Use urcu/tls-compat.h
[urcu.git] / urcu-call-rcu-impl.h
1 /*
2 * urcu-call-rcu.c
3 *
4 * Userspace RCU library - batch memory reclamation with kernel API
5 *
6 * Copyright (c) 2010 Paul E. McKenney <paulmck@linux.vnet.ibm.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 #define _GNU_SOURCE
24 #include <stdio.h>
25 #include <pthread.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <stdlib.h>
29 #include <stdint.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <poll.h>
33 #include <sys/time.h>
34 #include <unistd.h>
35 #include <sched.h>
36
37 #include "config.h"
38 #include "urcu/wfqueue.h"
39 #include "urcu-call-rcu.h"
40 #include "urcu-pointer.h"
41 #include "urcu/list.h"
42 #include "urcu/futex.h"
43 #include "urcu/tls-compat.h"
44
45 /* Data structure that identifies a call_rcu thread. */
46
47 struct call_rcu_data {
48 struct cds_wfq_queue cbs;
49 unsigned long flags;
50 int32_t futex;
51 unsigned long qlen; /* maintained for debugging. */
52 pthread_t tid;
53 int cpu_affinity;
54 struct cds_list_head list;
55 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
56
57 /*
58 * List of all call_rcu_data structures to keep valgrind happy.
59 * Protected by call_rcu_mutex.
60 */
61
62 CDS_LIST_HEAD(call_rcu_data_list);
63
64 /* Link a thread using call_rcu() to its call_rcu thread. */
65
66 static DEFINE_URCU_TLS(struct call_rcu_data *, thread_call_rcu_data);
67
68 /* Guard call_rcu thread creation. */
69
70 static pthread_mutex_t call_rcu_mutex = PTHREAD_MUTEX_INITIALIZER;
71
72 /* If a given thread does not have its own call_rcu thread, this is default. */
73
74 static struct call_rcu_data *default_call_rcu_data;
75
76 /*
77 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
78 * available, then we can have call_rcu threads assigned to individual
79 * CPUs rather than only to specific threads.
80 */
81
82 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
83
84 /*
85 * Pointer to array of pointers to per-CPU call_rcu_data structures
86 * and # CPUs. per_cpu_call_rcu_data is a RCU-protected pointer to an
87 * array of RCU-protected pointers to call_rcu_data. call_rcu acts as a
88 * RCU read-side and reads per_cpu_call_rcu_data and the per-cpu pointer
89 * without mutex. The call_rcu_mutex protects updates.
90 */
91
92 static struct call_rcu_data **per_cpu_call_rcu_data;
93 static long maxcpus;
94
95 static void maxcpus_reset(void)
96 {
97 maxcpus = 0;
98 }
99
100 /* Allocate the array if it has not already been allocated. */
101
102 static void alloc_cpu_call_rcu_data(void)
103 {
104 struct call_rcu_data **p;
105 static int warned = 0;
106
107 if (maxcpus != 0)
108 return;
109 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
110 if (maxcpus <= 0) {
111 return;
112 }
113 p = malloc(maxcpus * sizeof(*per_cpu_call_rcu_data));
114 if (p != NULL) {
115 memset(p, '\0', maxcpus * sizeof(*per_cpu_call_rcu_data));
116 rcu_set_pointer(&per_cpu_call_rcu_data, p);
117 } else {
118 if (!warned) {
119 fprintf(stderr, "[error] liburcu: unable to allocate per-CPU pointer array\n");
120 }
121 warned = 1;
122 }
123 }
124
125 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
126
127 /*
128 * per_cpu_call_rcu_data should be constant, but some functions below, used both
129 * for cases where cpu number is available and not available, assume it it not
130 * constant.
131 */
132 static struct call_rcu_data **per_cpu_call_rcu_data = NULL;
133 static const long maxcpus = -1;
134
135 static void maxcpus_reset(void)
136 {
137 }
138
139 static void alloc_cpu_call_rcu_data(void)
140 {
141 }
142
143 static int sched_getcpu(void)
144 {
145 return -1;
146 }
147
148 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
149
150 /* Acquire the specified pthread mutex. */
151
152 static void call_rcu_lock(pthread_mutex_t *pmp)
153 {
154 if (pthread_mutex_lock(pmp) != 0) {
155 perror("pthread_mutex_lock");
156 exit(-1);
157 }
158 }
159
160 /* Release the specified pthread mutex. */
161
162 static void call_rcu_unlock(pthread_mutex_t *pmp)
163 {
164 if (pthread_mutex_unlock(pmp) != 0) {
165 perror("pthread_mutex_unlock");
166 exit(-1);
167 }
168 }
169
170 #if HAVE_SCHED_SETAFFINITY
171 static
172 int set_thread_cpu_affinity(struct call_rcu_data *crdp)
173 {
174 cpu_set_t mask;
175
176 if (crdp->cpu_affinity < 0)
177 return 0;
178
179 CPU_ZERO(&mask);
180 CPU_SET(crdp->cpu_affinity, &mask);
181 #if SCHED_SETAFFINITY_ARGS == 2
182 return sched_setaffinity(0, &mask);
183 #else
184 return sched_setaffinity(0, sizeof(mask), &mask);
185 #endif
186 }
187 #else
188 static
189 int set_thread_cpu_affinity(struct call_rcu_data *crdp)
190 {
191 return 0;
192 }
193 #endif
194
195 static void call_rcu_wait(struct call_rcu_data *crdp)
196 {
197 /* Read call_rcu list before read futex */
198 cmm_smp_mb();
199 if (uatomic_read(&crdp->futex) == -1)
200 futex_async(&crdp->futex, FUTEX_WAIT, -1,
201 NULL, NULL, 0);
202 }
203
204 static void call_rcu_wake_up(struct call_rcu_data *crdp)
205 {
206 /* Write to call_rcu list before reading/writing futex */
207 cmm_smp_mb();
208 if (caa_unlikely(uatomic_read(&crdp->futex) == -1)) {
209 uatomic_set(&crdp->futex, 0);
210 futex_async(&crdp->futex, FUTEX_WAKE, 1,
211 NULL, NULL, 0);
212 }
213 }
214
215 /* This is the code run by each call_rcu thread. */
216
217 static void *call_rcu_thread(void *arg)
218 {
219 unsigned long cbcount;
220 struct cds_wfq_node *cbs;
221 struct cds_wfq_node **cbs_tail;
222 struct call_rcu_data *crdp = (struct call_rcu_data *)arg;
223 struct rcu_head *rhp;
224 int rt = !!(uatomic_read(&crdp->flags) & URCU_CALL_RCU_RT);
225
226 if (set_thread_cpu_affinity(crdp) != 0) {
227 perror("pthread_setaffinity_np");
228 exit(-1);
229 }
230
231 /*
232 * If callbacks take a read-side lock, we need to be registered.
233 */
234 rcu_register_thread();
235
236 URCU_TLS(thread_call_rcu_data) = crdp;
237 if (!rt) {
238 uatomic_dec(&crdp->futex);
239 /* Decrement futex before reading call_rcu list */
240 cmm_smp_mb();
241 }
242 for (;;) {
243 if (&crdp->cbs.head != _CMM_LOAD_SHARED(crdp->cbs.tail)) {
244 while ((cbs = _CMM_LOAD_SHARED(crdp->cbs.head)) == NULL)
245 poll(NULL, 0, 1);
246 _CMM_STORE_SHARED(crdp->cbs.head, NULL);
247 cbs_tail = (struct cds_wfq_node **)
248 uatomic_xchg(&crdp->cbs.tail, &crdp->cbs.head);
249 synchronize_rcu();
250 cbcount = 0;
251 do {
252 while (cbs->next == NULL &&
253 &cbs->next != cbs_tail)
254 poll(NULL, 0, 1);
255 if (cbs == &crdp->cbs.dummy) {
256 cbs = cbs->next;
257 continue;
258 }
259 rhp = (struct rcu_head *)cbs;
260 cbs = cbs->next;
261 rhp->func(rhp);
262 cbcount++;
263 } while (cbs != NULL);
264 uatomic_sub(&crdp->qlen, cbcount);
265 }
266 if (uatomic_read(&crdp->flags) & URCU_CALL_RCU_STOP)
267 break;
268 rcu_thread_offline();
269 if (!rt) {
270 if (&crdp->cbs.head
271 == _CMM_LOAD_SHARED(crdp->cbs.tail)) {
272 call_rcu_wait(crdp);
273 poll(NULL, 0, 10);
274 uatomic_dec(&crdp->futex);
275 /*
276 * Decrement futex before reading
277 * call_rcu list.
278 */
279 cmm_smp_mb();
280 } else {
281 poll(NULL, 0, 10);
282 }
283 } else {
284 poll(NULL, 0, 10);
285 }
286 rcu_thread_online();
287 }
288 if (!rt) {
289 /*
290 * Read call_rcu list before write futex.
291 */
292 cmm_smp_mb();
293 uatomic_set(&crdp->futex, 0);
294 }
295 uatomic_or(&crdp->flags, URCU_CALL_RCU_STOPPED);
296 rcu_unregister_thread();
297 return NULL;
298 }
299
300 /*
301 * Create both a call_rcu thread and the corresponding call_rcu_data
302 * structure, linking the structure in as specified. Caller must hold
303 * call_rcu_mutex.
304 */
305
306 static void call_rcu_data_init(struct call_rcu_data **crdpp,
307 unsigned long flags,
308 int cpu_affinity)
309 {
310 struct call_rcu_data *crdp;
311
312 crdp = malloc(sizeof(*crdp));
313 if (crdp == NULL) {
314 fprintf(stderr, "Out of memory.\n");
315 exit(-1);
316 }
317 memset(crdp, '\0', sizeof(*crdp));
318 cds_wfq_init(&crdp->cbs);
319 crdp->qlen = 0;
320 crdp->futex = 0;
321 crdp->flags = flags;
322 cds_list_add(&crdp->list, &call_rcu_data_list);
323 crdp->cpu_affinity = cpu_affinity;
324 cmm_smp_mb(); /* Structure initialized before pointer is planted. */
325 *crdpp = crdp;
326 if (pthread_create(&crdp->tid, NULL, call_rcu_thread, crdp) != 0) {
327 perror("pthread_create");
328 exit(-1);
329 }
330 }
331
332 /*
333 * Return a pointer to the call_rcu_data structure for the specified
334 * CPU, returning NULL if there is none. We cannot automatically
335 * created it because the platform we are running on might not define
336 * sched_getcpu().
337 *
338 * The call to this function and use of the returned call_rcu_data
339 * should be protected by RCU read-side lock.
340 */
341
342 struct call_rcu_data *get_cpu_call_rcu_data(int cpu)
343 {
344 static int warned = 0;
345 struct call_rcu_data **pcpu_crdp;
346
347 pcpu_crdp = rcu_dereference(per_cpu_call_rcu_data);
348 if (pcpu_crdp == NULL)
349 return NULL;
350 if (!warned && maxcpus > 0 && (cpu < 0 || maxcpus <= cpu)) {
351 fprintf(stderr, "[error] liburcu: get CPU # out of range\n");
352 warned = 1;
353 }
354 if (cpu < 0 || maxcpus <= cpu)
355 return NULL;
356 return rcu_dereference(pcpu_crdp[cpu]);
357 }
358
359 /*
360 * Return the tid corresponding to the call_rcu thread whose
361 * call_rcu_data structure is specified.
362 */
363
364 pthread_t get_call_rcu_thread(struct call_rcu_data *crdp)
365 {
366 return crdp->tid;
367 }
368
369 /*
370 * Create a call_rcu_data structure (with thread) and return a pointer.
371 */
372
373 static struct call_rcu_data *__create_call_rcu_data(unsigned long flags,
374 int cpu_affinity)
375 {
376 struct call_rcu_data *crdp;
377
378 call_rcu_data_init(&crdp, flags, cpu_affinity);
379 return crdp;
380 }
381
382 struct call_rcu_data *create_call_rcu_data(unsigned long flags,
383 int cpu_affinity)
384 {
385 struct call_rcu_data *crdp;
386
387 call_rcu_lock(&call_rcu_mutex);
388 crdp = __create_call_rcu_data(flags, cpu_affinity);
389 call_rcu_unlock(&call_rcu_mutex);
390 return crdp;
391 }
392
393 /*
394 * Set the specified CPU to use the specified call_rcu_data structure.
395 *
396 * Use NULL to remove a CPU's call_rcu_data structure, but it is
397 * the caller's responsibility to dispose of the removed structure.
398 * Use get_cpu_call_rcu_data() to obtain a pointer to the old structure
399 * (prior to NULLing it out, of course).
400 *
401 * The caller must wait for a grace-period to pass between return from
402 * set_cpu_call_rcu_data() and call to call_rcu_data_free() passing the
403 * previous call rcu data as argument.
404 */
405
406 int set_cpu_call_rcu_data(int cpu, struct call_rcu_data *crdp)
407 {
408 static int warned = 0;
409
410 call_rcu_lock(&call_rcu_mutex);
411 alloc_cpu_call_rcu_data();
412 if (cpu < 0 || maxcpus <= cpu) {
413 if (!warned) {
414 fprintf(stderr, "[error] liburcu: set CPU # out of range\n");
415 warned = 1;
416 }
417 call_rcu_unlock(&call_rcu_mutex);
418 errno = EINVAL;
419 return -EINVAL;
420 }
421
422 if (per_cpu_call_rcu_data == NULL) {
423 call_rcu_unlock(&call_rcu_mutex);
424 errno = ENOMEM;
425 return -ENOMEM;
426 }
427
428 if (per_cpu_call_rcu_data[cpu] != NULL && crdp != NULL) {
429 call_rcu_unlock(&call_rcu_mutex);
430 errno = EEXIST;
431 return -EEXIST;
432 }
433
434 rcu_set_pointer(&per_cpu_call_rcu_data[cpu], crdp);
435 call_rcu_unlock(&call_rcu_mutex);
436 return 0;
437 }
438
439 /*
440 * Return a pointer to the default call_rcu_data structure, creating
441 * one if need be. Because we never free call_rcu_data structures,
442 * we don't need to be in an RCU read-side critical section.
443 */
444
445 struct call_rcu_data *get_default_call_rcu_data(void)
446 {
447 if (default_call_rcu_data != NULL)
448 return rcu_dereference(default_call_rcu_data);
449 call_rcu_lock(&call_rcu_mutex);
450 if (default_call_rcu_data != NULL) {
451 call_rcu_unlock(&call_rcu_mutex);
452 return default_call_rcu_data;
453 }
454 call_rcu_data_init(&default_call_rcu_data, 0, -1);
455 call_rcu_unlock(&call_rcu_mutex);
456 return default_call_rcu_data;
457 }
458
459 /*
460 * Return the call_rcu_data structure that applies to the currently
461 * running thread. Any call_rcu_data structure assigned specifically
462 * to this thread has first priority, followed by any call_rcu_data
463 * structure assigned to the CPU on which the thread is running,
464 * followed by the default call_rcu_data structure. If there is not
465 * yet a default call_rcu_data structure, one will be created.
466 *
467 * Calls to this function and use of the returned call_rcu_data should
468 * be protected by RCU read-side lock.
469 */
470 struct call_rcu_data *get_call_rcu_data(void)
471 {
472 struct call_rcu_data *crd;
473
474 if (URCU_TLS(thread_call_rcu_data) != NULL)
475 return URCU_TLS(thread_call_rcu_data);
476
477 if (maxcpus > 0) {
478 crd = get_cpu_call_rcu_data(sched_getcpu());
479 if (crd)
480 return crd;
481 }
482
483 return get_default_call_rcu_data();
484 }
485
486 /*
487 * Return a pointer to this task's call_rcu_data if there is one.
488 */
489
490 struct call_rcu_data *get_thread_call_rcu_data(void)
491 {
492 return URCU_TLS(thread_call_rcu_data);
493 }
494
495 /*
496 * Set this task's call_rcu_data structure as specified, regardless
497 * of whether or not this task already had one. (This allows switching
498 * to and from real-time call_rcu threads, for example.)
499 *
500 * Use NULL to remove a thread's call_rcu_data structure, but it is
501 * the caller's responsibility to dispose of the removed structure.
502 * Use get_thread_call_rcu_data() to obtain a pointer to the old structure
503 * (prior to NULLing it out, of course).
504 */
505
506 void set_thread_call_rcu_data(struct call_rcu_data *crdp)
507 {
508 URCU_TLS(thread_call_rcu_data) = crdp;
509 }
510
511 /*
512 * Create a separate call_rcu thread for each CPU. This does not
513 * replace a pre-existing call_rcu thread -- use the set_cpu_call_rcu_data()
514 * function if you want that behavior. Should be paired with
515 * free_all_cpu_call_rcu_data() to teardown these call_rcu worker
516 * threads.
517 */
518
519 int create_all_cpu_call_rcu_data(unsigned long flags)
520 {
521 int i;
522 struct call_rcu_data *crdp;
523 int ret;
524
525 call_rcu_lock(&call_rcu_mutex);
526 alloc_cpu_call_rcu_data();
527 call_rcu_unlock(&call_rcu_mutex);
528 if (maxcpus <= 0) {
529 errno = EINVAL;
530 return -EINVAL;
531 }
532 if (per_cpu_call_rcu_data == NULL) {
533 errno = ENOMEM;
534 return -ENOMEM;
535 }
536 for (i = 0; i < maxcpus; i++) {
537 call_rcu_lock(&call_rcu_mutex);
538 if (get_cpu_call_rcu_data(i)) {
539 call_rcu_unlock(&call_rcu_mutex);
540 continue;
541 }
542 crdp = __create_call_rcu_data(flags, i);
543 if (crdp == NULL) {
544 call_rcu_unlock(&call_rcu_mutex);
545 errno = ENOMEM;
546 return -ENOMEM;
547 }
548 call_rcu_unlock(&call_rcu_mutex);
549 if ((ret = set_cpu_call_rcu_data(i, crdp)) != 0) {
550 call_rcu_data_free(crdp);
551
552 /* it has been created by other thread */
553 if (ret == -EEXIST)
554 continue;
555
556 return ret;
557 }
558 }
559 return 0;
560 }
561
562 /*
563 * Wake up the call_rcu thread corresponding to the specified
564 * call_rcu_data structure.
565 */
566 static void wake_call_rcu_thread(struct call_rcu_data *crdp)
567 {
568 if (!(_CMM_LOAD_SHARED(crdp->flags) & URCU_CALL_RCU_RT))
569 call_rcu_wake_up(crdp);
570 }
571
572 /*
573 * Schedule a function to be invoked after a following grace period.
574 * This is the only function that must be called -- the others are
575 * only present to allow applications to tune their use of RCU for
576 * maximum performance.
577 *
578 * Note that unless a call_rcu thread has not already been created,
579 * the first invocation of call_rcu() will create one. So, if you
580 * need the first invocation of call_rcu() to be fast, make sure
581 * to create a call_rcu thread first. One way to accomplish this is
582 * "get_call_rcu_data();", and another is create_all_cpu_call_rcu_data().
583 *
584 * call_rcu must be called by registered RCU read-side threads.
585 */
586
587 void call_rcu(struct rcu_head *head,
588 void (*func)(struct rcu_head *head))
589 {
590 struct call_rcu_data *crdp;
591
592 cds_wfq_node_init(&head->next);
593 head->func = func;
594 /* Holding rcu read-side lock across use of per-cpu crdp */
595 rcu_read_lock();
596 crdp = get_call_rcu_data();
597 cds_wfq_enqueue(&crdp->cbs, &head->next);
598 uatomic_inc(&crdp->qlen);
599 wake_call_rcu_thread(crdp);
600 rcu_read_unlock();
601 }
602
603 /*
604 * Free up the specified call_rcu_data structure, terminating the
605 * associated call_rcu thread. The caller must have previously
606 * removed the call_rcu_data structure from per-thread or per-CPU
607 * usage. For example, set_cpu_call_rcu_data(cpu, NULL) for per-CPU
608 * call_rcu_data structures or set_thread_call_rcu_data(NULL) for
609 * per-thread call_rcu_data structures.
610 *
611 * We silently refuse to free up the default call_rcu_data structure
612 * because that is where we put any leftover callbacks. Note that
613 * the possibility of self-spawning callbacks makes it impossible
614 * to execute all the callbacks in finite time without putting any
615 * newly spawned callbacks somewhere else. The "somewhere else" of
616 * last resort is the default call_rcu_data structure.
617 *
618 * We also silently refuse to free NULL pointers. This simplifies
619 * the calling code.
620 *
621 * The caller must wait for a grace-period to pass between return from
622 * set_cpu_call_rcu_data() and call to call_rcu_data_free() passing the
623 * previous call rcu data as argument.
624 */
625 void call_rcu_data_free(struct call_rcu_data *crdp)
626 {
627 struct cds_wfq_node *cbs;
628 struct cds_wfq_node **cbs_tail;
629 struct cds_wfq_node **cbs_endprev;
630
631 if (crdp == NULL || crdp == default_call_rcu_data) {
632 return;
633 }
634 if ((uatomic_read(&crdp->flags) & URCU_CALL_RCU_STOPPED) == 0) {
635 uatomic_or(&crdp->flags, URCU_CALL_RCU_STOP);
636 wake_call_rcu_thread(crdp);
637 while ((uatomic_read(&crdp->flags) & URCU_CALL_RCU_STOPPED) == 0)
638 poll(NULL, 0, 1);
639 }
640 if (&crdp->cbs.head != _CMM_LOAD_SHARED(crdp->cbs.tail)) {
641 while ((cbs = _CMM_LOAD_SHARED(crdp->cbs.head)) == NULL)
642 poll(NULL, 0, 1);
643 _CMM_STORE_SHARED(crdp->cbs.head, NULL);
644 cbs_tail = (struct cds_wfq_node **)
645 uatomic_xchg(&crdp->cbs.tail, &crdp->cbs.head);
646 /* Create default call rcu data if need be */
647 (void) get_default_call_rcu_data();
648 cbs_endprev = (struct cds_wfq_node **)
649 uatomic_xchg(&default_call_rcu_data, cbs_tail);
650 *cbs_endprev = cbs;
651 uatomic_add(&default_call_rcu_data->qlen,
652 uatomic_read(&crdp->qlen));
653 wake_call_rcu_thread(default_call_rcu_data);
654 }
655
656 call_rcu_lock(&call_rcu_mutex);
657 cds_list_del(&crdp->list);
658 call_rcu_unlock(&call_rcu_mutex);
659
660 free(crdp);
661 }
662
663 /*
664 * Clean up all the per-CPU call_rcu threads.
665 */
666 void free_all_cpu_call_rcu_data(void)
667 {
668 int cpu;
669 struct call_rcu_data **crdp;
670 static int warned = 0;
671
672 if (maxcpus <= 0)
673 return;
674
675 crdp = malloc(sizeof(*crdp) * maxcpus);
676 if (!crdp) {
677 if (!warned) {
678 fprintf(stderr, "[error] liburcu: unable to allocate per-CPU pointer array\n");
679 }
680 warned = 1;
681 return;
682 }
683
684 for (cpu = 0; cpu < maxcpus; cpu++) {
685 crdp[cpu] = get_cpu_call_rcu_data(cpu);
686 if (crdp[cpu] == NULL)
687 continue;
688 set_cpu_call_rcu_data(cpu, NULL);
689 }
690 /*
691 * Wait for call_rcu sites acting as RCU readers of the
692 * call_rcu_data to become quiescent.
693 */
694 synchronize_rcu();
695 for (cpu = 0; cpu < maxcpus; cpu++) {
696 if (crdp[cpu] == NULL)
697 continue;
698 call_rcu_data_free(crdp[cpu]);
699 }
700 free(crdp);
701 }
702
703 /*
704 * Acquire the call_rcu_mutex in order to ensure that the child sees
705 * all of the call_rcu() data structures in a consistent state.
706 * Suitable for pthread_atfork() and friends.
707 */
708 void call_rcu_before_fork(void)
709 {
710 call_rcu_lock(&call_rcu_mutex);
711 }
712
713 /*
714 * Clean up call_rcu data structures in the parent of a successful fork()
715 * that is not followed by exec() in the child. Suitable for
716 * pthread_atfork() and friends.
717 */
718 void call_rcu_after_fork_parent(void)
719 {
720 call_rcu_unlock(&call_rcu_mutex);
721 }
722
723 /*
724 * Clean up call_rcu data structures in the child of a successful fork()
725 * that is not followed by exec(). Suitable for pthread_atfork() and
726 * friends.
727 */
728 void call_rcu_after_fork_child(void)
729 {
730 struct call_rcu_data *crdp, *next;
731
732 /* Release the mutex. */
733 call_rcu_unlock(&call_rcu_mutex);
734
735 /* Do nothing when call_rcu() has not been used */
736 if (cds_list_empty(&call_rcu_data_list))
737 return;
738
739 /*
740 * Allocate a new default call_rcu_data structure in order
741 * to get a working call_rcu thread to go with it.
742 */
743 default_call_rcu_data = NULL;
744 (void)get_default_call_rcu_data();
745
746 /* Cleanup call_rcu_data pointers before use */
747 maxcpus_reset();
748 free(per_cpu_call_rcu_data);
749 rcu_set_pointer(&per_cpu_call_rcu_data, NULL);
750 URCU_TLS(thread_call_rcu_data) = NULL;
751
752 /* Dispose of all of the rest of the call_rcu_data structures. */
753 cds_list_for_each_entry_safe(crdp, next, &call_rcu_data_list, list) {
754 if (crdp == default_call_rcu_data)
755 continue;
756 uatomic_set(&crdp->flags, URCU_CALL_RCU_STOPPED);
757 call_rcu_data_free(crdp);
758 }
759 }
This page took 0.04386 seconds and 4 git commands to generate.