Cleanup _cds_lfht_replace()
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Per-CPU Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order.
95 * - call_rcu is used to garbage-collect the old order table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * A bit of ascii art explanation:
101 *
102 * Order index is the off-by-one compare to the actual power of 2 because
103 * we use index 0 to deal with the 0 special-case.
104 *
105 * This shows the nodes for a small table ordered by reversed bits:
106 *
107 * bits reverse
108 * 0 000 000
109 * 4 100 001
110 * 2 010 010
111 * 6 110 011
112 * 1 001 100
113 * 5 101 101
114 * 3 011 110
115 * 7 111 111
116 *
117 * This shows the nodes in order of non-reversed bits, linked by
118 * reversed-bit order.
119 *
120 * order bits reverse
121 * 0 0 000 000
122 * |
123 * 1 | 1 001 100 <- <-
124 * | | | |
125 * 2 | | 2 010 010 | |
126 * | | | 3 011 110 | <- |
127 * | | | | | | |
128 * 3 -> | | | 4 100 001 | |
129 * -> | | 5 101 101 |
130 * -> | 6 110 011
131 * -> 7 111 111
132 */
133
134 #define _LGPL_SOURCE
135 #include <stdlib.h>
136 #include <errno.h>
137 #include <assert.h>
138 #include <stdio.h>
139 #include <stdint.h>
140 #include <string.h>
141
142 #include "config.h"
143 #include <urcu.h>
144 #include <urcu-call-rcu.h>
145 #include <urcu/arch.h>
146 #include <urcu/uatomic.h>
147 #include <urcu/compiler.h>
148 #include <urcu/rculfhash.h>
149 #include <stdio.h>
150 #include <pthread.h>
151
152 #ifdef DEBUG
153 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
154 #else
155 #define dbg_printf(fmt, args...)
156 #endif
157
158 /*
159 * Per-CPU split-counters lazily update the global counter each 1024
160 * addition/removal. It automatically keeps track of resize required.
161 * We use the bucket length as indicator for need to expand for small
162 * tables and machines lacking per-cpu data suppport.
163 */
164 #define COUNT_COMMIT_ORDER 10
165 #define CHAIN_LEN_TARGET 1
166 #define CHAIN_LEN_RESIZE_THRESHOLD 3
167
168 /*
169 * Define the minimum table size.
170 */
171 #define MIN_TABLE_SIZE 1
172
173 #if (CAA_BITS_PER_LONG == 32)
174 #define MAX_TABLE_ORDER 32
175 #else
176 #define MAX_TABLE_ORDER 64
177 #endif
178
179 /*
180 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
181 */
182 #define MIN_PARTITION_PER_THREAD_ORDER 12
183 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
184
185 #ifndef min
186 #define min(a, b) ((a) < (b) ? (a) : (b))
187 #endif
188
189 #ifndef max
190 #define max(a, b) ((a) > (b) ? (a) : (b))
191 #endif
192
193 /*
194 * The removed flag needs to be updated atomically with the pointer.
195 * It indicates that no node must attach to the node scheduled for
196 * removal, and that node garbage collection must be performed.
197 * The dummy flag does not require to be updated atomically with the
198 * pointer, but it is added as a pointer low bit flag to save space.
199 */
200 #define REMOVED_FLAG (1UL << 0)
201 #define DUMMY_FLAG (1UL << 1)
202 #define FLAGS_MASK ((1UL << 2) - 1)
203
204 /* Value of the end pointer. Should not interact with flags. */
205 #define END_VALUE NULL
206
207 struct ht_items_count {
208 unsigned long add, del;
209 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
210
211 struct rcu_level {
212 /* Note: manually update allocation length when adding a field */
213 struct _cds_lfht_node nodes[0];
214 };
215
216 struct rcu_table {
217 unsigned long size; /* always a power of 2, shared (RCU) */
218 unsigned long resize_target;
219 int resize_initiated;
220 struct rcu_level *tbl[MAX_TABLE_ORDER];
221 };
222
223 struct cds_lfht {
224 struct rcu_table t;
225 cds_lfht_hash_fct hash_fct;
226 cds_lfht_compare_fct compare_fct;
227 unsigned long hash_seed;
228 int flags;
229 /*
230 * We need to put the work threads offline (QSBR) when taking this
231 * mutex, because we use synchronize_rcu within this mutex critical
232 * section, which waits on read-side critical sections, and could
233 * therefore cause grace-period deadlock if we hold off RCU G.P.
234 * completion.
235 */
236 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
237 unsigned int in_progress_resize, in_progress_destroy;
238 void (*cds_lfht_call_rcu)(struct rcu_head *head,
239 void (*func)(struct rcu_head *head));
240 void (*cds_lfht_synchronize_rcu)(void);
241 void (*cds_lfht_rcu_read_lock)(void);
242 void (*cds_lfht_rcu_read_unlock)(void);
243 void (*cds_lfht_rcu_thread_offline)(void);
244 void (*cds_lfht_rcu_thread_online)(void);
245 void (*cds_lfht_rcu_register_thread)(void);
246 void (*cds_lfht_rcu_unregister_thread)(void);
247 pthread_attr_t *resize_attr; /* Resize threads attributes */
248 long count; /* global approximate item count */
249 struct ht_items_count *percpu_count; /* per-cpu item count */
250 };
251
252 struct rcu_resize_work {
253 struct rcu_head head;
254 struct cds_lfht *ht;
255 };
256
257 struct partition_resize_work {
258 pthread_t thread_id;
259 struct cds_lfht *ht;
260 unsigned long i, start, len;
261 void (*fct)(struct cds_lfht *ht, unsigned long i,
262 unsigned long start, unsigned long len);
263 };
264
265 static
266 void _cds_lfht_add(struct cds_lfht *ht,
267 unsigned long size,
268 struct cds_lfht_node *node,
269 struct cds_lfht_iter *unique_ret,
270 int dummy);
271
272 /*
273 * Algorithm to reverse bits in a word by lookup table, extended to
274 * 64-bit words.
275 * Source:
276 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
277 * Originally from Public Domain.
278 */
279
280 static const uint8_t BitReverseTable256[256] =
281 {
282 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
283 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
284 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
285 R6(0), R6(2), R6(1), R6(3)
286 };
287 #undef R2
288 #undef R4
289 #undef R6
290
291 static
292 uint8_t bit_reverse_u8(uint8_t v)
293 {
294 return BitReverseTable256[v];
295 }
296
297 static __attribute__((unused))
298 uint32_t bit_reverse_u32(uint32_t v)
299 {
300 return ((uint32_t) bit_reverse_u8(v) << 24) |
301 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
302 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
303 ((uint32_t) bit_reverse_u8(v >> 24));
304 }
305
306 static __attribute__((unused))
307 uint64_t bit_reverse_u64(uint64_t v)
308 {
309 return ((uint64_t) bit_reverse_u8(v) << 56) |
310 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
311 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
312 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
313 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
314 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
315 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
316 ((uint64_t) bit_reverse_u8(v >> 56));
317 }
318
319 static
320 unsigned long bit_reverse_ulong(unsigned long v)
321 {
322 #if (CAA_BITS_PER_LONG == 32)
323 return bit_reverse_u32(v);
324 #else
325 return bit_reverse_u64(v);
326 #endif
327 }
328
329 /*
330 * fls: returns the position of the most significant bit.
331 * Returns 0 if no bit is set, else returns the position of the most
332 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
333 */
334 #if defined(__i386) || defined(__x86_64)
335 static inline
336 unsigned int fls_u32(uint32_t x)
337 {
338 int r;
339
340 asm("bsrl %1,%0\n\t"
341 "jnz 1f\n\t"
342 "movl $-1,%0\n\t"
343 "1:\n\t"
344 : "=r" (r) : "rm" (x));
345 return r + 1;
346 }
347 #define HAS_FLS_U32
348 #endif
349
350 #if defined(__x86_64)
351 static inline
352 unsigned int fls_u64(uint64_t x)
353 {
354 long r;
355
356 asm("bsrq %1,%0\n\t"
357 "jnz 1f\n\t"
358 "movq $-1,%0\n\t"
359 "1:\n\t"
360 : "=r" (r) : "rm" (x));
361 return r + 1;
362 }
363 #define HAS_FLS_U64
364 #endif
365
366 #ifndef HAS_FLS_U64
367 static __attribute__((unused))
368 unsigned int fls_u64(uint64_t x)
369 {
370 unsigned int r = 64;
371
372 if (!x)
373 return 0;
374
375 if (!(x & 0xFFFFFFFF00000000ULL)) {
376 x <<= 32;
377 r -= 32;
378 }
379 if (!(x & 0xFFFF000000000000ULL)) {
380 x <<= 16;
381 r -= 16;
382 }
383 if (!(x & 0xFF00000000000000ULL)) {
384 x <<= 8;
385 r -= 8;
386 }
387 if (!(x & 0xF000000000000000ULL)) {
388 x <<= 4;
389 r -= 4;
390 }
391 if (!(x & 0xC000000000000000ULL)) {
392 x <<= 2;
393 r -= 2;
394 }
395 if (!(x & 0x8000000000000000ULL)) {
396 x <<= 1;
397 r -= 1;
398 }
399 return r;
400 }
401 #endif
402
403 #ifndef HAS_FLS_U32
404 static __attribute__((unused))
405 unsigned int fls_u32(uint32_t x)
406 {
407 unsigned int r = 32;
408
409 if (!x)
410 return 0;
411 if (!(x & 0xFFFF0000U)) {
412 x <<= 16;
413 r -= 16;
414 }
415 if (!(x & 0xFF000000U)) {
416 x <<= 8;
417 r -= 8;
418 }
419 if (!(x & 0xF0000000U)) {
420 x <<= 4;
421 r -= 4;
422 }
423 if (!(x & 0xC0000000U)) {
424 x <<= 2;
425 r -= 2;
426 }
427 if (!(x & 0x80000000U)) {
428 x <<= 1;
429 r -= 1;
430 }
431 return r;
432 }
433 #endif
434
435 unsigned int fls_ulong(unsigned long x)
436 {
437 #if (CAA_BITS_PER_lONG == 32)
438 return fls_u32(x);
439 #else
440 return fls_u64(x);
441 #endif
442 }
443
444 /*
445 * Return the minimum order for which x <= (1UL << order).
446 * Return -1 if x is 0.
447 */
448 int get_count_order_u32(uint32_t x)
449 {
450 if (!x)
451 return -1;
452
453 return fls_u32(x - 1);
454 }
455
456 /*
457 * Return the minimum order for which x <= (1UL << order).
458 * Return -1 if x is 0.
459 */
460 int get_count_order_ulong(unsigned long x)
461 {
462 if (!x)
463 return -1;
464
465 return fls_ulong(x - 1);
466 }
467
468 #ifdef POISON_FREE
469 #define poison_free(ptr) \
470 do { \
471 memset(ptr, 0x42, sizeof(*(ptr))); \
472 free(ptr); \
473 } while (0)
474 #else
475 #define poison_free(ptr) free(ptr)
476 #endif
477
478 static
479 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
480
481 /*
482 * If the sched_getcpu() and sysconf(_SC_NPROCESSORS_CONF) calls are
483 * available, then we support hash table item accounting.
484 * In the unfortunate event the number of CPUs reported would be
485 * inaccurate, we use modulo arithmetic on the number of CPUs we got.
486 */
487 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
488
489 static
490 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
491 unsigned long count);
492
493 static long nr_cpus_mask = -1;
494
495 static
496 struct ht_items_count *alloc_per_cpu_items_count(void)
497 {
498 struct ht_items_count *count;
499
500 switch (nr_cpus_mask) {
501 case -2:
502 return NULL;
503 case -1:
504 {
505 long maxcpus;
506
507 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
508 if (maxcpus <= 0) {
509 nr_cpus_mask = -2;
510 return NULL;
511 }
512 /*
513 * round up number of CPUs to next power of two, so we
514 * can use & for modulo.
515 */
516 maxcpus = 1UL << get_count_order_ulong(maxcpus);
517 nr_cpus_mask = maxcpus - 1;
518 }
519 /* Fall-through */
520 default:
521 return calloc(nr_cpus_mask + 1, sizeof(*count));
522 }
523 }
524
525 static
526 void free_per_cpu_items_count(struct ht_items_count *count)
527 {
528 poison_free(count);
529 }
530
531 static
532 int ht_get_cpu(void)
533 {
534 int cpu;
535
536 assert(nr_cpus_mask >= 0);
537 cpu = sched_getcpu();
538 if (unlikely(cpu < 0))
539 return cpu;
540 else
541 return cpu & nr_cpus_mask;
542 }
543
544 static
545 void ht_count_add(struct cds_lfht *ht, unsigned long size)
546 {
547 unsigned long percpu_count;
548 int cpu;
549
550 if (unlikely(!ht->percpu_count))
551 return;
552 cpu = ht_get_cpu();
553 if (unlikely(cpu < 0))
554 return;
555 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].add, 1);
556 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
557 long count;
558
559 dbg_printf("add percpu %lu\n", percpu_count);
560 count = uatomic_add_return(&ht->count,
561 1UL << COUNT_COMMIT_ORDER);
562 /* If power of 2 */
563 if (!(count & (count - 1))) {
564 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
565 return;
566 dbg_printf("add set global %ld\n", count);
567 cds_lfht_resize_lazy_count(ht, size,
568 count >> (CHAIN_LEN_TARGET - 1));
569 }
570 }
571 }
572
573 static
574 void ht_count_del(struct cds_lfht *ht, unsigned long size)
575 {
576 unsigned long percpu_count;
577 int cpu;
578
579 if (unlikely(!ht->percpu_count))
580 return;
581 cpu = ht_get_cpu();
582 if (unlikely(cpu < 0))
583 return;
584 percpu_count = uatomic_add_return(&ht->percpu_count[cpu].del, 1);
585 if (unlikely(!(percpu_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
586 long count;
587
588 dbg_printf("del percpu %lu\n", percpu_count);
589 count = uatomic_add_return(&ht->count,
590 -(1UL << COUNT_COMMIT_ORDER));
591 /* If power of 2 */
592 if (!(count & (count - 1))) {
593 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
594 return;
595 dbg_printf("del set global %ld\n", count);
596 /*
597 * Don't shrink table if the number of nodes is below a
598 * certain threshold.
599 */
600 if (count < (1UL << COUNT_COMMIT_ORDER) * (nr_cpus_mask + 1))
601 return;
602 cds_lfht_resize_lazy_count(ht, size,
603 count >> (CHAIN_LEN_TARGET - 1));
604 }
605 }
606 }
607
608 #else /* #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
609
610 static const long nr_cpus_mask = -2;
611
612 static
613 struct ht_items_count *alloc_per_cpu_items_count(void)
614 {
615 return NULL;
616 }
617
618 static
619 void free_per_cpu_items_count(struct ht_items_count *count)
620 {
621 }
622
623 static
624 void ht_count_add(struct cds_lfht *ht, unsigned long size)
625 {
626 }
627
628 static
629 void ht_count_del(struct cds_lfht *ht, unsigned long size)
630 {
631 }
632
633 #endif /* #else #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF) */
634
635
636 static
637 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
638 {
639 unsigned long count;
640
641 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
642 return;
643 count = uatomic_read(&ht->count);
644 /*
645 * Use bucket-local length for small table expand and for
646 * environments lacking per-cpu data support.
647 */
648 if (count >= (1UL << COUNT_COMMIT_ORDER))
649 return;
650 if (chain_len > 100)
651 dbg_printf("WARNING: large chain length: %u.\n",
652 chain_len);
653 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
654 cds_lfht_resize_lazy(ht, size,
655 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
656 }
657
658 static
659 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
660 {
661 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
662 }
663
664 static
665 int is_removed(struct cds_lfht_node *node)
666 {
667 return ((unsigned long) node) & REMOVED_FLAG;
668 }
669
670 static
671 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
672 {
673 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
674 }
675
676 static
677 int is_dummy(struct cds_lfht_node *node)
678 {
679 return ((unsigned long) node) & DUMMY_FLAG;
680 }
681
682 static
683 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
684 {
685 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
686 }
687
688 static
689 struct cds_lfht_node *get_end(void)
690 {
691 return (struct cds_lfht_node *) END_VALUE;
692 }
693
694 static
695 int is_end(struct cds_lfht_node *node)
696 {
697 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
698 }
699
700 static
701 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
702 {
703 unsigned long old1, old2;
704
705 old1 = uatomic_read(ptr);
706 do {
707 old2 = old1;
708 if (old2 >= v)
709 return old2;
710 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
711 return v;
712 }
713
714 static
715 struct _cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
716 unsigned long hash)
717 {
718 unsigned long index, order;
719
720 assert(size > 0);
721 index = hash & (size - 1);
722 /*
723 * equivalent to get_count_order_ulong(index + 1), but optimizes
724 * away the non-existing 0 special-case for
725 * get_count_order_ulong.
726 */
727 order = fls_ulong(index);
728
729 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
730 hash, index, order, index & (!order ? 0 : ((1UL << (order - 1)) - 1)));
731
732 return &ht->t.tbl[order]->nodes[index & (!order ? 0 : ((1UL << (order - 1)) - 1))];
733 }
734
735 /*
736 * Remove all logically deleted nodes from a bucket up to a certain node key.
737 */
738 static
739 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
740 {
741 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
742
743 assert(!is_dummy(dummy));
744 assert(!is_removed(dummy));
745 assert(!is_dummy(node));
746 assert(!is_removed(node));
747 for (;;) {
748 iter_prev = dummy;
749 /* We can always skip the dummy node initially */
750 iter = rcu_dereference(iter_prev->p.next);
751 assert(!is_removed(iter));
752 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
753 /*
754 * We should never be called with dummy (start of chain)
755 * and logically removed node (end of path compression
756 * marker) being the actual same node. This would be a
757 * bug in the algorithm implementation.
758 */
759 assert(dummy != node);
760 for (;;) {
761 if (unlikely(is_end(iter)))
762 return;
763 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
764 return;
765 next = rcu_dereference(clear_flag(iter)->p.next);
766 if (likely(is_removed(next)))
767 break;
768 iter_prev = clear_flag(iter);
769 iter = next;
770 }
771 assert(!is_removed(iter));
772 if (is_dummy(iter))
773 new_next = flag_dummy(clear_flag(next));
774 else
775 new_next = clear_flag(next);
776 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
777 }
778 return;
779 }
780
781 static
782 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
783 struct cds_lfht_node *old_node,
784 struct cds_lfht_node *old_next,
785 struct cds_lfht_node *new_node)
786 {
787 struct cds_lfht_node *dummy, *ret_next;
788 struct _cds_lfht_node *lookup;
789
790 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
791 return -ENOENT;
792
793 assert(!is_removed(old_node));
794 assert(!is_dummy(old_node));
795 assert(!is_removed(new_node));
796 assert(!is_dummy(new_node));
797 assert(new_node != old_node);
798 for (;;) {
799 /* Insert after node to be replaced */
800 if (is_removed(old_next)) {
801 /*
802 * Too late, the old node has been removed under us
803 * between lookup and replace. Fail.
804 */
805 return -ENOENT;
806 }
807 assert(!is_dummy(old_next));
808 assert(new_node != clear_flag(old_next));
809 new_node->p.next = clear_flag(old_next);
810 /*
811 * Here is the whole trick for lock-free replace: we add
812 * the replacement node _after_ the node we want to
813 * replace by atomically setting its next pointer at the
814 * same time we set its removal flag. Given that
815 * the lookups/get next use an iterator aware of the
816 * next pointer, they will either skip the old node due
817 * to the removal flag and see the new node, or use
818 * the old node, but will not see the new one.
819 */
820 ret_next = uatomic_cmpxchg(&old_node->p.next,
821 old_next, flag_removed(new_node));
822 if (ret_next == old_next)
823 break; /* We performed the replacement. */
824 old_next = ret_next;
825 }
826
827 /*
828 * Ensure that the old node is not visible to readers anymore:
829 * lookup for the node, and remove it (along with any other
830 * logically removed node) if found.
831 */
832 lookup = lookup_bucket(ht, size, bit_reverse_ulong(old_node->p.reverse_hash));
833 dummy = (struct cds_lfht_node *) lookup;
834 _cds_lfht_gc_bucket(dummy, new_node);
835
836 assert(is_removed(rcu_dereference(old_node->p.next)));
837 return 0;
838 }
839
840 /*
841 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
842 * mode. A NULL unique_ret allows creation of duplicate keys.
843 */
844 static
845 void _cds_lfht_add(struct cds_lfht *ht,
846 unsigned long size,
847 struct cds_lfht_node *node,
848 struct cds_lfht_iter *unique_ret,
849 int dummy)
850 {
851 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
852 *return_node;
853 struct _cds_lfht_node *lookup;
854
855 assert(!is_dummy(node));
856 assert(!is_removed(node));
857 if (!size) {
858 assert(dummy);
859 assert(!unique_ret);
860 node->p.next = flag_dummy(get_end());
861 return; /* Initial first add (head) */
862 }
863 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
864 for (;;) {
865 uint32_t chain_len = 0;
866
867 /*
868 * iter_prev points to the non-removed node prior to the
869 * insert location.
870 */
871 iter_prev = (struct cds_lfht_node *) lookup;
872 /* We can always skip the dummy node initially */
873 iter = rcu_dereference(iter_prev->p.next);
874 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
875 for (;;) {
876 if (unlikely(is_end(iter)))
877 goto insert;
878 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
879 goto insert;
880 /* dummy node is the first node of the identical-hash-value chain */
881 if (dummy && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash)
882 goto insert;
883 next = rcu_dereference(clear_flag(iter)->p.next);
884 if (unlikely(is_removed(next)))
885 goto gc_node;
886 if (unique_ret
887 && !is_dummy(next)
888 && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash
889 && !ht->compare_fct(node->key, node->key_len,
890 clear_flag(iter)->key,
891 clear_flag(iter)->key_len)) {
892 unique_ret->node = clear_flag(iter);
893 unique_ret->next = next;
894 return;
895 }
896 /* Only account for identical reverse hash once */
897 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
898 && !is_dummy(next))
899 check_resize(ht, size, ++chain_len);
900 iter_prev = clear_flag(iter);
901 iter = next;
902 }
903
904 insert:
905 assert(node != clear_flag(iter));
906 assert(!is_removed(iter_prev));
907 assert(!is_removed(iter));
908 assert(iter_prev != node);
909 if (!dummy)
910 node->p.next = clear_flag(iter);
911 else
912 node->p.next = flag_dummy(clear_flag(iter));
913 if (is_dummy(iter))
914 new_node = flag_dummy(node);
915 else
916 new_node = node;
917 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
918 new_node) != iter) {
919 continue; /* retry */
920 } else {
921 return_node = node;
922 goto end;
923 }
924
925 gc_node:
926 assert(!is_removed(iter));
927 if (is_dummy(iter))
928 new_next = flag_dummy(clear_flag(next));
929 else
930 new_next = clear_flag(next);
931 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
932 /* retry */
933 }
934 end:
935 if (unique_ret) {
936 unique_ret->node = return_node;
937 /* unique_ret->next left unset, never used. */
938 }
939 }
940
941 static
942 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
943 struct cds_lfht_node *node,
944 int dummy_removal)
945 {
946 struct cds_lfht_node *dummy, *next, *old;
947 struct _cds_lfht_node *lookup;
948 int flagged = 0;
949
950 if (!node) /* Return -ENOENT if asked to delete NULL node */
951 goto end;
952
953 /* logically delete the node */
954 assert(!is_dummy(node));
955 assert(!is_removed(node));
956 old = rcu_dereference(node->p.next);
957 do {
958 struct cds_lfht_node *new_next;
959
960 next = old;
961 if (unlikely(is_removed(next)))
962 goto end;
963 if (dummy_removal)
964 assert(is_dummy(next));
965 else
966 assert(!is_dummy(next));
967 new_next = flag_removed(next);
968 old = uatomic_cmpxchg(&node->p.next, next, new_next);
969 } while (old != next);
970
971 /* We performed the (logical) deletion. */
972 flagged = 1;
973
974 /*
975 * Ensure that the node is not visible to readers anymore: lookup for
976 * the node, and remove it (along with any other logically removed node)
977 * if found.
978 */
979 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
980 dummy = (struct cds_lfht_node *) lookup;
981 _cds_lfht_gc_bucket(dummy, node);
982 end:
983 /*
984 * Only the flagging action indicated that we (and no other)
985 * removed the node from the hash.
986 */
987 if (flagged) {
988 assert(is_removed(rcu_dereference(node->p.next)));
989 return 0;
990 } else {
991 return -ENOENT;
992 }
993 }
994
995 static
996 void *partition_resize_thread(void *arg)
997 {
998 struct partition_resize_work *work = arg;
999
1000 work->ht->cds_lfht_rcu_register_thread();
1001 work->fct(work->ht, work->i, work->start, work->len);
1002 work->ht->cds_lfht_rcu_unregister_thread();
1003 return NULL;
1004 }
1005
1006 static
1007 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1008 unsigned long len,
1009 void (*fct)(struct cds_lfht *ht, unsigned long i,
1010 unsigned long start, unsigned long len))
1011 {
1012 unsigned long partition_len;
1013 struct partition_resize_work *work;
1014 int thread, ret;
1015 unsigned long nr_threads;
1016
1017 /*
1018 * Note: nr_cpus_mask + 1 is always power of 2.
1019 * We spawn just the number of threads we need to satisfy the minimum
1020 * partition size, up to the number of CPUs in the system.
1021 */
1022 if (nr_cpus_mask > 0) {
1023 nr_threads = min(nr_cpus_mask + 1,
1024 len >> MIN_PARTITION_PER_THREAD_ORDER);
1025 } else {
1026 nr_threads = 1;
1027 }
1028 partition_len = len >> get_count_order_ulong(nr_threads);
1029 work = calloc(nr_threads, sizeof(*work));
1030 assert(work);
1031 for (thread = 0; thread < nr_threads; thread++) {
1032 work[thread].ht = ht;
1033 work[thread].i = i;
1034 work[thread].len = partition_len;
1035 work[thread].start = thread * partition_len;
1036 work[thread].fct = fct;
1037 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1038 partition_resize_thread, &work[thread]);
1039 assert(!ret);
1040 }
1041 for (thread = 0; thread < nr_threads; thread++) {
1042 ret = pthread_join(work[thread].thread_id, NULL);
1043 assert(!ret);
1044 }
1045 free(work);
1046 }
1047
1048 /*
1049 * Holding RCU read lock to protect _cds_lfht_add against memory
1050 * reclaim that could be performed by other call_rcu worker threads (ABA
1051 * problem).
1052 *
1053 * When we reach a certain length, we can split this population phase over
1054 * many worker threads, based on the number of CPUs available in the system.
1055 * This should therefore take care of not having the expand lagging behind too
1056 * many concurrent insertion threads by using the scheduler's ability to
1057 * schedule dummy node population fairly with insertions.
1058 */
1059 static
1060 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1061 unsigned long start, unsigned long len)
1062 {
1063 unsigned long j;
1064
1065 ht->cds_lfht_rcu_read_lock();
1066 for (j = start; j < start + len; j++) {
1067 struct cds_lfht_node *new_node =
1068 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1069
1070 dbg_printf("init populate: i %lu j %lu hash %lu\n",
1071 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1072 new_node->p.reverse_hash =
1073 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1074 _cds_lfht_add(ht, !i ? 0 : (1UL << (i - 1)),
1075 new_node, NULL, 1);
1076 }
1077 ht->cds_lfht_rcu_read_unlock();
1078 }
1079
1080 static
1081 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1082 unsigned long len)
1083 {
1084 assert(nr_cpus_mask != -1);
1085 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1086 ht->cds_lfht_rcu_thread_online();
1087 init_table_populate_partition(ht, i, 0, len);
1088 ht->cds_lfht_rcu_thread_offline();
1089 return;
1090 }
1091 partition_resize_helper(ht, i, len, init_table_populate_partition);
1092 }
1093
1094 static
1095 void init_table(struct cds_lfht *ht,
1096 unsigned long first_order, unsigned long len_order)
1097 {
1098 unsigned long i, end_order;
1099
1100 dbg_printf("init table: first_order %lu end_order %lu\n",
1101 first_order, first_order + len_order);
1102 end_order = first_order + len_order;
1103 for (i = first_order; i < end_order; i++) {
1104 unsigned long len;
1105
1106 len = !i ? 1 : 1UL << (i - 1);
1107 dbg_printf("init order %lu len: %lu\n", i, len);
1108
1109 /* Stop expand if the resize target changes under us */
1110 if (CMM_LOAD_SHARED(ht->t.resize_target) < (!i ? 1 : (1UL << i)))
1111 break;
1112
1113 ht->t.tbl[i] = calloc(1, len * sizeof(struct _cds_lfht_node));
1114 assert(ht->t.tbl[i]);
1115
1116 /*
1117 * Set all dummy nodes reverse hash values for a level and
1118 * link all dummy nodes into the table.
1119 */
1120 init_table_populate(ht, i, len);
1121
1122 /*
1123 * Update table size.
1124 */
1125 cmm_smp_wmb(); /* populate data before RCU size */
1126 CMM_STORE_SHARED(ht->t.size, !i ? 1 : (1UL << i));
1127
1128 dbg_printf("init new size: %lu\n", !i ? 1 : (1UL << i));
1129 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1130 break;
1131 }
1132 }
1133
1134 /*
1135 * Holding RCU read lock to protect _cds_lfht_remove against memory
1136 * reclaim that could be performed by other call_rcu worker threads (ABA
1137 * problem).
1138 * For a single level, we logically remove and garbage collect each node.
1139 *
1140 * As a design choice, we perform logical removal and garbage collection on a
1141 * node-per-node basis to simplify this algorithm. We also assume keeping good
1142 * cache locality of the operation would overweight possible performance gain
1143 * that could be achieved by batching garbage collection for multiple levels.
1144 * However, this would have to be justified by benchmarks.
1145 *
1146 * Concurrent removal and add operations are helping us perform garbage
1147 * collection of logically removed nodes. We guarantee that all logically
1148 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1149 * invoked to free a hole level of dummy nodes (after a grace period).
1150 *
1151 * Logical removal and garbage collection can therefore be done in batch or on a
1152 * node-per-node basis, as long as the guarantee above holds.
1153 *
1154 * When we reach a certain length, we can split this removal over many worker
1155 * threads, based on the number of CPUs available in the system. This should
1156 * take care of not letting resize process lag behind too many concurrent
1157 * updater threads actively inserting into the hash table.
1158 */
1159 static
1160 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1161 unsigned long start, unsigned long len)
1162 {
1163 unsigned long j;
1164
1165 ht->cds_lfht_rcu_read_lock();
1166 for (j = start; j < start + len; j++) {
1167 struct cds_lfht_node *fini_node =
1168 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1169
1170 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1171 i, j, !i ? 0 : (1UL << (i - 1)) + j);
1172 fini_node->p.reverse_hash =
1173 bit_reverse_ulong(!i ? 0 : (1UL << (i - 1)) + j);
1174 (void) _cds_lfht_del(ht, !i ? 0 : (1UL << (i - 1)),
1175 fini_node, 1);
1176 }
1177 ht->cds_lfht_rcu_read_unlock();
1178 }
1179
1180 static
1181 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1182 {
1183
1184 assert(nr_cpus_mask != -1);
1185 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1186 ht->cds_lfht_rcu_thread_online();
1187 remove_table_partition(ht, i, 0, len);
1188 ht->cds_lfht_rcu_thread_offline();
1189 return;
1190 }
1191 partition_resize_helper(ht, i, len, remove_table_partition);
1192 }
1193
1194 static
1195 void fini_table(struct cds_lfht *ht,
1196 unsigned long first_order, unsigned long len_order)
1197 {
1198 long i, end_order;
1199 void *free_by_rcu = NULL;
1200
1201 dbg_printf("fini table: first_order %lu end_order %lu\n",
1202 first_order, first_order + len_order);
1203 end_order = first_order + len_order;
1204 assert(first_order > 0);
1205 for (i = end_order - 1; i >= first_order; i--) {
1206 unsigned long len;
1207
1208 len = !i ? 1 : 1UL << (i - 1);
1209 dbg_printf("fini order %lu len: %lu\n", i, len);
1210
1211 /* Stop shrink if the resize target changes under us */
1212 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1213 break;
1214
1215 cmm_smp_wmb(); /* populate data before RCU size */
1216 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1217
1218 /*
1219 * We need to wait for all add operations to reach Q.S. (and
1220 * thus use the new table for lookups) before we can start
1221 * releasing the old dummy nodes. Otherwise their lookup will
1222 * return a logically removed node as insert position.
1223 */
1224 ht->cds_lfht_synchronize_rcu();
1225 if (free_by_rcu)
1226 free(free_by_rcu);
1227
1228 /*
1229 * Set "removed" flag in dummy nodes about to be removed.
1230 * Unlink all now-logically-removed dummy node pointers.
1231 * Concurrent add/remove operation are helping us doing
1232 * the gc.
1233 */
1234 remove_table(ht, i, len);
1235
1236 free_by_rcu = ht->t.tbl[i];
1237
1238 dbg_printf("fini new size: %lu\n", 1UL << i);
1239 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1240 break;
1241 }
1242
1243 if (free_by_rcu) {
1244 ht->cds_lfht_synchronize_rcu();
1245 free(free_by_rcu);
1246 }
1247 }
1248
1249 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1250 cds_lfht_compare_fct compare_fct,
1251 unsigned long hash_seed,
1252 unsigned long init_size,
1253 int flags,
1254 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1255 void (*func)(struct rcu_head *head)),
1256 void (*cds_lfht_synchronize_rcu)(void),
1257 void (*cds_lfht_rcu_read_lock)(void),
1258 void (*cds_lfht_rcu_read_unlock)(void),
1259 void (*cds_lfht_rcu_thread_offline)(void),
1260 void (*cds_lfht_rcu_thread_online)(void),
1261 void (*cds_lfht_rcu_register_thread)(void),
1262 void (*cds_lfht_rcu_unregister_thread)(void),
1263 pthread_attr_t *attr)
1264 {
1265 struct cds_lfht *ht;
1266 unsigned long order;
1267
1268 /* init_size must be power of two */
1269 if (init_size && (init_size & (init_size - 1)))
1270 return NULL;
1271 ht = calloc(1, sizeof(struct cds_lfht));
1272 assert(ht);
1273 ht->hash_fct = hash_fct;
1274 ht->compare_fct = compare_fct;
1275 ht->hash_seed = hash_seed;
1276 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1277 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1278 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1279 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1280 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1281 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1282 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1283 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1284 ht->resize_attr = attr;
1285 ht->percpu_count = alloc_per_cpu_items_count();
1286 /* this mutex should not nest in read-side C.S. */
1287 pthread_mutex_init(&ht->resize_mutex, NULL);
1288 order = get_count_order_ulong(max(init_size, MIN_TABLE_SIZE)) + 1;
1289 ht->flags = flags;
1290 ht->cds_lfht_rcu_thread_offline();
1291 pthread_mutex_lock(&ht->resize_mutex);
1292 ht->t.resize_target = 1UL << (order - 1);
1293 init_table(ht, 0, order);
1294 pthread_mutex_unlock(&ht->resize_mutex);
1295 ht->cds_lfht_rcu_thread_online();
1296 return ht;
1297 }
1298
1299 void cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len,
1300 struct cds_lfht_iter *iter)
1301 {
1302 struct cds_lfht_node *node, *next, *dummy_node;
1303 struct _cds_lfht_node *lookup;
1304 unsigned long hash, reverse_hash, size;
1305
1306 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1307 reverse_hash = bit_reverse_ulong(hash);
1308
1309 size = rcu_dereference(ht->t.size);
1310 lookup = lookup_bucket(ht, size, hash);
1311 dummy_node = (struct cds_lfht_node *) lookup;
1312 /* We can always skip the dummy node initially */
1313 node = rcu_dereference(dummy_node->p.next);
1314 node = clear_flag(node);
1315 for (;;) {
1316 if (unlikely(is_end(node))) {
1317 node = next = NULL;
1318 break;
1319 }
1320 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1321 node = next = NULL;
1322 break;
1323 }
1324 next = rcu_dereference(node->p.next);
1325 if (likely(!is_removed(next))
1326 && !is_dummy(next)
1327 && clear_flag(node)->p.reverse_hash == reverse_hash
1328 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1329 break;
1330 }
1331 node = clear_flag(next);
1332 }
1333 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1334 iter->node = node;
1335 iter->next = next;
1336 }
1337
1338 void cds_lfht_next_duplicate(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1339 {
1340 struct cds_lfht_node *node, *next;
1341 unsigned long reverse_hash;
1342 void *key;
1343 size_t key_len;
1344
1345 node = iter->node;
1346 reverse_hash = node->p.reverse_hash;
1347 key = node->key;
1348 key_len = node->key_len;
1349 next = iter->next;
1350 node = clear_flag(next);
1351
1352 for (;;) {
1353 if (unlikely(is_end(node))) {
1354 node = next = NULL;
1355 break;
1356 }
1357 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1358 node = next = NULL;
1359 break;
1360 }
1361 next = rcu_dereference(node->p.next);
1362 if (likely(!is_removed(next))
1363 && !is_dummy(next)
1364 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1365 break;
1366 }
1367 node = clear_flag(next);
1368 }
1369 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1370 iter->node = node;
1371 iter->next = next;
1372 }
1373
1374 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1375 {
1376 struct cds_lfht_node *node, *next;
1377
1378 node = clear_flag(iter->next);
1379 for (;;) {
1380 if (unlikely(is_end(node))) {
1381 node = next = NULL;
1382 break;
1383 }
1384 next = rcu_dereference(node->p.next);
1385 if (likely(!is_removed(next))
1386 && !is_dummy(next)) {
1387 break;
1388 }
1389 node = clear_flag(next);
1390 }
1391 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1392 iter->node = node;
1393 iter->next = next;
1394 }
1395
1396 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1397 {
1398 struct _cds_lfht_node *lookup;
1399
1400 /*
1401 * Get next after first dummy node. The first dummy node is the
1402 * first node of the linked list.
1403 */
1404 lookup = &ht->t.tbl[0]->nodes[0];
1405 iter->next = lookup->next;
1406 cds_lfht_next(ht, iter);
1407 }
1408
1409 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1410 {
1411 unsigned long hash, size;
1412
1413 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1414 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1415
1416 size = rcu_dereference(ht->t.size);
1417 _cds_lfht_add(ht, size, node, NULL, 0);
1418 ht_count_add(ht, size);
1419 }
1420
1421 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1422 struct cds_lfht_node *node)
1423 {
1424 unsigned long hash, size;
1425 struct cds_lfht_iter iter;
1426
1427 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1428 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1429
1430 size = rcu_dereference(ht->t.size);
1431 _cds_lfht_add(ht, size, node, &iter, 0);
1432 if (iter.node == node)
1433 ht_count_add(ht, size);
1434 return iter.node;
1435 }
1436
1437 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1438 struct cds_lfht_node *node)
1439 {
1440 unsigned long hash, size;
1441 struct cds_lfht_iter iter;
1442
1443 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1444 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1445
1446 size = rcu_dereference(ht->t.size);
1447 for (;;) {
1448 _cds_lfht_add(ht, size, node, &iter, 0);
1449 if (iter.node == node) {
1450 ht_count_add(ht, size);
1451 return NULL;
1452 }
1453
1454 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1455 return iter.node;
1456 }
1457 }
1458
1459 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1460 struct cds_lfht_node *new_node)
1461 {
1462 unsigned long size;
1463
1464 size = rcu_dereference(ht->t.size);
1465 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1466 new_node);
1467 }
1468
1469 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1470 {
1471 unsigned long size;
1472 int ret;
1473
1474 size = rcu_dereference(ht->t.size);
1475 ret = _cds_lfht_del(ht, size, iter->node, 0);
1476 if (!ret)
1477 ht_count_del(ht, size);
1478 return ret;
1479 }
1480
1481 static
1482 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1483 {
1484 struct cds_lfht_node *node;
1485 struct _cds_lfht_node *lookup;
1486 unsigned long order, i, size;
1487
1488 /* Check that the table is empty */
1489 lookup = &ht->t.tbl[0]->nodes[0];
1490 node = (struct cds_lfht_node *) lookup;
1491 do {
1492 node = clear_flag(node)->p.next;
1493 if (!is_dummy(node))
1494 return -EPERM;
1495 assert(!is_removed(node));
1496 } while (!is_end(node));
1497 /*
1498 * size accessed without rcu_dereference because hash table is
1499 * being destroyed.
1500 */
1501 size = ht->t.size;
1502 /* Internal sanity check: all nodes left should be dummy */
1503 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1504 unsigned long len;
1505
1506 len = !order ? 1 : 1UL << (order - 1);
1507 for (i = 0; i < len; i++) {
1508 dbg_printf("delete order %lu i %lu hash %lu\n",
1509 order, i,
1510 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1511 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1512 }
1513 poison_free(ht->t.tbl[order]);
1514 }
1515 return 0;
1516 }
1517
1518 /*
1519 * Should only be called when no more concurrent readers nor writers can
1520 * possibly access the table.
1521 */
1522 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1523 {
1524 int ret;
1525
1526 /* Wait for in-flight resize operations to complete */
1527 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1528 cmm_smp_mb(); /* Store destroy before load resize */
1529 while (uatomic_read(&ht->in_progress_resize))
1530 poll(NULL, 0, 100); /* wait for 100ms */
1531 ret = cds_lfht_delete_dummy(ht);
1532 if (ret)
1533 return ret;
1534 free_per_cpu_items_count(ht->percpu_count);
1535 if (attr)
1536 *attr = ht->resize_attr;
1537 poison_free(ht);
1538 return ret;
1539 }
1540
1541 void cds_lfht_count_nodes(struct cds_lfht *ht,
1542 long *approx_before,
1543 unsigned long *count,
1544 unsigned long *removed,
1545 long *approx_after)
1546 {
1547 struct cds_lfht_node *node, *next;
1548 struct _cds_lfht_node *lookup;
1549 unsigned long nr_dummy = 0;
1550
1551 *approx_before = 0;
1552 if (nr_cpus_mask >= 0) {
1553 int i;
1554
1555 for (i = 0; i < nr_cpus_mask + 1; i++) {
1556 *approx_before += uatomic_read(&ht->percpu_count[i].add);
1557 *approx_before -= uatomic_read(&ht->percpu_count[i].del);
1558 }
1559 }
1560
1561 *count = 0;
1562 *removed = 0;
1563
1564 /* Count non-dummy nodes in the table */
1565 lookup = &ht->t.tbl[0]->nodes[0];
1566 node = (struct cds_lfht_node *) lookup;
1567 do {
1568 next = rcu_dereference(node->p.next);
1569 if (is_removed(next)) {
1570 if (!is_dummy(next))
1571 (*removed)++;
1572 else
1573 (nr_dummy)++;
1574 } else if (!is_dummy(next))
1575 (*count)++;
1576 else
1577 (nr_dummy)++;
1578 node = clear_flag(next);
1579 } while (!is_end(node));
1580 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1581 *approx_after = 0;
1582 if (nr_cpus_mask >= 0) {
1583 int i;
1584
1585 for (i = 0; i < nr_cpus_mask + 1; i++) {
1586 *approx_after += uatomic_read(&ht->percpu_count[i].add);
1587 *approx_after -= uatomic_read(&ht->percpu_count[i].del);
1588 }
1589 }
1590 }
1591
1592 /* called with resize mutex held */
1593 static
1594 void _do_cds_lfht_grow(struct cds_lfht *ht,
1595 unsigned long old_size, unsigned long new_size)
1596 {
1597 unsigned long old_order, new_order;
1598
1599 old_order = get_count_order_ulong(old_size) + 1;
1600 new_order = get_count_order_ulong(new_size) + 1;
1601 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1602 old_size, old_order, new_size, new_order);
1603 assert(new_size > old_size);
1604 init_table(ht, old_order, new_order - old_order);
1605 }
1606
1607 /* called with resize mutex held */
1608 static
1609 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1610 unsigned long old_size, unsigned long new_size)
1611 {
1612 unsigned long old_order, new_order;
1613
1614 new_size = max(new_size, MIN_TABLE_SIZE);
1615 old_order = get_count_order_ulong(old_size) + 1;
1616 new_order = get_count_order_ulong(new_size) + 1;
1617 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1618 old_size, old_order, new_size, new_order);
1619 assert(new_size < old_size);
1620
1621 /* Remove and unlink all dummy nodes to remove. */
1622 fini_table(ht, new_order, old_order - new_order);
1623 }
1624
1625
1626 /* called with resize mutex held */
1627 static
1628 void _do_cds_lfht_resize(struct cds_lfht *ht)
1629 {
1630 unsigned long new_size, old_size;
1631
1632 /*
1633 * Resize table, re-do if the target size has changed under us.
1634 */
1635 do {
1636 assert(uatomic_read(&ht->in_progress_resize));
1637 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1638 break;
1639 ht->t.resize_initiated = 1;
1640 old_size = ht->t.size;
1641 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1642 if (old_size < new_size)
1643 _do_cds_lfht_grow(ht, old_size, new_size);
1644 else if (old_size > new_size)
1645 _do_cds_lfht_shrink(ht, old_size, new_size);
1646 ht->t.resize_initiated = 0;
1647 /* write resize_initiated before read resize_target */
1648 cmm_smp_mb();
1649 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1650 }
1651
1652 static
1653 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1654 int growth_order)
1655 {
1656 return _uatomic_max(&ht->t.resize_target,
1657 size << growth_order);
1658 }
1659
1660 static
1661 void resize_target_update_count(struct cds_lfht *ht,
1662 unsigned long count)
1663 {
1664 count = max(count, MIN_TABLE_SIZE);
1665 uatomic_set(&ht->t.resize_target, count);
1666 }
1667
1668 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1669 {
1670 resize_target_update_count(ht, new_size);
1671 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1672 ht->cds_lfht_rcu_thread_offline();
1673 pthread_mutex_lock(&ht->resize_mutex);
1674 _do_cds_lfht_resize(ht);
1675 pthread_mutex_unlock(&ht->resize_mutex);
1676 ht->cds_lfht_rcu_thread_online();
1677 }
1678
1679 static
1680 void do_resize_cb(struct rcu_head *head)
1681 {
1682 struct rcu_resize_work *work =
1683 caa_container_of(head, struct rcu_resize_work, head);
1684 struct cds_lfht *ht = work->ht;
1685
1686 ht->cds_lfht_rcu_thread_offline();
1687 pthread_mutex_lock(&ht->resize_mutex);
1688 _do_cds_lfht_resize(ht);
1689 pthread_mutex_unlock(&ht->resize_mutex);
1690 ht->cds_lfht_rcu_thread_online();
1691 poison_free(work);
1692 cmm_smp_mb(); /* finish resize before decrement */
1693 uatomic_dec(&ht->in_progress_resize);
1694 }
1695
1696 static
1697 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1698 {
1699 struct rcu_resize_work *work;
1700 unsigned long target_size;
1701
1702 target_size = resize_target_update(ht, size, growth);
1703 /* Store resize_target before read resize_initiated */
1704 cmm_smp_mb();
1705 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1706 uatomic_inc(&ht->in_progress_resize);
1707 cmm_smp_mb(); /* increment resize count before load destroy */
1708 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1709 uatomic_dec(&ht->in_progress_resize);
1710 return;
1711 }
1712 work = malloc(sizeof(*work));
1713 work->ht = ht;
1714 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1715 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1716 }
1717 }
1718
1719 #if defined(HAVE_SCHED_GETCPU) && defined(HAVE_SYSCONF)
1720
1721 static
1722 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1723 unsigned long count)
1724 {
1725 struct rcu_resize_work *work;
1726
1727 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1728 return;
1729 resize_target_update_count(ht, count);
1730 /* Store resize_target before read resize_initiated */
1731 cmm_smp_mb();
1732 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1733 uatomic_inc(&ht->in_progress_resize);
1734 cmm_smp_mb(); /* increment resize count before load destroy */
1735 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1736 uatomic_dec(&ht->in_progress_resize);
1737 return;
1738 }
1739 work = malloc(sizeof(*work));
1740 work->ht = ht;
1741 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1742 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1743 }
1744 }
1745
1746 #endif
This page took 0.066713 seconds and 5 git commands to generate.