introduce bucket_at() and improve readability
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups and use the returned objects safely by delaying
38 * memory reclaim of a grace period.
39 * - Add and remove operations are lock-free, and do not need to
40 * allocate memory. They need to be executed within RCU read-side
41 * critical section to ensure the objects they read are valid and to
42 * deal with the cmpxchg ABA problem.
43 * - add and add_unique operations are supported. add_unique checks if
44 * the node key already exists in the hash table. It ensures no key
45 * duplicata exists.
46 * - The resize operation executes concurrently with add/remove/lookup.
47 * - Hash table nodes are contained within a split-ordered list. This
48 * list is ordered by incrementing reversed-bits-hash value.
49 * - An index of bucket nodes is kept. These bucket nodes are the hash
50 * table "buckets", and they are also chained together in the
51 * split-ordered list, which allows recursive expansion.
52 * - The resize operation for small tables only allows expanding the hash table.
53 * It is triggered automatically by detecting long chains in the add
54 * operation.
55 * - The resize operation for larger tables (and available through an
56 * API) allows both expanding and shrinking the hash table.
57 * - Split-counters are used to keep track of the number of
58 * nodes within the hash table for automatic resize triggering.
59 * - Resize operation initiated by long chain detection is executed by a
60 * call_rcu thread, which keeps lock-freedom of add and remove.
61 * - Resize operations are protected by a mutex.
62 * - The removal operation is split in two parts: first, a "removed"
63 * flag is set in the next pointer within the node to remove. Then,
64 * a "garbage collection" is performed in the bucket containing the
65 * removed node (from the start of the bucket up to the removed node).
66 * All encountered nodes with "removed" flag set in their next
67 * pointers are removed from the linked-list. If the cmpxchg used for
68 * removal fails (due to concurrent garbage-collection or concurrent
69 * add), we retry from the beginning of the bucket. This ensures that
70 * the node with "removed" flag set is removed from the hash table
71 * (not visible to lookups anymore) before the RCU read-side critical
72 * section held across removal ends. Furthermore, this ensures that
73 * the node with "removed" flag set is removed from the linked-list
74 * before its memory is reclaimed. Only the thread which removal
75 * successfully set the "removed" flag (with a cmpxchg) into a node's
76 * next pointer is considered to have succeeded its removal (and thus
77 * owns the node to reclaim). Because we garbage-collect starting from
78 * an invariant node (the start-of-bucket bucket node) up to the
79 * "removed" node (or find a reverse-hash that is higher), we are sure
80 * that a successful traversal of the chain leads to a chain that is
81 * present in the linked-list (the start node is never removed) and
82 * that is does not contain the "removed" node anymore, even if
83 * concurrent delete/add operations are changing the structure of the
84 * list concurrently.
85 * - The add operation performs gargage collection of buckets if it
86 * encounters nodes with removed flag set in the bucket where it wants
87 * to add its new node. This ensures lock-freedom of add operation by
88 * helping the remover unlink nodes from the list rather than to wait
89 * for it do to so.
90 * - A RCU "order table" indexed by log2(hash index) is copied and
91 * expanded by the resize operation. This order table allows finding
92 * the "bucket node" tables.
93 * - There is one bucket node table per hash index order. The size of
94 * each bucket node table is half the number of hashes contained in
95 * this order (except for order 0).
96 * - synchronzie_rcu is used to garbage-collect the old bucket node table.
97 * - The per-order bucket node tables contain a compact version of the
98 * hash table nodes. These tables are invariant after they are
99 * populated into the hash table.
100 *
101 * Bucket node tables:
102 *
103 * hash table hash table the last all bucket node tables
104 * order size bucket node 0 1 2 3 4 5 6(index)
105 * table size
106 * 0 1 1 1
107 * 1 2 1 1 1
108 * 2 4 2 1 1 2
109 * 3 8 4 1 1 2 4
110 * 4 16 8 1 1 2 4 8
111 * 5 32 16 1 1 2 4 8 16
112 * 6 64 32 1 1 2 4 8 16 32
113 *
114 * When growing/shrinking, we only focus on the last bucket node table
115 * which size is (!order ? 1 : (1 << (order -1))).
116 *
117 * Example for growing/shrinking:
118 * grow hash table from order 5 to 6: init the index=6 bucket node table
119 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
120 *
121 * A bit of ascii art explanation:
122 *
123 * Order index is the off-by-one compare to the actual power of 2 because
124 * we use index 0 to deal with the 0 special-case.
125 *
126 * This shows the nodes for a small table ordered by reversed bits:
127 *
128 * bits reverse
129 * 0 000 000
130 * 4 100 001
131 * 2 010 010
132 * 6 110 011
133 * 1 001 100
134 * 5 101 101
135 * 3 011 110
136 * 7 111 111
137 *
138 * This shows the nodes in order of non-reversed bits, linked by
139 * reversed-bit order.
140 *
141 * order bits reverse
142 * 0 0 000 000
143 * 1 | 1 001 100 <-
144 * 2 | | 2 010 010 <- |
145 * | | | 3 011 110 | <- |
146 * 3 -> | | | 4 100 001 | |
147 * -> | | 5 101 101 |
148 * -> | 6 110 011
149 * -> 7 111 111
150 */
151
152 #define _LGPL_SOURCE
153 #include <stdlib.h>
154 #include <errno.h>
155 #include <assert.h>
156 #include <stdio.h>
157 #include <stdint.h>
158 #include <string.h>
159
160 #include "config.h"
161 #include <urcu.h>
162 #include <urcu-call-rcu.h>
163 #include <urcu/arch.h>
164 #include <urcu/uatomic.h>
165 #include <urcu/compiler.h>
166 #include <urcu/rculfhash.h>
167 #include <stdio.h>
168 #include <pthread.h>
169
170 #ifdef DEBUG
171 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
172 #else
173 #define dbg_printf(fmt, args...)
174 #endif
175
176 /*
177 * Split-counters lazily update the global counter each 1024
178 * addition/removal. It automatically keeps track of resize required.
179 * We use the bucket length as indicator for need to expand for small
180 * tables and machines lacking per-cpu data suppport.
181 */
182 #define COUNT_COMMIT_ORDER 10
183 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
184 #define CHAIN_LEN_TARGET 1
185 #define CHAIN_LEN_RESIZE_THRESHOLD 3
186
187 /*
188 * Define the minimum table size.
189 */
190 #define MIN_TABLE_SIZE 1
191
192 #if (CAA_BITS_PER_LONG == 32)
193 #define MAX_TABLE_ORDER 32
194 #else
195 #define MAX_TABLE_ORDER 64
196 #endif
197
198 /*
199 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
200 */
201 #define MIN_PARTITION_PER_THREAD_ORDER 12
202 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
203
204 #ifndef min
205 #define min(a, b) ((a) < (b) ? (a) : (b))
206 #endif
207
208 #ifndef max
209 #define max(a, b) ((a) > (b) ? (a) : (b))
210 #endif
211
212 /*
213 * The removed flag needs to be updated atomically with the pointer.
214 * It indicates that no node must attach to the node scheduled for
215 * removal, and that node garbage collection must be performed.
216 * The bucket flag does not require to be updated atomically with the
217 * pointer, but it is added as a pointer low bit flag to save space.
218 */
219 #define REMOVED_FLAG (1UL << 0)
220 #define BUCKET_FLAG (1UL << 1)
221 #define FLAGS_MASK ((1UL << 2) - 1)
222
223 /* Value of the end pointer. Should not interact with flags. */
224 #define END_VALUE NULL
225
226 /*
227 * ht_items_count: Split-counters counting the number of node addition
228 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
229 * is set at hash table creation.
230 *
231 * These are free-running counters, never reset to zero. They count the
232 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
233 * operations to update the global counter. We choose a power-of-2 value
234 * for the trigger to deal with 32 or 64-bit overflow of the counter.
235 */
236 struct ht_items_count {
237 unsigned long add, del;
238 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
239
240 /*
241 * rcu_level: Contains the per order-index-level bucket node table. The
242 * size of each bucket node table is half the number of hashes contained
243 * in this order (except for order 0). The minimum allocation size
244 * parameter allows combining the bucket node arrays of the lowermost
245 * levels to improve cache locality for small index orders.
246 */
247 struct rcu_level {
248 /* Note: manually update allocation length when adding a field */
249 struct cds_lfht_node nodes[0];
250 };
251
252 /*
253 * rcu_table: Contains the size and desired new size if a resize
254 * operation is in progress, as well as the statically-sized array of
255 * rcu_level pointers.
256 */
257 struct rcu_table {
258 unsigned long size; /* always a power of 2, shared (RCU) */
259 unsigned long resize_target;
260 int resize_initiated;
261 struct rcu_level *tbl[MAX_TABLE_ORDER];
262 };
263
264 /*
265 * cds_lfht: Top-level data structure representing a lock-free hash
266 * table. Defined in the implementation file to make it be an opaque
267 * cookie to users.
268 */
269 struct cds_lfht {
270 struct rcu_table t;
271 unsigned long min_alloc_order;
272 unsigned long min_alloc_size;
273 int flags;
274 /*
275 * We need to put the work threads offline (QSBR) when taking this
276 * mutex, because we use synchronize_rcu within this mutex critical
277 * section, which waits on read-side critical sections, and could
278 * therefore cause grace-period deadlock if we hold off RCU G.P.
279 * completion.
280 */
281 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
282 unsigned int in_progress_resize, in_progress_destroy;
283 void (*cds_lfht_call_rcu)(struct rcu_head *head,
284 void (*func)(struct rcu_head *head));
285 void (*cds_lfht_synchronize_rcu)(void);
286 void (*cds_lfht_rcu_read_lock)(void);
287 void (*cds_lfht_rcu_read_unlock)(void);
288 void (*cds_lfht_rcu_thread_offline)(void);
289 void (*cds_lfht_rcu_thread_online)(void);
290 void (*cds_lfht_rcu_register_thread)(void);
291 void (*cds_lfht_rcu_unregister_thread)(void);
292 pthread_attr_t *resize_attr; /* Resize threads attributes */
293 long count; /* global approximate item count */
294 struct ht_items_count *split_count; /* split item count */
295 };
296
297 /*
298 * rcu_resize_work: Contains arguments passed to RCU worker thread
299 * responsible for performing lazy resize.
300 */
301 struct rcu_resize_work {
302 struct rcu_head head;
303 struct cds_lfht *ht;
304 };
305
306 /*
307 * partition_resize_work: Contains arguments passed to worker threads
308 * executing the hash table resize on partitions of the hash table
309 * assigned to each processor's worker thread.
310 */
311 struct partition_resize_work {
312 pthread_t thread_id;
313 struct cds_lfht *ht;
314 unsigned long i, start, len;
315 void (*fct)(struct cds_lfht *ht, unsigned long i,
316 unsigned long start, unsigned long len);
317 };
318
319 static
320 void _cds_lfht_add(struct cds_lfht *ht,
321 cds_lfht_match_fct match,
322 const void *key,
323 unsigned long size,
324 struct cds_lfht_node *node,
325 struct cds_lfht_iter *unique_ret,
326 int bucket);
327
328 /*
329 * Algorithm to reverse bits in a word by lookup table, extended to
330 * 64-bit words.
331 * Source:
332 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
333 * Originally from Public Domain.
334 */
335
336 static const uint8_t BitReverseTable256[256] =
337 {
338 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
339 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
340 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
341 R6(0), R6(2), R6(1), R6(3)
342 };
343 #undef R2
344 #undef R4
345 #undef R6
346
347 static
348 uint8_t bit_reverse_u8(uint8_t v)
349 {
350 return BitReverseTable256[v];
351 }
352
353 static __attribute__((unused))
354 uint32_t bit_reverse_u32(uint32_t v)
355 {
356 return ((uint32_t) bit_reverse_u8(v) << 24) |
357 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
358 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
359 ((uint32_t) bit_reverse_u8(v >> 24));
360 }
361
362 static __attribute__((unused))
363 uint64_t bit_reverse_u64(uint64_t v)
364 {
365 return ((uint64_t) bit_reverse_u8(v) << 56) |
366 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
367 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
368 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
369 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
370 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
371 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
372 ((uint64_t) bit_reverse_u8(v >> 56));
373 }
374
375 static
376 unsigned long bit_reverse_ulong(unsigned long v)
377 {
378 #if (CAA_BITS_PER_LONG == 32)
379 return bit_reverse_u32(v);
380 #else
381 return bit_reverse_u64(v);
382 #endif
383 }
384
385 /*
386 * fls: returns the position of the most significant bit.
387 * Returns 0 if no bit is set, else returns the position of the most
388 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
389 */
390 #if defined(__i386) || defined(__x86_64)
391 static inline
392 unsigned int fls_u32(uint32_t x)
393 {
394 int r;
395
396 asm("bsrl %1,%0\n\t"
397 "jnz 1f\n\t"
398 "movl $-1,%0\n\t"
399 "1:\n\t"
400 : "=r" (r) : "rm" (x));
401 return r + 1;
402 }
403 #define HAS_FLS_U32
404 #endif
405
406 #if defined(__x86_64)
407 static inline
408 unsigned int fls_u64(uint64_t x)
409 {
410 long r;
411
412 asm("bsrq %1,%0\n\t"
413 "jnz 1f\n\t"
414 "movq $-1,%0\n\t"
415 "1:\n\t"
416 : "=r" (r) : "rm" (x));
417 return r + 1;
418 }
419 #define HAS_FLS_U64
420 #endif
421
422 #ifndef HAS_FLS_U64
423 static __attribute__((unused))
424 unsigned int fls_u64(uint64_t x)
425 {
426 unsigned int r = 64;
427
428 if (!x)
429 return 0;
430
431 if (!(x & 0xFFFFFFFF00000000ULL)) {
432 x <<= 32;
433 r -= 32;
434 }
435 if (!(x & 0xFFFF000000000000ULL)) {
436 x <<= 16;
437 r -= 16;
438 }
439 if (!(x & 0xFF00000000000000ULL)) {
440 x <<= 8;
441 r -= 8;
442 }
443 if (!(x & 0xF000000000000000ULL)) {
444 x <<= 4;
445 r -= 4;
446 }
447 if (!(x & 0xC000000000000000ULL)) {
448 x <<= 2;
449 r -= 2;
450 }
451 if (!(x & 0x8000000000000000ULL)) {
452 x <<= 1;
453 r -= 1;
454 }
455 return r;
456 }
457 #endif
458
459 #ifndef HAS_FLS_U32
460 static __attribute__((unused))
461 unsigned int fls_u32(uint32_t x)
462 {
463 unsigned int r = 32;
464
465 if (!x)
466 return 0;
467 if (!(x & 0xFFFF0000U)) {
468 x <<= 16;
469 r -= 16;
470 }
471 if (!(x & 0xFF000000U)) {
472 x <<= 8;
473 r -= 8;
474 }
475 if (!(x & 0xF0000000U)) {
476 x <<= 4;
477 r -= 4;
478 }
479 if (!(x & 0xC0000000U)) {
480 x <<= 2;
481 r -= 2;
482 }
483 if (!(x & 0x80000000U)) {
484 x <<= 1;
485 r -= 1;
486 }
487 return r;
488 }
489 #endif
490
491 unsigned int fls_ulong(unsigned long x)
492 {
493 #if (CAA_BITS_PER_LONG == 32)
494 return fls_u32(x);
495 #else
496 return fls_u64(x);
497 #endif
498 }
499
500 /*
501 * Return the minimum order for which x <= (1UL << order).
502 * Return -1 if x is 0.
503 */
504 int get_count_order_u32(uint32_t x)
505 {
506 if (!x)
507 return -1;
508
509 return fls_u32(x - 1);
510 }
511
512 /*
513 * Return the minimum order for which x <= (1UL << order).
514 * Return -1 if x is 0.
515 */
516 int get_count_order_ulong(unsigned long x)
517 {
518 if (!x)
519 return -1;
520
521 return fls_ulong(x - 1);
522 }
523
524 #ifdef POISON_FREE
525 #define poison_free(ptr) \
526 do { \
527 if (ptr) { \
528 memset(ptr, 0x42, sizeof(*(ptr))); \
529 free(ptr); \
530 } \
531 } while (0)
532 #else
533 #define poison_free(ptr) free(ptr)
534 #endif
535
536 static
537 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
538
539 static
540 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
541 unsigned long count);
542
543 static long nr_cpus_mask = -1;
544 static long split_count_mask = -1;
545
546 #if defined(HAVE_SYSCONF)
547 static void ht_init_nr_cpus_mask(void)
548 {
549 long maxcpus;
550
551 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
552 if (maxcpus <= 0) {
553 nr_cpus_mask = -2;
554 return;
555 }
556 /*
557 * round up number of CPUs to next power of two, so we
558 * can use & for modulo.
559 */
560 maxcpus = 1UL << get_count_order_ulong(maxcpus);
561 nr_cpus_mask = maxcpus - 1;
562 }
563 #else /* #if defined(HAVE_SYSCONF) */
564 static void ht_init_nr_cpus_mask(void)
565 {
566 nr_cpus_mask = -2;
567 }
568 #endif /* #else #if defined(HAVE_SYSCONF) */
569
570 static
571 void alloc_split_items_count(struct cds_lfht *ht)
572 {
573 struct ht_items_count *count;
574
575 if (nr_cpus_mask == -1) {
576 ht_init_nr_cpus_mask();
577 if (nr_cpus_mask < 0)
578 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
579 else
580 split_count_mask = nr_cpus_mask;
581 }
582
583 assert(split_count_mask >= 0);
584
585 if (ht->flags & CDS_LFHT_ACCOUNTING) {
586 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
587 assert(ht->split_count);
588 } else {
589 ht->split_count = NULL;
590 }
591 }
592
593 static
594 void free_split_items_count(struct cds_lfht *ht)
595 {
596 poison_free(ht->split_count);
597 }
598
599 #if defined(HAVE_SCHED_GETCPU)
600 static
601 int ht_get_split_count_index(unsigned long hash)
602 {
603 int cpu;
604
605 assert(split_count_mask >= 0);
606 cpu = sched_getcpu();
607 if (caa_unlikely(cpu < 0))
608 return hash & split_count_mask;
609 else
610 return cpu & split_count_mask;
611 }
612 #else /* #if defined(HAVE_SCHED_GETCPU) */
613 static
614 int ht_get_split_count_index(unsigned long hash)
615 {
616 return hash & split_count_mask;
617 }
618 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
619
620 static
621 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
622 {
623 unsigned long split_count;
624 int index;
625
626 if (caa_unlikely(!ht->split_count))
627 return;
628 index = ht_get_split_count_index(hash);
629 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
630 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
631 long count;
632
633 dbg_printf("add split count %lu\n", split_count);
634 count = uatomic_add_return(&ht->count,
635 1UL << COUNT_COMMIT_ORDER);
636 /* If power of 2 */
637 if (!(count & (count - 1))) {
638 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
639 return;
640 dbg_printf("add set global %ld\n", count);
641 cds_lfht_resize_lazy_count(ht, size,
642 count >> (CHAIN_LEN_TARGET - 1));
643 }
644 }
645 }
646
647 static
648 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
649 {
650 unsigned long split_count;
651 int index;
652
653 if (caa_unlikely(!ht->split_count))
654 return;
655 index = ht_get_split_count_index(hash);
656 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
657 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
658 long count;
659
660 dbg_printf("del split count %lu\n", split_count);
661 count = uatomic_add_return(&ht->count,
662 -(1UL << COUNT_COMMIT_ORDER));
663 /* If power of 2 */
664 if (!(count & (count - 1))) {
665 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
666 return;
667 dbg_printf("del set global %ld\n", count);
668 /*
669 * Don't shrink table if the number of nodes is below a
670 * certain threshold.
671 */
672 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
673 return;
674 cds_lfht_resize_lazy_count(ht, size,
675 count >> (CHAIN_LEN_TARGET - 1));
676 }
677 }
678 }
679
680 static
681 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
682 {
683 unsigned long count;
684
685 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
686 return;
687 count = uatomic_read(&ht->count);
688 /*
689 * Use bucket-local length for small table expand and for
690 * environments lacking per-cpu data support.
691 */
692 if (count >= (1UL << COUNT_COMMIT_ORDER))
693 return;
694 if (chain_len > 100)
695 dbg_printf("WARNING: large chain length: %u.\n",
696 chain_len);
697 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
698 cds_lfht_resize_lazy_grow(ht, size,
699 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
700 }
701
702 static
703 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
704 {
705 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
706 }
707
708 static
709 int is_removed(struct cds_lfht_node *node)
710 {
711 return ((unsigned long) node) & REMOVED_FLAG;
712 }
713
714 static
715 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
716 {
717 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
718 }
719
720 static
721 int is_bucket(struct cds_lfht_node *node)
722 {
723 return ((unsigned long) node) & BUCKET_FLAG;
724 }
725
726 static
727 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
728 {
729 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
730 }
731
732 static
733 struct cds_lfht_node *get_end(void)
734 {
735 return (struct cds_lfht_node *) END_VALUE;
736 }
737
738 static
739 int is_end(struct cds_lfht_node *node)
740 {
741 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
742 }
743
744 static
745 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
746 unsigned long v)
747 {
748 unsigned long old1, old2;
749
750 old1 = uatomic_read(ptr);
751 do {
752 old2 = old1;
753 if (old2 >= v)
754 return old2;
755 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
756 return old2;
757 }
758
759 static inline
760 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
761 {
762 unsigned long order;
763
764 if ((__builtin_constant_p(index) && index == 0)
765 || index < ht->min_alloc_size) {
766 dbg_printf("bucket index %lu order 0 aridx 0\n", index);
767 return &ht->t.tbl[0]->nodes[index];
768 }
769 /*
770 * equivalent to get_count_order_ulong(index + 1), but optimizes
771 * away the non-existing 0 special-case for
772 * get_count_order_ulong.
773 */
774 order = fls_ulong(index);
775 dbg_printf("bucket index %lu order %lu aridx %lu\n",
776 index, order, index & ((1UL << (order - 1)) - 1));
777 return &ht->t.tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
778 }
779
780 static inline
781 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
782 unsigned long hash)
783 {
784 assert(size > 0);
785 return bucket_at(ht, hash & (size - 1));
786 }
787
788 /*
789 * Remove all logically deleted nodes from a bucket up to a certain node key.
790 */
791 static
792 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
793 {
794 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
795
796 assert(!is_bucket(bucket));
797 assert(!is_removed(bucket));
798 assert(!is_bucket(node));
799 assert(!is_removed(node));
800 for (;;) {
801 iter_prev = bucket;
802 /* We can always skip the bucket node initially */
803 iter = rcu_dereference(iter_prev->next);
804 assert(!is_removed(iter));
805 assert(iter_prev->reverse_hash <= node->reverse_hash);
806 /*
807 * We should never be called with bucket (start of chain)
808 * and logically removed node (end of path compression
809 * marker) being the actual same node. This would be a
810 * bug in the algorithm implementation.
811 */
812 assert(bucket != node);
813 for (;;) {
814 if (caa_unlikely(is_end(iter)))
815 return;
816 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
817 return;
818 next = rcu_dereference(clear_flag(iter)->next);
819 if (caa_likely(is_removed(next)))
820 break;
821 iter_prev = clear_flag(iter);
822 iter = next;
823 }
824 assert(!is_removed(iter));
825 if (is_bucket(iter))
826 new_next = flag_bucket(clear_flag(next));
827 else
828 new_next = clear_flag(next);
829 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
830 }
831 return;
832 }
833
834 static
835 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
836 struct cds_lfht_node *old_node,
837 struct cds_lfht_node *old_next,
838 struct cds_lfht_node *new_node)
839 {
840 struct cds_lfht_node *bucket, *ret_next;
841
842 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
843 return -ENOENT;
844
845 assert(!is_removed(old_node));
846 assert(!is_bucket(old_node));
847 assert(!is_removed(new_node));
848 assert(!is_bucket(new_node));
849 assert(new_node != old_node);
850 for (;;) {
851 /* Insert after node to be replaced */
852 if (is_removed(old_next)) {
853 /*
854 * Too late, the old node has been removed under us
855 * between lookup and replace. Fail.
856 */
857 return -ENOENT;
858 }
859 assert(!is_bucket(old_next));
860 assert(new_node != clear_flag(old_next));
861 new_node->next = clear_flag(old_next);
862 /*
863 * Here is the whole trick for lock-free replace: we add
864 * the replacement node _after_ the node we want to
865 * replace by atomically setting its next pointer at the
866 * same time we set its removal flag. Given that
867 * the lookups/get next use an iterator aware of the
868 * next pointer, they will either skip the old node due
869 * to the removal flag and see the new node, or use
870 * the old node, but will not see the new one.
871 */
872 ret_next = uatomic_cmpxchg(&old_node->next,
873 old_next, flag_removed(new_node));
874 if (ret_next == old_next)
875 break; /* We performed the replacement. */
876 old_next = ret_next;
877 }
878
879 /*
880 * Ensure that the old node is not visible to readers anymore:
881 * lookup for the node, and remove it (along with any other
882 * logically removed node) if found.
883 */
884 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
885 _cds_lfht_gc_bucket(bucket, new_node);
886
887 assert(is_removed(rcu_dereference(old_node->next)));
888 return 0;
889 }
890
891 /*
892 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
893 * mode. A NULL unique_ret allows creation of duplicate keys.
894 */
895 static
896 void _cds_lfht_add(struct cds_lfht *ht,
897 cds_lfht_match_fct match,
898 const void *key,
899 unsigned long size,
900 struct cds_lfht_node *node,
901 struct cds_lfht_iter *unique_ret,
902 int bucket_flag)
903 {
904 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
905 *return_node;
906 struct cds_lfht_node *bucket;
907
908 assert(!is_bucket(node));
909 assert(!is_removed(node));
910 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
911 for (;;) {
912 uint32_t chain_len = 0;
913
914 /*
915 * iter_prev points to the non-removed node prior to the
916 * insert location.
917 */
918 iter_prev = bucket;
919 /* We can always skip the bucket node initially */
920 iter = rcu_dereference(iter_prev->next);
921 assert(iter_prev->reverse_hash <= node->reverse_hash);
922 for (;;) {
923 if (caa_unlikely(is_end(iter)))
924 goto insert;
925 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
926 goto insert;
927
928 /* bucket node is the first node of the identical-hash-value chain */
929 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
930 goto insert;
931
932 next = rcu_dereference(clear_flag(iter)->next);
933 if (caa_unlikely(is_removed(next)))
934 goto gc_node;
935
936 /* uniquely add */
937 if (unique_ret
938 && !is_bucket(next)
939 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
940 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
941
942 /*
943 * uniquely adding inserts the node as the first
944 * node of the identical-hash-value node chain.
945 *
946 * This semantic ensures no duplicated keys
947 * should ever be observable in the table
948 * (including observe one node by one node
949 * by forward iterations)
950 */
951 cds_lfht_next_duplicate(ht, match, key, &d_iter);
952 if (!d_iter.node)
953 goto insert;
954
955 *unique_ret = d_iter;
956 return;
957 }
958
959 /* Only account for identical reverse hash once */
960 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
961 && !is_bucket(next))
962 check_resize(ht, size, ++chain_len);
963 iter_prev = clear_flag(iter);
964 iter = next;
965 }
966
967 insert:
968 assert(node != clear_flag(iter));
969 assert(!is_removed(iter_prev));
970 assert(!is_removed(iter));
971 assert(iter_prev != node);
972 if (!bucket_flag)
973 node->next = clear_flag(iter);
974 else
975 node->next = flag_bucket(clear_flag(iter));
976 if (is_bucket(iter))
977 new_node = flag_bucket(node);
978 else
979 new_node = node;
980 if (uatomic_cmpxchg(&iter_prev->next, iter,
981 new_node) != iter) {
982 continue; /* retry */
983 } else {
984 return_node = node;
985 goto end;
986 }
987
988 gc_node:
989 assert(!is_removed(iter));
990 if (is_bucket(iter))
991 new_next = flag_bucket(clear_flag(next));
992 else
993 new_next = clear_flag(next);
994 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
995 /* retry */
996 }
997 end:
998 if (unique_ret) {
999 unique_ret->node = return_node;
1000 /* unique_ret->next left unset, never used. */
1001 }
1002 }
1003
1004 static
1005 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1006 struct cds_lfht_node *node,
1007 int bucket_removal)
1008 {
1009 struct cds_lfht_node *bucket, *next, *old;
1010
1011 if (!node) /* Return -ENOENT if asked to delete NULL node */
1012 return -ENOENT;
1013
1014 /* logically delete the node */
1015 assert(!is_bucket(node));
1016 assert(!is_removed(node));
1017 old = rcu_dereference(node->next);
1018 do {
1019 struct cds_lfht_node *new_next;
1020
1021 next = old;
1022 if (caa_unlikely(is_removed(next)))
1023 return -ENOENT;
1024 if (bucket_removal)
1025 assert(is_bucket(next));
1026 else
1027 assert(!is_bucket(next));
1028 new_next = flag_removed(next);
1029 old = uatomic_cmpxchg(&node->next, next, new_next);
1030 } while (old != next);
1031 /* We performed the (logical) deletion. */
1032
1033 /*
1034 * Ensure that the node is not visible to readers anymore: lookup for
1035 * the node, and remove it (along with any other logically removed node)
1036 * if found.
1037 */
1038 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1039 _cds_lfht_gc_bucket(bucket, node);
1040
1041 assert(is_removed(rcu_dereference(node->next)));
1042 return 0;
1043 }
1044
1045 static
1046 void *partition_resize_thread(void *arg)
1047 {
1048 struct partition_resize_work *work = arg;
1049
1050 work->ht->cds_lfht_rcu_register_thread();
1051 work->fct(work->ht, work->i, work->start, work->len);
1052 work->ht->cds_lfht_rcu_unregister_thread();
1053 return NULL;
1054 }
1055
1056 static
1057 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1058 unsigned long len,
1059 void (*fct)(struct cds_lfht *ht, unsigned long i,
1060 unsigned long start, unsigned long len))
1061 {
1062 unsigned long partition_len;
1063 struct partition_resize_work *work;
1064 int thread, ret;
1065 unsigned long nr_threads;
1066
1067 /*
1068 * Note: nr_cpus_mask + 1 is always power of 2.
1069 * We spawn just the number of threads we need to satisfy the minimum
1070 * partition size, up to the number of CPUs in the system.
1071 */
1072 if (nr_cpus_mask > 0) {
1073 nr_threads = min(nr_cpus_mask + 1,
1074 len >> MIN_PARTITION_PER_THREAD_ORDER);
1075 } else {
1076 nr_threads = 1;
1077 }
1078 partition_len = len >> get_count_order_ulong(nr_threads);
1079 work = calloc(nr_threads, sizeof(*work));
1080 assert(work);
1081 for (thread = 0; thread < nr_threads; thread++) {
1082 work[thread].ht = ht;
1083 work[thread].i = i;
1084 work[thread].len = partition_len;
1085 work[thread].start = thread * partition_len;
1086 work[thread].fct = fct;
1087 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1088 partition_resize_thread, &work[thread]);
1089 assert(!ret);
1090 }
1091 for (thread = 0; thread < nr_threads; thread++) {
1092 ret = pthread_join(work[thread].thread_id, NULL);
1093 assert(!ret);
1094 }
1095 free(work);
1096 }
1097
1098 /*
1099 * Holding RCU read lock to protect _cds_lfht_add against memory
1100 * reclaim that could be performed by other call_rcu worker threads (ABA
1101 * problem).
1102 *
1103 * When we reach a certain length, we can split this population phase over
1104 * many worker threads, based on the number of CPUs available in the system.
1105 * This should therefore take care of not having the expand lagging behind too
1106 * many concurrent insertion threads by using the scheduler's ability to
1107 * schedule bucket node population fairly with insertions.
1108 */
1109 static
1110 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1111 unsigned long start, unsigned long len)
1112 {
1113 unsigned long j, size = 1UL << (i - 1);
1114
1115 assert(i > ht->min_alloc_order);
1116 ht->cds_lfht_rcu_read_lock();
1117 for (j = size + start; j < size + start + len; j++) {
1118 struct cds_lfht_node *new_node = bucket_at(ht, j);
1119
1120 assert(j >= size && j < (size << 1));
1121 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1122 i, j, j);
1123 new_node->reverse_hash = bit_reverse_ulong(j);
1124 _cds_lfht_add(ht, NULL, NULL, size, new_node, NULL, 1);
1125 }
1126 ht->cds_lfht_rcu_read_unlock();
1127 }
1128
1129 static
1130 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1131 unsigned long len)
1132 {
1133 assert(nr_cpus_mask != -1);
1134 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1135 ht->cds_lfht_rcu_thread_online();
1136 init_table_populate_partition(ht, i, 0, len);
1137 ht->cds_lfht_rcu_thread_offline();
1138 return;
1139 }
1140 partition_resize_helper(ht, i, len, init_table_populate_partition);
1141 }
1142
1143 static
1144 void init_table(struct cds_lfht *ht,
1145 unsigned long first_order, unsigned long last_order)
1146 {
1147 unsigned long i;
1148
1149 dbg_printf("init table: first_order %lu last_order %lu\n",
1150 first_order, last_order);
1151 assert(first_order > ht->min_alloc_order);
1152 for (i = first_order; i <= last_order; i++) {
1153 unsigned long len;
1154
1155 len = 1UL << (i - 1);
1156 dbg_printf("init order %lu len: %lu\n", i, len);
1157
1158 /* Stop expand if the resize target changes under us */
1159 if (CMM_LOAD_SHARED(ht->t.resize_target) < (1UL << i))
1160 break;
1161
1162 ht->t.tbl[i] = calloc(1, len * sizeof(struct cds_lfht_node));
1163 assert(ht->t.tbl[i]);
1164
1165 /*
1166 * Set all bucket nodes reverse hash values for a level and
1167 * link all bucket nodes into the table.
1168 */
1169 init_table_populate(ht, i, len);
1170
1171 /*
1172 * Update table size.
1173 */
1174 cmm_smp_wmb(); /* populate data before RCU size */
1175 CMM_STORE_SHARED(ht->t.size, 1UL << i);
1176
1177 dbg_printf("init new size: %lu\n", 1UL << i);
1178 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1179 break;
1180 }
1181 }
1182
1183 /*
1184 * Holding RCU read lock to protect _cds_lfht_remove against memory
1185 * reclaim that could be performed by other call_rcu worker threads (ABA
1186 * problem).
1187 * For a single level, we logically remove and garbage collect each node.
1188 *
1189 * As a design choice, we perform logical removal and garbage collection on a
1190 * node-per-node basis to simplify this algorithm. We also assume keeping good
1191 * cache locality of the operation would overweight possible performance gain
1192 * that could be achieved by batching garbage collection for multiple levels.
1193 * However, this would have to be justified by benchmarks.
1194 *
1195 * Concurrent removal and add operations are helping us perform garbage
1196 * collection of logically removed nodes. We guarantee that all logically
1197 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1198 * invoked to free a hole level of bucket nodes (after a grace period).
1199 *
1200 * Logical removal and garbage collection can therefore be done in batch or on a
1201 * node-per-node basis, as long as the guarantee above holds.
1202 *
1203 * When we reach a certain length, we can split this removal over many worker
1204 * threads, based on the number of CPUs available in the system. This should
1205 * take care of not letting resize process lag behind too many concurrent
1206 * updater threads actively inserting into the hash table.
1207 */
1208 static
1209 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1210 unsigned long start, unsigned long len)
1211 {
1212 unsigned long j, size = 1UL << (i - 1);
1213
1214 assert(i > ht->min_alloc_order);
1215 ht->cds_lfht_rcu_read_lock();
1216 for (j = size + start; j < size + start + len; j++) {
1217 struct cds_lfht_node *fini_node = bucket_at(ht, j);
1218
1219 assert(j >= size && j < (size << 1));
1220 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1221 i, j, j);
1222 fini_node->reverse_hash = bit_reverse_ulong(j);
1223 (void) _cds_lfht_del(ht, size, fini_node, 1);
1224 }
1225 ht->cds_lfht_rcu_read_unlock();
1226 }
1227
1228 static
1229 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1230 {
1231
1232 assert(nr_cpus_mask != -1);
1233 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1234 ht->cds_lfht_rcu_thread_online();
1235 remove_table_partition(ht, i, 0, len);
1236 ht->cds_lfht_rcu_thread_offline();
1237 return;
1238 }
1239 partition_resize_helper(ht, i, len, remove_table_partition);
1240 }
1241
1242 static
1243 void fini_table(struct cds_lfht *ht,
1244 unsigned long first_order, unsigned long last_order)
1245 {
1246 long i;
1247 void *free_by_rcu = NULL;
1248
1249 dbg_printf("fini table: first_order %lu last_order %lu\n",
1250 first_order, last_order);
1251 assert(first_order > ht->min_alloc_order);
1252 for (i = last_order; i >= first_order; i--) {
1253 unsigned long len;
1254
1255 len = 1UL << (i - 1);
1256 dbg_printf("fini order %lu len: %lu\n", i, len);
1257
1258 /* Stop shrink if the resize target changes under us */
1259 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1260 break;
1261
1262 cmm_smp_wmb(); /* populate data before RCU size */
1263 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1264
1265 /*
1266 * We need to wait for all add operations to reach Q.S. (and
1267 * thus use the new table for lookups) before we can start
1268 * releasing the old bucket nodes. Otherwise their lookup will
1269 * return a logically removed node as insert position.
1270 */
1271 ht->cds_lfht_synchronize_rcu();
1272 if (free_by_rcu)
1273 free(free_by_rcu);
1274
1275 /*
1276 * Set "removed" flag in bucket nodes about to be removed.
1277 * Unlink all now-logically-removed bucket node pointers.
1278 * Concurrent add/remove operation are helping us doing
1279 * the gc.
1280 */
1281 remove_table(ht, i, len);
1282
1283 free_by_rcu = ht->t.tbl[i];
1284
1285 dbg_printf("fini new size: %lu\n", 1UL << i);
1286 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1287 break;
1288 }
1289
1290 if (free_by_rcu) {
1291 ht->cds_lfht_synchronize_rcu();
1292 free(free_by_rcu);
1293 }
1294 }
1295
1296 static
1297 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1298 {
1299 struct cds_lfht_node *prev, *node;
1300 unsigned long order, len, i;
1301
1302 ht->t.tbl[0] = calloc(1, ht->min_alloc_size * sizeof(struct cds_lfht_node));
1303 assert(ht->t.tbl[0]);
1304
1305 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1306 node = bucket_at(ht, 0);
1307 node->next = flag_bucket(get_end());
1308 node->reverse_hash = 0;
1309
1310 for (order = 1; order < get_count_order_ulong(size) + 1; order++) {
1311 len = 1UL << (order - 1);
1312 if (order <= ht->min_alloc_order) {
1313 ht->t.tbl[order] = (struct rcu_level *) (ht->t.tbl[0]->nodes + len);
1314 } else {
1315 ht->t.tbl[order] = calloc(1, len * sizeof(struct cds_lfht_node));
1316 assert(ht->t.tbl[order]);
1317 }
1318
1319 for (i = 0; i < len; i++) {
1320 /*
1321 * Now, we are trying to init the node with the
1322 * hash=(len+i) (which is also a bucket with the
1323 * index=(len+i)) and insert it into the hash table,
1324 * so this node has to be inserted after the bucket
1325 * with the index=(len+i)&(len-1)=i. And because there
1326 * is no other non-bucket node nor bucket node with
1327 * larger index/hash inserted, so the bucket node
1328 * being inserted should be inserted directly linked
1329 * after the bucket node with index=i.
1330 */
1331 prev = bucket_at(ht, i);
1332 node = bucket_at(ht, len + i);
1333
1334 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1335 order, len + i, len + i);
1336 node->reverse_hash = bit_reverse_ulong(len + i);
1337
1338 /* insert after prev */
1339 assert(is_bucket(prev->next));
1340 node->next = prev->next;
1341 prev->next = flag_bucket(node);
1342 }
1343 }
1344 }
1345
1346 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1347 unsigned long min_alloc_size,
1348 int flags,
1349 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1350 void (*func)(struct rcu_head *head)),
1351 void (*cds_lfht_synchronize_rcu)(void),
1352 void (*cds_lfht_rcu_read_lock)(void),
1353 void (*cds_lfht_rcu_read_unlock)(void),
1354 void (*cds_lfht_rcu_thread_offline)(void),
1355 void (*cds_lfht_rcu_thread_online)(void),
1356 void (*cds_lfht_rcu_register_thread)(void),
1357 void (*cds_lfht_rcu_unregister_thread)(void),
1358 pthread_attr_t *attr)
1359 {
1360 struct cds_lfht *ht;
1361 unsigned long order;
1362
1363 /* min_alloc_size must be power of two */
1364 if (!min_alloc_size || (min_alloc_size & (min_alloc_size - 1)))
1365 return NULL;
1366 /* init_size must be power of two */
1367 if (!init_size || (init_size & (init_size - 1)))
1368 return NULL;
1369 min_alloc_size = max(min_alloc_size, MIN_TABLE_SIZE);
1370 init_size = max(init_size, min_alloc_size);
1371 ht = calloc(1, sizeof(struct cds_lfht));
1372 assert(ht);
1373 ht->flags = flags;
1374 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1375 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1376 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1377 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1378 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1379 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1380 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1381 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1382 ht->resize_attr = attr;
1383 alloc_split_items_count(ht);
1384 /* this mutex should not nest in read-side C.S. */
1385 pthread_mutex_init(&ht->resize_mutex, NULL);
1386 order = get_count_order_ulong(init_size);
1387 ht->t.resize_target = 1UL << order;
1388 ht->min_alloc_size = min_alloc_size;
1389 ht->min_alloc_order = get_count_order_ulong(min_alloc_size);
1390 cds_lfht_create_bucket(ht, 1UL << order);
1391 ht->t.size = 1UL << order;
1392 return ht;
1393 }
1394
1395 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1396 cds_lfht_match_fct match, const void *key,
1397 struct cds_lfht_iter *iter)
1398 {
1399 struct cds_lfht_node *node, *next, *bucket;
1400 unsigned long reverse_hash, size;
1401
1402 reverse_hash = bit_reverse_ulong(hash);
1403
1404 size = rcu_dereference(ht->t.size);
1405 bucket = lookup_bucket(ht, size, hash);
1406 /* We can always skip the bucket node initially */
1407 node = rcu_dereference(bucket->next);
1408 node = clear_flag(node);
1409 for (;;) {
1410 if (caa_unlikely(is_end(node))) {
1411 node = next = NULL;
1412 break;
1413 }
1414 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1415 node = next = NULL;
1416 break;
1417 }
1418 next = rcu_dereference(node->next);
1419 assert(node == clear_flag(node));
1420 if (caa_likely(!is_removed(next))
1421 && !is_bucket(next)
1422 && node->reverse_hash == reverse_hash
1423 && caa_likely(match(node, key))) {
1424 break;
1425 }
1426 node = clear_flag(next);
1427 }
1428 assert(!node || !is_bucket(rcu_dereference(node->next)));
1429 iter->node = node;
1430 iter->next = next;
1431 }
1432
1433 void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1434 const void *key, struct cds_lfht_iter *iter)
1435 {
1436 struct cds_lfht_node *node, *next;
1437 unsigned long reverse_hash;
1438
1439 node = iter->node;
1440 reverse_hash = node->reverse_hash;
1441 next = iter->next;
1442 node = clear_flag(next);
1443
1444 for (;;) {
1445 if (caa_unlikely(is_end(node))) {
1446 node = next = NULL;
1447 break;
1448 }
1449 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1450 node = next = NULL;
1451 break;
1452 }
1453 next = rcu_dereference(node->next);
1454 if (caa_likely(!is_removed(next))
1455 && !is_bucket(next)
1456 && caa_likely(match(node, key))) {
1457 break;
1458 }
1459 node = clear_flag(next);
1460 }
1461 assert(!node || !is_bucket(rcu_dereference(node->next)));
1462 iter->node = node;
1463 iter->next = next;
1464 }
1465
1466 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1467 {
1468 struct cds_lfht_node *node, *next;
1469
1470 node = clear_flag(iter->next);
1471 for (;;) {
1472 if (caa_unlikely(is_end(node))) {
1473 node = next = NULL;
1474 break;
1475 }
1476 next = rcu_dereference(node->next);
1477 if (caa_likely(!is_removed(next))
1478 && !is_bucket(next)) {
1479 break;
1480 }
1481 node = clear_flag(next);
1482 }
1483 assert(!node || !is_bucket(rcu_dereference(node->next)));
1484 iter->node = node;
1485 iter->next = next;
1486 }
1487
1488 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1489 {
1490 /*
1491 * Get next after first bucket node. The first bucket node is the
1492 * first node of the linked list.
1493 */
1494 iter->next = bucket_at(ht, 0)->next;
1495 cds_lfht_next(ht, iter);
1496 }
1497
1498 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1499 struct cds_lfht_node *node)
1500 {
1501 unsigned long size;
1502
1503 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1504 size = rcu_dereference(ht->t.size);
1505 _cds_lfht_add(ht, NULL, NULL, size, node, NULL, 0);
1506 ht_count_add(ht, size, hash);
1507 }
1508
1509 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1510 unsigned long hash,
1511 cds_lfht_match_fct match,
1512 const void *key,
1513 struct cds_lfht_node *node)
1514 {
1515 unsigned long size;
1516 struct cds_lfht_iter iter;
1517
1518 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1519 size = rcu_dereference(ht->t.size);
1520 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1521 if (iter.node == node)
1522 ht_count_add(ht, size, hash);
1523 return iter.node;
1524 }
1525
1526 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1527 unsigned long hash,
1528 cds_lfht_match_fct match,
1529 const void *key,
1530 struct cds_lfht_node *node)
1531 {
1532 unsigned long size;
1533 struct cds_lfht_iter iter;
1534
1535 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1536 size = rcu_dereference(ht->t.size);
1537 for (;;) {
1538 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1539 if (iter.node == node) {
1540 ht_count_add(ht, size, hash);
1541 return NULL;
1542 }
1543
1544 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1545 return iter.node;
1546 }
1547 }
1548
1549 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1550 struct cds_lfht_node *new_node)
1551 {
1552 unsigned long size;
1553
1554 size = rcu_dereference(ht->t.size);
1555 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1556 new_node);
1557 }
1558
1559 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1560 {
1561 unsigned long size, hash;
1562 int ret;
1563
1564 size = rcu_dereference(ht->t.size);
1565 ret = _cds_lfht_del(ht, size, iter->node, 0);
1566 if (!ret) {
1567 hash = bit_reverse_ulong(iter->node->reverse_hash);
1568 ht_count_del(ht, size, hash);
1569 }
1570 return ret;
1571 }
1572
1573 static
1574 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1575 {
1576 struct cds_lfht_node *node;
1577 unsigned long order, i, size;
1578
1579 /* Check that the table is empty */
1580 node = bucket_at(ht, 0);
1581 do {
1582 node = clear_flag(node)->next;
1583 if (!is_bucket(node))
1584 return -EPERM;
1585 assert(!is_removed(node));
1586 } while (!is_end(node));
1587 /*
1588 * size accessed without rcu_dereference because hash table is
1589 * being destroyed.
1590 */
1591 size = ht->t.size;
1592 /* Internal sanity check: all nodes left should be bucket */
1593 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1594 unsigned long len;
1595
1596 len = !order ? 1 : 1UL << (order - 1);
1597 for (i = 0; i < len; i++) {
1598 dbg_printf("delete order %lu i %lu hash %lu\n",
1599 order, i,
1600 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1601 assert(is_bucket(ht->t.tbl[order]->nodes[i].next));
1602 }
1603
1604 if (order == ht->min_alloc_order)
1605 poison_free(ht->t.tbl[0]);
1606 else if (order > ht->min_alloc_order)
1607 poison_free(ht->t.tbl[order]);
1608 /* Nothing to delete for order < ht->min_alloc_order */
1609 }
1610 return 0;
1611 }
1612
1613 /*
1614 * Should only be called when no more concurrent readers nor writers can
1615 * possibly access the table.
1616 */
1617 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1618 {
1619 int ret;
1620
1621 /* Wait for in-flight resize operations to complete */
1622 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1623 cmm_smp_mb(); /* Store destroy before load resize */
1624 while (uatomic_read(&ht->in_progress_resize))
1625 poll(NULL, 0, 100); /* wait for 100ms */
1626 ret = cds_lfht_delete_bucket(ht);
1627 if (ret)
1628 return ret;
1629 free_split_items_count(ht);
1630 if (attr)
1631 *attr = ht->resize_attr;
1632 poison_free(ht);
1633 return ret;
1634 }
1635
1636 void cds_lfht_count_nodes(struct cds_lfht *ht,
1637 long *approx_before,
1638 unsigned long *count,
1639 unsigned long *removed,
1640 long *approx_after)
1641 {
1642 struct cds_lfht_node *node, *next;
1643 unsigned long nr_bucket = 0;
1644
1645 *approx_before = 0;
1646 if (ht->split_count) {
1647 int i;
1648
1649 for (i = 0; i < split_count_mask + 1; i++) {
1650 *approx_before += uatomic_read(&ht->split_count[i].add);
1651 *approx_before -= uatomic_read(&ht->split_count[i].del);
1652 }
1653 }
1654
1655 *count = 0;
1656 *removed = 0;
1657
1658 /* Count non-bucket nodes in the table */
1659 node = bucket_at(ht, 0);
1660 do {
1661 next = rcu_dereference(node->next);
1662 if (is_removed(next)) {
1663 if (!is_bucket(next))
1664 (*removed)++;
1665 else
1666 (nr_bucket)++;
1667 } else if (!is_bucket(next))
1668 (*count)++;
1669 else
1670 (nr_bucket)++;
1671 node = clear_flag(next);
1672 } while (!is_end(node));
1673 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1674 *approx_after = 0;
1675 if (ht->split_count) {
1676 int i;
1677
1678 for (i = 0; i < split_count_mask + 1; i++) {
1679 *approx_after += uatomic_read(&ht->split_count[i].add);
1680 *approx_after -= uatomic_read(&ht->split_count[i].del);
1681 }
1682 }
1683 }
1684
1685 /* called with resize mutex held */
1686 static
1687 void _do_cds_lfht_grow(struct cds_lfht *ht,
1688 unsigned long old_size, unsigned long new_size)
1689 {
1690 unsigned long old_order, new_order;
1691
1692 old_order = get_count_order_ulong(old_size);
1693 new_order = get_count_order_ulong(new_size);
1694 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1695 old_size, old_order, new_size, new_order);
1696 assert(new_size > old_size);
1697 init_table(ht, old_order + 1, new_order);
1698 }
1699
1700 /* called with resize mutex held */
1701 static
1702 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1703 unsigned long old_size, unsigned long new_size)
1704 {
1705 unsigned long old_order, new_order;
1706
1707 new_size = max(new_size, ht->min_alloc_size);
1708 old_order = get_count_order_ulong(old_size);
1709 new_order = get_count_order_ulong(new_size);
1710 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1711 old_size, old_order, new_size, new_order);
1712 assert(new_size < old_size);
1713
1714 /* Remove and unlink all bucket nodes to remove. */
1715 fini_table(ht, new_order + 1, old_order);
1716 }
1717
1718
1719 /* called with resize mutex held */
1720 static
1721 void _do_cds_lfht_resize(struct cds_lfht *ht)
1722 {
1723 unsigned long new_size, old_size;
1724
1725 /*
1726 * Resize table, re-do if the target size has changed under us.
1727 */
1728 do {
1729 assert(uatomic_read(&ht->in_progress_resize));
1730 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1731 break;
1732 ht->t.resize_initiated = 1;
1733 old_size = ht->t.size;
1734 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1735 if (old_size < new_size)
1736 _do_cds_lfht_grow(ht, old_size, new_size);
1737 else if (old_size > new_size)
1738 _do_cds_lfht_shrink(ht, old_size, new_size);
1739 ht->t.resize_initiated = 0;
1740 /* write resize_initiated before read resize_target */
1741 cmm_smp_mb();
1742 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1743 }
1744
1745 static
1746 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1747 {
1748 return _uatomic_xchg_monotonic_increase(&ht->t.resize_target, new_size);
1749 }
1750
1751 static
1752 void resize_target_update_count(struct cds_lfht *ht,
1753 unsigned long count)
1754 {
1755 count = max(count, ht->min_alloc_size);
1756 uatomic_set(&ht->t.resize_target, count);
1757 }
1758
1759 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1760 {
1761 resize_target_update_count(ht, new_size);
1762 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1763 ht->cds_lfht_rcu_thread_offline();
1764 pthread_mutex_lock(&ht->resize_mutex);
1765 _do_cds_lfht_resize(ht);
1766 pthread_mutex_unlock(&ht->resize_mutex);
1767 ht->cds_lfht_rcu_thread_online();
1768 }
1769
1770 static
1771 void do_resize_cb(struct rcu_head *head)
1772 {
1773 struct rcu_resize_work *work =
1774 caa_container_of(head, struct rcu_resize_work, head);
1775 struct cds_lfht *ht = work->ht;
1776
1777 ht->cds_lfht_rcu_thread_offline();
1778 pthread_mutex_lock(&ht->resize_mutex);
1779 _do_cds_lfht_resize(ht);
1780 pthread_mutex_unlock(&ht->resize_mutex);
1781 ht->cds_lfht_rcu_thread_online();
1782 poison_free(work);
1783 cmm_smp_mb(); /* finish resize before decrement */
1784 uatomic_dec(&ht->in_progress_resize);
1785 }
1786
1787 static
1788 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1789 {
1790 struct rcu_resize_work *work;
1791
1792 /* Store resize_target before read resize_initiated */
1793 cmm_smp_mb();
1794 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1795 uatomic_inc(&ht->in_progress_resize);
1796 cmm_smp_mb(); /* increment resize count before load destroy */
1797 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1798 uatomic_dec(&ht->in_progress_resize);
1799 return;
1800 }
1801 work = malloc(sizeof(*work));
1802 work->ht = ht;
1803 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1804 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1805 }
1806 }
1807
1808 static
1809 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1810 {
1811 unsigned long target_size = size << growth;
1812
1813 if (resize_target_grow(ht, target_size) >= target_size)
1814 return;
1815
1816 __cds_lfht_resize_lazy_launch(ht);
1817 }
1818
1819 /*
1820 * We favor grow operations over shrink. A shrink operation never occurs
1821 * if a grow operation is queued for lazy execution. A grow operation
1822 * cancels any pending shrink lazy execution.
1823 */
1824 static
1825 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1826 unsigned long count)
1827 {
1828 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1829 return;
1830 count = max(count, ht->min_alloc_size);
1831 if (count == size)
1832 return; /* Already the right size, no resize needed */
1833 if (count > size) { /* lazy grow */
1834 if (resize_target_grow(ht, count) >= count)
1835 return;
1836 } else { /* lazy shrink */
1837 for (;;) {
1838 unsigned long s;
1839
1840 s = uatomic_cmpxchg(&ht->t.resize_target, size, count);
1841 if (s == size)
1842 break; /* no resize needed */
1843 if (s > size)
1844 return; /* growing is/(was just) in progress */
1845 if (s <= count)
1846 return; /* some other thread do shrink */
1847 size = s;
1848 }
1849 }
1850 __cds_lfht_resize_lazy_launch(ht);
1851 }
This page took 0.081158 seconds and 5 git commands to generate.