proper wrapper for bucket table alloc and free
[urcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups and use the returned objects safely by delaying
38 * memory reclaim of a grace period.
39 * - Add and remove operations are lock-free, and do not need to
40 * allocate memory. They need to be executed within RCU read-side
41 * critical section to ensure the objects they read are valid and to
42 * deal with the cmpxchg ABA problem.
43 * - add and add_unique operations are supported. add_unique checks if
44 * the node key already exists in the hash table. It ensures no key
45 * duplicata exists.
46 * - The resize operation executes concurrently with add/remove/lookup.
47 * - Hash table nodes are contained within a split-ordered list. This
48 * list is ordered by incrementing reversed-bits-hash value.
49 * - An index of bucket nodes is kept. These bucket nodes are the hash
50 * table "buckets", and they are also chained together in the
51 * split-ordered list, which allows recursive expansion.
52 * - The resize operation for small tables only allows expanding the hash table.
53 * It is triggered automatically by detecting long chains in the add
54 * operation.
55 * - The resize operation for larger tables (and available through an
56 * API) allows both expanding and shrinking the hash table.
57 * - Split-counters are used to keep track of the number of
58 * nodes within the hash table for automatic resize triggering.
59 * - Resize operation initiated by long chain detection is executed by a
60 * call_rcu thread, which keeps lock-freedom of add and remove.
61 * - Resize operations are protected by a mutex.
62 * - The removal operation is split in two parts: first, a "removed"
63 * flag is set in the next pointer within the node to remove. Then,
64 * a "garbage collection" is performed in the bucket containing the
65 * removed node (from the start of the bucket up to the removed node).
66 * All encountered nodes with "removed" flag set in their next
67 * pointers are removed from the linked-list. If the cmpxchg used for
68 * removal fails (due to concurrent garbage-collection or concurrent
69 * add), we retry from the beginning of the bucket. This ensures that
70 * the node with "removed" flag set is removed from the hash table
71 * (not visible to lookups anymore) before the RCU read-side critical
72 * section held across removal ends. Furthermore, this ensures that
73 * the node with "removed" flag set is removed from the linked-list
74 * before its memory is reclaimed. Only the thread which removal
75 * successfully set the "removed" flag (with a cmpxchg) into a node's
76 * next pointer is considered to have succeeded its removal (and thus
77 * owns the node to reclaim). Because we garbage-collect starting from
78 * an invariant node (the start-of-bucket bucket node) up to the
79 * "removed" node (or find a reverse-hash that is higher), we are sure
80 * that a successful traversal of the chain leads to a chain that is
81 * present in the linked-list (the start node is never removed) and
82 * that is does not contain the "removed" node anymore, even if
83 * concurrent delete/add operations are changing the structure of the
84 * list concurrently.
85 * - The add operation performs gargage collection of buckets if it
86 * encounters nodes with removed flag set in the bucket where it wants
87 * to add its new node. This ensures lock-freedom of add operation by
88 * helping the remover unlink nodes from the list rather than to wait
89 * for it do to so.
90 * - A RCU "order table" indexed by log2(hash index) is copied and
91 * expanded by the resize operation. This order table allows finding
92 * the "bucket node" tables.
93 * - There is one bucket node table per hash index order. The size of
94 * each bucket node table is half the number of hashes contained in
95 * this order (except for order 0).
96 * - synchronzie_rcu is used to garbage-collect the old bucket node table.
97 * - The per-order bucket node tables contain a compact version of the
98 * hash table nodes. These tables are invariant after they are
99 * populated into the hash table.
100 *
101 * Bucket node tables:
102 *
103 * hash table hash table the last all bucket node tables
104 * order size bucket node 0 1 2 3 4 5 6(index)
105 * table size
106 * 0 1 1 1
107 * 1 2 1 1 1
108 * 2 4 2 1 1 2
109 * 3 8 4 1 1 2 4
110 * 4 16 8 1 1 2 4 8
111 * 5 32 16 1 1 2 4 8 16
112 * 6 64 32 1 1 2 4 8 16 32
113 *
114 * When growing/shrinking, we only focus on the last bucket node table
115 * which size is (!order ? 1 : (1 << (order -1))).
116 *
117 * Example for growing/shrinking:
118 * grow hash table from order 5 to 6: init the index=6 bucket node table
119 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
120 *
121 * A bit of ascii art explanation:
122 *
123 * Order index is the off-by-one compare to the actual power of 2 because
124 * we use index 0 to deal with the 0 special-case.
125 *
126 * This shows the nodes for a small table ordered by reversed bits:
127 *
128 * bits reverse
129 * 0 000 000
130 * 4 100 001
131 * 2 010 010
132 * 6 110 011
133 * 1 001 100
134 * 5 101 101
135 * 3 011 110
136 * 7 111 111
137 *
138 * This shows the nodes in order of non-reversed bits, linked by
139 * reversed-bit order.
140 *
141 * order bits reverse
142 * 0 0 000 000
143 * 1 | 1 001 100 <-
144 * 2 | | 2 010 010 <- |
145 * | | | 3 011 110 | <- |
146 * 3 -> | | | 4 100 001 | |
147 * -> | | 5 101 101 |
148 * -> | 6 110 011
149 * -> 7 111 111
150 */
151
152 #define _LGPL_SOURCE
153 #include <stdlib.h>
154 #include <errno.h>
155 #include <assert.h>
156 #include <stdio.h>
157 #include <stdint.h>
158 #include <string.h>
159
160 #include "config.h"
161 #include <urcu.h>
162 #include <urcu-call-rcu.h>
163 #include <urcu/arch.h>
164 #include <urcu/uatomic.h>
165 #include <urcu/compiler.h>
166 #include <urcu/rculfhash.h>
167 #include <stdio.h>
168 #include <pthread.h>
169
170 #ifdef DEBUG
171 #define dbg_printf(fmt, args...) printf("[debug rculfhash] " fmt, ## args)
172 #else
173 #define dbg_printf(fmt, args...)
174 #endif
175
176 /*
177 * Split-counters lazily update the global counter each 1024
178 * addition/removal. It automatically keeps track of resize required.
179 * We use the bucket length as indicator for need to expand for small
180 * tables and machines lacking per-cpu data suppport.
181 */
182 #define COUNT_COMMIT_ORDER 10
183 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
184 #define CHAIN_LEN_TARGET 1
185 #define CHAIN_LEN_RESIZE_THRESHOLD 3
186
187 /*
188 * Define the minimum table size.
189 */
190 #define MIN_TABLE_SIZE 1
191
192 #if (CAA_BITS_PER_LONG == 32)
193 #define MAX_TABLE_ORDER 32
194 #else
195 #define MAX_TABLE_ORDER 64
196 #endif
197
198 /*
199 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
200 */
201 #define MIN_PARTITION_PER_THREAD_ORDER 12
202 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
203
204 #ifndef min
205 #define min(a, b) ((a) < (b) ? (a) : (b))
206 #endif
207
208 #ifndef max
209 #define max(a, b) ((a) > (b) ? (a) : (b))
210 #endif
211
212 /*
213 * The removed flag needs to be updated atomically with the pointer.
214 * It indicates that no node must attach to the node scheduled for
215 * removal, and that node garbage collection must be performed.
216 * The bucket flag does not require to be updated atomically with the
217 * pointer, but it is added as a pointer low bit flag to save space.
218 */
219 #define REMOVED_FLAG (1UL << 0)
220 #define BUCKET_FLAG (1UL << 1)
221 #define FLAGS_MASK ((1UL << 2) - 1)
222
223 /* Value of the end pointer. Should not interact with flags. */
224 #define END_VALUE NULL
225
226 /*
227 * ht_items_count: Split-counters counting the number of node addition
228 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
229 * is set at hash table creation.
230 *
231 * These are free-running counters, never reset to zero. They count the
232 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
233 * operations to update the global counter. We choose a power-of-2 value
234 * for the trigger to deal with 32 or 64-bit overflow of the counter.
235 */
236 struct ht_items_count {
237 unsigned long add, del;
238 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
239
240 /*
241 * rcu_level: Contains the per order-index-level bucket node table. The
242 * size of each bucket node table is half the number of hashes contained
243 * in this order (except for order 0). The minimum allocation size
244 * parameter allows combining the bucket node arrays of the lowermost
245 * levels to improve cache locality for small index orders.
246 */
247 struct rcu_level {
248 /* Note: manually update allocation length when adding a field */
249 struct cds_lfht_node nodes[0];
250 };
251
252 /*
253 * rcu_table: Contains the size and desired new size if a resize
254 * operation is in progress, as well as the statically-sized array of
255 * rcu_level pointers.
256 */
257 struct rcu_table {
258 unsigned long size; /* always a power of 2, shared (RCU) */
259 unsigned long resize_target;
260 int resize_initiated;
261 struct rcu_level *tbl[MAX_TABLE_ORDER];
262 };
263
264 /*
265 * cds_lfht: Top-level data structure representing a lock-free hash
266 * table. Defined in the implementation file to make it be an opaque
267 * cookie to users.
268 */
269 struct cds_lfht {
270 struct rcu_table t;
271 unsigned long min_alloc_order;
272 unsigned long min_alloc_size;
273 int flags;
274 /*
275 * We need to put the work threads offline (QSBR) when taking this
276 * mutex, because we use synchronize_rcu within this mutex critical
277 * section, which waits on read-side critical sections, and could
278 * therefore cause grace-period deadlock if we hold off RCU G.P.
279 * completion.
280 */
281 pthread_mutex_t resize_mutex; /* resize mutex: add/del mutex */
282 unsigned int in_progress_resize, in_progress_destroy;
283 void (*cds_lfht_call_rcu)(struct rcu_head *head,
284 void (*func)(struct rcu_head *head));
285 void (*cds_lfht_synchronize_rcu)(void);
286 void (*cds_lfht_rcu_read_lock)(void);
287 void (*cds_lfht_rcu_read_unlock)(void);
288 void (*cds_lfht_rcu_thread_offline)(void);
289 void (*cds_lfht_rcu_thread_online)(void);
290 void (*cds_lfht_rcu_register_thread)(void);
291 void (*cds_lfht_rcu_unregister_thread)(void);
292 pthread_attr_t *resize_attr; /* Resize threads attributes */
293 long count; /* global approximate item count */
294 struct ht_items_count *split_count; /* split item count */
295 };
296
297 /*
298 * rcu_resize_work: Contains arguments passed to RCU worker thread
299 * responsible for performing lazy resize.
300 */
301 struct rcu_resize_work {
302 struct rcu_head head;
303 struct cds_lfht *ht;
304 };
305
306 /*
307 * partition_resize_work: Contains arguments passed to worker threads
308 * executing the hash table resize on partitions of the hash table
309 * assigned to each processor's worker thread.
310 */
311 struct partition_resize_work {
312 pthread_t thread_id;
313 struct cds_lfht *ht;
314 unsigned long i, start, len;
315 void (*fct)(struct cds_lfht *ht, unsigned long i,
316 unsigned long start, unsigned long len);
317 };
318
319 static
320 void _cds_lfht_add(struct cds_lfht *ht,
321 cds_lfht_match_fct match,
322 const void *key,
323 unsigned long size,
324 struct cds_lfht_node *node,
325 struct cds_lfht_iter *unique_ret,
326 int bucket);
327
328 /*
329 * Algorithm to reverse bits in a word by lookup table, extended to
330 * 64-bit words.
331 * Source:
332 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
333 * Originally from Public Domain.
334 */
335
336 static const uint8_t BitReverseTable256[256] =
337 {
338 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
339 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
340 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
341 R6(0), R6(2), R6(1), R6(3)
342 };
343 #undef R2
344 #undef R4
345 #undef R6
346
347 static
348 uint8_t bit_reverse_u8(uint8_t v)
349 {
350 return BitReverseTable256[v];
351 }
352
353 static __attribute__((unused))
354 uint32_t bit_reverse_u32(uint32_t v)
355 {
356 return ((uint32_t) bit_reverse_u8(v) << 24) |
357 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
358 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
359 ((uint32_t) bit_reverse_u8(v >> 24));
360 }
361
362 static __attribute__((unused))
363 uint64_t bit_reverse_u64(uint64_t v)
364 {
365 return ((uint64_t) bit_reverse_u8(v) << 56) |
366 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
367 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
368 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
369 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
370 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
371 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
372 ((uint64_t) bit_reverse_u8(v >> 56));
373 }
374
375 static
376 unsigned long bit_reverse_ulong(unsigned long v)
377 {
378 #if (CAA_BITS_PER_LONG == 32)
379 return bit_reverse_u32(v);
380 #else
381 return bit_reverse_u64(v);
382 #endif
383 }
384
385 /*
386 * fls: returns the position of the most significant bit.
387 * Returns 0 if no bit is set, else returns the position of the most
388 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
389 */
390 #if defined(__i386) || defined(__x86_64)
391 static inline
392 unsigned int fls_u32(uint32_t x)
393 {
394 int r;
395
396 asm("bsrl %1,%0\n\t"
397 "jnz 1f\n\t"
398 "movl $-1,%0\n\t"
399 "1:\n\t"
400 : "=r" (r) : "rm" (x));
401 return r + 1;
402 }
403 #define HAS_FLS_U32
404 #endif
405
406 #if defined(__x86_64)
407 static inline
408 unsigned int fls_u64(uint64_t x)
409 {
410 long r;
411
412 asm("bsrq %1,%0\n\t"
413 "jnz 1f\n\t"
414 "movq $-1,%0\n\t"
415 "1:\n\t"
416 : "=r" (r) : "rm" (x));
417 return r + 1;
418 }
419 #define HAS_FLS_U64
420 #endif
421
422 #ifndef HAS_FLS_U64
423 static __attribute__((unused))
424 unsigned int fls_u64(uint64_t x)
425 {
426 unsigned int r = 64;
427
428 if (!x)
429 return 0;
430
431 if (!(x & 0xFFFFFFFF00000000ULL)) {
432 x <<= 32;
433 r -= 32;
434 }
435 if (!(x & 0xFFFF000000000000ULL)) {
436 x <<= 16;
437 r -= 16;
438 }
439 if (!(x & 0xFF00000000000000ULL)) {
440 x <<= 8;
441 r -= 8;
442 }
443 if (!(x & 0xF000000000000000ULL)) {
444 x <<= 4;
445 r -= 4;
446 }
447 if (!(x & 0xC000000000000000ULL)) {
448 x <<= 2;
449 r -= 2;
450 }
451 if (!(x & 0x8000000000000000ULL)) {
452 x <<= 1;
453 r -= 1;
454 }
455 return r;
456 }
457 #endif
458
459 #ifndef HAS_FLS_U32
460 static __attribute__((unused))
461 unsigned int fls_u32(uint32_t x)
462 {
463 unsigned int r = 32;
464
465 if (!x)
466 return 0;
467 if (!(x & 0xFFFF0000U)) {
468 x <<= 16;
469 r -= 16;
470 }
471 if (!(x & 0xFF000000U)) {
472 x <<= 8;
473 r -= 8;
474 }
475 if (!(x & 0xF0000000U)) {
476 x <<= 4;
477 r -= 4;
478 }
479 if (!(x & 0xC0000000U)) {
480 x <<= 2;
481 r -= 2;
482 }
483 if (!(x & 0x80000000U)) {
484 x <<= 1;
485 r -= 1;
486 }
487 return r;
488 }
489 #endif
490
491 unsigned int fls_ulong(unsigned long x)
492 {
493 #if (CAA_BITS_PER_LONG == 32)
494 return fls_u32(x);
495 #else
496 return fls_u64(x);
497 #endif
498 }
499
500 /*
501 * Return the minimum order for which x <= (1UL << order).
502 * Return -1 if x is 0.
503 */
504 int get_count_order_u32(uint32_t x)
505 {
506 if (!x)
507 return -1;
508
509 return fls_u32(x - 1);
510 }
511
512 /*
513 * Return the minimum order for which x <= (1UL << order).
514 * Return -1 if x is 0.
515 */
516 int get_count_order_ulong(unsigned long x)
517 {
518 if (!x)
519 return -1;
520
521 return fls_ulong(x - 1);
522 }
523
524 #ifdef POISON_FREE
525 #define poison_free(ptr) \
526 do { \
527 if (ptr) { \
528 memset(ptr, 0x42, sizeof(*(ptr))); \
529 free(ptr); \
530 } \
531 } while (0)
532 #else
533 #define poison_free(ptr) free(ptr)
534 #endif
535
536 static
537 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
538
539 static
540 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
541 unsigned long count);
542
543 static long nr_cpus_mask = -1;
544 static long split_count_mask = -1;
545
546 #if defined(HAVE_SYSCONF)
547 static void ht_init_nr_cpus_mask(void)
548 {
549 long maxcpus;
550
551 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
552 if (maxcpus <= 0) {
553 nr_cpus_mask = -2;
554 return;
555 }
556 /*
557 * round up number of CPUs to next power of two, so we
558 * can use & for modulo.
559 */
560 maxcpus = 1UL << get_count_order_ulong(maxcpus);
561 nr_cpus_mask = maxcpus - 1;
562 }
563 #else /* #if defined(HAVE_SYSCONF) */
564 static void ht_init_nr_cpus_mask(void)
565 {
566 nr_cpus_mask = -2;
567 }
568 #endif /* #else #if defined(HAVE_SYSCONF) */
569
570 static
571 void alloc_split_items_count(struct cds_lfht *ht)
572 {
573 struct ht_items_count *count;
574
575 if (nr_cpus_mask == -1) {
576 ht_init_nr_cpus_mask();
577 if (nr_cpus_mask < 0)
578 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
579 else
580 split_count_mask = nr_cpus_mask;
581 }
582
583 assert(split_count_mask >= 0);
584
585 if (ht->flags & CDS_LFHT_ACCOUNTING) {
586 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
587 assert(ht->split_count);
588 } else {
589 ht->split_count = NULL;
590 }
591 }
592
593 static
594 void free_split_items_count(struct cds_lfht *ht)
595 {
596 poison_free(ht->split_count);
597 }
598
599 #if defined(HAVE_SCHED_GETCPU)
600 static
601 int ht_get_split_count_index(unsigned long hash)
602 {
603 int cpu;
604
605 assert(split_count_mask >= 0);
606 cpu = sched_getcpu();
607 if (caa_unlikely(cpu < 0))
608 return hash & split_count_mask;
609 else
610 return cpu & split_count_mask;
611 }
612 #else /* #if defined(HAVE_SCHED_GETCPU) */
613 static
614 int ht_get_split_count_index(unsigned long hash)
615 {
616 return hash & split_count_mask;
617 }
618 #endif /* #else #if defined(HAVE_SCHED_GETCPU) */
619
620 static
621 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
622 {
623 unsigned long split_count;
624 int index;
625
626 if (caa_unlikely(!ht->split_count))
627 return;
628 index = ht_get_split_count_index(hash);
629 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
630 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
631 long count;
632
633 dbg_printf("add split count %lu\n", split_count);
634 count = uatomic_add_return(&ht->count,
635 1UL << COUNT_COMMIT_ORDER);
636 /* If power of 2 */
637 if (!(count & (count - 1))) {
638 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
639 return;
640 dbg_printf("add set global %ld\n", count);
641 cds_lfht_resize_lazy_count(ht, size,
642 count >> (CHAIN_LEN_TARGET - 1));
643 }
644 }
645 }
646
647 static
648 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
649 {
650 unsigned long split_count;
651 int index;
652
653 if (caa_unlikely(!ht->split_count))
654 return;
655 index = ht_get_split_count_index(hash);
656 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
657 if (caa_unlikely(!(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))) {
658 long count;
659
660 dbg_printf("del split count %lu\n", split_count);
661 count = uatomic_add_return(&ht->count,
662 -(1UL << COUNT_COMMIT_ORDER));
663 /* If power of 2 */
664 if (!(count & (count - 1))) {
665 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
666 return;
667 dbg_printf("del set global %ld\n", count);
668 /*
669 * Don't shrink table if the number of nodes is below a
670 * certain threshold.
671 */
672 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
673 return;
674 cds_lfht_resize_lazy_count(ht, size,
675 count >> (CHAIN_LEN_TARGET - 1));
676 }
677 }
678 }
679
680 static
681 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
682 {
683 unsigned long count;
684
685 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
686 return;
687 count = uatomic_read(&ht->count);
688 /*
689 * Use bucket-local length for small table expand and for
690 * environments lacking per-cpu data support.
691 */
692 if (count >= (1UL << COUNT_COMMIT_ORDER))
693 return;
694 if (chain_len > 100)
695 dbg_printf("WARNING: large chain length: %u.\n",
696 chain_len);
697 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
698 cds_lfht_resize_lazy_grow(ht, size,
699 get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
700 }
701
702 static
703 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
704 {
705 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
706 }
707
708 static
709 int is_removed(struct cds_lfht_node *node)
710 {
711 return ((unsigned long) node) & REMOVED_FLAG;
712 }
713
714 static
715 struct cds_lfht_node *flag_removed(struct cds_lfht_node *node)
716 {
717 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG);
718 }
719
720 static
721 int is_bucket(struct cds_lfht_node *node)
722 {
723 return ((unsigned long) node) & BUCKET_FLAG;
724 }
725
726 static
727 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
728 {
729 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
730 }
731
732 static
733 struct cds_lfht_node *get_end(void)
734 {
735 return (struct cds_lfht_node *) END_VALUE;
736 }
737
738 static
739 int is_end(struct cds_lfht_node *node)
740 {
741 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
742 }
743
744 static
745 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
746 unsigned long v)
747 {
748 unsigned long old1, old2;
749
750 old1 = uatomic_read(ptr);
751 do {
752 old2 = old1;
753 if (old2 >= v)
754 return old2;
755 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
756 return old2;
757 }
758
759 static
760 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
761 {
762 if (order == 0) {
763 ht->t.tbl[0] = calloc(ht->min_alloc_size,
764 sizeof(struct cds_lfht_node));
765 assert(ht->t.tbl[0]);
766 } else if (order > ht->min_alloc_order) {
767 ht->t.tbl[order] = calloc(1UL << (order -1),
768 sizeof(struct cds_lfht_node));
769 assert(ht->t.tbl[order]);
770 }
771 /* Nothing to do for 0 < order && order <= ht->min_alloc_order */
772 }
773
774 /*
775 * cds_lfht_free_bucket_table() should be called with decreasing order.
776 * When cds_lfht_free_bucket_table(0) is called, it means the whole
777 * lfht is destroyed.
778 */
779 static
780 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
781 {
782 if (order == 0)
783 poison_free(ht->t.tbl[0]);
784 else if (order > ht->min_alloc_order)
785 poison_free(ht->t.tbl[order]);
786 /* Nothing to do for 0 < order && order <= ht->min_alloc_order */
787 }
788
789 static inline
790 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
791 {
792 unsigned long order;
793
794 if ((__builtin_constant_p(index) && index == 0)
795 || index < ht->min_alloc_size) {
796 dbg_printf("bucket index %lu order 0 aridx 0\n", index);
797 return &ht->t.tbl[0]->nodes[index];
798 }
799 /*
800 * equivalent to get_count_order_ulong(index + 1), but optimizes
801 * away the non-existing 0 special-case for
802 * get_count_order_ulong.
803 */
804 order = fls_ulong(index);
805 dbg_printf("bucket index %lu order %lu aridx %lu\n",
806 index, order, index & ((1UL << (order - 1)) - 1));
807 return &ht->t.tbl[order]->nodes[index & ((1UL << (order - 1)) - 1)];
808 }
809
810 static inline
811 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
812 unsigned long hash)
813 {
814 assert(size > 0);
815 return bucket_at(ht, hash & (size - 1));
816 }
817
818 /*
819 * Remove all logically deleted nodes from a bucket up to a certain node key.
820 */
821 static
822 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
823 {
824 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
825
826 assert(!is_bucket(bucket));
827 assert(!is_removed(bucket));
828 assert(!is_bucket(node));
829 assert(!is_removed(node));
830 for (;;) {
831 iter_prev = bucket;
832 /* We can always skip the bucket node initially */
833 iter = rcu_dereference(iter_prev->next);
834 assert(!is_removed(iter));
835 assert(iter_prev->reverse_hash <= node->reverse_hash);
836 /*
837 * We should never be called with bucket (start of chain)
838 * and logically removed node (end of path compression
839 * marker) being the actual same node. This would be a
840 * bug in the algorithm implementation.
841 */
842 assert(bucket != node);
843 for (;;) {
844 if (caa_unlikely(is_end(iter)))
845 return;
846 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
847 return;
848 next = rcu_dereference(clear_flag(iter)->next);
849 if (caa_likely(is_removed(next)))
850 break;
851 iter_prev = clear_flag(iter);
852 iter = next;
853 }
854 assert(!is_removed(iter));
855 if (is_bucket(iter))
856 new_next = flag_bucket(clear_flag(next));
857 else
858 new_next = clear_flag(next);
859 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
860 }
861 return;
862 }
863
864 static
865 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
866 struct cds_lfht_node *old_node,
867 struct cds_lfht_node *old_next,
868 struct cds_lfht_node *new_node)
869 {
870 struct cds_lfht_node *bucket, *ret_next;
871
872 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
873 return -ENOENT;
874
875 assert(!is_removed(old_node));
876 assert(!is_bucket(old_node));
877 assert(!is_removed(new_node));
878 assert(!is_bucket(new_node));
879 assert(new_node != old_node);
880 for (;;) {
881 /* Insert after node to be replaced */
882 if (is_removed(old_next)) {
883 /*
884 * Too late, the old node has been removed under us
885 * between lookup and replace. Fail.
886 */
887 return -ENOENT;
888 }
889 assert(!is_bucket(old_next));
890 assert(new_node != clear_flag(old_next));
891 new_node->next = clear_flag(old_next);
892 /*
893 * Here is the whole trick for lock-free replace: we add
894 * the replacement node _after_ the node we want to
895 * replace by atomically setting its next pointer at the
896 * same time we set its removal flag. Given that
897 * the lookups/get next use an iterator aware of the
898 * next pointer, they will either skip the old node due
899 * to the removal flag and see the new node, or use
900 * the old node, but will not see the new one.
901 */
902 ret_next = uatomic_cmpxchg(&old_node->next,
903 old_next, flag_removed(new_node));
904 if (ret_next == old_next)
905 break; /* We performed the replacement. */
906 old_next = ret_next;
907 }
908
909 /*
910 * Ensure that the old node is not visible to readers anymore:
911 * lookup for the node, and remove it (along with any other
912 * logically removed node) if found.
913 */
914 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
915 _cds_lfht_gc_bucket(bucket, new_node);
916
917 assert(is_removed(rcu_dereference(old_node->next)));
918 return 0;
919 }
920
921 /*
922 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
923 * mode. A NULL unique_ret allows creation of duplicate keys.
924 */
925 static
926 void _cds_lfht_add(struct cds_lfht *ht,
927 cds_lfht_match_fct match,
928 const void *key,
929 unsigned long size,
930 struct cds_lfht_node *node,
931 struct cds_lfht_iter *unique_ret,
932 int bucket_flag)
933 {
934 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
935 *return_node;
936 struct cds_lfht_node *bucket;
937
938 assert(!is_bucket(node));
939 assert(!is_removed(node));
940 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
941 for (;;) {
942 uint32_t chain_len = 0;
943
944 /*
945 * iter_prev points to the non-removed node prior to the
946 * insert location.
947 */
948 iter_prev = bucket;
949 /* We can always skip the bucket node initially */
950 iter = rcu_dereference(iter_prev->next);
951 assert(iter_prev->reverse_hash <= node->reverse_hash);
952 for (;;) {
953 if (caa_unlikely(is_end(iter)))
954 goto insert;
955 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
956 goto insert;
957
958 /* bucket node is the first node of the identical-hash-value chain */
959 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
960 goto insert;
961
962 next = rcu_dereference(clear_flag(iter)->next);
963 if (caa_unlikely(is_removed(next)))
964 goto gc_node;
965
966 /* uniquely add */
967 if (unique_ret
968 && !is_bucket(next)
969 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
970 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
971
972 /*
973 * uniquely adding inserts the node as the first
974 * node of the identical-hash-value node chain.
975 *
976 * This semantic ensures no duplicated keys
977 * should ever be observable in the table
978 * (including observe one node by one node
979 * by forward iterations)
980 */
981 cds_lfht_next_duplicate(ht, match, key, &d_iter);
982 if (!d_iter.node)
983 goto insert;
984
985 *unique_ret = d_iter;
986 return;
987 }
988
989 /* Only account for identical reverse hash once */
990 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
991 && !is_bucket(next))
992 check_resize(ht, size, ++chain_len);
993 iter_prev = clear_flag(iter);
994 iter = next;
995 }
996
997 insert:
998 assert(node != clear_flag(iter));
999 assert(!is_removed(iter_prev));
1000 assert(!is_removed(iter));
1001 assert(iter_prev != node);
1002 if (!bucket_flag)
1003 node->next = clear_flag(iter);
1004 else
1005 node->next = flag_bucket(clear_flag(iter));
1006 if (is_bucket(iter))
1007 new_node = flag_bucket(node);
1008 else
1009 new_node = node;
1010 if (uatomic_cmpxchg(&iter_prev->next, iter,
1011 new_node) != iter) {
1012 continue; /* retry */
1013 } else {
1014 return_node = node;
1015 goto end;
1016 }
1017
1018 gc_node:
1019 assert(!is_removed(iter));
1020 if (is_bucket(iter))
1021 new_next = flag_bucket(clear_flag(next));
1022 else
1023 new_next = clear_flag(next);
1024 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1025 /* retry */
1026 }
1027 end:
1028 if (unique_ret) {
1029 unique_ret->node = return_node;
1030 /* unique_ret->next left unset, never used. */
1031 }
1032 }
1033
1034 static
1035 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1036 struct cds_lfht_node *node,
1037 int bucket_removal)
1038 {
1039 struct cds_lfht_node *bucket, *next, *old;
1040
1041 if (!node) /* Return -ENOENT if asked to delete NULL node */
1042 return -ENOENT;
1043
1044 /* logically delete the node */
1045 assert(!is_bucket(node));
1046 assert(!is_removed(node));
1047 old = rcu_dereference(node->next);
1048 do {
1049 struct cds_lfht_node *new_next;
1050
1051 next = old;
1052 if (caa_unlikely(is_removed(next)))
1053 return -ENOENT;
1054 if (bucket_removal)
1055 assert(is_bucket(next));
1056 else
1057 assert(!is_bucket(next));
1058 new_next = flag_removed(next);
1059 old = uatomic_cmpxchg(&node->next, next, new_next);
1060 } while (old != next);
1061 /* We performed the (logical) deletion. */
1062
1063 /*
1064 * Ensure that the node is not visible to readers anymore: lookup for
1065 * the node, and remove it (along with any other logically removed node)
1066 * if found.
1067 */
1068 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1069 _cds_lfht_gc_bucket(bucket, node);
1070
1071 assert(is_removed(rcu_dereference(node->next)));
1072 return 0;
1073 }
1074
1075 static
1076 void *partition_resize_thread(void *arg)
1077 {
1078 struct partition_resize_work *work = arg;
1079
1080 work->ht->cds_lfht_rcu_register_thread();
1081 work->fct(work->ht, work->i, work->start, work->len);
1082 work->ht->cds_lfht_rcu_unregister_thread();
1083 return NULL;
1084 }
1085
1086 static
1087 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1088 unsigned long len,
1089 void (*fct)(struct cds_lfht *ht, unsigned long i,
1090 unsigned long start, unsigned long len))
1091 {
1092 unsigned long partition_len;
1093 struct partition_resize_work *work;
1094 int thread, ret;
1095 unsigned long nr_threads;
1096
1097 /*
1098 * Note: nr_cpus_mask + 1 is always power of 2.
1099 * We spawn just the number of threads we need to satisfy the minimum
1100 * partition size, up to the number of CPUs in the system.
1101 */
1102 if (nr_cpus_mask > 0) {
1103 nr_threads = min(nr_cpus_mask + 1,
1104 len >> MIN_PARTITION_PER_THREAD_ORDER);
1105 } else {
1106 nr_threads = 1;
1107 }
1108 partition_len = len >> get_count_order_ulong(nr_threads);
1109 work = calloc(nr_threads, sizeof(*work));
1110 assert(work);
1111 for (thread = 0; thread < nr_threads; thread++) {
1112 work[thread].ht = ht;
1113 work[thread].i = i;
1114 work[thread].len = partition_len;
1115 work[thread].start = thread * partition_len;
1116 work[thread].fct = fct;
1117 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1118 partition_resize_thread, &work[thread]);
1119 assert(!ret);
1120 }
1121 for (thread = 0; thread < nr_threads; thread++) {
1122 ret = pthread_join(work[thread].thread_id, NULL);
1123 assert(!ret);
1124 }
1125 free(work);
1126 }
1127
1128 /*
1129 * Holding RCU read lock to protect _cds_lfht_add against memory
1130 * reclaim that could be performed by other call_rcu worker threads (ABA
1131 * problem).
1132 *
1133 * When we reach a certain length, we can split this population phase over
1134 * many worker threads, based on the number of CPUs available in the system.
1135 * This should therefore take care of not having the expand lagging behind too
1136 * many concurrent insertion threads by using the scheduler's ability to
1137 * schedule bucket node population fairly with insertions.
1138 */
1139 static
1140 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1141 unsigned long start, unsigned long len)
1142 {
1143 unsigned long j, size = 1UL << (i - 1);
1144
1145 assert(i > ht->min_alloc_order);
1146 ht->cds_lfht_rcu_read_lock();
1147 for (j = size + start; j < size + start + len; j++) {
1148 struct cds_lfht_node *new_node = bucket_at(ht, j);
1149
1150 assert(j >= size && j < (size << 1));
1151 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1152 i, j, j);
1153 new_node->reverse_hash = bit_reverse_ulong(j);
1154 _cds_lfht_add(ht, NULL, NULL, size, new_node, NULL, 1);
1155 }
1156 ht->cds_lfht_rcu_read_unlock();
1157 }
1158
1159 static
1160 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1161 unsigned long len)
1162 {
1163 assert(nr_cpus_mask != -1);
1164 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1165 ht->cds_lfht_rcu_thread_online();
1166 init_table_populate_partition(ht, i, 0, len);
1167 ht->cds_lfht_rcu_thread_offline();
1168 return;
1169 }
1170 partition_resize_helper(ht, i, len, init_table_populate_partition);
1171 }
1172
1173 static
1174 void init_table(struct cds_lfht *ht,
1175 unsigned long first_order, unsigned long last_order)
1176 {
1177 unsigned long i;
1178
1179 dbg_printf("init table: first_order %lu last_order %lu\n",
1180 first_order, last_order);
1181 assert(first_order > ht->min_alloc_order);
1182 for (i = first_order; i <= last_order; i++) {
1183 unsigned long len;
1184
1185 len = 1UL << (i - 1);
1186 dbg_printf("init order %lu len: %lu\n", i, len);
1187
1188 /* Stop expand if the resize target changes under us */
1189 if (CMM_LOAD_SHARED(ht->t.resize_target) < (1UL << i))
1190 break;
1191
1192 cds_lfht_alloc_bucket_table(ht, i);
1193
1194 /*
1195 * Set all bucket nodes reverse hash values for a level and
1196 * link all bucket nodes into the table.
1197 */
1198 init_table_populate(ht, i, len);
1199
1200 /*
1201 * Update table size.
1202 */
1203 cmm_smp_wmb(); /* populate data before RCU size */
1204 CMM_STORE_SHARED(ht->t.size, 1UL << i);
1205
1206 dbg_printf("init new size: %lu\n", 1UL << i);
1207 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1208 break;
1209 }
1210 }
1211
1212 /*
1213 * Holding RCU read lock to protect _cds_lfht_remove against memory
1214 * reclaim that could be performed by other call_rcu worker threads (ABA
1215 * problem).
1216 * For a single level, we logically remove and garbage collect each node.
1217 *
1218 * As a design choice, we perform logical removal and garbage collection on a
1219 * node-per-node basis to simplify this algorithm. We also assume keeping good
1220 * cache locality of the operation would overweight possible performance gain
1221 * that could be achieved by batching garbage collection for multiple levels.
1222 * However, this would have to be justified by benchmarks.
1223 *
1224 * Concurrent removal and add operations are helping us perform garbage
1225 * collection of logically removed nodes. We guarantee that all logically
1226 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1227 * invoked to free a hole level of bucket nodes (after a grace period).
1228 *
1229 * Logical removal and garbage collection can therefore be done in batch or on a
1230 * node-per-node basis, as long as the guarantee above holds.
1231 *
1232 * When we reach a certain length, we can split this removal over many worker
1233 * threads, based on the number of CPUs available in the system. This should
1234 * take care of not letting resize process lag behind too many concurrent
1235 * updater threads actively inserting into the hash table.
1236 */
1237 static
1238 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1239 unsigned long start, unsigned long len)
1240 {
1241 unsigned long j, size = 1UL << (i - 1);
1242
1243 assert(i > ht->min_alloc_order);
1244 ht->cds_lfht_rcu_read_lock();
1245 for (j = size + start; j < size + start + len; j++) {
1246 struct cds_lfht_node *fini_node = bucket_at(ht, j);
1247
1248 assert(j >= size && j < (size << 1));
1249 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1250 i, j, j);
1251 fini_node->reverse_hash = bit_reverse_ulong(j);
1252 (void) _cds_lfht_del(ht, size, fini_node, 1);
1253 }
1254 ht->cds_lfht_rcu_read_unlock();
1255 }
1256
1257 static
1258 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1259 {
1260
1261 assert(nr_cpus_mask != -1);
1262 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
1263 ht->cds_lfht_rcu_thread_online();
1264 remove_table_partition(ht, i, 0, len);
1265 ht->cds_lfht_rcu_thread_offline();
1266 return;
1267 }
1268 partition_resize_helper(ht, i, len, remove_table_partition);
1269 }
1270
1271 static
1272 void fini_table(struct cds_lfht *ht,
1273 unsigned long first_order, unsigned long last_order)
1274 {
1275 long i;
1276 unsigned long free_by_rcu_order = 0;
1277
1278 dbg_printf("fini table: first_order %lu last_order %lu\n",
1279 first_order, last_order);
1280 assert(first_order > ht->min_alloc_order);
1281 for (i = last_order; i >= first_order; i--) {
1282 unsigned long len;
1283
1284 len = 1UL << (i - 1);
1285 dbg_printf("fini order %lu len: %lu\n", i, len);
1286
1287 /* Stop shrink if the resize target changes under us */
1288 if (CMM_LOAD_SHARED(ht->t.resize_target) > (1UL << (i - 1)))
1289 break;
1290
1291 cmm_smp_wmb(); /* populate data before RCU size */
1292 CMM_STORE_SHARED(ht->t.size, 1UL << (i - 1));
1293
1294 /*
1295 * We need to wait for all add operations to reach Q.S. (and
1296 * thus use the new table for lookups) before we can start
1297 * releasing the old bucket nodes. Otherwise their lookup will
1298 * return a logically removed node as insert position.
1299 */
1300 ht->cds_lfht_synchronize_rcu();
1301 if (free_by_rcu_order)
1302 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1303
1304 /*
1305 * Set "removed" flag in bucket nodes about to be removed.
1306 * Unlink all now-logically-removed bucket node pointers.
1307 * Concurrent add/remove operation are helping us doing
1308 * the gc.
1309 */
1310 remove_table(ht, i, len);
1311
1312 free_by_rcu_order = i;
1313
1314 dbg_printf("fini new size: %lu\n", 1UL << i);
1315 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1316 break;
1317 }
1318
1319 if (free_by_rcu_order) {
1320 ht->cds_lfht_synchronize_rcu();
1321 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1322 }
1323 }
1324
1325 static
1326 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1327 {
1328 struct cds_lfht_node *prev, *node;
1329 unsigned long order, len, i;
1330
1331 cds_lfht_alloc_bucket_table(ht, 0);
1332
1333 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1334 node = bucket_at(ht, 0);
1335 node->next = flag_bucket(get_end());
1336 node->reverse_hash = 0;
1337
1338 for (order = 1; order < get_count_order_ulong(size) + 1; order++) {
1339 len = 1UL << (order - 1);
1340 cds_lfht_alloc_bucket_table(ht, order);
1341
1342 for (i = 0; i < len; i++) {
1343 /*
1344 * Now, we are trying to init the node with the
1345 * hash=(len+i) (which is also a bucket with the
1346 * index=(len+i)) and insert it into the hash table,
1347 * so this node has to be inserted after the bucket
1348 * with the index=(len+i)&(len-1)=i. And because there
1349 * is no other non-bucket node nor bucket node with
1350 * larger index/hash inserted, so the bucket node
1351 * being inserted should be inserted directly linked
1352 * after the bucket node with index=i.
1353 */
1354 prev = bucket_at(ht, i);
1355 node = bucket_at(ht, len + i);
1356
1357 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1358 order, len + i, len + i);
1359 node->reverse_hash = bit_reverse_ulong(len + i);
1360
1361 /* insert after prev */
1362 assert(is_bucket(prev->next));
1363 node->next = prev->next;
1364 prev->next = flag_bucket(node);
1365 }
1366 }
1367 }
1368
1369 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1370 unsigned long min_alloc_size,
1371 int flags,
1372 void (*cds_lfht_call_rcu)(struct rcu_head *head,
1373 void (*func)(struct rcu_head *head)),
1374 void (*cds_lfht_synchronize_rcu)(void),
1375 void (*cds_lfht_rcu_read_lock)(void),
1376 void (*cds_lfht_rcu_read_unlock)(void),
1377 void (*cds_lfht_rcu_thread_offline)(void),
1378 void (*cds_lfht_rcu_thread_online)(void),
1379 void (*cds_lfht_rcu_register_thread)(void),
1380 void (*cds_lfht_rcu_unregister_thread)(void),
1381 pthread_attr_t *attr)
1382 {
1383 struct cds_lfht *ht;
1384 unsigned long order;
1385
1386 /* min_alloc_size must be power of two */
1387 if (!min_alloc_size || (min_alloc_size & (min_alloc_size - 1)))
1388 return NULL;
1389 /* init_size must be power of two */
1390 if (!init_size || (init_size & (init_size - 1)))
1391 return NULL;
1392 min_alloc_size = max(min_alloc_size, MIN_TABLE_SIZE);
1393 init_size = max(init_size, min_alloc_size);
1394 ht = calloc(1, sizeof(struct cds_lfht));
1395 assert(ht);
1396 ht->flags = flags;
1397 ht->cds_lfht_call_rcu = cds_lfht_call_rcu;
1398 ht->cds_lfht_synchronize_rcu = cds_lfht_synchronize_rcu;
1399 ht->cds_lfht_rcu_read_lock = cds_lfht_rcu_read_lock;
1400 ht->cds_lfht_rcu_read_unlock = cds_lfht_rcu_read_unlock;
1401 ht->cds_lfht_rcu_thread_offline = cds_lfht_rcu_thread_offline;
1402 ht->cds_lfht_rcu_thread_online = cds_lfht_rcu_thread_online;
1403 ht->cds_lfht_rcu_register_thread = cds_lfht_rcu_register_thread;
1404 ht->cds_lfht_rcu_unregister_thread = cds_lfht_rcu_unregister_thread;
1405 ht->resize_attr = attr;
1406 alloc_split_items_count(ht);
1407 /* this mutex should not nest in read-side C.S. */
1408 pthread_mutex_init(&ht->resize_mutex, NULL);
1409 order = get_count_order_ulong(init_size);
1410 ht->t.resize_target = 1UL << order;
1411 ht->min_alloc_size = min_alloc_size;
1412 ht->min_alloc_order = get_count_order_ulong(min_alloc_size);
1413 cds_lfht_create_bucket(ht, 1UL << order);
1414 ht->t.size = 1UL << order;
1415 return ht;
1416 }
1417
1418 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1419 cds_lfht_match_fct match, const void *key,
1420 struct cds_lfht_iter *iter)
1421 {
1422 struct cds_lfht_node *node, *next, *bucket;
1423 unsigned long reverse_hash, size;
1424
1425 reverse_hash = bit_reverse_ulong(hash);
1426
1427 size = rcu_dereference(ht->t.size);
1428 bucket = lookup_bucket(ht, size, hash);
1429 /* We can always skip the bucket node initially */
1430 node = rcu_dereference(bucket->next);
1431 node = clear_flag(node);
1432 for (;;) {
1433 if (caa_unlikely(is_end(node))) {
1434 node = next = NULL;
1435 break;
1436 }
1437 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1438 node = next = NULL;
1439 break;
1440 }
1441 next = rcu_dereference(node->next);
1442 assert(node == clear_flag(node));
1443 if (caa_likely(!is_removed(next))
1444 && !is_bucket(next)
1445 && node->reverse_hash == reverse_hash
1446 && caa_likely(match(node, key))) {
1447 break;
1448 }
1449 node = clear_flag(next);
1450 }
1451 assert(!node || !is_bucket(rcu_dereference(node->next)));
1452 iter->node = node;
1453 iter->next = next;
1454 }
1455
1456 void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1457 const void *key, struct cds_lfht_iter *iter)
1458 {
1459 struct cds_lfht_node *node, *next;
1460 unsigned long reverse_hash;
1461
1462 node = iter->node;
1463 reverse_hash = node->reverse_hash;
1464 next = iter->next;
1465 node = clear_flag(next);
1466
1467 for (;;) {
1468 if (caa_unlikely(is_end(node))) {
1469 node = next = NULL;
1470 break;
1471 }
1472 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1473 node = next = NULL;
1474 break;
1475 }
1476 next = rcu_dereference(node->next);
1477 if (caa_likely(!is_removed(next))
1478 && !is_bucket(next)
1479 && caa_likely(match(node, key))) {
1480 break;
1481 }
1482 node = clear_flag(next);
1483 }
1484 assert(!node || !is_bucket(rcu_dereference(node->next)));
1485 iter->node = node;
1486 iter->next = next;
1487 }
1488
1489 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1490 {
1491 struct cds_lfht_node *node, *next;
1492
1493 node = clear_flag(iter->next);
1494 for (;;) {
1495 if (caa_unlikely(is_end(node))) {
1496 node = next = NULL;
1497 break;
1498 }
1499 next = rcu_dereference(node->next);
1500 if (caa_likely(!is_removed(next))
1501 && !is_bucket(next)) {
1502 break;
1503 }
1504 node = clear_flag(next);
1505 }
1506 assert(!node || !is_bucket(rcu_dereference(node->next)));
1507 iter->node = node;
1508 iter->next = next;
1509 }
1510
1511 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1512 {
1513 /*
1514 * Get next after first bucket node. The first bucket node is the
1515 * first node of the linked list.
1516 */
1517 iter->next = bucket_at(ht, 0)->next;
1518 cds_lfht_next(ht, iter);
1519 }
1520
1521 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1522 struct cds_lfht_node *node)
1523 {
1524 unsigned long size;
1525
1526 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1527 size = rcu_dereference(ht->t.size);
1528 _cds_lfht_add(ht, NULL, NULL, size, node, NULL, 0);
1529 ht_count_add(ht, size, hash);
1530 }
1531
1532 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1533 unsigned long hash,
1534 cds_lfht_match_fct match,
1535 const void *key,
1536 struct cds_lfht_node *node)
1537 {
1538 unsigned long size;
1539 struct cds_lfht_iter iter;
1540
1541 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1542 size = rcu_dereference(ht->t.size);
1543 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1544 if (iter.node == node)
1545 ht_count_add(ht, size, hash);
1546 return iter.node;
1547 }
1548
1549 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1550 unsigned long hash,
1551 cds_lfht_match_fct match,
1552 const void *key,
1553 struct cds_lfht_node *node)
1554 {
1555 unsigned long size;
1556 struct cds_lfht_iter iter;
1557
1558 node->reverse_hash = bit_reverse_ulong((unsigned long) hash);
1559 size = rcu_dereference(ht->t.size);
1560 for (;;) {
1561 _cds_lfht_add(ht, match, key, size, node, &iter, 0);
1562 if (iter.node == node) {
1563 ht_count_add(ht, size, hash);
1564 return NULL;
1565 }
1566
1567 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1568 return iter.node;
1569 }
1570 }
1571
1572 int cds_lfht_replace(struct cds_lfht *ht, struct cds_lfht_iter *old_iter,
1573 struct cds_lfht_node *new_node)
1574 {
1575 unsigned long size;
1576
1577 size = rcu_dereference(ht->t.size);
1578 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1579 new_node);
1580 }
1581
1582 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1583 {
1584 unsigned long size, hash;
1585 int ret;
1586
1587 size = rcu_dereference(ht->t.size);
1588 ret = _cds_lfht_del(ht, size, iter->node, 0);
1589 if (!ret) {
1590 hash = bit_reverse_ulong(iter->node->reverse_hash);
1591 ht_count_del(ht, size, hash);
1592 }
1593 return ret;
1594 }
1595
1596 static
1597 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1598 {
1599 struct cds_lfht_node *node;
1600 unsigned long order, i, size;
1601
1602 /* Check that the table is empty */
1603 node = bucket_at(ht, 0);
1604 do {
1605 node = clear_flag(node)->next;
1606 if (!is_bucket(node))
1607 return -EPERM;
1608 assert(!is_removed(node));
1609 } while (!is_end(node));
1610 /*
1611 * size accessed without rcu_dereference because hash table is
1612 * being destroyed.
1613 */
1614 size = ht->t.size;
1615 /* Internal sanity check: all nodes left should be bucket */
1616 for (i = 0; i < size; i++) {
1617 node = bucket_at(ht, i);
1618 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1619 i, i, bit_reverse_ulong(node->reverse_hash));
1620 assert(is_bucket(node->next));
1621 }
1622
1623 for (order = get_count_order_ulong(size); (long)order >= 0; order--)
1624 cds_lfht_free_bucket_table(ht, order);
1625
1626 return 0;
1627 }
1628
1629 /*
1630 * Should only be called when no more concurrent readers nor writers can
1631 * possibly access the table.
1632 */
1633 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1634 {
1635 int ret;
1636
1637 /* Wait for in-flight resize operations to complete */
1638 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1639 cmm_smp_mb(); /* Store destroy before load resize */
1640 while (uatomic_read(&ht->in_progress_resize))
1641 poll(NULL, 0, 100); /* wait for 100ms */
1642 ret = cds_lfht_delete_bucket(ht);
1643 if (ret)
1644 return ret;
1645 free_split_items_count(ht);
1646 if (attr)
1647 *attr = ht->resize_attr;
1648 poison_free(ht);
1649 return ret;
1650 }
1651
1652 void cds_lfht_count_nodes(struct cds_lfht *ht,
1653 long *approx_before,
1654 unsigned long *count,
1655 unsigned long *removed,
1656 long *approx_after)
1657 {
1658 struct cds_lfht_node *node, *next;
1659 unsigned long nr_bucket = 0;
1660
1661 *approx_before = 0;
1662 if (ht->split_count) {
1663 int i;
1664
1665 for (i = 0; i < split_count_mask + 1; i++) {
1666 *approx_before += uatomic_read(&ht->split_count[i].add);
1667 *approx_before -= uatomic_read(&ht->split_count[i].del);
1668 }
1669 }
1670
1671 *count = 0;
1672 *removed = 0;
1673
1674 /* Count non-bucket nodes in the table */
1675 node = bucket_at(ht, 0);
1676 do {
1677 next = rcu_dereference(node->next);
1678 if (is_removed(next)) {
1679 if (!is_bucket(next))
1680 (*removed)++;
1681 else
1682 (nr_bucket)++;
1683 } else if (!is_bucket(next))
1684 (*count)++;
1685 else
1686 (nr_bucket)++;
1687 node = clear_flag(next);
1688 } while (!is_end(node));
1689 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1690 *approx_after = 0;
1691 if (ht->split_count) {
1692 int i;
1693
1694 for (i = 0; i < split_count_mask + 1; i++) {
1695 *approx_after += uatomic_read(&ht->split_count[i].add);
1696 *approx_after -= uatomic_read(&ht->split_count[i].del);
1697 }
1698 }
1699 }
1700
1701 /* called with resize mutex held */
1702 static
1703 void _do_cds_lfht_grow(struct cds_lfht *ht,
1704 unsigned long old_size, unsigned long new_size)
1705 {
1706 unsigned long old_order, new_order;
1707
1708 old_order = get_count_order_ulong(old_size);
1709 new_order = get_count_order_ulong(new_size);
1710 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1711 old_size, old_order, new_size, new_order);
1712 assert(new_size > old_size);
1713 init_table(ht, old_order + 1, new_order);
1714 }
1715
1716 /* called with resize mutex held */
1717 static
1718 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1719 unsigned long old_size, unsigned long new_size)
1720 {
1721 unsigned long old_order, new_order;
1722
1723 new_size = max(new_size, ht->min_alloc_size);
1724 old_order = get_count_order_ulong(old_size);
1725 new_order = get_count_order_ulong(new_size);
1726 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1727 old_size, old_order, new_size, new_order);
1728 assert(new_size < old_size);
1729
1730 /* Remove and unlink all bucket nodes to remove. */
1731 fini_table(ht, new_order + 1, old_order);
1732 }
1733
1734
1735 /* called with resize mutex held */
1736 static
1737 void _do_cds_lfht_resize(struct cds_lfht *ht)
1738 {
1739 unsigned long new_size, old_size;
1740
1741 /*
1742 * Resize table, re-do if the target size has changed under us.
1743 */
1744 do {
1745 assert(uatomic_read(&ht->in_progress_resize));
1746 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1747 break;
1748 ht->t.resize_initiated = 1;
1749 old_size = ht->t.size;
1750 new_size = CMM_LOAD_SHARED(ht->t.resize_target);
1751 if (old_size < new_size)
1752 _do_cds_lfht_grow(ht, old_size, new_size);
1753 else if (old_size > new_size)
1754 _do_cds_lfht_shrink(ht, old_size, new_size);
1755 ht->t.resize_initiated = 0;
1756 /* write resize_initiated before read resize_target */
1757 cmm_smp_mb();
1758 } while (ht->t.size != CMM_LOAD_SHARED(ht->t.resize_target));
1759 }
1760
1761 static
1762 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1763 {
1764 return _uatomic_xchg_monotonic_increase(&ht->t.resize_target, new_size);
1765 }
1766
1767 static
1768 void resize_target_update_count(struct cds_lfht *ht,
1769 unsigned long count)
1770 {
1771 count = max(count, ht->min_alloc_size);
1772 uatomic_set(&ht->t.resize_target, count);
1773 }
1774
1775 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1776 {
1777 resize_target_update_count(ht, new_size);
1778 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1779 ht->cds_lfht_rcu_thread_offline();
1780 pthread_mutex_lock(&ht->resize_mutex);
1781 _do_cds_lfht_resize(ht);
1782 pthread_mutex_unlock(&ht->resize_mutex);
1783 ht->cds_lfht_rcu_thread_online();
1784 }
1785
1786 static
1787 void do_resize_cb(struct rcu_head *head)
1788 {
1789 struct rcu_resize_work *work =
1790 caa_container_of(head, struct rcu_resize_work, head);
1791 struct cds_lfht *ht = work->ht;
1792
1793 ht->cds_lfht_rcu_thread_offline();
1794 pthread_mutex_lock(&ht->resize_mutex);
1795 _do_cds_lfht_resize(ht);
1796 pthread_mutex_unlock(&ht->resize_mutex);
1797 ht->cds_lfht_rcu_thread_online();
1798 poison_free(work);
1799 cmm_smp_mb(); /* finish resize before decrement */
1800 uatomic_dec(&ht->in_progress_resize);
1801 }
1802
1803 static
1804 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1805 {
1806 struct rcu_resize_work *work;
1807
1808 /* Store resize_target before read resize_initiated */
1809 cmm_smp_mb();
1810 if (!CMM_LOAD_SHARED(ht->t.resize_initiated)) {
1811 uatomic_inc(&ht->in_progress_resize);
1812 cmm_smp_mb(); /* increment resize count before load destroy */
1813 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1814 uatomic_dec(&ht->in_progress_resize);
1815 return;
1816 }
1817 work = malloc(sizeof(*work));
1818 work->ht = ht;
1819 ht->cds_lfht_call_rcu(&work->head, do_resize_cb);
1820 CMM_STORE_SHARED(ht->t.resize_initiated, 1);
1821 }
1822 }
1823
1824 static
1825 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1826 {
1827 unsigned long target_size = size << growth;
1828
1829 if (resize_target_grow(ht, target_size) >= target_size)
1830 return;
1831
1832 __cds_lfht_resize_lazy_launch(ht);
1833 }
1834
1835 /*
1836 * We favor grow operations over shrink. A shrink operation never occurs
1837 * if a grow operation is queued for lazy execution. A grow operation
1838 * cancels any pending shrink lazy execution.
1839 */
1840 static
1841 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1842 unsigned long count)
1843 {
1844 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1845 return;
1846 count = max(count, ht->min_alloc_size);
1847 if (count == size)
1848 return; /* Already the right size, no resize needed */
1849 if (count > size) { /* lazy grow */
1850 if (resize_target_grow(ht, count) >= count)
1851 return;
1852 } else { /* lazy shrink */
1853 for (;;) {
1854 unsigned long s;
1855
1856 s = uatomic_cmpxchg(&ht->t.resize_target, size, count);
1857 if (s == size)
1858 break; /* no resize needed */
1859 if (s > size)
1860 return; /* growing is/(was just) in progress */
1861 if (s <= count)
1862 return; /* some other thread do shrink */
1863 size = s;
1864 }
1865 }
1866 __cds_lfht_resize_lazy_launch(ht);
1867 }
This page took 0.106165 seconds and 5 git commands to generate.