rculfhash: Fix min_alloc_size bug
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order (except for order 0).
95 * - synchronzie_rcu is used to garbage-collect the old dummy node table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * Dummy node tables:
101 *
102 * hash table hash table the last all dummy node tables
103 * order size dummy node 0 1 2 3 4 5 6(index)
104 * table size
105 * 0 1 1 1
106 * 1 2 1 1 1
107 * 2 4 2 1 1 2
108 * 3 8 4 1 1 2 4
109 * 4 16 8 1 1 2 4 8
110 * 5 32 16 1 1 2 4 8 16
111 * 6 64 32 1 1 2 4 8 16 32
112 *
113 * When growing/shrinking, we only focus on the last dummy node table
114 * which size is (!order ? 1 : (1 << (order -1))).
115 *
116 * Example for growing/shrinking:
117 * grow hash table from order 5 to 6: init the index=6 dummy node table
118 * shrink hash table from order 6 to 5: fini the index=6 dummy node table
119 *
120 * A bit of ascii art explanation:
121 *
122 * Order index is the off-by-one compare to the actual power of 2 because
123 * we use index 0 to deal with the 0 special-case.
124 *
125 * This shows the nodes for a small table ordered by reversed bits:
126 *
127 * bits reverse
128 * 0 000 000
129 * 4 100 001
130 * 2 010 010
131 * 6 110 011
132 * 1 001 100
133 * 5 101 101
134 * 3 011 110
135 * 7 111 111
136 *
137 * This shows the nodes in order of non-reversed bits, linked by
138 * reversed-bit order.
139 *
140 * order bits reverse
141 * 0 0 000 000
142 * 1 | 1 001 100 <-
143 * 2 | | 2 010 010 <- |
144 * | | | 3 011 110 | <- |
145 * 3 -> | | | 4 100 001 | |
146 * -> | | 5 101 101 |
147 * -> | 6 110 011
148 * -> 7 111 111
149 */
150
151 #define _LGPL_SOURCE
152 #include <stdlib.h>
153 #include <errno.h>
154 #include <assert.h>
155 #include <stdio.h>
156 #include <stdint.h>
157 #include <string.h>
158
159 #include "config.h"
160 #include <urcu.h>
161 #include <urcu-call-rcu.h>
162 #include <urcu/arch.h>
163 #include <urcu/uatomic.h>
164 #include <urcu/compiler.h>
165 #include <urcu/rculfhash.h>
166 #include <stdio.h>
167 #include <pthread.h>
168
169 #ifdef DEBUG
170 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
171 #else
172 #define dbg_printf(fmt, args...)
173 #endif
174
175 /*
176 * Split-counters lazily update the global counter each 1024
177 * addition/removal. It automatically keeps track of resize required.
178 * We use the bucket length as indicator for need to expand for small
179 * tables and machines lacking per-cpu data suppport.
180 */
181 #define COUNT_COMMIT_ORDER 10
182 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
183 #define CHAIN_LEN_TARGET 1
184 #define CHAIN_LEN_RESIZE_THRESHOLD 3
185
186 /*
187 * Define the minimum table size.
188 */
189 #define MIN_TABLE_SIZE 1
190
191 #if (CAA_BITS_PER_LONG == 32)
192 #define MAX_TABLE_ORDER 32
193 #else
194 #define MAX_TABLE_ORDER 64
195 #endif
196
197 /*
198 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
199 */
200 #define MIN_PARTITION_PER_THREAD_ORDER 12
201 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
202
203 #ifndef min
204 #define min(a, b) ((a) < (b) ? (a) : (b))
205 #endif
206
207 #ifndef max
208 #define max(a, b) ((a) > (b) ? (a) : (b))
209 #endif
210
211 /*
212 * The removed flag needs to be updated atomically with the pointer.
213 * It indicates that no node must attach to the node scheduled for
214 * removal, and that node garbage collection must be performed.
215 * The dummy flag does not require to be updated atomically with the
216 * pointer, but it is added as a pointer low bit flag to save space.
217 */
218 #define REMOVED_FLAG (1UL << 0)
219 #define DUMMY_FLAG (1UL << 1)
220 #define FLAGS_MASK ((1UL << 2) - 1)
221
222 /* Value of the end pointer. Should not interact with flags. */
223 #define END_VALUE NULL
224
225 struct ht_items_count {
226 unsigned long add, del;
227 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
228
229 struct rcu_level {
230 /* Note: manually update allocation length when adding a field */
231 struct _cds_lfht_node nodes[0];
232 };
233
234 struct rcu_table {
235 unsigned long size; /* always a power of 2, shared (RCU) */
236 unsigned long resize_target;
237 int resize_initiated;
238 struct rcu_level *tbl[MAX_TABLE_ORDER];
239 };
240
241 struct cds_lfht {
242 struct rcu_table t;
243 cds_lfht_hash_fct hash_fct;
244 cds_lfht_compare_fct compare_fct;
245 unsigned long min_alloc_order;
246 unsigned long min_alloc_size;
247 unsigned long hash_seed;
248 int flags;
249 /*
250 * We need to put the work threads offline (QSBR) when taking this
251 * mutex, because we use synchronize_rcu within this mutex critical
252 * section, which waits on read-side critical sections, and could
253 * therefore cause grace-period deadlock if we hold off RCU G.P.
254 * completion.
255 */
256 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
257 unsigned int in_progress_resize, in_progress_destroy;
258 void (*cds_lfht_call_rcu)(struct rcu_head *head,
259 void (*func)(struct rcu_head *head));
260 void (*cds_lfht_synchronize_rcu)(void);
261 void (*cds_lfht_rcu_read_lock)(void);
262 void (*cds_lfht_rcu_read_unlock)(void);
263 void (*cds_lfht_rcu_thread_offline)(void);
264 void (*cds_lfht_rcu_thread_online)(void);
265 void (*cds_lfht_rcu_register_thread)(void);
266 void (*cds_lfht_rcu_unregister_thread)(void);
267 pthread_attr_t *resize_attr; /* Resize threads attributes */
268 long count; /* global approximate item count */
269 struct ht_items_count *split_count; /* split item count */
270 };
271
272 struct rcu_resize_work {
273 struct rcu_head head;
274 struct cds_lfht *ht;
275 };
276
277 struct partition_resize_work {
278 pthread_t thread_id;
279 struct cds_lfht *ht;
280 unsigned long i, start, len;
281 void (*fct)(struct cds_lfht *ht, unsigned long i,
282 unsigned long start, unsigned long len);
283 };
284
285 static
286 void _cds_lfht_add(struct cds_lfht *ht,
287 unsigned long size,
288 struct cds_lfht_node *node,
289 struct cds_lfht_iter *unique_ret,
290 int dummy);
291
292 /*
293 * Algorithm to reverse bits in a word by lookup table, extended to
294 * 64-bit words.
295 * Source:
296 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
297 * Originally from Public Domain.
298 */
299
300 static const uint8_t BitReverseTable256[256] =
301 {
302 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
303 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
304 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
305 R6(0), R6(2), R6(1), R6(3)
306 };
307 #undef R2
308 #undef R4
309 #undef R6
310
311 static
312 uint8_t bit_reverse_u8(uint8_t v)
313 {
314 return BitReverseTable256[v];
315 }
316
317 static __attribute__((unused))
318 uint32_t bit_reverse_u32(uint32_t v)
319 {
320 return ((uint32_t) bit_reverse_u8(v) << 24) |
321 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
322 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
323 ((uint32_t) bit_reverse_u8(v >> 24));
324 }
325
326 static __attribute__((unused))
327 uint64_t bit_reverse_u64(uint64_t v)
328 {
329 return ((uint64_t) bit_reverse_u8(v) << 56) |
330 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
331 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
332 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
333 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
334 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
335 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
336 ((uint64_t) bit_reverse_u8(v >> 56));
337 }
338
339 static
340 unsigned long bit_reverse_ulong(unsigned long v)
341 {
342 #if (CAA_BITS_PER_LONG == 32)
343 return bit_reverse_u32(v);
344 #else
345 return bit_reverse_u64(v);
346 #endif
347 }
348
349 /*
350 * fls: returns the position of the most significant bit.
351 * Returns 0 if no bit is set, else returns the position of the most
352 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
353 */
354 #if defined(__i386) || defined(__x86_64)
355 static inline
356 unsigned int fls_u32(uint32_t x)
357 {
358 int r;
359
360 asm("bsrl %1,%0\n\t"
361 "jnz 1f\n\t"
362 "movl $-1,%0\n\t"
363 "1:\n\t"
364 : "=r" (r) : "rm" (x));
365 return r + 1;
366 }
367 #define HAS_FLS_U32
368 #endif
369
370 #if defined(__x86_64)
371 static inline
372 unsigned int fls_u64(uint64_t x)
373 {
374 long r;
375
376 asm("bsrq %1,%0\n\t"
377 "jnz 1f\n\t"
378 "movq $-1,%0\n\t"
379 "1:\n\t"
380 : "=r" (r) : "rm" (x));
381 return r + 1;
382 }
383 #define HAS_FLS_U64
384 #endif
385
386 #ifndef HAS_FLS_U64
387 static __attribute__((unused))
388 unsigned int fls_u64(uint64_t x)
389 {
390 unsigned int r = 64;
391
392 if (!x)
393 return 0;
394
395 if (!(x & 0xFFFFFFFF00000000ULL)) {
396 x <<= 32;
397 r -= 32;
398 }
399 if (!(x & 0xFFFF000000000000ULL)) {
400 x <<= 16;
401 r -= 16;
402 }
403 if (!(x & 0xFF00000000000000ULL)) {
404 x <<= 8;
405 r -= 8;
406 }
407 if (!(x & 0xF000000000000000ULL)) {
408 x <<= 4;
409 r -= 4;
410 }
411 if (!(x & 0xC000000000000000ULL)) {
412 x <<= 2;
413 r -= 2;
414 }
415 if (!(x & 0x8000000000000000ULL)) {
416 x <<= 1;
417 r -= 1;
418 }
419 return r;
420 }
421 #endif
422
423 #ifndef HAS_FLS_U32
424 static __attribute__((unused))
425 unsigned int fls_u32(uint32_t x)
426 {
427 unsigned int r = 32;
428
429 if (!x)
430 return 0;
431 if (!(x & 0xFFFF0000U)) {
432 x <<= 16;
433 r -= 16;
434 }
435 if (!(x & 0xFF000000U)) {
436 x <<= 8;
437 r -= 8;
438 }
439 if (!(x & 0xF0000000U)) {
440 x <<= 4;
441 r -= 4;
442 }
443 if (!(x & 0xC0000000U)) {
444 x <<= 2;
445 r -= 2;
446 }
447 if (!(x & 0x80000000U)) {
448 x <<= 1;
449 r -= 1;
450 }
451 return r;
452 }
453 #endif
454
455 unsigned int fls_ulong(unsigned long x)
456 {
457 #if (CAA_BITS_PER_lONG == 32)
458 return fls_u32(x);
459 #else
460 return fls_u64(x);
461 #endif
462 }
463
464 /*
465 * Return the minimum order for which x <= (1UL << order).
466 * Return -1 if x is 0.
467 */
468 int get_count_order_u32(uint32_t x)
469 {
470 if (!x)
471 return -1;
472
473 return fls_u32(x - 1);
474 }
475
476 /*
477 * Return the minimum order for which x <= (1UL << order).
478 * Return -1 if x is 0.
479 */
480 int get_count_order_ulong(unsigned long x)
481 {
482 if (!x)
483 return -1;
484
485 return fls_ulong(x - 1);
486 }
487
488 #ifdef POISON_FREE
489 #define poison_free(ptr) \
490 do { \
491 if (ptr) { \
492 memset(ptr, 0x42, sizeof(*(ptr))); \
493 free(ptr); \
494 } \
495 } while (0)
496 #else
497 #define poison_free(ptr) free(ptr)
498 #endif
499
500 static
501 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
502
503 static
504 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
505 unsigned long count);
506
507 static long nr_cpus_mask = -1;
508 static long split_count_mask = -1;
509
510 #if defined(HAVE_SYSCONF)
511 static void ht_init_nr_cpus_mask(void)
512 {
513 long maxcpus;
514
515 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
516 if (maxcpus <= 0) {
517 nr_cpus_mask = -2;
518 return;
519 }
520 /*
521 * round up number of CPUs to next power of two, so we
522 * can use & for modulo.
523 */
524 maxcpus = 1UL << get_count_order_ulong(maxcpus);
525 nr_cpus_mask = maxcpus - 1;
526 }
527 #else /* #if defined(HAVE_SYSCONF) */
528 static void ht_init_nr_cpus_mask(void)
529 {
530 nr_cpus_mask = -2;
531 }
532 #endif /* #else #if defined(HAVE_SYSCONF) */
533
534 static
535 void alloc_split_items_count(struct cds_lfht *ht)
536 {
537 struct ht_items_count *count;
538
539 if (nr_cpus_mask == -1) {
540 ht_init_nr_cpus_mask();
541 if (nr_cpus_mask < 0)
542 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
543 else
544 split_count_mask = nr_cpus_mask;
545 }
546
547 assert(split_count_mask >= 0);
548
549 if (ht->flags & CDS_LFHT_ACCOUNTING) {
550 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
551 assert(ht->split_count);
552 } else {
553 ht->split_count = NULL;
554 }
555 }
556
557 static
558 void free_split_items_count(struct cds_lfht *ht)
559 {
560 poison_free(ht->split_count);
561 }
562
563 #if defined(HAVE_SCHED_GETCPU)
564 static
565 int ht_get_split_count_index(unsigned long hash)
566 {
567 int cpu;
568
569 assert(split_count_mask >= 0);
570 cpu = sched_getcpu();
571 if (unlikely(cpu < 0))
572 return hash & split_count_mask;
573 else
574 return cpu & split_count_mask;
575 }
576 #else /* #if defined(HAVE_SCHED_GETCPU) */
577 static
578 int ht_get_split_count_index(unsigned long hash)
579 {
580 return hash & split_count_mask;
581 }
582 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
583
584 static
585 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
586 {
587 unsigned long split_count;
588 int index;
589
590 if (unlikely(!ht->split_count))
591 return;
592 index = ht_get_split_count_index(hash);
593 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
594 if (unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
595 long count;
596
597 dbg_printf("add split count %lu\n", split_count);
598 count = uatomic_add_return(&ht->count,
599 1UL << COUNT_COMMIT_ORDER);
600 /* If power of 2 */
601 if (!(count & (count - 1))) {
602 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
603 return;
604 dbg_printf("add set global %ld\n", count);
605 cds_lfht_resize_lazy_count(ht, size,
606 count >> (CHAIN_LEN_TARGET - 1));
607 }
608 }
609 }
610
611 static
612 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
613 {
614 unsigned long split_count;
615 int index;
616
617 if (unlikely(!ht->split_count))
618 return;
619 index = ht_get_split_count_index(hash);
620 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
621 if (unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
622 long count;
623
624 dbg_printf("del split count %lu\n", split_count);
625 count = uatomic_add_return(&ht->count,
626 -(1UL << COUNT_COMMIT_ORDER));
627 /* If power of 2 */
628 if (!(count & (count - 1))) {
629 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
630 return;
631 dbg_printf("del set global %ld\n", count);
632 /*
633 * Don't shrink table if the number of nodes is below a
634 * certain threshold.
635 */
636 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
637 return;
638 cds_lfht_resize_lazy_count(ht, size,
639 count >> (CHAIN_LEN_TARGET - 1));
640 }
641 }
642 }
643
644 static
645 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
646 {
647 unsigned long count;
648
649 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
650 return;
651 count = uatomic_read(&ht->count);
652 /*
653 * Use bucket-local length for small table expand and for
654 * environments lacking per-cpu data support.
655 */
656 if (count >= (1UL << COUNT_COMMIT_ORDER))
657 return;
658 if (chain_len > 100)
659 dbg_printf("WARNING: large chain length: %u.\n",
660 chain_len);
661 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
662 cds_lfht_resize_lazy(ht, size,
663 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
664 }
665
666 static
667 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
668 {
669 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
670 }
671
672 static
673 int is_removed(struct cds_lfht_node *node)
674 {
675 return ((unsigned long) node) & REMOVED_FLAG;
676 }
677
678 static
679 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
680 {
681 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
682 }
683
684 static
685 int is_dummy(struct cds_lfht_node *node)
686 {
687 return ((unsigned long) node) & DUMMY_FLAG;
688 }
689
690 static
691 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
692 {
693 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
694 }
695
696 static
697 struct cds_lfht_node *get_end(void)
698 {
699 return (struct cds_lfht_node *) END_VALUE;
700 }
701
702 static
703 int is_end(struct cds_lfht_node *node)
704 {
705 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
706 }
707
708 static
709 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
710 {
711 unsigned long old1, old2;
712
713 old1 = uatomic_read(ptr);
714 do {
715 old2 = old1;
716 if (old2 >= v)
717 return old2;
718 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
719 return v;
720 }
721
722 static
723 struct _cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
724 unsigned long hash)
725 {
726 unsigned long index, order;
727
728 assert(size > 0);
729 index = hash & (size - 1);
730
731 if (index < ht->min_alloc_size) {
732 dbg_printf("lookup hash %lu index %lu order 0 aridx 0\n",
733 hash, index);
734 return &ht->t.tbl[0]->nodes[index];
735 }
736 /*
737 * equivalent to get_count_order_ulong(index + 1), but optimizes
738 * away the non-existing 0 special-case for
739 * get_count_order_ulong.
740 */
741 order = fls_ulong(index);
742 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
743 hash, index, order, index & ((1UL << (order - 1)) - 1));
744 return &ht->t.tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
745 }
746
747 /*
748 * Remove all logically deleted nodes from a bucket up to a certain node key.
749 */
750 static
751 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
752 {
753 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
754
755 assert(!is_dummy(dummy));
756 assert(!is_removed(dummy));
757 assert(!is_dummy(node));
758 assert(!is_removed(node));
759 for (;;) {
760 iter_prev = dummy;
761 /* We can always skip the dummy node initially */
762 iter = rcu_dereference(iter_prev->p.next);
763 assert(!is_removed(iter));
764 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
765 /*
766 * We should never be called with dummy (start of chain)
767 * and logically removed node (end of path compression
768 * marker) being the actual same node. This would be a
769 * bug in the algorithm implementation.
770 */
771 assert(dummy != node);
772 for (;;) {
773 if (unlikely(is_end(iter)))
774 return;
775 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
776 return;
777 next = rcu_dereference(clear_flag(iter)->p.next);
778 if (likely(is_removed(next)))
779 break;
780 iter_prev = clear_flag(iter);
781 iter = next;
782 }
783 assert(!is_removed(iter));
784 if (is_dummy(iter))
785 new_next = flag_dummy(clear_flag(next));
786 else
787 new_next = clear_flag(next);
788 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
789 }
790 return;
791 }
792
793 static
794 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
795 struct cds_lfht_node *old_node,
796 struct cds_lfht_node *old_next,
797 struct cds_lfht_node *new_node)
798 {
799 struct cds_lfht_node *dummy, *ret_next;
800 struct _cds_lfht_node *lookup;
801
802 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
803 return -ENOENT;
804
805 assert(!is_removed(old_node));
806 assert(!is_dummy(old_node));
807 assert(!is_removed(new_node));
808 assert(!is_dummy(new_node));
809 assert(new_node != old_node);
810 for (;;) {
811 /* Insert after node to be replaced */
812 if (is_removed(old_next)) {
813 /*
814 * Too late, the old node has been removed under us
815 * between lookup and replace. Fail.
816 */
817 return -ENOENT;
818 }
819 assert(!is_dummy(old_next));
820 assert(new_node != clear_flag(old_next));
821 new_node->p.next = clear_flag(old_next);
822 /*
823 * Here is the whole trick for lock-free replace: we add
824 * the replacement node _after_ the node we want to
825 * replace by atomically setting its next pointer at the
826 * same time we set its removal flag. Given that
827 * the lookups/get next use an iterator aware of the
828 * next pointer, they will either skip the old node due
829 * to the removal flag and see the new node, or use
830 * the old node, but will not see the new one.
831 */
832 ret_next = uatomic_cmpxchg(&old_node->p.next,
833 old_next, flag_removed(new_node));
834 if (ret_next == old_next)
835 break; /* We performed the replacement. */
836 old_next = ret_next;
837 }
838
839 /*
840 * Ensure that the old node is not visible to readers anymore:
841 * lookup for the node, and remove it (along with any other
842 * logically removed node) if found.
843 */
844 lookup = lookup_bucket(ht, size, bit_reverse_ulong(old_node->p.reverse_hash));
845 dummy = (struct cds_lfht_node *) lookup;
846 _cds_lfht_gc_bucket(dummy, new_node);
847
848 assert(is_removed(rcu_dereference(old_node->p.next)));
849 return 0;
850 }
851
852 /*
853 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
854 * mode. A NULL unique_ret allows creation of duplicate keys.
855 */
856 static
857 void _cds_lfht_add(struct cds_lfht *ht,
858 unsigned long size,
859 struct cds_lfht_node *node,
860 struct cds_lfht_iter *unique_ret,
861 int dummy)
862 {
863 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
864 *return_node;
865 struct _cds_lfht_node *lookup;
866
867 assert(!is_dummy(node));
868 assert(!is_removed(node));
869 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
870 for (;;) {
871 uint32_t chain_len = 0;
872
873 /*
874 * iter_prev points to the non-removed node prior to the
875 * insert location.
876 */
877 iter_prev = (struct cds_lfht_node *) lookup;
878 /* We can always skip the dummy node initially */
879 iter = rcu_dereference(iter_prev->p.next);
880 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
881 for (;;) {
882 if (unlikely(is_end(iter)))
883 goto insert;
884 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
885 goto insert;
886
887 /* dummy node is the first node of the identical-hash-value chain */
888 if (dummy && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash)
889 goto insert;
890
891 next = rcu_dereference(clear_flag(iter)->p.next);
892 if (unlikely(is_removed(next)))
893 goto gc_node;
894
895 /* uniquely add */
896 if (unique_ret
897 && !is_dummy(next)
898 && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash) {
899 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
900
901 /*
902 * uniquely adding inserts the node as the first
903 * node of the identical-hash-value node chain.
904 *
905 * This semantic ensures no duplicated keys
906 * should ever be observable in the table
907 * (including observe one node by one node
908 * by forward iterations)
909 */
910 cds_lfht_next_duplicate(ht, &d_iter);
911 if (!d_iter.node)
912 goto insert;
913
914 *unique_ret = d_iter;
915 return;
916 }
917
918 /* Only account for identical reverse hash once */
919 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
920 && !is_dummy(next))
921 check_resize(ht, size, ++chain_len);
922 iter_prev = clear_flag(iter);
923 iter = next;
924 }
925
926 insert:
927 assert(node != clear_flag(iter));
928 assert(!is_removed(iter_prev));
929 assert(!is_removed(iter));
930 assert(iter_prev != node);
931 if (!dummy)
932 node->p.next = clear_flag(iter);
933 else
934 node->p.next = flag_dummy(clear_flag(iter));
935 if (is_dummy(iter))
936 new_node = flag_dummy(node);
937 else
938 new_node = node;
939 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
940 new_node) != iter) {
941 continue; /* retry */
942 } else {
943 return_node = node;
944 goto end;
945 }
946
947 gc_node:
948 assert(!is_removed(iter));
949 if (is_dummy(iter))
950 new_next = flag_dummy(clear_flag(next));
951 else
952 new_next = clear_flag(next);
953 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
954 /* retry */
955 }
956 end:
957 if (unique_ret) {
958 unique_ret->node = return_node;
959 /* unique_ret->next left unset, never used. */
960 }
961 }
962
963 static
964 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
965 struct cds_lfht_node *node,
966 int dummy_removal)
967 {
968 struct cds_lfht_node *dummy, *next, *old;
969 struct _cds_lfht_node *lookup;
970
971 if (!node) /* Return -ENOENT if asked to delete NULL node */
972 return -ENOENT;
973
974 /* logically delete the node */
975 assert(!is_dummy(node));
976 assert(!is_removed(node));
977 old = rcu_dereference(node->p.next);
978 do {
979 struct cds_lfht_node *new_next;
980
981 next = old;
982 if (unlikely(is_removed(next)))
983 return -ENOENT;
984 if (dummy_removal)
985 assert(is_dummy(next));
986 else
987 assert(!is_dummy(next));
988 new_next = flag_removed(next);
989 old = uatomic_cmpxchg(&node->p.next, next, new_next);
990 } while (old != next);
991 /* We performed the (logical) deletion. */
992
993 /*
994 * Ensure that the node is not visible to readers anymore: lookup for
995 * the node, and remove it (along with any other logically removed node)
996 * if found.
997 */
998 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
999 dummy = (struct cds_lfht_node *) lookup;
1000 _cds_lfht_gc_bucket(dummy, node);
1001
1002 assert(is_removed(rcu_dereference(node->p.next)));
1003 return 0;
1004 }
1005
1006 static
1007 void *partition_resize_thread(void *arg)
1008 {
1009 struct partition_resize_work *work = arg;
1010
1011 work->ht->cds_lfht_rcu_register_thread();
1012 work->fct(work->ht, work->i, work->start, work->len);
1013 work->ht->cds_lfht_rcu_unregister_thread();
1014 return NULL;
1015 }
1016
1017 static
1018 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1019 unsigned long len,
1020 void (*fct)(struct cds_lfht *ht, unsigned long i,
1021 unsigned long start, unsigned long len))
1022 {
1023 unsigned long partition_len;
1024 struct partition_resize_work *work;
1025 int thread, ret;
1026 unsigned long nr_threads;
1027
1028 /*
1029 * Note: nr_cpus_mask + 1 is always power of 2.
1030 * We spawn just the number of threads we need to satisfy the minimum
1031 * partition size, up to the number of CPUs in the system.
1032 */
1033 if (nr_cpus_mask > 0) {
1034 nr_threads = min(nr_cpus_mask + 1,
1035 len >> MIN_PARTITION_PER_THREAD_ORDER);
1036 } else {
1037 nr_threads = 1;
1038 }
1039 partition_len = len >> get_count_order_ulong(nr_threads);
1040 work = calloc(nr_threads, sizeof(*work));
1041 assert(work);
1042 for (thread = 0; thread < nr_threads; thread++) {
1043 work[thread].ht = ht;
1044 work[thread].i = i;
1045 work[thread].len = partition_len;
1046 work[thread].start = thread * partition_len;
1047 work[thread].fct = fct;
1048 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1049 partition_resize_thread, &work[thread]);
1050 assert(!ret);
1051 }
1052 for (thread = 0; thread < nr_threads; thread++) {
1053 ret = pthread_join(work[thread].thread_id, NULL);
1054 assert(!ret);
1055 }
1056 free(work);
1057 }
1058
1059 /*
1060 * Holding RCU read lock to protect _cds_lfht_add against memory
1061 * reclaim that could be performed by other call_rcu worker threads (ABA
1062 * problem).
1063 *
1064 * When we reach a certain length, we can split this population phase over
1065 * many worker threads, based on the number of CPUs available in the system.
1066 * This should therefore take care of not having the expand lagging behind too
1067 * many concurrent insertion threads by using the scheduler's ability to
1068 * schedule dummy node population fairly with insertions.
1069 */
1070 static
1071 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1072 unsigned long start, unsigned long len)
1073 {
1074 unsigned long j;
1075
1076 assert(i > ht->min_alloc_order);
1077 ht->cds_lfht_rcu_read_lock();
1078 for (j = start; j < start + len; j++) {
1079 struct cds_lfht_node *new_node =
1080 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1081
1082 dbg_printf("init populate: i %lu j %lu hash %lu\n",
1083 i, j, (1UL << (i - 1)) + j);
1084 new_node->p.reverse_hash =
1085 bit_reverse_ulong((1UL << (i - 1)) + j);
1086 _cds_lfht_add(ht, 1UL << (i - 1),
1087 new_node, NULL, 1);
1088 }
1089 ht->cds_lfht_rcu_read_unlock();
1090 }
1091
1092 static
1093 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1094 unsigned long len)
1095 {
1096 assert(nr_cpus_mask != -1);
1097 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1098 ht->cds_lfht_rcu_thread_online();
1099 init_table_populate_partition(ht, i, 0, len);
1100 ht->cds_lfht_rcu_thread_offline();
1101 return;
1102 }
1103 partition_resize_helper(ht, i, len, init_table_populate_partition);
1104 }
1105
1106 static
1107 void init_table(struct cds_lfht *ht,
1108 unsigned long first_order, unsigned long last_order)
1109 {
1110 unsigned long i;
1111
1112 dbg_printf("init table: first_order %lu last_order %lu\n",
1113 first_order, last_order);
1114 assert(first_order > ht->min_alloc_order);
1115 for (i = first_order; i <= last_order; i++) {
1116 unsigned long len;
1117
1118 len = 1UL << (i - 1);
1119 dbg_printf("init order %lu len: %lu\n", i, len);
1120
1121 /* Stop expand if the resize target changes under us */
1122 if (CMM_LOAD_SHARED(ht->t.resize_target) < (1UL << i))
1123 break;
1124
1125 ht->t.tbl[i] = calloc(1, len * sizeof(struct _cds_lfht_node));
1126 assert(ht->t.tbl[i]);
1127
1128 /*
1129 * Set all dummy nodes reverse hash values for a level and
1130 * link all dummy nodes into the table.
1131 */
1132 init_table_populate(ht, i, len);
1133
1134 /*
1135 * Update table size.
1136 */
1137 cmm_smp_wmb(); /* populate data before RCU size */
1138 CMM_STORE_SHARED(ht->t.size, 1UL << i);
1139
1140 dbg_printf("init new size: %lu\n", 1UL << i);
1141 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1142 break;
1143 }
1144 }
1145
1146 /*
1147 * Holding RCU read lock to protect _cds_lfht_remove against memory
1148 * reclaim that could be performed by other call_rcu worker threads (ABA
1149 * problem).
1150 * For a single level, we logically remove and garbage collect each node.
1151 *
1152 * As a design choice, we perform logical removal and garbage collection on a
1153 * node-per-node basis to simplify this algorithm. We also assume keeping good
1154 * cache locality of the operation would overweight possible performance gain
1155 * that could be achieved by batching garbage collection for multiple levels.
1156 * However, this would have to be justified by benchmarks.
1157 *
1158 * Concurrent removal and add operations are helping us perform garbage
1159 * collection of logically removed nodes. We guarantee that all logically
1160 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1161 * invoked to free a hole level of dummy nodes (after a grace period).
1162 *
1163 * Logical removal and garbage collection can therefore be done in batch or on a
1164 * node-per-node basis, as long as the guarantee above holds.
1165 *
1166 * When we reach a certain length, we can split this removal over many worker
1167 * threads, based on the number of CPUs available in the system. This should
1168 * take care of not letting resize process lag behind too many concurrent
1169 * updater threads actively inserting into the hash table.
1170 */
1171 static
1172 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1173 unsigned long start, unsigned long len)
1174 {
1175 unsigned long j;
1176
1177 assert(i > ht->min_alloc_order);
1178 ht->cds_lfht_rcu_read_lock();
1179 for (j = start; j < start + len; j++) {
1180 struct cds_lfht_node *fini_node =
1181 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1182
1183 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1184 i, j, (1UL << (i - 1)) + j);
1185 fini_node->p.reverse_hash =
1186 bit_reverse_ulong((1UL << (i - 1)) + j);
1187 (void) _cds_lfht_del(ht, 1UL << (i - 1), fini_node, 1);
1188 }
1189 ht->cds_lfht_rcu_read_unlock();
1190 }
1191
1192 static
1193 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1194 {
1195
1196 assert(nr_cpus_mask != -1);
1197 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1198 ht->cds_lfht_rcu_thread_online();
1199 remove_table_partition(ht, i, 0, len);
1200 ht->cds_lfht_rcu_thread_offline();
1201 return;
1202 }
1203 partition_resize_helper(ht, i, len, remove_table_partition);
1204 }
1205
1206 static
1207 void fini_table(struct cds_lfht *ht,
1208 unsigned long first_order, unsigned long last_order)
1209 {
1210 long i;
1211 void *free_by_rcu = NULL;
1212
1213 dbg_printf("fini table: first_order %lu last_order %lu\n",
1214 first_order, last_order);
1215 assert(first_order > ht->min_alloc_order);
1216 for (i = last_order; i >= first_order; i--) {
1217 unsigned long len;
1218
1219 len = 1UL << (i - 1);
1220 dbg_printf("fini order %lu len: %lu\n", i, len);
1221
1222 /* Stop shrink if the resize target changes under us */
1223 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1224 break;
1225
1226 cmm_smp_wmb(); /* populate data before RCU size */
1227 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1228
1229 /*
1230 * We need to wait for all add operations to reach Q.S. (and
1231 * thus use the new table for lookups) before we can start
1232 * releasing the old dummy nodes. Otherwise their lookup will
1233 * return a logically removed node as insert position.
1234 */
1235 ht->cds_lfht_synchronize_rcu();
1236 if (free_by_rcu)
1237 free(free_by_rcu);
1238
1239 /*
1240 * Set "removed" flag in dummy nodes about to be removed.
1241 * Unlink all now-logically-removed dummy node pointers.
1242 * Concurrent add/remove operation are helping us doing
1243 * the gc.
1244 */
1245 remove_table(ht, i, len);
1246
1247 free_by_rcu = ht->t.tbl[i];
1248
1249 dbg_printf("fini new size: %lu\n", 1UL << i);
1250 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1251 break;
1252 }
1253
1254 if (free_by_rcu) {
1255 ht->cds_lfht_synchronize_rcu();
1256 free(free_by_rcu);
1257 }
1258 }
1259
1260 static
1261 void cds_lfht_create_dummy(struct cds_lfht *ht, unsigned long size)
1262 {
1263 struct _cds_lfht_node *prev, *node;
1264 unsigned long order, len, i, j;
1265
1266 ht->t.tbl[0] = calloc(1, ht->min_alloc_size * sizeof(struct _cds_lfht_node));
1267 assert(ht->t.tbl[0]);
1268
1269 dbg_printf("create dummy: order %lu index %lu hash %lu\n", 0, 0, 0);
1270 ht->t.tbl[0]->nodes[0].next = flag_dummy(get_end());
1271 ht->t.tbl[0]->nodes[0].reverse_hash = 0;
1272
1273 for (order = 1; order < get_count_order_ulong(size) + 1; order++) {
1274 len = 1UL << (order - 1);
1275 if (order <= ht->min_alloc_order) {
1276 ht->t.tbl[order] = (struct rcu_level *) (ht->t.tbl[0]->nodes + len);
1277 } else {
1278 ht->t.tbl[order] = calloc(1, len * sizeof(struct _cds_lfht_node));
1279 assert(ht->t.tbl[order]);
1280 }
1281
1282 i = 0;
1283 prev = ht->t.tbl[i]->nodes;
1284 for (j = 0; j < len; j++) {
1285 if (j & (j - 1)) { /* Between power of 2 */
1286 prev++;
1287 } else if (j) { /* At each power of 2 */
1288 i++;
1289 prev = ht->t.tbl[i]->nodes;
1290 }
1291
1292 node = &ht->t.tbl[order]->nodes[j];
1293 dbg_printf("create dummy: order %lu index %lu hash %lu\n",
1294 order, j, j + len);
1295 node->next = prev->next;
1296 assert(is_dummy(node->next));
1297 node->reverse_hash = bit_reverse_ulong(j + len);
1298 prev->next = flag_dummy((struct cds_lfht_node *)node);
1299 }
1300 }
1301 }
1302
1303 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1304 cds_lfht_compare_fct compare_fct,
1305 unsigned long hash_seed,
1306 unsigned long init_size,
1307 unsigned long min_alloc_size,
1308 int flags,
1309 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1310 void (*func)(struct rcu_head *head)),
1311 void (*cds_lfht_synchronize_rcu)(void),
1312 void (*cds_lfht_rcu_read_lock)(void),
1313 void (*cds_lfht_rcu_read_unlock)(void),
1314 void (*cds_lfht_rcu_thread_offline)(void),
1315 void (*cds_lfht_rcu_thread_online)(void),
1316 void (*cds_lfht_rcu_register_thread)(void),
1317 void (*cds_lfht_rcu_unregister_thread)(void),
1318 pthread_attr_t *attr)
1319 {
1320 struct cds_lfht *ht;
1321 unsigned long order;
1322
1323 /* min_alloc_size must be power of two */
1324 if (!min_alloc_size || (min_alloc_size & (min_alloc_size - 1)))
1325 return NULL;
1326 /* init_size must be power of two */
1327 if (!init_size || (init_size & (init_size - 1)))
1328 return NULL;
1329 min_alloc_size = max(min_alloc_size, MIN_TABLE_SIZE);
1330 init_size = max(init_size, min_alloc_size);
1331 ht = calloc(1, sizeof(struct cds_lfht));
1332 assert(ht);
1333 ht->flags = flags;
1334 ht->hash_fct = hash_fct;
1335 ht->compare_fct = compare_fct;
1336 ht->hash_seed = hash_seed;
1337 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1338 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1339 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1340 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1341 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1342 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1343 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1344 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1345 ht->resize_attr = attr;
1346 alloc_split_items_count(ht);
1347 /* this mutex should not nest in read-side C.S. */
1348 pthread_mutex_init(&ht->resize_mutex, NULL);
1349 order = get_count_order_ulong(init_size);
1350 ht->t.resize_target = 1UL << order;
1351 ht->min_alloc_size = min_alloc_size;
1352 ht->min_alloc_order = get_count_order_ulong(min_alloc_size);
1353 cds_lfht_create_dummy(ht, 1UL << order);
1354 ht->t.size = 1UL << order;
1355 return ht;
1356 }
1357
1358 void cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len,
1359 struct cds_lfht_iter *iter)
1360 {
1361 struct cds_lfht_node *node, *next, *dummy_node;
1362 struct _cds_lfht_node *lookup;
1363 unsigned long hash, reverse_hash, size;
1364
1365 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1366 reverse_hash = bit_reverse_ulong(hash);
1367
1368 size = rcu_dereference(ht->t.size);
1369 lookup = lookup_bucket(ht, size, hash);
1370 dummy_node = (struct cds_lfht_node *) lookup;
1371 /* We can always skip the dummy node initially */
1372 node = rcu_dereference(dummy_node->p.next);
1373 node = clear_flag(node);
1374 for (;;) {
1375 if (unlikely(is_end(node))) {
1376 node = next = NULL;
1377 break;
1378 }
1379 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1380 node = next = NULL;
1381 break;
1382 }
1383 next = rcu_dereference(node->p.next);
1384 if (likely(!is_removed(next))
1385 && !is_dummy(next)
1386 && clear_flag(node)->p.reverse_hash == reverse_hash
1387 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1388 break;
1389 }
1390 node = clear_flag(next);
1391 }
1392 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1393 iter->node = node;
1394 iter->next = next;
1395 }
1396
1397 void cds_lfht_next_duplicate(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1398 {
1399 struct cds_lfht_node *node, *next;
1400 unsigned long reverse_hash;
1401 void *key;
1402 size_t key_len;
1403
1404 node = iter->node;
1405 reverse_hash = node->p.reverse_hash;
1406 key = node->key;
1407 key_len = node->key_len;
1408 next = iter->next;
1409 node = clear_flag(next);
1410
1411 for (;;) {
1412 if (unlikely(is_end(node))) {
1413 node = next = NULL;
1414 break;
1415 }
1416 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1417 node = next = NULL;
1418 break;
1419 }
1420 next = rcu_dereference(node->p.next);
1421 if (likely(!is_removed(next))
1422 && !is_dummy(next)
1423 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1424 break;
1425 }
1426 node = clear_flag(next);
1427 }
1428 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1429 iter->node = node;
1430 iter->next = next;
1431 }
1432
1433 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1434 {
1435 struct cds_lfht_node *node, *next;
1436
1437 node = clear_flag(iter->next);
1438 for (;;) {
1439 if (unlikely(is_end(node))) {
1440 node = next = NULL;
1441 break;
1442 }
1443 next = rcu_dereference(node->p.next);
1444 if (likely(!is_removed(next))
1445 && !is_dummy(next)) {
1446 break;
1447 }
1448 node = clear_flag(next);
1449 }
1450 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1451 iter->node = node;
1452 iter->next = next;
1453 }
1454
1455 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1456 {
1457 struct _cds_lfht_node *lookup;
1458
1459 /*
1460 * Get next after first dummy node. The first dummy node is the
1461 * first node of the linked list.
1462 */
1463 lookup = &ht->t.tbl[0]->nodes[0];
1464 iter->next = lookup->next;
1465 cds_lfht_next(ht, iter);
1466 }
1467
1468 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1469 {
1470 unsigned long hash, size;
1471
1472 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1473 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1474
1475 size = rcu_dereference(ht->t.size);
1476 _cds_lfht_add(ht, size, node, NULL, 0);
1477 ht_count_add(ht, size, hash);
1478 }
1479
1480 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1481 struct cds_lfht_node *node)
1482 {
1483 unsigned long hash, size;
1484 struct cds_lfht_iter iter;
1485
1486 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1487 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1488
1489 size = rcu_dereference(ht->t.size);
1490 _cds_lfht_add(ht, size, node, &iter, 0);
1491 if (iter.node == node)
1492 ht_count_add(ht, size, hash);
1493 return iter.node;
1494 }
1495
1496 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1497 struct cds_lfht_node *node)
1498 {
1499 unsigned long hash, size;
1500 struct cds_lfht_iter iter;
1501
1502 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1503 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1504
1505 size = rcu_dereference(ht->t.size);
1506 for (;;) {
1507 _cds_lfht_add(ht, size, node, &iter, 0);
1508 if (iter.node == node) {
1509 ht_count_add(ht, size, hash);
1510 return NULL;
1511 }
1512
1513 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1514 return iter.node;
1515 }
1516 }
1517
1518 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1519 struct cds_lfht_node *new_node)
1520 {
1521 unsigned long size;
1522
1523 size = rcu_dereference(ht->t.size);
1524 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1525 new_node);
1526 }
1527
1528 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1529 {
1530 unsigned long size, hash;
1531 int ret;
1532
1533 size = rcu_dereference(ht->t.size);
1534 ret = _cds_lfht_del(ht, size, iter->node, 0);
1535 if (!ret) {
1536 hash = bit_reverse_ulong(iter->node->p.reverse_hash);
1537 ht_count_del(ht, size, hash);
1538 }
1539 return ret;
1540 }
1541
1542 static
1543 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1544 {
1545 struct cds_lfht_node *node;
1546 struct _cds_lfht_node *lookup;
1547 unsigned long order, i, size;
1548
1549 /* Check that the table is empty */
1550 lookup = &ht->t.tbl[0]->nodes[0];
1551 node = (struct cds_lfht_node *) lookup;
1552 do {
1553 node = clear_flag(node)->p.next;
1554 if (!is_dummy(node))
1555 return -EPERM;
1556 assert(!is_removed(node));
1557 } while (!is_end(node));
1558 /*
1559 * size accessed without rcu_dereference because hash table is
1560 * being destroyed.
1561 */
1562 size = ht->t.size;
1563 /* Internal sanity check: all nodes left should be dummy */
1564 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1565 unsigned long len;
1566
1567 len = !order ? 1 : 1UL << (order - 1);
1568 for (i = 0; i < len; i++) {
1569 dbg_printf("delete order %lu i %lu hash %lu\n",
1570 order, i,
1571 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1572 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1573 }
1574
1575 if (order == ht->min_alloc_order)
1576 poison_free(ht->t.tbl[0]);
1577 else if (order > ht->min_alloc_order)
1578 poison_free(ht->t.tbl[order]);
1579 /* Nothing to delete for order < ht->min_alloc_order */
1580 }
1581 return 0;
1582 }
1583
1584 /*
1585 * Should only be called when no more concurrent readers nor writers can
1586 * possibly access the table.
1587 */
1588 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1589 {
1590 int ret;
1591
1592 /* Wait for in-flight resize operations to complete */
1593 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1594 cmm_smp_mb(); /* Store destroy before load resize */
1595 while (uatomic_read(&ht->in_progress_resize))
1596 poll(NULL, 0, 100); /* wait for 100ms */
1597 ret = cds_lfht_delete_dummy(ht);
1598 if (ret)
1599 return ret;
1600 free_split_items_count(ht);
1601 if (attr)
1602 *attr = ht->resize_attr;
1603 poison_free(ht);
1604 return ret;
1605 }
1606
1607 void cds_lfht_count_nodes(struct cds_lfht *ht,
1608 long *approx_before,
1609 unsigned long *count,
1610 unsigned long *removed,
1611 long *approx_after)
1612 {
1613 struct cds_lfht_node *node, *next;
1614 struct _cds_lfht_node *lookup;
1615 unsigned long nr_dummy = 0;
1616
1617 *approx_before = 0;
1618 if (ht->split_count) {
1619 int i;
1620
1621 for (i = 0; i < split_count_mask + 1; i++) {
1622 *approx_before += uatomic_read(&ht->split_count[i].add);
1623 *approx_before -= uatomic_read(&ht->split_count[i].del);
1624 }
1625 }
1626
1627 *count = 0;
1628 *removed = 0;
1629
1630 /* Count non-dummy nodes in the table */
1631 lookup = &ht->t.tbl[0]->nodes[0];
1632 node = (struct cds_lfht_node *) lookup;
1633 do {
1634 next = rcu_dereference(node->p.next);
1635 if (is_removed(next)) {
1636 if (!is_dummy(next))
1637 (*removed)++;
1638 else
1639 (nr_dummy)++;
1640 } else if (!is_dummy(next))
1641 (*count)++;
1642 else
1643 (nr_dummy)++;
1644 node = clear_flag(next);
1645 } while (!is_end(node));
1646 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1647 *approx_after = 0;
1648 if (ht->split_count) {
1649 int i;
1650
1651 for (i = 0; i < split_count_mask + 1; i++) {
1652 *approx_after += uatomic_read(&ht->split_count[i].add);
1653 *approx_after -= uatomic_read(&ht->split_count[i].del);
1654 }
1655 }
1656 }
1657
1658 /* called with resize mutex held */
1659 static
1660 void _do_cds_lfht_grow(struct cds_lfht *ht,
1661 unsigned long old_size, unsigned long new_size)
1662 {
1663 unsigned long old_order, new_order;
1664
1665 old_order = get_count_order_ulong(old_size);
1666 new_order = get_count_order_ulong(new_size);
1667 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1668 old_size, old_order, new_size, new_order);
1669 assert(new_size > old_size);
1670 init_table(ht, old_order + 1, new_order);
1671 }
1672
1673 /* called with resize mutex held */
1674 static
1675 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1676 unsigned long old_size, unsigned long new_size)
1677 {
1678 unsigned long old_order, new_order;
1679
1680 new_size = max(new_size, ht->min_alloc_size);
1681 old_order = get_count_order_ulong(old_size);
1682 new_order = get_count_order_ulong(new_size);
1683 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1684 old_size, old_order, new_size, new_order);
1685 assert(new_size < old_size);
1686
1687 /* Remove and unlink all dummy nodes to remove. */
1688 fini_table(ht, new_order + 1, old_order);
1689 }
1690
1691
1692 /* called with resize mutex held */
1693 static
1694 void _do_cds_lfht_resize(struct cds_lfht *ht)
1695 {
1696 unsigned long new_size, old_size;
1697
1698 /*
1699 * Resize table, re-do if the target size has changed under us.
1700 */
1701 do {
1702 assert(uatomic_read(&ht->in_progress_resize));
1703 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1704 break;
1705 ht->t.resize_initiated = 1;
1706 old_size = ht->t.size;
1707 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1708 if (old_size < new_size)
1709 _do_cds_lfht_grow(ht, old_size, new_size);
1710 else if (old_size > new_size)
1711 _do_cds_lfht_shrink(ht, old_size, new_size);
1712 ht->t.resize_initiated = 0;
1713 /* write resize_initiated before read resize_target */
1714 cmm_smp_mb();
1715 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1716 }
1717
1718 static
1719 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1720 int growth_order)
1721 {
1722 return _uatomic_max(&ht->t.resize_target,
1723 size << growth_order);
1724 }
1725
1726 static
1727 void resize_target_update_count(struct cds_lfht *ht,
1728 unsigned long count)
1729 {
1730 count = max(count, ht->min_alloc_size);
1731 uatomic_set(&ht->t.resize_target, count);
1732 }
1733
1734 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1735 {
1736 resize_target_update_count(ht, new_size);
1737 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1738 ht->cds_lfht_rcu_thread_offline();
1739 pthread_mutex_lock(&ht->resize_mutex);
1740 _do_cds_lfht_resize(ht);
1741 pthread_mutex_unlock(&ht->resize_mutex);
1742 ht->cds_lfht_rcu_thread_online();
1743 }
1744
1745 static
1746 void do_resize_cb(struct rcu_head *head)
1747 {
1748 struct rcu_resize_work *work =
1749 caa_container_of(head, struct rcu_resize_work, head);
1750 struct cds_lfht *ht = work->ht;
1751
1752 ht->cds_lfht_rcu_thread_offline();
1753 pthread_mutex_lock(&ht->resize_mutex);
1754 _do_cds_lfht_resize(ht);
1755 pthread_mutex_unlock(&ht->resize_mutex);
1756 ht->cds_lfht_rcu_thread_online();
1757 poison_free(work);
1758 cmm_smp_mb(); /* finish resize before decrement */
1759 uatomic_dec(&ht->in_progress_resize);
1760 }
1761
1762 static
1763 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1764 {
1765 struct rcu_resize_work *work;
1766 unsigned long target_size;
1767
1768 target_size = resize_target_update(ht, size, growth);
1769 /* Store resize_target before read resize_initiated */
1770 cmm_smp_mb();
1771 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1772 uatomic_inc(&ht->in_progress_resize);
1773 cmm_smp_mb(); /* increment resize count before load destroy */
1774 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1775 uatomic_dec(&ht->in_progress_resize);
1776 return;
1777 }
1778 work = malloc(sizeof(*work));
1779 work->ht = ht;
1780 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1781 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1782 }
1783 }
1784
1785 static
1786 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1787 unsigned long count)
1788 {
1789 struct rcu_resize_work *work;
1790
1791 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1792 return;
1793 resize_target_update_count(ht, count);
1794 /* Store resize_target before read resize_initiated */
1795 cmm_smp_mb();
1796 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1797 uatomic_inc(&ht->in_progress_resize);
1798 cmm_smp_mb(); /* increment resize count before load destroy */
1799 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1800 uatomic_dec(&ht->in_progress_resize);
1801 return;
1802 }
1803 work = malloc(sizeof(*work));
1804 work->ht = ht;
1805 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1806 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1807 }
1808 }
This page took 0.083522 seconds and 5 git commands to generate.