care of not having the expand lagging behind too
1217 * many concurrent insertion threads by using the scheduler's ability to
1ee8f000 1218 * schedule bucket node population fairly with insertions.
e8de508e 1219 */
4105056a 1220static
b7d619b0
MD
1221void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1222 unsigned long start, unsigned long len)
4105056a 1223{
9d72a73f 1224 unsigned long j, size = 1UL << (i - 1);
4105056a 1225
d0d8f9aa 1226 assert(i > MIN_TABLE_ORDER);
7b17c13e 1227 ht->flavor->read_lock();
9d72a73f
LJ
1228 for (j = size + start; j < size + start + len; j++) {
1229 struct cds_lfht_node *new_node = bucket_at(ht, j);
1230
1231 assert(j >= size && j < (size << 1));
1232 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1233 i, j, j);
1234 new_node->reverse_hash = bit_reverse_ulong(j);
91a75cc5 1235 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
4105056a 1236 }
7b17c13e 1237 ht->flavor->read_unlock();
b7d619b0
MD
1238}
1239
1240static
1241void init_table_populate(struct cds_lfht *ht, unsigned long i,
1242 unsigned long len)
1243{
1244 assert(nr_cpus_mask != -1);
6083a889 1245 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
7b17c13e 1246 ht->flavor->thread_online();
b7d619b0 1247 init_table_populate_partition(ht, i, 0, len);
7b17c13e 1248 ht->flavor->thread_offline();
b7d619b0
MD
1249 return;
1250 }
1251 partition_resize_helper(ht, i, len, init_table_populate_partition);
4105056a
MD
1252}
1253
abc490a1 1254static
4105056a 1255void init_table(struct cds_lfht *ht,
93d46c39 1256 unsigned long first_order, unsigned long last_order)
24365af7 1257{
93d46c39 1258 unsigned long i;
24365af7 1259
93d46c39
LJ
1260 dbg_printf("init table: first_order %lu last_order %lu\n",
1261 first_order, last_order);
d0d8f9aa 1262 assert(first_order > MIN_TABLE_ORDER);
93d46c39 1263 for (i = first_order; i <= last_order; i++) {
4105056a 1264 unsigned long len;
24365af7 1265
4f6e90b7 1266 len = 1UL << (i - 1);
f0c29ed7 1267 dbg_printf("init order %lu len: %lu\n", i, len);
4d676753
MD
1268
1269 /* Stop expand if the resize target changes under us */
7b3893e4 1270 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
4d676753
MD
1271 break;
1272
48f1b16d 1273 cds_lfht_alloc_bucket_table(ht, i);
4105056a 1274
4105056a 1275 /*
1ee8f000
LJ
1276 * Set all bucket nodes reverse hash values for a level and
1277 * link all bucket nodes into the table.
4105056a 1278 */
dc1da8f6 1279 init_table_populate(ht, i, len);
4105056a 1280
f9c80341
MD
1281 /*
1282 * Update table size.
1283 */
1284 cmm_smp_wmb(); /* populate data before RCU size */
7b3893e4 1285 CMM_STORE_SHARED(ht->size, 1UL << i);
f9c80341 1286
4f6e90b7 1287 dbg_printf("init new size: %lu\n", 1UL << i);
4105056a
MD
1288 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1289 break;
1290 }
1291}
1292
e8de508e
MD
1293/*
1294 * Holding RCU read lock to protect _cds_lfht_remove against memory
1295 * reclaim that could be performed by other call_rcu worker threads (ABA
1296 * problem).
1297 * For a single level, we logically remove and garbage collect each node.
1298 *
1299 * As a design choice, we perform logical removal and garbage collection on a
1300 * node-per-node basis to simplify this algorithm. We also assume keeping good
1301 * cache locality of the operation would overweight possible performance gain
1302 * that could be achieved by batching garbage collection for multiple levels.
1303 * However, this would have to be justified by benchmarks.
1304 *
1305 * Concurrent removal and add operations are helping us perform garbage
1306 * collection of logically removed nodes. We guarantee that all logically
1307 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1ee8f000 1308 * invoked to free a hole level of bucket nodes (after a grace period).
e8de508e 1309 *
1f67ba50
MD
1310 * Logical removal and garbage collection can therefore be done in batch
1311 * or on a node-per-node basis, as long as the guarantee above holds.
9ee0fc9a 1312 *
b7d619b0
MD
1313 * When we reach a certain length, we can split this removal over many worker
1314 * threads, based on the number of CPUs available in the system. This should
1315 * take care of not letting resize process lag behind too many concurrent
9ee0fc9a 1316 * updater threads actively inserting into the hash table.
e8de508e 1317 */
4105056a 1318static
b7d619b0
MD
1319void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1320 unsigned long start, unsigned long len)
4105056a 1321{
9d72a73f 1322 unsigned long j, size = 1UL << (i - 1);
4105056a 1323
d0d8f9aa 1324 assert(i > MIN_TABLE_ORDER);
7b17c13e 1325 ht->flavor->read_lock();
9d72a73f 1326 for (j = size + start; j < size + start + len; j++) {
2e2ce1e9
LJ
1327 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1328 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
9d72a73f
LJ
1329
1330 assert(j >= size && j < (size << 1));
1331 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1332 i, j, j);
2e2ce1e9
LJ
1333 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1334 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1335 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
abc490a1 1336 }
7b17c13e 1337 ht->flavor->read_unlock();
b7d619b0
MD
1338}
1339
1340static
1341void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1342{
1343
1344 assert(nr_cpus_mask != -1);
6083a889 1345 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
7b17c13e 1346 ht->flavor->thread_online();
b7d619b0 1347 remove_table_partition(ht, i, 0, len);
7b17c13e 1348 ht->flavor->thread_offline();
b7d619b0
MD
1349 return;
1350 }
1351 partition_resize_helper(ht, i, len, remove_table_partition);
2ed95849
MD
1352}
1353
61adb337
MD
1354/*
1355 * fini_table() is never called for first_order == 0, which is why
1356 * free_by_rcu_order == 0 can be used as criterion to know if free must
1357 * be called.
1358 */
1475579c 1359static
4105056a 1360void fini_table(struct cds_lfht *ht,
93d46c39 1361 unsigned long first_order, unsigned long last_order)
1475579c 1362{
93d46c39 1363 long i;
48f1b16d 1364 unsigned long free_by_rcu_order = 0;
1475579c 1365
93d46c39
LJ
1366 dbg_printf("fini table: first_order %lu last_order %lu\n",
1367 first_order, last_order);
d0d8f9aa 1368 assert(first_order > MIN_TABLE_ORDER);
93d46c39 1369 for (i = last_order; i >= first_order; i--) {
4105056a 1370 unsigned long len;
1475579c 1371
4f6e90b7 1372 len = 1UL << (i - 1);
1475579c 1373 dbg_printf("fini order %lu len: %lu\n", i, len);
4105056a 1374
4d676753 1375 /* Stop shrink if the resize target changes under us */
7b3893e4 1376 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
4d676753
MD
1377 break;
1378
1379 cmm_smp_wmb(); /* populate data before RCU size */
7b3893e4 1380 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
4d676753
MD
1381
1382 /*
1383 * We need to wait for all add operations to reach Q.S. (and
1384 * thus use the new table for lookups) before we can start
1ee8f000 1385 * releasing the old bucket nodes. Otherwise their lookup will
4d676753
MD
1386 * return a logically removed node as insert position.
1387 */
7b17c13e 1388 ht->flavor->update_synchronize_rcu();
48f1b16d
LJ
1389 if (free_by_rcu_order)
1390 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
4d676753 1391
21263e21 1392 /*
1ee8f000
LJ
1393 * Set "removed" flag in bucket nodes about to be removed.
1394 * Unlink all now-logically-removed bucket node pointers.
4105056a
MD
1395 * Concurrent add/remove operation are helping us doing
1396 * the gc.
21263e21 1397 */
4105056a
MD
1398 remove_table(ht, i, len);
1399
48f1b16d 1400 free_by_rcu_order = i;
4105056a
MD
1401
1402 dbg_printf("fini new size: %lu\n", 1UL << i);
1475579c
MD
1403 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1404 break;
1405 }
0d14ceb2 1406
48f1b16d 1407 if (free_by_rcu_order) {
7b17c13e 1408 ht->flavor->update_synchronize_rcu();
48f1b16d 1409 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
0d14ceb2 1410 }
1475579c
MD
1411}
1412
ff0d69de 1413static
1ee8f000 1414void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
ff0d69de 1415{
04db56f8 1416 struct cds_lfht_node *prev, *node;
9d72a73f 1417 unsigned long order, len, i;
ff0d69de 1418
48f1b16d 1419 cds_lfht_alloc_bucket_table(ht, 0);
ff0d69de 1420
9d72a73f
LJ
1421 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1422 node = bucket_at(ht, 0);
1423 node->next = flag_bucket(get_end());
1424 node->reverse_hash = 0;
ff0d69de 1425
5bc6b66f 1426 for (order = 1; order < cds_lfht_get_count_order_ulong(size) + 1; order++) {
ff0d69de 1427 len = 1UL << (order - 1);
48f1b16d 1428 cds_lfht_alloc_bucket_table(ht, order);
ff0d69de 1429
9d72a73f
LJ
1430 for (i = 0; i < len; i++) {
1431 /*
1432 * Now, we are trying to init the node with the
1433 * hash=(len+i) (which is also a bucket with the
1434 * index=(len+i)) and insert it into the hash table,
1435 * so this node has to be inserted after the bucket
1436 * with the index=(len+i)&(len-1)=i. And because there
1437 * is no other non-bucket node nor bucket node with
1438 * larger index/hash inserted, so the bucket node
1439 * being inserted should be inserted directly linked
1440 * after the bucket node with index=i.
1441 */
1442 prev = bucket_at(ht, i);
1443 node = bucket_at(ht, len + i);
ff0d69de 1444
1ee8f000 1445 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
9d72a73f
LJ
1446 order, len + i, len + i);
1447 node->reverse_hash = bit_reverse_ulong(len + i);
1448
1449 /* insert after prev */
1450 assert(is_bucket(prev->next));
ff0d69de 1451 node->next = prev->next;
1ee8f000 1452 prev->next = flag_bucket(node);
ff0d69de
LJ
1453 }
1454 }
1455}
1456
0422d92c 1457struct cds_lfht *_cds_lfht_new(unsigned long init_size,
0722081a 1458 unsigned long min_nr_alloc_buckets,
747d725c 1459 unsigned long max_nr_buckets,
b8af5011 1460 int flags,
0b6aa001 1461 const struct cds_lfht_mm_type *mm,
7b17c13e 1462 const struct rcu_flavor_struct *flavor,
b7d619b0 1463 pthread_attr_t *attr)
abc490a1 1464{
14044b37 1465 struct cds_lfht *ht;
24365af7 1466 unsigned long order;
abc490a1 1467
0722081a
LJ
1468 /* min_nr_alloc_buckets must be power of two */
1469 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
5488222b 1470 return NULL;
747d725c 1471
8129be4e 1472 /* init_size must be power of two */
5488222b 1473 if (!init_size || (init_size & (init_size - 1)))
8129be4e 1474 return NULL;
747d725c 1475
c1888f3a
MD
1476 /*
1477 * Memory management plugin default.
1478 */
1479 if (!mm) {
5a2141a7
MD
1480 if (CAA_BITS_PER_LONG > 32
1481 && max_nr_buckets
c1888f3a
MD
1482 && max_nr_buckets <= (1ULL << 32)) {
1483 /*
1484 * For 64-bit architectures, with max number of
1485 * buckets small enough not to use the entire
1486 * 64-bit memory mapping space (and allowing a
1487 * fair number of hash table instances), use the
1488 * mmap allocator, which is faster than the
1489 * order allocator.
1490 */
1491 mm = &cds_lfht_mm_mmap;
1492 } else {
1493 /*
1494 * The fallback is to use the order allocator.
1495 */
1496 mm = &cds_lfht_mm_order;
1497 }
1498 }
1499
0b6aa001
LJ
1500 /* max_nr_buckets == 0 for order based mm means infinite */
1501 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
747d725c
LJ
1502 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1503
1504 /* max_nr_buckets must be power of two */
1505 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1506 return NULL;
1507
0722081a 1508 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
d0d8f9aa 1509 init_size = max(init_size, MIN_TABLE_SIZE);
747d725c
LJ
1510 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1511 init_size = min(init_size, max_nr_buckets);
0b6aa001
LJ
1512
1513 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
b7d619b0 1514 assert(ht);
0b6aa001
LJ
1515 assert(ht->mm == mm);
1516 assert(ht->bucket_at == mm->bucket_at);
1517
b5d6b20f 1518 ht->flags = flags;
7b17c13e 1519 ht->flavor = flavor;
b7d619b0 1520 ht->resize_attr = attr;
5afadd12 1521 alloc_split_items_count(ht);
abc490a1
MD
1522 /* this mutex should not nest in read-side C.S. */
1523 pthread_mutex_init(&ht->resize_mutex, NULL);
5bc6b66f 1524 order = cds_lfht_get_count_order_ulong(init_size);
7b3893e4 1525 ht->resize_target = 1UL << order;
1ee8f000 1526 cds_lfht_create_bucket(ht, 1UL << order);
7b3893e4 1527 ht->size = 1UL << order;
abc490a1
MD
1528 return ht;
1529}
1530
6f554439 1531void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
996ff57c 1532 cds_lfht_match_fct match, const void *key,
6f554439 1533 struct cds_lfht_iter *iter)
2ed95849 1534{
04db56f8 1535 struct cds_lfht_node *node, *next, *bucket;
0422d92c 1536 unsigned long reverse_hash, size;
2ed95849 1537
abc490a1 1538 reverse_hash = bit_reverse_ulong(hash);
464a1ec9 1539
7b3893e4 1540 size = rcu_dereference(ht->size);
04db56f8 1541 bucket = lookup_bucket(ht, size, hash);
1ee8f000 1542 /* We can always skip the bucket node initially */
04db56f8 1543 node = rcu_dereference(bucket->next);
bb7b2f26 1544 node = clear_flag(node);
2ed95849 1545 for (;;) {
8ed51e04 1546 if (caa_unlikely(is_end(node))) {
96ad1112 1547 node = next = NULL;
abc490a1 1548 break;
bb7b2f26 1549 }
04db56f8 1550 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1551 node = next = NULL;
abc490a1 1552 break;
2ed95849 1553 }
04db56f8 1554 next = rcu_dereference(node->next);
7f52427b 1555 assert(node == clear_flag(node));
8ed51e04 1556 if (caa_likely(!is_removed(next))
1ee8f000 1557 && !is_bucket(next)
04db56f8 1558 && node->reverse_hash == reverse_hash
0422d92c 1559 && caa_likely(match(node, key))) {
273399de 1560 break;
2ed95849 1561 }
1b81fe1a 1562 node = clear_flag(next);
2ed95849 1563 }
a85eff52 1564 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
adc0de68
MD
1565 iter->node = node;
1566 iter->next = next;
abc490a1 1567}
e0ba718a 1568
0422d92c 1569void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
996ff57c 1570 const void *key, struct cds_lfht_iter *iter)
a481e5ff 1571{
adc0de68 1572 struct cds_lfht_node *node, *next;
a481e5ff 1573 unsigned long reverse_hash;
a481e5ff 1574
adc0de68 1575 node = iter->node;
04db56f8 1576 reverse_hash = node->reverse_hash;
adc0de68 1577 next = iter->next;
a481e5ff
MD
1578 node = clear_flag(next);
1579
1580 for (;;) {
8ed51e04 1581 if (caa_unlikely(is_end(node))) {
96ad1112 1582 node = next = NULL;
a481e5ff 1583 break;
bb7b2f26 1584 }
04db56f8 1585 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
96ad1112 1586 node = next = NULL;
a481e5ff
MD
1587 break;
1588 }
04db56f8 1589 next = rcu_dereference(node->next);
8ed51e04 1590 if (caa_likely(!is_removed(next))
1ee8f000 1591 && !is_bucket(next)
04db56f8 1592 && caa_likely(match(node, key))) {
a481e5ff
MD
1593 break;
1594 }
1595 node = clear_flag(next);
1596 }
a85eff52 1597 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
adc0de68
MD
1598 iter->node = node;
1599 iter->next = next;
a481e5ff
MD
1600}
1601
4e9b9fbf
MD
1602void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1603{
1604 struct cds_lfht_node *node, *next;
1605
853395e1 1606 node = clear_flag(iter->next);
4e9b9fbf 1607 for (;;) {
8ed51e04 1608 if (caa_unlikely(is_end(node))) {
4e9b9fbf
MD
1609 node = next = NULL;
1610 break;
1611 }
04db56f8 1612 next = rcu_dereference(node->next);
8ed51e04 1613 if (caa_likely(!is_removed(next))
1ee8f000 1614 && !is_bucket(next)) {
4e9b9fbf
MD
1615 break;
1616 }
1617 node = clear_flag(next);
1618 }
a85eff52 1619 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
4e9b9fbf
MD
1620 iter->node = node;
1621 iter->next = next;
1622}
1623
1624void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1625{
4e9b9fbf 1626 /*
1ee8f000 1627 * Get next after first bucket node. The first bucket node is the
4e9b9fbf
MD
1628 * first node of the linked list.
1629 */
9d72a73f 1630 iter->next = bucket_at(ht, 0)->next;
4e9b9fbf
MD
1631 cds_lfht_next(ht, iter);
1632}
1633
0422d92c
MD
1634void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1635 struct cds_lfht_node *node)
abc490a1 1636{
0422d92c 1637 unsigned long size;
ab7d5fc6 1638
709bacf9 1639 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1640 size = rcu_dereference(ht->size);
91a75cc5 1641 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
14360f1c 1642 ht_count_add(ht, size, hash);
3eca1b8c
MD
1643}
1644
14044b37 1645struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
6f554439 1646 unsigned long hash,
0422d92c 1647 cds_lfht_match_fct match,
996ff57c 1648 const void *key,
48ed1c18 1649 struct cds_lfht_node *node)
3eca1b8c 1650{
0422d92c 1651 unsigned long size;
83beee94 1652 struct cds_lfht_iter iter;
3eca1b8c 1653
709bacf9 1654 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1655 size = rcu_dereference(ht->size);
91a75cc5 1656 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1657 if (iter.node == node)
14360f1c 1658 ht_count_add(ht, size, hash);
83beee94 1659 return iter.node;
2ed95849
MD
1660}
1661
9357c415 1662struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
6f554439 1663 unsigned long hash,
0422d92c 1664 cds_lfht_match_fct match,
996ff57c 1665 const void *key,
48ed1c18
MD
1666 struct cds_lfht_node *node)
1667{
0422d92c 1668 unsigned long size;
83beee94 1669 struct cds_lfht_iter iter;
48ed1c18 1670
709bacf9 1671 node->reverse_hash = bit_reverse_ulong(hash);
7b3893e4 1672 size = rcu_dereference(ht->size);
83beee94 1673 for (;;) {
91a75cc5 1674 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
83beee94 1675 if (iter.node == node) {
14360f1c 1676 ht_count_add(ht, size, hash);
83beee94
MD
1677 return NULL;
1678 }
1679
1680 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1681 return iter.node;
1682 }
48ed1c18
MD
1683}
1684
2e79c445
MD
1685int cds_lfht_replace(struct cds_lfht *ht,
1686 struct cds_lfht_iter *old_iter,
1687 unsigned long hash,
1688 cds_lfht_match_fct match,
1689 const void *key,
9357c415
MD
1690 struct cds_lfht_node *new_node)
1691{
1692 unsigned long size;
1693
709bacf9 1694 new_node->reverse_hash = bit_reverse_ulong(hash);
2e79c445
MD
1695 if (!old_iter->node)
1696 return -ENOENT;
1697 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1698 return -EINVAL;
1699 if (caa_unlikely(!match(old_iter->node, key)))
1700 return -EINVAL;
7b3893e4 1701 size = rcu_dereference(ht->size);
9357c415
MD
1702 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1703 new_node);
1704}
1705
bc8c3c74 1706int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
2ed95849 1707{
14360f1c 1708 unsigned long size, hash;
df44348d 1709 int ret;
abc490a1 1710
7b3893e4 1711 size = rcu_dereference(ht->size);
bc8c3c74 1712 ret = _cds_lfht_del(ht, size, node);
14360f1c 1713 if (!ret) {
bc8c3c74 1714 hash = bit_reverse_ulong(node->reverse_hash);
14360f1c
LJ
1715 ht_count_del(ht, size, hash);
1716 }
df44348d 1717 return ret;
2ed95849 1718}
ab7d5fc6 1719
df55172a
MD
1720int cds_lfht_is_node_deleted(struct cds_lfht_node *node)
1721{
a85eff52 1722 return is_removed(CMM_LOAD_SHARED(node->next));
df55172a
MD
1723}
1724
abc490a1 1725static
1ee8f000 1726int cds_lfht_delete_bucket(struct cds_lfht *ht)
674f7a69 1727{
14044b37 1728 struct cds_lfht_node *node;
4105056a 1729 unsigned long order, i, size;
674f7a69 1730
abc490a1 1731 /* Check that the table is empty */
9d72a73f 1732 node = bucket_at(ht, 0);
abc490a1 1733 do {
04db56f8 1734 node = clear_flag(node)->next;
1ee8f000 1735 if (!is_bucket(node))
abc490a1 1736 return -EPERM;
273399de 1737 assert(!is_removed(node));
9343f28f 1738 assert(!is_removal_owner(node));
bb7b2f26 1739 } while (!is_end(node));
4105056a
MD
1740 /*
1741 * size accessed without rcu_dereference because hash table is
1742 * being destroyed.
1743 */
7b3893e4 1744 size = ht->size;
1f67ba50 1745 /* Internal sanity check: all nodes left should be buckets */
48f1b16d
LJ
1746 for (i = 0; i < size; i++) {
1747 node = bucket_at(ht, i);
1748 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1749 i, i, bit_reverse_ulong(node->reverse_hash));
1750 assert(is_bucket(node->next));
1751 }
24365af7 1752
5bc6b66f 1753 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
48f1b16d 1754 cds_lfht_free_bucket_table(ht, order);
5488222b 1755
abc490a1 1756 return 0;
674f7a69
MD
1757}
1758
1759/*
1760 * Should only be called when no more concurrent readers nor writers can
1761 * possibly access the table.
1762 */
b7d619b0 1763int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
674f7a69 1764{
5e28c532
MD
1765 int ret;
1766
848d4088 1767 /* Wait for in-flight resize operations to complete */
24953e08
MD
1768 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1769 cmm_smp_mb(); /* Store destroy before load resize */
285b4481 1770 ht->flavor->thread_offline();
848d4088
MD
1771 while (uatomic_read(&ht->in_progress_resize))
1772 poll(NULL, 0, 100); /* wait for 100ms */
285b4481 1773 ht->flavor->thread_online();
1ee8f000 1774 ret = cds_lfht_delete_bucket(ht);
abc490a1
MD
1775 if (ret)
1776 return ret;
5afadd12 1777 free_split_items_count(ht);
b7d619b0
MD
1778 if (attr)
1779 *attr = ht->resize_attr;
98808fb1 1780 poison_free(ht);
5e28c532 1781 return ret;
674f7a69
MD
1782}
1783
14044b37 1784void cds_lfht_count_nodes(struct cds_lfht *ht,
d933dd0e 1785 long *approx_before,
273399de 1786 unsigned long *count,
d933dd0e 1787 long *approx_after)
273399de 1788{
14044b37 1789 struct cds_lfht_node *node, *next;
caf3653d 1790 unsigned long nr_bucket = 0, nr_removed = 0;
273399de 1791
7ed7682f 1792 *approx_before = 0;
5afadd12 1793 if (ht->split_count) {
973e5e1b
MD
1794 int i;
1795
4c42f1b8
LJ
1796 for (i = 0; i < split_count_mask + 1; i++) {
1797 *approx_before += uatomic_read(&ht->split_count[i].add);
1798 *approx_before -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
1799 }
1800 }
1801
273399de 1802 *count = 0;
273399de 1803
1ee8f000 1804 /* Count non-bucket nodes in the table */
9d72a73f 1805 node = bucket_at(ht, 0);
273399de 1806 do {
04db56f8 1807 next = rcu_dereference(node->next);
b198f0fd 1808 if (is_removed(next)) {
1ee8f000 1809 if (!is_bucket(next))
caf3653d 1810 (nr_removed)++;
973e5e1b 1811 else
1ee8f000
LJ
1812 (nr_bucket)++;
1813 } else if (!is_bucket(next))
273399de 1814 (*count)++;
24365af7 1815 else
1ee8f000 1816 (nr_bucket)++;
273399de 1817 node = clear_flag(next);
bb7b2f26 1818 } while (!is_end(node));
caf3653d 1819 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1ee8f000 1820 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
7ed7682f 1821 *approx_after = 0;
5afadd12 1822 if (ht->split_count) {
973e5e1b
MD
1823 int i;
1824
4c42f1b8
LJ
1825 for (i = 0; i < split_count_mask + 1; i++) {
1826 *approx_after += uatomic_read(&ht->split_count[i].add);
1827 *approx_after -= uatomic_read(&ht->split_count[i].del);
973e5e1b
MD
1828 }
1829 }
273399de
MD
1830}
1831
1475579c 1832/* called with resize mutex held */
abc490a1 1833static
4105056a 1834void _do_cds_lfht_grow(struct cds_lfht *ht,
1475579c 1835 unsigned long old_size, unsigned long new_size)
abc490a1 1836{
1475579c 1837 unsigned long old_order, new_order;
1475579c 1838
5bc6b66f
MD
1839 old_order = cds_lfht_get_count_order_ulong(old_size);
1840 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
1841 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1842 old_size, old_order, new_size, new_order);
1475579c 1843 assert(new_size > old_size);
93d46c39 1844 init_table(ht, old_order + 1, new_order);
abc490a1
MD
1845}
1846
1847/* called with resize mutex held */
1848static
4105056a 1849void _do_cds_lfht_shrink(struct cds_lfht *ht,
1475579c 1850 unsigned long old_size, unsigned long new_size)
464a1ec9 1851{
1475579c 1852 unsigned long old_order, new_order;
464a1ec9 1853
d0d8f9aa 1854 new_size = max(new_size, MIN_TABLE_SIZE);
5bc6b66f
MD
1855 old_order = cds_lfht_get_count_order_ulong(old_size);
1856 new_order = cds_lfht_get_count_order_ulong(new_size);
1a401918
LJ
1857 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1858 old_size, old_order, new_size, new_order);
1475579c 1859 assert(new_size < old_size);
1475579c 1860
1ee8f000 1861 /* Remove and unlink all bucket nodes to remove. */
93d46c39 1862 fini_table(ht, new_order + 1, old_order);
464a1ec9
MD
1863}
1864
1475579c
MD
1865
1866/* called with resize mutex held */
1867static
1868void _do_cds_lfht_resize(struct cds_lfht *ht)
1869{
1870 unsigned long new_size, old_size;
4105056a
MD
1871
1872 /*
1873 * Resize table, re-do if the target size has changed under us.
1874 */
1875 do {
d2be3620
MD
1876 assert(uatomic_read(&ht->in_progress_resize));
1877 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1878 break;
7b3893e4
LJ
1879 ht->resize_initiated = 1;
1880 old_size = ht->size;
1881 new_size = CMM_LOAD_SHARED(ht->resize_target);
4105056a
MD
1882 if (old_size < new_size)
1883 _do_cds_lfht_grow(ht, old_size, new_size);
1884 else if (old_size > new_size)
1885 _do_cds_lfht_shrink(ht, old_size, new_size);
7b3893e4 1886 ht->resize_initiated = 0;
4105056a
MD
1887 /* write resize_initiated before read resize_target */
1888 cmm_smp_mb();
7b3893e4 1889 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1475579c
MD
1890}
1891
abc490a1 1892static
ab65b890 1893unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 1894{
7b3893e4 1895 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
464a1ec9
MD
1896}
1897
1475579c 1898static
4105056a 1899void resize_target_update_count(struct cds_lfht *ht,
b8af5011 1900 unsigned long count)
1475579c 1901{
d0d8f9aa 1902 count = max(count, MIN_TABLE_SIZE);
747d725c 1903 count = min(count, ht->max_nr_buckets);
7b3893e4 1904 uatomic_set(&ht->resize_target, count);
1475579c
MD
1905}
1906
1907void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
464a1ec9 1908{
4105056a 1909 resize_target_update_count(ht, new_size);
7b3893e4 1910 CMM_STORE_SHARED(ht->resize_initiated, 1);
7b17c13e 1911 ht->flavor->thread_offline();
1475579c
MD
1912 pthread_mutex_lock(&ht->resize_mutex);
1913 _do_cds_lfht_resize(ht);
1914 pthread_mutex_unlock(&ht->resize_mutex);
7b17c13e 1915 ht->flavor->thread_online();
abc490a1 1916}
464a1ec9 1917
abc490a1
MD
1918static
1919void do_resize_cb(struct rcu_head *head)
1920{
1921 struct rcu_resize_work *work =
1922 caa_container_of(head, struct rcu_resize_work, head);
14044b37 1923 struct cds_lfht *ht = work->ht;
abc490a1 1924
7b17c13e 1925 ht->flavor->thread_offline();
abc490a1 1926 pthread_mutex_lock(&ht->resize_mutex);
14044b37 1927 _do_cds_lfht_resize(ht);
abc490a1 1928 pthread_mutex_unlock(&ht->resize_mutex);
7b17c13e 1929 ht->flavor->thread_online();
98808fb1 1930 poison_free(work);
848d4088
MD
1931 cmm_smp_mb(); /* finish resize before decrement */
1932 uatomic_dec(&ht->in_progress_resize);
464a1ec9
MD
1933}
1934
abc490a1 1935static
f1f119ee 1936void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
ab7d5fc6 1937{
abc490a1
MD
1938 struct rcu_resize_work *work;
1939
4105056a
MD
1940 /* Store resize_target before read resize_initiated */
1941 cmm_smp_mb();
7b3893e4 1942 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
848d4088 1943 uatomic_inc(&ht->in_progress_resize);
59290e9d 1944 cmm_smp_mb(); /* increment resize count before load destroy */
ed35e6d8
MD
1945 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1946 uatomic_dec(&ht->in_progress_resize);
59290e9d 1947 return;
ed35e6d8 1948 }
f9830efd 1949 work = malloc(sizeof(*work));
741f378e
MD
1950 if (work == NULL) {
1951 dbg_printf("error allocating resize work, bailing out\n");
1952 uatomic_dec(&ht->in_progress_resize);
1953 return;
1954 }
f9830efd 1955 work->ht = ht;
7b17c13e 1956 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
7b3893e4 1957 CMM_STORE_SHARED(ht->resize_initiated, 1);
f9830efd 1958 }
ab7d5fc6 1959}
3171717f 1960
f1f119ee
LJ
1961static
1962void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1963{
1964 unsigned long target_size = size << growth;
1965
747d725c 1966 target_size = min(target_size, ht->max_nr_buckets);
f1f119ee
LJ
1967 if (resize_target_grow(ht, target_size) >= target_size)
1968 return;
1969
1970 __cds_lfht_resize_lazy_launch(ht);
1971}
1972
89bb121d
LJ
1973/*
1974 * We favor grow operations over shrink. A shrink operation never occurs
1975 * if a grow operation is queued for lazy execution. A grow operation
1976 * cancels any pending shrink lazy execution.
1977 */
3171717f 1978static
4105056a 1979void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
3171717f
MD
1980 unsigned long count)
1981{
b8af5011
MD
1982 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1983 return;
d0d8f9aa 1984 count = max(count, MIN_TABLE_SIZE);
747d725c 1985 count = min(count, ht->max_nr_buckets);
89bb121d
LJ
1986 if (count == size)
1987 return; /* Already the right size, no resize needed */
1988 if (count > size) { /* lazy grow */
1989 if (resize_target_grow(ht, count) >= count)
1990 return;
1991 } else { /* lazy shrink */
1992 for (;;) {
1993 unsigned long s;
1994
7b3893e4 1995 s = uatomic_cmpxchg(&ht->resize_target, size, count);
89bb121d
LJ
1996 if (s == size)
1997 break; /* no resize needed */
1998 if (s > size)
1999 return; /* growing is/(was just) in progress */
2000 if (s <= count)
2001 return; /* some other thread do shrink */
2002 size = s;
2003 }
2004 }
f1f119ee 2005 __cds_lfht_resize_lazy_launch(ht);
3171717f 2006}
This page took 0.144683 seconds and 4 git commands to generate.