Add valgrind support for consumer
[lttng-tools.git] / src / common / hashtable / rculfhash.c
CommitLineData
fa68aa62
MD
1/*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
bec39940 7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
fa68aa62
MD
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
cd5376da
DG
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
fa68aa62
MD
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
cd5376da
DG
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
fa68aa62
MD
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
bec39940 52 * - An index of bucket nodes is kept. These bucket nodes are the hash
cd5376da
DG
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
fa68aa62
MD
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
d6b18934 64 * - Split-counters are used to keep track of the number of
fa68aa62
MD
65 * nodes within the hash table for automatic resize triggering.
66 * - Resize operation initiated by long chain detection is executed by a
67 * call_rcu thread, which keeps lock-freedom of add and remove.
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
cd5376da
DG
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
89 * linked-list (the start node is never removed) and that it does not
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
fa68aa62
MD
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
cd5376da
DG
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
114 *
115 * Ordering Guarantees:
116 *
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
120 * cds_lfht_add_unique (failure).
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
131 *
132 * We define "write" operations as any of cds_lfht_add,
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
d6b18934 206 *
bec39940 207 * Bucket node tables:
d6b18934 208 *
bec39940
DG
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
d6b18934
DG
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
bec39940 220 * When growing/shrinking, we only focus on the last bucket node table
d6b18934
DG
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
bec39940
DG
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
d6b18934 226 *
fa68aa62 227 * A bit of ascii art explanation:
bec39940 228 *
cd5376da
DG
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
bec39940 231 *
fa68aa62 232 * This shows the nodes for a small table ordered by reversed bits:
bec39940 233 *
fa68aa62
MD
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
bec39940
DG
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
fa68aa62 245 * reversed-bit order.
bec39940 246 *
fa68aa62
MD
247 * order bits reverse
248 * 0 0 000 000
d6b18934
DG
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
fa68aa62 251 * | | | 3 011 110 | <- |
fa68aa62
MD
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
256 */
257
258#define _LGPL_SOURCE
cd5376da 259#define _GNU_SOURCE
fa68aa62
MD
260#include <stdlib.h>
261#include <errno.h>
262#include <assert.h>
263#include <stdio.h>
264#include <stdint.h>
265#include <string.h>
cd5376da 266#include <sched.h>
fa68aa62 267
cd5376da 268#include "config.h"
fa68aa62
MD
269#include <urcu.h>
270#include <urcu-call-rcu.h>
271#include <urcu/arch.h>
272#include <urcu/uatomic.h>
273#include <urcu/compiler.h>
fa68aa62
MD
274#include <stdio.h>
275#include <pthread.h>
276
76f3e2db 277#include <common/defaults.h>
f6a9efaa 278#include "rculfhash.h"
bec39940
DG
279#include "rculfhash-internal.h"
280#include "urcu-flavor.h"
fa68aa62 281
9ef70f87 282/*
cd5376da
DG
283 * We need to lock pthread exit, which deadlocks __nptl_setxid in the runas
284 * clone. This work-around will be allowed to be removed when runas.c gets
285 * changed to do an exec() before issuing seteuid/setegid. See
286 * http://sourceware.org/bugzilla/show_bug.cgi?id=10184 for details.
9ef70f87
MD
287 */
288pthread_mutex_t lttng_libc_state_lock = PTHREAD_MUTEX_INITIALIZER;
289
fa68aa62 290/*
d6b18934 291 * Split-counters lazily update the global counter each 1024
fa68aa62
MD
292 * addition/removal. It automatically keeps track of resize required.
293 * We use the bucket length as indicator for need to expand for small
294 * tables and machines lacking per-cpu data suppport.
295 */
296#define COUNT_COMMIT_ORDER 10
d6b18934 297#define DEFAULT_SPLIT_COUNT_MASK 0xFUL
fa68aa62
MD
298#define CHAIN_LEN_TARGET 1
299#define CHAIN_LEN_RESIZE_THRESHOLD 3
300
301/*
302 * Define the minimum table size.
303 */
bec39940
DG
304#define MIN_TABLE_ORDER 0
305#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
fa68aa62
MD
306
307/*
bec39940 308 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
fa68aa62
MD
309 */
310#define MIN_PARTITION_PER_THREAD_ORDER 12
311#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
312
fa68aa62
MD
313/*
314 * The removed flag needs to be updated atomically with the pointer.
315 * It indicates that no node must attach to the node scheduled for
316 * removal, and that node garbage collection must be performed.
bec39940 317 * The bucket flag does not require to be updated atomically with the
fa68aa62 318 * pointer, but it is added as a pointer low bit flag to save space.
cd5376da
DG
319 * The "removal owner" flag is used to detect which of the "del"
320 * operation that has set the "removed flag" gets to return the removed
321 * node to its caller. Note that the replace operation does not need to
322 * iteract with the "removal owner" flag, because it validates that
323 * the "removed" flag is not set before performing its cmpxchg.
fa68aa62
MD
324 */
325#define REMOVED_FLAG (1UL << 0)
bec39940
DG
326#define BUCKET_FLAG (1UL << 1)
327#define REMOVAL_OWNER_FLAG (1UL << 2)
328#define FLAGS_MASK ((1UL << 3) - 1)
fa68aa62
MD
329
330/* Value of the end pointer. Should not interact with flags. */
331#define END_VALUE NULL
332
d6b18934
DG
333/*
334 * ht_items_count: Split-counters counting the number of node addition
335 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
336 * is set at hash table creation.
337 *
338 * These are free-running counters, never reset to zero. They count the
339 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
340 * operations to update the global counter. We choose a power-of-2 value
341 * for the trigger to deal with 32 or 64-bit overflow of the counter.
342 */
fa68aa62
MD
343struct ht_items_count {
344 unsigned long add, del;
345} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
346
d6b18934
DG
347/*
348 * rcu_resize_work: Contains arguments passed to RCU worker thread
349 * responsible for performing lazy resize.
350 */
fa68aa62
MD
351struct rcu_resize_work {
352 struct rcu_head head;
353 struct cds_lfht *ht;
354};
355
d6b18934
DG
356/*
357 * partition_resize_work: Contains arguments passed to worker threads
358 * executing the hash table resize on partitions of the hash table
359 * assigned to each processor's worker thread.
360 */
fa68aa62 361struct partition_resize_work {
d6b18934 362 pthread_t thread_id;
fa68aa62
MD
363 struct cds_lfht *ht;
364 unsigned long i, start, len;
365 void (*fct)(struct cds_lfht *ht, unsigned long i,
366 unsigned long start, unsigned long len);
367};
368
fa68aa62
MD
369/*
370 * Algorithm to reverse bits in a word by lookup table, extended to
371 * 64-bit words.
372 * Source:
373 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
374 * Originally from Public Domain.
375 */
376
bec39940 377static const uint8_t BitReverseTable256[256] =
fa68aa62
MD
378{
379#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
380#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
381#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
382 R6(0), R6(2), R6(1), R6(3)
383};
384#undef R2
385#undef R4
386#undef R6
387
388static
389uint8_t bit_reverse_u8(uint8_t v)
390{
391 return BitReverseTable256[v];
392}
393
394static __attribute__((unused))
395uint32_t bit_reverse_u32(uint32_t v)
396{
bec39940
DG
397 return ((uint32_t) bit_reverse_u8(v) << 24) |
398 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
399 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
fa68aa62
MD
400 ((uint32_t) bit_reverse_u8(v >> 24));
401}
402
403static __attribute__((unused))
404uint64_t bit_reverse_u64(uint64_t v)
405{
bec39940
DG
406 return ((uint64_t) bit_reverse_u8(v) << 56) |
407 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
fa68aa62
MD
408 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
409 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
bec39940
DG
410 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
411 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
fa68aa62
MD
412 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
413 ((uint64_t) bit_reverse_u8(v >> 56));
414}
415
416static
417unsigned long bit_reverse_ulong(unsigned long v)
418{
419#if (CAA_BITS_PER_LONG == 32)
420 return bit_reverse_u32(v);
421#else
422 return bit_reverse_u64(v);
423#endif
424}
425
426/*
427 * fls: returns the position of the most significant bit.
428 * Returns 0 if no bit is set, else returns the position of the most
429 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
430 */
431#if defined(__i386) || defined(__x86_64)
432static inline
433unsigned int fls_u32(uint32_t x)
434{
435 int r;
436
437 asm("bsrl %1,%0\n\t"
438 "jnz 1f\n\t"
439 "movl $-1,%0\n\t"
440 "1:\n\t"
441 : "=r" (r) : "rm" (x));
442 return r + 1;
443}
444#define HAS_FLS_U32
445#endif
446
447#if defined(__x86_64)
448static inline
449unsigned int fls_u64(uint64_t x)
450{
451 long r;
452
453 asm("bsrq %1,%0\n\t"
454 "jnz 1f\n\t"
455 "movq $-1,%0\n\t"
456 "1:\n\t"
457 : "=r" (r) : "rm" (x));
458 return r + 1;
459}
460#define HAS_FLS_U64
461#endif
462
463#ifndef HAS_FLS_U64
464static __attribute__((unused))
465unsigned int fls_u64(uint64_t x)
466{
467 unsigned int r = 64;
468
469 if (!x)
470 return 0;
471
472 if (!(x & 0xFFFFFFFF00000000ULL)) {
473 x <<= 32;
474 r -= 32;
475 }
476 if (!(x & 0xFFFF000000000000ULL)) {
477 x <<= 16;
478 r -= 16;
479 }
480 if (!(x & 0xFF00000000000000ULL)) {
481 x <<= 8;
482 r -= 8;
483 }
484 if (!(x & 0xF000000000000000ULL)) {
485 x <<= 4;
486 r -= 4;
487 }
488 if (!(x & 0xC000000000000000ULL)) {
489 x <<= 2;
490 r -= 2;
491 }
492 if (!(x & 0x8000000000000000ULL)) {
493 x <<= 1;
494 r -= 1;
495 }
496 return r;
497}
498#endif
499
500#ifndef HAS_FLS_U32
501static __attribute__((unused))
502unsigned int fls_u32(uint32_t x)
503{
504 unsigned int r = 32;
505
506 if (!x)
507 return 0;
508 if (!(x & 0xFFFF0000U)) {
509 x <<= 16;
510 r -= 16;
511 }
512 if (!(x & 0xFF000000U)) {
513 x <<= 8;
514 r -= 8;
515 }
516 if (!(x & 0xF0000000U)) {
517 x <<= 4;
518 r -= 4;
519 }
520 if (!(x & 0xC0000000U)) {
521 x <<= 2;
522 r -= 2;
523 }
524 if (!(x & 0x80000000U)) {
525 x <<= 1;
526 r -= 1;
527 }
528 return r;
529}
530#endif
531
bec39940 532unsigned int cds_lfht_fls_ulong(unsigned long x)
fa68aa62 533{
d6b18934 534#if (CAA_BITS_PER_LONG == 32)
fa68aa62
MD
535 return fls_u32(x);
536#else
537 return fls_u64(x);
538#endif
539}
540
d6b18934
DG
541/*
542 * Return the minimum order for which x <= (1UL << order).
543 * Return -1 if x is 0.
544 */
bec39940 545int cds_lfht_get_count_order_u32(uint32_t x)
fa68aa62 546{
d6b18934
DG
547 if (!x)
548 return -1;
fa68aa62 549
d6b18934 550 return fls_u32(x - 1);
fa68aa62
MD
551}
552
d6b18934
DG
553/*
554 * Return the minimum order for which x <= (1UL << order).
555 * Return -1 if x is 0.
556 */
bec39940 557int cds_lfht_get_count_order_ulong(unsigned long x)
fa68aa62 558{
d6b18934
DG
559 if (!x)
560 return -1;
fa68aa62 561
bec39940 562 return cds_lfht_fls_ulong(x - 1);
fa68aa62
MD
563}
564
fa68aa62 565static
bec39940 566void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
fa68aa62 567
fa68aa62
MD
568static
569void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
570 unsigned long count);
571
572static long nr_cpus_mask = -1;
d6b18934
DG
573static long split_count_mask = -1;
574
575#if defined(HAVE_SYSCONF)
576static void ht_init_nr_cpus_mask(void)
577{
578 long maxcpus;
579
580 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
581 if (maxcpus <= 0) {
582 nr_cpus_mask = -2;
583 return;
584 }
585 /*
586 * round up number of CPUs to next power of two, so we
587 * can use & for modulo.
588 */
bec39940 589 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
d6b18934
DG
590 nr_cpus_mask = maxcpus - 1;
591}
592#else /* #if defined(HAVE_SYSCONF) */
593static void ht_init_nr_cpus_mask(void)
594{
595 nr_cpus_mask = -2;
596}
597#endif /* #else #if defined(HAVE_SYSCONF) */
fa68aa62
MD
598
599static
d6b18934 600void alloc_split_items_count(struct cds_lfht *ht)
fa68aa62
MD
601{
602 struct ht_items_count *count;
603
d6b18934
DG
604 if (nr_cpus_mask == -1) {
605 ht_init_nr_cpus_mask();
606 if (nr_cpus_mask < 0)
607 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
608 else
609 split_count_mask = nr_cpus_mask;
fa68aa62 610 }
d6b18934
DG
611
612 assert(split_count_mask >= 0);
613
614 if (ht->flags & CDS_LFHT_ACCOUNTING) {
615 ht->split_count = calloc(split_count_mask + 1, sizeof(*count));
616 assert(ht->split_count);
617 } else {
618 ht->split_count = NULL;
fa68aa62
MD
619 }
620}
621
622static
d6b18934 623void free_split_items_count(struct cds_lfht *ht)
fa68aa62 624{
d6b18934 625 poison_free(ht->split_count);
fa68aa62
MD
626}
627
d6b18934 628#if defined(HAVE_SCHED_GETCPU)
fa68aa62 629static
d6b18934 630int ht_get_split_count_index(unsigned long hash)
fa68aa62
MD
631{
632 int cpu;
633
d6b18934 634 assert(split_count_mask >= 0);
76f3e2db
DG
635 if (getenv(DEFAULT_CONSUMER_DEBUG_VALGRIND_ENV)) {
636 cpu = 0;
637 } else {
638 cpu = sched_getcpu();
639 }
6e59ae26 640 if (caa_unlikely(cpu < 0))
d6b18934 641 return hash & split_count_mask;
fa68aa62 642 else
d6b18934 643 return cpu & split_count_mask;
fa68aa62 644}
d6b18934
DG
645#else /* #if defined(HAVE_SCHED_GETCPU) */
646static
647int ht_get_split_count_index(unsigned long hash)
648{
649 return hash & split_count_mask;
650}
651#endif /* #else #if defined(HAVE_SCHED_GETCPU) */
fa68aa62
MD
652
653static
d6b18934 654void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
fa68aa62 655{
d6b18934
DG
656 unsigned long split_count;
657 int index;
bec39940 658 long count;
fa68aa62 659
6e59ae26 660 if (caa_unlikely(!ht->split_count))
fa68aa62 661 return;
d6b18934
DG
662 index = ht_get_split_count_index(hash);
663 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
bec39940
DG
664 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
665 return;
666 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
667
668 dbg_printf("add split count %lu\n", split_count);
669 count = uatomic_add_return(&ht->count,
670 1UL << COUNT_COMMIT_ORDER);
671 if (caa_likely(count & (count - 1)))
672 return;
673 /* Only if global count is power of 2 */
674
675 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
676 return;
677 dbg_printf("add set global %ld\n", count);
678 cds_lfht_resize_lazy_count(ht, size,
679 count >> (CHAIN_LEN_TARGET - 1));
fa68aa62
MD
680}
681
682static
d6b18934 683void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
fa68aa62 684{
d6b18934
DG
685 unsigned long split_count;
686 int index;
bec39940 687 long count;
fa68aa62 688
6e59ae26 689 if (caa_unlikely(!ht->split_count))
fa68aa62 690 return;
d6b18934
DG
691 index = ht_get_split_count_index(hash);
692 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
bec39940
DG
693 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
694 return;
695 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
696
697 dbg_printf("del split count %lu\n", split_count);
698 count = uatomic_add_return(&ht->count,
699 -(1UL << COUNT_COMMIT_ORDER));
700 if (caa_likely(count & (count - 1)))
701 return;
702 /* Only if global count is power of 2 */
703
704 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
705 return;
706 dbg_printf("del set global %ld\n", count);
707 /*
708 * Don't shrink table if the number of nodes is below a
709 * certain threshold.
710 */
711 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
712 return;
713 cds_lfht_resize_lazy_count(ht, size,
714 count >> (CHAIN_LEN_TARGET - 1));
fa68aa62
MD
715}
716
fa68aa62
MD
717static
718void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
719{
720 unsigned long count;
721
722 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
723 return;
724 count = uatomic_read(&ht->count);
725 /*
726 * Use bucket-local length for small table expand and for
727 * environments lacking per-cpu data support.
728 */
729 if (count >= (1UL << COUNT_COMMIT_ORDER))
730 return;
731 if (chain_len > 100)
732 dbg_printf("WARNING: large chain length: %u.\n",
733 chain_len);
734 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD)
bec39940
DG
735 cds_lfht_resize_lazy_grow(ht, size,
736 cds_lfht_get_count_order_u32(chain_len - (CHAIN_LEN_TARGET - 1)));
fa68aa62
MD
737}
738
739static
740struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
741{
742 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
743}
744
745static
746int is_removed(struct cds_lfht_node *node)
747{
748 return ((unsigned long) node) & REMOVED_FLAG;
749}
750
fa68aa62 751static
bec39940 752int is_bucket(struct cds_lfht_node *node)
fa68aa62 753{
bec39940 754 return ((unsigned long) node) & BUCKET_FLAG;
fa68aa62
MD
755}
756
757static
bec39940 758struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
fa68aa62 759{
bec39940
DG
760 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
761}
762
763static
764int is_removal_owner(struct cds_lfht_node *node)
765{
766 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
767}
768
769static
770struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
771{
772 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
fa68aa62
MD
773}
774
cd5376da
DG
775static
776struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
777{
778 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
779}
780
fa68aa62
MD
781static
782struct cds_lfht_node *get_end(void)
783{
784 return (struct cds_lfht_node *) END_VALUE;
785}
786
787static
788int is_end(struct cds_lfht_node *node)
789{
790 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
791}
792
793static
bec39940
DG
794unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
795 unsigned long v)
fa68aa62
MD
796{
797 unsigned long old1, old2;
798
799 old1 = uatomic_read(ptr);
800 do {
801 old2 = old1;
802 if (old2 >= v)
803 return old2;
804 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
bec39940 805 return old2;
fa68aa62
MD
806}
807
808static
bec39940 809void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
fa68aa62 810{
bec39940
DG
811 return ht->mm->alloc_bucket_table(ht, order);
812}
d6b18934 813
bec39940
DG
814/*
815 * cds_lfht_free_bucket_table() should be called with decreasing order.
816 * When cds_lfht_free_bucket_table(0) is called, it means the whole
817 * lfht is destroyed.
818 */
819static
820void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
821{
822 return ht->mm->free_bucket_table(ht, order);
823}
d6b18934 824
bec39940
DG
825static inline
826struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
827{
828 return ht->bucket_at(ht, index);
829}
830
831static inline
832struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
833 unsigned long hash)
834{
835 assert(size > 0);
836 return bucket_at(ht, hash & (size - 1));
fa68aa62
MD
837}
838
839/*
840 * Remove all logically deleted nodes from a bucket up to a certain node key.
841 */
842static
bec39940 843void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
fa68aa62
MD
844{
845 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
846
bec39940
DG
847 assert(!is_bucket(bucket));
848 assert(!is_removed(bucket));
849 assert(!is_bucket(node));
fa68aa62
MD
850 assert(!is_removed(node));
851 for (;;) {
bec39940
DG
852 iter_prev = bucket;
853 /* We can always skip the bucket node initially */
854 iter = rcu_dereference(iter_prev->next);
d6b18934 855 assert(!is_removed(iter));
bec39940 856 assert(iter_prev->reverse_hash <= node->reverse_hash);
fa68aa62 857 /*
bec39940 858 * We should never be called with bucket (start of chain)
fa68aa62
MD
859 * and logically removed node (end of path compression
860 * marker) being the actual same node. This would be a
861 * bug in the algorithm implementation.
862 */
bec39940 863 assert(bucket != node);
fa68aa62 864 for (;;) {
6e59ae26 865 if (caa_unlikely(is_end(iter)))
fa68aa62 866 return;
bec39940 867 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
fa68aa62 868 return;
bec39940 869 next = rcu_dereference(clear_flag(iter)->next);
6e59ae26 870 if (caa_likely(is_removed(next)))
fa68aa62
MD
871 break;
872 iter_prev = clear_flag(iter);
873 iter = next;
874 }
875 assert(!is_removed(iter));
bec39940
DG
876 if (is_bucket(iter))
877 new_next = flag_bucket(clear_flag(next));
fa68aa62
MD
878 else
879 new_next = clear_flag(next);
bec39940 880 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
fa68aa62 881 }
fa68aa62
MD
882}
883
884static
885int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
886 struct cds_lfht_node *old_node,
d6b18934 887 struct cds_lfht_node *old_next,
fa68aa62
MD
888 struct cds_lfht_node *new_node)
889{
bec39940 890 struct cds_lfht_node *bucket, *ret_next;
fa68aa62
MD
891
892 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
d6b18934 893 return -ENOENT;
fa68aa62
MD
894
895 assert(!is_removed(old_node));
bec39940 896 assert(!is_bucket(old_node));
fa68aa62 897 assert(!is_removed(new_node));
bec39940 898 assert(!is_bucket(new_node));
fa68aa62 899 assert(new_node != old_node);
d6b18934 900 for (;;) {
fa68aa62 901 /* Insert after node to be replaced */
fa68aa62
MD
902 if (is_removed(old_next)) {
903 /*
904 * Too late, the old node has been removed under us
905 * between lookup and replace. Fail.
906 */
d6b18934 907 return -ENOENT;
fa68aa62 908 }
bec39940
DG
909 assert(old_next == clear_flag(old_next));
910 assert(new_node != old_next);
cd5376da
DG
911 /*
912 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
913 * flag. It is either set atomically at the same time
914 * (replace) or after (del).
915 */
916 assert(!is_removal_owner(old_next));
bec39940 917 new_node->next = old_next;
fa68aa62
MD
918 /*
919 * Here is the whole trick for lock-free replace: we add
920 * the replacement node _after_ the node we want to
921 * replace by atomically setting its next pointer at the
922 * same time we set its removal flag. Given that
923 * the lookups/get next use an iterator aware of the
924 * next pointer, they will either skip the old node due
925 * to the removal flag and see the new node, or use
926 * the old node, but will not see the new one.
bec39940
DG
927 * This is a replacement of a node with another node
928 * that has the same value: we are therefore not
cd5376da
DG
929 * removing a value from the hash table. We set both the
930 * REMOVED and REMOVAL_OWNER flags atomically so we own
931 * the node after successful cmpxchg.
fa68aa62 932 */
bec39940 933 ret_next = uatomic_cmpxchg(&old_node->next,
cd5376da 934 old_next, flag_removed_or_removal_owner(new_node));
d6b18934
DG
935 if (ret_next == old_next)
936 break; /* We performed the replacement. */
937 old_next = ret_next;
938 }
fa68aa62
MD
939
940 /*
941 * Ensure that the old node is not visible to readers anymore:
942 * lookup for the node, and remove it (along with any other
943 * logically removed node) if found.
944 */
bec39940
DG
945 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
946 _cds_lfht_gc_bucket(bucket, new_node);
d6b18934 947
cd5376da 948 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
d6b18934 949 return 0;
fa68aa62
MD
950}
951
d6b18934
DG
952/*
953 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
954 * mode. A NULL unique_ret allows creation of duplicate keys.
955 */
fa68aa62 956static
d6b18934 957void _cds_lfht_add(struct cds_lfht *ht,
bec39940
DG
958 unsigned long hash,
959 cds_lfht_match_fct match,
960 const void *key,
d6b18934
DG
961 unsigned long size,
962 struct cds_lfht_node *node,
963 struct cds_lfht_iter *unique_ret,
bec39940 964 int bucket_flag)
fa68aa62
MD
965{
966 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
d6b18934 967 *return_node;
bec39940 968 struct cds_lfht_node *bucket;
fa68aa62 969
bec39940 970 assert(!is_bucket(node));
fa68aa62 971 assert(!is_removed(node));
bec39940 972 bucket = lookup_bucket(ht, size, hash);
fa68aa62
MD
973 for (;;) {
974 uint32_t chain_len = 0;
975
976 /*
977 * iter_prev points to the non-removed node prior to the
978 * insert location.
979 */
bec39940
DG
980 iter_prev = bucket;
981 /* We can always skip the bucket node initially */
982 iter = rcu_dereference(iter_prev->next);
983 assert(iter_prev->reverse_hash <= node->reverse_hash);
fa68aa62 984 for (;;) {
6e59ae26 985 if (caa_unlikely(is_end(iter)))
fa68aa62 986 goto insert;
bec39940 987 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
fa68aa62 988 goto insert;
d6b18934 989
bec39940
DG
990 /* bucket node is the first node of the identical-hash-value chain */
991 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
d6b18934
DG
992 goto insert;
993
bec39940 994 next = rcu_dereference(clear_flag(iter)->next);
6e59ae26 995 if (caa_unlikely(is_removed(next)))
fa68aa62 996 goto gc_node;
d6b18934
DG
997
998 /* uniquely add */
999 if (unique_ret
bec39940
DG
1000 && !is_bucket(next)
1001 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
d6b18934
DG
1002 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
1003
1004 /*
1005 * uniquely adding inserts the node as the first
1006 * node of the identical-hash-value node chain.
1007 *
1008 * This semantic ensures no duplicated keys
1009 * should ever be observable in the table
cd5376da
DG
1010 * (including traversing the table node by
1011 * node by forward iterations)
d6b18934 1012 */
bec39940 1013 cds_lfht_next_duplicate(ht, match, key, &d_iter);
d6b18934
DG
1014 if (!d_iter.node)
1015 goto insert;
1016
1017 *unique_ret = d_iter;
1018 return;
fa68aa62 1019 }
d6b18934 1020
fa68aa62 1021 /* Only account for identical reverse hash once */
bec39940
DG
1022 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1023 && !is_bucket(next))
fa68aa62
MD
1024 check_resize(ht, size, ++chain_len);
1025 iter_prev = clear_flag(iter);
1026 iter = next;
1027 }
1028
1029 insert:
1030 assert(node != clear_flag(iter));
1031 assert(!is_removed(iter_prev));
1032 assert(!is_removed(iter));
1033 assert(iter_prev != node);
bec39940
DG
1034 if (!bucket_flag)
1035 node->next = clear_flag(iter);
fa68aa62 1036 else
bec39940
DG
1037 node->next = flag_bucket(clear_flag(iter));
1038 if (is_bucket(iter))
1039 new_node = flag_bucket(node);
fa68aa62
MD
1040 else
1041 new_node = node;
bec39940 1042 if (uatomic_cmpxchg(&iter_prev->next, iter,
fa68aa62
MD
1043 new_node) != iter) {
1044 continue; /* retry */
1045 } else {
d6b18934
DG
1046 return_node = node;
1047 goto end;
fa68aa62
MD
1048 }
1049
1050 gc_node:
1051 assert(!is_removed(iter));
bec39940
DG
1052 if (is_bucket(iter))
1053 new_next = flag_bucket(clear_flag(next));
fa68aa62
MD
1054 else
1055 new_next = clear_flag(next);
bec39940 1056 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
fa68aa62
MD
1057 /* retry */
1058 }
fa68aa62 1059end:
d6b18934
DG
1060 if (unique_ret) {
1061 unique_ret->node = return_node;
1062 /* unique_ret->next left unset, never used. */
1063 }
fa68aa62
MD
1064}
1065
1066static
1067int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
bec39940 1068 struct cds_lfht_node *node)
fa68aa62 1069{
bec39940 1070 struct cds_lfht_node *bucket, *next;
fa68aa62
MD
1071
1072 if (!node) /* Return -ENOENT if asked to delete NULL node */
d6b18934 1073 return -ENOENT;
fa68aa62
MD
1074
1075 /* logically delete the node */
bec39940 1076 assert(!is_bucket(node));
fa68aa62 1077 assert(!is_removed(node));
bec39940 1078 assert(!is_removal_owner(node));
fa68aa62 1079
bec39940
DG
1080 /*
1081 * We are first checking if the node had previously been
1082 * logically removed (this check is not atomic with setting the
1083 * logical removal flag). Return -ENOENT if the node had
1084 * previously been removed.
1085 */
cd5376da 1086 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
bec39940
DG
1087 if (caa_unlikely(is_removed(next)))
1088 return -ENOENT;
1089 assert(!is_bucket(next));
cd5376da
DG
1090 /*
1091 * The del operation semantic guarantees a full memory barrier
1092 * before the uatomic_or atomic commit of the deletion flag.
1093 */
1094 cmm_smp_mb__before_uatomic_or();
bec39940
DG
1095 /*
1096 * We set the REMOVED_FLAG unconditionally. Note that there may
1097 * be more than one concurrent thread setting this flag.
1098 * Knowing which wins the race will be known after the garbage
1099 * collection phase, stay tuned!
1100 */
1101 uatomic_or(&node->next, REMOVED_FLAG);
fa68aa62 1102 /* We performed the (logical) deletion. */
fa68aa62
MD
1103
1104 /*
1105 * Ensure that the node is not visible to readers anymore: lookup for
1106 * the node, and remove it (along with any other logically removed node)
1107 * if found.
1108 */
bec39940
DG
1109 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1110 _cds_lfht_gc_bucket(bucket, node);
d6b18934 1111
cd5376da 1112 assert(is_removed(CMM_LOAD_SHARED(node->next)));
bec39940
DG
1113 /*
1114 * Last phase: atomically exchange node->next with a version
1115 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1116 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1117 * the node and win the removal race.
1118 * It is interesting to note that all "add" paths are forbidden
1119 * to change the next pointer starting from the point where the
1120 * REMOVED_FLAG is set, so here using a read, followed by a
1121 * xchg() suffice to guarantee that the xchg() will ever only
1122 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1123 * was already set).
1124 */
1125 if (!is_removal_owner(uatomic_xchg(&node->next,
1126 flag_removal_owner(node->next))))
1127 return 0;
1128 else
1129 return -ENOENT;
fa68aa62
MD
1130}
1131
1132static
1133void *partition_resize_thread(void *arg)
1134{
1135 struct partition_resize_work *work = arg;
1136
bec39940 1137 work->ht->flavor->register_thread();
fa68aa62 1138 work->fct(work->ht, work->i, work->start, work->len);
bec39940 1139 work->ht->flavor->unregister_thread();
fa68aa62
MD
1140 return NULL;
1141}
1142
1143static
1144void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1145 unsigned long len,
1146 void (*fct)(struct cds_lfht *ht, unsigned long i,
1147 unsigned long start, unsigned long len))
1148{
1149 unsigned long partition_len;
1150 struct partition_resize_work *work;
1151 int thread, ret;
1152 unsigned long nr_threads;
fa68aa62
MD
1153
1154 /*
1155 * Note: nr_cpus_mask + 1 is always power of 2.
1156 * We spawn just the number of threads we need to satisfy the minimum
1157 * partition size, up to the number of CPUs in the system.
1158 */
f6a9efaa
DG
1159 if (nr_cpus_mask > 0) {
1160 nr_threads = min(nr_cpus_mask + 1,
1161 len >> MIN_PARTITION_PER_THREAD_ORDER);
1162 } else {
1163 nr_threads = 1;
1164 }
bec39940 1165 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
fa68aa62 1166 work = calloc(nr_threads, sizeof(*work));
fa68aa62
MD
1167 assert(work);
1168 for (thread = 0; thread < nr_threads; thread++) {
1169 work[thread].ht = ht;
1170 work[thread].i = i;
1171 work[thread].len = partition_len;
1172 work[thread].start = thread * partition_len;
1173 work[thread].fct = fct;
d6b18934 1174 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
fa68aa62
MD
1175 partition_resize_thread, &work[thread]);
1176 assert(!ret);
1177 }
1178 for (thread = 0; thread < nr_threads; thread++) {
d6b18934 1179 ret = pthread_join(work[thread].thread_id, NULL);
fa68aa62
MD
1180 assert(!ret);
1181 }
1182 free(work);
fa68aa62
MD
1183}
1184
1185/*
1186 * Holding RCU read lock to protect _cds_lfht_add against memory
1187 * reclaim that could be performed by other call_rcu worker threads (ABA
1188 * problem).
1189 *
1190 * When we reach a certain length, we can split this population phase over
1191 * many worker threads, based on the number of CPUs available in the system.
1192 * This should therefore take care of not having the expand lagging behind too
1193 * many concurrent insertion threads by using the scheduler's ability to
bec39940 1194 * schedule bucket node population fairly with insertions.
fa68aa62
MD
1195 */
1196static
1197void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1198 unsigned long start, unsigned long len)
1199{
bec39940 1200 unsigned long j, size = 1UL << (i - 1);
fa68aa62 1201
bec39940
DG
1202 assert(i > MIN_TABLE_ORDER);
1203 ht->flavor->read_lock();
1204 for (j = size + start; j < size + start + len; j++) {
1205 struct cds_lfht_node *new_node = bucket_at(ht, j);
fa68aa62 1206
bec39940
DG
1207 assert(j >= size && j < (size << 1));
1208 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1209 i, j, j);
1210 new_node->reverse_hash = bit_reverse_ulong(j);
1211 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
fa68aa62 1212 }
bec39940 1213 ht->flavor->read_unlock();
fa68aa62
MD
1214}
1215
1216static
1217void init_table_populate(struct cds_lfht *ht, unsigned long i,
1218 unsigned long len)
1219{
1220 assert(nr_cpus_mask != -1);
1221 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
bec39940 1222 ht->flavor->thread_online();
fa68aa62 1223 init_table_populate_partition(ht, i, 0, len);
bec39940 1224 ht->flavor->thread_offline();
fa68aa62
MD
1225 return;
1226 }
1227 partition_resize_helper(ht, i, len, init_table_populate_partition);
1228}
1229
1230static
1231void init_table(struct cds_lfht *ht,
d6b18934 1232 unsigned long first_order, unsigned long last_order)
fa68aa62 1233{
d6b18934 1234 unsigned long i;
fa68aa62 1235
d6b18934
DG
1236 dbg_printf("init table: first_order %lu last_order %lu\n",
1237 first_order, last_order);
bec39940 1238 assert(first_order > MIN_TABLE_ORDER);
d6b18934 1239 for (i = first_order; i <= last_order; i++) {
fa68aa62
MD
1240 unsigned long len;
1241
d6b18934 1242 len = 1UL << (i - 1);
fa68aa62
MD
1243 dbg_printf("init order %lu len: %lu\n", i, len);
1244
1245 /* Stop expand if the resize target changes under us */
bec39940 1246 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
fa68aa62
MD
1247 break;
1248
bec39940 1249 cds_lfht_alloc_bucket_table(ht, i);
fa68aa62
MD
1250
1251 /*
bec39940
DG
1252 * Set all bucket nodes reverse hash values for a level and
1253 * link all bucket nodes into the table.
fa68aa62
MD
1254 */
1255 init_table_populate(ht, i, len);
1256
1257 /*
1258 * Update table size.
1259 */
1260 cmm_smp_wmb(); /* populate data before RCU size */
bec39940 1261 CMM_STORE_SHARED(ht->size, 1UL << i);
fa68aa62 1262
d6b18934 1263 dbg_printf("init new size: %lu\n", 1UL << i);
fa68aa62
MD
1264 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1265 break;
1266 }
1267}
1268
1269/*
1270 * Holding RCU read lock to protect _cds_lfht_remove against memory
1271 * reclaim that could be performed by other call_rcu worker threads (ABA
1272 * problem).
1273 * For a single level, we logically remove and garbage collect each node.
1274 *
1275 * As a design choice, we perform logical removal and garbage collection on a
1276 * node-per-node basis to simplify this algorithm. We also assume keeping good
1277 * cache locality of the operation would overweight possible performance gain
1278 * that could be achieved by batching garbage collection for multiple levels.
1279 * However, this would have to be justified by benchmarks.
1280 *
1281 * Concurrent removal and add operations are helping us perform garbage
1282 * collection of logically removed nodes. We guarantee that all logically
1283 * removed nodes have been garbage-collected (unlinked) before call_rcu is
bec39940 1284 * invoked to free a hole level of bucket nodes (after a grace period).
fa68aa62 1285 *
cd5376da
DG
1286 * Logical removal and garbage collection can therefore be done in batch
1287 * or on a node-per-node basis, as long as the guarantee above holds.
fa68aa62
MD
1288 *
1289 * When we reach a certain length, we can split this removal over many worker
1290 * threads, based on the number of CPUs available in the system. This should
1291 * take care of not letting resize process lag behind too many concurrent
1292 * updater threads actively inserting into the hash table.
1293 */
1294static
1295void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1296 unsigned long start, unsigned long len)
1297{
bec39940 1298 unsigned long j, size = 1UL << (i - 1);
fa68aa62 1299
bec39940
DG
1300 assert(i > MIN_TABLE_ORDER);
1301 ht->flavor->read_lock();
1302 for (j = size + start; j < size + start + len; j++) {
1303 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1304 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
fa68aa62 1305
bec39940
DG
1306 assert(j >= size && j < (size << 1));
1307 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1308 i, j, j);
1309 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1310 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1311 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
fa68aa62 1312 }
bec39940 1313 ht->flavor->read_unlock();
fa68aa62
MD
1314}
1315
1316static
1317void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1318{
1319
1320 assert(nr_cpus_mask != -1);
1321 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD) {
bec39940 1322 ht->flavor->thread_online();
fa68aa62 1323 remove_table_partition(ht, i, 0, len);
bec39940 1324 ht->flavor->thread_offline();
fa68aa62
MD
1325 return;
1326 }
1327 partition_resize_helper(ht, i, len, remove_table_partition);
1328}
1329
bec39940
DG
1330/*
1331 * fini_table() is never called for first_order == 0, which is why
1332 * free_by_rcu_order == 0 can be used as criterion to know if free must
1333 * be called.
1334 */
fa68aa62
MD
1335static
1336void fini_table(struct cds_lfht *ht,
d6b18934 1337 unsigned long first_order, unsigned long last_order)
fa68aa62 1338{
d6b18934 1339 long i;
bec39940 1340 unsigned long free_by_rcu_order = 0;
fa68aa62 1341
d6b18934
DG
1342 dbg_printf("fini table: first_order %lu last_order %lu\n",
1343 first_order, last_order);
bec39940 1344 assert(first_order > MIN_TABLE_ORDER);
d6b18934 1345 for (i = last_order; i >= first_order; i--) {
fa68aa62
MD
1346 unsigned long len;
1347
d6b18934 1348 len = 1UL << (i - 1);
fa68aa62
MD
1349 dbg_printf("fini order %lu len: %lu\n", i, len);
1350
1351 /* Stop shrink if the resize target changes under us */
bec39940 1352 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
fa68aa62
MD
1353 break;
1354
1355 cmm_smp_wmb(); /* populate data before RCU size */
bec39940 1356 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
fa68aa62
MD
1357
1358 /*
1359 * We need to wait for all add operations to reach Q.S. (and
1360 * thus use the new table for lookups) before we can start
bec39940 1361 * releasing the old bucket nodes. Otherwise their lookup will
fa68aa62
MD
1362 * return a logically removed node as insert position.
1363 */
bec39940
DG
1364 ht->flavor->update_synchronize_rcu();
1365 if (free_by_rcu_order)
1366 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
fa68aa62
MD
1367
1368 /*
bec39940
DG
1369 * Set "removed" flag in bucket nodes about to be removed.
1370 * Unlink all now-logically-removed bucket node pointers.
fa68aa62
MD
1371 * Concurrent add/remove operation are helping us doing
1372 * the gc.
1373 */
1374 remove_table(ht, i, len);
1375
bec39940 1376 free_by_rcu_order = i;
fa68aa62
MD
1377
1378 dbg_printf("fini new size: %lu\n", 1UL << i);
1379 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1380 break;
1381 }
d6b18934 1382
bec39940
DG
1383 if (free_by_rcu_order) {
1384 ht->flavor->update_synchronize_rcu();
1385 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
d6b18934
DG
1386 }
1387}
1388
1389static
bec39940 1390void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
d6b18934 1391{
bec39940
DG
1392 struct cds_lfht_node *prev, *node;
1393 unsigned long order, len, i;
d6b18934 1394
bec39940 1395 cds_lfht_alloc_bucket_table(ht, 0);
d6b18934 1396
bec39940
DG
1397 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1398 node = bucket_at(ht, 0);
1399 node->next = flag_bucket(get_end());
1400 node->reverse_hash = 0;
d6b18934 1401
bec39940 1402 for (order = 1; order < cds_lfht_get_count_order_ulong(size) + 1; order++) {
d6b18934 1403 len = 1UL << (order - 1);
bec39940 1404 cds_lfht_alloc_bucket_table(ht, order);
d6b18934 1405
bec39940
DG
1406 for (i = 0; i < len; i++) {
1407 /*
1408 * Now, we are trying to init the node with the
1409 * hash=(len+i) (which is also a bucket with the
1410 * index=(len+i)) and insert it into the hash table,
1411 * so this node has to be inserted after the bucket
1412 * with the index=(len+i)&(len-1)=i. And because there
1413 * is no other non-bucket node nor bucket node with
1414 * larger index/hash inserted, so the bucket node
1415 * being inserted should be inserted directly linked
1416 * after the bucket node with index=i.
1417 */
1418 prev = bucket_at(ht, i);
1419 node = bucket_at(ht, len + i);
1420
1421 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1422 order, len + i, len + i);
1423 node->reverse_hash = bit_reverse_ulong(len + i);
d6b18934 1424
bec39940
DG
1425 /* insert after prev */
1426 assert(is_bucket(prev->next));
d6b18934 1427 node->next = prev->next;
bec39940 1428 prev->next = flag_bucket(node);
d6b18934
DG
1429 }
1430 }
fa68aa62
MD
1431}
1432
bec39940
DG
1433struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1434 unsigned long min_nr_alloc_buckets,
1435 unsigned long max_nr_buckets,
fa68aa62 1436 int flags,
bec39940
DG
1437 const struct cds_lfht_mm_type *mm,
1438 const struct rcu_flavor_struct *flavor,
fa68aa62
MD
1439 pthread_attr_t *attr)
1440{
1441 struct cds_lfht *ht;
1442 unsigned long order;
1443
bec39940
DG
1444 /* min_nr_alloc_buckets must be power of two */
1445 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
d6b18934 1446 return NULL;
bec39940 1447
fa68aa62 1448 /* init_size must be power of two */
d6b18934 1449 if (!init_size || (init_size & (init_size - 1)))
fa68aa62 1450 return NULL;
bec39940
DG
1451
1452 /*
1453 * Memory management plugin default.
1454 */
1455 if (!mm) {
1456 if (CAA_BITS_PER_LONG > 32
1457 && max_nr_buckets
1458 && max_nr_buckets <= (1ULL << 32)) {
1459 /*
1460 * For 64-bit architectures, with max number of
1461 * buckets small enough not to use the entire
1462 * 64-bit memory mapping space (and allowing a
1463 * fair number of hash table instances), use the
1464 * mmap allocator, which is faster than the
1465 * order allocator.
1466 */
1467 mm = &cds_lfht_mm_mmap;
1468 } else {
1469 /*
1470 * The fallback is to use the order allocator.
1471 */
1472 mm = &cds_lfht_mm_order;
1473 }
1474 }
1475
1476 /* max_nr_buckets == 0 for order based mm means infinite */
1477 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1478 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1479
1480 /* max_nr_buckets must be power of two */
1481 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1482 return NULL;
1483
1484 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1485 init_size = max(init_size, MIN_TABLE_SIZE);
1486 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1487 init_size = min(init_size, max_nr_buckets);
1488
1489 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
fa68aa62 1490 assert(ht);
bec39940
DG
1491 assert(ht->mm == mm);
1492 assert(ht->bucket_at == mm->bucket_at);
1493
d6b18934 1494 ht->flags = flags;
bec39940 1495 ht->flavor = flavor;
fa68aa62 1496 ht->resize_attr = attr;
d6b18934 1497 alloc_split_items_count(ht);
fa68aa62
MD
1498 /* this mutex should not nest in read-side C.S. */
1499 pthread_mutex_init(&ht->resize_mutex, NULL);
bec39940
DG
1500 order = cds_lfht_get_count_order_ulong(init_size);
1501 ht->resize_target = 1UL << order;
1502 cds_lfht_create_bucket(ht, 1UL << order);
1503 ht->size = 1UL << order;
fa68aa62
MD
1504 return ht;
1505}
1506
bec39940
DG
1507void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1508 cds_lfht_match_fct match, const void *key,
fa68aa62
MD
1509 struct cds_lfht_iter *iter)
1510{
bec39940
DG
1511 struct cds_lfht_node *node, *next, *bucket;
1512 unsigned long reverse_hash, size;
fa68aa62 1513
fa68aa62
MD
1514 reverse_hash = bit_reverse_ulong(hash);
1515
bec39940
DG
1516 size = rcu_dereference(ht->size);
1517 bucket = lookup_bucket(ht, size, hash);
1518 /* We can always skip the bucket node initially */
1519 node = rcu_dereference(bucket->next);
fa68aa62
MD
1520 node = clear_flag(node);
1521 for (;;) {
6e59ae26 1522 if (caa_unlikely(is_end(node))) {
fa68aa62
MD
1523 node = next = NULL;
1524 break;
1525 }
bec39940 1526 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
fa68aa62
MD
1527 node = next = NULL;
1528 break;
1529 }
bec39940 1530 next = rcu_dereference(node->next);
d6b18934 1531 assert(node == clear_flag(node));
6e59ae26 1532 if (caa_likely(!is_removed(next))
bec39940
DG
1533 && !is_bucket(next)
1534 && node->reverse_hash == reverse_hash
1535 && caa_likely(match(node, key))) {
fa68aa62
MD
1536 break;
1537 }
1538 node = clear_flag(next);
1539 }
cd5376da 1540 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
fa68aa62
MD
1541 iter->node = node;
1542 iter->next = next;
1543}
1544
bec39940
DG
1545void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1546 const void *key, struct cds_lfht_iter *iter)
fa68aa62
MD
1547{
1548 struct cds_lfht_node *node, *next;
1549 unsigned long reverse_hash;
fa68aa62
MD
1550
1551 node = iter->node;
bec39940 1552 reverse_hash = node->reverse_hash;
fa68aa62
MD
1553 next = iter->next;
1554 node = clear_flag(next);
1555
1556 for (;;) {
6e59ae26 1557 if (caa_unlikely(is_end(node))) {
fa68aa62
MD
1558 node = next = NULL;
1559 break;
1560 }
bec39940 1561 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
fa68aa62
MD
1562 node = next = NULL;
1563 break;
1564 }
bec39940 1565 next = rcu_dereference(node->next);
6e59ae26 1566 if (caa_likely(!is_removed(next))
bec39940
DG
1567 && !is_bucket(next)
1568 && caa_likely(match(node, key))) {
fa68aa62
MD
1569 break;
1570 }
1571 node = clear_flag(next);
1572 }
cd5376da 1573 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
fa68aa62
MD
1574 iter->node = node;
1575 iter->next = next;
1576}
1577
f6a9efaa
DG
1578void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1579{
1580 struct cds_lfht_node *node, *next;
1581
1582 node = clear_flag(iter->next);
1583 for (;;) {
6e59ae26 1584 if (caa_unlikely(is_end(node))) {
f6a9efaa
DG
1585 node = next = NULL;
1586 break;
1587 }
bec39940 1588 next = rcu_dereference(node->next);
6e59ae26 1589 if (caa_likely(!is_removed(next))
bec39940 1590 && !is_bucket(next)) {
f6a9efaa
DG
1591 break;
1592 }
1593 node = clear_flag(next);
1594 }
cd5376da 1595 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
f6a9efaa
DG
1596 iter->node = node;
1597 iter->next = next;
1598}
1599
1600void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1601{
f6a9efaa 1602 /*
bec39940 1603 * Get next after first bucket node. The first bucket node is the
f6a9efaa
DG
1604 * first node of the linked list.
1605 */
bec39940 1606 iter->next = bucket_at(ht, 0)->next;
f6a9efaa
DG
1607 cds_lfht_next(ht, iter);
1608}
1609
bec39940
DG
1610void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1611 struct cds_lfht_node *node)
fa68aa62 1612{
bec39940 1613 unsigned long size;
fa68aa62 1614
bec39940
DG
1615 node->reverse_hash = bit_reverse_ulong(hash);
1616 size = rcu_dereference(ht->size);
1617 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
d6b18934 1618 ht_count_add(ht, size, hash);
fa68aa62
MD
1619}
1620
1621struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
bec39940
DG
1622 unsigned long hash,
1623 cds_lfht_match_fct match,
1624 const void *key,
fa68aa62
MD
1625 struct cds_lfht_node *node)
1626{
bec39940 1627 unsigned long size;
d6b18934 1628 struct cds_lfht_iter iter;
fa68aa62 1629
bec39940
DG
1630 node->reverse_hash = bit_reverse_ulong(hash);
1631 size = rcu_dereference(ht->size);
1632 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
d6b18934
DG
1633 if (iter.node == node)
1634 ht_count_add(ht, size, hash);
1635 return iter.node;
fa68aa62
MD
1636}
1637
1638struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
bec39940
DG
1639 unsigned long hash,
1640 cds_lfht_match_fct match,
1641 const void *key,
fa68aa62
MD
1642 struct cds_lfht_node *node)
1643{
bec39940 1644 unsigned long size;
d6b18934 1645 struct cds_lfht_iter iter;
fa68aa62 1646
bec39940
DG
1647 node->reverse_hash = bit_reverse_ulong(hash);
1648 size = rcu_dereference(ht->size);
d6b18934 1649 for (;;) {
bec39940 1650 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
d6b18934
DG
1651 if (iter.node == node) {
1652 ht_count_add(ht, size, hash);
1653 return NULL;
1654 }
1655
1656 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1657 return iter.node;
1658 }
fa68aa62
MD
1659}
1660
bec39940
DG
1661int cds_lfht_replace(struct cds_lfht *ht,
1662 struct cds_lfht_iter *old_iter,
1663 unsigned long hash,
1664 cds_lfht_match_fct match,
1665 const void *key,
fa68aa62
MD
1666 struct cds_lfht_node *new_node)
1667{
1668 unsigned long size;
1669
bec39940
DG
1670 new_node->reverse_hash = bit_reverse_ulong(hash);
1671 if (!old_iter->node)
1672 return -ENOENT;
1673 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1674 return -EINVAL;
1675 if (caa_unlikely(!match(old_iter->node, key)))
1676 return -EINVAL;
1677 size = rcu_dereference(ht->size);
fa68aa62
MD
1678 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1679 new_node);
1680}
1681
bec39940 1682int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
fa68aa62 1683{
d6b18934 1684 unsigned long size, hash;
fa68aa62
MD
1685 int ret;
1686
bec39940
DG
1687 size = rcu_dereference(ht->size);
1688 ret = _cds_lfht_del(ht, size, node);
d6b18934 1689 if (!ret) {
bec39940 1690 hash = bit_reverse_ulong(node->reverse_hash);
d6b18934
DG
1691 ht_count_del(ht, size, hash);
1692 }
fa68aa62
MD
1693 return ret;
1694}
1695
cd5376da
DG
1696int cds_lfht_is_node_deleted(struct cds_lfht_node *node)
1697{
1698 return is_removed(CMM_LOAD_SHARED(node->next));
1699}
1700
fa68aa62 1701static
bec39940 1702int cds_lfht_delete_bucket(struct cds_lfht *ht)
fa68aa62
MD
1703{
1704 struct cds_lfht_node *node;
fa68aa62
MD
1705 unsigned long order, i, size;
1706
1707 /* Check that the table is empty */
bec39940 1708 node = bucket_at(ht, 0);
fa68aa62 1709 do {
bec39940
DG
1710 node = clear_flag(node)->next;
1711 if (!is_bucket(node))
fa68aa62
MD
1712 return -EPERM;
1713 assert(!is_removed(node));
1714 } while (!is_end(node));
1715 /*
1716 * size accessed without rcu_dereference because hash table is
1717 * being destroyed.
1718 */
bec39940 1719 size = ht->size;
cd5376da 1720 /* Internal sanity check: all nodes left should be buckets */
bec39940
DG
1721 for (i = 0; i < size; i++) {
1722 node = bucket_at(ht, i);
1723 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1724 i, i, bit_reverse_ulong(node->reverse_hash));
1725 assert(is_bucket(node->next));
1726 }
fa68aa62 1727
bec39940
DG
1728 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1729 cds_lfht_free_bucket_table(ht, order);
d6b18934 1730
fa68aa62
MD
1731 return 0;
1732}
1733
1734/*
1735 * Should only be called when no more concurrent readers nor writers can
1736 * possibly access the table.
1737 */
1738int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1739{
1740 int ret;
3a1aff7a
MD
1741#ifdef rcu_read_ongoing_mb
1742 int was_online;
1743#endif
fa68aa62
MD
1744
1745 /* Wait for in-flight resize operations to complete */
d6b18934
DG
1746 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1747 cmm_smp_mb(); /* Store destroy before load resize */
3a1aff7a
MD
1748#ifdef rcu_read_ongoing_mb
1749 was_online = ht->flavor->read_ongoing();
1750 if (was_online)
1751 ht->flavor->thread_offline();
1752 /* Calling with RCU read-side held is an error. */
1753 if (ht->flavor->read_ongoing()) {
1754 ret = -EINVAL;
1755 if (was_online)
1756 ht->flavor->thread_online();
1757 goto end;
1758 }
1759#endif
fa68aa62
MD
1760 while (uatomic_read(&ht->in_progress_resize))
1761 poll(NULL, 0, 100); /* wait for 100ms */
bec39940 1762 ret = cds_lfht_delete_bucket(ht);
fa68aa62
MD
1763 if (ret)
1764 return ret;
d6b18934 1765 free_split_items_count(ht);
fa68aa62
MD
1766 if (attr)
1767 *attr = ht->resize_attr;
1768 poison_free(ht);
3a1aff7a
MD
1769#ifdef rcu_read_ongoing_mb
1770end:
1771#endif
fa68aa62
MD
1772 return ret;
1773}
1774
1775void cds_lfht_count_nodes(struct cds_lfht *ht,
1776 long *approx_before,
1777 unsigned long *count,
fa68aa62
MD
1778 long *approx_after)
1779{
1780 struct cds_lfht_node *node, *next;
bec39940 1781 unsigned long nr_bucket = 0, nr_removed = 0;
fa68aa62
MD
1782
1783 *approx_before = 0;
d6b18934 1784 if (ht->split_count) {
fa68aa62
MD
1785 int i;
1786
d6b18934
DG
1787 for (i = 0; i < split_count_mask + 1; i++) {
1788 *approx_before += uatomic_read(&ht->split_count[i].add);
1789 *approx_before -= uatomic_read(&ht->split_count[i].del);
fa68aa62
MD
1790 }
1791 }
1792
1793 *count = 0;
fa68aa62 1794
bec39940
DG
1795 /* Count non-bucket nodes in the table */
1796 node = bucket_at(ht, 0);
fa68aa62 1797 do {
bec39940 1798 next = rcu_dereference(node->next);
fa68aa62 1799 if (is_removed(next)) {
bec39940
DG
1800 if (!is_bucket(next))
1801 (nr_removed)++;
fa68aa62 1802 else
bec39940
DG
1803 (nr_bucket)++;
1804 } else if (!is_bucket(next))
fa68aa62
MD
1805 (*count)++;
1806 else
bec39940 1807 (nr_bucket)++;
fa68aa62
MD
1808 node = clear_flag(next);
1809 } while (!is_end(node));
bec39940
DG
1810 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1811 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
fa68aa62 1812 *approx_after = 0;
d6b18934 1813 if (ht->split_count) {
fa68aa62
MD
1814 int i;
1815
d6b18934
DG
1816 for (i = 0; i < split_count_mask + 1; i++) {
1817 *approx_after += uatomic_read(&ht->split_count[i].add);
1818 *approx_after -= uatomic_read(&ht->split_count[i].del);
fa68aa62
MD
1819 }
1820 }
1821}
1822
1823/* called with resize mutex held */
1824static
1825void _do_cds_lfht_grow(struct cds_lfht *ht,
1826 unsigned long old_size, unsigned long new_size)
1827{
1828 unsigned long old_order, new_order;
1829
bec39940
DG
1830 old_order = cds_lfht_get_count_order_ulong(old_size);
1831 new_order = cds_lfht_get_count_order_ulong(new_size);
d6b18934
DG
1832 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1833 old_size, old_order, new_size, new_order);
fa68aa62 1834 assert(new_size > old_size);
d6b18934 1835 init_table(ht, old_order + 1, new_order);
fa68aa62
MD
1836}
1837
1838/* called with resize mutex held */
1839static
1840void _do_cds_lfht_shrink(struct cds_lfht *ht,
1841 unsigned long old_size, unsigned long new_size)
1842{
1843 unsigned long old_order, new_order;
1844
bec39940
DG
1845 new_size = max(new_size, MIN_TABLE_SIZE);
1846 old_order = cds_lfht_get_count_order_ulong(old_size);
1847 new_order = cds_lfht_get_count_order_ulong(new_size);
d6b18934
DG
1848 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1849 old_size, old_order, new_size, new_order);
fa68aa62
MD
1850 assert(new_size < old_size);
1851
bec39940 1852 /* Remove and unlink all bucket nodes to remove. */
d6b18934 1853 fini_table(ht, new_order + 1, old_order);
fa68aa62
MD
1854}
1855
1856
1857/* called with resize mutex held */
1858static
1859void _do_cds_lfht_resize(struct cds_lfht *ht)
1860{
1861 unsigned long new_size, old_size;
1862
1863 /*
1864 * Resize table, re-do if the target size has changed under us.
1865 */
1866 do {
d6b18934
DG
1867 assert(uatomic_read(&ht->in_progress_resize));
1868 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1869 break;
bec39940
DG
1870 ht->resize_initiated = 1;
1871 old_size = ht->size;
1872 new_size = CMM_LOAD_SHARED(ht->resize_target);
fa68aa62
MD
1873 if (old_size < new_size)
1874 _do_cds_lfht_grow(ht, old_size, new_size);
1875 else if (old_size > new_size)
1876 _do_cds_lfht_shrink(ht, old_size, new_size);
bec39940 1877 ht->resize_initiated = 0;
fa68aa62
MD
1878 /* write resize_initiated before read resize_target */
1879 cmm_smp_mb();
bec39940 1880 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
fa68aa62
MD
1881}
1882
1883static
bec39940 1884unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
fa68aa62 1885{
bec39940 1886 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
fa68aa62
MD
1887}
1888
1889static
1890void resize_target_update_count(struct cds_lfht *ht,
1891 unsigned long count)
1892{
bec39940
DG
1893 count = max(count, MIN_TABLE_SIZE);
1894 count = min(count, ht->max_nr_buckets);
1895 uatomic_set(&ht->resize_target, count);
fa68aa62
MD
1896}
1897
1898void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1899{
3a1aff7a
MD
1900#ifdef rcu_read_ongoing_mb
1901 int was_online;
1902
1903 was_online = ht->flavor->read_ongoing();
1904 if (was_online)
1905 ht->flavor->thread_offline();
1906 /* Calling with RCU read-side held is an error. */
1907 if (ht->flavor->read_ongoing()) {
1908 static int print_once;
1909
1910 if (!CMM_LOAD_SHARED(print_once))
1911 fprintf(stderr, "[error] rculfhash: cds_lfht_resize "
1912 "called with RCU read-side lock held.\n");
1913 CMM_STORE_SHARED(print_once, 1);
1914 assert(0);
1915 goto end;
1916 }
1917#endif
fa68aa62 1918 resize_target_update_count(ht, new_size);
bec39940 1919 CMM_STORE_SHARED(ht->resize_initiated, 1);
fa68aa62
MD
1920 pthread_mutex_lock(&ht->resize_mutex);
1921 _do_cds_lfht_resize(ht);
1922 pthread_mutex_unlock(&ht->resize_mutex);
3a1aff7a
MD
1923#ifdef rcu_read_ongoing_mb
1924end:
1925 if (was_online)
1926 ht->flavor->thread_online();
1927#endif
fa68aa62
MD
1928}
1929
1930static
1931void do_resize_cb(struct rcu_head *head)
1932{
1933 struct rcu_resize_work *work =
1934 caa_container_of(head, struct rcu_resize_work, head);
1935 struct cds_lfht *ht = work->ht;
1936
bec39940 1937 ht->flavor->thread_offline();
fa68aa62
MD
1938 pthread_mutex_lock(&ht->resize_mutex);
1939 _do_cds_lfht_resize(ht);
1940 pthread_mutex_unlock(&ht->resize_mutex);
bec39940 1941 ht->flavor->thread_online();
fa68aa62
MD
1942 poison_free(work);
1943 cmm_smp_mb(); /* finish resize before decrement */
1944 uatomic_dec(&ht->in_progress_resize);
1945}
1946
1947static
bec39940 1948void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
fa68aa62
MD
1949{
1950 struct rcu_resize_work *work;
fa68aa62 1951
fa68aa62
MD
1952 /* Store resize_target before read resize_initiated */
1953 cmm_smp_mb();
bec39940 1954 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
fa68aa62 1955 uatomic_inc(&ht->in_progress_resize);
d6b18934
DG
1956 cmm_smp_mb(); /* increment resize count before load destroy */
1957 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1958 uatomic_dec(&ht->in_progress_resize);
1959 return;
1960 }
fa68aa62 1961 work = malloc(sizeof(*work));
cd5376da
DG
1962 if (work == NULL) {
1963 dbg_printf("error allocating resize work, bailing out\n");
1964 uatomic_dec(&ht->in_progress_resize);
1965 return;
1966 }
fa68aa62 1967 work->ht = ht;
bec39940
DG
1968 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
1969 CMM_STORE_SHARED(ht->resize_initiated, 1);
fa68aa62
MD
1970 }
1971}
1972
bec39940
DG
1973static
1974void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
1975{
1976 unsigned long target_size = size << growth;
1977
1978 target_size = min(target_size, ht->max_nr_buckets);
1979 if (resize_target_grow(ht, target_size) >= target_size)
1980 return;
1981
1982 __cds_lfht_resize_lazy_launch(ht);
1983}
1984
1985/*
1986 * We favor grow operations over shrink. A shrink operation never occurs
1987 * if a grow operation is queued for lazy execution. A grow operation
1988 * cancels any pending shrink lazy execution.
1989 */
fa68aa62
MD
1990static
1991void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
1992 unsigned long count)
1993{
fa68aa62
MD
1994 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
1995 return;
bec39940
DG
1996 count = max(count, MIN_TABLE_SIZE);
1997 count = min(count, ht->max_nr_buckets);
1998 if (count == size)
1999 return; /* Already the right size, no resize needed */
2000 if (count > size) { /* lazy grow */
2001 if (resize_target_grow(ht, count) >= count)
d6b18934 2002 return;
bec39940
DG
2003 } else { /* lazy shrink */
2004 for (;;) {
2005 unsigned long s;
2006
2007 s = uatomic_cmpxchg(&ht->resize_target, size, count);
2008 if (s == size)
2009 break; /* no resize needed */
2010 if (s > size)
2011 return; /* growing is/(was just) in progress */
2012 if (s <= count)
2013 return; /* some other thread do shrink */
2014 size = s;
d6b18934 2015 }
fa68aa62 2016 }
bec39940 2017 __cds_lfht_resize_lazy_launch(ht);
fa68aa62 2018}
This page took 0.131138 seconds and 4 git commands to generate.