628d06c4a8eff03d69b37e29b7a4c9ef7db95737
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #define _LGPL_SOURCE
22 #include <assert.h>
23 #include <poll.h>
24 #include <pthread.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/mman.h>
28 #include <sys/socket.h>
29 #include <sys/types.h>
30 #include <unistd.h>
31 #include <inttypes.h>
32 #include <signal.h>
33
34 #include <bin/lttng-consumerd/health-consumerd.h>
35 #include <common/common.h>
36 #include <common/utils.h>
37 #include <common/compat/poll.h>
38 #include <common/compat/endian.h>
39 #include <common/index/index.h>
40 #include <common/kernel-ctl/kernel-ctl.h>
41 #include <common/sessiond-comm/relayd.h>
42 #include <common/sessiond-comm/sessiond-comm.h>
43 #include <common/kernel-consumer/kernel-consumer.h>
44 #include <common/relayd/relayd.h>
45 #include <common/ust-consumer/ust-consumer.h>
46 #include <common/consumer-timer.h>
47
48 #include "consumer.h"
49 #include "consumer-stream.h"
50 #include "consumer-testpoint.h"
51 #include "align.h"
52
53 struct lttng_consumer_global_data consumer_data = {
54 .stream_count = 0,
55 .need_update = 1,
56 .type = LTTNG_CONSUMER_UNKNOWN,
57 };
58
59 enum consumer_channel_action {
60 CONSUMER_CHANNEL_ADD,
61 CONSUMER_CHANNEL_DEL,
62 CONSUMER_CHANNEL_QUIT,
63 };
64
65 struct consumer_channel_msg {
66 enum consumer_channel_action action;
67 struct lttng_consumer_channel *chan; /* add */
68 uint64_t key; /* del */
69 };
70
71 /*
72 * Flag to inform the polling thread to quit when all fd hung up. Updated by
73 * the consumer_thread_receive_fds when it notices that all fds has hung up.
74 * Also updated by the signal handler (consumer_should_exit()). Read by the
75 * polling threads.
76 */
77 volatile int consumer_quit;
78
79 /*
80 * Global hash table containing respectively metadata and data streams. The
81 * stream element in this ht should only be updated by the metadata poll thread
82 * for the metadata and the data poll thread for the data.
83 */
84 static struct lttng_ht *metadata_ht;
85 static struct lttng_ht *data_ht;
86
87 /*
88 * Notify a thread lttng pipe to poll back again. This usually means that some
89 * global state has changed so we just send back the thread in a poll wait
90 * call.
91 */
92 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
93 {
94 struct lttng_consumer_stream *null_stream = NULL;
95
96 assert(pipe);
97
98 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
99 }
100
101 static void notify_health_quit_pipe(int *pipe)
102 {
103 ssize_t ret;
104
105 ret = lttng_write(pipe[1], "4", 1);
106 if (ret < 1) {
107 PERROR("write consumer health quit");
108 }
109 }
110
111 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
112 struct lttng_consumer_channel *chan,
113 uint64_t key,
114 enum consumer_channel_action action)
115 {
116 struct consumer_channel_msg msg;
117 ssize_t ret;
118
119 memset(&msg, 0, sizeof(msg));
120
121 msg.action = action;
122 msg.chan = chan;
123 msg.key = key;
124 ret = lttng_write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
125 if (ret < sizeof(msg)) {
126 PERROR("notify_channel_pipe write error");
127 }
128 }
129
130 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
131 uint64_t key)
132 {
133 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
134 }
135
136 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
137 struct lttng_consumer_channel **chan,
138 uint64_t *key,
139 enum consumer_channel_action *action)
140 {
141 struct consumer_channel_msg msg;
142 ssize_t ret;
143
144 ret = lttng_read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
145 if (ret < sizeof(msg)) {
146 ret = -1;
147 goto error;
148 }
149 *action = msg.action;
150 *chan = msg.chan;
151 *key = msg.key;
152 error:
153 return (int) ret;
154 }
155
156 /*
157 * Cleanup the stream list of a channel. Those streams are not yet globally
158 * visible
159 */
160 static void clean_channel_stream_list(struct lttng_consumer_channel *channel)
161 {
162 struct lttng_consumer_stream *stream, *stmp;
163
164 assert(channel);
165
166 /* Delete streams that might have been left in the stream list. */
167 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
168 send_node) {
169 cds_list_del(&stream->send_node);
170 /*
171 * Once a stream is added to this list, the buffers were created so we
172 * have a guarantee that this call will succeed. Setting the monitor
173 * mode to 0 so we don't lock nor try to delete the stream from the
174 * global hash table.
175 */
176 stream->monitor = 0;
177 consumer_stream_destroy(stream, NULL);
178 }
179 }
180
181 /*
182 * Find a stream. The consumer_data.lock must be locked during this
183 * call.
184 */
185 static struct lttng_consumer_stream *find_stream(uint64_t key,
186 struct lttng_ht *ht)
187 {
188 struct lttng_ht_iter iter;
189 struct lttng_ht_node_u64 *node;
190 struct lttng_consumer_stream *stream = NULL;
191
192 assert(ht);
193
194 /* -1ULL keys are lookup failures */
195 if (key == (uint64_t) -1ULL) {
196 return NULL;
197 }
198
199 rcu_read_lock();
200
201 lttng_ht_lookup(ht, &key, &iter);
202 node = lttng_ht_iter_get_node_u64(&iter);
203 if (node != NULL) {
204 stream = caa_container_of(node, struct lttng_consumer_stream, node);
205 }
206
207 rcu_read_unlock();
208
209 return stream;
210 }
211
212 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
213 {
214 struct lttng_consumer_stream *stream;
215
216 rcu_read_lock();
217 stream = find_stream(key, ht);
218 if (stream) {
219 stream->key = (uint64_t) -1ULL;
220 /*
221 * We don't want the lookup to match, but we still need
222 * to iterate on this stream when iterating over the hash table. Just
223 * change the node key.
224 */
225 stream->node.key = (uint64_t) -1ULL;
226 }
227 rcu_read_unlock();
228 }
229
230 /*
231 * Return a channel object for the given key.
232 *
233 * RCU read side lock MUST be acquired before calling this function and
234 * protects the channel ptr.
235 */
236 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
237 {
238 struct lttng_ht_iter iter;
239 struct lttng_ht_node_u64 *node;
240 struct lttng_consumer_channel *channel = NULL;
241
242 /* -1ULL keys are lookup failures */
243 if (key == (uint64_t) -1ULL) {
244 return NULL;
245 }
246
247 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
248 node = lttng_ht_iter_get_node_u64(&iter);
249 if (node != NULL) {
250 channel = caa_container_of(node, struct lttng_consumer_channel, node);
251 }
252
253 return channel;
254 }
255
256 /*
257 * There is a possibility that the consumer does not have enough time between
258 * the close of the channel on the session daemon and the cleanup in here thus
259 * once we have a channel add with an existing key, we know for sure that this
260 * channel will eventually get cleaned up by all streams being closed.
261 *
262 * This function just nullifies the already existing channel key.
263 */
264 static void steal_channel_key(uint64_t key)
265 {
266 struct lttng_consumer_channel *channel;
267
268 rcu_read_lock();
269 channel = consumer_find_channel(key);
270 if (channel) {
271 channel->key = (uint64_t) -1ULL;
272 /*
273 * We don't want the lookup to match, but we still need to iterate on
274 * this channel when iterating over the hash table. Just change the
275 * node key.
276 */
277 channel->node.key = (uint64_t) -1ULL;
278 }
279 rcu_read_unlock();
280 }
281
282 static void free_channel_rcu(struct rcu_head *head)
283 {
284 struct lttng_ht_node_u64 *node =
285 caa_container_of(head, struct lttng_ht_node_u64, head);
286 struct lttng_consumer_channel *channel =
287 caa_container_of(node, struct lttng_consumer_channel, node);
288
289 switch (consumer_data.type) {
290 case LTTNG_CONSUMER_KERNEL:
291 break;
292 case LTTNG_CONSUMER32_UST:
293 case LTTNG_CONSUMER64_UST:
294 lttng_ustconsumer_free_channel(channel);
295 break;
296 default:
297 ERR("Unknown consumer_data type");
298 abort();
299 }
300 free(channel);
301 }
302
303 /*
304 * RCU protected relayd socket pair free.
305 */
306 static void free_relayd_rcu(struct rcu_head *head)
307 {
308 struct lttng_ht_node_u64 *node =
309 caa_container_of(head, struct lttng_ht_node_u64, head);
310 struct consumer_relayd_sock_pair *relayd =
311 caa_container_of(node, struct consumer_relayd_sock_pair, node);
312
313 /*
314 * Close all sockets. This is done in the call RCU since we don't want the
315 * socket fds to be reassigned thus potentially creating bad state of the
316 * relayd object.
317 *
318 * We do not have to lock the control socket mutex here since at this stage
319 * there is no one referencing to this relayd object.
320 */
321 (void) relayd_close(&relayd->control_sock);
322 (void) relayd_close(&relayd->data_sock);
323
324 free(relayd);
325 }
326
327 /*
328 * Destroy and free relayd socket pair object.
329 */
330 void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
331 {
332 int ret;
333 struct lttng_ht_iter iter;
334
335 if (relayd == NULL) {
336 return;
337 }
338
339 DBG("Consumer destroy and close relayd socket pair");
340
341 iter.iter.node = &relayd->node.node;
342 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
343 if (ret != 0) {
344 /* We assume the relayd is being or is destroyed */
345 return;
346 }
347
348 /* RCU free() call */
349 call_rcu(&relayd->node.head, free_relayd_rcu);
350 }
351
352 /*
353 * Remove a channel from the global list protected by a mutex. This function is
354 * also responsible for freeing its data structures.
355 */
356 void consumer_del_channel(struct lttng_consumer_channel *channel)
357 {
358 int ret;
359 struct lttng_ht_iter iter;
360
361 DBG("Consumer delete channel key %" PRIu64, channel->key);
362
363 pthread_mutex_lock(&consumer_data.lock);
364 pthread_mutex_lock(&channel->lock);
365
366 /* Destroy streams that might have been left in the stream list. */
367 clean_channel_stream_list(channel);
368
369 if (channel->live_timer_enabled == 1) {
370 consumer_timer_live_stop(channel);
371 }
372
373 switch (consumer_data.type) {
374 case LTTNG_CONSUMER_KERNEL:
375 break;
376 case LTTNG_CONSUMER32_UST:
377 case LTTNG_CONSUMER64_UST:
378 lttng_ustconsumer_del_channel(channel);
379 break;
380 default:
381 ERR("Unknown consumer_data type");
382 assert(0);
383 goto end;
384 }
385
386 rcu_read_lock();
387 iter.iter.node = &channel->node.node;
388 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
389 assert(!ret);
390 rcu_read_unlock();
391
392 call_rcu(&channel->node.head, free_channel_rcu);
393 end:
394 pthread_mutex_unlock(&channel->lock);
395 pthread_mutex_unlock(&consumer_data.lock);
396 }
397
398 /*
399 * Iterate over the relayd hash table and destroy each element. Finally,
400 * destroy the whole hash table.
401 */
402 static void cleanup_relayd_ht(void)
403 {
404 struct lttng_ht_iter iter;
405 struct consumer_relayd_sock_pair *relayd;
406
407 rcu_read_lock();
408
409 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
410 node.node) {
411 consumer_destroy_relayd(relayd);
412 }
413
414 rcu_read_unlock();
415
416 lttng_ht_destroy(consumer_data.relayd_ht);
417 }
418
419 /*
420 * Update the end point status of all streams having the given network sequence
421 * index (relayd index).
422 *
423 * It's atomically set without having the stream mutex locked which is fine
424 * because we handle the write/read race with a pipe wakeup for each thread.
425 */
426 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
427 enum consumer_endpoint_status status)
428 {
429 struct lttng_ht_iter iter;
430 struct lttng_consumer_stream *stream;
431
432 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
433
434 rcu_read_lock();
435
436 /* Let's begin with metadata */
437 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
438 if (stream->net_seq_idx == net_seq_idx) {
439 uatomic_set(&stream->endpoint_status, status);
440 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
441 }
442 }
443
444 /* Follow up by the data streams */
445 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
446 if (stream->net_seq_idx == net_seq_idx) {
447 uatomic_set(&stream->endpoint_status, status);
448 DBG("Delete flag set to data stream %d", stream->wait_fd);
449 }
450 }
451 rcu_read_unlock();
452 }
453
454 /*
455 * Cleanup a relayd object by flagging every associated streams for deletion,
456 * destroying the object meaning removing it from the relayd hash table,
457 * closing the sockets and freeing the memory in a RCU call.
458 *
459 * If a local data context is available, notify the threads that the streams'
460 * state have changed.
461 */
462 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
463 struct lttng_consumer_local_data *ctx)
464 {
465 uint64_t netidx;
466
467 assert(relayd);
468
469 DBG("Cleaning up relayd sockets");
470
471 /* Save the net sequence index before destroying the object */
472 netidx = relayd->net_seq_idx;
473
474 /*
475 * Delete the relayd from the relayd hash table, close the sockets and free
476 * the object in a RCU call.
477 */
478 consumer_destroy_relayd(relayd);
479
480 /* Set inactive endpoint to all streams */
481 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
482
483 /*
484 * With a local data context, notify the threads that the streams' state
485 * have changed. The write() action on the pipe acts as an "implicit"
486 * memory barrier ordering the updates of the end point status from the
487 * read of this status which happens AFTER receiving this notify.
488 */
489 if (ctx) {
490 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
491 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
492 }
493 }
494
495 /*
496 * Flag a relayd socket pair for destruction. Destroy it if the refcount
497 * reaches zero.
498 *
499 * RCU read side lock MUST be aquired before calling this function.
500 */
501 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
502 {
503 assert(relayd);
504
505 /* Set destroy flag for this object */
506 uatomic_set(&relayd->destroy_flag, 1);
507
508 /* Destroy the relayd if refcount is 0 */
509 if (uatomic_read(&relayd->refcount) == 0) {
510 consumer_destroy_relayd(relayd);
511 }
512 }
513
514 /*
515 * Completly destroy stream from every visiable data structure and the given
516 * hash table if one.
517 *
518 * One this call returns, the stream object is not longer usable nor visible.
519 */
520 void consumer_del_stream(struct lttng_consumer_stream *stream,
521 struct lttng_ht *ht)
522 {
523 consumer_stream_destroy(stream, ht);
524 }
525
526 /*
527 * XXX naming of del vs destroy is all mixed up.
528 */
529 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
530 {
531 consumer_stream_destroy(stream, data_ht);
532 }
533
534 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
535 {
536 consumer_stream_destroy(stream, metadata_ht);
537 }
538
539 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
540 uint64_t stream_key,
541 enum lttng_consumer_stream_state state,
542 const char *channel_name,
543 uid_t uid,
544 gid_t gid,
545 uint64_t relayd_id,
546 uint64_t session_id,
547 int cpu,
548 int *alloc_ret,
549 enum consumer_channel_type type,
550 unsigned int monitor)
551 {
552 int ret;
553 struct lttng_consumer_stream *stream;
554
555 stream = zmalloc(sizeof(*stream));
556 if (stream == NULL) {
557 PERROR("malloc struct lttng_consumer_stream");
558 ret = -ENOMEM;
559 goto end;
560 }
561
562 rcu_read_lock();
563
564 stream->key = stream_key;
565 stream->out_fd = -1;
566 stream->out_fd_offset = 0;
567 stream->output_written = 0;
568 stream->state = state;
569 stream->uid = uid;
570 stream->gid = gid;
571 stream->net_seq_idx = relayd_id;
572 stream->session_id = session_id;
573 stream->monitor = monitor;
574 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
575 stream->index_fd = -1;
576 pthread_mutex_init(&stream->lock, NULL);
577 pthread_mutex_init(&stream->metadata_timer_lock, NULL);
578
579 /* If channel is the metadata, flag this stream as metadata. */
580 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
581 stream->metadata_flag = 1;
582 /* Metadata is flat out. */
583 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
584 /* Live rendez-vous point. */
585 pthread_cond_init(&stream->metadata_rdv, NULL);
586 pthread_mutex_init(&stream->metadata_rdv_lock, NULL);
587 } else {
588 /* Format stream name to <channel_name>_<cpu_number> */
589 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
590 channel_name, cpu);
591 if (ret < 0) {
592 PERROR("snprintf stream name");
593 goto error;
594 }
595 }
596
597 /* Key is always the wait_fd for streams. */
598 lttng_ht_node_init_u64(&stream->node, stream->key);
599
600 /* Init node per channel id key */
601 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
602
603 /* Init session id node with the stream session id */
604 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
605
606 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
607 " relayd_id %" PRIu64 ", session_id %" PRIu64,
608 stream->name, stream->key, channel_key,
609 stream->net_seq_idx, stream->session_id);
610
611 rcu_read_unlock();
612 return stream;
613
614 error:
615 rcu_read_unlock();
616 free(stream);
617 end:
618 if (alloc_ret) {
619 *alloc_ret = ret;
620 }
621 return NULL;
622 }
623
624 /*
625 * Add a stream to the global list protected by a mutex.
626 */
627 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
628 {
629 struct lttng_ht *ht = data_ht;
630 int ret = 0;
631
632 assert(stream);
633 assert(ht);
634
635 DBG3("Adding consumer stream %" PRIu64, stream->key);
636
637 pthread_mutex_lock(&consumer_data.lock);
638 pthread_mutex_lock(&stream->chan->lock);
639 pthread_mutex_lock(&stream->chan->timer_lock);
640 pthread_mutex_lock(&stream->lock);
641 rcu_read_lock();
642
643 /* Steal stream identifier to avoid having streams with the same key */
644 steal_stream_key(stream->key, ht);
645
646 lttng_ht_add_unique_u64(ht, &stream->node);
647
648 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
649 &stream->node_channel_id);
650
651 /*
652 * Add stream to the stream_list_ht of the consumer data. No need to steal
653 * the key since the HT does not use it and we allow to add redundant keys
654 * into this table.
655 */
656 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
657
658 /*
659 * When nb_init_stream_left reaches 0, we don't need to trigger any action
660 * in terms of destroying the associated channel, because the action that
661 * causes the count to become 0 also causes a stream to be added. The
662 * channel deletion will thus be triggered by the following removal of this
663 * stream.
664 */
665 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
666 /* Increment refcount before decrementing nb_init_stream_left */
667 cmm_smp_wmb();
668 uatomic_dec(&stream->chan->nb_init_stream_left);
669 }
670
671 /* Update consumer data once the node is inserted. */
672 consumer_data.stream_count++;
673 consumer_data.need_update = 1;
674
675 rcu_read_unlock();
676 pthread_mutex_unlock(&stream->lock);
677 pthread_mutex_unlock(&stream->chan->timer_lock);
678 pthread_mutex_unlock(&stream->chan->lock);
679 pthread_mutex_unlock(&consumer_data.lock);
680
681 return ret;
682 }
683
684 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
685 {
686 consumer_del_stream(stream, data_ht);
687 }
688
689 /*
690 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
691 * be acquired before calling this.
692 */
693 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
694 {
695 int ret = 0;
696 struct lttng_ht_node_u64 *node;
697 struct lttng_ht_iter iter;
698
699 assert(relayd);
700
701 lttng_ht_lookup(consumer_data.relayd_ht,
702 &relayd->net_seq_idx, &iter);
703 node = lttng_ht_iter_get_node_u64(&iter);
704 if (node != NULL) {
705 goto end;
706 }
707 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
708
709 end:
710 return ret;
711 }
712
713 /*
714 * Allocate and return a consumer relayd socket.
715 */
716 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
717 uint64_t net_seq_idx)
718 {
719 struct consumer_relayd_sock_pair *obj = NULL;
720
721 /* net sequence index of -1 is a failure */
722 if (net_seq_idx == (uint64_t) -1ULL) {
723 goto error;
724 }
725
726 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
727 if (obj == NULL) {
728 PERROR("zmalloc relayd sock");
729 goto error;
730 }
731
732 obj->net_seq_idx = net_seq_idx;
733 obj->refcount = 0;
734 obj->destroy_flag = 0;
735 obj->control_sock.sock.fd = -1;
736 obj->data_sock.sock.fd = -1;
737 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
738 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
739
740 error:
741 return obj;
742 }
743
744 /*
745 * Find a relayd socket pair in the global consumer data.
746 *
747 * Return the object if found else NULL.
748 * RCU read-side lock must be held across this call and while using the
749 * returned object.
750 */
751 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
752 {
753 struct lttng_ht_iter iter;
754 struct lttng_ht_node_u64 *node;
755 struct consumer_relayd_sock_pair *relayd = NULL;
756
757 /* Negative keys are lookup failures */
758 if (key == (uint64_t) -1ULL) {
759 goto error;
760 }
761
762 lttng_ht_lookup(consumer_data.relayd_ht, &key,
763 &iter);
764 node = lttng_ht_iter_get_node_u64(&iter);
765 if (node != NULL) {
766 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
767 }
768
769 error:
770 return relayd;
771 }
772
773 /*
774 * Find a relayd and send the stream
775 *
776 * Returns 0 on success, < 0 on error
777 */
778 int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
779 char *path)
780 {
781 int ret = 0;
782 struct consumer_relayd_sock_pair *relayd;
783
784 assert(stream);
785 assert(stream->net_seq_idx != -1ULL);
786 assert(path);
787
788 /* The stream is not metadata. Get relayd reference if exists. */
789 rcu_read_lock();
790 relayd = consumer_find_relayd(stream->net_seq_idx);
791 if (relayd != NULL) {
792 /* Add stream on the relayd */
793 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
794 ret = relayd_add_stream(&relayd->control_sock, stream->name,
795 path, &stream->relayd_stream_id,
796 stream->chan->tracefile_size, stream->chan->tracefile_count);
797 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
798 if (ret < 0) {
799 goto end;
800 }
801
802 uatomic_inc(&relayd->refcount);
803 stream->sent_to_relayd = 1;
804 } else {
805 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
806 stream->key, stream->net_seq_idx);
807 ret = -1;
808 goto end;
809 }
810
811 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
812 stream->name, stream->key, stream->net_seq_idx);
813
814 end:
815 rcu_read_unlock();
816 return ret;
817 }
818
819 /*
820 * Find a relayd and send the streams sent message
821 *
822 * Returns 0 on success, < 0 on error
823 */
824 int consumer_send_relayd_streams_sent(uint64_t net_seq_idx)
825 {
826 int ret = 0;
827 struct consumer_relayd_sock_pair *relayd;
828
829 assert(net_seq_idx != -1ULL);
830
831 /* The stream is not metadata. Get relayd reference if exists. */
832 rcu_read_lock();
833 relayd = consumer_find_relayd(net_seq_idx);
834 if (relayd != NULL) {
835 /* Add stream on the relayd */
836 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
837 ret = relayd_streams_sent(&relayd->control_sock);
838 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
839 if (ret < 0) {
840 goto end;
841 }
842 } else {
843 ERR("Relayd ID %" PRIu64 " unknown. Can't send streams_sent.",
844 net_seq_idx);
845 ret = -1;
846 goto end;
847 }
848
849 ret = 0;
850 DBG("All streams sent relayd id %" PRIu64, net_seq_idx);
851
852 end:
853 rcu_read_unlock();
854 return ret;
855 }
856
857 /*
858 * Find a relayd and close the stream
859 */
860 void close_relayd_stream(struct lttng_consumer_stream *stream)
861 {
862 struct consumer_relayd_sock_pair *relayd;
863
864 /* The stream is not metadata. Get relayd reference if exists. */
865 rcu_read_lock();
866 relayd = consumer_find_relayd(stream->net_seq_idx);
867 if (relayd) {
868 consumer_stream_relayd_close(stream, relayd);
869 }
870 rcu_read_unlock();
871 }
872
873 /*
874 * Handle stream for relayd transmission if the stream applies for network
875 * streaming where the net sequence index is set.
876 *
877 * Return destination file descriptor or negative value on error.
878 */
879 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
880 size_t data_size, unsigned long padding,
881 struct consumer_relayd_sock_pair *relayd)
882 {
883 int outfd = -1, ret;
884 struct lttcomm_relayd_data_hdr data_hdr;
885
886 /* Safety net */
887 assert(stream);
888 assert(relayd);
889
890 /* Reset data header */
891 memset(&data_hdr, 0, sizeof(data_hdr));
892
893 if (stream->metadata_flag) {
894 /* Caller MUST acquire the relayd control socket lock */
895 ret = relayd_send_metadata(&relayd->control_sock, data_size);
896 if (ret < 0) {
897 goto error;
898 }
899
900 /* Metadata are always sent on the control socket. */
901 outfd = relayd->control_sock.sock.fd;
902 } else {
903 /* Set header with stream information */
904 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
905 data_hdr.data_size = htobe32(data_size);
906 data_hdr.padding_size = htobe32(padding);
907 /*
908 * Note that net_seq_num below is assigned with the *current* value of
909 * next_net_seq_num and only after that the next_net_seq_num will be
910 * increment. This is why when issuing a command on the relayd using
911 * this next value, 1 should always be substracted in order to compare
912 * the last seen sequence number on the relayd side to the last sent.
913 */
914 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
915 /* Other fields are zeroed previously */
916
917 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
918 sizeof(data_hdr));
919 if (ret < 0) {
920 goto error;
921 }
922
923 ++stream->next_net_seq_num;
924
925 /* Set to go on data socket */
926 outfd = relayd->data_sock.sock.fd;
927 }
928
929 error:
930 return outfd;
931 }
932
933 /*
934 * Allocate and return a new lttng_consumer_channel object using the given key
935 * to initialize the hash table node.
936 *
937 * On error, return NULL.
938 */
939 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
940 uint64_t session_id,
941 const char *pathname,
942 const char *name,
943 uid_t uid,
944 gid_t gid,
945 uint64_t relayd_id,
946 enum lttng_event_output output,
947 uint64_t tracefile_size,
948 uint64_t tracefile_count,
949 uint64_t session_id_per_pid,
950 unsigned int monitor,
951 unsigned int live_timer_interval,
952 const char *root_shm_path,
953 const char *shm_path)
954 {
955 struct lttng_consumer_channel *channel;
956
957 channel = zmalloc(sizeof(*channel));
958 if (channel == NULL) {
959 PERROR("malloc struct lttng_consumer_channel");
960 goto end;
961 }
962
963 channel->key = key;
964 channel->refcount = 0;
965 channel->session_id = session_id;
966 channel->session_id_per_pid = session_id_per_pid;
967 channel->uid = uid;
968 channel->gid = gid;
969 channel->relayd_id = relayd_id;
970 channel->tracefile_size = tracefile_size;
971 channel->tracefile_count = tracefile_count;
972 channel->monitor = monitor;
973 channel->live_timer_interval = live_timer_interval;
974 pthread_mutex_init(&channel->lock, NULL);
975 pthread_mutex_init(&channel->timer_lock, NULL);
976
977 switch (output) {
978 case LTTNG_EVENT_SPLICE:
979 channel->output = CONSUMER_CHANNEL_SPLICE;
980 break;
981 case LTTNG_EVENT_MMAP:
982 channel->output = CONSUMER_CHANNEL_MMAP;
983 break;
984 default:
985 assert(0);
986 free(channel);
987 channel = NULL;
988 goto end;
989 }
990
991 /*
992 * In monitor mode, the streams associated with the channel will be put in
993 * a special list ONLY owned by this channel. So, the refcount is set to 1
994 * here meaning that the channel itself has streams that are referenced.
995 *
996 * On a channel deletion, once the channel is no longer visible, the
997 * refcount is decremented and checked for a zero value to delete it. With
998 * streams in no monitor mode, it will now be safe to destroy the channel.
999 */
1000 if (!channel->monitor) {
1001 channel->refcount = 1;
1002 }
1003
1004 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
1005 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
1006
1007 strncpy(channel->name, name, sizeof(channel->name));
1008 channel->name[sizeof(channel->name) - 1] = '\0';
1009
1010 if (root_shm_path) {
1011 strncpy(channel->root_shm_path, root_shm_path, sizeof(channel->root_shm_path));
1012 channel->root_shm_path[sizeof(channel->root_shm_path) - 1] = '\0';
1013 }
1014 if (shm_path) {
1015 strncpy(channel->shm_path, shm_path, sizeof(channel->shm_path));
1016 channel->shm_path[sizeof(channel->shm_path) - 1] = '\0';
1017 }
1018
1019 lttng_ht_node_init_u64(&channel->node, channel->key);
1020
1021 channel->wait_fd = -1;
1022
1023 CDS_INIT_LIST_HEAD(&channel->streams.head);
1024
1025 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
1026
1027 end:
1028 return channel;
1029 }
1030
1031 /*
1032 * Add a channel to the global list protected by a mutex.
1033 *
1034 * Always return 0 indicating success.
1035 */
1036 int consumer_add_channel(struct lttng_consumer_channel *channel,
1037 struct lttng_consumer_local_data *ctx)
1038 {
1039 pthread_mutex_lock(&consumer_data.lock);
1040 pthread_mutex_lock(&channel->lock);
1041 pthread_mutex_lock(&channel->timer_lock);
1042
1043 /*
1044 * This gives us a guarantee that the channel we are about to add to the
1045 * channel hash table will be unique. See this function comment on the why
1046 * we need to steel the channel key at this stage.
1047 */
1048 steal_channel_key(channel->key);
1049
1050 rcu_read_lock();
1051 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
1052 rcu_read_unlock();
1053
1054 pthread_mutex_unlock(&channel->timer_lock);
1055 pthread_mutex_unlock(&channel->lock);
1056 pthread_mutex_unlock(&consumer_data.lock);
1057
1058 if (channel->wait_fd != -1 && channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
1059 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
1060 }
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Allocate the pollfd structure and the local view of the out fds to avoid
1067 * doing a lookup in the linked list and concurrency issues when writing is
1068 * needed. Called with consumer_data.lock held.
1069 *
1070 * Returns the number of fds in the structures.
1071 */
1072 static int update_poll_array(struct lttng_consumer_local_data *ctx,
1073 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
1074 struct lttng_ht *ht)
1075 {
1076 int i = 0;
1077 struct lttng_ht_iter iter;
1078 struct lttng_consumer_stream *stream;
1079
1080 assert(ctx);
1081 assert(ht);
1082 assert(pollfd);
1083 assert(local_stream);
1084
1085 DBG("Updating poll fd array");
1086 rcu_read_lock();
1087 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1088 /*
1089 * Only active streams with an active end point can be added to the
1090 * poll set and local stream storage of the thread.
1091 *
1092 * There is a potential race here for endpoint_status to be updated
1093 * just after the check. However, this is OK since the stream(s) will
1094 * be deleted once the thread is notified that the end point state has
1095 * changed where this function will be called back again.
1096 */
1097 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1098 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1099 continue;
1100 }
1101 /*
1102 * This clobbers way too much the debug output. Uncomment that if you
1103 * need it for debugging purposes.
1104 *
1105 * DBG("Active FD %d", stream->wait_fd);
1106 */
1107 (*pollfd)[i].fd = stream->wait_fd;
1108 (*pollfd)[i].events = POLLIN | POLLPRI;
1109 local_stream[i] = stream;
1110 i++;
1111 }
1112 rcu_read_unlock();
1113
1114 /*
1115 * Insert the consumer_data_pipe at the end of the array and don't
1116 * increment i so nb_fd is the number of real FD.
1117 */
1118 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1119 (*pollfd)[i].events = POLLIN | POLLPRI;
1120
1121 (*pollfd)[i + 1].fd = lttng_pipe_get_readfd(ctx->consumer_wakeup_pipe);
1122 (*pollfd)[i + 1].events = POLLIN | POLLPRI;
1123 return i;
1124 }
1125
1126 /*
1127 * Poll on the should_quit pipe and the command socket return -1 on
1128 * error, 1 if should exit, 0 if data is available on the command socket
1129 */
1130 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1131 {
1132 int num_rdy;
1133
1134 restart:
1135 num_rdy = poll(consumer_sockpoll, 2, -1);
1136 if (num_rdy == -1) {
1137 /*
1138 * Restart interrupted system call.
1139 */
1140 if (errno == EINTR) {
1141 goto restart;
1142 }
1143 PERROR("Poll error");
1144 return -1;
1145 }
1146 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1147 DBG("consumer_should_quit wake up");
1148 return 1;
1149 }
1150 return 0;
1151 }
1152
1153 /*
1154 * Set the error socket.
1155 */
1156 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1157 int sock)
1158 {
1159 ctx->consumer_error_socket = sock;
1160 }
1161
1162 /*
1163 * Set the command socket path.
1164 */
1165 void lttng_consumer_set_command_sock_path(
1166 struct lttng_consumer_local_data *ctx, char *sock)
1167 {
1168 ctx->consumer_command_sock_path = sock;
1169 }
1170
1171 /*
1172 * Send return code to the session daemon.
1173 * If the socket is not defined, we return 0, it is not a fatal error
1174 */
1175 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1176 {
1177 if (ctx->consumer_error_socket > 0) {
1178 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1179 sizeof(enum lttcomm_sessiond_command));
1180 }
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Close all the tracefiles and stream fds and MUST be called when all
1187 * instances are destroyed i.e. when all threads were joined and are ended.
1188 */
1189 void lttng_consumer_cleanup(void)
1190 {
1191 struct lttng_ht_iter iter;
1192 struct lttng_consumer_channel *channel;
1193
1194 rcu_read_lock();
1195
1196 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1197 node.node) {
1198 consumer_del_channel(channel);
1199 }
1200
1201 rcu_read_unlock();
1202
1203 lttng_ht_destroy(consumer_data.channel_ht);
1204
1205 cleanup_relayd_ht();
1206
1207 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1208
1209 /*
1210 * This HT contains streams that are freed by either the metadata thread or
1211 * the data thread so we do *nothing* on the hash table and simply destroy
1212 * it.
1213 */
1214 lttng_ht_destroy(consumer_data.stream_list_ht);
1215 }
1216
1217 /*
1218 * Called from signal handler.
1219 */
1220 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1221 {
1222 ssize_t ret;
1223
1224 consumer_quit = 1;
1225 ret = lttng_write(ctx->consumer_should_quit[1], "4", 1);
1226 if (ret < 1) {
1227 PERROR("write consumer quit");
1228 }
1229
1230 DBG("Consumer flag that it should quit");
1231 }
1232
1233 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1234 off_t orig_offset)
1235 {
1236 int outfd = stream->out_fd;
1237
1238 /*
1239 * This does a blocking write-and-wait on any page that belongs to the
1240 * subbuffer prior to the one we just wrote.
1241 * Don't care about error values, as these are just hints and ways to
1242 * limit the amount of page cache used.
1243 */
1244 if (orig_offset < stream->max_sb_size) {
1245 return;
1246 }
1247 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1248 stream->max_sb_size,
1249 SYNC_FILE_RANGE_WAIT_BEFORE
1250 | SYNC_FILE_RANGE_WRITE
1251 | SYNC_FILE_RANGE_WAIT_AFTER);
1252 /*
1253 * Give hints to the kernel about how we access the file:
1254 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1255 * we write it.
1256 *
1257 * We need to call fadvise again after the file grows because the
1258 * kernel does not seem to apply fadvise to non-existing parts of the
1259 * file.
1260 *
1261 * Call fadvise _after_ having waited for the page writeback to
1262 * complete because the dirty page writeback semantic is not well
1263 * defined. So it can be expected to lead to lower throughput in
1264 * streaming.
1265 */
1266 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1267 stream->max_sb_size, POSIX_FADV_DONTNEED);
1268 }
1269
1270 /*
1271 * Initialise the necessary environnement :
1272 * - create a new context
1273 * - create the poll_pipe
1274 * - create the should_quit pipe (for signal handler)
1275 * - create the thread pipe (for splice)
1276 *
1277 * Takes a function pointer as argument, this function is called when data is
1278 * available on a buffer. This function is responsible to do the
1279 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1280 * buffer configuration and then kernctl_put_next_subbuf at the end.
1281 *
1282 * Returns a pointer to the new context or NULL on error.
1283 */
1284 struct lttng_consumer_local_data *lttng_consumer_create(
1285 enum lttng_consumer_type type,
1286 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1287 struct lttng_consumer_local_data *ctx),
1288 int (*recv_channel)(struct lttng_consumer_channel *channel),
1289 int (*recv_stream)(struct lttng_consumer_stream *stream),
1290 int (*update_stream)(uint64_t stream_key, uint32_t state))
1291 {
1292 int ret;
1293 struct lttng_consumer_local_data *ctx;
1294
1295 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1296 consumer_data.type == type);
1297 consumer_data.type = type;
1298
1299 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1300 if (ctx == NULL) {
1301 PERROR("allocating context");
1302 goto error;
1303 }
1304
1305 ctx->consumer_error_socket = -1;
1306 ctx->consumer_metadata_socket = -1;
1307 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1308 /* assign the callbacks */
1309 ctx->on_buffer_ready = buffer_ready;
1310 ctx->on_recv_channel = recv_channel;
1311 ctx->on_recv_stream = recv_stream;
1312 ctx->on_update_stream = update_stream;
1313
1314 ctx->consumer_data_pipe = lttng_pipe_open(0);
1315 if (!ctx->consumer_data_pipe) {
1316 goto error_poll_pipe;
1317 }
1318
1319 ctx->consumer_wakeup_pipe = lttng_pipe_open(0);
1320 if (!ctx->consumer_wakeup_pipe) {
1321 goto error_wakeup_pipe;
1322 }
1323
1324 ret = pipe(ctx->consumer_should_quit);
1325 if (ret < 0) {
1326 PERROR("Error creating recv pipe");
1327 goto error_quit_pipe;
1328 }
1329
1330 ret = pipe(ctx->consumer_channel_pipe);
1331 if (ret < 0) {
1332 PERROR("Error creating channel pipe");
1333 goto error_channel_pipe;
1334 }
1335
1336 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1337 if (!ctx->consumer_metadata_pipe) {
1338 goto error_metadata_pipe;
1339 }
1340
1341 return ctx;
1342
1343 error_metadata_pipe:
1344 utils_close_pipe(ctx->consumer_channel_pipe);
1345 error_channel_pipe:
1346 utils_close_pipe(ctx->consumer_should_quit);
1347 error_quit_pipe:
1348 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1349 error_wakeup_pipe:
1350 lttng_pipe_destroy(ctx->consumer_data_pipe);
1351 error_poll_pipe:
1352 free(ctx);
1353 error:
1354 return NULL;
1355 }
1356
1357 /*
1358 * Iterate over all streams of the hashtable and free them properly.
1359 */
1360 static void destroy_data_stream_ht(struct lttng_ht *ht)
1361 {
1362 struct lttng_ht_iter iter;
1363 struct lttng_consumer_stream *stream;
1364
1365 if (ht == NULL) {
1366 return;
1367 }
1368
1369 rcu_read_lock();
1370 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1371 /*
1372 * Ignore return value since we are currently cleaning up so any error
1373 * can't be handled.
1374 */
1375 (void) consumer_del_stream(stream, ht);
1376 }
1377 rcu_read_unlock();
1378
1379 lttng_ht_destroy(ht);
1380 }
1381
1382 /*
1383 * Iterate over all streams of the metadata hashtable and free them
1384 * properly.
1385 */
1386 static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1387 {
1388 struct lttng_ht_iter iter;
1389 struct lttng_consumer_stream *stream;
1390
1391 if (ht == NULL) {
1392 return;
1393 }
1394
1395 rcu_read_lock();
1396 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1397 /*
1398 * Ignore return value since we are currently cleaning up so any error
1399 * can't be handled.
1400 */
1401 (void) consumer_del_metadata_stream(stream, ht);
1402 }
1403 rcu_read_unlock();
1404
1405 lttng_ht_destroy(ht);
1406 }
1407
1408 /*
1409 * Close all fds associated with the instance and free the context.
1410 */
1411 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1412 {
1413 int ret;
1414
1415 DBG("Consumer destroying it. Closing everything.");
1416
1417 if (!ctx) {
1418 return;
1419 }
1420
1421 destroy_data_stream_ht(data_ht);
1422 destroy_metadata_stream_ht(metadata_ht);
1423
1424 ret = close(ctx->consumer_error_socket);
1425 if (ret) {
1426 PERROR("close");
1427 }
1428 ret = close(ctx->consumer_metadata_socket);
1429 if (ret) {
1430 PERROR("close");
1431 }
1432 utils_close_pipe(ctx->consumer_channel_pipe);
1433 lttng_pipe_destroy(ctx->consumer_data_pipe);
1434 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1435 lttng_pipe_destroy(ctx->consumer_wakeup_pipe);
1436 utils_close_pipe(ctx->consumer_should_quit);
1437
1438 unlink(ctx->consumer_command_sock_path);
1439 free(ctx);
1440 }
1441
1442 /*
1443 * Write the metadata stream id on the specified file descriptor.
1444 */
1445 static int write_relayd_metadata_id(int fd,
1446 struct lttng_consumer_stream *stream,
1447 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1448 {
1449 ssize_t ret;
1450 struct lttcomm_relayd_metadata_payload hdr;
1451
1452 hdr.stream_id = htobe64(stream->relayd_stream_id);
1453 hdr.padding_size = htobe32(padding);
1454 ret = lttng_write(fd, (void *) &hdr, sizeof(hdr));
1455 if (ret < sizeof(hdr)) {
1456 /*
1457 * This error means that the fd's end is closed so ignore the PERROR
1458 * not to clubber the error output since this can happen in a normal
1459 * code path.
1460 */
1461 if (errno != EPIPE) {
1462 PERROR("write metadata stream id");
1463 }
1464 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1465 /*
1466 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1467 * handle writting the missing part so report that as an error and
1468 * don't lie to the caller.
1469 */
1470 ret = -1;
1471 goto end;
1472 }
1473 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1474 stream->relayd_stream_id, padding);
1475
1476 end:
1477 return (int) ret;
1478 }
1479
1480 /*
1481 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1482 * core function for writing trace buffers to either the local filesystem or
1483 * the network.
1484 *
1485 * It must be called with the stream lock held.
1486 *
1487 * Careful review MUST be put if any changes occur!
1488 *
1489 * Returns the number of bytes written
1490 */
1491 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1492 struct lttng_consumer_local_data *ctx,
1493 struct lttng_consumer_stream *stream, unsigned long len,
1494 unsigned long padding,
1495 struct ctf_packet_index *index)
1496 {
1497 unsigned long mmap_offset;
1498 void *mmap_base;
1499 ssize_t ret = 0;
1500 off_t orig_offset = stream->out_fd_offset;
1501 /* Default is on the disk */
1502 int outfd = stream->out_fd;
1503 struct consumer_relayd_sock_pair *relayd = NULL;
1504 unsigned int relayd_hang_up = 0;
1505
1506 /* RCU lock for the relayd pointer */
1507 rcu_read_lock();
1508
1509 /* Flag that the current stream if set for network streaming. */
1510 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1511 relayd = consumer_find_relayd(stream->net_seq_idx);
1512 if (relayd == NULL) {
1513 ret = -EPIPE;
1514 goto end;
1515 }
1516 }
1517
1518 /* get the offset inside the fd to mmap */
1519 switch (consumer_data.type) {
1520 case LTTNG_CONSUMER_KERNEL:
1521 mmap_base = stream->mmap_base;
1522 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1523 if (ret < 0) {
1524 ret = -errno;
1525 PERROR("tracer ctl get_mmap_read_offset");
1526 goto end;
1527 }
1528 break;
1529 case LTTNG_CONSUMER32_UST:
1530 case LTTNG_CONSUMER64_UST:
1531 mmap_base = lttng_ustctl_get_mmap_base(stream);
1532 if (!mmap_base) {
1533 ERR("read mmap get mmap base for stream %s", stream->name);
1534 ret = -EPERM;
1535 goto end;
1536 }
1537 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1538 if (ret != 0) {
1539 PERROR("tracer ctl get_mmap_read_offset");
1540 ret = -EINVAL;
1541 goto end;
1542 }
1543 break;
1544 default:
1545 ERR("Unknown consumer_data type");
1546 assert(0);
1547 }
1548
1549 /* Handle stream on the relayd if the output is on the network */
1550 if (relayd) {
1551 unsigned long netlen = len;
1552
1553 /*
1554 * Lock the control socket for the complete duration of the function
1555 * since from this point on we will use the socket.
1556 */
1557 if (stream->metadata_flag) {
1558 /* Metadata requires the control socket. */
1559 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1560 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1561 }
1562
1563 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1564 if (ret < 0) {
1565 relayd_hang_up = 1;
1566 goto write_error;
1567 }
1568 /* Use the returned socket. */
1569 outfd = ret;
1570
1571 /* Write metadata stream id before payload */
1572 if (stream->metadata_flag) {
1573 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1574 if (ret < 0) {
1575 relayd_hang_up = 1;
1576 goto write_error;
1577 }
1578 }
1579 } else {
1580 /* No streaming, we have to set the len with the full padding */
1581 len += padding;
1582
1583 /*
1584 * Check if we need to change the tracefile before writing the packet.
1585 */
1586 if (stream->chan->tracefile_size > 0 &&
1587 (stream->tracefile_size_current + len) >
1588 stream->chan->tracefile_size) {
1589 ret = utils_rotate_stream_file(stream->chan->pathname,
1590 stream->name, stream->chan->tracefile_size,
1591 stream->chan->tracefile_count, stream->uid, stream->gid,
1592 stream->out_fd, &(stream->tracefile_count_current),
1593 &stream->out_fd);
1594 if (ret < 0) {
1595 ERR("Rotating output file");
1596 goto end;
1597 }
1598 outfd = stream->out_fd;
1599
1600 if (stream->index_fd >= 0) {
1601 ret = index_create_file(stream->chan->pathname,
1602 stream->name, stream->uid, stream->gid,
1603 stream->chan->tracefile_size,
1604 stream->tracefile_count_current);
1605 if (ret < 0) {
1606 goto end;
1607 }
1608 stream->index_fd = ret;
1609 }
1610
1611 /* Reset current size because we just perform a rotation. */
1612 stream->tracefile_size_current = 0;
1613 stream->out_fd_offset = 0;
1614 orig_offset = 0;
1615 }
1616 stream->tracefile_size_current += len;
1617 if (index) {
1618 index->offset = htobe64(stream->out_fd_offset);
1619 }
1620 }
1621
1622 /*
1623 * This call guarantee that len or less is returned. It's impossible to
1624 * receive a ret value that is bigger than len.
1625 */
1626 ret = lttng_write(outfd, mmap_base + mmap_offset, len);
1627 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1628 if (ret < 0 || ((size_t) ret != len)) {
1629 /*
1630 * Report error to caller if nothing was written else at least send the
1631 * amount written.
1632 */
1633 if (ret < 0) {
1634 ret = -errno;
1635 }
1636 relayd_hang_up = 1;
1637
1638 /* Socket operation failed. We consider the relayd dead */
1639 if (errno == EPIPE || errno == EINVAL || errno == EBADF) {
1640 /*
1641 * This is possible if the fd is closed on the other side
1642 * (outfd) or any write problem. It can be verbose a bit for a
1643 * normal execution if for instance the relayd is stopped
1644 * abruptly. This can happen so set this to a DBG statement.
1645 */
1646 DBG("Consumer mmap write detected relayd hang up");
1647 } else {
1648 /* Unhandled error, print it and stop function right now. */
1649 PERROR("Error in write mmap (ret %zd != len %lu)", ret, len);
1650 }
1651 goto write_error;
1652 }
1653 stream->output_written += ret;
1654
1655 /* This call is useless on a socket so better save a syscall. */
1656 if (!relayd) {
1657 /* This won't block, but will start writeout asynchronously */
1658 lttng_sync_file_range(outfd, stream->out_fd_offset, len,
1659 SYNC_FILE_RANGE_WRITE);
1660 stream->out_fd_offset += len;
1661 }
1662 lttng_consumer_sync_trace_file(stream, orig_offset);
1663
1664 write_error:
1665 /*
1666 * This is a special case that the relayd has closed its socket. Let's
1667 * cleanup the relayd object and all associated streams.
1668 */
1669 if (relayd && relayd_hang_up) {
1670 cleanup_relayd(relayd, ctx);
1671 }
1672
1673 end:
1674 /* Unlock only if ctrl socket used */
1675 if (relayd && stream->metadata_flag) {
1676 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1677 }
1678
1679 rcu_read_unlock();
1680 return ret;
1681 }
1682
1683 /*
1684 * Splice the data from the ring buffer to the tracefile.
1685 *
1686 * It must be called with the stream lock held.
1687 *
1688 * Returns the number of bytes spliced.
1689 */
1690 ssize_t lttng_consumer_on_read_subbuffer_splice(
1691 struct lttng_consumer_local_data *ctx,
1692 struct lttng_consumer_stream *stream, unsigned long len,
1693 unsigned long padding,
1694 struct ctf_packet_index *index)
1695 {
1696 ssize_t ret = 0, written = 0, ret_splice = 0;
1697 loff_t offset = 0;
1698 off_t orig_offset = stream->out_fd_offset;
1699 int fd = stream->wait_fd;
1700 /* Default is on the disk */
1701 int outfd = stream->out_fd;
1702 struct consumer_relayd_sock_pair *relayd = NULL;
1703 int *splice_pipe;
1704 unsigned int relayd_hang_up = 0;
1705
1706 switch (consumer_data.type) {
1707 case LTTNG_CONSUMER_KERNEL:
1708 break;
1709 case LTTNG_CONSUMER32_UST:
1710 case LTTNG_CONSUMER64_UST:
1711 /* Not supported for user space tracing */
1712 return -ENOSYS;
1713 default:
1714 ERR("Unknown consumer_data type");
1715 assert(0);
1716 }
1717
1718 /* RCU lock for the relayd pointer */
1719 rcu_read_lock();
1720
1721 /* Flag that the current stream if set for network streaming. */
1722 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1723 relayd = consumer_find_relayd(stream->net_seq_idx);
1724 if (relayd == NULL) {
1725 written = -ret;
1726 goto end;
1727 }
1728 }
1729 splice_pipe = stream->splice_pipe;
1730
1731 /* Write metadata stream id before payload */
1732 if (relayd) {
1733 unsigned long total_len = len;
1734
1735 if (stream->metadata_flag) {
1736 /*
1737 * Lock the control socket for the complete duration of the function
1738 * since from this point on we will use the socket.
1739 */
1740 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1741
1742 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1743 padding);
1744 if (ret < 0) {
1745 written = ret;
1746 relayd_hang_up = 1;
1747 goto write_error;
1748 }
1749
1750 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1751 }
1752
1753 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1754 if (ret < 0) {
1755 written = ret;
1756 relayd_hang_up = 1;
1757 goto write_error;
1758 }
1759 /* Use the returned socket. */
1760 outfd = ret;
1761 } else {
1762 /* No streaming, we have to set the len with the full padding */
1763 len += padding;
1764
1765 /*
1766 * Check if we need to change the tracefile before writing the packet.
1767 */
1768 if (stream->chan->tracefile_size > 0 &&
1769 (stream->tracefile_size_current + len) >
1770 stream->chan->tracefile_size) {
1771 ret = utils_rotate_stream_file(stream->chan->pathname,
1772 stream->name, stream->chan->tracefile_size,
1773 stream->chan->tracefile_count, stream->uid, stream->gid,
1774 stream->out_fd, &(stream->tracefile_count_current),
1775 &stream->out_fd);
1776 if (ret < 0) {
1777 written = ret;
1778 ERR("Rotating output file");
1779 goto end;
1780 }
1781 outfd = stream->out_fd;
1782
1783 if (stream->index_fd >= 0) {
1784 ret = close(stream->index_fd);
1785 if (ret < 0) {
1786 PERROR("Closing index");
1787 goto end;
1788 }
1789 stream->index_fd = -1;
1790 ret = index_create_file(stream->chan->pathname,
1791 stream->name, stream->uid, stream->gid,
1792 stream->chan->tracefile_size,
1793 stream->tracefile_count_current);
1794 if (ret < 0) {
1795 written = ret;
1796 goto end;
1797 }
1798 stream->index_fd = ret;
1799 }
1800
1801 /* Reset current size because we just perform a rotation. */
1802 stream->tracefile_size_current = 0;
1803 stream->out_fd_offset = 0;
1804 orig_offset = 0;
1805 }
1806 stream->tracefile_size_current += len;
1807 index->offset = htobe64(stream->out_fd_offset);
1808 }
1809
1810 while (len > 0) {
1811 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1812 (unsigned long)offset, len, fd, splice_pipe[1]);
1813 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1814 SPLICE_F_MOVE | SPLICE_F_MORE);
1815 DBG("splice chan to pipe, ret %zd", ret_splice);
1816 if (ret_splice < 0) {
1817 ret = errno;
1818 written = -ret;
1819 PERROR("Error in relay splice");
1820 goto splice_error;
1821 }
1822
1823 /* Handle stream on the relayd if the output is on the network */
1824 if (relayd && stream->metadata_flag) {
1825 size_t metadata_payload_size =
1826 sizeof(struct lttcomm_relayd_metadata_payload);
1827
1828 /* Update counter to fit the spliced data */
1829 ret_splice += metadata_payload_size;
1830 len += metadata_payload_size;
1831 /*
1832 * We do this so the return value can match the len passed as
1833 * argument to this function.
1834 */
1835 written -= metadata_payload_size;
1836 }
1837
1838 /* Splice data out */
1839 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1840 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1841 DBG("Consumer splice pipe to file (out_fd: %d), ret %zd",
1842 outfd, ret_splice);
1843 if (ret_splice < 0) {
1844 ret = errno;
1845 written = -ret;
1846 relayd_hang_up = 1;
1847 goto write_error;
1848 } else if (ret_splice > len) {
1849 /*
1850 * We don't expect this code path to be executed but you never know
1851 * so this is an extra protection agains a buggy splice().
1852 */
1853 ret = errno;
1854 written += ret_splice;
1855 PERROR("Wrote more data than requested %zd (len: %lu)", ret_splice,
1856 len);
1857 goto splice_error;
1858 } else {
1859 /* All good, update current len and continue. */
1860 len -= ret_splice;
1861 }
1862
1863 /* This call is useless on a socket so better save a syscall. */
1864 if (!relayd) {
1865 /* This won't block, but will start writeout asynchronously */
1866 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1867 SYNC_FILE_RANGE_WRITE);
1868 stream->out_fd_offset += ret_splice;
1869 }
1870 stream->output_written += ret_splice;
1871 written += ret_splice;
1872 }
1873 lttng_consumer_sync_trace_file(stream, orig_offset);
1874 goto end;
1875
1876 write_error:
1877 /*
1878 * This is a special case that the relayd has closed its socket. Let's
1879 * cleanup the relayd object and all associated streams.
1880 */
1881 if (relayd && relayd_hang_up) {
1882 cleanup_relayd(relayd, ctx);
1883 /* Skip splice error so the consumer does not fail */
1884 goto end;
1885 }
1886
1887 splice_error:
1888 /* send the appropriate error description to sessiond */
1889 switch (ret) {
1890 case EINVAL:
1891 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1892 break;
1893 case ENOMEM:
1894 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1895 break;
1896 case ESPIPE:
1897 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1898 break;
1899 }
1900
1901 end:
1902 if (relayd && stream->metadata_flag) {
1903 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1904 }
1905
1906 rcu_read_unlock();
1907 return written;
1908 }
1909
1910 /*
1911 * Take a snapshot for a specific fd
1912 *
1913 * Returns 0 on success, < 0 on error
1914 */
1915 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1916 {
1917 switch (consumer_data.type) {
1918 case LTTNG_CONSUMER_KERNEL:
1919 return lttng_kconsumer_take_snapshot(stream);
1920 case LTTNG_CONSUMER32_UST:
1921 case LTTNG_CONSUMER64_UST:
1922 return lttng_ustconsumer_take_snapshot(stream);
1923 default:
1924 ERR("Unknown consumer_data type");
1925 assert(0);
1926 return -ENOSYS;
1927 }
1928 }
1929
1930 /*
1931 * Get the produced position
1932 *
1933 * Returns 0 on success, < 0 on error
1934 */
1935 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1936 unsigned long *pos)
1937 {
1938 switch (consumer_data.type) {
1939 case LTTNG_CONSUMER_KERNEL:
1940 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1941 case LTTNG_CONSUMER32_UST:
1942 case LTTNG_CONSUMER64_UST:
1943 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1944 default:
1945 ERR("Unknown consumer_data type");
1946 assert(0);
1947 return -ENOSYS;
1948 }
1949 }
1950
1951 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1952 int sock, struct pollfd *consumer_sockpoll)
1953 {
1954 switch (consumer_data.type) {
1955 case LTTNG_CONSUMER_KERNEL:
1956 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1957 case LTTNG_CONSUMER32_UST:
1958 case LTTNG_CONSUMER64_UST:
1959 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1960 default:
1961 ERR("Unknown consumer_data type");
1962 assert(0);
1963 return -ENOSYS;
1964 }
1965 }
1966
1967 void lttng_consumer_close_all_metadata(void)
1968 {
1969 switch (consumer_data.type) {
1970 case LTTNG_CONSUMER_KERNEL:
1971 /*
1972 * The Kernel consumer has a different metadata scheme so we don't
1973 * close anything because the stream will be closed by the session
1974 * daemon.
1975 */
1976 break;
1977 case LTTNG_CONSUMER32_UST:
1978 case LTTNG_CONSUMER64_UST:
1979 /*
1980 * Close all metadata streams. The metadata hash table is passed and
1981 * this call iterates over it by closing all wakeup fd. This is safe
1982 * because at this point we are sure that the metadata producer is
1983 * either dead or blocked.
1984 */
1985 lttng_ustconsumer_close_all_metadata(metadata_ht);
1986 break;
1987 default:
1988 ERR("Unknown consumer_data type");
1989 assert(0);
1990 }
1991 }
1992
1993 /*
1994 * Clean up a metadata stream and free its memory.
1995 */
1996 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1997 struct lttng_ht *ht)
1998 {
1999 struct lttng_consumer_channel *free_chan = NULL;
2000
2001 assert(stream);
2002 /*
2003 * This call should NEVER receive regular stream. It must always be
2004 * metadata stream and this is crucial for data structure synchronization.
2005 */
2006 assert(stream->metadata_flag);
2007
2008 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
2009
2010 pthread_mutex_lock(&consumer_data.lock);
2011 pthread_mutex_lock(&stream->chan->lock);
2012 pthread_mutex_lock(&stream->lock);
2013
2014 /* Remove any reference to that stream. */
2015 consumer_stream_delete(stream, ht);
2016
2017 /* Close down everything including the relayd if one. */
2018 consumer_stream_close(stream);
2019 /* Destroy tracer buffers of the stream. */
2020 consumer_stream_destroy_buffers(stream);
2021
2022 /* Atomically decrement channel refcount since other threads can use it. */
2023 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2024 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2025 /* Go for channel deletion! */
2026 free_chan = stream->chan;
2027 }
2028
2029 /*
2030 * Nullify the stream reference so it is not used after deletion. The
2031 * channel lock MUST be acquired before being able to check for a NULL
2032 * pointer value.
2033 */
2034 stream->chan->metadata_stream = NULL;
2035
2036 pthread_mutex_unlock(&stream->lock);
2037 pthread_mutex_unlock(&stream->chan->lock);
2038 pthread_mutex_unlock(&consumer_data.lock);
2039
2040 if (free_chan) {
2041 consumer_del_channel(free_chan);
2042 }
2043
2044 consumer_stream_free(stream);
2045 }
2046
2047 /*
2048 * Action done with the metadata stream when adding it to the consumer internal
2049 * data structures to handle it.
2050 */
2051 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2052 {
2053 struct lttng_ht *ht = metadata_ht;
2054 int ret = 0;
2055 struct lttng_ht_iter iter;
2056 struct lttng_ht_node_u64 *node;
2057
2058 assert(stream);
2059 assert(ht);
2060
2061 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2062
2063 pthread_mutex_lock(&consumer_data.lock);
2064 pthread_mutex_lock(&stream->chan->lock);
2065 pthread_mutex_lock(&stream->chan->timer_lock);
2066 pthread_mutex_lock(&stream->lock);
2067
2068 /*
2069 * From here, refcounts are updated so be _careful_ when returning an error
2070 * after this point.
2071 */
2072
2073 rcu_read_lock();
2074
2075 /*
2076 * Lookup the stream just to make sure it does not exist in our internal
2077 * state. This should NEVER happen.
2078 */
2079 lttng_ht_lookup(ht, &stream->key, &iter);
2080 node = lttng_ht_iter_get_node_u64(&iter);
2081 assert(!node);
2082
2083 /*
2084 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2085 * in terms of destroying the associated channel, because the action that
2086 * causes the count to become 0 also causes a stream to be added. The
2087 * channel deletion will thus be triggered by the following removal of this
2088 * stream.
2089 */
2090 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2091 /* Increment refcount before decrementing nb_init_stream_left */
2092 cmm_smp_wmb();
2093 uatomic_dec(&stream->chan->nb_init_stream_left);
2094 }
2095
2096 lttng_ht_add_unique_u64(ht, &stream->node);
2097
2098 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2099 &stream->node_channel_id);
2100
2101 /*
2102 * Add stream to the stream_list_ht of the consumer data. No need to steal
2103 * the key since the HT does not use it and we allow to add redundant keys
2104 * into this table.
2105 */
2106 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2107
2108 rcu_read_unlock();
2109
2110 pthread_mutex_unlock(&stream->lock);
2111 pthread_mutex_unlock(&stream->chan->lock);
2112 pthread_mutex_unlock(&stream->chan->timer_lock);
2113 pthread_mutex_unlock(&consumer_data.lock);
2114 return ret;
2115 }
2116
2117 /*
2118 * Delete data stream that are flagged for deletion (endpoint_status).
2119 */
2120 static void validate_endpoint_status_data_stream(void)
2121 {
2122 struct lttng_ht_iter iter;
2123 struct lttng_consumer_stream *stream;
2124
2125 DBG("Consumer delete flagged data stream");
2126
2127 rcu_read_lock();
2128 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2129 /* Validate delete flag of the stream */
2130 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2131 continue;
2132 }
2133 /* Delete it right now */
2134 consumer_del_stream(stream, data_ht);
2135 }
2136 rcu_read_unlock();
2137 }
2138
2139 /*
2140 * Delete metadata stream that are flagged for deletion (endpoint_status).
2141 */
2142 static void validate_endpoint_status_metadata_stream(
2143 struct lttng_poll_event *pollset)
2144 {
2145 struct lttng_ht_iter iter;
2146 struct lttng_consumer_stream *stream;
2147
2148 DBG("Consumer delete flagged metadata stream");
2149
2150 assert(pollset);
2151
2152 rcu_read_lock();
2153 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2154 /* Validate delete flag of the stream */
2155 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2156 continue;
2157 }
2158 /*
2159 * Remove from pollset so the metadata thread can continue without
2160 * blocking on a deleted stream.
2161 */
2162 lttng_poll_del(pollset, stream->wait_fd);
2163
2164 /* Delete it right now */
2165 consumer_del_metadata_stream(stream, metadata_ht);
2166 }
2167 rcu_read_unlock();
2168 }
2169
2170 /*
2171 * Thread polls on metadata file descriptor and write them on disk or on the
2172 * network.
2173 */
2174 void *consumer_thread_metadata_poll(void *data)
2175 {
2176 int ret, i, pollfd, err = -1;
2177 uint32_t revents, nb_fd;
2178 struct lttng_consumer_stream *stream = NULL;
2179 struct lttng_ht_iter iter;
2180 struct lttng_ht_node_u64 *node;
2181 struct lttng_poll_event events;
2182 struct lttng_consumer_local_data *ctx = data;
2183 ssize_t len;
2184
2185 rcu_register_thread();
2186
2187 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_METADATA);
2188
2189 if (testpoint(consumerd_thread_metadata)) {
2190 goto error_testpoint;
2191 }
2192
2193 health_code_update();
2194
2195 DBG("Thread metadata poll started");
2196
2197 /* Size is set to 1 for the consumer_metadata pipe */
2198 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2199 if (ret < 0) {
2200 ERR("Poll set creation failed");
2201 goto end_poll;
2202 }
2203
2204 ret = lttng_poll_add(&events,
2205 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2206 if (ret < 0) {
2207 goto end;
2208 }
2209
2210 /* Main loop */
2211 DBG("Metadata main loop started");
2212
2213 while (1) {
2214 restart:
2215 health_code_update();
2216 health_poll_entry();
2217 DBG("Metadata poll wait");
2218 ret = lttng_poll_wait(&events, -1);
2219 DBG("Metadata poll return from wait with %d fd(s)",
2220 LTTNG_POLL_GETNB(&events));
2221 health_poll_exit();
2222 DBG("Metadata event catched in thread");
2223 if (ret < 0) {
2224 if (errno == EINTR) {
2225 ERR("Poll EINTR catched");
2226 goto restart;
2227 }
2228 if (LTTNG_POLL_GETNB(&events) == 0) {
2229 err = 0; /* All is OK */
2230 }
2231 goto end;
2232 }
2233
2234 nb_fd = ret;
2235
2236 /* From here, the event is a metadata wait fd */
2237 for (i = 0; i < nb_fd; i++) {
2238 health_code_update();
2239
2240 revents = LTTNG_POLL_GETEV(&events, i);
2241 pollfd = LTTNG_POLL_GETFD(&events, i);
2242
2243 if (!revents) {
2244 /* No activity for this FD (poll implementation). */
2245 continue;
2246 }
2247
2248 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2249 if (revents & LPOLLIN) {
2250 ssize_t pipe_len;
2251
2252 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2253 &stream, sizeof(stream));
2254 if (pipe_len < sizeof(stream)) {
2255 if (pipe_len < 0) {
2256 PERROR("read metadata stream");
2257 }
2258 /*
2259 * Remove the pipe from the poll set and continue the loop
2260 * since their might be data to consume.
2261 */
2262 lttng_poll_del(&events,
2263 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2264 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2265 continue;
2266 }
2267
2268 /* A NULL stream means that the state has changed. */
2269 if (stream == NULL) {
2270 /* Check for deleted streams. */
2271 validate_endpoint_status_metadata_stream(&events);
2272 goto restart;
2273 }
2274
2275 DBG("Adding metadata stream %d to poll set",
2276 stream->wait_fd);
2277
2278 /* Add metadata stream to the global poll events list */
2279 lttng_poll_add(&events, stream->wait_fd,
2280 LPOLLIN | LPOLLPRI | LPOLLHUP);
2281 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2282 DBG("Metadata thread pipe hung up");
2283 /*
2284 * Remove the pipe from the poll set and continue the loop
2285 * since their might be data to consume.
2286 */
2287 lttng_poll_del(&events,
2288 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2289 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2290 continue;
2291 } else {
2292 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2293 goto end;
2294 }
2295
2296 /* Handle other stream */
2297 continue;
2298 }
2299
2300 rcu_read_lock();
2301 {
2302 uint64_t tmp_id = (uint64_t) pollfd;
2303
2304 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2305 }
2306 node = lttng_ht_iter_get_node_u64(&iter);
2307 assert(node);
2308
2309 stream = caa_container_of(node, struct lttng_consumer_stream,
2310 node);
2311
2312 if (revents & (LPOLLIN | LPOLLPRI)) {
2313 /* Get the data out of the metadata file descriptor */
2314 DBG("Metadata available on fd %d", pollfd);
2315 assert(stream->wait_fd == pollfd);
2316
2317 do {
2318 health_code_update();
2319
2320 len = ctx->on_buffer_ready(stream, ctx);
2321 /*
2322 * We don't check the return value here since if we get
2323 * a negative len, it means an error occured thus we
2324 * simply remove it from the poll set and free the
2325 * stream.
2326 */
2327 } while (len > 0);
2328
2329 /* It's ok to have an unavailable sub-buffer */
2330 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2331 /* Clean up stream from consumer and free it. */
2332 lttng_poll_del(&events, stream->wait_fd);
2333 consumer_del_metadata_stream(stream, metadata_ht);
2334 }
2335 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2336 DBG("Metadata fd %d is hup|err.", pollfd);
2337 if (!stream->hangup_flush_done
2338 && (consumer_data.type == LTTNG_CONSUMER32_UST
2339 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2340 DBG("Attempting to flush and consume the UST buffers");
2341 lttng_ustconsumer_on_stream_hangup(stream);
2342
2343 /* We just flushed the stream now read it. */
2344 do {
2345 health_code_update();
2346
2347 len = ctx->on_buffer_ready(stream, ctx);
2348 /*
2349 * We don't check the return value here since if we get
2350 * a negative len, it means an error occured thus we
2351 * simply remove it from the poll set and free the
2352 * stream.
2353 */
2354 } while (len > 0);
2355 }
2356
2357 lttng_poll_del(&events, stream->wait_fd);
2358 /*
2359 * This call update the channel states, closes file descriptors
2360 * and securely free the stream.
2361 */
2362 consumer_del_metadata_stream(stream, metadata_ht);
2363 } else {
2364 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2365 rcu_read_unlock();
2366 goto end;
2367 }
2368 /* Release RCU lock for the stream looked up */
2369 rcu_read_unlock();
2370 }
2371 }
2372
2373 /* All is OK */
2374 err = 0;
2375 end:
2376 DBG("Metadata poll thread exiting");
2377
2378 lttng_poll_clean(&events);
2379 end_poll:
2380 error_testpoint:
2381 if (err) {
2382 health_error();
2383 ERR("Health error occurred in %s", __func__);
2384 }
2385 health_unregister(health_consumerd);
2386 rcu_unregister_thread();
2387 return NULL;
2388 }
2389
2390 /*
2391 * This thread polls the fds in the set to consume the data and write
2392 * it to tracefile if necessary.
2393 */
2394 void *consumer_thread_data_poll(void *data)
2395 {
2396 int num_rdy, num_hup, high_prio, ret, i, err = -1;
2397 struct pollfd *pollfd = NULL;
2398 /* local view of the streams */
2399 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2400 /* local view of consumer_data.fds_count */
2401 int nb_fd = 0;
2402 struct lttng_consumer_local_data *ctx = data;
2403 ssize_t len;
2404
2405 rcu_register_thread();
2406
2407 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_DATA);
2408
2409 if (testpoint(consumerd_thread_data)) {
2410 goto error_testpoint;
2411 }
2412
2413 health_code_update();
2414
2415 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2416 if (local_stream == NULL) {
2417 PERROR("local_stream malloc");
2418 goto end;
2419 }
2420
2421 while (1) {
2422 health_code_update();
2423
2424 high_prio = 0;
2425 num_hup = 0;
2426
2427 /*
2428 * the fds set has been updated, we need to update our
2429 * local array as well
2430 */
2431 pthread_mutex_lock(&consumer_data.lock);
2432 if (consumer_data.need_update) {
2433 free(pollfd);
2434 pollfd = NULL;
2435
2436 free(local_stream);
2437 local_stream = NULL;
2438
2439 /*
2440 * Allocate for all fds +1 for the consumer_data_pipe and +1 for
2441 * wake up pipe.
2442 */
2443 pollfd = zmalloc((consumer_data.stream_count + 2) * sizeof(struct pollfd));
2444 if (pollfd == NULL) {
2445 PERROR("pollfd malloc");
2446 pthread_mutex_unlock(&consumer_data.lock);
2447 goto end;
2448 }
2449
2450 local_stream = zmalloc((consumer_data.stream_count + 2) *
2451 sizeof(struct lttng_consumer_stream *));
2452 if (local_stream == NULL) {
2453 PERROR("local_stream malloc");
2454 pthread_mutex_unlock(&consumer_data.lock);
2455 goto end;
2456 }
2457 ret = update_poll_array(ctx, &pollfd, local_stream,
2458 data_ht);
2459 if (ret < 0) {
2460 ERR("Error in allocating pollfd or local_outfds");
2461 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2462 pthread_mutex_unlock(&consumer_data.lock);
2463 goto end;
2464 }
2465 nb_fd = ret;
2466 consumer_data.need_update = 0;
2467 }
2468 pthread_mutex_unlock(&consumer_data.lock);
2469
2470 /* No FDs and consumer_quit, consumer_cleanup the thread */
2471 if (nb_fd == 0 && consumer_quit == 1) {
2472 err = 0; /* All is OK */
2473 goto end;
2474 }
2475 /* poll on the array of fds */
2476 restart:
2477 DBG("polling on %d fd", nb_fd + 2);
2478 health_poll_entry();
2479 num_rdy = poll(pollfd, nb_fd + 2, -1);
2480 health_poll_exit();
2481 DBG("poll num_rdy : %d", num_rdy);
2482 if (num_rdy == -1) {
2483 /*
2484 * Restart interrupted system call.
2485 */
2486 if (errno == EINTR) {
2487 goto restart;
2488 }
2489 PERROR("Poll error");
2490 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2491 goto end;
2492 } else if (num_rdy == 0) {
2493 DBG("Polling thread timed out");
2494 goto end;
2495 }
2496
2497 /*
2498 * If the consumer_data_pipe triggered poll go directly to the
2499 * beginning of the loop to update the array. We want to prioritize
2500 * array update over low-priority reads.
2501 */
2502 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2503 ssize_t pipe_readlen;
2504
2505 DBG("consumer_data_pipe wake up");
2506 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2507 &new_stream, sizeof(new_stream));
2508 if (pipe_readlen < sizeof(new_stream)) {
2509 PERROR("Consumer data pipe");
2510 /* Continue so we can at least handle the current stream(s). */
2511 continue;
2512 }
2513
2514 /*
2515 * If the stream is NULL, just ignore it. It's also possible that
2516 * the sessiond poll thread changed the consumer_quit state and is
2517 * waking us up to test it.
2518 */
2519 if (new_stream == NULL) {
2520 validate_endpoint_status_data_stream();
2521 continue;
2522 }
2523
2524 /* Continue to update the local streams and handle prio ones */
2525 continue;
2526 }
2527
2528 /* Handle wakeup pipe. */
2529 if (pollfd[nb_fd + 1].revents & (POLLIN | POLLPRI)) {
2530 char dummy;
2531 ssize_t pipe_readlen;
2532
2533 pipe_readlen = lttng_pipe_read(ctx->consumer_wakeup_pipe, &dummy,
2534 sizeof(dummy));
2535 if (pipe_readlen < 0) {
2536 PERROR("Consumer data wakeup pipe");
2537 }
2538 /* We've been awakened to handle stream(s). */
2539 ctx->has_wakeup = 0;
2540 }
2541
2542 /* Take care of high priority channels first. */
2543 for (i = 0; i < nb_fd; i++) {
2544 health_code_update();
2545
2546 if (local_stream[i] == NULL) {
2547 continue;
2548 }
2549 if (pollfd[i].revents & POLLPRI) {
2550 DBG("Urgent read on fd %d", pollfd[i].fd);
2551 high_prio = 1;
2552 len = ctx->on_buffer_ready(local_stream[i], ctx);
2553 /* it's ok to have an unavailable sub-buffer */
2554 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2555 /* Clean the stream and free it. */
2556 consumer_del_stream(local_stream[i], data_ht);
2557 local_stream[i] = NULL;
2558 } else if (len > 0) {
2559 local_stream[i]->data_read = 1;
2560 }
2561 }
2562 }
2563
2564 /*
2565 * If we read high prio channel in this loop, try again
2566 * for more high prio data.
2567 */
2568 if (high_prio) {
2569 continue;
2570 }
2571
2572 /* Take care of low priority channels. */
2573 for (i = 0; i < nb_fd; i++) {
2574 health_code_update();
2575
2576 if (local_stream[i] == NULL) {
2577 continue;
2578 }
2579 if ((pollfd[i].revents & POLLIN) ||
2580 local_stream[i]->hangup_flush_done ||
2581 local_stream[i]->has_data) {
2582 DBG("Normal read on fd %d", pollfd[i].fd);
2583 len = ctx->on_buffer_ready(local_stream[i], ctx);
2584 /* it's ok to have an unavailable sub-buffer */
2585 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2586 /* Clean the stream and free it. */
2587 consumer_del_stream(local_stream[i], data_ht);
2588 local_stream[i] = NULL;
2589 } else if (len > 0) {
2590 local_stream[i]->data_read = 1;
2591 }
2592 }
2593 }
2594
2595 /* Handle hangup and errors */
2596 for (i = 0; i < nb_fd; i++) {
2597 health_code_update();
2598
2599 if (local_stream[i] == NULL) {
2600 continue;
2601 }
2602 if (!local_stream[i]->hangup_flush_done
2603 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2604 && (consumer_data.type == LTTNG_CONSUMER32_UST
2605 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2606 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2607 pollfd[i].fd);
2608 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2609 /* Attempt read again, for the data we just flushed. */
2610 local_stream[i]->data_read = 1;
2611 }
2612 /*
2613 * If the poll flag is HUP/ERR/NVAL and we have
2614 * read no data in this pass, we can remove the
2615 * stream from its hash table.
2616 */
2617 if ((pollfd[i].revents & POLLHUP)) {
2618 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2619 if (!local_stream[i]->data_read) {
2620 consumer_del_stream(local_stream[i], data_ht);
2621 local_stream[i] = NULL;
2622 num_hup++;
2623 }
2624 } else if (pollfd[i].revents & POLLERR) {
2625 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2626 if (!local_stream[i]->data_read) {
2627 consumer_del_stream(local_stream[i], data_ht);
2628 local_stream[i] = NULL;
2629 num_hup++;
2630 }
2631 } else if (pollfd[i].revents & POLLNVAL) {
2632 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2633 if (!local_stream[i]->data_read) {
2634 consumer_del_stream(local_stream[i], data_ht);
2635 local_stream[i] = NULL;
2636 num_hup++;
2637 }
2638 }
2639 if (local_stream[i] != NULL) {
2640 local_stream[i]->data_read = 0;
2641 }
2642 }
2643 }
2644 /* All is OK */
2645 err = 0;
2646 end:
2647 DBG("polling thread exiting");
2648 free(pollfd);
2649 free(local_stream);
2650
2651 /*
2652 * Close the write side of the pipe so epoll_wait() in
2653 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2654 * read side of the pipe. If we close them both, epoll_wait strangely does
2655 * not return and could create a endless wait period if the pipe is the
2656 * only tracked fd in the poll set. The thread will take care of closing
2657 * the read side.
2658 */
2659 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2660
2661 error_testpoint:
2662 if (err) {
2663 health_error();
2664 ERR("Health error occurred in %s", __func__);
2665 }
2666 health_unregister(health_consumerd);
2667
2668 rcu_unregister_thread();
2669 return NULL;
2670 }
2671
2672 /*
2673 * Close wake-up end of each stream belonging to the channel. This will
2674 * allow the poll() on the stream read-side to detect when the
2675 * write-side (application) finally closes them.
2676 */
2677 static
2678 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2679 {
2680 struct lttng_ht *ht;
2681 struct lttng_consumer_stream *stream;
2682 struct lttng_ht_iter iter;
2683
2684 ht = consumer_data.stream_per_chan_id_ht;
2685
2686 rcu_read_lock();
2687 cds_lfht_for_each_entry_duplicate(ht->ht,
2688 ht->hash_fct(&channel->key, lttng_ht_seed),
2689 ht->match_fct, &channel->key,
2690 &iter.iter, stream, node_channel_id.node) {
2691 /*
2692 * Protect against teardown with mutex.
2693 */
2694 pthread_mutex_lock(&stream->lock);
2695 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2696 goto next;
2697 }
2698 switch (consumer_data.type) {
2699 case LTTNG_CONSUMER_KERNEL:
2700 break;
2701 case LTTNG_CONSUMER32_UST:
2702 case LTTNG_CONSUMER64_UST:
2703 if (stream->metadata_flag) {
2704 /* Safe and protected by the stream lock. */
2705 lttng_ustconsumer_close_metadata(stream->chan);
2706 } else {
2707 /*
2708 * Note: a mutex is taken internally within
2709 * liblttng-ust-ctl to protect timer wakeup_fd
2710 * use from concurrent close.
2711 */
2712 lttng_ustconsumer_close_stream_wakeup(stream);
2713 }
2714 break;
2715 default:
2716 ERR("Unknown consumer_data type");
2717 assert(0);
2718 }
2719 next:
2720 pthread_mutex_unlock(&stream->lock);
2721 }
2722 rcu_read_unlock();
2723 }
2724
2725 static void destroy_channel_ht(struct lttng_ht *ht)
2726 {
2727 struct lttng_ht_iter iter;
2728 struct lttng_consumer_channel *channel;
2729 int ret;
2730
2731 if (ht == NULL) {
2732 return;
2733 }
2734
2735 rcu_read_lock();
2736 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2737 ret = lttng_ht_del(ht, &iter);
2738 assert(ret != 0);
2739 }
2740 rcu_read_unlock();
2741
2742 lttng_ht_destroy(ht);
2743 }
2744
2745 /*
2746 * This thread polls the channel fds to detect when they are being
2747 * closed. It closes all related streams if the channel is detected as
2748 * closed. It is currently only used as a shim layer for UST because the
2749 * consumerd needs to keep the per-stream wakeup end of pipes open for
2750 * periodical flush.
2751 */
2752 void *consumer_thread_channel_poll(void *data)
2753 {
2754 int ret, i, pollfd, err = -1;
2755 uint32_t revents, nb_fd;
2756 struct lttng_consumer_channel *chan = NULL;
2757 struct lttng_ht_iter iter;
2758 struct lttng_ht_node_u64 *node;
2759 struct lttng_poll_event events;
2760 struct lttng_consumer_local_data *ctx = data;
2761 struct lttng_ht *channel_ht;
2762
2763 rcu_register_thread();
2764
2765 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_CHANNEL);
2766
2767 if (testpoint(consumerd_thread_channel)) {
2768 goto error_testpoint;
2769 }
2770
2771 health_code_update();
2772
2773 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2774 if (!channel_ht) {
2775 /* ENOMEM at this point. Better to bail out. */
2776 goto end_ht;
2777 }
2778
2779 DBG("Thread channel poll started");
2780
2781 /* Size is set to 1 for the consumer_channel pipe */
2782 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2783 if (ret < 0) {
2784 ERR("Poll set creation failed");
2785 goto end_poll;
2786 }
2787
2788 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2789 if (ret < 0) {
2790 goto end;
2791 }
2792
2793 /* Main loop */
2794 DBG("Channel main loop started");
2795
2796 while (1) {
2797 restart:
2798 health_code_update();
2799 DBG("Channel poll wait");
2800 health_poll_entry();
2801 ret = lttng_poll_wait(&events, -1);
2802 DBG("Channel poll return from wait with %d fd(s)",
2803 LTTNG_POLL_GETNB(&events));
2804 health_poll_exit();
2805 DBG("Channel event catched in thread");
2806 if (ret < 0) {
2807 if (errno == EINTR) {
2808 ERR("Poll EINTR catched");
2809 goto restart;
2810 }
2811 if (LTTNG_POLL_GETNB(&events) == 0) {
2812 err = 0; /* All is OK */
2813 }
2814 goto end;
2815 }
2816
2817 nb_fd = ret;
2818
2819 /* From here, the event is a channel wait fd */
2820 for (i = 0; i < nb_fd; i++) {
2821 health_code_update();
2822
2823 revents = LTTNG_POLL_GETEV(&events, i);
2824 pollfd = LTTNG_POLL_GETFD(&events, i);
2825
2826 if (!revents) {
2827 /* No activity for this FD (poll implementation). */
2828 continue;
2829 }
2830
2831 if (pollfd == ctx->consumer_channel_pipe[0]) {
2832 if (revents & LPOLLIN) {
2833 enum consumer_channel_action action;
2834 uint64_t key;
2835
2836 ret = read_channel_pipe(ctx, &chan, &key, &action);
2837 if (ret <= 0) {
2838 if (ret < 0) {
2839 ERR("Error reading channel pipe");
2840 }
2841 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2842 continue;
2843 }
2844
2845 switch (action) {
2846 case CONSUMER_CHANNEL_ADD:
2847 DBG("Adding channel %d to poll set",
2848 chan->wait_fd);
2849
2850 lttng_ht_node_init_u64(&chan->wait_fd_node,
2851 chan->wait_fd);
2852 rcu_read_lock();
2853 lttng_ht_add_unique_u64(channel_ht,
2854 &chan->wait_fd_node);
2855 rcu_read_unlock();
2856 /* Add channel to the global poll events list */
2857 lttng_poll_add(&events, chan->wait_fd,
2858 LPOLLERR | LPOLLHUP);
2859 break;
2860 case CONSUMER_CHANNEL_DEL:
2861 {
2862 /*
2863 * This command should never be called if the channel
2864 * has streams monitored by either the data or metadata
2865 * thread. The consumer only notify this thread with a
2866 * channel del. command if it receives a destroy
2867 * channel command from the session daemon that send it
2868 * if a command prior to the GET_CHANNEL failed.
2869 */
2870
2871 rcu_read_lock();
2872 chan = consumer_find_channel(key);
2873 if (!chan) {
2874 rcu_read_unlock();
2875 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2876 break;
2877 }
2878 lttng_poll_del(&events, chan->wait_fd);
2879 iter.iter.node = &chan->wait_fd_node.node;
2880 ret = lttng_ht_del(channel_ht, &iter);
2881 assert(ret == 0);
2882
2883 switch (consumer_data.type) {
2884 case LTTNG_CONSUMER_KERNEL:
2885 break;
2886 case LTTNG_CONSUMER32_UST:
2887 case LTTNG_CONSUMER64_UST:
2888 health_code_update();
2889 /* Destroy streams that might have been left in the stream list. */
2890 clean_channel_stream_list(chan);
2891 break;
2892 default:
2893 ERR("Unknown consumer_data type");
2894 assert(0);
2895 }
2896
2897 /*
2898 * Release our own refcount. Force channel deletion even if
2899 * streams were not initialized.
2900 */
2901 if (!uatomic_sub_return(&chan->refcount, 1)) {
2902 consumer_del_channel(chan);
2903 }
2904 rcu_read_unlock();
2905 goto restart;
2906 }
2907 case CONSUMER_CHANNEL_QUIT:
2908 /*
2909 * Remove the pipe from the poll set and continue the loop
2910 * since their might be data to consume.
2911 */
2912 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2913 continue;
2914 default:
2915 ERR("Unknown action");
2916 break;
2917 }
2918 } else if (revents & (LPOLLERR | LPOLLHUP)) {
2919 DBG("Channel thread pipe hung up");
2920 /*
2921 * Remove the pipe from the poll set and continue the loop
2922 * since their might be data to consume.
2923 */
2924 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2925 continue;
2926 } else {
2927 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2928 goto end;
2929 }
2930
2931 /* Handle other stream */
2932 continue;
2933 }
2934
2935 rcu_read_lock();
2936 {
2937 uint64_t tmp_id = (uint64_t) pollfd;
2938
2939 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2940 }
2941 node = lttng_ht_iter_get_node_u64(&iter);
2942 assert(node);
2943
2944 chan = caa_container_of(node, struct lttng_consumer_channel,
2945 wait_fd_node);
2946
2947 /* Check for error event */
2948 if (revents & (LPOLLERR | LPOLLHUP)) {
2949 DBG("Channel fd %d is hup|err.", pollfd);
2950
2951 lttng_poll_del(&events, chan->wait_fd);
2952 ret = lttng_ht_del(channel_ht, &iter);
2953 assert(ret == 0);
2954
2955 /*
2956 * This will close the wait fd for each stream associated to
2957 * this channel AND monitored by the data/metadata thread thus
2958 * will be clean by the right thread.
2959 */
2960 consumer_close_channel_streams(chan);
2961
2962 /* Release our own refcount */
2963 if (!uatomic_sub_return(&chan->refcount, 1)
2964 && !uatomic_read(&chan->nb_init_stream_left)) {
2965 consumer_del_channel(chan);
2966 }
2967 } else {
2968 ERR("Unexpected poll events %u for sock %d", revents, pollfd);
2969 rcu_read_unlock();
2970 goto end;
2971 }
2972
2973 /* Release RCU lock for the channel looked up */
2974 rcu_read_unlock();
2975 }
2976 }
2977
2978 /* All is OK */
2979 err = 0;
2980 end:
2981 lttng_poll_clean(&events);
2982 end_poll:
2983 destroy_channel_ht(channel_ht);
2984 end_ht:
2985 error_testpoint:
2986 DBG("Channel poll thread exiting");
2987 if (err) {
2988 health_error();
2989 ERR("Health error occurred in %s", __func__);
2990 }
2991 health_unregister(health_consumerd);
2992 rcu_unregister_thread();
2993 return NULL;
2994 }
2995
2996 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2997 struct pollfd *sockpoll, int client_socket)
2998 {
2999 int ret;
3000
3001 assert(ctx);
3002 assert(sockpoll);
3003
3004 ret = lttng_consumer_poll_socket(sockpoll);
3005 if (ret) {
3006 goto error;
3007 }
3008 DBG("Metadata connection on client_socket");
3009
3010 /* Blocking call, waiting for transmission */
3011 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
3012 if (ctx->consumer_metadata_socket < 0) {
3013 WARN("On accept metadata");
3014 ret = -1;
3015 goto error;
3016 }
3017 ret = 0;
3018
3019 error:
3020 return ret;
3021 }
3022
3023 /*
3024 * This thread listens on the consumerd socket and receives the file
3025 * descriptors from the session daemon.
3026 */
3027 void *consumer_thread_sessiond_poll(void *data)
3028 {
3029 int sock = -1, client_socket, ret, err = -1;
3030 /*
3031 * structure to poll for incoming data on communication socket avoids
3032 * making blocking sockets.
3033 */
3034 struct pollfd consumer_sockpoll[2];
3035 struct lttng_consumer_local_data *ctx = data;
3036
3037 rcu_register_thread();
3038
3039 health_register(health_consumerd, HEALTH_CONSUMERD_TYPE_SESSIOND);
3040
3041 if (testpoint(consumerd_thread_sessiond)) {
3042 goto error_testpoint;
3043 }
3044
3045 health_code_update();
3046
3047 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
3048 unlink(ctx->consumer_command_sock_path);
3049 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
3050 if (client_socket < 0) {
3051 ERR("Cannot create command socket");
3052 goto end;
3053 }
3054
3055 ret = lttcomm_listen_unix_sock(client_socket);
3056 if (ret < 0) {
3057 goto end;
3058 }
3059
3060 DBG("Sending ready command to lttng-sessiond");
3061 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
3062 /* return < 0 on error, but == 0 is not fatal */
3063 if (ret < 0) {
3064 ERR("Error sending ready command to lttng-sessiond");
3065 goto end;
3066 }
3067
3068 /* prepare the FDs to poll : to client socket and the should_quit pipe */
3069 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
3070 consumer_sockpoll[0].events = POLLIN | POLLPRI;
3071 consumer_sockpoll[1].fd = client_socket;
3072 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3073
3074 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3075 if (ret) {
3076 if (ret > 0) {
3077 /* should exit */
3078 err = 0;
3079 }
3080 goto end;
3081 }
3082 DBG("Connection on client_socket");
3083
3084 /* Blocking call, waiting for transmission */
3085 sock = lttcomm_accept_unix_sock(client_socket);
3086 if (sock < 0) {
3087 WARN("On accept");
3088 goto end;
3089 }
3090
3091 /*
3092 * Setup metadata socket which is the second socket connection on the
3093 * command unix socket.
3094 */
3095 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
3096 if (ret) {
3097 if (ret > 0) {
3098 /* should exit */
3099 err = 0;
3100 }
3101 goto end;
3102 }
3103
3104 /* This socket is not useful anymore. */
3105 ret = close(client_socket);
3106 if (ret < 0) {
3107 PERROR("close client_socket");
3108 }
3109 client_socket = -1;
3110
3111 /* update the polling structure to poll on the established socket */
3112 consumer_sockpoll[1].fd = sock;
3113 consumer_sockpoll[1].events = POLLIN | POLLPRI;
3114
3115 while (1) {
3116 health_code_update();
3117
3118 health_poll_entry();
3119 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3120 health_poll_exit();
3121 if (ret) {
3122 if (ret > 0) {
3123 /* should exit */
3124 err = 0;
3125 }
3126 goto end;
3127 }
3128 DBG("Incoming command on sock");
3129 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
3130 if (ret <= 0) {
3131 /*
3132 * This could simply be a session daemon quitting. Don't output
3133 * ERR() here.
3134 */
3135 DBG("Communication interrupted on command socket");
3136 err = 0;
3137 goto end;
3138 }
3139 if (consumer_quit) {
3140 DBG("consumer_thread_receive_fds received quit from signal");
3141 err = 0; /* All is OK */
3142 goto end;
3143 }
3144 DBG("received command on sock");
3145 }
3146 /* All is OK */
3147 err = 0;
3148
3149 end:
3150 DBG("Consumer thread sessiond poll exiting");
3151
3152 /*
3153 * Close metadata streams since the producer is the session daemon which
3154 * just died.
3155 *
3156 * NOTE: for now, this only applies to the UST tracer.
3157 */
3158 lttng_consumer_close_all_metadata();
3159
3160 /*
3161 * when all fds have hung up, the polling thread
3162 * can exit cleanly
3163 */
3164 consumer_quit = 1;
3165
3166 /*
3167 * Notify the data poll thread to poll back again and test the
3168 * consumer_quit state that we just set so to quit gracefully.
3169 */
3170 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3171
3172 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3173
3174 notify_health_quit_pipe(health_quit_pipe);
3175
3176 /* Cleaning up possibly open sockets. */
3177 if (sock >= 0) {
3178 ret = close(sock);
3179 if (ret < 0) {
3180 PERROR("close sock sessiond poll");
3181 }
3182 }
3183 if (client_socket >= 0) {
3184 ret = close(client_socket);
3185 if (ret < 0) {
3186 PERROR("close client_socket sessiond poll");
3187 }
3188 }
3189
3190 error_testpoint:
3191 if (err) {
3192 health_error();
3193 ERR("Health error occurred in %s", __func__);
3194 }
3195 health_unregister(health_consumerd);
3196
3197 rcu_unregister_thread();
3198 return NULL;
3199 }
3200
3201 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3202 struct lttng_consumer_local_data *ctx)
3203 {
3204 ssize_t ret;
3205
3206 pthread_mutex_lock(&stream->lock);
3207 if (stream->metadata_flag) {
3208 pthread_mutex_lock(&stream->metadata_rdv_lock);
3209 }
3210
3211 switch (consumer_data.type) {
3212 case LTTNG_CONSUMER_KERNEL:
3213 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3214 break;
3215 case LTTNG_CONSUMER32_UST:
3216 case LTTNG_CONSUMER64_UST:
3217 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3218 break;
3219 default:
3220 ERR("Unknown consumer_data type");
3221 assert(0);
3222 ret = -ENOSYS;
3223 break;
3224 }
3225
3226 if (stream->metadata_flag) {
3227 pthread_cond_broadcast(&stream->metadata_rdv);
3228 pthread_mutex_unlock(&stream->metadata_rdv_lock);
3229 }
3230 pthread_mutex_unlock(&stream->lock);
3231 return ret;
3232 }
3233
3234 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3235 {
3236 switch (consumer_data.type) {
3237 case LTTNG_CONSUMER_KERNEL:
3238 return lttng_kconsumer_on_recv_stream(stream);
3239 case LTTNG_CONSUMER32_UST:
3240 case LTTNG_CONSUMER64_UST:
3241 return lttng_ustconsumer_on_recv_stream(stream);
3242 default:
3243 ERR("Unknown consumer_data type");
3244 assert(0);
3245 return -ENOSYS;
3246 }
3247 }
3248
3249 /*
3250 * Allocate and set consumer data hash tables.
3251 */
3252 int lttng_consumer_init(void)
3253 {
3254 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3255 if (!consumer_data.channel_ht) {
3256 goto error;
3257 }
3258
3259 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3260 if (!consumer_data.relayd_ht) {
3261 goto error;
3262 }
3263
3264 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3265 if (!consumer_data.stream_list_ht) {
3266 goto error;
3267 }
3268
3269 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3270 if (!consumer_data.stream_per_chan_id_ht) {
3271 goto error;
3272 }
3273
3274 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3275 if (!data_ht) {
3276 goto error;
3277 }
3278
3279 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3280 if (!metadata_ht) {
3281 goto error;
3282 }
3283
3284 return 0;
3285
3286 error:
3287 return -1;
3288 }
3289
3290 /*
3291 * Process the ADD_RELAYD command receive by a consumer.
3292 *
3293 * This will create a relayd socket pair and add it to the relayd hash table.
3294 * The caller MUST acquire a RCU read side lock before calling it.
3295 */
3296 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3297 struct lttng_consumer_local_data *ctx, int sock,
3298 struct pollfd *consumer_sockpoll,
3299 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id,
3300 uint64_t relayd_session_id)
3301 {
3302 int fd = -1, ret = -1, relayd_created = 0;
3303 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3304 struct consumer_relayd_sock_pair *relayd = NULL;
3305
3306 assert(ctx);
3307 assert(relayd_sock);
3308
3309 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3310
3311 /* Get relayd reference if exists. */
3312 relayd = consumer_find_relayd(net_seq_idx);
3313 if (relayd == NULL) {
3314 assert(sock_type == LTTNG_STREAM_CONTROL);
3315 /* Not found. Allocate one. */
3316 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3317 if (relayd == NULL) {
3318 ret = -ENOMEM;
3319 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3320 goto error;
3321 } else {
3322 relayd->sessiond_session_id = sessiond_id;
3323 relayd_created = 1;
3324 }
3325
3326 /*
3327 * This code path MUST continue to the consumer send status message to
3328 * we can notify the session daemon and continue our work without
3329 * killing everything.
3330 */
3331 } else {
3332 /*
3333 * relayd key should never be found for control socket.
3334 */
3335 assert(sock_type != LTTNG_STREAM_CONTROL);
3336 }
3337
3338 /* First send a status message before receiving the fds. */
3339 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3340 if (ret < 0) {
3341 /* Somehow, the session daemon is not responding anymore. */
3342 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3343 goto error_nosignal;
3344 }
3345
3346 /* Poll on consumer socket. */
3347 ret = lttng_consumer_poll_socket(consumer_sockpoll);
3348 if (ret) {
3349 /* Needing to exit in the middle of a command: error. */
3350 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3351 ret = -EINTR;
3352 goto error_nosignal;
3353 }
3354
3355 /* Get relayd socket from session daemon */
3356 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3357 if (ret != sizeof(fd)) {
3358 ret = -1;
3359 fd = -1; /* Just in case it gets set with an invalid value. */
3360
3361 /*
3362 * Failing to receive FDs might indicate a major problem such as
3363 * reaching a fd limit during the receive where the kernel returns a
3364 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3365 * don't take any chances and stop everything.
3366 *
3367 * XXX: Feature request #558 will fix that and avoid this possible
3368 * issue when reaching the fd limit.
3369 */
3370 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3371 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3372 goto error;
3373 }
3374
3375 /* Copy socket information and received FD */
3376 switch (sock_type) {
3377 case LTTNG_STREAM_CONTROL:
3378 /* Copy received lttcomm socket */
3379 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3380 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3381 /* Handle create_sock error. */
3382 if (ret < 0) {
3383 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3384 goto error;
3385 }
3386 /*
3387 * Close the socket created internally by
3388 * lttcomm_create_sock, so we can replace it by the one
3389 * received from sessiond.
3390 */
3391 if (close(relayd->control_sock.sock.fd)) {
3392 PERROR("close");
3393 }
3394
3395 /* Assign new file descriptor */
3396 relayd->control_sock.sock.fd = fd;
3397 fd = -1; /* For error path */
3398 /* Assign version values. */
3399 relayd->control_sock.major = relayd_sock->major;
3400 relayd->control_sock.minor = relayd_sock->minor;
3401
3402 relayd->relayd_session_id = relayd_session_id;
3403
3404 break;
3405 case LTTNG_STREAM_DATA:
3406 /* Copy received lttcomm socket */
3407 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3408 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3409 /* Handle create_sock error. */
3410 if (ret < 0) {
3411 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3412 goto error;
3413 }
3414 /*
3415 * Close the socket created internally by
3416 * lttcomm_create_sock, so we can replace it by the one
3417 * received from sessiond.
3418 */
3419 if (close(relayd->data_sock.sock.fd)) {
3420 PERROR("close");
3421 }
3422
3423 /* Assign new file descriptor */
3424 relayd->data_sock.sock.fd = fd;
3425 fd = -1; /* for eventual error paths */
3426 /* Assign version values. */
3427 relayd->data_sock.major = relayd_sock->major;
3428 relayd->data_sock.minor = relayd_sock->minor;
3429 break;
3430 default:
3431 ERR("Unknown relayd socket type (%d)", sock_type);
3432 ret = -1;
3433 ret_code = LTTCOMM_CONSUMERD_FATAL;
3434 goto error;
3435 }
3436
3437 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3438 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3439 relayd->net_seq_idx, fd);
3440
3441 /* We successfully added the socket. Send status back. */
3442 ret = consumer_send_status_msg(sock, ret_code);
3443 if (ret < 0) {
3444 /* Somehow, the session daemon is not responding anymore. */
3445 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3446 goto error_nosignal;
3447 }
3448
3449 /*
3450 * Add relayd socket pair to consumer data hashtable. If object already
3451 * exists or on error, the function gracefully returns.
3452 */
3453 add_relayd(relayd);
3454
3455 /* All good! */
3456 return 0;
3457
3458 error:
3459 if (consumer_send_status_msg(sock, ret_code) < 0) {
3460 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3461 }
3462
3463 error_nosignal:
3464 /* Close received socket if valid. */
3465 if (fd >= 0) {
3466 if (close(fd)) {
3467 PERROR("close received socket");
3468 }
3469 }
3470
3471 if (relayd_created) {
3472 free(relayd);
3473 }
3474
3475 return ret;
3476 }
3477
3478 /*
3479 * Try to lock the stream mutex.
3480 *
3481 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3482 */
3483 static int stream_try_lock(struct lttng_consumer_stream *stream)
3484 {
3485 int ret;
3486
3487 assert(stream);
3488
3489 /*
3490 * Try to lock the stream mutex. On failure, we know that the stream is
3491 * being used else where hence there is data still being extracted.
3492 */
3493 ret = pthread_mutex_trylock(&stream->lock);
3494 if (ret) {
3495 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3496 ret = 0;
3497 goto end;
3498 }
3499
3500 ret = 1;
3501
3502 end:
3503 return ret;
3504 }
3505
3506 /*
3507 * Search for a relayd associated to the session id and return the reference.
3508 *
3509 * A rcu read side lock MUST be acquire before calling this function and locked
3510 * until the relayd object is no longer necessary.
3511 */
3512 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3513 {
3514 struct lttng_ht_iter iter;
3515 struct consumer_relayd_sock_pair *relayd = NULL;
3516
3517 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3518 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3519 node.node) {
3520 /*
3521 * Check by sessiond id which is unique here where the relayd session
3522 * id might not be when having multiple relayd.
3523 */
3524 if (relayd->sessiond_session_id == id) {
3525 /* Found the relayd. There can be only one per id. */
3526 goto found;
3527 }
3528 }
3529
3530 return NULL;
3531
3532 found:
3533 return relayd;
3534 }
3535
3536 /*
3537 * Check if for a given session id there is still data needed to be extract
3538 * from the buffers.
3539 *
3540 * Return 1 if data is pending or else 0 meaning ready to be read.
3541 */
3542 int consumer_data_pending(uint64_t id)
3543 {
3544 int ret;
3545 struct lttng_ht_iter iter;
3546 struct lttng_ht *ht;
3547 struct lttng_consumer_stream *stream;
3548 struct consumer_relayd_sock_pair *relayd = NULL;
3549 int (*data_pending)(struct lttng_consumer_stream *);
3550
3551 DBG("Consumer data pending command on session id %" PRIu64, id);
3552
3553 rcu_read_lock();
3554 pthread_mutex_lock(&consumer_data.lock);
3555
3556 switch (consumer_data.type) {
3557 case LTTNG_CONSUMER_KERNEL:
3558 data_pending = lttng_kconsumer_data_pending;
3559 break;
3560 case LTTNG_CONSUMER32_UST:
3561 case LTTNG_CONSUMER64_UST:
3562 data_pending = lttng_ustconsumer_data_pending;
3563 break;
3564 default:
3565 ERR("Unknown consumer data type");
3566 assert(0);
3567 }
3568
3569 /* Ease our life a bit */
3570 ht = consumer_data.stream_list_ht;
3571
3572 relayd = find_relayd_by_session_id(id);
3573 if (relayd) {
3574 /* Send init command for data pending. */
3575 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3576 ret = relayd_begin_data_pending(&relayd->control_sock,
3577 relayd->relayd_session_id);
3578 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3579 if (ret < 0) {
3580 /* Communication error thus the relayd so no data pending. */
3581 goto data_not_pending;
3582 }
3583 }
3584
3585 cds_lfht_for_each_entry_duplicate(ht->ht,
3586 ht->hash_fct(&id, lttng_ht_seed),
3587 ht->match_fct, &id,
3588 &iter.iter, stream, node_session_id.node) {
3589 /* If this call fails, the stream is being used hence data pending. */
3590 ret = stream_try_lock(stream);
3591 if (!ret) {
3592 goto data_pending;
3593 }
3594
3595 /*
3596 * A removed node from the hash table indicates that the stream has
3597 * been deleted thus having a guarantee that the buffers are closed
3598 * on the consumer side. However, data can still be transmitted
3599 * over the network so don't skip the relayd check.
3600 */
3601 ret = cds_lfht_is_node_deleted(&stream->node.node);
3602 if (!ret) {
3603 /* Check the stream if there is data in the buffers. */
3604 ret = data_pending(stream);
3605 if (ret == 1) {
3606 pthread_mutex_unlock(&stream->lock);
3607 goto data_pending;
3608 }
3609 }
3610
3611 /* Relayd check */
3612 if (relayd) {
3613 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3614 if (stream->metadata_flag) {
3615 ret = relayd_quiescent_control(&relayd->control_sock,
3616 stream->relayd_stream_id);
3617 } else {
3618 ret = relayd_data_pending(&relayd->control_sock,
3619 stream->relayd_stream_id,
3620 stream->next_net_seq_num - 1);
3621 }
3622 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3623 if (ret == 1) {
3624 pthread_mutex_unlock(&stream->lock);
3625 goto data_pending;
3626 }
3627 }
3628 pthread_mutex_unlock(&stream->lock);
3629 }
3630
3631 if (relayd) {
3632 unsigned int is_data_inflight = 0;
3633
3634 /* Send init command for data pending. */
3635 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3636 ret = relayd_end_data_pending(&relayd->control_sock,
3637 relayd->relayd_session_id, &is_data_inflight);
3638 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3639 if (ret < 0) {
3640 goto data_not_pending;
3641 }
3642 if (is_data_inflight) {
3643 goto data_pending;
3644 }
3645 }
3646
3647 /*
3648 * Finding _no_ node in the hash table and no inflight data means that the
3649 * stream(s) have been removed thus data is guaranteed to be available for
3650 * analysis from the trace files.
3651 */
3652
3653 data_not_pending:
3654 /* Data is available to be read by a viewer. */
3655 pthread_mutex_unlock(&consumer_data.lock);
3656 rcu_read_unlock();
3657 return 0;
3658
3659 data_pending:
3660 /* Data is still being extracted from buffers. */
3661 pthread_mutex_unlock(&consumer_data.lock);
3662 rcu_read_unlock();
3663 return 1;
3664 }
3665
3666 /*
3667 * Send a ret code status message to the sessiond daemon.
3668 *
3669 * Return the sendmsg() return value.
3670 */
3671 int consumer_send_status_msg(int sock, int ret_code)
3672 {
3673 struct lttcomm_consumer_status_msg msg;
3674
3675 memset(&msg, 0, sizeof(msg));
3676 msg.ret_code = ret_code;
3677
3678 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3679 }
3680
3681 /*
3682 * Send a channel status message to the sessiond daemon.
3683 *
3684 * Return the sendmsg() return value.
3685 */
3686 int consumer_send_status_channel(int sock,
3687 struct lttng_consumer_channel *channel)
3688 {
3689 struct lttcomm_consumer_status_channel msg;
3690
3691 assert(sock >= 0);
3692
3693 memset(&msg, 0, sizeof(msg));
3694 if (!channel) {
3695 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3696 } else {
3697 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3698 msg.key = channel->key;
3699 msg.stream_count = channel->streams.count;
3700 }
3701
3702 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3703 }
3704
3705 unsigned long consumer_get_consume_start_pos(unsigned long consumed_pos,
3706 unsigned long produced_pos, uint64_t nb_packets_per_stream,
3707 uint64_t max_sb_size)
3708 {
3709 unsigned long start_pos;
3710
3711 if (!nb_packets_per_stream) {
3712 return consumed_pos; /* Grab everything */
3713 }
3714 start_pos = produced_pos - offset_align_floor(produced_pos, max_sb_size);
3715 start_pos -= max_sb_size * nb_packets_per_stream;
3716 if ((long) (start_pos - consumed_pos) < 0) {
3717 return consumed_pos; /* Grab everything */
3718 }
3719 return start_pos;
3720 }
This page took 0.137867 seconds and 3 git commands to generate.