rculfhash: use DEFAULT_SPLIT_COUNT_MASK for !HAVE_SYSCONF
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 *
8 * This library is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * This library is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with this library; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /*
24 * Based on the following articles:
25 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
26 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
27 * - Michael, M. M. High performance dynamic lock-free hash tables
28 * and list-based sets. In Proceedings of the fourteenth annual ACM
29 * symposium on Parallel algorithms and architectures, ACM Press,
30 * (2002), 73-82.
31 *
32 * Some specificities of this Lock-Free Resizable RCU Hash Table
33 * implementation:
34 *
35 * - RCU read-side critical section allows readers to perform hash
36 * table lookups and use the returned objects safely by delaying
37 * memory reclaim of a grace period.
38 * - Add and remove operations are lock-free, and do not need to
39 * allocate memory. They need to be executed within RCU read-side
40 * critical section to ensure the objects they read are valid and to
41 * deal with the cmpxchg ABA problem.
42 * - add and add_unique operations are supported. add_unique checks if
43 * the node key already exists in the hash table. It ensures no key
44 * duplicata exists.
45 * - The resize operation executes concurrently with add/remove/lookup.
46 * - Hash table nodes are contained within a split-ordered list. This
47 * list is ordered by incrementing reversed-bits-hash value.
48 * - An index of dummy nodes is kept. These dummy nodes are the hash
49 * table "buckets", and they are also chained together in the
50 * split-ordered list, which allows recursive expansion.
51 * - The resize operation for small tables only allows expanding the hash table.
52 * It is triggered automatically by detecting long chains in the add
53 * operation.
54 * - The resize operation for larger tables (and available through an
55 * API) allows both expanding and shrinking the hash table.
56 * - Split-counters are used to keep track of the number of
57 * nodes within the hash table for automatic resize triggering.
58 * - Resize operation initiated by long chain detection is executed by a
59 * call_rcu thread, which keeps lock-freedom of add and remove.
60 * - Resize operations are protected by a mutex.
61 * - The removal operation is split in two parts: first, a "removed"
62 * flag is set in the next pointer within the node to remove. Then,
63 * a "garbage collection" is performed in the bucket containing the
64 * removed node (from the start of the bucket up to the removed node).
65 * All encountered nodes with "removed" flag set in their next
66 * pointers are removed from the linked-list. If the cmpxchg used for
67 * removal fails (due to concurrent garbage-collection or concurrent
68 * add), we retry from the beginning of the bucket. This ensures that
69 * the node with "removed" flag set is removed from the hash table
70 * (not visible to lookups anymore) before the RCU read-side critical
71 * section held across removal ends. Furthermore, this ensures that
72 * the node with "removed" flag set is removed from the linked-list
73 * before its memory is reclaimed. Only the thread which removal
74 * successfully set the "removed" flag (with a cmpxchg) into a node's
75 * next pointer is considered to have succeeded its removal (and thus
76 * owns the node to reclaim). Because we garbage-collect starting from
77 * an invariant node (the start-of-bucket dummy node) up to the
78 * "removed" node (or find a reverse-hash that is higher), we are sure
79 * that a successful traversal of the chain leads to a chain that is
80 * present in the linked-list (the start node is never removed) and
81 * that is does not contain the "removed" node anymore, even if
82 * concurrent delete/add operations are changing the structure of the
83 * list concurrently.
84 * - The add operation performs gargage collection of buckets if it
85 * encounters nodes with removed flag set in the bucket where it wants
86 * to add its new node. This ensures lock-freedom of add operation by
87 * helping the remover unlink nodes from the list rather than to wait
88 * for it do to so.
89 * - A RCU "order table" indexed by log2(hash index) is copied and
90 * expanded by the resize operation. This order table allows finding
91 * the "dummy node" tables.
92 * - There is one dummy node table per hash index order. The size of
93 * each dummy node table is half the number of hashes contained in
94 * this order (except for order 0).
95 * - synchronzie_rcu is used to garbage-collect the old dummy node table.
96 * - The per-order dummy node tables contain a compact version of the
97 * hash table nodes. These tables are invariant after they are
98 * populated into the hash table.
99 *
100 * Dummy node tables:
101 *
102 * hash table hash table the last all dummy node tables
103 * order size dummy node 0 1 2 3 4 5 6(index)
104 * table size
105 * 0 1 1 1
106 * 1 2 1 1 1
107 * 2 4 2 1 1 2
108 * 3 8 4 1 1 2 4
109 * 4 16 8 1 1 2 4 8
110 * 5 32 16 1 1 2 4 8 16
111 * 6 64 32 1 1 2 4 8 16 32
112 *
113 * When growing/shrinking, we only focus on the last dummy node table
114 * which size is (!order ? 1 : (1 << (order -1))).
115 *
116 * Example for growing/shrinking:
117 * grow hash table from order 5 to 6: init the index=6 dummy node table
118 * shrink hash table from order 6 to 5: fini the index=6 dummy node table
119 *
120 * A bit of ascii art explanation:
121 *
122 * Order index is the off-by-one compare to the actual power of 2 because
123 * we use index 0 to deal with the 0 special-case.
124 *
125 * This shows the nodes for a small table ordered by reversed bits:
126 *
127 * bits reverse
128 * 0 000 000
129 * 4 100 001
130 * 2 010 010
131 * 6 110 011
132 * 1 001 100
133 * 5 101 101
134 * 3 011 110
135 * 7 111 111
136 *
137 * This shows the nodes in order of non-reversed bits, linked by
138 * reversed-bit order.
139 *
140 * order bits reverse
141 * 0 0 000 000
142 * 1 | 1 001 100 <-
143 * 2 | | 2 010 010 <- |
144 * | | | 3 011 110 | <- |
145 * 3 -> | | | 4 100 001 | |
146 * -> | | 5 101 101 |
147 * -> | 6 110 011
148 * -> 7 111 111
149 */
150
151 #define _LGPL_SOURCE
152 #include <stdlib.h>
153 #include <errno.h>
154 #include <assert.h>
155 #include <stdio.h>
156 #include <stdint.h>
157 #include <string.h>
158
159 #include "config.h"
160 #include <urcu.h>
161 #include <urcu-call-rcu.h>
162 #include <urcu/arch.h>
163 #include <urcu/uatomic.h>
164 #include <urcu/compiler.h>
165 #include <urcu/rculfhash.h>
166 #include <stdio.h>
167 #include <pthread.h>
168
169 #ifdef DEBUG
170 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
171 #else
172 #define dbg_printf(fmt, args...)
173 #endif
174
175 /*
176 * Split-counters lazily update the global counter each 1024
177 * addition/removal. It automatically keeps track of resize required.
178 * We use the bucket length as indicator for need to expand for small
179 * tables and machines lacking per-cpu data suppport.
180 */
181 #define COUNT_COMMIT_ORDER 10
182 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
183 #define CHAIN_LEN_TARGET 1
184 #define CHAIN_LEN_RESIZE_THRESHOLD 3
185
186 /*
187 * Define the minimum table size.
188 */
189 #define MIN_TABLE_SIZE 1
190
191 #if (CAA_BITS_PER_LONG == 32)
192 #define MAX_TABLE_ORDER 32
193 #else
194 #define MAX_TABLE_ORDER 64
195 #endif
196
197 /*
198 * Minimum number of dummy nodes to touch per thread to parallelize grow/shrink.
199 */
200 #define MIN_PARTITION_PER_THREAD_ORDER 12
201 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
202
203 #ifndef min
204 #define min(a, b) ((a) < (b) ? (a) : (b))
205 #endif
206
207 #ifndef max
208 #define max(a, b) ((a) > (b) ? (a) : (b))
209 #endif
210
211 /*
212 * The removed flag needs to be updated atomically with the pointer.
213 * It indicates that no node must attach to the node scheduled for
214 * removal, and that node garbage collection must be performed.
215 * The dummy flag does not require to be updated atomically with the
216 * pointer, but it is added as a pointer low bit flag to save space.
217 */
218 #define REMOVED_FLAG (1UL << 0)
219 #define DUMMY_FLAG (1UL << 1)
220 #define FLAGS_MASK ((1UL << 2) - 1)
221
222 /* Value of the end pointer. Should not interact with flags. */
223 #define END_VALUE NULL
224
225 struct ht_items_count {
226 unsigned long add, del;
227 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
228
229 struct rcu_level {
230 /* Note: manually update allocation length when adding a field */
231 struct _cds_lfht_node nodes[0];
232 };
233
234 struct rcu_table {
235 unsigned long size; /* always a power of 2, shared (RCU) */
236 unsigned long resize_target;
237 int resize_initiated;
238 struct rcu_level *tbl[MAX_TABLE_ORDER];
239 };
240
241 struct cds_lfht {
242 struct rcu_table t;
243 cds_lfht_hash_fct hash_fct;
244 cds_lfht_compare_fct compare_fct;
245 unsigned long min_alloc_order;
246 unsigned long min_alloc_size;
247 unsigned long hash_seed;
248 int flags;
249 /*
250 * We need to put the work threads offline (QSBR) when taking this
251 * mutex, because we use synchronize_rcu within this mutex critical
252 * section, which waits on read-side critical sections, and could
253 * therefore cause grace-period deadlock if we hold off RCU G.P.
254 * completion.
255 */
256 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
257 unsigned int in_progress_resize, in_progress_destroy;
258 void (*cds_lfht_call_rcu)(struct rcu_head *head,
259 void (*func)(struct rcu_head *head));
260 void (*cds_lfht_synchronize_rcu)(void);
261 void (*cds_lfht_rcu_read_lock)(void);
262 void (*cds_lfht_rcu_read_unlock)(void);
263 void (*cds_lfht_rcu_thread_offline)(void);
264 void (*cds_lfht_rcu_thread_online)(void);
265 void (*cds_lfht_rcu_register_thread)(void);
266 void (*cds_lfht_rcu_unregister_thread)(void);
267 pthread_attr_t *resize_attr; /* Resize threads attributes */
268 long count; /* global approximate item count */
269 struct ht_items_count *split_count; /* split item count */
270 };
271
272 struct rcu_resize_work {
273 struct rcu_head head;
274 struct cds_lfht *ht;
275 };
276
277 struct partition_resize_work {
278 pthread_t thread_id;
279 struct cds_lfht *ht;
280 unsigned long i, start, len;
281 void (*fct)(struct cds_lfht *ht, unsigned long i,
282 unsigned long start, unsigned long len);
283 };
284
285 static
286 void _cds_lfht_add(struct cds_lfht *ht,
287 unsigned long size,
288 struct cds_lfht_node *node,
289 struct cds_lfht_iter *unique_ret,
290 int dummy);
291
292 /*
293 * Algorithm to reverse bits in a word by lookup table, extended to
294 * 64-bit words.
295 * Source:
296 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
297 * Originally from Public Domain.
298 */
299
300 static const uint8_t BitReverseTable256[256] =
301 {
302 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
303 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
304 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
305 R6(0), R6(2), R6(1), R6(3)
306 };
307 #undef R2
308 #undef R4
309 #undef R6
310
311 static
312 uint8_t bit_reverse_u8(uint8_t v)
313 {
314 return BitReverseTable256[v];
315 }
316
317 static __attribute__((unused))
318 uint32_t bit_reverse_u32(uint32_t v)
319 {
320 return ((uint32_t) bit_reverse_u8(v) << 24) |
321 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
322 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
323 ((uint32_t) bit_reverse_u8(v >> 24));
324 }
325
326 static __attribute__((unused))
327 uint64_t bit_reverse_u64(uint64_t v)
328 {
329 return ((uint64_t) bit_reverse_u8(v) << 56) |
330 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
331 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
332 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
333 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
334 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
335 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
336 ((uint64_t) bit_reverse_u8(v >> 56));
337 }
338
339 static
340 unsigned long bit_reverse_ulong(unsigned long v)
341 {
342 #if (CAA_BITS_PER_LONG == 32)
343 return bit_reverse_u32(v);
344 #else
345 return bit_reverse_u64(v);
346 #endif
347 }
348
349 /*
350 * fls: returns the position of the most significant bit.
351 * Returns 0 if no bit is set, else returns the position of the most
352 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
353 */
354 #if defined(__i386) || defined(__x86_64)
355 static inline
356 unsigned int fls_u32(uint32_t x)
357 {
358 int r;
359
360 asm("bsrl %1,%0\n\t"
361 "jnz 1f\n\t"
362 "movl $-1,%0\n\t"
363 "1:\n\t"
364 : "=r" (r) : "rm" (x));
365 return r + 1;
366 }
367 #define HAS_FLS_U32
368 #endif
369
370 #if defined(__x86_64)
371 static inline
372 unsigned int fls_u64(uint64_t x)
373 {
374 long r;
375
376 asm("bsrq %1,%0\n\t"
377 "jnz 1f\n\t"
378 "movq $-1,%0\n\t"
379 "1:\n\t"
380 : "=r" (r) : "rm" (x));
381 return r + 1;
382 }
383 #define HAS_FLS_U64
384 #endif
385
386 #ifndef HAS_FLS_U64
387 static __attribute__((unused))
388 unsigned int fls_u64(uint64_t x)
389 {
390 unsigned int r = 64;
391
392 if (!x)
393 return 0;
394
395 if (!(x & 0xFFFFFFFF00000000ULL)) {
396 x <<= 32;
397 r -= 32;
398 }
399 if (!(x & 0xFFFF000000000000ULL)) {
400 x <<= 16;
401 r -= 16;
402 }
403 if (!(x & 0xFF00000000000000ULL)) {
404 x <<= 8;
405 r -= 8;
406 }
407 if (!(x & 0xF000000000000000ULL)) {
408 x <<= 4;
409 r -= 4;
410 }
411 if (!(x & 0xC000000000000000ULL)) {
412 x <<= 2;
413 r -= 2;
414 }
415 if (!(x & 0x8000000000000000ULL)) {
416 x <<= 1;
417 r -= 1;
418 }
419 return r;
420 }
421 #endif
422
423 #ifndef HAS_FLS_U32
424 static __attribute__((unused))
425 unsigned int fls_u32(uint32_t x)
426 {
427 unsigned int r = 32;
428
429 if (!x)
430 return 0;
431 if (!(x & 0xFFFF0000U)) {
432 x <<= 16;
433 r -= 16;
434 }
435 if (!(x & 0xFF000000U)) {
436 x <<= 8;
437 r -= 8;
438 }
439 if (!(x & 0xF0000000U)) {
440 x <<= 4;
441 r -= 4;
442 }
443 if (!(x & 0xC0000000U)) {
444 x <<= 2;
445 r -= 2;
446 }
447 if (!(x & 0x80000000U)) {
448 x <<= 1;
449 r -= 1;
450 }
451 return r;
452 }
453 #endif
454
455 unsigned int fls_ulong(unsigned long x)
456 {
457 #if (CAA_BITS_PER_lONG == 32)
458 return fls_u32(x);
459 #else
460 return fls_u64(x);
461 #endif
462 }
463
464 /*
465 * Return the minimum order for which x <= (1UL << order).
466 * Return -1 if x is 0.
467 */
468 int get_count_order_u32(uint32_t x)
469 {
470 if (!x)
471 return -1;
472
473 return fls_u32(x - 1);
474 }
475
476 /*
477 * Return the minimum order for which x <= (1UL << order).
478 * Return -1 if x is 0.
479 */
480 int get_count_order_ulong(unsigned long x)
481 {
482 if (!x)
483 return -1;
484
485 return fls_ulong(x - 1);
486 }
487
488 #ifdef POISON_FREE
489 #define poison_free(ptr) \
490 do { \
491 memset(ptr, 0x42, sizeof(*(ptr))); \
492 free(ptr); \
493 } while (0)
494 #else
495 #define poison_free(ptr) free(ptr)
496 #endif
497
498 static
499 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth);
500
501 static
502 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
503 unsigned long count);
504
505 static long nr_cpus_mask = -1;
506 static long split_count_mask = -1;
507
508 #if defined(HAVE_SYSCONF)
509 static void ht_init_nr_cpus_mask(void)
510 {
511 long maxcpus;
512
513 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
514 if (maxcpus <= 0) {
515 nr_cpus_mask = -2;
516 return;
517 }
518 /*
519 * round up number of CPUs to next power of two, so we
520 * can use & for modulo.
521 */
522 maxcpus = 1UL << get_count_order_ulong(maxcpus);
523 nr_cpus_mask = maxcpus - 1;
524 }
525 #else /* #if defined(HAVE_SYSCONF) */
526 static void ht_init_nr_cpus_mask(void)
527 {
528 nr_cpus_mask = -2;
529 }
530 #endif /* #else #if defined(HAVE_SYSCONF) */
531
532 static
533 struct ht_items_count *alloc_split_items_count(void)
534 {
535 struct ht_items_count *count;
536
537 if (nr_cpus_mask == -1) {
538 ht_init_nr_cpus_mask();
539 if (nr_cpus_mask < 0)
540 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
541 else
542 split_count_mask = nr_cpus_mask;
543 }
544
545 assert(split_count_mask >= 0);
546 return calloc(split_count_mask + 1, sizeof(*count));
547 }
548
549 static
550 void free_split_items_count(struct ht_items_count *count)
551 {
552 poison_free(count);
553 }
554
555 #if defined(HAVE_SCHED_GETCPU)
556 static
557 int ht_get_split_count_index(unsigned long hash)
558 {
559 int cpu;
560
561 assert(split_count_mask >= 0);
562 cpu = sched_getcpu();
563 if (unlikely(cpu < 0))
564 return hash & split_count_mask;
565 else
566 return cpu & split_count_mask;
567 }
568 #else /* #if defined(HAVE_SCHED_GETCPU) */
569 static
570 int ht_get_split_count_index(unsigned long hash)
571 {
572 return hash & split_count_mask;
573 }
574 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
575
576 static
577 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
578 {
579 unsigned long split_count;
580 int index;
581
582 if (unlikely(!ht->split_count))
583 return;
584 index = ht_get_split_count_index(hash);
585 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
586 if (unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
587 long count;
588
589 dbg_printf("add split count %lu\n", split_count);
590 count = uatomic_add_return(&ht->count,
591 1UL << COUNT_COMMIT_ORDER);
592 /* If power of 2 */
593 if (!(count & (count - 1))) {
594 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
595 return;
596 dbg_printf("add set global %ld\n", count);
597 cds_lfht_resize_lazy_count(ht, size,
598 count >> (CHAIN_LEN_TARGET - 1));
599 }
600 }
601 }
602
603 static
604 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
605 {
606 unsigned long split_count;
607 int index;
608
609 if (unlikely(!ht->split_count))
610 return;
611 index = ht_get_split_count_index(hash);
612 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
613 if (unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
614 long count;
615
616 dbg_printf("del split count %lu\n", split_count);
617 count = uatomic_add_return(&ht->count,
618 -(1UL << COUNT_COMMIT_ORDER));
619 /* If power of 2 */
620 if (!(count & (count - 1))) {
621 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
622 return;
623 dbg_printf("del set global %ld\n", count);
624 /*
625 * Don't shrink table if the number of nodes is below a
626 * certain threshold.
627 */
628 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
629 return;
630 cds_lfht_resize_lazy_count(ht, size,
631 count >> (CHAIN_LEN_TARGET - 1));
632 }
633 }
634 }
635
636 static
637 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
638 {
639 unsigned long count;
640
641 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
642 return;
643 count = uatomic_read(&ht->count);
644 /*
645 * Use bucket-local length for small table expand and for
646 * environments lacking per-cpu data support.
647 */
648 if (count >= (1UL << COUNT_COMMIT_ORDER))
649 return;
650 if (chain_len > 100)
651 dbg_printf("WARNING: large chain length: %u.\n",
652 chain_len);
653 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
654 cds_lfht_resize_lazy(ht, size,
655 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
656 }
657
658 static
659 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
660 {
661 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
662 }
663
664 static
665 int is_removed(struct cds_lfht_node *node)
666 {
667 return ((unsigned long) node) & REMOVED_FLAG;
668 }
669
670 static
671 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
672 {
673 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
674 }
675
676 static
677 int is_dummy(struct cds_lfht_node *node)
678 {
679 return ((unsigned long) node) & DUMMY_FLAG;
680 }
681
682 static
683 struct cds_lfht_node *flag_dummy(struct cds_lfht_node *node)
684 {
685 return (struct cds_lfht_node *) (((unsigned long) node) | DUMMY_FLAG);
686 }
687
688 static
689 struct cds_lfht_node *get_end(void)
690 {
691 return (struct cds_lfht_node *) END_VALUE;
692 }
693
694 static
695 int is_end(struct cds_lfht_node *node)
696 {
697 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
698 }
699
700 static
701 unsigned long _uatomic_max(unsigned long *ptr, unsigned long v)
702 {
703 unsigned long old1, old2;
704
705 old1 = uatomic_read(ptr);
706 do {
707 old2 = old1;
708 if (old2 >= v)
709 return old2;
710 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
711 return v;
712 }
713
714 static
715 struct _cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
716 unsigned long hash)
717 {
718 unsigned long index, order;
719
720 assert(size > 0);
721 index = hash & (size - 1);
722
723 if (index < ht->min_alloc_size) {
724 dbg_printf("lookup hash %lu index %lu order 0 aridx 0\n",
725 hash, index);
726 return &ht->t.tbl[0]->nodes[index];
727 }
728 /*
729 * equivalent to get_count_order_ulong(index + 1), but optimizes
730 * away the non-existing 0 special-case for
731 * get_count_order_ulong.
732 */
733 order = fls_ulong(index);
734 dbg_printf("lookup hash %lu index %lu order %lu aridx %lu\n",
735 hash, index, order, index & ((1UL << (order - 1)) - 1));
736 return &ht->t.tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
737 }
738
739 /*
740 * Remove all logically deleted nodes from a bucket up to a certain node key.
741 */
742 static
743 void _cds_lfht_gc_bucket(struct cds_lfht_node *dummy, struct cds_lfht_node *node)
744 {
745 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
746
747 assert(!is_dummy(dummy));
748 assert(!is_removed(dummy));
749 assert(!is_dummy(node));
750 assert(!is_removed(node));
751 for (;;) {
752 iter_prev = dummy;
753 /* We can always skip the dummy node initially */
754 iter = rcu_dereference(iter_prev->p.next);
755 assert(!is_removed(iter));
756 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
757 /*
758 * We should never be called with dummy (start of chain)
759 * and logically removed node (end of path compression
760 * marker) being the actual same node. This would be a
761 * bug in the algorithm implementation.
762 */
763 assert(dummy != node);
764 for (;;) {
765 if (unlikely(is_end(iter)))
766 return;
767 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
768 return;
769 next = rcu_dereference(clear_flag(iter)->p.next);
770 if (likely(is_removed(next)))
771 break;
772 iter_prev = clear_flag(iter);
773 iter = next;
774 }
775 assert(!is_removed(iter));
776 if (is_dummy(iter))
777 new_next = flag_dummy(clear_flag(next));
778 else
779 new_next = clear_flag(next);
780 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
781 }
782 return;
783 }
784
785 static
786 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
787 struct cds_lfht_node *old_node,
788 struct cds_lfht_node *old_next,
789 struct cds_lfht_node *new_node)
790 {
791 struct cds_lfht_node *dummy, *ret_next;
792 struct _cds_lfht_node *lookup;
793
794 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
795 return -ENOENT;
796
797 assert(!is_removed(old_node));
798 assert(!is_dummy(old_node));
799 assert(!is_removed(new_node));
800 assert(!is_dummy(new_node));
801 assert(new_node != old_node);
802 for (;;) {
803 /* Insert after node to be replaced */
804 if (is_removed(old_next)) {
805 /*
806 * Too late, the old node has been removed under us
807 * between lookup and replace. Fail.
808 */
809 return -ENOENT;
810 }
811 assert(!is_dummy(old_next));
812 assert(new_node != clear_flag(old_next));
813 new_node->p.next = clear_flag(old_next);
814 /*
815 * Here is the whole trick for lock-free replace: we add
816 * the replacement node _after_ the node we want to
817 * replace by atomically setting its next pointer at the
818 * same time we set its removal flag. Given that
819 * the lookups/get next use an iterator aware of the
820 * next pointer, they will either skip the old node due
821 * to the removal flag and see the new node, or use
822 * the old node, but will not see the new one.
823 */
824 ret_next = uatomic_cmpxchg(&old_node->p.next,
825 old_next, flag_removed(new_node));
826 if (ret_next == old_next)
827 break; /* We performed the replacement. */
828 old_next = ret_next;
829 }
830
831 /*
832 * Ensure that the old node is not visible to readers anymore:
833 * lookup for the node, and remove it (along with any other
834 * logically removed node) if found.
835 */
836 lookup = lookup_bucket(ht, size, bit_reverse_ulong(old_node->p.reverse_hash));
837 dummy = (struct cds_lfht_node *) lookup;
838 _cds_lfht_gc_bucket(dummy, new_node);
839
840 assert(is_removed(rcu_dereference(old_node->p.next)));
841 return 0;
842 }
843
844 /*
845 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
846 * mode. A NULL unique_ret allows creation of duplicate keys.
847 */
848 static
849 void _cds_lfht_add(struct cds_lfht *ht,
850 unsigned long size,
851 struct cds_lfht_node *node,
852 struct cds_lfht_iter *unique_ret,
853 int dummy)
854 {
855 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
856 *return_node;
857 struct _cds_lfht_node *lookup;
858
859 assert(!is_dummy(node));
860 assert(!is_removed(node));
861 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
862 for (;;) {
863 uint32_t chain_len = 0;
864
865 /*
866 * iter_prev points to the non-removed node prior to the
867 * insert location.
868 */
869 iter_prev = (struct cds_lfht_node *) lookup;
870 /* We can always skip the dummy node initially */
871 iter = rcu_dereference(iter_prev->p.next);
872 assert(iter_prev->p.reverse_hash <= node->p.reverse_hash);
873 for (;;) {
874 if (unlikely(is_end(iter)))
875 goto insert;
876 if (likely(clear_flag(iter)->p.reverse_hash > node->p.reverse_hash))
877 goto insert;
878
879 /* dummy node is the first node of the identical-hash-value chain */
880 if (dummy && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash)
881 goto insert;
882
883 next = rcu_dereference(clear_flag(iter)->p.next);
884 if (unlikely(is_removed(next)))
885 goto gc_node;
886
887 /* uniquely add */
888 if (unique_ret
889 && !is_dummy(next)
890 && clear_flag(iter)->p.reverse_hash == node->p.reverse_hash) {
891 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
892
893 /*
894 * uniquely adding inserts the node as the first
895 * node of the identical-hash-value node chain.
896 *
897 * This semantic ensures no duplicated keys
898 * should ever be observable in the table
899 * (including observe one node by one node
900 * by forward iterations)
901 */
902 cds_lfht_next_duplicate(ht, &d_iter);
903 if (!d_iter.node)
904 goto insert;
905
906 *unique_ret = d_iter;
907 return;
908 }
909
910 /* Only account for identical reverse hash once */
911 if (iter_prev->p.reverse_hash != clear_flag(iter)->p.reverse_hash
912 && !is_dummy(next))
913 check_resize(ht, size, ++chain_len);
914 iter_prev = clear_flag(iter);
915 iter = next;
916 }
917
918 insert:
919 assert(node != clear_flag(iter));
920 assert(!is_removed(iter_prev));
921 assert(!is_removed(iter));
922 assert(iter_prev != node);
923 if (!dummy)
924 node->p.next = clear_flag(iter);
925 else
926 node->p.next = flag_dummy(clear_flag(iter));
927 if (is_dummy(iter))
928 new_node = flag_dummy(node);
929 else
930 new_node = node;
931 if (uatomic_cmpxchg(&iter_prev->p.next, iter,
932 new_node) != iter) {
933 continue; /* retry */
934 } else {
935 return_node = node;
936 goto end;
937 }
938
939 gc_node:
940 assert(!is_removed(iter));
941 if (is_dummy(iter))
942 new_next = flag_dummy(clear_flag(next));
943 else
944 new_next = clear_flag(next);
945 (void) uatomic_cmpxchg(&iter_prev->p.next, iter, new_next);
946 /* retry */
947 }
948 end:
949 if (unique_ret) {
950 unique_ret->node = return_node;
951 /* unique_ret->next left unset, never used. */
952 }
953 }
954
955 static
956 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
957 struct cds_lfht_node *node,
958 int dummy_removal)
959 {
960 struct cds_lfht_node *dummy, *next, *old;
961 struct _cds_lfht_node *lookup;
962
963 if (!node) /* Return -ENOENT if asked to delete NULL node */
964 return -ENOENT;
965
966 /* logically delete the node */
967 assert(!is_dummy(node));
968 assert(!is_removed(node));
969 old = rcu_dereference(node->p.next);
970 do {
971 struct cds_lfht_node *new_next;
972
973 next = old;
974 if (unlikely(is_removed(next)))
975 return -ENOENT;
976 if (dummy_removal)
977 assert(is_dummy(next));
978 else
979 assert(!is_dummy(next));
980 new_next = flag_removed(next);
981 old = uatomic_cmpxchg(&node->p.next, next, new_next);
982 } while (old != next);
983 /* We performed the (logical) deletion. */
984
985 /*
986 * Ensure that the node is not visible to readers anymore: lookup for
987 * the node, and remove it (along with any other logically removed node)
988 * if found.
989 */
990 lookup = lookup_bucket(ht, size, bit_reverse_ulong(node->p.reverse_hash));
991 dummy = (struct cds_lfht_node *) lookup;
992 _cds_lfht_gc_bucket(dummy, node);
993
994 assert(is_removed(rcu_dereference(node->p.next)));
995 return 0;
996 }
997
998 static
999 void *partition_resize_thread(void *arg)
1000 {
1001 struct partition_resize_work *work = arg;
1002
1003 work->ht->cds_lfht_rcu_register_thread();
1004 work->fct(work->ht, work->i, work->start, work->len);
1005 work->ht->cds_lfht_rcu_unregister_thread();
1006 return NULL;
1007 }
1008
1009 static
1010 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1011 unsigned long len,
1012 void (*fct)(struct cds_lfht *ht, unsigned long i,
1013 unsigned long start, unsigned long len))
1014 {
1015 unsigned long partition_len;
1016 struct partition_resize_work *work;
1017 int thread, ret;
1018 unsigned long nr_threads;
1019
1020 /*
1021 * Note: nr_cpus_mask + 1 is always power of 2.
1022 * We spawn just the number of threads we need to satisfy the minimum
1023 * partition size, up to the number of CPUs in the system.
1024 */
1025 if (nr_cpus_mask > 0) {
1026 nr_threads = min(nr_cpus_mask + 1,
1027 len >> MIN_PARTITION_PER_THREAD_ORDER);
1028 } else {
1029 nr_threads = 1;
1030 }
1031 partition_len = len >> get_count_order_ulong(nr_threads);
1032 work = calloc(nr_threads, sizeof(*work));
1033 assert(work);
1034 for (thread = 0; thread < nr_threads; thread++) {
1035 work[thread].ht = ht;
1036 work[thread].i = i;
1037 work[thread].len = partition_len;
1038 work[thread].start = thread * partition_len;
1039 work[thread].fct = fct;
1040 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1041 partition_resize_thread, &work[thread]);
1042 assert(!ret);
1043 }
1044 for (thread = 0; thread < nr_threads; thread++) {
1045 ret = pthread_join(work[thread].thread_id, NULL);
1046 assert(!ret);
1047 }
1048 free(work);
1049 }
1050
1051 /*
1052 * Holding RCU read lock to protect _cds_lfht_add against memory
1053 * reclaim that could be performed by other call_rcu worker threads (ABA
1054 * problem).
1055 *
1056 * When we reach a certain length, we can split this population phase over
1057 * many worker threads, based on the number of CPUs available in the system.
1058 * This should therefore take care of not having the expand lagging behind too
1059 * many concurrent insertion threads by using the scheduler's ability to
1060 * schedule dummy node population fairly with insertions.
1061 */
1062 static
1063 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1064 unsigned long start, unsigned long len)
1065 {
1066 unsigned long j;
1067
1068 assert(i > ht->min_alloc_order);
1069 ht->cds_lfht_rcu_read_lock();
1070 for (j = start; j < start + len; j++) {
1071 struct cds_lfht_node *new_node =
1072 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1073
1074 dbg_printf("init populate: i %lu j %lu hash %lu\n",
1075 i, j, (1UL << (i - 1)) + j);
1076 new_node->p.reverse_hash =
1077 bit_reverse_ulong((1UL << (i - 1)) + j);
1078 _cds_lfht_add(ht, 1UL << (i - 1),
1079 new_node, NULL, 1);
1080 }
1081 ht->cds_lfht_rcu_read_unlock();
1082 }
1083
1084 static
1085 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1086 unsigned long len)
1087 {
1088 assert(nr_cpus_mask != -1);
1089 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1090 ht->cds_lfht_rcu_thread_online();
1091 init_table_populate_partition(ht, i, 0, len);
1092 ht->cds_lfht_rcu_thread_offline();
1093 return;
1094 }
1095 partition_resize_helper(ht, i, len, init_table_populate_partition);
1096 }
1097
1098 static
1099 void init_table(struct cds_lfht *ht,
1100 unsigned long first_order, unsigned long last_order)
1101 {
1102 unsigned long i;
1103
1104 dbg_printf("init table: first_order %lu last_order %lu\n",
1105 first_order, last_order);
1106 assert(first_order > ht->min_alloc_order);
1107 for (i = first_order; i <= last_order; i++) {
1108 unsigned long len;
1109
1110 len = 1UL << (i - 1);
1111 dbg_printf("init order %lu len: %lu\n", i, len);
1112
1113 /* Stop expand if the resize target changes under us */
1114 if (CMM_LOAD_SHARED(ht->t.resize_target) < (1UL << i))
1115 break;
1116
1117 ht->t.tbl[i] = calloc(1, len * sizeof(struct _cds_lfht_node));
1118 assert(ht->t.tbl[i]);
1119
1120 /*
1121 * Set all dummy nodes reverse hash values for a level and
1122 * link all dummy nodes into the table.
1123 */
1124 init_table_populate(ht, i, len);
1125
1126 /*
1127 * Update table size.
1128 */
1129 cmm_smp_wmb(); /* populate data before RCU size */
1130 CMM_STORE_SHARED(ht->t.size, 1UL << i);
1131
1132 dbg_printf("init new size: %lu\n", 1UL << i);
1133 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1134 break;
1135 }
1136 }
1137
1138 /*
1139 * Holding RCU read lock to protect _cds_lfht_remove against memory
1140 * reclaim that could be performed by other call_rcu worker threads (ABA
1141 * problem).
1142 * For a single level, we logically remove and garbage collect each node.
1143 *
1144 * As a design choice, we perform logical removal and garbage collection on a
1145 * node-per-node basis to simplify this algorithm. We also assume keeping good
1146 * cache locality of the operation would overweight possible performance gain
1147 * that could be achieved by batching garbage collection for multiple levels.
1148 * However, this would have to be justified by benchmarks.
1149 *
1150 * Concurrent removal and add operations are helping us perform garbage
1151 * collection of logically removed nodes. We guarantee that all logically
1152 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1153 * invoked to free a hole level of dummy nodes (after a grace period).
1154 *
1155 * Logical removal and garbage collection can therefore be done in batch or on a
1156 * node-per-node basis, as long as the guarantee above holds.
1157 *
1158 * When we reach a certain length, we can split this removal over many worker
1159 * threads, based on the number of CPUs available in the system. This should
1160 * take care of not letting resize process lag behind too many concurrent
1161 * updater threads actively inserting into the hash table.
1162 */
1163 static
1164 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1165 unsigned long start, unsigned long len)
1166 {
1167 unsigned long j;
1168
1169 assert(i > ht->min_alloc_order);
1170 ht->cds_lfht_rcu_read_lock();
1171 for (j = start; j < start + len; j++) {
1172 struct cds_lfht_node *fini_node =
1173 (struct cds_lfht_node *) &ht->t.tbl[i]->nodes[j];
1174
1175 dbg_printf("remove entry: i %lu j %lu hash %lu\n",
1176 i, j, (1UL << (i - 1)) + j);
1177 fini_node->p.reverse_hash =
1178 bit_reverse_ulong((1UL << (i - 1)) + j);
1179 (void) _cds_lfht_del(ht, 1UL << (i - 1), fini_node, 1);
1180 }
1181 ht->cds_lfht_rcu_read_unlock();
1182 }
1183
1184 static
1185 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1186 {
1187
1188 assert(nr_cpus_mask != -1);
1189 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1190 ht->cds_lfht_rcu_thread_online();
1191 remove_table_partition(ht, i, 0, len);
1192 ht->cds_lfht_rcu_thread_offline();
1193 return;
1194 }
1195 partition_resize_helper(ht, i, len, remove_table_partition);
1196 }
1197
1198 static
1199 void fini_table(struct cds_lfht *ht,
1200 unsigned long first_order, unsigned long last_order)
1201 {
1202 long i;
1203 void *free_by_rcu = NULL;
1204
1205 dbg_printf("fini table: first_order %lu last_order %lu\n",
1206 first_order, last_order);
1207 assert(first_order > ht->min_alloc_order);
1208 for (i = last_order; i >= first_order; i--) {
1209 unsigned long len;
1210
1211 len = 1UL << (i - 1);
1212 dbg_printf("fini order %lu len: %lu\n", i, len);
1213
1214 /* Stop shrink if the resize target changes under us */
1215 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1216 break;
1217
1218 cmm_smp_wmb(); /* populate data before RCU size */
1219 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1220
1221 /*
1222 * We need to wait for all add operations to reach Q.S. (and
1223 * thus use the new table for lookups) before we can start
1224 * releasing the old dummy nodes. Otherwise their lookup will
1225 * return a logically removed node as insert position.
1226 */
1227 ht->cds_lfht_synchronize_rcu();
1228 if (free_by_rcu)
1229 free(free_by_rcu);
1230
1231 /*
1232 * Set "removed" flag in dummy nodes about to be removed.
1233 * Unlink all now-logically-removed dummy node pointers.
1234 * Concurrent add/remove operation are helping us doing
1235 * the gc.
1236 */
1237 remove_table(ht, i, len);
1238
1239 free_by_rcu = ht->t.tbl[i];
1240
1241 dbg_printf("fini new size: %lu\n", 1UL << i);
1242 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1243 break;
1244 }
1245
1246 if (free_by_rcu) {
1247 ht->cds_lfht_synchronize_rcu();
1248 free(free_by_rcu);
1249 }
1250 }
1251
1252 static
1253 void cds_lfht_create_dummy(struct cds_lfht *ht, unsigned long size)
1254 {
1255 struct _cds_lfht_node *prev, *node;
1256 unsigned long order, len, i, j;
1257
1258 ht->t.tbl[0] = calloc(1, ht->min_alloc_size * sizeof(struct _cds_lfht_node));
1259 assert(ht->t.tbl[0]);
1260
1261 dbg_printf("create dummy: order %lu index %lu hash %lu\n", 0, 0, 0);
1262 ht->t.tbl[0]->nodes[0].next = flag_dummy(get_end());
1263 ht->t.tbl[0]->nodes[0].reverse_hash = 0;
1264
1265 for (order = 1; order < get_count_order_ulong(size) + 1; order++) {
1266 len = 1UL << (order - 1);
1267 if (order <= ht->min_alloc_order) {
1268 ht->t.tbl[order] = (struct rcu_level *) (ht->t.tbl[0]->nodes + len);
1269 } else {
1270 ht->t.tbl[order] = calloc(1, len * sizeof(struct _cds_lfht_node));
1271 assert(ht->t.tbl[order]);
1272 }
1273
1274 i = 0;
1275 prev = ht->t.tbl[i]->nodes;
1276 for (j = 0; j < len; j++) {
1277 if (j & (j - 1)) { /* Between power of 2 */
1278 prev++;
1279 } else if (j) { /* At each power of 2 */
1280 i++;
1281 prev = ht->t.tbl[i]->nodes;
1282 }
1283
1284 node = &ht->t.tbl[order]->nodes[j];
1285 dbg_printf("create dummy: order %lu index %lu hash %lu\n",
1286 order, j, j + len);
1287 node->next = prev->next;
1288 assert(is_dummy(node->next));
1289 node->reverse_hash = bit_reverse_ulong(j + len);
1290 prev->next = flag_dummy((struct cds_lfht_node *)node);
1291 }
1292 }
1293 }
1294
1295 struct cds_lfht *_cds_lfht_new(cds_lfht_hash_fct hash_fct,
1296 cds_lfht_compare_fct compare_fct,
1297 unsigned long hash_seed,
1298 unsigned long init_size,
1299 unsigned long min_alloc_size,
1300 int flags,
1301 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1302 void (*func)(struct rcu_head *head)),
1303 void (*cds_lfht_synchronize_rcu)(void),
1304 void (*cds_lfht_rcu_read_lock)(void),
1305 void (*cds_lfht_rcu_read_unlock)(void),
1306 void (*cds_lfht_rcu_thread_offline)(void),
1307 void (*cds_lfht_rcu_thread_online)(void),
1308 void (*cds_lfht_rcu_register_thread)(void),
1309 void (*cds_lfht_rcu_unregister_thread)(void),
1310 pthread_attr_t *attr)
1311 {
1312 struct cds_lfht *ht;
1313 unsigned long order;
1314
1315 /* min_alloc_size must be power of two */
1316 if (!min_alloc_size || (min_alloc_size & (min_alloc_size - 1)))
1317 return NULL;
1318 /* init_size must be power of two */
1319 if (!init_size || (init_size & (init_size - 1)))
1320 return NULL;
1321 min_alloc_size = max(min_alloc_size, MIN_TABLE_SIZE);
1322 init_size = max(init_size, min_alloc_size);
1323 ht = calloc(1, sizeof(struct cds_lfht));
1324 assert(ht);
1325 ht->hash_fct = hash_fct;
1326 ht->compare_fct = compare_fct;
1327 ht->hash_seed = hash_seed;
1328 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1329 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1330 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1331 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1332 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1333 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1334 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1335 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1336 ht->resize_attr = attr;
1337 ht->split_count = alloc_split_items_count();
1338 /* this mutex should not nest in read-side C.S. */
1339 pthread_mutex_init(&ht->resize_mutex, NULL);
1340 ht->flags = flags;
1341 order = get_count_order_ulong(init_size);
1342 ht->t.resize_target = 1UL << order;
1343 cds_lfht_create_dummy(ht, 1UL << order);
1344 ht->t.size = 1UL << order;
1345 ht->min_alloc_size = min_alloc_size;
1346 ht->min_alloc_order = get_count_order_ulong(min_alloc_size);
1347 return ht;
1348 }
1349
1350 void cds_lfht_lookup(struct cds_lfht *ht, void *key, size_t key_len,
1351 struct cds_lfht_iter *iter)
1352 {
1353 struct cds_lfht_node *node, *next, *dummy_node;
1354 struct _cds_lfht_node *lookup;
1355 unsigned long hash, reverse_hash, size;
1356
1357 hash = ht->hash_fct(key, key_len, ht->hash_seed);
1358 reverse_hash = bit_reverse_ulong(hash);
1359
1360 size = rcu_dereference(ht->t.size);
1361 lookup = lookup_bucket(ht, size, hash);
1362 dummy_node = (struct cds_lfht_node *) lookup;
1363 /* We can always skip the dummy node initially */
1364 node = rcu_dereference(dummy_node->p.next);
1365 node = clear_flag(node);
1366 for (;;) {
1367 if (unlikely(is_end(node))) {
1368 node = next = NULL;
1369 break;
1370 }
1371 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1372 node = next = NULL;
1373 break;
1374 }
1375 next = rcu_dereference(node->p.next);
1376 if (likely(!is_removed(next))
1377 && !is_dummy(next)
1378 && clear_flag(node)->p.reverse_hash == reverse_hash
1379 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1380 break;
1381 }
1382 node = clear_flag(next);
1383 }
1384 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1385 iter->node = node;
1386 iter->next = next;
1387 }
1388
1389 void cds_lfht_next_duplicate(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1390 {
1391 struct cds_lfht_node *node, *next;
1392 unsigned long reverse_hash;
1393 void *key;
1394 size_t key_len;
1395
1396 node = iter->node;
1397 reverse_hash = node->p.reverse_hash;
1398 key = node->key;
1399 key_len = node->key_len;
1400 next = iter->next;
1401 node = clear_flag(next);
1402
1403 for (;;) {
1404 if (unlikely(is_end(node))) {
1405 node = next = NULL;
1406 break;
1407 }
1408 if (unlikely(node->p.reverse_hash > reverse_hash)) {
1409 node = next = NULL;
1410 break;
1411 }
1412 next = rcu_dereference(node->p.next);
1413 if (likely(!is_removed(next))
1414 && !is_dummy(next)
1415 && likely(!ht->compare_fct(node->key, node->key_len, key, key_len))) {
1416 break;
1417 }
1418 node = clear_flag(next);
1419 }
1420 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1421 iter->node = node;
1422 iter->next = next;
1423 }
1424
1425 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1426 {
1427 struct cds_lfht_node *node, *next;
1428
1429 node = clear_flag(iter->next);
1430 for (;;) {
1431 if (unlikely(is_end(node))) {
1432 node = next = NULL;
1433 break;
1434 }
1435 next = rcu_dereference(node->p.next);
1436 if (likely(!is_removed(next))
1437 && !is_dummy(next)) {
1438 break;
1439 }
1440 node = clear_flag(next);
1441 }
1442 assert(!node || !is_dummy(rcu_dereference(node->p.next)));
1443 iter->node = node;
1444 iter->next = next;
1445 }
1446
1447 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1448 {
1449 struct _cds_lfht_node *lookup;
1450
1451 /*
1452 * Get next after first dummy node. The first dummy node is the
1453 * first node of the linked list.
1454 */
1455 lookup = &ht->t.tbl[0]->nodes[0];
1456 iter->next = lookup->next;
1457 cds_lfht_next(ht, iter);
1458 }
1459
1460 void cds_lfht_add(struct cds_lfht *ht, struct cds_lfht_node *node)
1461 {
1462 unsigned long hash, size;
1463
1464 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1465 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1466
1467 size = rcu_dereference(ht->t.size);
1468 _cds_lfht_add(ht, size, node, NULL, 0);
1469 ht_count_add(ht, size, hash);
1470 }
1471
1472 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1473 struct cds_lfht_node *node)
1474 {
1475 unsigned long hash, size;
1476 struct cds_lfht_iter iter;
1477
1478 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1479 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1480
1481 size = rcu_dereference(ht->t.size);
1482 _cds_lfht_add(ht, size, node, &iter, 0);
1483 if (iter.node == node)
1484 ht_count_add(ht, size, hash);
1485 return iter.node;
1486 }
1487
1488 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1489 struct cds_lfht_node *node)
1490 {
1491 unsigned long hash, size;
1492 struct cds_lfht_iter iter;
1493
1494 hash = ht->hash_fct(node->key, node->key_len, ht->hash_seed);
1495 node->p.reverse_hash = bit_reverse_ulong((unsigned long) hash);
1496
1497 size = rcu_dereference(ht->t.size);
1498 for (;;) {
1499 _cds_lfht_add(ht, size, node, &iter, 0);
1500 if (iter.node == node) {
1501 ht_count_add(ht, size, hash);
1502 return NULL;
1503 }
1504
1505 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1506 return iter.node;
1507 }
1508 }
1509
1510 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1511 struct cds_lfht_node *new_node)
1512 {
1513 unsigned long size;
1514
1515 size = rcu_dereference(ht->t.size);
1516 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1517 new_node);
1518 }
1519
1520 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1521 {
1522 unsigned long size, hash;
1523 int ret;
1524
1525 size = rcu_dereference(ht->t.size);
1526 ret = _cds_lfht_del(ht, size, iter->node, 0);
1527 if (!ret) {
1528 hash = bit_reverse_ulong(iter->node->p.reverse_hash);
1529 ht_count_del(ht, size, hash);
1530 }
1531 return ret;
1532 }
1533
1534 static
1535 int cds_lfht_delete_dummy(struct cds_lfht *ht)
1536 {
1537 struct cds_lfht_node *node;
1538 struct _cds_lfht_node *lookup;
1539 unsigned long order, i, size;
1540
1541 /* Check that the table is empty */
1542 lookup = &ht->t.tbl[0]->nodes[0];
1543 node = (struct cds_lfht_node *) lookup;
1544 do {
1545 node = clear_flag(node)->p.next;
1546 if (!is_dummy(node))
1547 return -EPERM;
1548 assert(!is_removed(node));
1549 } while (!is_end(node));
1550 /*
1551 * size accessed without rcu_dereference because hash table is
1552 * being destroyed.
1553 */
1554 size = ht->t.size;
1555 /* Internal sanity check: all nodes left should be dummy */
1556 for (order = 0; order < get_count_order_ulong(size) + 1; order++) {
1557 unsigned long len;
1558
1559 len = !order ? 1 : 1UL << (order - 1);
1560 for (i = 0; i < len; i++) {
1561 dbg_printf("delete order %lu i %lu hash %lu\n",
1562 order, i,
1563 bit_reverse_ulong(ht->t.tbl[order]->nodes[i].reverse_hash));
1564 assert(is_dummy(ht->t.tbl[order]->nodes[i].next));
1565 }
1566
1567 if (order == ht->min_alloc_order)
1568 poison_free(ht->t.tbl[0]);
1569 else if (order > ht->min_alloc_order)
1570 poison_free(ht->t.tbl[order]);
1571 /* Nothing to delete for order < ht->min_alloc_order */
1572 }
1573 return 0;
1574 }
1575
1576 /*
1577 * Should only be called when no more concurrent readers nor writers can
1578 * possibly access the table.
1579 */
1580 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1581 {
1582 int ret;
1583
1584 /* Wait for in-flight resize operations to complete */
1585 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1586 cmm_smp_mb(); /* Store destroy before load resize */
1587 while (uatomic_read(&ht->in_progress_resize))
1588 poll(NULL, 0, 100); /* wait for 100ms */
1589 ret = cds_lfht_delete_dummy(ht);
1590 if (ret)
1591 return ret;
1592 free_split_items_count(ht->split_count);
1593 if (attr)
1594 *attr = ht->resize_attr;
1595 poison_free(ht);
1596 return ret;
1597 }
1598
1599 void cds_lfht_count_nodes(struct cds_lfht *ht,
1600 long *approx_before,
1601 unsigned long *count,
1602 unsigned long *removed,
1603 long *approx_after)
1604 {
1605 struct cds_lfht_node *node, *next;
1606 struct _cds_lfht_node *lookup;
1607 unsigned long nr_dummy = 0;
1608
1609 *approx_before = 0;
1610 if (split_count_mask >= 0) {
1611 int i;
1612
1613 for (i = 0; i < split_count_mask + 1; i++) {
1614 *approx_before += uatomic_read(&ht->split_count[i].add);
1615 *approx_before -= uatomic_read(&ht->split_count[i].del);
1616 }
1617 }
1618
1619 *count = 0;
1620 *removed = 0;
1621
1622 /* Count non-dummy nodes in the table */
1623 lookup = &ht->t.tbl[0]->nodes[0];
1624 node = (struct cds_lfht_node *) lookup;
1625 do {
1626 next = rcu_dereference(node->p.next);
1627 if (is_removed(next)) {
1628 if (!is_dummy(next))
1629 (*removed)++;
1630 else
1631 (nr_dummy)++;
1632 } else if (!is_dummy(next))
1633 (*count)++;
1634 else
1635 (nr_dummy)++;
1636 node = clear_flag(next);
1637 } while (!is_end(node));
1638 dbg_printf("number of dummy nodes: %lu\n", nr_dummy);
1639 *approx_after = 0;
1640 if (split_count_mask >= 0) {
1641 int i;
1642
1643 for (i = 0; i < split_count_mask + 1; i++) {
1644 *approx_after += uatomic_read(&ht->split_count[i].add);
1645 *approx_after -= uatomic_read(&ht->split_count[i].del);
1646 }
1647 }
1648 }
1649
1650 /* called with resize mutex held */
1651 static
1652 void _do_cds_lfht_grow(struct cds_lfht *ht,
1653 unsigned long old_size, unsigned long new_size)
1654 {
1655 unsigned long old_order, new_order;
1656
1657 old_order = get_count_order_ulong(old_size);
1658 new_order = get_count_order_ulong(new_size);
1659 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1660 old_size, old_order, new_size, new_order);
1661 assert(new_size > old_size);
1662 init_table(ht, old_order + 1, new_order);
1663 }
1664
1665 /* called with resize mutex held */
1666 static
1667 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1668 unsigned long old_size, unsigned long new_size)
1669 {
1670 unsigned long old_order, new_order;
1671
1672 new_size = max(new_size, ht->min_alloc_size);
1673 old_order = get_count_order_ulong(old_size);
1674 new_order = get_count_order_ulong(new_size);
1675 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1676 old_size, old_order, new_size, new_order);
1677 assert(new_size < old_size);
1678
1679 /* Remove and unlink all dummy nodes to remove. */
1680 fini_table(ht, new_order + 1, old_order);
1681 }
1682
1683
1684 /* called with resize mutex held */
1685 static
1686 void _do_cds_lfht_resize(struct cds_lfht *ht)
1687 {
1688 unsigned long new_size, old_size;
1689
1690 /*
1691 * Resize table, re-do if the target size has changed under us.
1692 */
1693 do {
1694 assert(uatomic_read(&ht->in_progress_resize));
1695 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1696 break;
1697 ht->t.resize_initiated = 1;
1698 old_size = ht->t.size;
1699 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1700 if (old_size < new_size)
1701 _do_cds_lfht_grow(ht, old_size, new_size);
1702 else if (old_size > new_size)
1703 _do_cds_lfht_shrink(ht, old_size, new_size);
1704 ht->t.resize_initiated = 0;
1705 /* write resize_initiated before read resize_target */
1706 cmm_smp_mb();
1707 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1708 }
1709
1710 static
1711 unsigned long resize_target_update(struct cds_lfht *ht, unsigned long size,
1712 int growth_order)
1713 {
1714 return _uatomic_max(&ht->t.resize_target,
1715 size << growth_order);
1716 }
1717
1718 static
1719 void resize_target_update_count(struct cds_lfht *ht,
1720 unsigned long count)
1721 {
1722 count = max(count, ht->min_alloc_size);
1723 uatomic_set(&ht->t.resize_target, count);
1724 }
1725
1726 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1727 {
1728 resize_target_update_count(ht, new_size);
1729 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1730 ht->cds_lfht_rcu_thread_offline();
1731 pthread_mutex_lock(&ht->resize_mutex);
1732 _do_cds_lfht_resize(ht);
1733 pthread_mutex_unlock(&ht->resize_mutex);
1734 ht->cds_lfht_rcu_thread_online();
1735 }
1736
1737 static
1738 void do_resize_cb(struct rcu_head *head)
1739 {
1740 struct rcu_resize_work *work =
1741 caa_container_of(head, struct rcu_resize_work, head);
1742 struct cds_lfht *ht = work->ht;
1743
1744 ht->cds_lfht_rcu_thread_offline();
1745 pthread_mutex_lock(&ht->resize_mutex);
1746 _do_cds_lfht_resize(ht);
1747 pthread_mutex_unlock(&ht->resize_mutex);
1748 ht->cds_lfht_rcu_thread_online();
1749 poison_free(work);
1750 cmm_smp_mb(); /* finish resize before decrement */
1751 uatomic_dec(&ht->in_progress_resize);
1752 }
1753
1754 static
1755 void cds_lfht_resize_lazy(struct cds_lfht *ht, unsigned long size, int growth)
1756 {
1757 struct rcu_resize_work *work;
1758 unsigned long target_size;
1759
1760 target_size = resize_target_update(ht, size, growth);
1761 /* Store resize_target before read resize_initiated */
1762 cmm_smp_mb();
1763 if (!CMM_LOAD_SHARED(ht->t.resize_initiated) && size < target_size) {
1764 uatomic_inc(&ht->in_progress_resize);
1765 cmm_smp_mb(); /* increment resize count before load destroy */
1766 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1767 uatomic_dec(&ht->in_progress_resize);
1768 return;
1769 }
1770 work = malloc(sizeof(*work));
1771 work->ht = ht;
1772 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1773 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1774 }
1775 }
1776
1777 static
1778 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1779 unsigned long count)
1780 {
1781 struct rcu_resize_work *work;
1782
1783 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1784 return;
1785 resize_target_update_count(ht, count);
1786 /* Store resize_target before read resize_initiated */
1787 cmm_smp_mb();
1788 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1789 uatomic_inc(&ht->in_progress_resize);
1790 cmm_smp_mb(); /* increment resize count before load destroy */
1791 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1792 uatomic_dec(&ht->in_progress_resize);
1793 return;
1794 }
1795 work = malloc(sizeof(*work));
1796 work->ht = ht;
1797 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1798 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1799 }
1800 }
This page took 0.105935 seconds and 5 git commands to generate.