fix compare
[lttv.git] / ltt / branches / poly / ltt / time.h
1 /* This file is part of the Linux Trace Toolkit trace reading library
2 * Copyright (C) 2003-2004 Michel Dagenais
3 * 2005 Mathieu Desnoyers
4 *
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License Version 2.1 as published by the Free Software Foundation.
8 *
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
13 *
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 02111-1307, USA.
18 */
19
20 #ifndef LTT_TIME_H
21 #define LTT_TIME_H
22
23 #include <glib.h>
24 #include <ltt/compiler.h>
25 #include <math.h>
26
27 typedef struct _LttTime {
28 unsigned long tv_sec;
29 unsigned long tv_nsec;
30 } LttTime;
31
32
33 #define NANOSECONDS_PER_SECOND 1000000000
34
35 /* We give the DIV and MUL constants so we can always multiply, for a
36 * division as well as a multiplication of NANOSECONDS_PER_SECOND */
37 /* 2^30/1.07374182400631629848 = 1000000000.0 */
38 #define DOUBLE_SHIFT_CONST_DIV 1.07374182400631629848
39 #define DOUBLE_SHIFT 30
40
41 /* 2^30*0.93132257461547851562 = 1000000000.0000000000 */
42 #define DOUBLE_SHIFT_CONST_MUL 0.93132257461547851562
43
44
45 /* 1953125 * 2^9 = NANOSECONDS_PER_SECOND */
46 #define LTT_TIME_UINT_SHIFT_CONST 1953125
47 #define LTT_TIME_UINT_SHIFT 9
48
49
50 static const LttTime ltt_time_zero = { 0, 0 };
51
52 static const LttTime ltt_time_one = { 0, 1 };
53
54 static const LttTime ltt_time_infinite = { G_MAXUINT, NANOSECONDS_PER_SECOND };
55
56 static inline LttTime ltt_time_sub(LttTime t1, LttTime t2)
57 {
58 LttTime res;
59 res.tv_sec = t1.tv_sec - t2.tv_sec;
60 res.tv_nsec = t1.tv_nsec - t2.tv_nsec;
61 /* unlikely : given equal chance to be anywhere in t1.tv_nsec, and
62 * higher probability of low value for t2.tv_sec, we will habitually
63 * not wrap.
64 */
65 if(unlikely(t1.tv_nsec < t2.tv_nsec)) {
66 res.tv_sec--;
67 res.tv_nsec += NANOSECONDS_PER_SECOND;
68 }
69 return res;
70 }
71
72
73 static inline LttTime ltt_time_add(LttTime t1, LttTime t2)
74 {
75 LttTime res;
76 res.tv_nsec = t1.tv_nsec + t2.tv_nsec;
77 res.tv_sec = t1.tv_sec + t2.tv_sec;
78 /* unlikely : given equal chance to be anywhere in t1.tv_nsec, and
79 * higher probability of low value for t2.tv_sec, we will habitually
80 * not wrap.
81 */
82 if(unlikely(res.tv_nsec >= NANOSECONDS_PER_SECOND)) {
83 res.tv_sec++;
84 res.tv_nsec -= NANOSECONDS_PER_SECOND;
85 }
86 return res;
87 }
88
89 if t1>t2 return 1
90
91 if t1-t1 > 0 return 1
92
93 /* Fastest comparison : t1 > t2 */
94 static inline int ltt_time_compare(LttTime t1, LttTime t2)
95 {
96 int ret=0;
97 //if(likely(t1.tv_sec > t2.tv_sec)) ret = 1;
98 //else if(unlikely(t1.tv_sec < t2.tv_sec)) ret = -1;
99 //else if(likely(t1.tv_nsec > t2.tv_nsec)) ret = 1;
100 //else if(unlikely(t1.tv_nsec < t2.tv_nsec)) ret = -1;
101 if(likely(t1.tv_sec - t2.tv_sec > 0)) ret = 1;
102 else if(unlikely(t1.tv_sec - t2.tv_sec < 0)) ret = -1;
103 else if(likely(t1.tv_nsec - t2.tv_nsec > 0)) ret = 1;
104 else if(unlikely(t1.tv_nsec - t2.tv_nsec < 0)) ret = -1;
105
106 return ret;
107 }
108
109 #define LTT_TIME_MIN(a,b) ((ltt_time_compare((a),(b)) < 0) ? (a) : (b))
110 #define LTT_TIME_MAX(a,b) ((ltt_time_compare((a),(b)) > 0) ? (a) : (b))
111
112 #define MAX_TV_SEC_TO_DOUBLE 0x7FFFFF
113 static inline double ltt_time_to_double(LttTime t1)
114 {
115 /* We lose precision if tv_sec is > than (2^23)-1
116 *
117 * Max values that fits in a double (53 bits precision on normalised
118 * mantissa):
119 * tv_nsec : NANOSECONDS_PER_SECONDS : 2^30
120 *
121 * So we have 53-30 = 23 bits left for tv_sec.
122 * */
123 #ifdef EXTRA_CHECK
124 g_assert(t1.tv_sec <= MAX_TV_SEC_TO_DOUBLE);
125 if(t1.tv_sec > MAX_TV_SEC_TO_DOUBLE)
126 g_warning("Precision loss in conversion LttTime to double");
127 #endif //EXTRA_CHECK
128 return ((double)((guint64)t1.tv_sec<<DOUBLE_SHIFT)
129 * (double)DOUBLE_SHIFT_CONST_MUL)
130 + (double)t1.tv_nsec;
131 }
132
133
134 static inline LttTime ltt_time_from_double(double t1)
135 {
136 /* We lose precision if tv_sec is > than (2^23)-1
137 *
138 * Max values that fits in a double (53 bits precision on normalised
139 * mantissa):
140 * tv_nsec : NANOSECONDS_PER_SECONDS : 2^30
141 *
142 * So we have 53-30 = 23 bits left for tv_sec.
143 * */
144 #ifdef EXTRA_CHECK
145 g_assert(t1 <= MAX_TV_SEC_TO_DOUBLE);
146 if(t1 > MAX_TV_SEC_TO_DOUBLE)
147 g_warning("Conversion from non precise double to LttTime");
148 #endif //EXTRA_CHECK
149 LttTime res;
150 //res.tv_sec = t1/(double)NANOSECONDS_PER_SECOND;
151 res.tv_sec = (guint64)(t1 * DOUBLE_SHIFT_CONST_DIV) >> DOUBLE_SHIFT;
152 res.tv_nsec = (t1 - (((guint64)res.tv_sec<<LTT_TIME_UINT_SHIFT))
153 * LTT_TIME_UINT_SHIFT_CONST);
154 return res;
155 }
156
157 /* Use ltt_time_to_double and ltt_time_from_double to check for lack
158 * of precision.
159 */
160 static inline LttTime ltt_time_mul(LttTime t1, double d)
161 {
162 LttTime res;
163
164 double time_double = ltt_time_to_double(t1);
165
166 time_double = time_double * d;
167
168 res = ltt_time_from_double(time_double);
169
170 return res;
171
172 #if 0
173 /* What is that ? (Mathieu) */
174 if(f == 0.0){
175 res.tv_sec = 0;
176 res.tv_nsec = 0;
177 }else{
178 double d;
179 d = 1.0/f;
180 sec = t1.tv_sec / (double)d;
181 res.tv_sec = sec;
182 res.tv_nsec = t1.tv_nsec / (double)d + (sec - res.tv_sec) *
183 NANOSECONDS_PER_SECOND;
184 res.tv_sec += res.tv_nsec / NANOSECONDS_PER_SECOND;
185 res.tv_nsec %= NANOSECONDS_PER_SECOND;
186 }
187 return res;
188 #endif //0
189 }
190
191
192 /* Use ltt_time_to_double and ltt_time_from_double to check for lack
193 * of precision.
194 */
195 static inline LttTime ltt_time_div(LttTime t1, double d)
196 {
197 LttTime res;
198
199 double time_double = ltt_time_to_double(t1);
200
201 time_double = time_double / d;
202
203 res = ltt_time_from_double(time_double);
204
205 return res;
206
207
208 #if 0
209 double sec;
210 LttTime res;
211
212 sec = t1.tv_sec / (double)f;
213 res.tv_sec = sec;
214 res.tv_nsec = t1.tv_nsec / (double)f + (sec - res.tv_sec) *
215 NANOSECONDS_PER_SECOND;
216 res.tv_sec += res.tv_nsec / NANOSECONDS_PER_SECOND;
217 res.tv_nsec %= NANOSECONDS_PER_SECOND;
218 return res;
219 #endif //0
220 }
221
222
223 static inline guint64 ltt_time_to_uint64(LttTime t1)
224 {
225 return (((guint64)t1.tv_sec*LTT_TIME_UINT_SHIFT_CONST) << LTT_TIME_UINT_SHIFT)
226 + (guint64)t1.tv_nsec;
227 }
228
229
230 #define MAX_TV_SEC_TO_UINT64 0x3FFFFFFFFFFFFFFFULL
231
232 /* The likely branch is with sec != 0, because most events in a bloc
233 * will be over 1s from the block start. (see tracefile.c)
234 */
235 static inline LttTime ltt_time_from_uint64(guint64 t1)
236 {
237 /* We lose precision if tv_sec is > than (2^62)-1
238 * */
239 #ifdef EXTRA_CHECK
240 g_assert(t1 <= MAX_TV_SEC_TO_UINT64);
241 if(t1 > MAX_TV_SEC_TO_UINT64)
242 g_warning("Conversion from uint64 to non precise LttTime");
243 #endif //EXTRA_CHECK
244 LttTime res;
245 //if(unlikely(t1 >= NANOSECONDS_PER_SECOND)) {
246 if(likely(t1>>LTT_TIME_UINT_SHIFT >= LTT_TIME_UINT_SHIFT_CONST)) {
247 //res.tv_sec = t1/NANOSECONDS_PER_SECOND;
248 res.tv_sec = (t1>>LTT_TIME_UINT_SHIFT)
249 /LTT_TIME_UINT_SHIFT_CONST; // acceleration
250 res.tv_nsec = (t1 - res.tv_sec*NANOSECONDS_PER_SECOND);
251 } else {
252 res.tv_sec = 0;
253 res.tv_nsec = (guint32)t1;
254 }
255 return res;
256 }
257
258 #endif // LTT_TIME_H
This page took 0.040829 seconds and 5 git commands to generate.