Fix: data pending race
[lttng-tools.git] / src / common / consumer.c
1 /*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define _GNU_SOURCE
21 #include <assert.h>
22 #include <poll.h>
23 #include <pthread.h>
24 #include <stdlib.h>
25 #include <string.h>
26 #include <sys/mman.h>
27 #include <sys/socket.h>
28 #include <sys/types.h>
29 #include <unistd.h>
30 #include <inttypes.h>
31 #include <signal.h>
32
33 #include <common/common.h>
34 #include <common/utils.h>
35 #include <common/compat/poll.h>
36 #include <common/kernel-ctl/kernel-ctl.h>
37 #include <common/sessiond-comm/relayd.h>
38 #include <common/sessiond-comm/sessiond-comm.h>
39 #include <common/kernel-consumer/kernel-consumer.h>
40 #include <common/relayd/relayd.h>
41 #include <common/ust-consumer/ust-consumer.h>
42
43 #include "consumer.h"
44
45 struct lttng_consumer_global_data consumer_data = {
46 .stream_count = 0,
47 .need_update = 1,
48 .type = LTTNG_CONSUMER_UNKNOWN,
49 };
50
51 enum consumer_channel_action {
52 CONSUMER_CHANNEL_ADD,
53 CONSUMER_CHANNEL_DEL,
54 CONSUMER_CHANNEL_QUIT,
55 };
56
57 struct consumer_channel_msg {
58 enum consumer_channel_action action;
59 struct lttng_consumer_channel *chan; /* add */
60 uint64_t key; /* del */
61 };
62
63 /*
64 * Flag to inform the polling thread to quit when all fd hung up. Updated by
65 * the consumer_thread_receive_fds when it notices that all fds has hung up.
66 * Also updated by the signal handler (consumer_should_exit()). Read by the
67 * polling threads.
68 */
69 volatile int consumer_quit;
70
71 /*
72 * Global hash table containing respectively metadata and data streams. The
73 * stream element in this ht should only be updated by the metadata poll thread
74 * for the metadata and the data poll thread for the data.
75 */
76 static struct lttng_ht *metadata_ht;
77 static struct lttng_ht *data_ht;
78
79 /*
80 * Notify a thread lttng pipe to poll back again. This usually means that some
81 * global state has changed so we just send back the thread in a poll wait
82 * call.
83 */
84 static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
85 {
86 struct lttng_consumer_stream *null_stream = NULL;
87
88 assert(pipe);
89
90 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
91 }
92
93 static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
94 struct lttng_consumer_channel *chan,
95 uint64_t key,
96 enum consumer_channel_action action)
97 {
98 struct consumer_channel_msg msg;
99 int ret;
100
101 memset(&msg, 0, sizeof(msg));
102
103 msg.action = action;
104 msg.chan = chan;
105 msg.key = key;
106 do {
107 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
108 } while (ret < 0 && errno == EINTR);
109 }
110
111 void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
112 uint64_t key)
113 {
114 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
115 }
116
117 static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
118 struct lttng_consumer_channel **chan,
119 uint64_t *key,
120 enum consumer_channel_action *action)
121 {
122 struct consumer_channel_msg msg;
123 int ret;
124
125 do {
126 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
127 } while (ret < 0 && errno == EINTR);
128 if (ret > 0) {
129 *action = msg.action;
130 *chan = msg.chan;
131 *key = msg.key;
132 }
133 return ret;
134 }
135
136 /*
137 * Find a stream. The consumer_data.lock must be locked during this
138 * call.
139 */
140 static struct lttng_consumer_stream *find_stream(uint64_t key,
141 struct lttng_ht *ht)
142 {
143 struct lttng_ht_iter iter;
144 struct lttng_ht_node_u64 *node;
145 struct lttng_consumer_stream *stream = NULL;
146
147 assert(ht);
148
149 /* -1ULL keys are lookup failures */
150 if (key == (uint64_t) -1ULL) {
151 return NULL;
152 }
153
154 rcu_read_lock();
155
156 lttng_ht_lookup(ht, &key, &iter);
157 node = lttng_ht_iter_get_node_u64(&iter);
158 if (node != NULL) {
159 stream = caa_container_of(node, struct lttng_consumer_stream, node);
160 }
161
162 rcu_read_unlock();
163
164 return stream;
165 }
166
167 static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
168 {
169 struct lttng_consumer_stream *stream;
170
171 rcu_read_lock();
172 stream = find_stream(key, ht);
173 if (stream) {
174 stream->key = (uint64_t) -1ULL;
175 /*
176 * We don't want the lookup to match, but we still need
177 * to iterate on this stream when iterating over the hash table. Just
178 * change the node key.
179 */
180 stream->node.key = (uint64_t) -1ULL;
181 }
182 rcu_read_unlock();
183 }
184
185 /*
186 * Return a channel object for the given key.
187 *
188 * RCU read side lock MUST be acquired before calling this function and
189 * protects the channel ptr.
190 */
191 struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
192 {
193 struct lttng_ht_iter iter;
194 struct lttng_ht_node_u64 *node;
195 struct lttng_consumer_channel *channel = NULL;
196
197 /* -1ULL keys are lookup failures */
198 if (key == (uint64_t) -1ULL) {
199 return NULL;
200 }
201
202 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
203 node = lttng_ht_iter_get_node_u64(&iter);
204 if (node != NULL) {
205 channel = caa_container_of(node, struct lttng_consumer_channel, node);
206 }
207
208 return channel;
209 }
210
211 static void free_stream_rcu(struct rcu_head *head)
212 {
213 struct lttng_ht_node_u64 *node =
214 caa_container_of(head, struct lttng_ht_node_u64, head);
215 struct lttng_consumer_stream *stream =
216 caa_container_of(node, struct lttng_consumer_stream, node);
217
218 free(stream);
219 }
220
221 static void free_channel_rcu(struct rcu_head *head)
222 {
223 struct lttng_ht_node_u64 *node =
224 caa_container_of(head, struct lttng_ht_node_u64, head);
225 struct lttng_consumer_channel *channel =
226 caa_container_of(node, struct lttng_consumer_channel, node);
227
228 free(channel);
229 }
230
231 /*
232 * RCU protected relayd socket pair free.
233 */
234 static void free_relayd_rcu(struct rcu_head *head)
235 {
236 struct lttng_ht_node_u64 *node =
237 caa_container_of(head, struct lttng_ht_node_u64, head);
238 struct consumer_relayd_sock_pair *relayd =
239 caa_container_of(node, struct consumer_relayd_sock_pair, node);
240
241 /*
242 * Close all sockets. This is done in the call RCU since we don't want the
243 * socket fds to be reassigned thus potentially creating bad state of the
244 * relayd object.
245 *
246 * We do not have to lock the control socket mutex here since at this stage
247 * there is no one referencing to this relayd object.
248 */
249 (void) relayd_close(&relayd->control_sock);
250 (void) relayd_close(&relayd->data_sock);
251
252 free(relayd);
253 }
254
255 /*
256 * Destroy and free relayd socket pair object.
257 *
258 * This function MUST be called with the consumer_data lock acquired.
259 */
260 static void destroy_relayd(struct consumer_relayd_sock_pair *relayd)
261 {
262 int ret;
263 struct lttng_ht_iter iter;
264
265 if (relayd == NULL) {
266 return;
267 }
268
269 DBG("Consumer destroy and close relayd socket pair");
270
271 iter.iter.node = &relayd->node.node;
272 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
273 if (ret != 0) {
274 /* We assume the relayd is being or is destroyed */
275 return;
276 }
277
278 /* RCU free() call */
279 call_rcu(&relayd->node.head, free_relayd_rcu);
280 }
281
282 /*
283 * Remove a channel from the global list protected by a mutex. This function is
284 * also responsible for freeing its data structures.
285 */
286 void consumer_del_channel(struct lttng_consumer_channel *channel)
287 {
288 int ret;
289 struct lttng_ht_iter iter;
290 struct lttng_consumer_stream *stream, *stmp;
291
292 DBG("Consumer delete channel key %" PRIu64, channel->key);
293
294 pthread_mutex_lock(&consumer_data.lock);
295 pthread_mutex_lock(&channel->lock);
296
297 switch (consumer_data.type) {
298 case LTTNG_CONSUMER_KERNEL:
299 break;
300 case LTTNG_CONSUMER32_UST:
301 case LTTNG_CONSUMER64_UST:
302 /* Delete streams that might have been left in the stream list. */
303 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
304 send_node) {
305 cds_list_del(&stream->send_node);
306 lttng_ustconsumer_del_stream(stream);
307 free(stream);
308 }
309 lttng_ustconsumer_del_channel(channel);
310 break;
311 default:
312 ERR("Unknown consumer_data type");
313 assert(0);
314 goto end;
315 }
316
317 rcu_read_lock();
318 iter.iter.node = &channel->node.node;
319 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
320 assert(!ret);
321 rcu_read_unlock();
322
323 call_rcu(&channel->node.head, free_channel_rcu);
324 end:
325 pthread_mutex_unlock(&channel->lock);
326 pthread_mutex_unlock(&consumer_data.lock);
327 }
328
329 /*
330 * Iterate over the relayd hash table and destroy each element. Finally,
331 * destroy the whole hash table.
332 */
333 static void cleanup_relayd_ht(void)
334 {
335 struct lttng_ht_iter iter;
336 struct consumer_relayd_sock_pair *relayd;
337
338 rcu_read_lock();
339
340 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
341 node.node) {
342 destroy_relayd(relayd);
343 }
344
345 rcu_read_unlock();
346
347 lttng_ht_destroy(consumer_data.relayd_ht);
348 }
349
350 /*
351 * Update the end point status of all streams having the given network sequence
352 * index (relayd index).
353 *
354 * It's atomically set without having the stream mutex locked which is fine
355 * because we handle the write/read race with a pipe wakeup for each thread.
356 */
357 static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
358 enum consumer_endpoint_status status)
359 {
360 struct lttng_ht_iter iter;
361 struct lttng_consumer_stream *stream;
362
363 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
364
365 rcu_read_lock();
366
367 /* Let's begin with metadata */
368 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
369 if (stream->net_seq_idx == net_seq_idx) {
370 uatomic_set(&stream->endpoint_status, status);
371 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
372 }
373 }
374
375 /* Follow up by the data streams */
376 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
377 if (stream->net_seq_idx == net_seq_idx) {
378 uatomic_set(&stream->endpoint_status, status);
379 DBG("Delete flag set to data stream %d", stream->wait_fd);
380 }
381 }
382 rcu_read_unlock();
383 }
384
385 /*
386 * Cleanup a relayd object by flagging every associated streams for deletion,
387 * destroying the object meaning removing it from the relayd hash table,
388 * closing the sockets and freeing the memory in a RCU call.
389 *
390 * If a local data context is available, notify the threads that the streams'
391 * state have changed.
392 */
393 static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
394 struct lttng_consumer_local_data *ctx)
395 {
396 uint64_t netidx;
397
398 assert(relayd);
399
400 DBG("Cleaning up relayd sockets");
401
402 /* Save the net sequence index before destroying the object */
403 netidx = relayd->net_seq_idx;
404
405 /*
406 * Delete the relayd from the relayd hash table, close the sockets and free
407 * the object in a RCU call.
408 */
409 destroy_relayd(relayd);
410
411 /* Set inactive endpoint to all streams */
412 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
413
414 /*
415 * With a local data context, notify the threads that the streams' state
416 * have changed. The write() action on the pipe acts as an "implicit"
417 * memory barrier ordering the updates of the end point status from the
418 * read of this status which happens AFTER receiving this notify.
419 */
420 if (ctx) {
421 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
422 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
423 }
424 }
425
426 /*
427 * Flag a relayd socket pair for destruction. Destroy it if the refcount
428 * reaches zero.
429 *
430 * RCU read side lock MUST be aquired before calling this function.
431 */
432 void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
433 {
434 assert(relayd);
435
436 /* Set destroy flag for this object */
437 uatomic_set(&relayd->destroy_flag, 1);
438
439 /* Destroy the relayd if refcount is 0 */
440 if (uatomic_read(&relayd->refcount) == 0) {
441 destroy_relayd(relayd);
442 }
443 }
444
445 /*
446 * Remove a stream from the global list protected by a mutex. This
447 * function is also responsible for freeing its data structures.
448 */
449 void consumer_del_stream(struct lttng_consumer_stream *stream,
450 struct lttng_ht *ht)
451 {
452 int ret;
453 struct lttng_ht_iter iter;
454 struct lttng_consumer_channel *free_chan = NULL;
455 struct consumer_relayd_sock_pair *relayd;
456
457 assert(stream);
458
459 DBG("Consumer del stream %d", stream->wait_fd);
460
461 if (ht == NULL) {
462 /* Means the stream was allocated but not successfully added */
463 goto free_stream_rcu;
464 }
465
466 pthread_mutex_lock(&consumer_data.lock);
467 pthread_mutex_lock(&stream->lock);
468
469 switch (consumer_data.type) {
470 case LTTNG_CONSUMER_KERNEL:
471 if (stream->mmap_base != NULL) {
472 ret = munmap(stream->mmap_base, stream->mmap_len);
473 if (ret != 0) {
474 PERROR("munmap");
475 }
476 }
477
478 if (stream->wait_fd >= 0) {
479 ret = close(stream->wait_fd);
480 if (ret) {
481 PERROR("close");
482 }
483 }
484 break;
485 case LTTNG_CONSUMER32_UST:
486 case LTTNG_CONSUMER64_UST:
487 lttng_ustconsumer_del_stream(stream);
488 break;
489 default:
490 ERR("Unknown consumer_data type");
491 assert(0);
492 goto end;
493 }
494
495 rcu_read_lock();
496 iter.iter.node = &stream->node.node;
497 ret = lttng_ht_del(ht, &iter);
498 assert(!ret);
499
500 iter.iter.node = &stream->node_channel_id.node;
501 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
502 assert(!ret);
503
504 iter.iter.node = &stream->node_session_id.node;
505 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
506 assert(!ret);
507 rcu_read_unlock();
508
509 assert(consumer_data.stream_count > 0);
510 consumer_data.stream_count--;
511
512 if (stream->out_fd >= 0) {
513 ret = close(stream->out_fd);
514 if (ret) {
515 PERROR("close");
516 }
517 }
518
519 /* Check and cleanup relayd */
520 rcu_read_lock();
521 relayd = consumer_find_relayd(stream->net_seq_idx);
522 if (relayd != NULL) {
523 uatomic_dec(&relayd->refcount);
524 assert(uatomic_read(&relayd->refcount) >= 0);
525
526 /* Closing streams requires to lock the control socket. */
527 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
528 ret = relayd_send_close_stream(&relayd->control_sock,
529 stream->relayd_stream_id,
530 stream->next_net_seq_num - 1);
531 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
532 if (ret < 0) {
533 DBG("Unable to close stream on the relayd. Continuing");
534 /*
535 * Continue here. There is nothing we can do for the relayd.
536 * Chances are that the relayd has closed the socket so we just
537 * continue cleaning up.
538 */
539 }
540
541 /* Both conditions are met, we destroy the relayd. */
542 if (uatomic_read(&relayd->refcount) == 0 &&
543 uatomic_read(&relayd->destroy_flag)) {
544 destroy_relayd(relayd);
545 }
546 }
547 rcu_read_unlock();
548
549 if (!uatomic_sub_return(&stream->chan->refcount, 1)
550 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
551 free_chan = stream->chan;
552 }
553
554 end:
555 consumer_data.need_update = 1;
556 pthread_mutex_unlock(&stream->lock);
557 pthread_mutex_unlock(&consumer_data.lock);
558
559 if (free_chan) {
560 consumer_del_channel(free_chan);
561 }
562
563 free_stream_rcu:
564 call_rcu(&stream->node.head, free_stream_rcu);
565 }
566
567 /*
568 * XXX naming of del vs destroy is all mixed up.
569 */
570 void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
571 {
572 consumer_del_stream(stream, data_ht);
573 }
574
575 void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
576 {
577 consumer_del_stream(stream, metadata_ht);
578 }
579
580 struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
581 uint64_t stream_key,
582 enum lttng_consumer_stream_state state,
583 const char *channel_name,
584 uid_t uid,
585 gid_t gid,
586 uint64_t relayd_id,
587 uint64_t session_id,
588 int cpu,
589 int *alloc_ret,
590 enum consumer_channel_type type)
591 {
592 int ret;
593 struct lttng_consumer_stream *stream;
594
595 stream = zmalloc(sizeof(*stream));
596 if (stream == NULL) {
597 PERROR("malloc struct lttng_consumer_stream");
598 ret = -ENOMEM;
599 goto end;
600 }
601
602 rcu_read_lock();
603
604 stream->key = stream_key;
605 stream->out_fd = -1;
606 stream->out_fd_offset = 0;
607 stream->state = state;
608 stream->uid = uid;
609 stream->gid = gid;
610 stream->net_seq_idx = relayd_id;
611 stream->session_id = session_id;
612 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
613 pthread_mutex_init(&stream->lock, NULL);
614
615 /* If channel is the metadata, flag this stream as metadata. */
616 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
617 stream->metadata_flag = 1;
618 /* Metadata is flat out. */
619 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
620 } else {
621 /* Format stream name to <channel_name>_<cpu_number> */
622 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
623 channel_name, cpu);
624 if (ret < 0) {
625 PERROR("snprintf stream name");
626 goto error;
627 }
628 }
629
630 /* Key is always the wait_fd for streams. */
631 lttng_ht_node_init_u64(&stream->node, stream->key);
632
633 /* Init node per channel id key */
634 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
635
636 /* Init session id node with the stream session id */
637 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
638
639 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64 " relayd_id %" PRIu64 ", session_id %" PRIu64,
640 stream->name, stream->key, channel_key, stream->net_seq_idx, stream->session_id);
641
642 rcu_read_unlock();
643 return stream;
644
645 error:
646 rcu_read_unlock();
647 free(stream);
648 end:
649 if (alloc_ret) {
650 *alloc_ret = ret;
651 }
652 return NULL;
653 }
654
655 /*
656 * Add a stream to the global list protected by a mutex.
657 */
658 int consumer_add_data_stream(struct lttng_consumer_stream *stream)
659 {
660 struct lttng_ht *ht = data_ht;
661 int ret = 0;
662 struct consumer_relayd_sock_pair *relayd;
663
664 assert(stream);
665 assert(ht);
666
667 DBG3("Adding consumer stream %" PRIu64, stream->key);
668
669 pthread_mutex_lock(&consumer_data.lock);
670 pthread_mutex_lock(&stream->chan->lock);
671 pthread_mutex_lock(&stream->chan->timer_lock);
672 pthread_mutex_lock(&stream->lock);
673 rcu_read_lock();
674
675 /* Steal stream identifier to avoid having streams with the same key */
676 steal_stream_key(stream->key, ht);
677
678 lttng_ht_add_unique_u64(ht, &stream->node);
679
680 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
681 &stream->node_channel_id);
682
683 /*
684 * Add stream to the stream_list_ht of the consumer data. No need to steal
685 * the key since the HT does not use it and we allow to add redundant keys
686 * into this table.
687 */
688 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
689
690 /* Check and cleanup relayd */
691 relayd = consumer_find_relayd(stream->net_seq_idx);
692 if (relayd != NULL) {
693 uatomic_inc(&relayd->refcount);
694 }
695
696 /*
697 * When nb_init_stream_left reaches 0, we don't need to trigger any action
698 * in terms of destroying the associated channel, because the action that
699 * causes the count to become 0 also causes a stream to be added. The
700 * channel deletion will thus be triggered by the following removal of this
701 * stream.
702 */
703 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
704 /* Increment refcount before decrementing nb_init_stream_left */
705 cmm_smp_wmb();
706 uatomic_dec(&stream->chan->nb_init_stream_left);
707 }
708
709 /* Update consumer data once the node is inserted. */
710 consumer_data.stream_count++;
711 consumer_data.need_update = 1;
712
713 rcu_read_unlock();
714 pthread_mutex_unlock(&stream->lock);
715 pthread_mutex_unlock(&stream->chan->timer_lock);
716 pthread_mutex_unlock(&stream->chan->lock);
717 pthread_mutex_unlock(&consumer_data.lock);
718
719 return ret;
720 }
721
722 void consumer_del_data_stream(struct lttng_consumer_stream *stream)
723 {
724 consumer_del_stream(stream, data_ht);
725 }
726
727 /*
728 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
729 * be acquired before calling this.
730 */
731 static int add_relayd(struct consumer_relayd_sock_pair *relayd)
732 {
733 int ret = 0;
734 struct lttng_ht_node_u64 *node;
735 struct lttng_ht_iter iter;
736
737 assert(relayd);
738
739 lttng_ht_lookup(consumer_data.relayd_ht,
740 &relayd->net_seq_idx, &iter);
741 node = lttng_ht_iter_get_node_u64(&iter);
742 if (node != NULL) {
743 goto end;
744 }
745 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
746
747 end:
748 return ret;
749 }
750
751 /*
752 * Allocate and return a consumer relayd socket.
753 */
754 struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
755 uint64_t net_seq_idx)
756 {
757 struct consumer_relayd_sock_pair *obj = NULL;
758
759 /* net sequence index of -1 is a failure */
760 if (net_seq_idx == (uint64_t) -1ULL) {
761 goto error;
762 }
763
764 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
765 if (obj == NULL) {
766 PERROR("zmalloc relayd sock");
767 goto error;
768 }
769
770 obj->net_seq_idx = net_seq_idx;
771 obj->refcount = 0;
772 obj->destroy_flag = 0;
773 obj->control_sock.sock.fd = -1;
774 obj->data_sock.sock.fd = -1;
775 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
776 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
777
778 error:
779 return obj;
780 }
781
782 /*
783 * Find a relayd socket pair in the global consumer data.
784 *
785 * Return the object if found else NULL.
786 * RCU read-side lock must be held across this call and while using the
787 * returned object.
788 */
789 struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
790 {
791 struct lttng_ht_iter iter;
792 struct lttng_ht_node_u64 *node;
793 struct consumer_relayd_sock_pair *relayd = NULL;
794
795 /* Negative keys are lookup failures */
796 if (key == (uint64_t) -1ULL) {
797 goto error;
798 }
799
800 lttng_ht_lookup(consumer_data.relayd_ht, &key,
801 &iter);
802 node = lttng_ht_iter_get_node_u64(&iter);
803 if (node != NULL) {
804 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
805 }
806
807 error:
808 return relayd;
809 }
810
811 /*
812 * Handle stream for relayd transmission if the stream applies for network
813 * streaming where the net sequence index is set.
814 *
815 * Return destination file descriptor or negative value on error.
816 */
817 static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
818 size_t data_size, unsigned long padding,
819 struct consumer_relayd_sock_pair *relayd)
820 {
821 int outfd = -1, ret;
822 struct lttcomm_relayd_data_hdr data_hdr;
823
824 /* Safety net */
825 assert(stream);
826 assert(relayd);
827
828 /* Reset data header */
829 memset(&data_hdr, 0, sizeof(data_hdr));
830
831 if (stream->metadata_flag) {
832 /* Caller MUST acquire the relayd control socket lock */
833 ret = relayd_send_metadata(&relayd->control_sock, data_size);
834 if (ret < 0) {
835 goto error;
836 }
837
838 /* Metadata are always sent on the control socket. */
839 outfd = relayd->control_sock.sock.fd;
840 } else {
841 /* Set header with stream information */
842 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
843 data_hdr.data_size = htobe32(data_size);
844 data_hdr.padding_size = htobe32(padding);
845 /*
846 * Note that net_seq_num below is assigned with the *current* value of
847 * next_net_seq_num and only after that the next_net_seq_num will be
848 * increment. This is why when issuing a command on the relayd using
849 * this next value, 1 should always be substracted in order to compare
850 * the last seen sequence number on the relayd side to the last sent.
851 */
852 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
853 /* Other fields are zeroed previously */
854
855 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
856 sizeof(data_hdr));
857 if (ret < 0) {
858 goto error;
859 }
860
861 ++stream->next_net_seq_num;
862
863 /* Set to go on data socket */
864 outfd = relayd->data_sock.sock.fd;
865 }
866
867 error:
868 return outfd;
869 }
870
871 /*
872 * Allocate and return a new lttng_consumer_channel object using the given key
873 * to initialize the hash table node.
874 *
875 * On error, return NULL.
876 */
877 struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
878 uint64_t session_id,
879 const char *pathname,
880 const char *name,
881 uid_t uid,
882 gid_t gid,
883 uint64_t relayd_id,
884 enum lttng_event_output output,
885 uint64_t tracefile_size,
886 uint64_t tracefile_count,
887 uint64_t session_id_per_pid)
888 {
889 struct lttng_consumer_channel *channel;
890
891 channel = zmalloc(sizeof(*channel));
892 if (channel == NULL) {
893 PERROR("malloc struct lttng_consumer_channel");
894 goto end;
895 }
896
897 channel->key = key;
898 channel->refcount = 0;
899 channel->session_id = session_id;
900 channel->session_id_per_pid = session_id_per_pid;
901 channel->uid = uid;
902 channel->gid = gid;
903 channel->relayd_id = relayd_id;
904 channel->output = output;
905 channel->tracefile_size = tracefile_size;
906 channel->tracefile_count = tracefile_count;
907 pthread_mutex_init(&channel->lock, NULL);
908 pthread_mutex_init(&channel->timer_lock, NULL);
909
910 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
911 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
912
913 strncpy(channel->name, name, sizeof(channel->name));
914 channel->name[sizeof(channel->name) - 1] = '\0';
915
916 lttng_ht_node_init_u64(&channel->node, channel->key);
917
918 channel->wait_fd = -1;
919
920 CDS_INIT_LIST_HEAD(&channel->streams.head);
921
922 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
923
924 end:
925 return channel;
926 }
927
928 /*
929 * Add a channel to the global list protected by a mutex.
930 *
931 * On success 0 is returned else a negative value.
932 */
933 int consumer_add_channel(struct lttng_consumer_channel *channel,
934 struct lttng_consumer_local_data *ctx)
935 {
936 int ret = 0;
937 struct lttng_ht_node_u64 *node;
938 struct lttng_ht_iter iter;
939
940 pthread_mutex_lock(&consumer_data.lock);
941 pthread_mutex_lock(&channel->lock);
942 pthread_mutex_lock(&channel->timer_lock);
943 rcu_read_lock();
944
945 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
946 node = lttng_ht_iter_get_node_u64(&iter);
947 if (node != NULL) {
948 /* Channel already exist. Ignore the insertion */
949 ERR("Consumer add channel key %" PRIu64 " already exists!",
950 channel->key);
951 ret = -EEXIST;
952 goto end;
953 }
954
955 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
956
957 end:
958 rcu_read_unlock();
959 pthread_mutex_unlock(&channel->timer_lock);
960 pthread_mutex_unlock(&channel->lock);
961 pthread_mutex_unlock(&consumer_data.lock);
962
963 if (!ret && channel->wait_fd != -1 &&
964 channel->metadata_stream == NULL) {
965 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
966 }
967 return ret;
968 }
969
970 /*
971 * Allocate the pollfd structure and the local view of the out fds to avoid
972 * doing a lookup in the linked list and concurrency issues when writing is
973 * needed. Called with consumer_data.lock held.
974 *
975 * Returns the number of fds in the structures.
976 */
977 static int update_poll_array(struct lttng_consumer_local_data *ctx,
978 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
979 struct lttng_ht *ht)
980 {
981 int i = 0;
982 struct lttng_ht_iter iter;
983 struct lttng_consumer_stream *stream;
984
985 assert(ctx);
986 assert(ht);
987 assert(pollfd);
988 assert(local_stream);
989
990 DBG("Updating poll fd array");
991 rcu_read_lock();
992 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
993 /*
994 * Only active streams with an active end point can be added to the
995 * poll set and local stream storage of the thread.
996 *
997 * There is a potential race here for endpoint_status to be updated
998 * just after the check. However, this is OK since the stream(s) will
999 * be deleted once the thread is notified that the end point state has
1000 * changed where this function will be called back again.
1001 */
1002 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
1003 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
1004 continue;
1005 }
1006 /*
1007 * This clobbers way too much the debug output. Uncomment that if you
1008 * need it for debugging purposes.
1009 *
1010 * DBG("Active FD %d", stream->wait_fd);
1011 */
1012 (*pollfd)[i].fd = stream->wait_fd;
1013 (*pollfd)[i].events = POLLIN | POLLPRI;
1014 local_stream[i] = stream;
1015 i++;
1016 }
1017 rcu_read_unlock();
1018
1019 /*
1020 * Insert the consumer_data_pipe at the end of the array and don't
1021 * increment i so nb_fd is the number of real FD.
1022 */
1023 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1024 (*pollfd)[i].events = POLLIN | POLLPRI;
1025 return i;
1026 }
1027
1028 /*
1029 * Poll on the should_quit pipe and the command socket return -1 on error and
1030 * should exit, 0 if data is available on the command socket
1031 */
1032 int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1033 {
1034 int num_rdy;
1035
1036 restart:
1037 num_rdy = poll(consumer_sockpoll, 2, -1);
1038 if (num_rdy == -1) {
1039 /*
1040 * Restart interrupted system call.
1041 */
1042 if (errno == EINTR) {
1043 goto restart;
1044 }
1045 PERROR("Poll error");
1046 goto exit;
1047 }
1048 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1049 DBG("consumer_should_quit wake up");
1050 goto exit;
1051 }
1052 return 0;
1053
1054 exit:
1055 return -1;
1056 }
1057
1058 /*
1059 * Set the error socket.
1060 */
1061 void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1062 int sock)
1063 {
1064 ctx->consumer_error_socket = sock;
1065 }
1066
1067 /*
1068 * Set the command socket path.
1069 */
1070 void lttng_consumer_set_command_sock_path(
1071 struct lttng_consumer_local_data *ctx, char *sock)
1072 {
1073 ctx->consumer_command_sock_path = sock;
1074 }
1075
1076 /*
1077 * Send return code to the session daemon.
1078 * If the socket is not defined, we return 0, it is not a fatal error
1079 */
1080 int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1081 {
1082 if (ctx->consumer_error_socket > 0) {
1083 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1084 sizeof(enum lttcomm_sessiond_command));
1085 }
1086
1087 return 0;
1088 }
1089
1090 /*
1091 * Close all the tracefiles and stream fds and MUST be called when all
1092 * instances are destroyed i.e. when all threads were joined and are ended.
1093 */
1094 void lttng_consumer_cleanup(void)
1095 {
1096 struct lttng_ht_iter iter;
1097 struct lttng_consumer_channel *channel;
1098
1099 rcu_read_lock();
1100
1101 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1102 node.node) {
1103 consumer_del_channel(channel);
1104 }
1105
1106 rcu_read_unlock();
1107
1108 lttng_ht_destroy(consumer_data.channel_ht);
1109
1110 cleanup_relayd_ht();
1111
1112 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1113
1114 /*
1115 * This HT contains streams that are freed by either the metadata thread or
1116 * the data thread so we do *nothing* on the hash table and simply destroy
1117 * it.
1118 */
1119 lttng_ht_destroy(consumer_data.stream_list_ht);
1120 }
1121
1122 /*
1123 * Called from signal handler.
1124 */
1125 void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1126 {
1127 int ret;
1128 consumer_quit = 1;
1129 do {
1130 ret = write(ctx->consumer_should_quit[1], "4", 1);
1131 } while (ret < 0 && errno == EINTR);
1132 if (ret < 0 || ret != 1) {
1133 PERROR("write consumer quit");
1134 }
1135
1136 DBG("Consumer flag that it should quit");
1137 }
1138
1139 void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1140 off_t orig_offset)
1141 {
1142 int outfd = stream->out_fd;
1143
1144 /*
1145 * This does a blocking write-and-wait on any page that belongs to the
1146 * subbuffer prior to the one we just wrote.
1147 * Don't care about error values, as these are just hints and ways to
1148 * limit the amount of page cache used.
1149 */
1150 if (orig_offset < stream->max_sb_size) {
1151 return;
1152 }
1153 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1154 stream->max_sb_size,
1155 SYNC_FILE_RANGE_WAIT_BEFORE
1156 | SYNC_FILE_RANGE_WRITE
1157 | SYNC_FILE_RANGE_WAIT_AFTER);
1158 /*
1159 * Give hints to the kernel about how we access the file:
1160 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1161 * we write it.
1162 *
1163 * We need to call fadvise again after the file grows because the
1164 * kernel does not seem to apply fadvise to non-existing parts of the
1165 * file.
1166 *
1167 * Call fadvise _after_ having waited for the page writeback to
1168 * complete because the dirty page writeback semantic is not well
1169 * defined. So it can be expected to lead to lower throughput in
1170 * streaming.
1171 */
1172 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1173 stream->max_sb_size, POSIX_FADV_DONTNEED);
1174 }
1175
1176 /*
1177 * Initialise the necessary environnement :
1178 * - create a new context
1179 * - create the poll_pipe
1180 * - create the should_quit pipe (for signal handler)
1181 * - create the thread pipe (for splice)
1182 *
1183 * Takes a function pointer as argument, this function is called when data is
1184 * available on a buffer. This function is responsible to do the
1185 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1186 * buffer configuration and then kernctl_put_next_subbuf at the end.
1187 *
1188 * Returns a pointer to the new context or NULL on error.
1189 */
1190 struct lttng_consumer_local_data *lttng_consumer_create(
1191 enum lttng_consumer_type type,
1192 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1193 struct lttng_consumer_local_data *ctx),
1194 int (*recv_channel)(struct lttng_consumer_channel *channel),
1195 int (*recv_stream)(struct lttng_consumer_stream *stream),
1196 int (*update_stream)(uint64_t stream_key, uint32_t state))
1197 {
1198 int ret;
1199 struct lttng_consumer_local_data *ctx;
1200
1201 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1202 consumer_data.type == type);
1203 consumer_data.type = type;
1204
1205 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1206 if (ctx == NULL) {
1207 PERROR("allocating context");
1208 goto error;
1209 }
1210
1211 ctx->consumer_error_socket = -1;
1212 ctx->consumer_metadata_socket = -1;
1213 /* assign the callbacks */
1214 ctx->on_buffer_ready = buffer_ready;
1215 ctx->on_recv_channel = recv_channel;
1216 ctx->on_recv_stream = recv_stream;
1217 ctx->on_update_stream = update_stream;
1218
1219 ctx->consumer_data_pipe = lttng_pipe_open(0);
1220 if (!ctx->consumer_data_pipe) {
1221 goto error_poll_pipe;
1222 }
1223
1224 ret = pipe(ctx->consumer_should_quit);
1225 if (ret < 0) {
1226 PERROR("Error creating recv pipe");
1227 goto error_quit_pipe;
1228 }
1229
1230 ret = pipe(ctx->consumer_thread_pipe);
1231 if (ret < 0) {
1232 PERROR("Error creating thread pipe");
1233 goto error_thread_pipe;
1234 }
1235
1236 ret = pipe(ctx->consumer_channel_pipe);
1237 if (ret < 0) {
1238 PERROR("Error creating channel pipe");
1239 goto error_channel_pipe;
1240 }
1241
1242 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1243 if (!ctx->consumer_metadata_pipe) {
1244 goto error_metadata_pipe;
1245 }
1246
1247 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1248 if (ret < 0) {
1249 goto error_splice_pipe;
1250 }
1251
1252 return ctx;
1253
1254 error_splice_pipe:
1255 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1256 error_metadata_pipe:
1257 utils_close_pipe(ctx->consumer_channel_pipe);
1258 error_channel_pipe:
1259 utils_close_pipe(ctx->consumer_thread_pipe);
1260 error_thread_pipe:
1261 utils_close_pipe(ctx->consumer_should_quit);
1262 error_quit_pipe:
1263 lttng_pipe_destroy(ctx->consumer_data_pipe);
1264 error_poll_pipe:
1265 free(ctx);
1266 error:
1267 return NULL;
1268 }
1269
1270 /*
1271 * Close all fds associated with the instance and free the context.
1272 */
1273 void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1274 {
1275 int ret;
1276
1277 DBG("Consumer destroying it. Closing everything.");
1278
1279 ret = close(ctx->consumer_error_socket);
1280 if (ret) {
1281 PERROR("close");
1282 }
1283 ret = close(ctx->consumer_metadata_socket);
1284 if (ret) {
1285 PERROR("close");
1286 }
1287 utils_close_pipe(ctx->consumer_thread_pipe);
1288 utils_close_pipe(ctx->consumer_channel_pipe);
1289 lttng_pipe_destroy(ctx->consumer_data_pipe);
1290 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1291 utils_close_pipe(ctx->consumer_should_quit);
1292 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1293
1294 unlink(ctx->consumer_command_sock_path);
1295 free(ctx);
1296 }
1297
1298 /*
1299 * Write the metadata stream id on the specified file descriptor.
1300 */
1301 static int write_relayd_metadata_id(int fd,
1302 struct lttng_consumer_stream *stream,
1303 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1304 {
1305 int ret;
1306 struct lttcomm_relayd_metadata_payload hdr;
1307
1308 hdr.stream_id = htobe64(stream->relayd_stream_id);
1309 hdr.padding_size = htobe32(padding);
1310 do {
1311 ret = write(fd, (void *) &hdr, sizeof(hdr));
1312 } while (ret < 0 && errno == EINTR);
1313 if (ret < 0 || ret != sizeof(hdr)) {
1314 /*
1315 * This error means that the fd's end is closed so ignore the perror
1316 * not to clubber the error output since this can happen in a normal
1317 * code path.
1318 */
1319 if (errno != EPIPE) {
1320 PERROR("write metadata stream id");
1321 }
1322 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1323 /*
1324 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1325 * handle writting the missing part so report that as an error and
1326 * don't lie to the caller.
1327 */
1328 ret = -1;
1329 goto end;
1330 }
1331 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1332 stream->relayd_stream_id, padding);
1333
1334 end:
1335 return ret;
1336 }
1337
1338 /*
1339 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1340 * core function for writing trace buffers to either the local filesystem or
1341 * the network.
1342 *
1343 * It must be called with the stream lock held.
1344 *
1345 * Careful review MUST be put if any changes occur!
1346 *
1347 * Returns the number of bytes written
1348 */
1349 ssize_t lttng_consumer_on_read_subbuffer_mmap(
1350 struct lttng_consumer_local_data *ctx,
1351 struct lttng_consumer_stream *stream, unsigned long len,
1352 unsigned long padding)
1353 {
1354 unsigned long mmap_offset;
1355 void *mmap_base;
1356 ssize_t ret = 0, written = 0;
1357 off_t orig_offset = stream->out_fd_offset;
1358 /* Default is on the disk */
1359 int outfd = stream->out_fd;
1360 struct consumer_relayd_sock_pair *relayd = NULL;
1361 unsigned int relayd_hang_up = 0;
1362
1363 /* RCU lock for the relayd pointer */
1364 rcu_read_lock();
1365
1366 /* Flag that the current stream if set for network streaming. */
1367 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1368 relayd = consumer_find_relayd(stream->net_seq_idx);
1369 if (relayd == NULL) {
1370 goto end;
1371 }
1372 }
1373
1374 /* get the offset inside the fd to mmap */
1375 switch (consumer_data.type) {
1376 case LTTNG_CONSUMER_KERNEL:
1377 mmap_base = stream->mmap_base;
1378 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1379 break;
1380 case LTTNG_CONSUMER32_UST:
1381 case LTTNG_CONSUMER64_UST:
1382 mmap_base = lttng_ustctl_get_mmap_base(stream);
1383 if (!mmap_base) {
1384 ERR("read mmap get mmap base for stream %s", stream->name);
1385 written = -1;
1386 goto end;
1387 }
1388 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1389
1390 break;
1391 default:
1392 ERR("Unknown consumer_data type");
1393 assert(0);
1394 }
1395 if (ret != 0) {
1396 errno = -ret;
1397 PERROR("tracer ctl get_mmap_read_offset");
1398 written = ret;
1399 goto end;
1400 }
1401
1402 /* Handle stream on the relayd if the output is on the network */
1403 if (relayd) {
1404 unsigned long netlen = len;
1405
1406 /*
1407 * Lock the control socket for the complete duration of the function
1408 * since from this point on we will use the socket.
1409 */
1410 if (stream->metadata_flag) {
1411 /* Metadata requires the control socket. */
1412 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1413 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1414 }
1415
1416 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1417 if (ret >= 0) {
1418 /* Use the returned socket. */
1419 outfd = ret;
1420
1421 /* Write metadata stream id before payload */
1422 if (stream->metadata_flag) {
1423 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1424 if (ret < 0) {
1425 written = ret;
1426 /* Socket operation failed. We consider the relayd dead */
1427 if (ret == -EPIPE || ret == -EINVAL) {
1428 relayd_hang_up = 1;
1429 goto write_error;
1430 }
1431 goto end;
1432 }
1433 }
1434 } else {
1435 /* Socket operation failed. We consider the relayd dead */
1436 if (ret == -EPIPE || ret == -EINVAL) {
1437 relayd_hang_up = 1;
1438 goto write_error;
1439 }
1440 /* Else, use the default set before which is the filesystem. */
1441 }
1442 } else {
1443 /* No streaming, we have to set the len with the full padding */
1444 len += padding;
1445
1446 /*
1447 * Check if we need to change the tracefile before writing the packet.
1448 */
1449 if (stream->chan->tracefile_size > 0 &&
1450 (stream->tracefile_size_current + len) >
1451 stream->chan->tracefile_size) {
1452 ret = utils_rotate_stream_file(stream->chan->pathname,
1453 stream->name, stream->chan->tracefile_size,
1454 stream->chan->tracefile_count, stream->uid, stream->gid,
1455 stream->out_fd, &(stream->tracefile_count_current));
1456 if (ret < 0) {
1457 ERR("Rotating output file");
1458 goto end;
1459 }
1460 outfd = stream->out_fd = ret;
1461 /* Reset current size because we just perform a rotation. */
1462 stream->tracefile_size_current = 0;
1463 }
1464 stream->tracefile_size_current += len;
1465 }
1466
1467 while (len > 0) {
1468 do {
1469 ret = write(outfd, mmap_base + mmap_offset, len);
1470 } while (ret < 0 && errno == EINTR);
1471 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1472 if (ret < 0) {
1473 /*
1474 * This is possible if the fd is closed on the other side (outfd)
1475 * or any write problem. It can be verbose a bit for a normal
1476 * execution if for instance the relayd is stopped abruptly. This
1477 * can happen so set this to a DBG statement.
1478 */
1479 DBG("Error in file write mmap");
1480 if (written == 0) {
1481 written = ret;
1482 }
1483 /* Socket operation failed. We consider the relayd dead */
1484 if (errno == EPIPE || errno == EINVAL) {
1485 relayd_hang_up = 1;
1486 goto write_error;
1487 }
1488 goto end;
1489 } else if (ret > len) {
1490 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1491 written += ret;
1492 goto end;
1493 } else {
1494 len -= ret;
1495 mmap_offset += ret;
1496 }
1497
1498 /* This call is useless on a socket so better save a syscall. */
1499 if (!relayd) {
1500 /* This won't block, but will start writeout asynchronously */
1501 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1502 SYNC_FILE_RANGE_WRITE);
1503 stream->out_fd_offset += ret;
1504 }
1505 written += ret;
1506 }
1507 lttng_consumer_sync_trace_file(stream, orig_offset);
1508
1509 write_error:
1510 /*
1511 * This is a special case that the relayd has closed its socket. Let's
1512 * cleanup the relayd object and all associated streams.
1513 */
1514 if (relayd && relayd_hang_up) {
1515 cleanup_relayd(relayd, ctx);
1516 }
1517
1518 end:
1519 /* Unlock only if ctrl socket used */
1520 if (relayd && stream->metadata_flag) {
1521 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1522 }
1523
1524 rcu_read_unlock();
1525 return written;
1526 }
1527
1528 /*
1529 * Splice the data from the ring buffer to the tracefile.
1530 *
1531 * It must be called with the stream lock held.
1532 *
1533 * Returns the number of bytes spliced.
1534 */
1535 ssize_t lttng_consumer_on_read_subbuffer_splice(
1536 struct lttng_consumer_local_data *ctx,
1537 struct lttng_consumer_stream *stream, unsigned long len,
1538 unsigned long padding)
1539 {
1540 ssize_t ret = 0, written = 0, ret_splice = 0;
1541 loff_t offset = 0;
1542 off_t orig_offset = stream->out_fd_offset;
1543 int fd = stream->wait_fd;
1544 /* Default is on the disk */
1545 int outfd = stream->out_fd;
1546 struct consumer_relayd_sock_pair *relayd = NULL;
1547 int *splice_pipe;
1548 unsigned int relayd_hang_up = 0;
1549
1550 switch (consumer_data.type) {
1551 case LTTNG_CONSUMER_KERNEL:
1552 break;
1553 case LTTNG_CONSUMER32_UST:
1554 case LTTNG_CONSUMER64_UST:
1555 /* Not supported for user space tracing */
1556 return -ENOSYS;
1557 default:
1558 ERR("Unknown consumer_data type");
1559 assert(0);
1560 }
1561
1562 /* RCU lock for the relayd pointer */
1563 rcu_read_lock();
1564
1565 /* Flag that the current stream if set for network streaming. */
1566 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1567 relayd = consumer_find_relayd(stream->net_seq_idx);
1568 if (relayd == NULL) {
1569 goto end;
1570 }
1571 }
1572
1573 /*
1574 * Choose right pipe for splice. Metadata and trace data are handled by
1575 * different threads hence the use of two pipes in order not to race or
1576 * corrupt the written data.
1577 */
1578 if (stream->metadata_flag) {
1579 splice_pipe = ctx->consumer_splice_metadata_pipe;
1580 } else {
1581 splice_pipe = ctx->consumer_thread_pipe;
1582 }
1583
1584 /* Write metadata stream id before payload */
1585 if (relayd) {
1586 int total_len = len;
1587
1588 if (stream->metadata_flag) {
1589 /*
1590 * Lock the control socket for the complete duration of the function
1591 * since from this point on we will use the socket.
1592 */
1593 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1594
1595 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1596 padding);
1597 if (ret < 0) {
1598 written = ret;
1599 /* Socket operation failed. We consider the relayd dead */
1600 if (ret == -EBADF) {
1601 WARN("Remote relayd disconnected. Stopping");
1602 relayd_hang_up = 1;
1603 goto write_error;
1604 }
1605 goto end;
1606 }
1607
1608 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1609 }
1610
1611 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1612 if (ret >= 0) {
1613 /* Use the returned socket. */
1614 outfd = ret;
1615 } else {
1616 /* Socket operation failed. We consider the relayd dead */
1617 if (ret == -EBADF) {
1618 WARN("Remote relayd disconnected. Stopping");
1619 relayd_hang_up = 1;
1620 goto write_error;
1621 }
1622 goto end;
1623 }
1624 } else {
1625 /* No streaming, we have to set the len with the full padding */
1626 len += padding;
1627
1628 /*
1629 * Check if we need to change the tracefile before writing the packet.
1630 */
1631 if (stream->chan->tracefile_size > 0 &&
1632 (stream->tracefile_size_current + len) >
1633 stream->chan->tracefile_size) {
1634 ret = utils_rotate_stream_file(stream->chan->pathname,
1635 stream->name, stream->chan->tracefile_size,
1636 stream->chan->tracefile_count, stream->uid, stream->gid,
1637 stream->out_fd, &(stream->tracefile_count_current));
1638 if (ret < 0) {
1639 ERR("Rotating output file");
1640 goto end;
1641 }
1642 outfd = stream->out_fd = ret;
1643 /* Reset current size because we just perform a rotation. */
1644 stream->tracefile_size_current = 0;
1645 }
1646 stream->tracefile_size_current += len;
1647 }
1648
1649 while (len > 0) {
1650 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1651 (unsigned long)offset, len, fd, splice_pipe[1]);
1652 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1653 SPLICE_F_MOVE | SPLICE_F_MORE);
1654 DBG("splice chan to pipe, ret %zd", ret_splice);
1655 if (ret_splice < 0) {
1656 PERROR("Error in relay splice");
1657 if (written == 0) {
1658 written = ret_splice;
1659 }
1660 ret = errno;
1661 goto splice_error;
1662 }
1663
1664 /* Handle stream on the relayd if the output is on the network */
1665 if (relayd) {
1666 if (stream->metadata_flag) {
1667 size_t metadata_payload_size =
1668 sizeof(struct lttcomm_relayd_metadata_payload);
1669
1670 /* Update counter to fit the spliced data */
1671 ret_splice += metadata_payload_size;
1672 len += metadata_payload_size;
1673 /*
1674 * We do this so the return value can match the len passed as
1675 * argument to this function.
1676 */
1677 written -= metadata_payload_size;
1678 }
1679 }
1680
1681 /* Splice data out */
1682 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1683 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1684 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1685 if (ret_splice < 0) {
1686 PERROR("Error in file splice");
1687 if (written == 0) {
1688 written = ret_splice;
1689 }
1690 /* Socket operation failed. We consider the relayd dead */
1691 if (errno == EBADF || errno == EPIPE) {
1692 WARN("Remote relayd disconnected. Stopping");
1693 relayd_hang_up = 1;
1694 goto write_error;
1695 }
1696 ret = errno;
1697 goto splice_error;
1698 } else if (ret_splice > len) {
1699 errno = EINVAL;
1700 PERROR("Wrote more data than requested %zd (len: %lu)",
1701 ret_splice, len);
1702 written += ret_splice;
1703 ret = errno;
1704 goto splice_error;
1705 }
1706 len -= ret_splice;
1707
1708 /* This call is useless on a socket so better save a syscall. */
1709 if (!relayd) {
1710 /* This won't block, but will start writeout asynchronously */
1711 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1712 SYNC_FILE_RANGE_WRITE);
1713 stream->out_fd_offset += ret_splice;
1714 }
1715 written += ret_splice;
1716 }
1717 lttng_consumer_sync_trace_file(stream, orig_offset);
1718
1719 ret = ret_splice;
1720
1721 goto end;
1722
1723 write_error:
1724 /*
1725 * This is a special case that the relayd has closed its socket. Let's
1726 * cleanup the relayd object and all associated streams.
1727 */
1728 if (relayd && relayd_hang_up) {
1729 cleanup_relayd(relayd, ctx);
1730 /* Skip splice error so the consumer does not fail */
1731 goto end;
1732 }
1733
1734 splice_error:
1735 /* send the appropriate error description to sessiond */
1736 switch (ret) {
1737 case EINVAL:
1738 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1739 break;
1740 case ENOMEM:
1741 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1742 break;
1743 case ESPIPE:
1744 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1745 break;
1746 }
1747
1748 end:
1749 if (relayd && stream->metadata_flag) {
1750 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1751 }
1752
1753 rcu_read_unlock();
1754 return written;
1755 }
1756
1757 /*
1758 * Take a snapshot for a specific fd
1759 *
1760 * Returns 0 on success, < 0 on error
1761 */
1762 int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1763 {
1764 switch (consumer_data.type) {
1765 case LTTNG_CONSUMER_KERNEL:
1766 return lttng_kconsumer_take_snapshot(stream);
1767 case LTTNG_CONSUMER32_UST:
1768 case LTTNG_CONSUMER64_UST:
1769 return lttng_ustconsumer_take_snapshot(stream);
1770 default:
1771 ERR("Unknown consumer_data type");
1772 assert(0);
1773 return -ENOSYS;
1774 }
1775 }
1776
1777 /*
1778 * Get the produced position
1779 *
1780 * Returns 0 on success, < 0 on error
1781 */
1782 int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1783 unsigned long *pos)
1784 {
1785 switch (consumer_data.type) {
1786 case LTTNG_CONSUMER_KERNEL:
1787 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1788 case LTTNG_CONSUMER32_UST:
1789 case LTTNG_CONSUMER64_UST:
1790 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1791 default:
1792 ERR("Unknown consumer_data type");
1793 assert(0);
1794 return -ENOSYS;
1795 }
1796 }
1797
1798 int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1799 int sock, struct pollfd *consumer_sockpoll)
1800 {
1801 switch (consumer_data.type) {
1802 case LTTNG_CONSUMER_KERNEL:
1803 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1804 case LTTNG_CONSUMER32_UST:
1805 case LTTNG_CONSUMER64_UST:
1806 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1807 default:
1808 ERR("Unknown consumer_data type");
1809 assert(0);
1810 return -ENOSYS;
1811 }
1812 }
1813
1814 /*
1815 * Iterate over all streams of the hashtable and free them properly.
1816 *
1817 * WARNING: *MUST* be used with data stream only.
1818 */
1819 static void destroy_data_stream_ht(struct lttng_ht *ht)
1820 {
1821 struct lttng_ht_iter iter;
1822 struct lttng_consumer_stream *stream;
1823
1824 if (ht == NULL) {
1825 return;
1826 }
1827
1828 rcu_read_lock();
1829 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1830 /*
1831 * Ignore return value since we are currently cleaning up so any error
1832 * can't be handled.
1833 */
1834 (void) consumer_del_stream(stream, ht);
1835 }
1836 rcu_read_unlock();
1837
1838 lttng_ht_destroy(ht);
1839 }
1840
1841 /*
1842 * Iterate over all streams of the hashtable and free them properly.
1843 *
1844 * XXX: Should not be only for metadata stream or else use an other name.
1845 */
1846 static void destroy_stream_ht(struct lttng_ht *ht)
1847 {
1848 struct lttng_ht_iter iter;
1849 struct lttng_consumer_stream *stream;
1850
1851 if (ht == NULL) {
1852 return;
1853 }
1854
1855 rcu_read_lock();
1856 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1857 /*
1858 * Ignore return value since we are currently cleaning up so any error
1859 * can't be handled.
1860 */
1861 (void) consumer_del_metadata_stream(stream, ht);
1862 }
1863 rcu_read_unlock();
1864
1865 lttng_ht_destroy(ht);
1866 }
1867
1868 void lttng_consumer_close_metadata(void)
1869 {
1870 switch (consumer_data.type) {
1871 case LTTNG_CONSUMER_KERNEL:
1872 /*
1873 * The Kernel consumer has a different metadata scheme so we don't
1874 * close anything because the stream will be closed by the session
1875 * daemon.
1876 */
1877 break;
1878 case LTTNG_CONSUMER32_UST:
1879 case LTTNG_CONSUMER64_UST:
1880 /*
1881 * Close all metadata streams. The metadata hash table is passed and
1882 * this call iterates over it by closing all wakeup fd. This is safe
1883 * because at this point we are sure that the metadata producer is
1884 * either dead or blocked.
1885 */
1886 lttng_ustconsumer_close_metadata(metadata_ht);
1887 break;
1888 default:
1889 ERR("Unknown consumer_data type");
1890 assert(0);
1891 }
1892 }
1893
1894 /*
1895 * Clean up a metadata stream and free its memory.
1896 */
1897 void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1898 struct lttng_ht *ht)
1899 {
1900 int ret;
1901 struct lttng_ht_iter iter;
1902 struct lttng_consumer_channel *free_chan = NULL;
1903 struct consumer_relayd_sock_pair *relayd;
1904
1905 assert(stream);
1906 /*
1907 * This call should NEVER receive regular stream. It must always be
1908 * metadata stream and this is crucial for data structure synchronization.
1909 */
1910 assert(stream->metadata_flag);
1911
1912 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1913
1914 if (ht == NULL) {
1915 /* Means the stream was allocated but not successfully added */
1916 goto free_stream_rcu;
1917 }
1918
1919 pthread_mutex_lock(&consumer_data.lock);
1920 pthread_mutex_lock(&stream->chan->lock);
1921 pthread_mutex_lock(&stream->lock);
1922
1923 switch (consumer_data.type) {
1924 case LTTNG_CONSUMER_KERNEL:
1925 if (stream->mmap_base != NULL) {
1926 ret = munmap(stream->mmap_base, stream->mmap_len);
1927 if (ret != 0) {
1928 PERROR("munmap metadata stream");
1929 }
1930 }
1931
1932 if (stream->wait_fd >= 0) {
1933 ret = close(stream->wait_fd);
1934 if (ret < 0) {
1935 PERROR("close kernel metadata wait_fd");
1936 }
1937 }
1938 break;
1939 case LTTNG_CONSUMER32_UST:
1940 case LTTNG_CONSUMER64_UST:
1941 lttng_ustconsumer_del_stream(stream);
1942 break;
1943 default:
1944 ERR("Unknown consumer_data type");
1945 assert(0);
1946 goto end;
1947 }
1948
1949 rcu_read_lock();
1950 iter.iter.node = &stream->node.node;
1951 ret = lttng_ht_del(ht, &iter);
1952 assert(!ret);
1953
1954 iter.iter.node = &stream->node_channel_id.node;
1955 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1956 assert(!ret);
1957
1958 iter.iter.node = &stream->node_session_id.node;
1959 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1960 assert(!ret);
1961 rcu_read_unlock();
1962
1963 if (stream->out_fd >= 0) {
1964 ret = close(stream->out_fd);
1965 if (ret) {
1966 PERROR("close");
1967 }
1968 }
1969
1970 /* Check and cleanup relayd */
1971 rcu_read_lock();
1972 relayd = consumer_find_relayd(stream->net_seq_idx);
1973 if (relayd != NULL) {
1974 uatomic_dec(&relayd->refcount);
1975 assert(uatomic_read(&relayd->refcount) >= 0);
1976
1977 /* Closing streams requires to lock the control socket. */
1978 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1979 ret = relayd_send_close_stream(&relayd->control_sock,
1980 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1981 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1982 if (ret < 0) {
1983 DBG("Unable to close stream on the relayd. Continuing");
1984 /*
1985 * Continue here. There is nothing we can do for the relayd.
1986 * Chances are that the relayd has closed the socket so we just
1987 * continue cleaning up.
1988 */
1989 }
1990
1991 /* Both conditions are met, we destroy the relayd. */
1992 if (uatomic_read(&relayd->refcount) == 0 &&
1993 uatomic_read(&relayd->destroy_flag)) {
1994 destroy_relayd(relayd);
1995 }
1996 }
1997 rcu_read_unlock();
1998
1999 /* Atomically decrement channel refcount since other threads can use it. */
2000 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2001 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2002 /* Go for channel deletion! */
2003 free_chan = stream->chan;
2004 }
2005
2006 end:
2007 /*
2008 * Nullify the stream reference so it is not used after deletion. The
2009 * channel lock MUST be acquired before being able to check for
2010 * a NULL pointer value.
2011 */
2012 stream->chan->metadata_stream = NULL;
2013
2014 pthread_mutex_unlock(&stream->lock);
2015 pthread_mutex_unlock(&stream->chan->lock);
2016 pthread_mutex_unlock(&consumer_data.lock);
2017
2018 if (free_chan) {
2019 consumer_del_channel(free_chan);
2020 }
2021
2022 free_stream_rcu:
2023 call_rcu(&stream->node.head, free_stream_rcu);
2024 }
2025
2026 /*
2027 * Action done with the metadata stream when adding it to the consumer internal
2028 * data structures to handle it.
2029 */
2030 int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2031 {
2032 struct lttng_ht *ht = metadata_ht;
2033 int ret = 0;
2034 struct consumer_relayd_sock_pair *relayd;
2035 struct lttng_ht_iter iter;
2036 struct lttng_ht_node_u64 *node;
2037
2038 assert(stream);
2039 assert(ht);
2040
2041 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2042
2043 pthread_mutex_lock(&consumer_data.lock);
2044 pthread_mutex_lock(&stream->chan->lock);
2045 pthread_mutex_lock(&stream->chan->timer_lock);
2046 pthread_mutex_lock(&stream->lock);
2047
2048 /*
2049 * From here, refcounts are updated so be _careful_ when returning an error
2050 * after this point.
2051 */
2052
2053 rcu_read_lock();
2054
2055 /*
2056 * Lookup the stream just to make sure it does not exist in our internal
2057 * state. This should NEVER happen.
2058 */
2059 lttng_ht_lookup(ht, &stream->key, &iter);
2060 node = lttng_ht_iter_get_node_u64(&iter);
2061 assert(!node);
2062
2063 /* Find relayd and, if one is found, increment refcount. */
2064 relayd = consumer_find_relayd(stream->net_seq_idx);
2065 if (relayd != NULL) {
2066 uatomic_inc(&relayd->refcount);
2067 }
2068
2069 /*
2070 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2071 * in terms of destroying the associated channel, because the action that
2072 * causes the count to become 0 also causes a stream to be added. The
2073 * channel deletion will thus be triggered by the following removal of this
2074 * stream.
2075 */
2076 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2077 /* Increment refcount before decrementing nb_init_stream_left */
2078 cmm_smp_wmb();
2079 uatomic_dec(&stream->chan->nb_init_stream_left);
2080 }
2081
2082 lttng_ht_add_unique_u64(ht, &stream->node);
2083
2084 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2085 &stream->node_channel_id);
2086
2087 /*
2088 * Add stream to the stream_list_ht of the consumer data. No need to steal
2089 * the key since the HT does not use it and we allow to add redundant keys
2090 * into this table.
2091 */
2092 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2093
2094 rcu_read_unlock();
2095
2096 pthread_mutex_unlock(&stream->lock);
2097 pthread_mutex_unlock(&stream->chan->lock);
2098 pthread_mutex_unlock(&stream->chan->timer_lock);
2099 pthread_mutex_unlock(&consumer_data.lock);
2100 return ret;
2101 }
2102
2103 /*
2104 * Delete data stream that are flagged for deletion (endpoint_status).
2105 */
2106 static void validate_endpoint_status_data_stream(void)
2107 {
2108 struct lttng_ht_iter iter;
2109 struct lttng_consumer_stream *stream;
2110
2111 DBG("Consumer delete flagged data stream");
2112
2113 rcu_read_lock();
2114 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2115 /* Validate delete flag of the stream */
2116 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2117 continue;
2118 }
2119 /* Delete it right now */
2120 consumer_del_stream(stream, data_ht);
2121 }
2122 rcu_read_unlock();
2123 }
2124
2125 /*
2126 * Delete metadata stream that are flagged for deletion (endpoint_status).
2127 */
2128 static void validate_endpoint_status_metadata_stream(
2129 struct lttng_poll_event *pollset)
2130 {
2131 struct lttng_ht_iter iter;
2132 struct lttng_consumer_stream *stream;
2133
2134 DBG("Consumer delete flagged metadata stream");
2135
2136 assert(pollset);
2137
2138 rcu_read_lock();
2139 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2140 /* Validate delete flag of the stream */
2141 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2142 continue;
2143 }
2144 /*
2145 * Remove from pollset so the metadata thread can continue without
2146 * blocking on a deleted stream.
2147 */
2148 lttng_poll_del(pollset, stream->wait_fd);
2149
2150 /* Delete it right now */
2151 consumer_del_metadata_stream(stream, metadata_ht);
2152 }
2153 rcu_read_unlock();
2154 }
2155
2156 /*
2157 * Thread polls on metadata file descriptor and write them on disk or on the
2158 * network.
2159 */
2160 void *consumer_thread_metadata_poll(void *data)
2161 {
2162 int ret, i, pollfd;
2163 uint32_t revents, nb_fd;
2164 struct lttng_consumer_stream *stream = NULL;
2165 struct lttng_ht_iter iter;
2166 struct lttng_ht_node_u64 *node;
2167 struct lttng_poll_event events;
2168 struct lttng_consumer_local_data *ctx = data;
2169 ssize_t len;
2170
2171 rcu_register_thread();
2172
2173 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2174 if (!metadata_ht) {
2175 /* ENOMEM at this point. Better to bail out. */
2176 goto end_ht;
2177 }
2178
2179 DBG("Thread metadata poll started");
2180
2181 /* Size is set to 1 for the consumer_metadata pipe */
2182 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2183 if (ret < 0) {
2184 ERR("Poll set creation failed");
2185 goto end_poll;
2186 }
2187
2188 ret = lttng_poll_add(&events,
2189 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2190 if (ret < 0) {
2191 goto end;
2192 }
2193
2194 /* Main loop */
2195 DBG("Metadata main loop started");
2196
2197 while (1) {
2198 /* Only the metadata pipe is set */
2199 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2200 goto end;
2201 }
2202
2203 restart:
2204 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2205 ret = lttng_poll_wait(&events, -1);
2206 DBG("Metadata event catched in thread");
2207 if (ret < 0) {
2208 if (errno == EINTR) {
2209 ERR("Poll EINTR catched");
2210 goto restart;
2211 }
2212 goto error;
2213 }
2214
2215 nb_fd = ret;
2216
2217 /* From here, the event is a metadata wait fd */
2218 for (i = 0; i < nb_fd; i++) {
2219 revents = LTTNG_POLL_GETEV(&events, i);
2220 pollfd = LTTNG_POLL_GETFD(&events, i);
2221
2222 /* Just don't waste time if no returned events for the fd */
2223 if (!revents) {
2224 continue;
2225 }
2226
2227 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2228 if (revents & (LPOLLERR | LPOLLHUP )) {
2229 DBG("Metadata thread pipe hung up");
2230 /*
2231 * Remove the pipe from the poll set and continue the loop
2232 * since their might be data to consume.
2233 */
2234 lttng_poll_del(&events,
2235 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2236 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2237 continue;
2238 } else if (revents & LPOLLIN) {
2239 ssize_t pipe_len;
2240
2241 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2242 &stream, sizeof(stream));
2243 if (pipe_len < 0) {
2244 ERR("read metadata stream, ret: %ld", pipe_len);
2245 /*
2246 * Continue here to handle the rest of the streams.
2247 */
2248 continue;
2249 }
2250
2251 /* A NULL stream means that the state has changed. */
2252 if (stream == NULL) {
2253 /* Check for deleted streams. */
2254 validate_endpoint_status_metadata_stream(&events);
2255 goto restart;
2256 }
2257
2258 DBG("Adding metadata stream %d to poll set",
2259 stream->wait_fd);
2260
2261 /* Add metadata stream to the global poll events list */
2262 lttng_poll_add(&events, stream->wait_fd,
2263 LPOLLIN | LPOLLPRI);
2264 }
2265
2266 /* Handle other stream */
2267 continue;
2268 }
2269
2270 rcu_read_lock();
2271 {
2272 uint64_t tmp_id = (uint64_t) pollfd;
2273
2274 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2275 }
2276 node = lttng_ht_iter_get_node_u64(&iter);
2277 assert(node);
2278
2279 stream = caa_container_of(node, struct lttng_consumer_stream,
2280 node);
2281
2282 /* Check for error event */
2283 if (revents & (LPOLLERR | LPOLLHUP)) {
2284 DBG("Metadata fd %d is hup|err.", pollfd);
2285 if (!stream->hangup_flush_done
2286 && (consumer_data.type == LTTNG_CONSUMER32_UST
2287 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2288 DBG("Attempting to flush and consume the UST buffers");
2289 lttng_ustconsumer_on_stream_hangup(stream);
2290
2291 /* We just flushed the stream now read it. */
2292 do {
2293 len = ctx->on_buffer_ready(stream, ctx);
2294 /*
2295 * We don't check the return value here since if we get
2296 * a negative len, it means an error occured thus we
2297 * simply remove it from the poll set and free the
2298 * stream.
2299 */
2300 } while (len > 0);
2301 }
2302
2303 lttng_poll_del(&events, stream->wait_fd);
2304 /*
2305 * This call update the channel states, closes file descriptors
2306 * and securely free the stream.
2307 */
2308 consumer_del_metadata_stream(stream, metadata_ht);
2309 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2310 /* Get the data out of the metadata file descriptor */
2311 DBG("Metadata available on fd %d", pollfd);
2312 assert(stream->wait_fd == pollfd);
2313
2314 len = ctx->on_buffer_ready(stream, ctx);
2315 /* It's ok to have an unavailable sub-buffer */
2316 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2317 /* Clean up stream from consumer and free it. */
2318 lttng_poll_del(&events, stream->wait_fd);
2319 consumer_del_metadata_stream(stream, metadata_ht);
2320 } else if (len > 0) {
2321 stream->data_read = 1;
2322 }
2323 }
2324
2325 /* Release RCU lock for the stream looked up */
2326 rcu_read_unlock();
2327 }
2328 }
2329
2330 error:
2331 end:
2332 DBG("Metadata poll thread exiting");
2333
2334 lttng_poll_clean(&events);
2335 end_poll:
2336 destroy_stream_ht(metadata_ht);
2337 end_ht:
2338 rcu_unregister_thread();
2339 return NULL;
2340 }
2341
2342 /*
2343 * This thread polls the fds in the set to consume the data and write
2344 * it to tracefile if necessary.
2345 */
2346 void *consumer_thread_data_poll(void *data)
2347 {
2348 int num_rdy, num_hup, high_prio, ret, i;
2349 struct pollfd *pollfd = NULL;
2350 /* local view of the streams */
2351 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2352 /* local view of consumer_data.fds_count */
2353 int nb_fd = 0;
2354 struct lttng_consumer_local_data *ctx = data;
2355 ssize_t len;
2356
2357 rcu_register_thread();
2358
2359 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2360 if (data_ht == NULL) {
2361 /* ENOMEM at this point. Better to bail out. */
2362 goto end;
2363 }
2364
2365 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2366 if (local_stream == NULL) {
2367 PERROR("local_stream malloc");
2368 goto end;
2369 }
2370
2371 while (1) {
2372 high_prio = 0;
2373 num_hup = 0;
2374
2375 /*
2376 * the fds set has been updated, we need to update our
2377 * local array as well
2378 */
2379 pthread_mutex_lock(&consumer_data.lock);
2380 if (consumer_data.need_update) {
2381 free(pollfd);
2382 pollfd = NULL;
2383
2384 free(local_stream);
2385 local_stream = NULL;
2386
2387 /* allocate for all fds + 1 for the consumer_data_pipe */
2388 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2389 if (pollfd == NULL) {
2390 PERROR("pollfd malloc");
2391 pthread_mutex_unlock(&consumer_data.lock);
2392 goto end;
2393 }
2394
2395 /* allocate for all fds + 1 for the consumer_data_pipe */
2396 local_stream = zmalloc((consumer_data.stream_count + 1) *
2397 sizeof(struct lttng_consumer_stream *));
2398 if (local_stream == NULL) {
2399 PERROR("local_stream malloc");
2400 pthread_mutex_unlock(&consumer_data.lock);
2401 goto end;
2402 }
2403 ret = update_poll_array(ctx, &pollfd, local_stream,
2404 data_ht);
2405 if (ret < 0) {
2406 ERR("Error in allocating pollfd or local_outfds");
2407 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2408 pthread_mutex_unlock(&consumer_data.lock);
2409 goto end;
2410 }
2411 nb_fd = ret;
2412 consumer_data.need_update = 0;
2413 }
2414 pthread_mutex_unlock(&consumer_data.lock);
2415
2416 /* No FDs and consumer_quit, consumer_cleanup the thread */
2417 if (nb_fd == 0 && consumer_quit == 1) {
2418 goto end;
2419 }
2420 /* poll on the array of fds */
2421 restart:
2422 DBG("polling on %d fd", nb_fd + 1);
2423 num_rdy = poll(pollfd, nb_fd + 1, -1);
2424 DBG("poll num_rdy : %d", num_rdy);
2425 if (num_rdy == -1) {
2426 /*
2427 * Restart interrupted system call.
2428 */
2429 if (errno == EINTR) {
2430 goto restart;
2431 }
2432 PERROR("Poll error");
2433 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2434 goto end;
2435 } else if (num_rdy == 0) {
2436 DBG("Polling thread timed out");
2437 goto end;
2438 }
2439
2440 /*
2441 * If the consumer_data_pipe triggered poll go directly to the
2442 * beginning of the loop to update the array. We want to prioritize
2443 * array update over low-priority reads.
2444 */
2445 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2446 ssize_t pipe_readlen;
2447
2448 DBG("consumer_data_pipe wake up");
2449 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2450 &new_stream, sizeof(new_stream));
2451 if (pipe_readlen < 0) {
2452 ERR("Consumer data pipe ret %ld", pipe_readlen);
2453 /* Continue so we can at least handle the current stream(s). */
2454 continue;
2455 }
2456
2457 /*
2458 * If the stream is NULL, just ignore it. It's also possible that
2459 * the sessiond poll thread changed the consumer_quit state and is
2460 * waking us up to test it.
2461 */
2462 if (new_stream == NULL) {
2463 validate_endpoint_status_data_stream();
2464 continue;
2465 }
2466
2467 /* Continue to update the local streams and handle prio ones */
2468 continue;
2469 }
2470
2471 /* Take care of high priority channels first. */
2472 for (i = 0; i < nb_fd; i++) {
2473 if (local_stream[i] == NULL) {
2474 continue;
2475 }
2476 if (pollfd[i].revents & POLLPRI) {
2477 DBG("Urgent read on fd %d", pollfd[i].fd);
2478 high_prio = 1;
2479 len = ctx->on_buffer_ready(local_stream[i], ctx);
2480 /* it's ok to have an unavailable sub-buffer */
2481 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2482 /* Clean the stream and free it. */
2483 consumer_del_stream(local_stream[i], data_ht);
2484 local_stream[i] = NULL;
2485 } else if (len > 0) {
2486 local_stream[i]->data_read = 1;
2487 }
2488 }
2489 }
2490
2491 /*
2492 * If we read high prio channel in this loop, try again
2493 * for more high prio data.
2494 */
2495 if (high_prio) {
2496 continue;
2497 }
2498
2499 /* Take care of low priority channels. */
2500 for (i = 0; i < nb_fd; i++) {
2501 if (local_stream[i] == NULL) {
2502 continue;
2503 }
2504 if ((pollfd[i].revents & POLLIN) ||
2505 local_stream[i]->hangup_flush_done) {
2506 DBG("Normal read on fd %d", pollfd[i].fd);
2507 len = ctx->on_buffer_ready(local_stream[i], ctx);
2508 /* it's ok to have an unavailable sub-buffer */
2509 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2510 /* Clean the stream and free it. */
2511 consumer_del_stream(local_stream[i], data_ht);
2512 local_stream[i] = NULL;
2513 } else if (len > 0) {
2514 local_stream[i]->data_read = 1;
2515 }
2516 }
2517 }
2518
2519 /* Handle hangup and errors */
2520 for (i = 0; i < nb_fd; i++) {
2521 if (local_stream[i] == NULL) {
2522 continue;
2523 }
2524 if (!local_stream[i]->hangup_flush_done
2525 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2526 && (consumer_data.type == LTTNG_CONSUMER32_UST
2527 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2528 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2529 pollfd[i].fd);
2530 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2531 /* Attempt read again, for the data we just flushed. */
2532 local_stream[i]->data_read = 1;
2533 }
2534 /*
2535 * If the poll flag is HUP/ERR/NVAL and we have
2536 * read no data in this pass, we can remove the
2537 * stream from its hash table.
2538 */
2539 if ((pollfd[i].revents & POLLHUP)) {
2540 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2541 if (!local_stream[i]->data_read) {
2542 consumer_del_stream(local_stream[i], data_ht);
2543 local_stream[i] = NULL;
2544 num_hup++;
2545 }
2546 } else if (pollfd[i].revents & POLLERR) {
2547 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2548 if (!local_stream[i]->data_read) {
2549 consumer_del_stream(local_stream[i], data_ht);
2550 local_stream[i] = NULL;
2551 num_hup++;
2552 }
2553 } else if (pollfd[i].revents & POLLNVAL) {
2554 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2555 if (!local_stream[i]->data_read) {
2556 consumer_del_stream(local_stream[i], data_ht);
2557 local_stream[i] = NULL;
2558 num_hup++;
2559 }
2560 }
2561 if (local_stream[i] != NULL) {
2562 local_stream[i]->data_read = 0;
2563 }
2564 }
2565 }
2566 end:
2567 DBG("polling thread exiting");
2568 free(pollfd);
2569 free(local_stream);
2570
2571 /*
2572 * Close the write side of the pipe so epoll_wait() in
2573 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2574 * read side of the pipe. If we close them both, epoll_wait strangely does
2575 * not return and could create a endless wait period if the pipe is the
2576 * only tracked fd in the poll set. The thread will take care of closing
2577 * the read side.
2578 */
2579 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2580
2581 destroy_data_stream_ht(data_ht);
2582
2583 rcu_unregister_thread();
2584 return NULL;
2585 }
2586
2587 /*
2588 * Close wake-up end of each stream belonging to the channel. This will
2589 * allow the poll() on the stream read-side to detect when the
2590 * write-side (application) finally closes them.
2591 */
2592 static
2593 void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2594 {
2595 struct lttng_ht *ht;
2596 struct lttng_consumer_stream *stream;
2597 struct lttng_ht_iter iter;
2598
2599 ht = consumer_data.stream_per_chan_id_ht;
2600
2601 rcu_read_lock();
2602 cds_lfht_for_each_entry_duplicate(ht->ht,
2603 ht->hash_fct(&channel->key, lttng_ht_seed),
2604 ht->match_fct, &channel->key,
2605 &iter.iter, stream, node_channel_id.node) {
2606 /*
2607 * Protect against teardown with mutex.
2608 */
2609 pthread_mutex_lock(&stream->lock);
2610 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2611 goto next;
2612 }
2613 switch (consumer_data.type) {
2614 case LTTNG_CONSUMER_KERNEL:
2615 break;
2616 case LTTNG_CONSUMER32_UST:
2617 case LTTNG_CONSUMER64_UST:
2618 /*
2619 * Note: a mutex is taken internally within
2620 * liblttng-ust-ctl to protect timer wakeup_fd
2621 * use from concurrent close.
2622 */
2623 lttng_ustconsumer_close_stream_wakeup(stream);
2624 break;
2625 default:
2626 ERR("Unknown consumer_data type");
2627 assert(0);
2628 }
2629 next:
2630 pthread_mutex_unlock(&stream->lock);
2631 }
2632 rcu_read_unlock();
2633 }
2634
2635 static void destroy_channel_ht(struct lttng_ht *ht)
2636 {
2637 struct lttng_ht_iter iter;
2638 struct lttng_consumer_channel *channel;
2639 int ret;
2640
2641 if (ht == NULL) {
2642 return;
2643 }
2644
2645 rcu_read_lock();
2646 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2647 ret = lttng_ht_del(ht, &iter);
2648 assert(ret != 0);
2649 }
2650 rcu_read_unlock();
2651
2652 lttng_ht_destroy(ht);
2653 }
2654
2655 /*
2656 * This thread polls the channel fds to detect when they are being
2657 * closed. It closes all related streams if the channel is detected as
2658 * closed. It is currently only used as a shim layer for UST because the
2659 * consumerd needs to keep the per-stream wakeup end of pipes open for
2660 * periodical flush.
2661 */
2662 void *consumer_thread_channel_poll(void *data)
2663 {
2664 int ret, i, pollfd;
2665 uint32_t revents, nb_fd;
2666 struct lttng_consumer_channel *chan = NULL;
2667 struct lttng_ht_iter iter;
2668 struct lttng_ht_node_u64 *node;
2669 struct lttng_poll_event events;
2670 struct lttng_consumer_local_data *ctx = data;
2671 struct lttng_ht *channel_ht;
2672
2673 rcu_register_thread();
2674
2675 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2676 if (!channel_ht) {
2677 /* ENOMEM at this point. Better to bail out. */
2678 goto end_ht;
2679 }
2680
2681 DBG("Thread channel poll started");
2682
2683 /* Size is set to 1 for the consumer_channel pipe */
2684 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2685 if (ret < 0) {
2686 ERR("Poll set creation failed");
2687 goto end_poll;
2688 }
2689
2690 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2691 if (ret < 0) {
2692 goto end;
2693 }
2694
2695 /* Main loop */
2696 DBG("Channel main loop started");
2697
2698 while (1) {
2699 /* Only the channel pipe is set */
2700 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2701 goto end;
2702 }
2703
2704 restart:
2705 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2706 ret = lttng_poll_wait(&events, -1);
2707 DBG("Channel event catched in thread");
2708 if (ret < 0) {
2709 if (errno == EINTR) {
2710 ERR("Poll EINTR catched");
2711 goto restart;
2712 }
2713 goto end;
2714 }
2715
2716 nb_fd = ret;
2717
2718 /* From here, the event is a channel wait fd */
2719 for (i = 0; i < nb_fd; i++) {
2720 revents = LTTNG_POLL_GETEV(&events, i);
2721 pollfd = LTTNG_POLL_GETFD(&events, i);
2722
2723 /* Just don't waste time if no returned events for the fd */
2724 if (!revents) {
2725 continue;
2726 }
2727 if (pollfd == ctx->consumer_channel_pipe[0]) {
2728 if (revents & (LPOLLERR | LPOLLHUP)) {
2729 DBG("Channel thread pipe hung up");
2730 /*
2731 * Remove the pipe from the poll set and continue the loop
2732 * since their might be data to consume.
2733 */
2734 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2735 continue;
2736 } else if (revents & LPOLLIN) {
2737 enum consumer_channel_action action;
2738 uint64_t key;
2739
2740 ret = read_channel_pipe(ctx, &chan, &key, &action);
2741 if (ret <= 0) {
2742 ERR("Error reading channel pipe");
2743 continue;
2744 }
2745
2746 switch (action) {
2747 case CONSUMER_CHANNEL_ADD:
2748 DBG("Adding channel %d to poll set",
2749 chan->wait_fd);
2750
2751 lttng_ht_node_init_u64(&chan->wait_fd_node,
2752 chan->wait_fd);
2753 rcu_read_lock();
2754 lttng_ht_add_unique_u64(channel_ht,
2755 &chan->wait_fd_node);
2756 rcu_read_unlock();
2757 /* Add channel to the global poll events list */
2758 lttng_poll_add(&events, chan->wait_fd,
2759 LPOLLIN | LPOLLPRI);
2760 break;
2761 case CONSUMER_CHANNEL_DEL:
2762 {
2763 struct lttng_consumer_stream *stream, *stmp;
2764
2765 rcu_read_lock();
2766 chan = consumer_find_channel(key);
2767 if (!chan) {
2768 rcu_read_unlock();
2769 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2770 break;
2771 }
2772 lttng_poll_del(&events, chan->wait_fd);
2773 iter.iter.node = &chan->wait_fd_node.node;
2774 ret = lttng_ht_del(channel_ht, &iter);
2775 assert(ret == 0);
2776 consumer_close_channel_streams(chan);
2777
2778 switch (consumer_data.type) {
2779 case LTTNG_CONSUMER_KERNEL:
2780 break;
2781 case LTTNG_CONSUMER32_UST:
2782 case LTTNG_CONSUMER64_UST:
2783 /* Delete streams that might have been left in the stream list. */
2784 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2785 send_node) {
2786 cds_list_del(&stream->send_node);
2787 lttng_ustconsumer_del_stream(stream);
2788 uatomic_sub(&stream->chan->refcount, 1);
2789 assert(&chan->refcount);
2790 free(stream);
2791 }
2792 break;
2793 default:
2794 ERR("Unknown consumer_data type");
2795 assert(0);
2796 }
2797
2798 /*
2799 * Release our own refcount. Force channel deletion even if
2800 * streams were not initialized.
2801 */
2802 if (!uatomic_sub_return(&chan->refcount, 1)) {
2803 consumer_del_channel(chan);
2804 }
2805 rcu_read_unlock();
2806 goto restart;
2807 }
2808 case CONSUMER_CHANNEL_QUIT:
2809 /*
2810 * Remove the pipe from the poll set and continue the loop
2811 * since their might be data to consume.
2812 */
2813 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2814 continue;
2815 default:
2816 ERR("Unknown action");
2817 break;
2818 }
2819 }
2820
2821 /* Handle other stream */
2822 continue;
2823 }
2824
2825 rcu_read_lock();
2826 {
2827 uint64_t tmp_id = (uint64_t) pollfd;
2828
2829 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2830 }
2831 node = lttng_ht_iter_get_node_u64(&iter);
2832 assert(node);
2833
2834 chan = caa_container_of(node, struct lttng_consumer_channel,
2835 wait_fd_node);
2836
2837 /* Check for error event */
2838 if (revents & (LPOLLERR | LPOLLHUP)) {
2839 DBG("Channel fd %d is hup|err.", pollfd);
2840
2841 lttng_poll_del(&events, chan->wait_fd);
2842 ret = lttng_ht_del(channel_ht, &iter);
2843 assert(ret == 0);
2844 assert(cds_list_empty(&chan->streams.head));
2845 consumer_close_channel_streams(chan);
2846
2847 /* Release our own refcount */
2848 if (!uatomic_sub_return(&chan->refcount, 1)
2849 && !uatomic_read(&chan->nb_init_stream_left)) {
2850 consumer_del_channel(chan);
2851 }
2852 }
2853
2854 /* Release RCU lock for the channel looked up */
2855 rcu_read_unlock();
2856 }
2857 }
2858
2859 end:
2860 lttng_poll_clean(&events);
2861 end_poll:
2862 destroy_channel_ht(channel_ht);
2863 end_ht:
2864 DBG("Channel poll thread exiting");
2865 rcu_unregister_thread();
2866 return NULL;
2867 }
2868
2869 static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2870 struct pollfd *sockpoll, int client_socket)
2871 {
2872 int ret;
2873
2874 assert(ctx);
2875 assert(sockpoll);
2876
2877 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2878 ret = -1;
2879 goto error;
2880 }
2881 DBG("Metadata connection on client_socket");
2882
2883 /* Blocking call, waiting for transmission */
2884 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2885 if (ctx->consumer_metadata_socket < 0) {
2886 WARN("On accept metadata");
2887 ret = -1;
2888 goto error;
2889 }
2890 ret = 0;
2891
2892 error:
2893 return ret;
2894 }
2895
2896 /*
2897 * This thread listens on the consumerd socket and receives the file
2898 * descriptors from the session daemon.
2899 */
2900 void *consumer_thread_sessiond_poll(void *data)
2901 {
2902 int sock = -1, client_socket, ret;
2903 /*
2904 * structure to poll for incoming data on communication socket avoids
2905 * making blocking sockets.
2906 */
2907 struct pollfd consumer_sockpoll[2];
2908 struct lttng_consumer_local_data *ctx = data;
2909
2910 rcu_register_thread();
2911
2912 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2913 unlink(ctx->consumer_command_sock_path);
2914 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2915 if (client_socket < 0) {
2916 ERR("Cannot create command socket");
2917 goto end;
2918 }
2919
2920 ret = lttcomm_listen_unix_sock(client_socket);
2921 if (ret < 0) {
2922 goto end;
2923 }
2924
2925 DBG("Sending ready command to lttng-sessiond");
2926 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2927 /* return < 0 on error, but == 0 is not fatal */
2928 if (ret < 0) {
2929 ERR("Error sending ready command to lttng-sessiond");
2930 goto end;
2931 }
2932
2933 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2934 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2935 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2936 consumer_sockpoll[1].fd = client_socket;
2937 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2938
2939 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2940 goto end;
2941 }
2942 DBG("Connection on client_socket");
2943
2944 /* Blocking call, waiting for transmission */
2945 sock = lttcomm_accept_unix_sock(client_socket);
2946 if (sock < 0) {
2947 WARN("On accept");
2948 goto end;
2949 }
2950
2951 /*
2952 * Setup metadata socket which is the second socket connection on the
2953 * command unix socket.
2954 */
2955 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2956 if (ret < 0) {
2957 goto end;
2958 }
2959
2960 /* This socket is not useful anymore. */
2961 ret = close(client_socket);
2962 if (ret < 0) {
2963 PERROR("close client_socket");
2964 }
2965 client_socket = -1;
2966
2967 /* update the polling structure to poll on the established socket */
2968 consumer_sockpoll[1].fd = sock;
2969 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2970
2971 while (1) {
2972 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2973 goto end;
2974 }
2975 DBG("Incoming command on sock");
2976 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2977 if (ret == -ENOENT) {
2978 DBG("Received STOP command");
2979 goto end;
2980 }
2981 if (ret <= 0) {
2982 /*
2983 * This could simply be a session daemon quitting. Don't output
2984 * ERR() here.
2985 */
2986 DBG("Communication interrupted on command socket");
2987 goto end;
2988 }
2989 if (consumer_quit) {
2990 DBG("consumer_thread_receive_fds received quit from signal");
2991 goto end;
2992 }
2993 DBG("received command on sock");
2994 }
2995 end:
2996 DBG("Consumer thread sessiond poll exiting");
2997
2998 /*
2999 * Close metadata streams since the producer is the session daemon which
3000 * just died.
3001 *
3002 * NOTE: for now, this only applies to the UST tracer.
3003 */
3004 lttng_consumer_close_metadata();
3005
3006 /*
3007 * when all fds have hung up, the polling thread
3008 * can exit cleanly
3009 */
3010 consumer_quit = 1;
3011
3012 /*
3013 * Notify the data poll thread to poll back again and test the
3014 * consumer_quit state that we just set so to quit gracefully.
3015 */
3016 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
3017
3018 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
3019
3020 /* Cleaning up possibly open sockets. */
3021 if (sock >= 0) {
3022 ret = close(sock);
3023 if (ret < 0) {
3024 PERROR("close sock sessiond poll");
3025 }
3026 }
3027 if (client_socket >= 0) {
3028 ret = close(client_socket);
3029 if (ret < 0) {
3030 PERROR("close client_socket sessiond poll");
3031 }
3032 }
3033
3034 rcu_unregister_thread();
3035 return NULL;
3036 }
3037
3038 ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3039 struct lttng_consumer_local_data *ctx)
3040 {
3041 ssize_t ret;
3042
3043 pthread_mutex_lock(&stream->lock);
3044
3045 switch (consumer_data.type) {
3046 case LTTNG_CONSUMER_KERNEL:
3047 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3048 break;
3049 case LTTNG_CONSUMER32_UST:
3050 case LTTNG_CONSUMER64_UST:
3051 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3052 break;
3053 default:
3054 ERR("Unknown consumer_data type");
3055 assert(0);
3056 ret = -ENOSYS;
3057 break;
3058 }
3059
3060 pthread_mutex_unlock(&stream->lock);
3061 return ret;
3062 }
3063
3064 int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3065 {
3066 switch (consumer_data.type) {
3067 case LTTNG_CONSUMER_KERNEL:
3068 return lttng_kconsumer_on_recv_stream(stream);
3069 case LTTNG_CONSUMER32_UST:
3070 case LTTNG_CONSUMER64_UST:
3071 return lttng_ustconsumer_on_recv_stream(stream);
3072 default:
3073 ERR("Unknown consumer_data type");
3074 assert(0);
3075 return -ENOSYS;
3076 }
3077 }
3078
3079 /*
3080 * Allocate and set consumer data hash tables.
3081 */
3082 void lttng_consumer_init(void)
3083 {
3084 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3085 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3086 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3087 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3088 }
3089
3090 /*
3091 * Process the ADD_RELAYD command receive by a consumer.
3092 *
3093 * This will create a relayd socket pair and add it to the relayd hash table.
3094 * The caller MUST acquire a RCU read side lock before calling it.
3095 */
3096 int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3097 struct lttng_consumer_local_data *ctx, int sock,
3098 struct pollfd *consumer_sockpoll,
3099 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id)
3100 {
3101 int fd = -1, ret = -1, relayd_created = 0;
3102 enum lttng_error_code ret_code = LTTNG_OK;
3103 struct consumer_relayd_sock_pair *relayd = NULL;
3104
3105 assert(ctx);
3106 assert(relayd_sock);
3107
3108 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3109
3110 /* Get relayd reference if exists. */
3111 relayd = consumer_find_relayd(net_seq_idx);
3112 if (relayd == NULL) {
3113 assert(sock_type == LTTNG_STREAM_CONTROL);
3114 /* Not found. Allocate one. */
3115 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3116 if (relayd == NULL) {
3117 ret = -ENOMEM;
3118 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3119 goto error;
3120 } else {
3121 relayd->sessiond_session_id = sessiond_id;
3122 relayd_created = 1;
3123 }
3124
3125 /*
3126 * This code path MUST continue to the consumer send status message to
3127 * we can notify the session daemon and continue our work without
3128 * killing everything.
3129 */
3130 } else {
3131 /*
3132 * relayd key should never be found for control socket.
3133 */
3134 assert(sock_type != LTTNG_STREAM_CONTROL);
3135 }
3136
3137 /* First send a status message before receiving the fds. */
3138 ret = consumer_send_status_msg(sock, LTTNG_OK);
3139 if (ret < 0) {
3140 /* Somehow, the session daemon is not responding anymore. */
3141 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3142 goto error_nosignal;
3143 }
3144
3145 /* Poll on consumer socket. */
3146 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3147 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3148 ret = -EINTR;
3149 goto error_nosignal;
3150 }
3151
3152 /* Get relayd socket from session daemon */
3153 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3154 if (ret != sizeof(fd)) {
3155 ret = -1;
3156 fd = -1; /* Just in case it gets set with an invalid value. */
3157
3158 /*
3159 * Failing to receive FDs might indicate a major problem such as
3160 * reaching a fd limit during the receive where the kernel returns a
3161 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3162 * don't take any chances and stop everything.
3163 *
3164 * XXX: Feature request #558 will fix that and avoid this possible
3165 * issue when reaching the fd limit.
3166 */
3167 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3168 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3169 goto error;
3170 }
3171
3172 /* Copy socket information and received FD */
3173 switch (sock_type) {
3174 case LTTNG_STREAM_CONTROL:
3175 /* Copy received lttcomm socket */
3176 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3177 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3178 /* Handle create_sock error. */
3179 if (ret < 0) {
3180 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3181 goto error;
3182 }
3183 /*
3184 * Close the socket created internally by
3185 * lttcomm_create_sock, so we can replace it by the one
3186 * received from sessiond.
3187 */
3188 if (close(relayd->control_sock.sock.fd)) {
3189 PERROR("close");
3190 }
3191
3192 /* Assign new file descriptor */
3193 relayd->control_sock.sock.fd = fd;
3194 fd = -1; /* For error path */
3195 /* Assign version values. */
3196 relayd->control_sock.major = relayd_sock->major;
3197 relayd->control_sock.minor = relayd_sock->minor;
3198
3199 /*
3200 * Create a session on the relayd and store the returned id. Lock the
3201 * control socket mutex if the relayd was NOT created before.
3202 */
3203 if (!relayd_created) {
3204 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3205 }
3206 ret = relayd_create_session(&relayd->control_sock,
3207 &relayd->relayd_session_id);
3208 if (!relayd_created) {
3209 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3210 }
3211 if (ret < 0) {
3212 /*
3213 * Close all sockets of a relayd object. It will be freed if it was
3214 * created at the error code path or else it will be garbage
3215 * collect.
3216 */
3217 (void) relayd_close(&relayd->control_sock);
3218 (void) relayd_close(&relayd->data_sock);
3219 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
3220 goto error;
3221 }
3222
3223 break;
3224 case LTTNG_STREAM_DATA:
3225 /* Copy received lttcomm socket */
3226 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3227 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3228 /* Handle create_sock error. */
3229 if (ret < 0) {
3230 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3231 goto error;
3232 }
3233 /*
3234 * Close the socket created internally by
3235 * lttcomm_create_sock, so we can replace it by the one
3236 * received from sessiond.
3237 */
3238 if (close(relayd->data_sock.sock.fd)) {
3239 PERROR("close");
3240 }
3241
3242 /* Assign new file descriptor */
3243 relayd->data_sock.sock.fd = fd;
3244 fd = -1; /* for eventual error paths */
3245 /* Assign version values. */
3246 relayd->data_sock.major = relayd_sock->major;
3247 relayd->data_sock.minor = relayd_sock->minor;
3248 break;
3249 default:
3250 ERR("Unknown relayd socket type (%d)", sock_type);
3251 ret = -1;
3252 ret_code = LTTCOMM_CONSUMERD_FATAL;
3253 goto error;
3254 }
3255
3256 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3257 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3258 relayd->net_seq_idx, fd);
3259
3260 /* We successfully added the socket. Send status back. */
3261 ret = consumer_send_status_msg(sock, ret_code);
3262 if (ret < 0) {
3263 /* Somehow, the session daemon is not responding anymore. */
3264 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3265 goto error_nosignal;
3266 }
3267
3268 /*
3269 * Add relayd socket pair to consumer data hashtable. If object already
3270 * exists or on error, the function gracefully returns.
3271 */
3272 add_relayd(relayd);
3273
3274 /* All good! */
3275 return 0;
3276
3277 error:
3278 if (consumer_send_status_msg(sock, ret_code) < 0) {
3279 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3280 }
3281
3282 error_nosignal:
3283 /* Close received socket if valid. */
3284 if (fd >= 0) {
3285 if (close(fd)) {
3286 PERROR("close received socket");
3287 }
3288 }
3289
3290 if (relayd_created) {
3291 free(relayd);
3292 }
3293
3294 return ret;
3295 }
3296
3297 /*
3298 * Try to lock the stream mutex.
3299 *
3300 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3301 */
3302 static int stream_try_lock(struct lttng_consumer_stream *stream)
3303 {
3304 int ret;
3305
3306 assert(stream);
3307
3308 /*
3309 * Try to lock the stream mutex. On failure, we know that the stream is
3310 * being used else where hence there is data still being extracted.
3311 */
3312 ret = pthread_mutex_trylock(&stream->lock);
3313 if (ret) {
3314 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3315 ret = 0;
3316 goto end;
3317 }
3318
3319 ret = 1;
3320
3321 end:
3322 return ret;
3323 }
3324
3325 /*
3326 * Search for a relayd associated to the session id and return the reference.
3327 *
3328 * A rcu read side lock MUST be acquire before calling this function and locked
3329 * until the relayd object is no longer necessary.
3330 */
3331 static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3332 {
3333 struct lttng_ht_iter iter;
3334 struct consumer_relayd_sock_pair *relayd = NULL;
3335
3336 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3337 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3338 node.node) {
3339 /*
3340 * Check by sessiond id which is unique here where the relayd session
3341 * id might not be when having multiple relayd.
3342 */
3343 if (relayd->sessiond_session_id == id) {
3344 /* Found the relayd. There can be only one per id. */
3345 goto found;
3346 }
3347 }
3348
3349 return NULL;
3350
3351 found:
3352 return relayd;
3353 }
3354
3355 /*
3356 * Check if for a given session id there is still data needed to be extract
3357 * from the buffers.
3358 *
3359 * Return 1 if data is pending or else 0 meaning ready to be read.
3360 */
3361 int consumer_data_pending(uint64_t id)
3362 {
3363 int ret;
3364 struct lttng_ht_iter iter;
3365 struct lttng_ht *ht;
3366 struct lttng_consumer_stream *stream;
3367 struct consumer_relayd_sock_pair *relayd = NULL;
3368 int (*data_pending)(struct lttng_consumer_stream *);
3369
3370 DBG("Consumer data pending command on session id %" PRIu64, id);
3371
3372 rcu_read_lock();
3373 pthread_mutex_lock(&consumer_data.lock);
3374
3375 switch (consumer_data.type) {
3376 case LTTNG_CONSUMER_KERNEL:
3377 data_pending = lttng_kconsumer_data_pending;
3378 break;
3379 case LTTNG_CONSUMER32_UST:
3380 case LTTNG_CONSUMER64_UST:
3381 data_pending = lttng_ustconsumer_data_pending;
3382 break;
3383 default:
3384 ERR("Unknown consumer data type");
3385 assert(0);
3386 }
3387
3388 /* Ease our life a bit */
3389 ht = consumer_data.stream_list_ht;
3390
3391 relayd = find_relayd_by_session_id(id);
3392 if (relayd) {
3393 /* Send init command for data pending. */
3394 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3395 ret = relayd_begin_data_pending(&relayd->control_sock,
3396 relayd->relayd_session_id);
3397 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3398 if (ret < 0) {
3399 /* Communication error thus the relayd so no data pending. */
3400 goto data_not_pending;
3401 }
3402 }
3403
3404 cds_lfht_for_each_entry_duplicate(ht->ht,
3405 ht->hash_fct(&id, lttng_ht_seed),
3406 ht->match_fct, &id,
3407 &iter.iter, stream, node_session_id.node) {
3408 /* If this call fails, the stream is being used hence data pending. */
3409 ret = stream_try_lock(stream);
3410 if (!ret) {
3411 goto data_pending;
3412 }
3413
3414 /*
3415 * A removed node from the hash table indicates that the stream has
3416 * been deleted thus having a guarantee that the buffers are closed
3417 * on the consumer side. However, data can still be transmitted
3418 * over the network so don't skip the relayd check.
3419 */
3420 ret = cds_lfht_is_node_deleted(&stream->node.node);
3421 if (!ret) {
3422 /* Check the stream if there is data in the buffers. */
3423 ret = data_pending(stream);
3424 if (ret == 1) {
3425 pthread_mutex_unlock(&stream->lock);
3426 goto data_pending;
3427 }
3428 }
3429
3430 /* Relayd check */
3431 if (relayd) {
3432 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3433 if (stream->metadata_flag) {
3434 ret = relayd_quiescent_control(&relayd->control_sock,
3435 stream->relayd_stream_id);
3436 } else {
3437 ret = relayd_data_pending(&relayd->control_sock,
3438 stream->relayd_stream_id,
3439 stream->next_net_seq_num - 1);
3440 }
3441 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3442 if (ret == 1) {
3443 pthread_mutex_unlock(&stream->lock);
3444 goto data_pending;
3445 }
3446 }
3447 pthread_mutex_unlock(&stream->lock);
3448 }
3449
3450 if (relayd) {
3451 unsigned int is_data_inflight = 0;
3452
3453 /* Send init command for data pending. */
3454 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3455 ret = relayd_end_data_pending(&relayd->control_sock,
3456 relayd->relayd_session_id, &is_data_inflight);
3457 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3458 if (ret < 0) {
3459 goto data_not_pending;
3460 }
3461 if (is_data_inflight) {
3462 goto data_pending;
3463 }
3464 }
3465
3466 /*
3467 * Finding _no_ node in the hash table and no inflight data means that the
3468 * stream(s) have been removed thus data is guaranteed to be available for
3469 * analysis from the trace files.
3470 */
3471
3472 data_not_pending:
3473 /* Data is available to be read by a viewer. */
3474 pthread_mutex_unlock(&consumer_data.lock);
3475 rcu_read_unlock();
3476 return 0;
3477
3478 data_pending:
3479 /* Data is still being extracted from buffers. */
3480 pthread_mutex_unlock(&consumer_data.lock);
3481 rcu_read_unlock();
3482 return 1;
3483 }
3484
3485 /*
3486 * Send a ret code status message to the sessiond daemon.
3487 *
3488 * Return the sendmsg() return value.
3489 */
3490 int consumer_send_status_msg(int sock, int ret_code)
3491 {
3492 struct lttcomm_consumer_status_msg msg;
3493
3494 msg.ret_code = ret_code;
3495
3496 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3497 }
3498
3499 /*
3500 * Send a channel status message to the sessiond daemon.
3501 *
3502 * Return the sendmsg() return value.
3503 */
3504 int consumer_send_status_channel(int sock,
3505 struct lttng_consumer_channel *channel)
3506 {
3507 struct lttcomm_consumer_status_channel msg;
3508
3509 assert(sock >= 0);
3510
3511 if (!channel) {
3512 msg.ret_code = -LTTNG_ERR_UST_CHAN_FAIL;
3513 } else {
3514 msg.ret_code = LTTNG_OK;
3515 msg.key = channel->key;
3516 msg.stream_count = channel->streams.count;
3517 }
3518
3519 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3520 }
This page took 0.127016 seconds and 4 git commands to generate.