rcu torture and api.h: remove duplicated atomic primitives
[urcu.git] / tests / api_ppc.h
CommitLineData
6d0ce021
PM
1/* MECHANICALLY GENERATED, DO NOT EDIT!!! */
2
3#define _INCLUDE_API_H
4
5/*
6 * common.h: Common Linux kernel-isms.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; but version 2 of the License only due
11 * to code included from the Linux kernel.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * Copyright (c) 2006 Paul E. McKenney, IBM.
23 *
24 * Much code taken from the Linux kernel. For such code, the option
25 * to redistribute under later versions of GPL might not be available.
26 */
27
28#ifndef __always_inline
29#define __always_inline inline
30#endif
31
32#define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))
33#define BUILD_BUG_ON_ZERO(e) (sizeof(char[1 - 2 * !!(e)]) - 1)
34
35#ifdef __ASSEMBLY__
36# define stringify_in_c(...) __VA_ARGS__
37# define ASM_CONST(x) x
38#else
39/* This version of stringify will deal with commas... */
40# define __stringify_in_c(...) #__VA_ARGS__
41# define stringify_in_c(...) __stringify_in_c(__VA_ARGS__) " "
42# define __ASM_CONST(x) x##UL
43# define ASM_CONST(x) __ASM_CONST(x)
44#endif
45
46
47/*
48 * arch-ppc64.h: Expose PowerPC atomic instructions.
49 *
50 * This program is free software; you can redistribute it and/or modify
51 * it under the terms of the GNU General Public License as published by
52 * the Free Software Foundation; but version 2 of the License only due
53 * to code included from the Linux kernel.
54 *
55 * This program is distributed in the hope that it will be useful,
56 * but WITHOUT ANY WARRANTY; without even the implied warranty of
57 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
58 * GNU General Public License for more details.
59 *
60 * You should have received a copy of the GNU General Public License
61 * along with this program; if not, write to the Free Software
62 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
63 *
64 * Copyright (c) 2006 Paul E. McKenney, IBM.
65 *
66 * Much code taken from the Linux kernel. For such code, the option
67 * to redistribute under later versions of GPL might not be available.
68 */
69
70/*
71 * Machine parameters.
72 */
73
6d0ce021
PM
74#define CONFIG_PPC64
75
76#define CACHE_LINE_SIZE 128
77#define ____cacheline_internodealigned_in_smp \
78 __attribute__((__aligned__(1 << 7)))
79
6ee91d83
MD
80#if 0 /* duplicate with arch_atomic.h */
81
6d0ce021
PM
82/*
83 * Atomic data structure, initialization, and access.
84 */
85
86typedef struct { volatile int counter; } atomic_t;
87
88#define ATOMIC_INIT(i) { (i) }
89
90#define atomic_read(v) ((v)->counter)
91#define atomic_set(v, i) (((v)->counter) = (i))
92
93/*
94 * Atomic operations.
95 */
96
97#define LWSYNC lwsync
98#define PPC405_ERR77(ra,rb)
99#ifdef CONFIG_SMP
100# define LWSYNC_ON_SMP stringify_in_c(LWSYNC) "\n"
101# define ISYNC_ON_SMP "\n\tisync\n"
102#else
103# define LWSYNC_ON_SMP
104# define ISYNC_ON_SMP
105#endif
106
6d0ce021
PM
107/*
108 * Atomic exchange
109 *
110 * Changes the memory location '*ptr' to be val and returns
111 * the previous value stored there.
112 */
113static __always_inline unsigned long
114__xchg_u32(volatile void *p, unsigned long val)
115{
116 unsigned long prev;
117
118 __asm__ __volatile__(
119 LWSYNC_ON_SMP
120"1: lwarx %0,0,%2 \n"
121 PPC405_ERR77(0,%2)
122" stwcx. %3,0,%2 \n\
123 bne- 1b"
124 ISYNC_ON_SMP
125 : "=&r" (prev), "+m" (*(volatile unsigned int *)p)
126 : "r" (p), "r" (val)
127 : "cc", "memory");
128
129 return prev;
130}
131
132/*
133 * Atomic exchange
134 *
135 * Changes the memory location '*ptr' to be val and returns
136 * the previous value stored there.
137 */
138static __always_inline unsigned long
139__xchg_u32_local(volatile void *p, unsigned long val)
140{
141 unsigned long prev;
142
143 __asm__ __volatile__(
144"1: lwarx %0,0,%2 \n"
145 PPC405_ERR77(0,%2)
146" stwcx. %3,0,%2 \n\
147 bne- 1b"
148 : "=&r" (prev), "+m" (*(volatile unsigned int *)p)
149 : "r" (p), "r" (val)
150 : "cc", "memory");
151
152 return prev;
153}
154
155#ifdef CONFIG_PPC64
156static __always_inline unsigned long
157__xchg_u64(volatile void *p, unsigned long val)
158{
159 unsigned long prev;
160
161 __asm__ __volatile__(
162 LWSYNC_ON_SMP
163"1: ldarx %0,0,%2 \n"
164 PPC405_ERR77(0,%2)
165" stdcx. %3,0,%2 \n\
166 bne- 1b"
167 ISYNC_ON_SMP
168 : "=&r" (prev), "+m" (*(volatile unsigned long *)p)
169 : "r" (p), "r" (val)
170 : "cc", "memory");
171
172 return prev;
173}
174
175static __always_inline unsigned long
176__xchg_u64_local(volatile void *p, unsigned long val)
177{
178 unsigned long prev;
179
180 __asm__ __volatile__(
181"1: ldarx %0,0,%2 \n"
182 PPC405_ERR77(0,%2)
183" stdcx. %3,0,%2 \n\
184 bne- 1b"
185 : "=&r" (prev), "+m" (*(volatile unsigned long *)p)
186 : "r" (p), "r" (val)
187 : "cc", "memory");
188
189 return prev;
190}
191#endif
192
193/*
194 * This function doesn't exist, so you'll get a linker error
195 * if something tries to do an invalid xchg().
196 */
197extern void __xchg_called_with_bad_pointer(void);
198
199static __always_inline unsigned long
200__xchg(volatile void *ptr, unsigned long x, unsigned int size)
201{
202 switch (size) {
203 case 4:
204 return __xchg_u32(ptr, x);
205#ifdef CONFIG_PPC64
206 case 8:
207 return __xchg_u64(ptr, x);
208#endif
209 }
210 __xchg_called_with_bad_pointer();
211 return x;
212}
213
214static __always_inline unsigned long
215__xchg_local(volatile void *ptr, unsigned long x, unsigned int size)
216{
217 switch (size) {
218 case 4:
219 return __xchg_u32_local(ptr, x);
220#ifdef CONFIG_PPC64
221 case 8:
222 return __xchg_u64_local(ptr, x);
223#endif
224 }
225 __xchg_called_with_bad_pointer();
226 return x;
227}
228#define xchg(ptr,x) \
229 ({ \
230 __typeof__(*(ptr)) _x_ = (x); \
231 (__typeof__(*(ptr))) __xchg((ptr), (unsigned long)_x_, sizeof(*(ptr))); \
232 })
233
234#define xchg_local(ptr,x) \
235 ({ \
236 __typeof__(*(ptr)) _x_ = (x); \
237 (__typeof__(*(ptr))) __xchg_local((ptr), \
238 (unsigned long)_x_, sizeof(*(ptr))); \
239 })
240
241/*
242 * Compare and exchange - if *p == old, set it to new,
243 * and return the old value of *p.
244 */
245#define __HAVE_ARCH_CMPXCHG 1
246
247static __always_inline unsigned long
248__cmpxchg_u32(volatile unsigned int *p, unsigned long old, unsigned long new)
249{
250 unsigned int prev;
251
252 __asm__ __volatile__ (
253 LWSYNC_ON_SMP
254"1: lwarx %0,0,%2 # __cmpxchg_u32\n\
255 cmpw 0,%0,%3\n\
256 bne- 2f\n"
257 PPC405_ERR77(0,%2)
258" stwcx. %4,0,%2\n\
259 bne- 1b"
260 ISYNC_ON_SMP
261 "\n\
2622:"
263 : "=&r" (prev), "+m" (*p)
264 : "r" (p), "r" (old), "r" (new)
265 : "cc", "memory");
266
267 return prev;
268}
269
270static __always_inline unsigned long
271__cmpxchg_u32_local(volatile unsigned int *p, unsigned long old,
272 unsigned long new)
273{
274 unsigned int prev;
275
276 __asm__ __volatile__ (
277"1: lwarx %0,0,%2 # __cmpxchg_u32\n\
278 cmpw 0,%0,%3\n\
279 bne- 2f\n"
280 PPC405_ERR77(0,%2)
281" stwcx. %4,0,%2\n\
282 bne- 1b"
283 "\n\
2842:"
285 : "=&r" (prev), "+m" (*p)
286 : "r" (p), "r" (old), "r" (new)
287 : "cc", "memory");
288
289 return prev;
290}
291
292#ifdef CONFIG_PPC64
293static __always_inline unsigned long
294__cmpxchg_u64(volatile unsigned long *p, unsigned long old, unsigned long new)
295{
296 unsigned long prev;
297
298 __asm__ __volatile__ (
299 LWSYNC_ON_SMP
300"1: ldarx %0,0,%2 # __cmpxchg_u64\n\
301 cmpd 0,%0,%3\n\
302 bne- 2f\n\
303 stdcx. %4,0,%2\n\
304 bne- 1b"
305 ISYNC_ON_SMP
306 "\n\
3072:"
308 : "=&r" (prev), "+m" (*p)
309 : "r" (p), "r" (old), "r" (new)
310 : "cc", "memory");
311
312 return prev;
313}
314
315static __always_inline unsigned long
316__cmpxchg_u64_local(volatile unsigned long *p, unsigned long old,
317 unsigned long new)
318{
319 unsigned long prev;
320
321 __asm__ __volatile__ (
322"1: ldarx %0,0,%2 # __cmpxchg_u64\n\
323 cmpd 0,%0,%3\n\
324 bne- 2f\n\
325 stdcx. %4,0,%2\n\
326 bne- 1b"
327 "\n\
3282:"
329 : "=&r" (prev), "+m" (*p)
330 : "r" (p), "r" (old), "r" (new)
331 : "cc", "memory");
332
333 return prev;
334}
335#endif
336
337/* This function doesn't exist, so you'll get a linker error
338 if something tries to do an invalid cmpxchg(). */
339extern void __cmpxchg_called_with_bad_pointer(void);
340
341static __always_inline unsigned long
342__cmpxchg(volatile void *ptr, unsigned long old, unsigned long new,
343 unsigned int size)
344{
345 switch (size) {
346 case 4:
347 return __cmpxchg_u32(ptr, old, new);
348#ifdef CONFIG_PPC64
349 case 8:
350 return __cmpxchg_u64(ptr, old, new);
351#endif
352 }
353 __cmpxchg_called_with_bad_pointer();
354 return old;
355}
356
357static __always_inline unsigned long
358__cmpxchg_local(volatile void *ptr, unsigned long old, unsigned long new,
359 unsigned int size)
360{
361 switch (size) {
362 case 4:
363 return __cmpxchg_u32_local(ptr, old, new);
364#ifdef CONFIG_PPC64
365 case 8:
366 return __cmpxchg_u64_local(ptr, old, new);
367#endif
368 }
369 __cmpxchg_called_with_bad_pointer();
370 return old;
371}
372
373#define cmpxchg(ptr, o, n) \
374 ({ \
375 __typeof__(*(ptr)) _o_ = (o); \
376 __typeof__(*(ptr)) _n_ = (n); \
377 (__typeof__(*(ptr))) __cmpxchg((ptr), (unsigned long)_o_, \
378 (unsigned long)_n_, sizeof(*(ptr))); \
379 })
380
381
382#define cmpxchg_local(ptr, o, n) \
383 ({ \
384 __typeof__(*(ptr)) _o_ = (o); \
385 __typeof__(*(ptr)) _n_ = (n); \
386 (__typeof__(*(ptr))) __cmpxchg_local((ptr), (unsigned long)_o_, \
387 (unsigned long)_n_, sizeof(*(ptr))); \
388 })
389
390#ifdef CONFIG_PPC64
391/*
392 * We handle most unaligned accesses in hardware. On the other hand
393 * unaligned DMA can be very expensive on some ppc64 IO chips (it does
394 * powers of 2 writes until it reaches sufficient alignment).
395 *
396 * Based on this we disable the IP header alignment in network drivers.
397 * We also modify NET_SKB_PAD to be a cacheline in size, thus maintaining
398 * cacheline alignment of buffers.
399 */
400#define NET_IP_ALIGN 0
401#define NET_SKB_PAD L1_CACHE_BYTES
402
403#define cmpxchg64(ptr, o, n) \
404 ({ \
405 BUILD_BUG_ON(sizeof(*(ptr)) != 8); \
406 cmpxchg((ptr), (o), (n)); \
407 })
408#define cmpxchg64_local(ptr, o, n) \
409 ({ \
410 BUILD_BUG_ON(sizeof(*(ptr)) != 8); \
411 cmpxchg_local((ptr), (o), (n)); \
412 })
413#endif
414
415#define atomic_cmpxchg(v, o, n) (cmpxchg(&((v)->counter), (o), (n)))
416#define atomic_xchg(v, new) (xchg(&((v)->counter), new))
417
418/**
419 * atomic_add - add integer to atomic variable
420 * @i: integer value to add
421 * @v: pointer of type atomic_t
422 *
423 * Atomically adds @a to @v.
424 */
425static __inline__ void atomic_add(int a, atomic_t *v)
426{
427 int t;
428
429 __asm__ __volatile__(
430 "1: lwarx %0,0,%3 # atomic_add\n\
431 add %0,%2,%0 \n\
432 stwcx. %0,0,%3 \n\
433 bne- 1b"
434 : "=&r" (t), "+m" (v->counter)
435 : "r" (a), "r" (&v->counter)
436 : "cc");
437}
438
439/**
440 * atomic_sub - subtract the atomic variable
441 * @i: integer value to subtract
442 * @v: pointer of type atomic_t
443 *
444 * Atomically subtracts @a from @v.
445 */
446static __inline__ void atomic_sub(int a, atomic_t *v)
447{
448 int t;
449
450 __asm__ __volatile__(
451 "1: lwarx %0,0,%3 # atomic_sub \n\
452 subf %0,%2,%0 \n\
453 stwcx. %0,0,%3 \n\
454 bne- 1b"
455 : "=&r" (t), "+m" (v->counter)
456 : "r" (a), "r" (&v->counter)
457 : "cc");
458}
459
460static __inline__ atomic_sub_return(int a, atomic_t *v)
461{
462 int t;
463
464 __asm__ __volatile__(
465 "lwsync\n\
466 1: lwarx %0,0,%2 # atomic_sub_return\n\
467 subf %0,%1,%0\n\
468 stwcx. %0,0,%2 \n\
469 bne- 1b \n\
470 isync"
471 : "=&r" (t)
472 : "r" (a), "r" (&v->counter)
473 : "cc", "memory");
474
475 return t;
476}
477
478/**
479 * atomic_sub_and_test - subtract value from variable and test result
480 * @i: integer value to subtract
481 * @v: pointer of type atomic_t
482 *
483 * Atomically subtracts @i from @v and returns
484 * true if the result is zero, or false for all
485 * other cases.
486 */
487static __inline__ int atomic_sub_and_test(int a, atomic_t *v)
488{
489 return atomic_sub_return(a, v) == 0;
490}
491
492/**
493 * atomic_inc - increment atomic variable
494 * @v: pointer of type atomic_t
495 *
496 * Atomically increments @v by 1.
497 */
498static __inline__ void atomic_inc(atomic_t *v)
499{
500 atomic_add(1, v);
501}
502
503/**
504 * atomic_dec - decrement atomic variable
505 * @v: pointer of type atomic_t
506 *
507 * Atomically decrements @v by 1.
508 */
509static __inline__ void atomic_dec(atomic_t *v)
510{
511 atomic_sub(1, v);
512}
513
514/**
515 * atomic_dec_and_test - decrement and test
516 * @v: pointer of type atomic_t
517 *
518 * Atomically decrements @v by 1 and
519 * returns true if the result is 0, or false for all other
520 * cases.
521 */
522static __inline__ int atomic_dec_and_test(atomic_t *v)
523{
524 return atomic_sub_and_test(1, v);
525}
526
527/**
528 * atomic_inc_and_test - increment and test
529 * @v: pointer of type atomic_t
530 *
531 * Atomically increments @v by 1
532 * and returns true if the result is zero, or false for all
533 * other cases.
534 */
535static __inline__ int atomic_inc_and_test(atomic_t *v)
536{
537 return atomic_inc_return(v);
538}
539
540/**
541 * atomic_add_return - add and return
542 * @v: pointer of type atomic_t
543 * @i: integer value to add
544 *
545 * Atomically adds @i to @v and returns @i + @v
546 */
547static __inline__ int atomic_add_return(int a, atomic_t *v)
548{
549 int t;
550
551 __asm__ __volatile__(
552 "lwsync \n\
553 1: lwarx %0,0,%2 # atomic_add_return \n\
554 add %0,%1,%0 \n\
555 stwcx. %0,0,%2 \n\
556 bne- 1b \n\
557 isync"
558 : "=&r" (t)
559 : "r" (a), "r" (&v->counter)
560 : "cc", "memory");
561
562 return t;
563}
564
565/**
566 * atomic_add_negative - add and test if negative
567 * @v: pointer of type atomic_t
568 * @i: integer value to add
569 *
570 * Atomically adds @i to @v and returns true
571 * if the result is negative, or false when
572 * result is greater than or equal to zero.
573 */
574static __inline__ int atomic_add_negative(int a, atomic_t *v)
575{
576 return atomic_add_return(a, v) < 0;
577}
578
579/**
580 * atomic_add_unless - add unless the number is a given value
581 * @v: pointer of type atomic_t
582 * @a: the amount to add to v...
583 * @u: ...unless v is equal to u.
584 *
585 * Atomically adds @a to @v, so long as it was not @u.
586 * Returns non-zero if @v was not @u, and zero otherwise.
587 */
588static __inline__ int atomic_add_unless(atomic_t *v, int a, int u)
589{
590 int t;
591
592 __asm__ __volatile__(
593 "lwsync \n\
594 1: lwarx %0,0,%1 # atomic_add_unless\n\
595 cmpd 0,%0,%3 \n\
596 beq- 2f \n\
597 add %0,%2,%0 \n\
598 stwcx. %0,0,%1 \n\
599 bne- 1b \n\
600 isync \n\
601 subf %0,%2,%0 \n\
602 2:"
603 : "=&r" (t)
604 : "r" (&v->counter), "r" (a), "r" (u)
605 : "cc", "memory");
606
607 return t != u;
608}
609
610#define atomic_inc_not_zero(v) atomic_add_unless((v), 1, 0)
611
612#define atomic_inc_return(v) (atomic_add_return(1,v))
613#define atomic_dec_return(v) (atomic_sub_return(1,v))
614
615/* Atomic operations are already serializing on x86 */
616#define smp_mb__before_atomic_dec() smp_mb()
617#define smp_mb__after_atomic_dec() smp_mb()
618#define smp_mb__before_atomic_inc() smp_mb()
619#define smp_mb__after_atomic_inc() smp_mb()
620
6ee91d83
MD
621#endif //0 /* duplicate with arch_atomic.h */
622
6d0ce021
PM
623/*
624 * api_pthreads.h: API mapping to pthreads environment.
625 *
626 * This program is free software; you can redistribute it and/or modify
627 * it under the terms of the GNU General Public License as published by
628 * the Free Software Foundation; either version 2 of the License, or
629 * (at your option) any later version. However, please note that much
630 * of the code in this file derives from the Linux kernel, and that such
631 * code may not be available except under GPLv2.
632 *
633 * This program is distributed in the hope that it will be useful,
634 * but WITHOUT ANY WARRANTY; without even the implied warranty of
635 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
636 * GNU General Public License for more details.
637 *
638 * You should have received a copy of the GNU General Public License
639 * along with this program; if not, write to the Free Software
640 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
641 *
642 * Copyright (c) 2006 Paul E. McKenney, IBM.
643 */
644
645#include <stdio.h>
646#include <stdlib.h>
647#include <errno.h>
648#include <limits.h>
649#include <sys/types.h>
650#define __USE_GNU
651#include <pthread.h>
652#include <sched.h>
653#include <sys/param.h>
654/* #include "atomic.h" */
655
656/*
657 * Compiler magic.
658 */
6d0ce021
PM
659#define container_of(ptr, type, member) ({ \
660 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
661 (type *)( (char *)__mptr - offsetof(type,member) );})
6d0ce021
PM
662
663/*
664 * Default machine parameters.
665 */
666
667#ifndef CACHE_LINE_SIZE
668#define CACHE_LINE_SIZE 128
669#endif /* #ifndef CACHE_LINE_SIZE */
670
671/*
672 * Exclusive locking primitives.
673 */
674
675typedef pthread_mutex_t spinlock_t;
676
677#define DEFINE_SPINLOCK(lock) spinlock_t lock = PTHREAD_MUTEX_INITIALIZER;
678#define __SPIN_LOCK_UNLOCKED(lockp) PTHREAD_MUTEX_INITIALIZER
679
680static void spin_lock_init(spinlock_t *sp)
681{
682 if (pthread_mutex_init(sp, NULL) != 0) {
683 perror("spin_lock_init:pthread_mutex_init");
684 exit(-1);
685 }
686}
687
688static void spin_lock(spinlock_t *sp)
689{
690 if (pthread_mutex_lock(sp) != 0) {
691 perror("spin_lock:pthread_mutex_lock");
692 exit(-1);
693 }
694}
695
6d0ce021
PM
696static void spin_unlock(spinlock_t *sp)
697{
698 if (pthread_mutex_unlock(sp) != 0) {
699 perror("spin_unlock:pthread_mutex_unlock");
700 exit(-1);
701 }
702}
703
704#define spin_lock_irqsave(l, f) do { f = 1; spin_lock(l); } while (0)
705#define spin_unlock_irqrestore(l, f) do { f = 0; spin_unlock(l); } while (0)
706
6d0ce021
PM
707/*
708 * Thread creation/destruction primitives.
709 */
710
711typedef pthread_t thread_id_t;
712
713#define NR_THREADS 128
714
715#define __THREAD_ID_MAP_EMPTY 0
716#define __THREAD_ID_MAP_WAITING 1
717thread_id_t __thread_id_map[NR_THREADS];
718spinlock_t __thread_id_map_mutex;
719
720#define for_each_thread(t) \
721 for (t = 0; t < NR_THREADS; t++)
722
723#define for_each_running_thread(t) \
724 for (t = 0; t < NR_THREADS; t++) \
725 if ((__thread_id_map[t] != __THREAD_ID_MAP_EMPTY) && \
726 (__thread_id_map[t] != __THREAD_ID_MAP_WAITING))
727
728#define for_each_tid(t, tid) \
729 for (t = 0; t < NR_THREADS; t++) \
730 if ((((tid) = __thread_id_map[t]) != __THREAD_ID_MAP_EMPTY) && \
731 ((tid) != __THREAD_ID_MAP_WAITING))
732
733pthread_key_t thread_id_key;
734
735static int __smp_thread_id(void)
736{
737 int i;
738 thread_id_t tid = pthread_self();
739
740 for (i = 0; i < NR_THREADS; i++) {
741 if (__thread_id_map[i] == tid) {
742 long v = i + 1; /* must be non-NULL. */
743
744 if (pthread_setspecific(thread_id_key, (void *)v) != 0) {
745 perror("pthread_setspecific");
746 exit(-1);
747 }
748 return i;
749 }
750 }
751 spin_lock(&__thread_id_map_mutex);
752 for (i = 0; i < NR_THREADS; i++) {
753 if (__thread_id_map[i] == tid)
754 spin_unlock(&__thread_id_map_mutex);
755 return i;
756 }
757 spin_unlock(&__thread_id_map_mutex);
0578089f
PM
758 fprintf(stderr, "smp_thread_id: Rogue thread, id: %d(%#x)\n",
759 (int)tid, (int)tid);
6d0ce021
PM
760 exit(-1);
761}
762
763static int smp_thread_id(void)
764{
765 void *id;
766
767 id = pthread_getspecific(thread_id_key);
768 if (id == NULL)
769 return __smp_thread_id();
770 return (long)(id - 1);
771}
772
773static thread_id_t create_thread(void *(*func)(void *), void *arg)
774{
775 thread_id_t tid;
776 int i;
777
778 spin_lock(&__thread_id_map_mutex);
779 for (i = 0; i < NR_THREADS; i++) {
780 if (__thread_id_map[i] == __THREAD_ID_MAP_EMPTY)
781 break;
782 }
783 if (i >= NR_THREADS) {
784 spin_unlock(&__thread_id_map_mutex);
785 fprintf(stderr, "Thread limit of %d exceeded!\n", NR_THREADS);
786 exit(-1);
787 }
788 __thread_id_map[i] = __THREAD_ID_MAP_WAITING;
789 spin_unlock(&__thread_id_map_mutex);
790 if (pthread_create(&tid, NULL, func, arg) != 0) {
791 perror("create_thread:pthread_create");
792 exit(-1);
793 }
794 __thread_id_map[i] = tid;
795 return tid;
796}
797
798static void *wait_thread(thread_id_t tid)
799{
800 int i;
801 void *vp;
802
803 for (i = 0; i < NR_THREADS; i++) {
804 if (__thread_id_map[i] == tid)
805 break;
806 }
807 if (i >= NR_THREADS){
0578089f
PM
808 fprintf(stderr, "wait_thread: bad tid = %d(%#x)\n",
809 (int)tid, (int)tid);
6d0ce021
PM
810 exit(-1);
811 }
812 if (pthread_join(tid, &vp) != 0) {
813 perror("wait_thread:pthread_join");
814 exit(-1);
815 }
816 __thread_id_map[i] = __THREAD_ID_MAP_EMPTY;
817 return vp;
818}
819
820static void wait_all_threads(void)
821{
822 int i;
823 thread_id_t tid;
824
825 for (i = 1; i < NR_THREADS; i++) {
826 tid = __thread_id_map[i];
827 if (tid != __THREAD_ID_MAP_EMPTY &&
828 tid != __THREAD_ID_MAP_WAITING)
829 (void)wait_thread(tid);
830 }
831}
832
833static void run_on(int cpu)
834{
835 cpu_set_t mask;
836
837 CPU_ZERO(&mask);
838 CPU_SET(cpu, &mask);
839 sched_setaffinity(0, sizeof(mask), &mask);
840}
841
842/*
843 * timekeeping -- very crude -- should use MONOTONIC...
844 */
845
846long long get_microseconds(void)
847{
848 struct timeval tv;
849
850 if (gettimeofday(&tv, NULL) != 0)
851 abort();
852 return ((long long)tv.tv_sec) * 1000000LL + (long long)tv.tv_usec;
853}
854
855/*
856 * Per-thread variables.
857 */
858
859#define DEFINE_PER_THREAD(type, name) \
860 struct { \
861 __typeof__(type) v \
862 __attribute__((__aligned__(CACHE_LINE_SIZE))); \
863 } __per_thread_##name[NR_THREADS];
864#define DECLARE_PER_THREAD(type, name) extern DEFINE_PER_THREAD(type, name)
865
866#define per_thread(name, thread) __per_thread_##name[thread].v
867#define __get_thread_var(name) per_thread(name, smp_thread_id())
868
869#define init_per_thread(name, v) \
870 do { \
871 int __i_p_t_i; \
872 for (__i_p_t_i = 0; __i_p_t_i < NR_THREADS; __i_p_t_i++) \
873 per_thread(name, __i_p_t_i) = v; \
874 } while (0)
875
876/*
877 * CPU traversal primitives.
878 */
879
880#ifndef NR_CPUS
881#define NR_CPUS 16
882#endif /* #ifndef NR_CPUS */
883
884#define for_each_possible_cpu(cpu) \
885 for (cpu = 0; cpu < NR_CPUS; cpu++)
886#define for_each_online_cpu(cpu) \
887 for (cpu = 0; cpu < NR_CPUS; cpu++)
888
889/*
890 * Per-CPU variables.
891 */
892
893#define DEFINE_PER_CPU(type, name) \
894 struct { \
895 __typeof__(type) v \
896 __attribute__((__aligned__(CACHE_LINE_SIZE))); \
897 } __per_cpu_##name[NR_CPUS]
898#define DECLARE_PER_CPU(type, name) extern DEFINE_PER_CPU(type, name)
899
900DEFINE_PER_THREAD(int, smp_processor_id);
901
6d0ce021
PM
902#define per_cpu(name, thread) __per_cpu_##name[thread].v
903#define __get_cpu_var(name) per_cpu(name, smp_processor_id())
904
905#define init_per_cpu(name, v) \
906 do { \
907 int __i_p_c_i; \
908 for (__i_p_c_i = 0; __i_p_c_i < NR_CPUS; __i_p_c_i++) \
909 per_cpu(name, __i_p_c_i) = v; \
910 } while (0)
911
912/*
913 * CPU state checking (crowbarred).
914 */
915
916#define idle_cpu(cpu) 0
917#define in_softirq() 1
918#define hardirq_count() 0
919#define PREEMPT_SHIFT 0
920#define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS)
921#define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS)
922#define PREEMPT_BITS 8
923#define SOFTIRQ_BITS 8
924
925/*
926 * CPU hotplug.
927 */
928
929struct notifier_block {
930 int (*notifier_call)(struct notifier_block *, unsigned long, void *);
931 struct notifier_block *next;
932 int priority;
933};
934
935#define CPU_ONLINE 0x0002 /* CPU (unsigned)v is up */
936#define CPU_UP_PREPARE 0x0003 /* CPU (unsigned)v coming up */
937#define CPU_UP_CANCELED 0x0004 /* CPU (unsigned)v NOT coming up */
938#define CPU_DOWN_PREPARE 0x0005 /* CPU (unsigned)v going down */
939#define CPU_DOWN_FAILED 0x0006 /* CPU (unsigned)v NOT going down */
940#define CPU_DEAD 0x0007 /* CPU (unsigned)v dead */
941#define CPU_DYING 0x0008 /* CPU (unsigned)v not running any task,
942 * not handling interrupts, soon dead */
943#define CPU_POST_DEAD 0x0009 /* CPU (unsigned)v dead, cpu_hotplug
944 * lock is dropped */
945
946/* Used for CPU hotplug events occuring while tasks are frozen due to a suspend
947 * operation in progress
948 */
949#define CPU_TASKS_FROZEN 0x0010
950
951#define CPU_ONLINE_FROZEN (CPU_ONLINE | CPU_TASKS_FROZEN)
952#define CPU_UP_PREPARE_FROZEN (CPU_UP_PREPARE | CPU_TASKS_FROZEN)
953#define CPU_UP_CANCELED_FROZEN (CPU_UP_CANCELED | CPU_TASKS_FROZEN)
954#define CPU_DOWN_PREPARE_FROZEN (CPU_DOWN_PREPARE | CPU_TASKS_FROZEN)
955#define CPU_DOWN_FAILED_FROZEN (CPU_DOWN_FAILED | CPU_TASKS_FROZEN)
956#define CPU_DEAD_FROZEN (CPU_DEAD | CPU_TASKS_FROZEN)
957#define CPU_DYING_FROZEN (CPU_DYING | CPU_TASKS_FROZEN)
958
959/* Hibernation and suspend events */
960#define PM_HIBERNATION_PREPARE 0x0001 /* Going to hibernate */
961#define PM_POST_HIBERNATION 0x0002 /* Hibernation finished */
962#define PM_SUSPEND_PREPARE 0x0003 /* Going to suspend the system */
963#define PM_POST_SUSPEND 0x0004 /* Suspend finished */
964#define PM_RESTORE_PREPARE 0x0005 /* Going to restore a saved image */
965#define PM_POST_RESTORE 0x0006 /* Restore failed */
966
967#define NOTIFY_DONE 0x0000 /* Don't care */
968#define NOTIFY_OK 0x0001 /* Suits me */
969#define NOTIFY_STOP_MASK 0x8000 /* Don't call further */
970#define NOTIFY_BAD (NOTIFY_STOP_MASK|0x0002)
971 /* Bad/Veto action */
972/*
973 * Clean way to return from the notifier and stop further calls.
974 */
975#define NOTIFY_STOP (NOTIFY_OK|NOTIFY_STOP_MASK)
976
977/*
978 * Bug checks.
979 */
980
981#define BUG_ON(c) do { if (!(c)) abort(); } while (0)
982
983/*
984 * Initialization -- Must be called before calling any primitives.
985 */
986
987static void smp_init(void)
988{
989 int i;
990
991 spin_lock_init(&__thread_id_map_mutex);
992 __thread_id_map[0] = pthread_self();
993 for (i = 1; i < NR_THREADS; i++)
994 __thread_id_map[i] = __THREAD_ID_MAP_EMPTY;
995 init_per_thread(smp_processor_id, 0);
996 if (pthread_key_create(&thread_id_key, NULL) != 0) {
997 perror("pthread_key_create");
998 exit(-1);
999 }
1000}
1001
1002/* Taken from the Linux kernel source tree, so GPLv2-only!!! */
1003
1004#ifndef _LINUX_LIST_H
1005#define _LINUX_LIST_H
1006
1007#define LIST_POISON1 ((void *) 0x00100100)
1008#define LIST_POISON2 ((void *) 0x00200200)
1009
6d0ce021
PM
1010#define container_of(ptr, type, member) ({ \
1011 const typeof( ((type *)0)->member ) *__mptr = (ptr); \
1012 (type *)( (char *)__mptr - offsetof(type,member) );})
1013
1014/*
1015 * Simple doubly linked list implementation.
1016 *
1017 * Some of the internal functions ("__xxx") are useful when
1018 * manipulating whole lists rather than single entries, as
1019 * sometimes we already know the next/prev entries and we can
1020 * generate better code by using them directly rather than
1021 * using the generic single-entry routines.
1022 */
1023
1024struct list_head {
1025 struct list_head *next, *prev;
1026};
1027
1028#define LIST_HEAD_INIT(name) { &(name), &(name) }
1029
1030#define LIST_HEAD(name) \
1031 struct list_head name = LIST_HEAD_INIT(name)
1032
1033static inline void INIT_LIST_HEAD(struct list_head *list)
1034{
1035 list->next = list;
1036 list->prev = list;
1037}
1038
1039/*
1040 * Insert a new entry between two known consecutive entries.
1041 *
1042 * This is only for internal list manipulation where we know
1043 * the prev/next entries already!
1044 */
1045#ifndef CONFIG_DEBUG_LIST
1046static inline void __list_add(struct list_head *new,
1047 struct list_head *prev,
1048 struct list_head *next)
1049{
1050 next->prev = new;
1051 new->next = next;
1052 new->prev = prev;
1053 prev->next = new;
1054}
1055#else
1056extern void __list_add(struct list_head *new,
1057 struct list_head *prev,
1058 struct list_head *next);
1059#endif
1060
1061/**
1062 * list_add - add a new entry
1063 * @new: new entry to be added
1064 * @head: list head to add it after
1065 *
1066 * Insert a new entry after the specified head.
1067 * This is good for implementing stacks.
1068 */
1069static inline void list_add(struct list_head *new, struct list_head *head)
1070{
1071 __list_add(new, head, head->next);
1072}
1073
1074
1075/**
1076 * list_add_tail - add a new entry
1077 * @new: new entry to be added
1078 * @head: list head to add it before
1079 *
1080 * Insert a new entry before the specified head.
1081 * This is useful for implementing queues.
1082 */
1083static inline void list_add_tail(struct list_head *new, struct list_head *head)
1084{
1085 __list_add(new, head->prev, head);
1086}
1087
1088/*
1089 * Delete a list entry by making the prev/next entries
1090 * point to each other.
1091 *
1092 * This is only for internal list manipulation where we know
1093 * the prev/next entries already!
1094 */
1095static inline void __list_del(struct list_head * prev, struct list_head * next)
1096{
1097 next->prev = prev;
1098 prev->next = next;
1099}
1100
1101/**
1102 * list_del - deletes entry from list.
1103 * @entry: the element to delete from the list.
1104 * Note: list_empty() on entry does not return true after this, the entry is
1105 * in an undefined state.
1106 */
1107#ifndef CONFIG_DEBUG_LIST
1108static inline void list_del(struct list_head *entry)
1109{
1110 __list_del(entry->prev, entry->next);
1111 entry->next = LIST_POISON1;
1112 entry->prev = LIST_POISON2;
1113}
1114#else
1115extern void list_del(struct list_head *entry);
1116#endif
1117
1118/**
1119 * list_replace - replace old entry by new one
1120 * @old : the element to be replaced
1121 * @new : the new element to insert
1122 *
1123 * If @old was empty, it will be overwritten.
1124 */
1125static inline void list_replace(struct list_head *old,
1126 struct list_head *new)
1127{
1128 new->next = old->next;
1129 new->next->prev = new;
1130 new->prev = old->prev;
1131 new->prev->next = new;
1132}
1133
1134static inline void list_replace_init(struct list_head *old,
1135 struct list_head *new)
1136{
1137 list_replace(old, new);
1138 INIT_LIST_HEAD(old);
1139}
1140
1141/**
1142 * list_del_init - deletes entry from list and reinitialize it.
1143 * @entry: the element to delete from the list.
1144 */
1145static inline void list_del_init(struct list_head *entry)
1146{
1147 __list_del(entry->prev, entry->next);
1148 INIT_LIST_HEAD(entry);
1149}
1150
1151/**
1152 * list_move - delete from one list and add as another's head
1153 * @list: the entry to move
1154 * @head: the head that will precede our entry
1155 */
1156static inline void list_move(struct list_head *list, struct list_head *head)
1157{
1158 __list_del(list->prev, list->next);
1159 list_add(list, head);
1160}
1161
1162/**
1163 * list_move_tail - delete from one list and add as another's tail
1164 * @list: the entry to move
1165 * @head: the head that will follow our entry
1166 */
1167static inline void list_move_tail(struct list_head *list,
1168 struct list_head *head)
1169{
1170 __list_del(list->prev, list->next);
1171 list_add_tail(list, head);
1172}
1173
1174/**
1175 * list_is_last - tests whether @list is the last entry in list @head
1176 * @list: the entry to test
1177 * @head: the head of the list
1178 */
1179static inline int list_is_last(const struct list_head *list,
1180 const struct list_head *head)
1181{
1182 return list->next == head;
1183}
1184
1185/**
1186 * list_empty - tests whether a list is empty
1187 * @head: the list to test.
1188 */
1189static inline int list_empty(const struct list_head *head)
1190{
1191 return head->next == head;
1192}
1193
1194/**
1195 * list_empty_careful - tests whether a list is empty and not being modified
1196 * @head: the list to test
1197 *
1198 * Description:
1199 * tests whether a list is empty _and_ checks that no other CPU might be
1200 * in the process of modifying either member (next or prev)
1201 *
1202 * NOTE: using list_empty_careful() without synchronization
1203 * can only be safe if the only activity that can happen
1204 * to the list entry is list_del_init(). Eg. it cannot be used
1205 * if another CPU could re-list_add() it.
1206 */
1207static inline int list_empty_careful(const struct list_head *head)
1208{
1209 struct list_head *next = head->next;
1210 return (next == head) && (next == head->prev);
1211}
1212
1213/**
1214 * list_is_singular - tests whether a list has just one entry.
1215 * @head: the list to test.
1216 */
1217static inline int list_is_singular(const struct list_head *head)
1218{
1219 return !list_empty(head) && (head->next == head->prev);
1220}
1221
1222static inline void __list_cut_position(struct list_head *list,
1223 struct list_head *head, struct list_head *entry)
1224{
1225 struct list_head *new_first = entry->next;
1226 list->next = head->next;
1227 list->next->prev = list;
1228 list->prev = entry;
1229 entry->next = list;
1230 head->next = new_first;
1231 new_first->prev = head;
1232}
1233
1234/**
1235 * list_cut_position - cut a list into two
1236 * @list: a new list to add all removed entries
1237 * @head: a list with entries
1238 * @entry: an entry within head, could be the head itself
1239 * and if so we won't cut the list
1240 *
1241 * This helper moves the initial part of @head, up to and
1242 * including @entry, from @head to @list. You should
1243 * pass on @entry an element you know is on @head. @list
1244 * should be an empty list or a list you do not care about
1245 * losing its data.
1246 *
1247 */
1248static inline void list_cut_position(struct list_head *list,
1249 struct list_head *head, struct list_head *entry)
1250{
1251 if (list_empty(head))
1252 return;
1253 if (list_is_singular(head) &&
1254 (head->next != entry && head != entry))
1255 return;
1256 if (entry == head)
1257 INIT_LIST_HEAD(list);
1258 else
1259 __list_cut_position(list, head, entry);
1260}
1261
1262static inline void __list_splice(const struct list_head *list,
1263 struct list_head *prev,
1264 struct list_head *next)
1265{
1266 struct list_head *first = list->next;
1267 struct list_head *last = list->prev;
1268
1269 first->prev = prev;
1270 prev->next = first;
1271
1272 last->next = next;
1273 next->prev = last;
1274}
1275
1276/**
1277 * list_splice - join two lists, this is designed for stacks
1278 * @list: the new list to add.
1279 * @head: the place to add it in the first list.
1280 */
1281static inline void list_splice(const struct list_head *list,
1282 struct list_head *head)
1283{
1284 if (!list_empty(list))
1285 __list_splice(list, head, head->next);
1286}
1287
1288/**
1289 * list_splice_tail - join two lists, each list being a queue
1290 * @list: the new list to add.
1291 * @head: the place to add it in the first list.
1292 */
1293static inline void list_splice_tail(struct list_head *list,
1294 struct list_head *head)
1295{
1296 if (!list_empty(list))
1297 __list_splice(list, head->prev, head);
1298}
1299
1300/**
1301 * list_splice_init - join two lists and reinitialise the emptied list.
1302 * @list: the new list to add.
1303 * @head: the place to add it in the first list.
1304 *
1305 * The list at @list is reinitialised
1306 */
1307static inline void list_splice_init(struct list_head *list,
1308 struct list_head *head)
1309{
1310 if (!list_empty(list)) {
1311 __list_splice(list, head, head->next);
1312 INIT_LIST_HEAD(list);
1313 }
1314}
1315
1316/**
1317 * list_splice_tail_init - join two lists and reinitialise the emptied list
1318 * @list: the new list to add.
1319 * @head: the place to add it in the first list.
1320 *
1321 * Each of the lists is a queue.
1322 * The list at @list is reinitialised
1323 */
1324static inline void list_splice_tail_init(struct list_head *list,
1325 struct list_head *head)
1326{
1327 if (!list_empty(list)) {
1328 __list_splice(list, head->prev, head);
1329 INIT_LIST_HEAD(list);
1330 }
1331}
1332
1333/**
1334 * list_entry - get the struct for this entry
1335 * @ptr: the &struct list_head pointer.
1336 * @type: the type of the struct this is embedded in.
1337 * @member: the name of the list_struct within the struct.
1338 */
1339#define list_entry(ptr, type, member) \
1340 container_of(ptr, type, member)
1341
1342/**
1343 * list_first_entry - get the first element from a list
1344 * @ptr: the list head to take the element from.
1345 * @type: the type of the struct this is embedded in.
1346 * @member: the name of the list_struct within the struct.
1347 *
1348 * Note, that list is expected to be not empty.
1349 */
1350#define list_first_entry(ptr, type, member) \
1351 list_entry((ptr)->next, type, member)
1352
1353/**
1354 * list_for_each - iterate over a list
1355 * @pos: the &struct list_head to use as a loop cursor.
1356 * @head: the head for your list.
1357 */
1358#define list_for_each(pos, head) \
1359 for (pos = (head)->next; prefetch(pos->next), pos != (head); \
1360 pos = pos->next)
1361
1362/**
1363 * __list_for_each - iterate over a list
1364 * @pos: the &struct list_head to use as a loop cursor.
1365 * @head: the head for your list.
1366 *
1367 * This variant differs from list_for_each() in that it's the
1368 * simplest possible list iteration code, no prefetching is done.
1369 * Use this for code that knows the list to be very short (empty
1370 * or 1 entry) most of the time.
1371 */
1372#define __list_for_each(pos, head) \
1373 for (pos = (head)->next; pos != (head); pos = pos->next)
1374
1375/**
1376 * list_for_each_prev - iterate over a list backwards
1377 * @pos: the &struct list_head to use as a loop cursor.
1378 * @head: the head for your list.
1379 */
1380#define list_for_each_prev(pos, head) \
1381 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
1382 pos = pos->prev)
1383
1384/**
1385 * list_for_each_safe - iterate over a list safe against removal of list entry
1386 * @pos: the &struct list_head to use as a loop cursor.
1387 * @n: another &struct list_head to use as temporary storage
1388 * @head: the head for your list.
1389 */
1390#define list_for_each_safe(pos, n, head) \
1391 for (pos = (head)->next, n = pos->next; pos != (head); \
1392 pos = n, n = pos->next)
1393
1394/**
1395 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
1396 * @pos: the &struct list_head to use as a loop cursor.
1397 * @n: another &struct list_head to use as temporary storage
1398 * @head: the head for your list.
1399 */
1400#define list_for_each_prev_safe(pos, n, head) \
1401 for (pos = (head)->prev, n = pos->prev; \
1402 prefetch(pos->prev), pos != (head); \
1403 pos = n, n = pos->prev)
1404
1405/**
1406 * list_for_each_entry - iterate over list of given type
1407 * @pos: the type * to use as a loop cursor.
1408 * @head: the head for your list.
1409 * @member: the name of the list_struct within the struct.
1410 */
1411#define list_for_each_entry(pos, head, member) \
1412 for (pos = list_entry((head)->next, typeof(*pos), member); \
1413 prefetch(pos->member.next), &pos->member != (head); \
1414 pos = list_entry(pos->member.next, typeof(*pos), member))
1415
1416/**
1417 * list_for_each_entry_reverse - iterate backwards over list of given type.
1418 * @pos: the type * to use as a loop cursor.
1419 * @head: the head for your list.
1420 * @member: the name of the list_struct within the struct.
1421 */
1422#define list_for_each_entry_reverse(pos, head, member) \
1423 for (pos = list_entry((head)->prev, typeof(*pos), member); \
1424 prefetch(pos->member.prev), &pos->member != (head); \
1425 pos = list_entry(pos->member.prev, typeof(*pos), member))
1426
1427/**
1428 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
1429 * @pos: the type * to use as a start point
1430 * @head: the head of the list
1431 * @member: the name of the list_struct within the struct.
1432 *
1433 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
1434 */
1435#define list_prepare_entry(pos, head, member) \
1436 ((pos) ? : list_entry(head, typeof(*pos), member))
1437
1438/**
1439 * list_for_each_entry_continue - continue iteration over list of given type
1440 * @pos: the type * to use as a loop cursor.
1441 * @head: the head for your list.
1442 * @member: the name of the list_struct within the struct.
1443 *
1444 * Continue to iterate over list of given type, continuing after
1445 * the current position.
1446 */
1447#define list_for_each_entry_continue(pos, head, member) \
1448 for (pos = list_entry(pos->member.next, typeof(*pos), member); \
1449 prefetch(pos->member.next), &pos->member != (head); \
1450 pos = list_entry(pos->member.next, typeof(*pos), member))
1451
1452/**
1453 * list_for_each_entry_continue_reverse - iterate backwards from the given point
1454 * @pos: the type * to use as a loop cursor.
1455 * @head: the head for your list.
1456 * @member: the name of the list_struct within the struct.
1457 *
1458 * Start to iterate over list of given type backwards, continuing after
1459 * the current position.
1460 */
1461#define list_for_each_entry_continue_reverse(pos, head, member) \
1462 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \
1463 prefetch(pos->member.prev), &pos->member != (head); \
1464 pos = list_entry(pos->member.prev, typeof(*pos), member))
1465
1466/**
1467 * list_for_each_entry_from - iterate over list of given type from the current point
1468 * @pos: the type * to use as a loop cursor.
1469 * @head: the head for your list.
1470 * @member: the name of the list_struct within the struct.
1471 *
1472 * Iterate over list of given type, continuing from current position.
1473 */
1474#define list_for_each_entry_from(pos, head, member) \
1475 for (; prefetch(pos->member.next), &pos->member != (head); \
1476 pos = list_entry(pos->member.next, typeof(*pos), member))
1477
1478/**
1479 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1480 * @pos: the type * to use as a loop cursor.
1481 * @n: another type * to use as temporary storage
1482 * @head: the head for your list.
1483 * @member: the name of the list_struct within the struct.
1484 */
1485#define list_for_each_entry_safe(pos, n, head, member) \
1486 for (pos = list_entry((head)->next, typeof(*pos), member), \
1487 n = list_entry(pos->member.next, typeof(*pos), member); \
1488 &pos->member != (head); \
1489 pos = n, n = list_entry(n->member.next, typeof(*n), member))
1490
1491/**
1492 * list_for_each_entry_safe_continue
1493 * @pos: the type * to use as a loop cursor.
1494 * @n: another type * to use as temporary storage
1495 * @head: the head for your list.
1496 * @member: the name of the list_struct within the struct.
1497 *
1498 * Iterate over list of given type, continuing after current point,
1499 * safe against removal of list entry.
1500 */
1501#define list_for_each_entry_safe_continue(pos, n, head, member) \
1502 for (pos = list_entry(pos->member.next, typeof(*pos), member), \
1503 n = list_entry(pos->member.next, typeof(*pos), member); \
1504 &pos->member != (head); \
1505 pos = n, n = list_entry(n->member.next, typeof(*n), member))
1506
1507/**
1508 * list_for_each_entry_safe_from
1509 * @pos: the type * to use as a loop cursor.
1510 * @n: another type * to use as temporary storage
1511 * @head: the head for your list.
1512 * @member: the name of the list_struct within the struct.
1513 *
1514 * Iterate over list of given type from current point, safe against
1515 * removal of list entry.
1516 */
1517#define list_for_each_entry_safe_from(pos, n, head, member) \
1518 for (n = list_entry(pos->member.next, typeof(*pos), member); \
1519 &pos->member != (head); \
1520 pos = n, n = list_entry(n->member.next, typeof(*n), member))
1521
1522/**
1523 * list_for_each_entry_safe_reverse
1524 * @pos: the type * to use as a loop cursor.
1525 * @n: another type * to use as temporary storage
1526 * @head: the head for your list.
1527 * @member: the name of the list_struct within the struct.
1528 *
1529 * Iterate backwards over list of given type, safe against removal
1530 * of list entry.
1531 */
1532#define list_for_each_entry_safe_reverse(pos, n, head, member) \
1533 for (pos = list_entry((head)->prev, typeof(*pos), member), \
1534 n = list_entry(pos->member.prev, typeof(*pos), member); \
1535 &pos->member != (head); \
1536 pos = n, n = list_entry(n->member.prev, typeof(*n), member))
1537
1538/*
1539 * Double linked lists with a single pointer list head.
1540 * Mostly useful for hash tables where the two pointer list head is
1541 * too wasteful.
1542 * You lose the ability to access the tail in O(1).
1543 */
1544
1545struct hlist_head {
1546 struct hlist_node *first;
1547};
1548
1549struct hlist_node {
1550 struct hlist_node *next, **pprev;
1551};
1552
1553#define HLIST_HEAD_INIT { .first = NULL }
1554#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
1555#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
1556static inline void INIT_HLIST_NODE(struct hlist_node *h)
1557{
1558 h->next = NULL;
1559 h->pprev = NULL;
1560}
1561
1562static inline int hlist_unhashed(const struct hlist_node *h)
1563{
1564 return !h->pprev;
1565}
1566
1567static inline int hlist_empty(const struct hlist_head *h)
1568{
1569 return !h->first;
1570}
1571
1572static inline void __hlist_del(struct hlist_node *n)
1573{
1574 struct hlist_node *next = n->next;
1575 struct hlist_node **pprev = n->pprev;
1576 *pprev = next;
1577 if (next)
1578 next->pprev = pprev;
1579}
1580
1581static inline void hlist_del(struct hlist_node *n)
1582{
1583 __hlist_del(n);
1584 n->next = LIST_POISON1;
1585 n->pprev = LIST_POISON2;
1586}
1587
1588static inline void hlist_del_init(struct hlist_node *n)
1589{
1590 if (!hlist_unhashed(n)) {
1591 __hlist_del(n);
1592 INIT_HLIST_NODE(n);
1593 }
1594}
1595
1596static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
1597{
1598 struct hlist_node *first = h->first;
1599 n->next = first;
1600 if (first)
1601 first->pprev = &n->next;
1602 h->first = n;
1603 n->pprev = &h->first;
1604}
1605
1606/* next must be != NULL */
1607static inline void hlist_add_before(struct hlist_node *n,
1608 struct hlist_node *next)
1609{
1610 n->pprev = next->pprev;
1611 n->next = next;
1612 next->pprev = &n->next;
1613 *(n->pprev) = n;
1614}
1615
1616static inline void hlist_add_after(struct hlist_node *n,
1617 struct hlist_node *next)
1618{
1619 next->next = n->next;
1620 n->next = next;
1621 next->pprev = &n->next;
1622
1623 if(next->next)
1624 next->next->pprev = &next->next;
1625}
1626
1627/*
1628 * Move a list from one list head to another. Fixup the pprev
1629 * reference of the first entry if it exists.
1630 */
1631static inline void hlist_move_list(struct hlist_head *old,
1632 struct hlist_head *new)
1633{
1634 new->first = old->first;
1635 if (new->first)
1636 new->first->pprev = &new->first;
1637 old->first = NULL;
1638}
1639
1640#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
1641
1642#define hlist_for_each(pos, head) \
1643 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
1644 pos = pos->next)
1645
1646#define hlist_for_each_safe(pos, n, head) \
1647 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
1648 pos = n)
1649
1650/**
1651 * hlist_for_each_entry - iterate over list of given type
1652 * @tpos: the type * to use as a loop cursor.
1653 * @pos: the &struct hlist_node to use as a loop cursor.
1654 * @head: the head for your list.
1655 * @member: the name of the hlist_node within the struct.
1656 */
1657#define hlist_for_each_entry(tpos, pos, head, member) \
1658 for (pos = (head)->first; \
1659 pos && ({ prefetch(pos->next); 1;}) && \
1660 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1661 pos = pos->next)
1662
1663/**
1664 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1665 * @tpos: the type * to use as a loop cursor.
1666 * @pos: the &struct hlist_node to use as a loop cursor.
1667 * @member: the name of the hlist_node within the struct.
1668 */
1669#define hlist_for_each_entry_continue(tpos, pos, member) \
1670 for (pos = (pos)->next; \
1671 pos && ({ prefetch(pos->next); 1;}) && \
1672 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1673 pos = pos->next)
1674
1675/**
1676 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1677 * @tpos: the type * to use as a loop cursor.
1678 * @pos: the &struct hlist_node to use as a loop cursor.
1679 * @member: the name of the hlist_node within the struct.
1680 */
1681#define hlist_for_each_entry_from(tpos, pos, member) \
1682 for (; pos && ({ prefetch(pos->next); 1;}) && \
1683 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1684 pos = pos->next)
1685
1686/**
1687 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1688 * @tpos: the type * to use as a loop cursor.
1689 * @pos: the &struct hlist_node to use as a loop cursor.
1690 * @n: another &struct hlist_node to use as temporary storage
1691 * @head: the head for your list.
1692 * @member: the name of the hlist_node within the struct.
1693 */
1694#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
1695 for (pos = (head)->first; \
1696 pos && ({ n = pos->next; 1; }) && \
1697 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
1698 pos = n)
1699
1700#endif
This page took 0.080812 seconds and 4 git commands to generate.