Fix: remove unused goto label
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44 #include "consumer-stream.h"
45
46 struct lttng_consumer_global_data consumer_data = {
47 .stream_count = 0,
48 .need_update = 1,
49 .type = LTTNG_CONSUMER_UNKNOWN,
50 };
51
52 enum consumer_channel_action {
53 CONSUMER_CHANNEL_ADD,
54 CONSUMER_CHANNEL_DEL,
55 CONSUMER_CHANNEL_QUIT,
56 };
57
58 struct consumer_channel_msg {
59 enum consumer_channel_action action;
60 struct lttng_consumer_channel *chan; /* add */
61 uint64_t key; /* del */
62 };
63
64 /*
65 * Flag to inform the polling thread to quit when all fd hung up. Updated by
66 * the consumer_thread_receive_fds when it notices that all fds has hung up.
67 * Also updated by the signal handler (consumer_should_exit()). Read by the
68 * polling threads.
69 */
70 volatile int consumer_quit;
71
72 /*
73 * Global hash table containing respectively metadata and data streams. The
74 * stream element in this ht should only be updated by the metadata poll thread
75 * for the metadata and the data poll thread for the data.
76 */
77 static struct lttng_ht *metadata_ht;
78 static struct lttng_ht *data_ht;
79
80 /*
81 * Notify a thread lttng pipe to poll back again. This usually means that some
82 * global state has changed so we just send back the thread in a poll wait
83 * call.
84 */
85 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
86 {
87 struct lttng_consumer_stream *null_stream = NULL;
88
89 assert(pipe);
90
91 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
92 }
93
94 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
95 struct lttng_consumer_channel *chan,
96 uint64_t key,
97 enum consumer_channel_action action)
98 {
99 struct consumer_channel_msg msg;
100 int ret;
101
102 memset(&msg, 0, sizeof(msg));
103
104 msg.action = action;
105 msg.chan = chan;
106 msg.key = key;
107 do {
108 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
109 } while (ret < 0 && errno == EINTR);
110 }
111
112 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
113 uint64_t key)
114 {
115 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
116 }
117
118 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
119 struct lttng_consumer_channel **chan,
120 uint64_t *key,
121 enum consumer_channel_action *action)
122 {
123 struct consumer_channel_msg msg;
124 int ret;
125
126 do {
127 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
128 } while (ret < 0 && errno == EINTR);
129 if (ret > 0) {
130 *action = msg.action;
131 *chan = msg.chan;
132 *key = msg.key;
133 }
134 return ret;
135 }
136
137 /*
138 * Find a stream. The consumer_data.lock must be locked during this
139 * call.
140 */
141 static struct lttng_consumer_stream *find_stream(uint64_t key,
142 struct lttng_ht *ht)
143 {
144 struct lttng_ht_iter iter;
145 struct lttng_ht_node_u64 *node;
146 struct lttng_consumer_stream *stream = NULL;
147
148 assert(ht);
149
150 /* -1ULL keys are lookup failures */
151 if (key == (uint64_t) -1ULL) {
152 return NULL;
153 }
154
155 rcu_read_lock();
156
157 lttng_ht_lookup(ht, &key, &iter);
158 node = lttng_ht_iter_get_node_u64(&iter);
159 if (node != NULL) {
160 stream = caa_container_of(node, struct lttng_consumer_stream, node);
161 }
162
163 rcu_read_unlock();
164
165 return stream;
166 }
167
168 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
169 {
170 struct lttng_consumer_stream *stream;
171
172 rcu_read_lock();
173 stream = find_stream(key, ht);
174 if (stream) {
175 stream->key = (uint64_t) -1ULL;
176 /*
177 * We don't want the lookup to match, but we still need
178 * to iterate on this stream when iterating over the hash table. Just
179 * change the node key.
180 */
181 stream->node.key = (uint64_t) -1ULL;
182 }
183 rcu_read_unlock();
184 }
185
186 /*
187 * Return a channel object for the given key.
188 *
189 * RCU read side lock MUST be acquired before calling this function and
190 * protects the channel ptr.
191 */
192 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
193 {
194 struct lttng_ht_iter iter;
195 struct lttng_ht_node_u64 *node;
196 struct lttng_consumer_channel *channel = NULL;
197
198 /* -1ULL keys are lookup failures */
199 if (key == (uint64_t) -1ULL) {
200 return NULL;
201 }
202
203 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 channel = caa_container_of(node, struct lttng_consumer_channel, node);
207 }
208
209 return channel;
210 }
211
212 static void free_stream_rcu(struct rcu_head *head)
213 {
214 struct lttng_ht_node_u64 *node =
215 caa_container_of(head, struct lttng_ht_node_u64, head);
216 struct lttng_consumer_stream *stream =
217 caa_container_of(node, struct lttng_consumer_stream, node);
218
219 free(stream);
220 }
221
222 static void free_channel_rcu(struct rcu_head *head)
223 {
224 struct lttng_ht_node_u64 *node =
225 caa_container_of(head, struct lttng_ht_node_u64, head);
226 struct lttng_consumer_channel *channel =
227 caa_container_of(node, struct lttng_consumer_channel, node);
228
229 free(channel);
230 }
231
232 /*
233 * RCU protected relayd socket pair free.
234 */
235 static void free_relayd_rcu(struct rcu_head *head)
236 {
237 struct lttng_ht_node_u64 *node =
238 caa_container_of(head, struct lttng_ht_node_u64, head);
239 struct consumer_relayd_sock_pair *relayd =
240 caa_container_of(node, struct consumer_relayd_sock_pair, node);
241
242 /*
243 * Close all sockets. This is done in the call RCU since we don't want the
244 * socket fds to be reassigned thus potentially creating bad state of the
245 * relayd object.
246 *
247 * We do not have to lock the control socket mutex here since at this stage
248 * there is no one referencing to this relayd object.
249 */
250 (void) relayd_close(&relayd->control_sock);
251 (void) relayd_close(&relayd->data_sock);
252
253 free(relayd);
254 }
255
256 /*
257 * Destroy and free relayd socket pair object.
258 */
259 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
260 {
261 int ret;
262 struct lttng_ht_iter iter;
263
264 if (relayd == NULL) {
265 return;
266 }
267
268 DBG("Consumer destroy and close relayd socket pair");
269
270 iter.iter.node = &relayd->node.node;
271 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
272 if (ret != 0) {
273 /* We assume the relayd is being or is destroyed */
274 return;
275 }
276
277 /* RCU free() call */
278 call_rcu(&relayd->node.head, free_relayd_rcu);
279 }
280
281 /*
282 * Remove a channel from the global list protected by a mutex. This function is
283 * also responsible for freeing its data structures.
284 */
285 void consumer_del_channel(struct lttng_consumer_channel *channel)
286 {
287 int ret;
288 struct lttng_ht_iter iter;
289 struct lttng_consumer_stream *stream, *stmp;
290
291 DBG("Consumer delete channel key %" PRIu64, channel->key);
292
293 pthread_mutex_lock(&consumer_data.lock);
294 pthread_mutex_lock(&channel->lock);
295
296 /* Delete streams that might have been left in the stream list. */
297 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
298 send_node) {
299 cds_list_del(&stream->send_node);
300 /*
301 * Once a stream is added to this list, the buffers were created so
302 * we have a guarantee that this call will succeed.
303 */
304 consumer_stream_destroy(stream, NULL);
305 }
306
307 switch (consumer_data.type) {
308 case LTTNG_CONSUMER_KERNEL:
309 break;
310 case LTTNG_CONSUMER32_UST:
311 case LTTNG_CONSUMER64_UST:
312 lttng_ustconsumer_del_channel(channel);
313 break;
314 default:
315 ERR("Unknown consumer_data type");
316 assert(0);
317 goto end;
318 }
319
320 rcu_read_lock();
321 iter.iter.node = &channel->node.node;
322 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
323 assert(!ret);
324 rcu_read_unlock();
325
326 call_rcu(&channel->node.head, free_channel_rcu);
327 end:
328 pthread_mutex_unlock(&channel->lock);
329 pthread_mutex_unlock(&consumer_data.lock);
330 }
331
332 /*
333 * Iterate over the relayd hash table and destroy each element. Finally,
334 * destroy the whole hash table.
335 */
336 static void cleanup_relayd_ht(void)
337 {
338 struct lttng_ht_iter iter;
339 struct consumer_relayd_sock_pair *relayd;
340
341 rcu_read_lock();
342
343 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
344 node.node) {
345 consumer_destroy_relayd(relayd);
346 }
347
348 rcu_read_unlock();
349
350 lttng_ht_destroy(consumer_data.relayd_ht);
351 }
352
353 /*
354 * Update the end point status of all streams having the given network sequence
355 * index (relayd index).
356 *
357 * It's atomically set without having the stream mutex locked which is fine
358 * because we handle the write/read race with a pipe wakeup for each thread.
359 */
360 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
361 enum consumer_endpoint_status status)
362 {
363 struct lttng_ht_iter iter;
364 struct lttng_consumer_stream *stream;
365
366 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
367
368 rcu_read_lock();
369
370 /* Let's begin with metadata */
371 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
372 if (stream->net_seq_idx == net_seq_idx) {
373 uatomic_set(&stream->endpoint_status, status);
374 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
375 }
376 }
377
378 /* Follow up by the data streams */
379 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
380 if (stream->net_seq_idx == net_seq_idx) {
381 uatomic_set(&stream->endpoint_status, status);
382 DBG("Delete flag set to data stream %d", stream->wait_fd);
383 }
384 }
385 rcu_read_unlock();
386 }
387
388 /*
389 * Cleanup a relayd object by flagging every associated streams for deletion,
390 * destroying the object meaning removing it from the relayd hash table,
391 * closing the sockets and freeing the memory in a RCU call.
392 *
393 * If a local data context is available, notify the threads that the streams'
394 * state have changed.
395 */
396 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
397 struct lttng_consumer_local_data *ctx)
398 {
399 uint64_t netidx;
400
401 assert(relayd);
402
403 DBG("Cleaning up relayd sockets");
404
405 /* Save the net sequence index before destroying the object */
406 netidx = relayd->net_seq_idx;
407
408 /*
409 * Delete the relayd from the relayd hash table, close the sockets and free
410 * the object in a RCU call.
411 */
412 consumer_destroy_relayd(relayd);
413
414 /* Set inactive endpoint to all streams */
415 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
416
417 /*
418 * With a local data context, notify the threads that the streams' state
419 * have changed. The write() action on the pipe acts as an "implicit"
420 * memory barrier ordering the updates of the end point status from the
421 * read of this status which happens AFTER receiving this notify.
422 */
423 if (ctx) {
424 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
425 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
426 }
427 }
428
429 /*
430 * Flag a relayd socket pair for destruction. Destroy it if the refcount
431 * reaches zero.
432 *
433 * RCU read side lock MUST be aquired before calling this function.
434 */
435 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
436 {
437 assert(relayd);
438
439 /* Set destroy flag for this object */
440 uatomic_set(&relayd->destroy_flag, 1);
441
442 /* Destroy the relayd if refcount is 0 */
443 if (uatomic_read(&relayd->refcount) == 0) {
444 consumer_destroy_relayd(relayd);
445 }
446 }
447
448 /*
449 * Completly destroy stream from every visiable data structure and the given
450 * hash table if one.
451 *
452 * One this call returns, the stream object is not longer usable nor visible.
453 */
454 void consumer_del_stream(struct lttng_consumer_stream *stream,
455 struct lttng_ht *ht)
456 {
457 consumer_stream_destroy(stream, ht);
458 }
459
460 /*
461 * XXX naming of del vs destroy is all mixed up.
462 */
463 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
464 {
465 consumer_stream_destroy(stream, data_ht);
466 }
467
468 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
469 {
470 consumer_stream_destroy(stream, metadata_ht);
471 }
472
473 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
474 uint64_t stream_key,
475 enum lttng_consumer_stream_state state,
476 const char *channel_name,
477 uid_t uid,
478 gid_t gid,
479 uint64_t relayd_id,
480 uint64_t session_id,
481 int cpu,
482 int *alloc_ret,
483 enum consumer_channel_type type,
484 unsigned int monitor)
485 {
486 int ret;
487 struct lttng_consumer_stream *stream;
488
489 stream = zmalloc(sizeof(*stream));
490 if (stream == NULL) {
491 PERROR("malloc struct lttng_consumer_stream");
492 ret = -ENOMEM;
493 goto end;
494 }
495
496 rcu_read_lock();
497
498 stream->key = stream_key;
499 stream->out_fd = -1;
500 stream->out_fd_offset = 0;
501 stream->output_written = 0;
502 stream->state = state;
503 stream->uid = uid;
504 stream->gid = gid;
505 stream->net_seq_idx = relayd_id;
506 stream->session_id = session_id;
507 stream->monitor = monitor;
508 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
509 pthread_mutex_init(&stream->lock, NULL);
510
511 /* If channel is the metadata, flag this stream as metadata. */
512 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
513 stream->metadata_flag = 1;
514 /* Metadata is flat out. */
515 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
516 } else {
517 /* Format stream name to <channel_name>_<cpu_number> */
518 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
519 channel_name, cpu);
520 if (ret < 0) {
521 PERROR("snprintf stream name");
522 goto error;
523 }
524 }
525
526 /* Key is always the wait_fd for streams. */
527 lttng_ht_node_init_u64(&stream->node, stream->key);
528
529 /* Init node per channel id key */
530 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
531
532 /* Init session id node with the stream session id */
533 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
534
535 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
536 " relayd_id %" PRIu64 ", session_id %" PRIu64,
537 stream->name, stream->key, channel_key,
538 stream->net_seq_idx, stream->session_id);
539
540 rcu_read_unlock();
541 return stream;
542
543 error:
544 rcu_read_unlock();
545 free(stream);
546 end:
547 if (alloc_ret) {
548 *alloc_ret = ret;
549 }
550 return NULL;
551 }
552
553 /*
554 * Add a stream to the global list protected by a mutex.
555 */
556 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
557 {
558 struct lttng_ht *ht = data_ht;
559 int ret = 0;
560
561 assert(stream);
562 assert(ht);
563
564 DBG3("Adding consumer stream %" PRIu64, stream->key);
565
566 pthread_mutex_lock(&consumer_data.lock);
567 pthread_mutex_lock(&stream->chan->lock);
568 pthread_mutex_lock(&stream->chan->timer_lock);
569 pthread_mutex_lock(&stream->lock);
570 rcu_read_lock();
571
572 /* Steal stream identifier to avoid having streams with the same key */
573 steal_stream_key(stream->key, ht);
574
575 lttng_ht_add_unique_u64(ht, &stream->node);
576
577 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
578 &stream->node_channel_id);
579
580 /*
581 * Add stream to the stream_list_ht of the consumer data. No need to steal
582 * the key since the HT does not use it and we allow to add redundant keys
583 * into this table.
584 */
585 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
586
587 /*
588 * When nb_init_stream_left reaches 0, we don't need to trigger any action
589 * in terms of destroying the associated channel, because the action that
590 * causes the count to become 0 also causes a stream to be added. The
591 * channel deletion will thus be triggered by the following removal of this
592 * stream.
593 */
594 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
595 /* Increment refcount before decrementing nb_init_stream_left */
596 cmm_smp_wmb();
597 uatomic_dec(&stream->chan->nb_init_stream_left);
598 }
599
600 /* Update consumer data once the node is inserted. */
601 consumer_data.stream_count++;
602 consumer_data.need_update = 1;
603
604 rcu_read_unlock();
605 pthread_mutex_unlock(&stream->lock);
606 pthread_mutex_unlock(&stream->chan->timer_lock);
607 pthread_mutex_unlock(&stream->chan->lock);
608 pthread_mutex_unlock(&consumer_data.lock);
609
610 return ret;
611 }
612
613 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
614 {
615 consumer_del_stream(stream, data_ht);
616 }
617
618 /*
619 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
620 * be acquired before calling this.
621 */
622 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
623 {
624 int ret = 0;
625 struct lttng_ht_node_u64 *node;
626 struct lttng_ht_iter iter;
627
628 assert(relayd);
629
630 lttng_ht_lookup(consumer_data.relayd_ht,
631 &relayd->net_seq_idx, &iter);
632 node = lttng_ht_iter_get_node_u64(&iter);
633 if (node != NULL) {
634 goto end;
635 }
636 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
637
638 end:
639 return ret;
640 }
641
642 /*
643 * Allocate and return a consumer relayd socket.
644 */
645 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
646 uint64_t net_seq_idx)
647 {
648 struct consumer_relayd_sock_pair *obj = NULL;
649
650 /* net sequence index of -1 is a failure */
651 if (net_seq_idx == (uint64_t) -1ULL) {
652 goto error;
653 }
654
655 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
656 if (obj == NULL) {
657 PERROR("zmalloc relayd sock");
658 goto error;
659 }
660
661 obj->net_seq_idx = net_seq_idx;
662 obj->refcount = 0;
663 obj->destroy_flag = 0;
664 obj->control_sock.sock.fd = -1;
665 obj->data_sock.sock.fd = -1;
666 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
667 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
668
669 error:
670 return obj;
671 }
672
673 /*
674 * Find a relayd socket pair in the global consumer data.
675 *
676 * Return the object if found else NULL.
677 * RCU read-side lock must be held across this call and while using the
678 * returned object.
679 */
680 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
681 {
682 struct lttng_ht_iter iter;
683 struct lttng_ht_node_u64 *node;
684 struct consumer_relayd_sock_pair *relayd = NULL;
685
686 /* Negative keys are lookup failures */
687 if (key == (uint64_t) -1ULL) {
688 goto error;
689 }
690
691 lttng_ht_lookup(consumer_data.relayd_ht, &key,
692 &iter);
693 node = lttng_ht_iter_get_node_u64(&iter);
694 if (node != NULL) {
695 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
696 }
697
698 error:
699 return relayd;
700 }
701
702 /*
703 * Find a relayd and send the stream
704 *
705 * Returns 0 on success, < 0 on error
706 */
707 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
708 char *path)
709 {
710 int ret = 0;
711 struct consumer_relayd_sock_pair *relayd;
712
713 assert(stream);
714 assert(stream->net_seq_idx != -1ULL);
715 assert(path);
716
717 /* The stream is not metadata. Get relayd reference if exists. */
718 rcu_read_lock();
719 relayd = consumer_find_relayd(stream->net_seq_idx);
720 if (relayd != NULL) {
721 /* Add stream on the relayd */
722 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
723 ret = relayd_add_stream(&relayd->control_sock, stream->name,
724 path, &stream->relayd_stream_id,
725 stream->chan->tracefile_size, stream->chan->tracefile_count);
726 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
727 if (ret < 0) {
728 goto end;
729 }
730 uatomic_inc(&relayd->refcount);
731 stream->sent_to_relayd = 1;
732 } else {
733 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
734 stream->key, stream->net_seq_idx);
735 ret = -1;
736 goto end;
737 }
738
739 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
740 stream->name, stream->key, stream->net_seq_idx);
741
742 end:
743 rcu_read_unlock();
744 return ret;
745 }
746
747 /*
748 * Find a relayd and close the stream
749 */
750 void close_relayd_stream(struct lttng_consumer_stream *stream)
751 {
752 struct consumer_relayd_sock_pair *relayd;
753
754 /* The stream is not metadata. Get relayd reference if exists. */
755 rcu_read_lock();
756 relayd = consumer_find_relayd(stream->net_seq_idx);
757 if (relayd) {
758 consumer_stream_relayd_close(stream, relayd);
759 }
760 rcu_read_unlock();
761 }
762
763 /*
764 * Handle stream for relayd transmission if the stream applies for network
765 * streaming where the net sequence index is set.
766 *
767 * Return destination file descriptor or negative value on error.
768 */
769 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
770 size_t data_size, unsigned long padding,
771 struct consumer_relayd_sock_pair *relayd)
772 {
773 int outfd = -1, ret;
774 struct lttcomm_relayd_data_hdr data_hdr;
775
776 /* Safety net */
777 assert(stream);
778 assert(relayd);
779
780 /* Reset data header */
781 memset(&data_hdr, 0, sizeof(data_hdr));
782
783 if (stream->metadata_flag) {
784 /* Caller MUST acquire the relayd control socket lock */
785 ret = relayd_send_metadata(&relayd->control_sock, data_size);
786 if (ret < 0) {
787 goto error;
788 }
789
790 /* Metadata are always sent on the control socket. */
791 outfd = relayd->control_sock.sock.fd;
792 } else {
793 /* Set header with stream information */
794 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
795 data_hdr.data_size = htobe32(data_size);
796 data_hdr.padding_size = htobe32(padding);
797 /*
798 * Note that net_seq_num below is assigned with the *current* value of
799 * next_net_seq_num and only after that the next_net_seq_num will be
800 * increment. This is why when issuing a command on the relayd using
801 * this next value, 1 should always be substracted in order to compare
802 * the last seen sequence number on the relayd side to the last sent.
803 */
804 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
805 /* Other fields are zeroed previously */
806
807 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
808 sizeof(data_hdr));
809 if (ret < 0) {
810 goto error;
811 }
812
813 ++stream->next_net_seq_num;
814
815 /* Set to go on data socket */
816 outfd = relayd->data_sock.sock.fd;
817 }
818
819 error:
820 return outfd;
821 }
822
823 /*
824 * Allocate and return a new lttng_consumer_channel object using the given key
825 * to initialize the hash table node.
826 *
827 * On error, return NULL.
828 */
829 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
830 uint64_t session_id,
831 const char *pathname,
832 const char *name,
833 uid_t uid,
834 gid_t gid,
835 uint64_t relayd_id,
836 enum lttng_event_output output,
837 uint64_t tracefile_size,
838 uint64_t tracefile_count,
839 uint64_t session_id_per_pid,
840 unsigned int monitor)
841 {
842 struct lttng_consumer_channel *channel;
843
844 channel = zmalloc(sizeof(*channel));
845 if (channel == NULL) {
846 PERROR("malloc struct lttng_consumer_channel");
847 goto end;
848 }
849
850 channel->key = key;
851 channel->refcount = 0;
852 channel->session_id = session_id;
853 channel->session_id_per_pid = session_id_per_pid;
854 channel->uid = uid;
855 channel->gid = gid;
856 channel->relayd_id = relayd_id;
857 channel->tracefile_size = tracefile_size;
858 channel->tracefile_count = tracefile_count;
859 channel->monitor = monitor;
860 pthread_mutex_init(&channel->lock, NULL);
861 pthread_mutex_init(&channel->timer_lock, NULL);
862
863 switch (output) {
864 case LTTNG_EVENT_SPLICE:
865 channel->output = CONSUMER_CHANNEL_SPLICE;
866 break;
867 case LTTNG_EVENT_MMAP:
868 channel->output = CONSUMER_CHANNEL_MMAP;
869 break;
870 default:
871 assert(0);
872 free(channel);
873 channel = NULL;
874 goto end;
875 }
876
877 /*
878 * In monitor mode, the streams associated with the channel will be put in
879 * a special list ONLY owned by this channel. So, the refcount is set to 1
880 * here meaning that the channel itself has streams that are referenced.
881 *
882 * On a channel deletion, once the channel is no longer visible, the
883 * refcount is decremented and checked for a zero value to delete it. With
884 * streams in no monitor mode, it will now be safe to destroy the channel.
885 */
886 if (!channel->monitor) {
887 channel->refcount = 1;
888 }
889
890 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
891 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
892
893 strncpy(channel->name, name, sizeof(channel->name));
894 channel->name[sizeof(channel->name) - 1] = '\0';
895
896 lttng_ht_node_init_u64(&channel->node, channel->key);
897
898 channel->wait_fd = -1;
899
900 CDS_INIT_LIST_HEAD(&channel->streams.head);
901
902 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
903
904 end:
905 return channel;
906 }
907
908 /*
909 * Add a channel to the global list protected by a mutex.
910 *
911 * On success 0 is returned else a negative value.
912 */
913 int consumer_add_channel(struct lttng_consumer_channel *channel,
914 struct lttng_consumer_local_data *ctx)
915 {
916 int ret = 0;
917 struct lttng_ht_node_u64 *node;
918 struct lttng_ht_iter iter;
919
920 pthread_mutex_lock(&consumer_data.lock);
921 pthread_mutex_lock(&channel->lock);
922 pthread_mutex_lock(&channel->timer_lock);
923 rcu_read_lock();
924
925 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
926 node = lttng_ht_iter_get_node_u64(&iter);
927 if (node != NULL) {
928 /* Channel already exist. Ignore the insertion */
929 ERR("Consumer add channel key %" PRIu64 " already exists!",
930 channel->key);
931 ret = -EEXIST;
932 goto end;
933 }
934
935 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
936
937 end:
938 rcu_read_unlock();
939 pthread_mutex_unlock(&channel->timer_lock);
940 pthread_mutex_unlock(&channel->lock);
941 pthread_mutex_unlock(&consumer_data.lock);
942
943 if (!ret && channel->wait_fd != -1 &&
944 channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
945 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
946 }
947 return ret;
948 }
949
950 /*
951 * Allocate the pollfd structure and the local view of the out fds to avoid
952 * doing a lookup in the linked list and concurrency issues when writing is
953 * needed. Called with consumer_data.lock held.
954 *
955 * Returns the number of fds in the structures.
956 */
957 static int update_poll_array(struct lttng_consumer_local_data *ctx,
958 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
959 struct lttng_ht *ht)
960 {
961 int i = 0;
962 struct lttng_ht_iter iter;
963 struct lttng_consumer_stream *stream;
964
965 assert(ctx);
966 assert(ht);
967 assert(pollfd);
968 assert(local_stream);
969
970 DBG("Updating poll fd array");
971 rcu_read_lock();
972 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
973 /*
974 * Only active streams with an active end point can be added to the
975 * poll set and local stream storage of the thread.
976 *
977 * There is a potential race here for endpoint_status to be updated
978 * just after the check. However, this is OK since the stream(s) will
979 * be deleted once the thread is notified that the end point state has
980 * changed where this function will be called back again.
981 */
982 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
983 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
984 continue;
985 }
986 /*
987 * This clobbers way too much the debug output. Uncomment that if you
988 * need it for debugging purposes.
989 *
990 * DBG("Active FD %d", stream->wait_fd);
991 */
992 (*pollfd)[i].fd = stream->wait_fd;
993 (*pollfd)[i].events = POLLIN | POLLPRI;
994 local_stream[i] = stream;
995 i++;
996 }
997 rcu_read_unlock();
998
999 /*
1000 * Insert the consumer_data_pipe at the end of the array and don't
1001 * increment i so nb_fd is the number of real FD.
1002 */
1003 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1004 (*pollfd)[i].events = POLLIN | POLLPRI;
1005 return i;
1006 }
1007
1008 /*
1009 * Poll on the should_quit pipe and the command socket return -1 on error and
1010 * should exit, 0 if data is available on the command socket
1011 */
1012 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1013 {
1014 int num_rdy;
1015
1016 restart:
1017 num_rdy = poll(consumer_sockpoll, 2, -1);
1018 if (num_rdy == -1) {
1019 /*
1020 * Restart interrupted system call.
1021 */
1022 if (errno == EINTR) {
1023 goto restart;
1024 }
1025 PERROR("Poll error");
1026 goto exit;
1027 }
1028 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1029 DBG("consumer_should_quit wake up");
1030 goto exit;
1031 }
1032 return 0;
1033
1034 exit:
1035 return -1;
1036 }
1037
1038 /*
1039 * Set the error socket.
1040 */
1041 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1042 int sock)
1043 {
1044 ctx->consumer_error_socket = sock;
1045 }
1046
1047 /*
1048 * Set the command socket path.
1049 */
1050 void lttng_consumer_set_command_sock_path(
1051 struct lttng_consumer_local_data *ctx, char *sock)
1052 {
1053 ctx->consumer_command_sock_path = sock;
1054 }
1055
1056 /*
1057 * Send return code to the session daemon.
1058 * If the socket is not defined, we return 0, it is not a fatal error
1059 */
1060 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1061 {
1062 if (ctx->consumer_error_socket > 0) {
1063 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1064 sizeof(enum lttcomm_sessiond_command));
1065 }
1066
1067 return 0;
1068 }
1069
1070 /*
1071 * Close all the tracefiles and stream fds and MUST be called when all
1072 * instances are destroyed i.e. when all threads were joined and are ended.
1073 */
1074 void lttng_consumer_cleanup(void)
1075 {
1076 struct lttng_ht_iter iter;
1077 struct lttng_consumer_channel *channel;
1078
1079 rcu_read_lock();
1080
1081 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1082 node.node) {
1083 consumer_del_channel(channel);
1084 }
1085
1086 rcu_read_unlock();
1087
1088 lttng_ht_destroy(consumer_data.channel_ht);
1089
1090 cleanup_relayd_ht();
1091
1092 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1093
1094 /*
1095 * This HT contains streams that are freed by either the metadata thread or
1096 * the data thread so we do *nothing* on the hash table and simply destroy
1097 * it.
1098 */
1099 lttng_ht_destroy(consumer_data.stream_list_ht);
1100 }
1101
1102 /*
1103 * Called from signal handler.
1104 */
1105 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1106 {
1107 int ret;
1108 consumer_quit = 1;
1109 do {
1110 ret = write(ctx->consumer_should_quit[1], "4", 1);
1111 } while (ret < 0 && errno == EINTR);
1112 if (ret < 0 || ret != 1) {
1113 PERROR("write consumer quit");
1114 }
1115
1116 DBG("Consumer flag that it should quit");
1117 }
1118
1119 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1120 off_t orig_offset)
1121 {
1122 int outfd = stream->out_fd;
1123
1124 /*
1125 * This does a blocking write-and-wait on any page that belongs to the
1126 * subbuffer prior to the one we just wrote.
1127 * Don't care about error values, as these are just hints and ways to
1128 * limit the amount of page cache used.
1129 */
1130 if (orig_offset < stream->max_sb_size) {
1131 return;
1132 }
1133 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1134 stream->max_sb_size,
1135 SYNC_FILE_RANGE_WAIT_BEFORE
1136 | SYNC_FILE_RANGE_WRITE
1137 | SYNC_FILE_RANGE_WAIT_AFTER);
1138 /*
1139 * Give hints to the kernel about how we access the file:
1140 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1141 * we write it.
1142 *
1143 * We need to call fadvise again after the file grows because the
1144 * kernel does not seem to apply fadvise to non-existing parts of the
1145 * file.
1146 *
1147 * Call fadvise _after_ having waited for the page writeback to
1148 * complete because the dirty page writeback semantic is not well
1149 * defined. So it can be expected to lead to lower throughput in
1150 * streaming.
1151 */
1152 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1153 stream->max_sb_size, POSIX_FADV_DONTNEED);
1154 }
1155
1156 /*
1157 * Initialise the necessary environnement :
1158 * - create a new context
1159 * - create the poll_pipe
1160 * - create the should_quit pipe (for signal handler)
1161 * - create the thread pipe (for splice)
1162 *
1163 * Takes a function pointer as argument, this function is called when data is
1164 * available on a buffer. This function is responsible to do the
1165 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1166 * buffer configuration and then kernctl_put_next_subbuf at the end.
1167 *
1168 * Returns a pointer to the new context or NULL on error.
1169 */
1170 struct lttng_consumer_local_data *lttng_consumer_create(
1171 enum lttng_consumer_type type,
1172 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1173 struct lttng_consumer_local_data *ctx),
1174 int (*recv_channel)(struct lttng_consumer_channel *channel),
1175 int (*recv_stream)(struct lttng_consumer_stream *stream),
1176 int (*update_stream)(uint64_t stream_key, uint32_t state))
1177 {
1178 int ret;
1179 struct lttng_consumer_local_data *ctx;
1180
1181 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1182 consumer_data.type == type);
1183 consumer_data.type = type;
1184
1185 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1186 if (ctx == NULL) {
1187 PERROR("allocating context");
1188 goto error;
1189 }
1190
1191 ctx->consumer_error_socket = -1;
1192 ctx->consumer_metadata_socket = -1;
1193 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1194 /* assign the callbacks */
1195 ctx->on_buffer_ready = buffer_ready;
1196 ctx->on_recv_channel = recv_channel;
1197 ctx->on_recv_stream = recv_stream;
1198 ctx->on_update_stream = update_stream;
1199
1200 ctx->consumer_data_pipe = lttng_pipe_open(0);
1201 if (!ctx->consumer_data_pipe) {
1202 goto error_poll_pipe;
1203 }
1204
1205 ret = pipe(ctx->consumer_should_quit);
1206 if (ret < 0) {
1207 PERROR("Error creating recv pipe");
1208 goto error_quit_pipe;
1209 }
1210
1211 ret = pipe(ctx->consumer_thread_pipe);
1212 if (ret < 0) {
1213 PERROR("Error creating thread pipe");
1214 goto error_thread_pipe;
1215 }
1216
1217 ret = pipe(ctx->consumer_channel_pipe);
1218 if (ret < 0) {
1219 PERROR("Error creating channel pipe");
1220 goto error_channel_pipe;
1221 }
1222
1223 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1224 if (!ctx->consumer_metadata_pipe) {
1225 goto error_metadata_pipe;
1226 }
1227
1228 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1229 if (ret < 0) {
1230 goto error_splice_pipe;
1231 }
1232
1233 return ctx;
1234
1235 error_splice_pipe:
1236 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1237 error_metadata_pipe:
1238 utils_close_pipe(ctx->consumer_channel_pipe);
1239 error_channel_pipe:
1240 utils_close_pipe(ctx->consumer_thread_pipe);
1241 error_thread_pipe:
1242 utils_close_pipe(ctx->consumer_should_quit);
1243 error_quit_pipe:
1244 lttng_pipe_destroy(ctx->consumer_data_pipe);
1245 error_poll_pipe:
1246 free(ctx);
1247 error:
1248 return NULL;
1249 }
1250
1251 /*
1252 * Iterate over all streams of the hashtable and free them properly.
1253 */
1254 static void destroy_data_stream_ht(struct lttng_ht *ht)
1255 {
1256 struct lttng_ht_iter iter;
1257 struct lttng_consumer_stream *stream;
1258
1259 if (ht == NULL) {
1260 return;
1261 }
1262
1263 rcu_read_lock();
1264 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1265 /*
1266 * Ignore return value since we are currently cleaning up so any error
1267 * can't be handled.
1268 */
1269 (void) consumer_del_stream(stream, ht);
1270 }
1271 rcu_read_unlock();
1272
1273 lttng_ht_destroy(ht);
1274 }
1275
1276 /*
1277 * Iterate over all streams of the metadata hashtable and free them
1278 * properly.
1279 */
1280 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1281 {
1282 struct lttng_ht_iter iter;
1283 struct lttng_consumer_stream *stream;
1284
1285 if (ht == NULL) {
1286 return;
1287 }
1288
1289 rcu_read_lock();
1290 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1291 /*
1292 * Ignore return value since we are currently cleaning up so any error
1293 * can't be handled.
1294 */
1295 (void) consumer_del_metadata_stream(stream, ht);
1296 }
1297 rcu_read_unlock();
1298
1299 lttng_ht_destroy(ht);
1300 }
1301
1302 /*
1303 * Close all fds associated with the instance and free the context.
1304 */
1305 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1306 {
1307 int ret;
1308
1309 DBG("Consumer destroying it. Closing everything.");
1310
1311 destroy_data_stream_ht(data_ht);
1312 destroy_metadata_stream_ht(metadata_ht);
1313
1314 ret = close(ctx->consumer_error_socket);
1315 if (ret) {
1316 PERROR("close");
1317 }
1318 ret = close(ctx->consumer_metadata_socket);
1319 if (ret) {
1320 PERROR("close");
1321 }
1322 utils_close_pipe(ctx->consumer_thread_pipe);
1323 utils_close_pipe(ctx->consumer_channel_pipe);
1324 lttng_pipe_destroy(ctx->consumer_data_pipe);
1325 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1326 utils_close_pipe(ctx->consumer_should_quit);
1327 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1328
1329 unlink(ctx->consumer_command_sock_path);
1330 free(ctx);
1331 }
1332
1333 /*
1334 * Write the metadata stream id on the specified file descriptor.
1335 */
1336 static int write_relayd_metadata_id(int fd,
1337 struct lttng_consumer_stream *stream,
1338 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1339 {
1340 int ret;
1341 struct lttcomm_relayd_metadata_payload hdr;
1342
1343 hdr.stream_id = htobe64(stream->relayd_stream_id);
1344 hdr.padding_size = htobe32(padding);
1345 do {
1346 ret = write(fd, (void *) &hdr, sizeof(hdr));
1347 } while (ret < 0 && errno == EINTR);
1348 if (ret < 0 || ret != sizeof(hdr)) {
1349 /*
1350 * This error means that the fd's end is closed so ignore the perror
1351 * not to clubber the error output since this can happen in a normal
1352 * code path.
1353 */
1354 if (errno != EPIPE) {
1355 PERROR("write metadata stream id");
1356 }
1357 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1358 /*
1359 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1360 * handle writting the missing part so report that as an error and
1361 * don't lie to the caller.
1362 */
1363 ret = -1;
1364 goto end;
1365 }
1366 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1367 stream->relayd_stream_id, padding);
1368
1369 end:
1370 return ret;
1371 }
1372
1373 /*
1374 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1375 * core function for writing trace buffers to either the local filesystem or
1376 * the network.
1377 *
1378 * It must be called with the stream lock held.
1379 *
1380 * Careful review MUST be put if any changes occur!
1381 *
1382 * Returns the number of bytes written
1383 */
1384 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1385 struct lttng_consumer_local_data *ctx,
1386 struct lttng_consumer_stream *stream, unsigned long len,
1387 unsigned long padding)
1388 {
1389 unsigned long mmap_offset;
1390 void *mmap_base;
1391 ssize_t ret = 0, written = 0;
1392 off_t orig_offset = stream->out_fd_offset;
1393 /* Default is on the disk */
1394 int outfd = stream->out_fd;
1395 struct consumer_relayd_sock_pair *relayd = NULL;
1396 unsigned int relayd_hang_up = 0;
1397
1398 /* RCU lock for the relayd pointer */
1399 rcu_read_lock();
1400
1401 /* Flag that the current stream if set for network streaming. */
1402 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1403 relayd = consumer_find_relayd(stream->net_seq_idx);
1404 if (relayd == NULL) {
1405 ret = -EPIPE;
1406 goto end;
1407 }
1408 }
1409
1410 /* get the offset inside the fd to mmap */
1411 switch (consumer_data.type) {
1412 case LTTNG_CONSUMER_KERNEL:
1413 mmap_base = stream->mmap_base;
1414 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1415 if (ret != 0) {
1416 PERROR("tracer ctl get_mmap_read_offset");
1417 written = -errno;
1418 goto end;
1419 }
1420 break;
1421 case LTTNG_CONSUMER32_UST:
1422 case LTTNG_CONSUMER64_UST:
1423 mmap_base = lttng_ustctl_get_mmap_base(stream);
1424 if (!mmap_base) {
1425 ERR("read mmap get mmap base for stream %s", stream->name);
1426 written = -EPERM;
1427 goto end;
1428 }
1429 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1430 if (ret != 0) {
1431 PERROR("tracer ctl get_mmap_read_offset");
1432 written = ret;
1433 goto end;
1434 }
1435 break;
1436 default:
1437 ERR("Unknown consumer_data type");
1438 assert(0);
1439 }
1440
1441 /* Handle stream on the relayd if the output is on the network */
1442 if (relayd) {
1443 unsigned long netlen = len;
1444
1445 /*
1446 * Lock the control socket for the complete duration of the function
1447 * since from this point on we will use the socket.
1448 */
1449 if (stream->metadata_flag) {
1450 /* Metadata requires the control socket. */
1451 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1452 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1453 }
1454
1455 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1456 if (ret >= 0) {
1457 /* Use the returned socket. */
1458 outfd = ret;
1459
1460 /* Write metadata stream id before payload */
1461 if (stream->metadata_flag) {
1462 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1463 if (ret < 0) {
1464 written = ret;
1465 /* Socket operation failed. We consider the relayd dead */
1466 if (ret == -EPIPE || ret == -EINVAL) {
1467 relayd_hang_up = 1;
1468 goto write_error;
1469 }
1470 goto end;
1471 }
1472 }
1473 } else {
1474 /* Socket operation failed. We consider the relayd dead */
1475 if (ret == -EPIPE || ret == -EINVAL) {
1476 relayd_hang_up = 1;
1477 goto write_error;
1478 }
1479 /* Else, use the default set before which is the filesystem. */
1480 }
1481 } else {
1482 /* No streaming, we have to set the len with the full padding */
1483 len += padding;
1484
1485 /*
1486 * Check if we need to change the tracefile before writing the packet.
1487 */
1488 if (stream->chan->tracefile_size > 0 &&
1489 (stream->tracefile_size_current + len) >
1490 stream->chan->tracefile_size) {
1491 ret = utils_rotate_stream_file(stream->chan->pathname,
1492 stream->name, stream->chan->tracefile_size,
1493 stream->chan->tracefile_count, stream->uid, stream->gid,
1494 stream->out_fd, &(stream->tracefile_count_current));
1495 if (ret < 0) {
1496 ERR("Rotating output file");
1497 goto end;
1498 }
1499 outfd = stream->out_fd = ret;
1500 /* Reset current size because we just perform a rotation. */
1501 stream->tracefile_size_current = 0;
1502 stream->out_fd_offset = 0;
1503 orig_offset = 0;
1504 }
1505 stream->tracefile_size_current += len;
1506 }
1507
1508 while (len > 0) {
1509 do {
1510 ret = write(outfd, mmap_base + mmap_offset, len);
1511 } while (ret < 0 && errno == EINTR);
1512 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1513 if (ret < 0) {
1514 /*
1515 * This is possible if the fd is closed on the other side (outfd)
1516 * or any write problem. It can be verbose a bit for a normal
1517 * execution if for instance the relayd is stopped abruptly. This
1518 * can happen so set this to a DBG statement.
1519 */
1520 DBG("Error in file write mmap");
1521 if (written == 0) {
1522 written = -errno;
1523 }
1524 /* Socket operation failed. We consider the relayd dead */
1525 if (errno == EPIPE || errno == EINVAL) {
1526 relayd_hang_up = 1;
1527 goto write_error;
1528 }
1529 goto end;
1530 } else if (ret > len) {
1531 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1532 written += ret;
1533 goto end;
1534 } else {
1535 len -= ret;
1536 mmap_offset += ret;
1537 }
1538
1539 /* This call is useless on a socket so better save a syscall. */
1540 if (!relayd) {
1541 /* This won't block, but will start writeout asynchronously */
1542 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1543 SYNC_FILE_RANGE_WRITE);
1544 stream->out_fd_offset += ret;
1545 }
1546 stream->output_written += ret;
1547 written += ret;
1548 }
1549 lttng_consumer_sync_trace_file(stream, orig_offset);
1550
1551 write_error:
1552 /*
1553 * This is a special case that the relayd has closed its socket. Let's
1554 * cleanup the relayd object and all associated streams.
1555 */
1556 if (relayd && relayd_hang_up) {
1557 cleanup_relayd(relayd, ctx);
1558 }
1559
1560 end:
1561 /* Unlock only if ctrl socket used */
1562 if (relayd && stream->metadata_flag) {
1563 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1564 }
1565
1566 rcu_read_unlock();
1567 return written;
1568 }
1569
1570 /*
1571 * Splice the data from the ring buffer to the tracefile.
1572 *
1573 * It must be called with the stream lock held.
1574 *
1575 * Returns the number of bytes spliced.
1576 */
1577 ssize_t lttng_consumer_on_read_subbuffer_splice(
1578 struct lttng_consumer_local_data *ctx,
1579 struct lttng_consumer_stream *stream, unsigned long len,
1580 unsigned long padding)
1581 {
1582 ssize_t ret = 0, written = 0, ret_splice = 0;
1583 loff_t offset = 0;
1584 off_t orig_offset = stream->out_fd_offset;
1585 int fd = stream->wait_fd;
1586 /* Default is on the disk */
1587 int outfd = stream->out_fd;
1588 struct consumer_relayd_sock_pair *relayd = NULL;
1589 int *splice_pipe;
1590 unsigned int relayd_hang_up = 0;
1591
1592 switch (consumer_data.type) {
1593 case LTTNG_CONSUMER_KERNEL:
1594 break;
1595 case LTTNG_CONSUMER32_UST:
1596 case LTTNG_CONSUMER64_UST:
1597 /* Not supported for user space tracing */
1598 return -ENOSYS;
1599 default:
1600 ERR("Unknown consumer_data type");
1601 assert(0);
1602 }
1603
1604 /* RCU lock for the relayd pointer */
1605 rcu_read_lock();
1606
1607 /* Flag that the current stream if set for network streaming. */
1608 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1609 relayd = consumer_find_relayd(stream->net_seq_idx);
1610 if (relayd == NULL) {
1611 ret = -EPIPE;
1612 goto end;
1613 }
1614 }
1615
1616 /*
1617 * Choose right pipe for splice. Metadata and trace data are handled by
1618 * different threads hence the use of two pipes in order not to race or
1619 * corrupt the written data.
1620 */
1621 if (stream->metadata_flag) {
1622 splice_pipe = ctx->consumer_splice_metadata_pipe;
1623 } else {
1624 splice_pipe = ctx->consumer_thread_pipe;
1625 }
1626
1627 /* Write metadata stream id before payload */
1628 if (relayd) {
1629 int total_len = len;
1630
1631 if (stream->metadata_flag) {
1632 /*
1633 * Lock the control socket for the complete duration of the function
1634 * since from this point on we will use the socket.
1635 */
1636 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1637
1638 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1639 padding);
1640 if (ret < 0) {
1641 written = ret;
1642 /* Socket operation failed. We consider the relayd dead */
1643 if (ret == -EBADF) {
1644 WARN("Remote relayd disconnected. Stopping");
1645 relayd_hang_up = 1;
1646 goto write_error;
1647 }
1648 goto end;
1649 }
1650
1651 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1652 }
1653
1654 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1655 if (ret >= 0) {
1656 /* Use the returned socket. */
1657 outfd = ret;
1658 } else {
1659 /* Socket operation failed. We consider the relayd dead */
1660 if (ret == -EBADF) {
1661 WARN("Remote relayd disconnected. Stopping");
1662 relayd_hang_up = 1;
1663 goto write_error;
1664 }
1665 goto end;
1666 }
1667 } else {
1668 /* No streaming, we have to set the len with the full padding */
1669 len += padding;
1670
1671 /*
1672 * Check if we need to change the tracefile before writing the packet.
1673 */
1674 if (stream->chan->tracefile_size > 0 &&
1675 (stream->tracefile_size_current + len) >
1676 stream->chan->tracefile_size) {
1677 ret = utils_rotate_stream_file(stream->chan->pathname,
1678 stream->name, stream->chan->tracefile_size,
1679 stream->chan->tracefile_count, stream->uid, stream->gid,
1680 stream->out_fd, &(stream->tracefile_count_current));
1681 if (ret < 0) {
1682 ERR("Rotating output file");
1683 goto end;
1684 }
1685 outfd = stream->out_fd = ret;
1686 /* Reset current size because we just perform a rotation. */
1687 stream->tracefile_size_current = 0;
1688 stream->out_fd_offset = 0;
1689 orig_offset = 0;
1690 }
1691 stream->tracefile_size_current += len;
1692 }
1693
1694 while (len > 0) {
1695 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1696 (unsigned long)offset, len, fd, splice_pipe[1]);
1697 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1698 SPLICE_F_MOVE | SPLICE_F_MORE);
1699 DBG("splice chan to pipe, ret %zd", ret_splice);
1700 if (ret_splice < 0) {
1701 PERROR("Error in relay splice");
1702 if (written == 0) {
1703 written = ret_splice;
1704 }
1705 ret = errno;
1706 goto splice_error;
1707 }
1708
1709 /* Handle stream on the relayd if the output is on the network */
1710 if (relayd) {
1711 if (stream->metadata_flag) {
1712 size_t metadata_payload_size =
1713 sizeof(struct lttcomm_relayd_metadata_payload);
1714
1715 /* Update counter to fit the spliced data */
1716 ret_splice += metadata_payload_size;
1717 len += metadata_payload_size;
1718 /*
1719 * We do this so the return value can match the len passed as
1720 * argument to this function.
1721 */
1722 written -= metadata_payload_size;
1723 }
1724 }
1725
1726 /* Splice data out */
1727 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1728 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1729 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1730 if (ret_splice < 0) {
1731 PERROR("Error in file splice");
1732 if (written == 0) {
1733 written = ret_splice;
1734 }
1735 /* Socket operation failed. We consider the relayd dead */
1736 if (errno == EBADF || errno == EPIPE) {
1737 WARN("Remote relayd disconnected. Stopping");
1738 relayd_hang_up = 1;
1739 goto write_error;
1740 }
1741 ret = errno;
1742 goto splice_error;
1743 } else if (ret_splice > len) {
1744 errno = EINVAL;
1745 PERROR("Wrote more data than requested %zd (len: %lu)",
1746 ret_splice, len);
1747 written += ret_splice;
1748 ret = errno;
1749 goto splice_error;
1750 }
1751 len -= ret_splice;
1752
1753 /* This call is useless on a socket so better save a syscall. */
1754 if (!relayd) {
1755 /* This won't block, but will start writeout asynchronously */
1756 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1757 SYNC_FILE_RANGE_WRITE);
1758 stream->out_fd_offset += ret_splice;
1759 }
1760 stream->output_written += ret_splice;
1761 written += ret_splice;
1762 }
1763 lttng_consumer_sync_trace_file(stream, orig_offset);
1764
1765 ret = ret_splice;
1766
1767 goto end;
1768
1769 write_error:
1770 /*
1771 * This is a special case that the relayd has closed its socket. Let's
1772 * cleanup the relayd object and all associated streams.
1773 */
1774 if (relayd && relayd_hang_up) {
1775 cleanup_relayd(relayd, ctx);
1776 /* Skip splice error so the consumer does not fail */
1777 goto end;
1778 }
1779
1780 splice_error:
1781 /* send the appropriate error description to sessiond */
1782 switch (ret) {
1783 case EINVAL:
1784 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1785 break;
1786 case ENOMEM:
1787 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1788 break;
1789 case ESPIPE:
1790 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1791 break;
1792 }
1793
1794 end:
1795 if (relayd && stream->metadata_flag) {
1796 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1797 }
1798
1799 rcu_read_unlock();
1800 return written;
1801 }
1802
1803 /*
1804 * Take a snapshot for a specific fd
1805 *
1806 * Returns 0 on success, < 0 on error
1807 */
1808 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1809 {
1810 switch (consumer_data.type) {
1811 case LTTNG_CONSUMER_KERNEL:
1812 return lttng_kconsumer_take_snapshot(stream);
1813 case LTTNG_CONSUMER32_UST:
1814 case LTTNG_CONSUMER64_UST:
1815 return lttng_ustconsumer_take_snapshot(stream);
1816 default:
1817 ERR("Unknown consumer_data type");
1818 assert(0);
1819 return -ENOSYS;
1820 }
1821 }
1822
1823 /*
1824 * Get the produced position
1825 *
1826 * Returns 0 on success, < 0 on error
1827 */
1828 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1829 unsigned long *pos)
1830 {
1831 switch (consumer_data.type) {
1832 case LTTNG_CONSUMER_KERNEL:
1833 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1834 case LTTNG_CONSUMER32_UST:
1835 case LTTNG_CONSUMER64_UST:
1836 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1837 default:
1838 ERR("Unknown consumer_data type");
1839 assert(0);
1840 return -ENOSYS;
1841 }
1842 }
1843
1844 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1845 int sock, struct pollfd *consumer_sockpoll)
1846 {
1847 switch (consumer_data.type) {
1848 case LTTNG_CONSUMER_KERNEL:
1849 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1850 case LTTNG_CONSUMER32_UST:
1851 case LTTNG_CONSUMER64_UST:
1852 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1853 default:
1854 ERR("Unknown consumer_data type");
1855 assert(0);
1856 return -ENOSYS;
1857 }
1858 }
1859
1860 void lttng_consumer_close_metadata(void)
1861 {
1862 switch (consumer_data.type) {
1863 case LTTNG_CONSUMER_KERNEL:
1864 /*
1865 * The Kernel consumer has a different metadata scheme so we don't
1866 * close anything because the stream will be closed by the session
1867 * daemon.
1868 */
1869 break;
1870 case LTTNG_CONSUMER32_UST:
1871 case LTTNG_CONSUMER64_UST:
1872 /*
1873 * Close all metadata streams. The metadata hash table is passed and
1874 * this call iterates over it by closing all wakeup fd. This is safe
1875 * because at this point we are sure that the metadata producer is
1876 * either dead or blocked.
1877 */
1878 lttng_ustconsumer_close_metadata(metadata_ht);
1879 break;
1880 default:
1881 ERR("Unknown consumer_data type");
1882 assert(0);
1883 }
1884 }
1885
1886 /*
1887 * Clean up a metadata stream and free its memory.
1888 */
1889 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1890 struct lttng_ht *ht)
1891 {
1892 int ret;
1893 struct lttng_ht_iter iter;
1894 struct lttng_consumer_channel *free_chan = NULL;
1895 struct consumer_relayd_sock_pair *relayd;
1896
1897 assert(stream);
1898 /*
1899 * This call should NEVER receive regular stream. It must always be
1900 * metadata stream and this is crucial for data structure synchronization.
1901 */
1902 assert(stream->metadata_flag);
1903
1904 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1905
1906 if (ht == NULL) {
1907 /* Means the stream was allocated but not successfully added */
1908 goto free_stream_rcu;
1909 }
1910
1911 pthread_mutex_lock(&consumer_data.lock);
1912 pthread_mutex_lock(&stream->chan->lock);
1913 pthread_mutex_lock(&stream->lock);
1914
1915 switch (consumer_data.type) {
1916 case LTTNG_CONSUMER_KERNEL:
1917 if (stream->mmap_base != NULL) {
1918 ret = munmap(stream->mmap_base, stream->mmap_len);
1919 if (ret != 0) {
1920 PERROR("munmap metadata stream");
1921 }
1922 }
1923 if (stream->wait_fd >= 0) {
1924 ret = close(stream->wait_fd);
1925 if (ret < 0) {
1926 PERROR("close kernel metadata wait_fd");
1927 }
1928 }
1929 break;
1930 case LTTNG_CONSUMER32_UST:
1931 case LTTNG_CONSUMER64_UST:
1932 if (stream->monitor) {
1933 /* close the write-side in close_metadata */
1934 ret = close(stream->ust_metadata_poll_pipe[0]);
1935 if (ret < 0) {
1936 PERROR("Close UST metadata read-side poll pipe");
1937 }
1938 }
1939 lttng_ustconsumer_del_stream(stream);
1940 break;
1941 default:
1942 ERR("Unknown consumer_data type");
1943 assert(0);
1944 goto end;
1945 }
1946
1947 rcu_read_lock();
1948 iter.iter.node = &stream->node.node;
1949 ret = lttng_ht_del(ht, &iter);
1950 assert(!ret);
1951
1952 iter.iter.node = &stream->node_channel_id.node;
1953 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1954 assert(!ret);
1955
1956 iter.iter.node = &stream->node_session_id.node;
1957 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1958 assert(!ret);
1959 rcu_read_unlock();
1960
1961 if (stream->out_fd >= 0) {
1962 ret = close(stream->out_fd);
1963 if (ret) {
1964 PERROR("close");
1965 }
1966 }
1967
1968 /* Check and cleanup relayd */
1969 rcu_read_lock();
1970 relayd = consumer_find_relayd(stream->net_seq_idx);
1971 if (relayd != NULL) {
1972 uatomic_dec(&relayd->refcount);
1973 assert(uatomic_read(&relayd->refcount) >= 0);
1974
1975 /* Closing streams requires to lock the control socket. */
1976 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1977 ret = relayd_send_close_stream(&relayd->control_sock,
1978 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1979 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1980 if (ret < 0) {
1981 DBG("Unable to close stream on the relayd. Continuing");
1982 /*
1983 * Continue here. There is nothing we can do for the relayd.
1984 * Chances are that the relayd has closed the socket so we just
1985 * continue cleaning up.
1986 */
1987 }
1988
1989 /* Both conditions are met, we destroy the relayd. */
1990 if (uatomic_read(&relayd->refcount) == 0 &&
1991 uatomic_read(&relayd->destroy_flag)) {
1992 consumer_destroy_relayd(relayd);
1993 }
1994 }
1995 rcu_read_unlock();
1996
1997 /* Atomically decrement channel refcount since other threads can use it. */
1998 if (!uatomic_sub_return(&stream->chan->refcount, 1)
1999 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2000 /* Go for channel deletion! */
2001 free_chan = stream->chan;
2002 }
2003
2004 end:
2005 /*
2006 * Nullify the stream reference so it is not used after deletion. The
2007 * channel lock MUST be acquired before being able to check for
2008 * a NULL pointer value.
2009 */
2010 stream->chan->metadata_stream = NULL;
2011
2012 pthread_mutex_unlock(&stream->lock);
2013 pthread_mutex_unlock(&stream->chan->lock);
2014 pthread_mutex_unlock(&consumer_data.lock);
2015
2016 if (free_chan) {
2017 consumer_del_channel(free_chan);
2018 }
2019
2020 free_stream_rcu:
2021 call_rcu(&stream->node.head, free_stream_rcu);
2022 }
2023
2024 /*
2025 * Action done with the metadata stream when adding it to the consumer internal
2026 * data structures to handle it.
2027 */
2028 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2029 {
2030 struct lttng_ht *ht = metadata_ht;
2031 int ret = 0;
2032 struct lttng_ht_iter iter;
2033 struct lttng_ht_node_u64 *node;
2034
2035 assert(stream);
2036 assert(ht);
2037
2038 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2039
2040 pthread_mutex_lock(&consumer_data.lock);
2041 pthread_mutex_lock(&stream->chan->lock);
2042 pthread_mutex_lock(&stream->chan->timer_lock);
2043 pthread_mutex_lock(&stream->lock);
2044
2045 /*
2046 * From here, refcounts are updated so be _careful_ when returning an error
2047 * after this point.
2048 */
2049
2050 rcu_read_lock();
2051
2052 /*
2053 * Lookup the stream just to make sure it does not exist in our internal
2054 * state. This should NEVER happen.
2055 */
2056 lttng_ht_lookup(ht, &stream->key, &iter);
2057 node = lttng_ht_iter_get_node_u64(&iter);
2058 assert(!node);
2059
2060 /*
2061 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2062 * in terms of destroying the associated channel, because the action that
2063 * causes the count to become 0 also causes a stream to be added. The
2064 * channel deletion will thus be triggered by the following removal of this
2065 * stream.
2066 */
2067 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2068 /* Increment refcount before decrementing nb_init_stream_left */
2069 cmm_smp_wmb();
2070 uatomic_dec(&stream->chan->nb_init_stream_left);
2071 }
2072
2073 lttng_ht_add_unique_u64(ht, &stream->node);
2074
2075 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2076 &stream->node_channel_id);
2077
2078 /*
2079 * Add stream to the stream_list_ht of the consumer data. No need to steal
2080 * the key since the HT does not use it and we allow to add redundant keys
2081 * into this table.
2082 */
2083 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2084
2085 rcu_read_unlock();
2086
2087 pthread_mutex_unlock(&stream->lock);
2088 pthread_mutex_unlock(&stream->chan->lock);
2089 pthread_mutex_unlock(&stream->chan->timer_lock);
2090 pthread_mutex_unlock(&consumer_data.lock);
2091 return ret;
2092 }
2093
2094 /*
2095 * Delete data stream that are flagged for deletion (endpoint_status).
2096 */
2097 static void validate_endpoint_status_data_stream(void)
2098 {
2099 struct lttng_ht_iter iter;
2100 struct lttng_consumer_stream *stream;
2101
2102 DBG("Consumer delete flagged data stream");
2103
2104 rcu_read_lock();
2105 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2106 /* Validate delete flag of the stream */
2107 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2108 continue;
2109 }
2110 /* Delete it right now */
2111 consumer_del_stream(stream, data_ht);
2112 }
2113 rcu_read_unlock();
2114 }
2115
2116 /*
2117 * Delete metadata stream that are flagged for deletion (endpoint_status).
2118 */
2119 static void validate_endpoint_status_metadata_stream(
2120 struct lttng_poll_event *pollset)
2121 {
2122 struct lttng_ht_iter iter;
2123 struct lttng_consumer_stream *stream;
2124
2125 DBG("Consumer delete flagged metadata stream");
2126
2127 assert(pollset);
2128
2129 rcu_read_lock();
2130 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2131 /* Validate delete flag of the stream */
2132 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2133 continue;
2134 }
2135 /*
2136 * Remove from pollset so the metadata thread can continue without
2137 * blocking on a deleted stream.
2138 */
2139 lttng_poll_del(pollset, stream->wait_fd);
2140
2141 /* Delete it right now */
2142 consumer_del_metadata_stream(stream, metadata_ht);
2143 }
2144 rcu_read_unlock();
2145 }
2146
2147 /*
2148 * Thread polls on metadata file descriptor and write them on disk or on the
2149 * network.
2150 */
2151 void *consumer_thread_metadata_poll(void *data)
2152 {
2153 int ret, i, pollfd;
2154 uint32_t revents, nb_fd;
2155 struct lttng_consumer_stream *stream = NULL;
2156 struct lttng_ht_iter iter;
2157 struct lttng_ht_node_u64 *node;
2158 struct lttng_poll_event events;
2159 struct lttng_consumer_local_data *ctx = data;
2160 ssize_t len;
2161
2162 rcu_register_thread();
2163
2164 DBG("Thread metadata poll started");
2165
2166 /* Size is set to 1 for the consumer_metadata pipe */
2167 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2168 if (ret < 0) {
2169 ERR("Poll set creation failed");
2170 goto end_poll;
2171 }
2172
2173 ret = lttng_poll_add(&events,
2174 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2175 if (ret < 0) {
2176 goto end;
2177 }
2178
2179 /* Main loop */
2180 DBG("Metadata main loop started");
2181
2182 while (1) {
2183 /* Only the metadata pipe is set */
2184 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2185 goto end;
2186 }
2187
2188 restart:
2189 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2190 ret = lttng_poll_wait(&events, -1);
2191 DBG("Metadata event catched in thread");
2192 if (ret < 0) {
2193 if (errno == EINTR) {
2194 ERR("Poll EINTR catched");
2195 goto restart;
2196 }
2197 goto error;
2198 }
2199
2200 nb_fd = ret;
2201
2202 /* From here, the event is a metadata wait fd */
2203 for (i = 0; i < nb_fd; i++) {
2204 revents = LTTNG_POLL_GETEV(&events, i);
2205 pollfd = LTTNG_POLL_GETFD(&events, i);
2206
2207 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2208 if (revents & (LPOLLERR | LPOLLHUP )) {
2209 DBG("Metadata thread pipe hung up");
2210 /*
2211 * Remove the pipe from the poll set and continue the loop
2212 * since their might be data to consume.
2213 */
2214 lttng_poll_del(&events,
2215 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2216 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2217 continue;
2218 } else if (revents & LPOLLIN) {
2219 ssize_t pipe_len;
2220
2221 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2222 &stream, sizeof(stream));
2223 if (pipe_len < 0) {
2224 ERR("read metadata stream, ret: %zd", pipe_len);
2225 /*
2226 * Continue here to handle the rest of the streams.
2227 */
2228 continue;
2229 }
2230
2231 /* A NULL stream means that the state has changed. */
2232 if (stream == NULL) {
2233 /* Check for deleted streams. */
2234 validate_endpoint_status_metadata_stream(&events);
2235 goto restart;
2236 }
2237
2238 DBG("Adding metadata stream %d to poll set",
2239 stream->wait_fd);
2240
2241 /* Add metadata stream to the global poll events list */
2242 lttng_poll_add(&events, stream->wait_fd,
2243 LPOLLIN | LPOLLPRI);
2244 }
2245
2246 /* Handle other stream */
2247 continue;
2248 }
2249
2250 rcu_read_lock();
2251 {
2252 uint64_t tmp_id = (uint64_t) pollfd;
2253
2254 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2255 }
2256 node = lttng_ht_iter_get_node_u64(&iter);
2257 assert(node);
2258
2259 stream = caa_container_of(node, struct lttng_consumer_stream,
2260 node);
2261
2262 /* Check for error event */
2263 if (revents & (LPOLLERR | LPOLLHUP)) {
2264 DBG("Metadata fd %d is hup|err.", pollfd);
2265 if (!stream->hangup_flush_done
2266 && (consumer_data.type == LTTNG_CONSUMER32_UST
2267 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2268 DBG("Attempting to flush and consume the UST buffers");
2269 lttng_ustconsumer_on_stream_hangup(stream);
2270
2271 /* We just flushed the stream now read it. */
2272 do {
2273 len = ctx->on_buffer_ready(stream, ctx);
2274 /*
2275 * We don't check the return value here since if we get
2276 * a negative len, it means an error occured thus we
2277 * simply remove it from the poll set and free the
2278 * stream.
2279 */
2280 } while (len > 0);
2281 }
2282
2283 lttng_poll_del(&events, stream->wait_fd);
2284 /*
2285 * This call update the channel states, closes file descriptors
2286 * and securely free the stream.
2287 */
2288 consumer_del_metadata_stream(stream, metadata_ht);
2289 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2290 /* Get the data out of the metadata file descriptor */
2291 DBG("Metadata available on fd %d", pollfd);
2292 assert(stream->wait_fd == pollfd);
2293
2294 do {
2295 len = ctx->on_buffer_ready(stream, ctx);
2296 /*
2297 * We don't check the return value here since if we get
2298 * a negative len, it means an error occured thus we
2299 * simply remove it from the poll set and free the
2300 * stream.
2301 */
2302 } while (len > 0);
2303
2304 /* It's ok to have an unavailable sub-buffer */
2305 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2306 /* Clean up stream from consumer and free it. */
2307 lttng_poll_del(&events, stream->wait_fd);
2308 consumer_del_metadata_stream(stream, metadata_ht);
2309 }
2310 }
2311
2312 /* Release RCU lock for the stream looked up */
2313 rcu_read_unlock();
2314 }
2315 }
2316
2317 error:
2318 end:
2319 DBG("Metadata poll thread exiting");
2320
2321 lttng_poll_clean(&events);
2322 end_poll:
2323 rcu_unregister_thread();
2324 return NULL;
2325 }
2326
2327 /*
2328 * This thread polls the fds in the set to consume the data and write
2329 * it to tracefile if necessary.
2330 */
2331 void *consumer_thread_data_poll(void *data)
2332 {
2333 int num_rdy, num_hup, high_prio, ret, i;
2334 struct pollfd *pollfd = NULL;
2335 /* local view of the streams */
2336 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2337 /* local view of consumer_data.fds_count */
2338 int nb_fd = 0;
2339 struct lttng_consumer_local_data *ctx = data;
2340 ssize_t len;
2341
2342 rcu_register_thread();
2343
2344 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2345 if (local_stream == NULL) {
2346 PERROR("local_stream malloc");
2347 goto end;
2348 }
2349
2350 while (1) {
2351 high_prio = 0;
2352 num_hup = 0;
2353
2354 /*
2355 * the fds set has been updated, we need to update our
2356 * local array as well
2357 */
2358 pthread_mutex_lock(&consumer_data.lock);
2359 if (consumer_data.need_update) {
2360 free(pollfd);
2361 pollfd = NULL;
2362
2363 free(local_stream);
2364 local_stream = NULL;
2365
2366 /* allocate for all fds + 1 for the consumer_data_pipe */
2367 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2368 if (pollfd == NULL) {
2369 PERROR("pollfd malloc");
2370 pthread_mutex_unlock(&consumer_data.lock);
2371 goto end;
2372 }
2373
2374 /* allocate for all fds + 1 for the consumer_data_pipe */
2375 local_stream = zmalloc((consumer_data.stream_count + 1) *
2376 sizeof(struct lttng_consumer_stream *));
2377 if (local_stream == NULL) {
2378 PERROR("local_stream malloc");
2379 pthread_mutex_unlock(&consumer_data.lock);
2380 goto end;
2381 }
2382 ret = update_poll_array(ctx, &pollfd, local_stream,
2383 data_ht);
2384 if (ret < 0) {
2385 ERR("Error in allocating pollfd or local_outfds");
2386 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2387 pthread_mutex_unlock(&consumer_data.lock);
2388 goto end;
2389 }
2390 nb_fd = ret;
2391 consumer_data.need_update = 0;
2392 }
2393 pthread_mutex_unlock(&consumer_data.lock);
2394
2395 /* No FDs and consumer_quit, consumer_cleanup the thread */
2396 if (nb_fd == 0 && consumer_quit == 1) {
2397 goto end;
2398 }
2399 /* poll on the array of fds */
2400 restart:
2401 DBG("polling on %d fd", nb_fd + 1);
2402 num_rdy = poll(pollfd, nb_fd + 1, -1);
2403 DBG("poll num_rdy : %d", num_rdy);
2404 if (num_rdy == -1) {
2405 /*
2406 * Restart interrupted system call.
2407 */
2408 if (errno == EINTR) {
2409 goto restart;
2410 }
2411 PERROR("Poll error");
2412 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2413 goto end;
2414 } else if (num_rdy == 0) {
2415 DBG("Polling thread timed out");
2416 goto end;
2417 }
2418
2419 /*
2420 * If the consumer_data_pipe triggered poll go directly to the
2421 * beginning of the loop to update the array. We want to prioritize
2422 * array update over low-priority reads.
2423 */
2424 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2425 ssize_t pipe_readlen;
2426
2427 DBG("consumer_data_pipe wake up");
2428 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2429 &new_stream, sizeof(new_stream));
2430 if (pipe_readlen < 0) {
2431 ERR("Consumer data pipe ret %zd", pipe_readlen);
2432 /* Continue so we can at least handle the current stream(s). */
2433 continue;
2434 }
2435
2436 /*
2437 * If the stream is NULL, just ignore it. It's also possible that
2438 * the sessiond poll thread changed the consumer_quit state and is
2439 * waking us up to test it.
2440 */
2441 if (new_stream == NULL) {
2442 validate_endpoint_status_data_stream();
2443 continue;
2444 }
2445
2446 /* Continue to update the local streams and handle prio ones */
2447 continue;
2448 }
2449
2450 /* Take care of high priority channels first. */
2451 for (i = 0; i < nb_fd; i++) {
2452 if (local_stream[i] == NULL) {
2453 continue;
2454 }
2455 if (pollfd[i].revents & POLLPRI) {
2456 DBG("Urgent read on fd %d", pollfd[i].fd);
2457 high_prio = 1;
2458 len = ctx->on_buffer_ready(local_stream[i], ctx);
2459 /* it's ok to have an unavailable sub-buffer */
2460 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2461 /* Clean the stream and free it. */
2462 consumer_del_stream(local_stream[i], data_ht);
2463 local_stream[i] = NULL;
2464 } else if (len > 0) {
2465 local_stream[i]->data_read = 1;
2466 }
2467 }
2468 }
2469
2470 /*
2471 * If we read high prio channel in this loop, try again
2472 * for more high prio data.
2473 */
2474 if (high_prio) {
2475 continue;
2476 }
2477
2478 /* Take care of low priority channels. */
2479 for (i = 0; i < nb_fd; i++) {
2480 if (local_stream[i] == NULL) {
2481 continue;
2482 }
2483 if ((pollfd[i].revents & POLLIN) ||
2484 local_stream[i]->hangup_flush_done) {
2485 DBG("Normal read on fd %d", pollfd[i].fd);
2486 len = ctx->on_buffer_ready(local_stream[i], ctx);
2487 /* it's ok to have an unavailable sub-buffer */
2488 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2489 /* Clean the stream and free it. */
2490 consumer_del_stream(local_stream[i], data_ht);
2491 local_stream[i] = NULL;
2492 } else if (len > 0) {
2493 local_stream[i]->data_read = 1;
2494 }
2495 }
2496 }
2497
2498 /* Handle hangup and errors */
2499 for (i = 0; i < nb_fd; i++) {
2500 if (local_stream[i] == NULL) {
2501 continue;
2502 }
2503 if (!local_stream[i]->hangup_flush_done
2504 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2505 && (consumer_data.type == LTTNG_CONSUMER32_UST
2506 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2507 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2508 pollfd[i].fd);
2509 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2510 /* Attempt read again, for the data we just flushed. */
2511 local_stream[i]->data_read = 1;
2512 }
2513 /*
2514 * If the poll flag is HUP/ERR/NVAL and we have
2515 * read no data in this pass, we can remove the
2516 * stream from its hash table.
2517 */
2518 if ((pollfd[i].revents & POLLHUP)) {
2519 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2520 if (!local_stream[i]->data_read) {
2521 consumer_del_stream(local_stream[i], data_ht);
2522 local_stream[i] = NULL;
2523 num_hup++;
2524 }
2525 } else if (pollfd[i].revents & POLLERR) {
2526 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2527 if (!local_stream[i]->data_read) {
2528 consumer_del_stream(local_stream[i], data_ht);
2529 local_stream[i] = NULL;
2530 num_hup++;
2531 }
2532 } else if (pollfd[i].revents & POLLNVAL) {
2533 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2534 if (!local_stream[i]->data_read) {
2535 consumer_del_stream(local_stream[i], data_ht);
2536 local_stream[i] = NULL;
2537 num_hup++;
2538 }
2539 }
2540 if (local_stream[i] != NULL) {
2541 local_stream[i]->data_read = 0;
2542 }
2543 }
2544 }
2545 end:
2546 DBG("polling thread exiting");
2547 free(pollfd);
2548 free(local_stream);
2549
2550 /*
2551 * Close the write side of the pipe so epoll_wait() in
2552 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2553 * read side of the pipe. If we close them both, epoll_wait strangely does
2554 * not return and could create a endless wait period if the pipe is the
2555 * only tracked fd in the poll set. The thread will take care of closing
2556 * the read side.
2557 */
2558 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2559
2560 rcu_unregister_thread();
2561 return NULL;
2562 }
2563
2564 /*
2565 * Close wake-up end of each stream belonging to the channel. This will
2566 * allow the poll() on the stream read-side to detect when the
2567 * write-side (application) finally closes them.
2568 */
2569 static
2570 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2571 {
2572 struct lttng_ht *ht;
2573 struct lttng_consumer_stream *stream;
2574 struct lttng_ht_iter iter;
2575
2576 ht = consumer_data.stream_per_chan_id_ht;
2577
2578 rcu_read_lock();
2579 cds_lfht_for_each_entry_duplicate(ht->ht,
2580 ht->hash_fct(&channel->key, lttng_ht_seed),
2581 ht->match_fct, &channel->key,
2582 &iter.iter, stream, node_channel_id.node) {
2583 /*
2584 * Protect against teardown with mutex.
2585 */
2586 pthread_mutex_lock(&stream->lock);
2587 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2588 goto next;
2589 }
2590 switch (consumer_data.type) {
2591 case LTTNG_CONSUMER_KERNEL:
2592 break;
2593 case LTTNG_CONSUMER32_UST:
2594 case LTTNG_CONSUMER64_UST:
2595 /*
2596 * Note: a mutex is taken internally within
2597 * liblttng-ust-ctl to protect timer wakeup_fd
2598 * use from concurrent close.
2599 */
2600 lttng_ustconsumer_close_stream_wakeup(stream);
2601 break;
2602 default:
2603 ERR("Unknown consumer_data type");
2604 assert(0);
2605 }
2606 next:
2607 pthread_mutex_unlock(&stream->lock);
2608 }
2609 rcu_read_unlock();
2610 }
2611
2612 static void destroy_channel_ht(struct lttng_ht *ht)
2613 {
2614 struct lttng_ht_iter iter;
2615 struct lttng_consumer_channel *channel;
2616 int ret;
2617
2618 if (ht == NULL) {
2619 return;
2620 }
2621
2622 rcu_read_lock();
2623 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2624 ret = lttng_ht_del(ht, &iter);
2625 assert(ret != 0);
2626 }
2627 rcu_read_unlock();
2628
2629 lttng_ht_destroy(ht);
2630 }
2631
2632 /*
2633 * This thread polls the channel fds to detect when they are being
2634 * closed. It closes all related streams if the channel is detected as
2635 * closed. It is currently only used as a shim layer for UST because the
2636 * consumerd needs to keep the per-stream wakeup end of pipes open for
2637 * periodical flush.
2638 */
2639 void *consumer_thread_channel_poll(void *data)
2640 {
2641 int ret, i, pollfd;
2642 uint32_t revents, nb_fd;
2643 struct lttng_consumer_channel *chan = NULL;
2644 struct lttng_ht_iter iter;
2645 struct lttng_ht_node_u64 *node;
2646 struct lttng_poll_event events;
2647 struct lttng_consumer_local_data *ctx = data;
2648 struct lttng_ht *channel_ht;
2649
2650 rcu_register_thread();
2651
2652 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2653 if (!channel_ht) {
2654 /* ENOMEM at this point. Better to bail out. */
2655 goto end_ht;
2656 }
2657
2658 DBG("Thread channel poll started");
2659
2660 /* Size is set to 1 for the consumer_channel pipe */
2661 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2662 if (ret < 0) {
2663 ERR("Poll set creation failed");
2664 goto end_poll;
2665 }
2666
2667 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2668 if (ret < 0) {
2669 goto end;
2670 }
2671
2672 /* Main loop */
2673 DBG("Channel main loop started");
2674
2675 while (1) {
2676 /* Only the channel pipe is set */
2677 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2678 goto end;
2679 }
2680
2681 restart:
2682 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2683 ret = lttng_poll_wait(&events, -1);
2684 DBG("Channel event catched in thread");
2685 if (ret < 0) {
2686 if (errno == EINTR) {
2687 ERR("Poll EINTR catched");
2688 goto restart;
2689 }
2690 goto end;
2691 }
2692
2693 nb_fd = ret;
2694
2695 /* From here, the event is a channel wait fd */
2696 for (i = 0; i < nb_fd; i++) {
2697 revents = LTTNG_POLL_GETEV(&events, i);
2698 pollfd = LTTNG_POLL_GETFD(&events, i);
2699
2700 /* Just don't waste time if no returned events for the fd */
2701 if (!revents) {
2702 continue;
2703 }
2704 if (pollfd == ctx->consumer_channel_pipe[0]) {
2705 if (revents & (LPOLLERR | LPOLLHUP)) {
2706 DBG("Channel thread pipe hung up");
2707 /*
2708 * Remove the pipe from the poll set and continue the loop
2709 * since their might be data to consume.
2710 */
2711 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2712 continue;
2713 } else if (revents & LPOLLIN) {
2714 enum consumer_channel_action action;
2715 uint64_t key;
2716
2717 ret = read_channel_pipe(ctx, &chan, &key, &action);
2718 if (ret <= 0) {
2719 ERR("Error reading channel pipe");
2720 continue;
2721 }
2722
2723 switch (action) {
2724 case CONSUMER_CHANNEL_ADD:
2725 DBG("Adding channel %d to poll set",
2726 chan->wait_fd);
2727
2728 lttng_ht_node_init_u64(&chan->wait_fd_node,
2729 chan->wait_fd);
2730 rcu_read_lock();
2731 lttng_ht_add_unique_u64(channel_ht,
2732 &chan->wait_fd_node);
2733 rcu_read_unlock();
2734 /* Add channel to the global poll events list */
2735 lttng_poll_add(&events, chan->wait_fd,
2736 LPOLLIN | LPOLLPRI);
2737 break;
2738 case CONSUMER_CHANNEL_DEL:
2739 {
2740 struct lttng_consumer_stream *stream, *stmp;
2741
2742 rcu_read_lock();
2743 chan = consumer_find_channel(key);
2744 if (!chan) {
2745 rcu_read_unlock();
2746 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2747 break;
2748 }
2749 lttng_poll_del(&events, chan->wait_fd);
2750 iter.iter.node = &chan->wait_fd_node.node;
2751 ret = lttng_ht_del(channel_ht, &iter);
2752 assert(ret == 0);
2753 consumer_close_channel_streams(chan);
2754
2755 switch (consumer_data.type) {
2756 case LTTNG_CONSUMER_KERNEL:
2757 break;
2758 case LTTNG_CONSUMER32_UST:
2759 case LTTNG_CONSUMER64_UST:
2760 /* Delete streams that might have been left in the stream list. */
2761 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2762 send_node) {
2763 cds_list_del(&stream->send_node);
2764 lttng_ustconsumer_del_stream(stream);
2765 uatomic_sub(&stream->chan->refcount, 1);
2766 assert(&chan->refcount);
2767 free(stream);
2768 }
2769 break;
2770 default:
2771 ERR("Unknown consumer_data type");
2772 assert(0);
2773 }
2774
2775 /*
2776 * Release our own refcount. Force channel deletion even if
2777 * streams were not initialized.
2778 */
2779 if (!uatomic_sub_return(&chan->refcount, 1)) {
2780 consumer_del_channel(chan);
2781 }
2782 rcu_read_unlock();
2783 goto restart;
2784 }
2785 case CONSUMER_CHANNEL_QUIT:
2786 /*
2787 * Remove the pipe from the poll set and continue the loop
2788 * since their might be data to consume.
2789 */
2790 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2791 continue;
2792 default:
2793 ERR("Unknown action");
2794 break;
2795 }
2796 }
2797
2798 /* Handle other stream */
2799 continue;
2800 }
2801
2802 rcu_read_lock();
2803 {
2804 uint64_t tmp_id = (uint64_t) pollfd;
2805
2806 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2807 }
2808 node = lttng_ht_iter_get_node_u64(&iter);
2809 assert(node);
2810
2811 chan = caa_container_of(node, struct lttng_consumer_channel,
2812 wait_fd_node);
2813
2814 /* Check for error event */
2815 if (revents & (LPOLLERR | LPOLLHUP)) {
2816 DBG("Channel fd %d is hup|err.", pollfd);
2817
2818 lttng_poll_del(&events, chan->wait_fd);
2819 ret = lttng_ht_del(channel_ht, &iter);
2820 assert(ret == 0);
2821 consumer_close_channel_streams(chan);
2822
2823 /* Release our own refcount */
2824 if (!uatomic_sub_return(&chan->refcount, 1)
2825 && !uatomic_read(&chan->nb_init_stream_left)) {
2826 consumer_del_channel(chan);
2827 }
2828 }
2829
2830 /* Release RCU lock for the channel looked up */
2831 rcu_read_unlock();
2832 }
2833 }
2834
2835 end:
2836 lttng_poll_clean(&events);
2837 end_poll:
2838 destroy_channel_ht(channel_ht);
2839 end_ht:
2840 DBG("Channel poll thread exiting");
2841 rcu_unregister_thread();
2842 return NULL;
2843 }
2844
2845 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2846 struct pollfd *sockpoll, int client_socket)
2847 {
2848 int ret;
2849
2850 assert(ctx);
2851 assert(sockpoll);
2852
2853 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2854 ret = -1;
2855 goto error;
2856 }
2857 DBG("Metadata connection on client_socket");
2858
2859 /* Blocking call, waiting for transmission */
2860 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2861 if (ctx->consumer_metadata_socket < 0) {
2862 WARN("On accept metadata");
2863 ret = -1;
2864 goto error;
2865 }
2866 ret = 0;
2867
2868 error:
2869 return ret;
2870 }
2871
2872 /*
2873 * This thread listens on the consumerd socket and receives the file
2874 * descriptors from the session daemon.
2875 */
2876 void *consumer_thread_sessiond_poll(void *data)
2877 {
2878 int sock = -1, client_socket, ret;
2879 /*
2880 * structure to poll for incoming data on communication socket avoids
2881 * making blocking sockets.
2882 */
2883 struct pollfd consumer_sockpoll[2];
2884 struct lttng_consumer_local_data *ctx = data;
2885
2886 rcu_register_thread();
2887
2888 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2889 unlink(ctx->consumer_command_sock_path);
2890 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2891 if (client_socket < 0) {
2892 ERR("Cannot create command socket");
2893 goto end;
2894 }
2895
2896 ret = lttcomm_listen_unix_sock(client_socket);
2897 if (ret < 0) {
2898 goto end;
2899 }
2900
2901 DBG("Sending ready command to lttng-sessiond");
2902 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2903 /* return < 0 on error, but == 0 is not fatal */
2904 if (ret < 0) {
2905 ERR("Error sending ready command to lttng-sessiond");
2906 goto end;
2907 }
2908
2909 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2910 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2911 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2912 consumer_sockpoll[1].fd = client_socket;
2913 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2914
2915 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2916 goto end;
2917 }
2918 DBG("Connection on client_socket");
2919
2920 /* Blocking call, waiting for transmission */
2921 sock = lttcomm_accept_unix_sock(client_socket);
2922 if (sock < 0) {
2923 WARN("On accept");
2924 goto end;
2925 }
2926
2927 /*
2928 * Setup metadata socket which is the second socket connection on the
2929 * command unix socket.
2930 */
2931 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2932 if (ret < 0) {
2933 goto end;
2934 }
2935
2936 /* This socket is not useful anymore. */
2937 ret = close(client_socket);
2938 if (ret < 0) {
2939 PERROR("close client_socket");
2940 }
2941 client_socket = -1;
2942
2943 /* update the polling structure to poll on the established socket */
2944 consumer_sockpoll[1].fd = sock;
2945 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2946
2947 while (1) {
2948 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2949 goto end;
2950 }
2951 DBG("Incoming command on sock");
2952 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2953 if (ret == -ENOENT) {
2954 DBG("Received STOP command");
2955 goto end;
2956 }
2957 if (ret <= 0) {
2958 /*
2959 * This could simply be a session daemon quitting. Don't output
2960 * ERR() here.
2961 */
2962 DBG("Communication interrupted on command socket");
2963 goto end;
2964 }
2965 if (consumer_quit) {
2966 DBG("consumer_thread_receive_fds received quit from signal");
2967 goto end;
2968 }
2969 DBG("received command on sock");
2970 }
2971 end:
2972 DBG("Consumer thread sessiond poll exiting");
2973
2974 /*
2975 * Close metadata streams since the producer is the session daemon which
2976 * just died.
2977 *
2978 * NOTE: for now, this only applies to the UST tracer.
2979 */
2980 lttng_consumer_close_metadata();
2981
2982 /*
2983 * when all fds have hung up, the polling thread
2984 * can exit cleanly
2985 */
2986 consumer_quit = 1;
2987
2988 /*
2989 * Notify the data poll thread to poll back again and test the
2990 * consumer_quit state that we just set so to quit gracefully.
2991 */
2992 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
2993
2994 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
2995
2996 /* Cleaning up possibly open sockets. */
2997 if (sock >= 0) {
2998 ret = close(sock);
2999 if (ret < 0) {
3000 PERROR("close sock sessiond poll");
3001 }
3002 }
3003 if (client_socket >= 0) {
3004 ret = close(client_socket);
3005 if (ret < 0) {
3006 PERROR("close client_socket sessiond poll");
3007 }
3008 }
3009
3010 rcu_unregister_thread();
3011 return NULL;
3012 }
3013
3014 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3015 struct lttng_consumer_local_data *ctx)
3016 {
3017 ssize_t ret;
3018
3019 pthread_mutex_lock(&stream->lock);
3020
3021 switch (consumer_data.type) {
3022 case LTTNG_CONSUMER_KERNEL:
3023 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3024 break;
3025 case LTTNG_CONSUMER32_UST:
3026 case LTTNG_CONSUMER64_UST:
3027 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3028 break;
3029 default:
3030 ERR("Unknown consumer_data type");
3031 assert(0);
3032 ret = -ENOSYS;
3033 break;
3034 }
3035
3036 pthread_mutex_unlock(&stream->lock);
3037 return ret;
3038 }
3039
3040 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3041 {
3042 switch (consumer_data.type) {
3043 case LTTNG_CONSUMER_KERNEL:
3044 return lttng_kconsumer_on_recv_stream(stream);
3045 case LTTNG_CONSUMER32_UST:
3046 case LTTNG_CONSUMER64_UST:
3047 return lttng_ustconsumer_on_recv_stream(stream);
3048 default:
3049 ERR("Unknown consumer_data type");
3050 assert(0);
3051 return -ENOSYS;
3052 }
3053 }
3054
3055 /*
3056 * Allocate and set consumer data hash tables.
3057 */
3058 int lttng_consumer_init(void)
3059 {
3060 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3061 if (!consumer_data.channel_ht) {
3062 goto error;
3063 }
3064
3065 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3066 if (!consumer_data.relayd_ht) {
3067 goto error;
3068 }
3069
3070 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3071 if (!consumer_data.stream_list_ht) {
3072 goto error;
3073 }
3074
3075 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3076 if (!consumer_data.stream_per_chan_id_ht) {
3077 goto error;
3078 }
3079
3080 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3081 if (!data_ht) {
3082 goto error;
3083 }
3084
3085 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3086 if (!metadata_ht) {
3087 goto error;
3088 }
3089
3090 return 0;
3091
3092 error:
3093 return -1;
3094 }
3095
3096 /*
3097 * Process the ADD_RELAYD command receive by a consumer.
3098 *
3099 * This will create a relayd socket pair and add it to the relayd hash table.
3100 * The caller MUST acquire a RCU read side lock before calling it.
3101 */
3102 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3103 struct lttng_consumer_local_data *ctx, int sock,
3104 struct pollfd *consumer_sockpoll,
3105 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id)
3106 {
3107 int fd = -1, ret = -1, relayd_created = 0;
3108 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3109 struct consumer_relayd_sock_pair *relayd = NULL;
3110
3111 assert(ctx);
3112 assert(relayd_sock);
3113
3114 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3115
3116 /* Get relayd reference if exists. */
3117 relayd = consumer_find_relayd(net_seq_idx);
3118 if (relayd == NULL) {
3119 assert(sock_type == LTTNG_STREAM_CONTROL);
3120 /* Not found. Allocate one. */
3121 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3122 if (relayd == NULL) {
3123 ret = -ENOMEM;
3124 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3125 goto error;
3126 } else {
3127 relayd->sessiond_session_id = sessiond_id;
3128 relayd_created = 1;
3129 }
3130
3131 /*
3132 * This code path MUST continue to the consumer send status message to
3133 * we can notify the session daemon and continue our work without
3134 * killing everything.
3135 */
3136 } else {
3137 /*
3138 * relayd key should never be found for control socket.
3139 */
3140 assert(sock_type != LTTNG_STREAM_CONTROL);
3141 }
3142
3143 /* First send a status message before receiving the fds. */
3144 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3145 if (ret < 0) {
3146 /* Somehow, the session daemon is not responding anymore. */
3147 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3148 goto error_nosignal;
3149 }
3150
3151 /* Poll on consumer socket. */
3152 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3153 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3154 ret = -EINTR;
3155 goto error_nosignal;
3156 }
3157
3158 /* Get relayd socket from session daemon */
3159 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3160 if (ret != sizeof(fd)) {
3161 ret = -1;
3162 fd = -1; /* Just in case it gets set with an invalid value. */
3163
3164 /*
3165 * Failing to receive FDs might indicate a major problem such as
3166 * reaching a fd limit during the receive where the kernel returns a
3167 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3168 * don't take any chances and stop everything.
3169 *
3170 * XXX: Feature request #558 will fix that and avoid this possible
3171 * issue when reaching the fd limit.
3172 */
3173 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3174 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3175 goto error;
3176 }
3177
3178 /* Copy socket information and received FD */
3179 switch (sock_type) {
3180 case LTTNG_STREAM_CONTROL:
3181 /* Copy received lttcomm socket */
3182 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3183 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3184 /* Handle create_sock error. */
3185 if (ret < 0) {
3186 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3187 goto error;
3188 }
3189 /*
3190 * Close the socket created internally by
3191 * lttcomm_create_sock, so we can replace it by the one
3192 * received from sessiond.
3193 */
3194 if (close(relayd->control_sock.sock.fd)) {
3195 PERROR("close");
3196 }
3197
3198 /* Assign new file descriptor */
3199 relayd->control_sock.sock.fd = fd;
3200 fd = -1; /* For error path */
3201 /* Assign version values. */
3202 relayd->control_sock.major = relayd_sock->major;
3203 relayd->control_sock.minor = relayd_sock->minor;
3204
3205 /*
3206 * Create a session on the relayd and store the returned id. Lock the
3207 * control socket mutex if the relayd was NOT created before.
3208 */
3209 if (!relayd_created) {
3210 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3211 }
3212 ret = relayd_create_session(&relayd->control_sock,
3213 &relayd->relayd_session_id);
3214 if (!relayd_created) {
3215 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3216 }
3217 if (ret < 0) {
3218 /*
3219 * Close all sockets of a relayd object. It will be freed if it was
3220 * created at the error code path or else it will be garbage
3221 * collect.
3222 */
3223 (void) relayd_close(&relayd->control_sock);
3224 (void) relayd_close(&relayd->data_sock);
3225 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
3226 goto error;
3227 }
3228
3229 break;
3230 case LTTNG_STREAM_DATA:
3231 /* Copy received lttcomm socket */
3232 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3233 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3234 /* Handle create_sock error. */
3235 if (ret < 0) {
3236 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3237 goto error;
3238 }
3239 /*
3240 * Close the socket created internally by
3241 * lttcomm_create_sock, so we can replace it by the one
3242 * received from sessiond.
3243 */
3244 if (close(relayd->data_sock.sock.fd)) {
3245 PERROR("close");
3246 }
3247
3248 /* Assign new file descriptor */
3249 relayd->data_sock.sock.fd = fd;
3250 fd = -1; /* for eventual error paths */
3251 /* Assign version values. */
3252 relayd->data_sock.major = relayd_sock->major;
3253 relayd->data_sock.minor = relayd_sock->minor;
3254 break;
3255 default:
3256 ERR("Unknown relayd socket type (%d)", sock_type);
3257 ret = -1;
3258 ret_code = LTTCOMM_CONSUMERD_FATAL;
3259 goto error;
3260 }
3261
3262 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3263 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3264 relayd->net_seq_idx, fd);
3265
3266 /* We successfully added the socket. Send status back. */
3267 ret = consumer_send_status_msg(sock, ret_code);
3268 if (ret < 0) {
3269 /* Somehow, the session daemon is not responding anymore. */
3270 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3271 goto error_nosignal;
3272 }
3273
3274 /*
3275 * Add relayd socket pair to consumer data hashtable. If object already
3276 * exists or on error, the function gracefully returns.
3277 */
3278 add_relayd(relayd);
3279
3280 /* All good! */
3281 return 0;
3282
3283 error:
3284 if (consumer_send_status_msg(sock, ret_code) < 0) {
3285 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3286 }
3287
3288 error_nosignal:
3289 /* Close received socket if valid. */
3290 if (fd >= 0) {
3291 if (close(fd)) {
3292 PERROR("close received socket");
3293 }
3294 }
3295
3296 if (relayd_created) {
3297 free(relayd);
3298 }
3299
3300 return ret;
3301 }
3302
3303 /*
3304 * Try to lock the stream mutex.
3305 *
3306 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3307 */
3308 static int stream_try_lock(struct lttng_consumer_stream *stream)
3309 {
3310 int ret;
3311
3312 assert(stream);
3313
3314 /*
3315 * Try to lock the stream mutex. On failure, we know that the stream is
3316 * being used else where hence there is data still being extracted.
3317 */
3318 ret = pthread_mutex_trylock(&stream->lock);
3319 if (ret) {
3320 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3321 ret = 0;
3322 goto end;
3323 }
3324
3325 ret = 1;
3326
3327 end:
3328 return ret;
3329 }
3330
3331 /*
3332 * Search for a relayd associated to the session id and return the reference.
3333 *
3334 * A rcu read side lock MUST be acquire before calling this function and locked
3335 * until the relayd object is no longer necessary.
3336 */
3337 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3338 {
3339 struct lttng_ht_iter iter;
3340 struct consumer_relayd_sock_pair *relayd = NULL;
3341
3342 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3343 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3344 node.node) {
3345 /*
3346 * Check by sessiond id which is unique here where the relayd session
3347 * id might not be when having multiple relayd.
3348 */
3349 if (relayd->sessiond_session_id == id) {
3350 /* Found the relayd. There can be only one per id. */
3351 goto found;
3352 }
3353 }
3354
3355 return NULL;
3356
3357 found:
3358 return relayd;
3359 }
3360
3361 /*
3362 * Check if for a given session id there is still data needed to be extract
3363 * from the buffers.
3364 *
3365 * Return 1 if data is pending or else 0 meaning ready to be read.
3366 */
3367 int consumer_data_pending(uint64_t id)
3368 {
3369 int ret;
3370 struct lttng_ht_iter iter;
3371 struct lttng_ht *ht;
3372 struct lttng_consumer_stream *stream;
3373 struct consumer_relayd_sock_pair *relayd = NULL;
3374 int (*data_pending)(struct lttng_consumer_stream *);
3375
3376 DBG("Consumer data pending command on session id %" PRIu64, id);
3377
3378 rcu_read_lock();
3379 pthread_mutex_lock(&consumer_data.lock);
3380
3381 switch (consumer_data.type) {
3382 case LTTNG_CONSUMER_KERNEL:
3383 data_pending = lttng_kconsumer_data_pending;
3384 break;
3385 case LTTNG_CONSUMER32_UST:
3386 case LTTNG_CONSUMER64_UST:
3387 data_pending = lttng_ustconsumer_data_pending;
3388 break;
3389 default:
3390 ERR("Unknown consumer data type");
3391 assert(0);
3392 }
3393
3394 /* Ease our life a bit */
3395 ht = consumer_data.stream_list_ht;
3396
3397 relayd = find_relayd_by_session_id(id);
3398 if (relayd) {
3399 /* Send init command for data pending. */
3400 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3401 ret = relayd_begin_data_pending(&relayd->control_sock,
3402 relayd->relayd_session_id);
3403 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3404 if (ret < 0) {
3405 /* Communication error thus the relayd so no data pending. */
3406 goto data_not_pending;
3407 }
3408 }
3409
3410 cds_lfht_for_each_entry_duplicate(ht->ht,
3411 ht->hash_fct(&id, lttng_ht_seed),
3412 ht->match_fct, &id,
3413 &iter.iter, stream, node_session_id.node) {
3414 /* If this call fails, the stream is being used hence data pending. */
3415 ret = stream_try_lock(stream);
3416 if (!ret) {
3417 goto data_pending;
3418 }
3419
3420 /*
3421 * A removed node from the hash table indicates that the stream has
3422 * been deleted thus having a guarantee that the buffers are closed
3423 * on the consumer side. However, data can still be transmitted
3424 * over the network so don't skip the relayd check.
3425 */
3426 ret = cds_lfht_is_node_deleted(&stream->node.node);
3427 if (!ret) {
3428 /*
3429 * An empty output file is not valid. We need at least one packet
3430 * generated per stream, even if it contains no event, so it
3431 * contains at least one packet header.
3432 */
3433 if (stream->output_written == 0) {
3434 pthread_mutex_unlock(&stream->lock);
3435 goto data_pending;
3436 }
3437 /* Check the stream if there is data in the buffers. */
3438 ret = data_pending(stream);
3439 if (ret == 1) {
3440 pthread_mutex_unlock(&stream->lock);
3441 goto data_pending;
3442 }
3443 }
3444
3445 /* Relayd check */
3446 if (relayd) {
3447 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3448 if (stream->metadata_flag) {
3449 ret = relayd_quiescent_control(&relayd->control_sock,
3450 stream->relayd_stream_id);
3451 } else {
3452 ret = relayd_data_pending(&relayd->control_sock,
3453 stream->relayd_stream_id,
3454 stream->next_net_seq_num - 1);
3455 }
3456 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3457 if (ret == 1) {
3458 pthread_mutex_unlock(&stream->lock);
3459 goto data_pending;
3460 }
3461 }
3462 pthread_mutex_unlock(&stream->lock);
3463 }
3464
3465 if (relayd) {
3466 unsigned int is_data_inflight = 0;
3467
3468 /* Send init command for data pending. */
3469 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3470 ret = relayd_end_data_pending(&relayd->control_sock,
3471 relayd->relayd_session_id, &is_data_inflight);
3472 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3473 if (ret < 0) {
3474 goto data_not_pending;
3475 }
3476 if (is_data_inflight) {
3477 goto data_pending;
3478 }
3479 }
3480
3481 /*
3482 * Finding _no_ node in the hash table and no inflight data means that the
3483 * stream(s) have been removed thus data is guaranteed to be available for
3484 * analysis from the trace files.
3485 */
3486
3487 data_not_pending:
3488 /* Data is available to be read by a viewer. */
3489 pthread_mutex_unlock(&consumer_data.lock);
3490 rcu_read_unlock();
3491 return 0;
3492
3493 data_pending:
3494 /* Data is still being extracted from buffers. */
3495 pthread_mutex_unlock(&consumer_data.lock);
3496 rcu_read_unlock();
3497 return 1;
3498 }
3499
3500 /*
3501 * Send a ret code status message to the sessiond daemon.
3502 *
3503 * Return the sendmsg() return value.
3504 */
3505 int consumer_send_status_msg(int sock, int ret_code)
3506 {
3507 struct lttcomm_consumer_status_msg msg;
3508
3509 msg.ret_code = ret_code;
3510
3511 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3512 }
3513
3514 /*
3515 * Send a channel status message to the sessiond daemon.
3516 *
3517 * Return the sendmsg() return value.
3518 */
3519 int consumer_send_status_channel(int sock,
3520 struct lttng_consumer_channel *channel)
3521 {
3522 struct lttcomm_consumer_status_channel msg;
3523
3524 assert(sock >= 0);
3525
3526 if (!channel) {
3527 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3528 } else {
3529 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3530 msg.key = channel->key;
3531 msg.stream_count = channel->streams.count;
3532 }
3533
3534 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3535 }
3536
3537 /*
3538 * Using a maximum stream size with the produced and consumed position of a
3539 * stream, computes the new consumed position to be as close as possible to the
3540 * maximum possible stream size.
3541 *
3542 * If maximum stream size is lower than the possible buffer size (produced -
3543 * consumed), the consumed_pos given is returned untouched else the new value
3544 * is returned.
3545 */
3546 unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3547 unsigned long produced_pos, uint64_t max_stream_size)
3548 {
3549 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3550 /* Offset from the produced position to get the latest buffers. */
3551 return produced_pos - max_stream_size;
3552 }
3553
3554 return consumed_pos;
3555 }
This page took 0.102066 seconds and 4 git commands to generate.