use round() for double
[lttv.git] / ltt / branches / poly / ltt / time.h
1 /* This file is part of the Linux Trace Toolkit trace reading library
2 * Copyright (C) 2003-2004 Michel Dagenais
3 *
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License Version 2.1 as published by the Free Software Foundation.
7 *
8 * This library is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * Lesser General Public License for more details.
12 *
13 * You should have received a copy of the GNU Lesser General Public
14 * License along with this library; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 02111-1307, USA.
17 */
18
19 #ifndef LTT_TIME_H
20 #define LTT_TIME_H
21
22 #include <glib.h>
23 #include <ltt/compiler.h>
24
25 typedef struct _LttTime {
26 unsigned long tv_sec;
27 unsigned long tv_nsec;
28 } LttTime;
29
30
31 #define NANOSECONDS_PER_SECOND 1000000000
32
33 /* We give the DIV and MUL constants so we can always multiply, for a
34 * division as well as a multiplication of NANOSECONDS_PER_SECOND */
35 /* 2^30/1.07374182400631629848 = 1000000000.0 */
36 #define DOUBLE_SHIFT_CONST_DIV 1.07374182400631629848
37 #define DOUBLE_SHIFT 30
38
39 /* 2^30*0.93132257461547851562 = 1000000000.0000000000 */
40 #define DOUBLE_SHIFT_CONST_MUL 0.93132257461547851562
41
42
43 /* 1953125 * 2^9 = NANOSECONDS_PER_SECOND */
44 #define LTT_TIME_UINT_SHIFT_CONST 1953125
45 #define LTT_TIME_UINT_SHIFT 9
46
47
48 static const LttTime ltt_time_zero = { 0, 0 };
49
50 static const LttTime ltt_time_one = { 0, 1 };
51
52 static const LttTime ltt_time_infinite = { G_MAXUINT, NANOSECONDS_PER_SECOND };
53
54 static inline LttTime ltt_time_sub(LttTime t1, LttTime t2)
55 {
56 LttTime res;
57 res.tv_sec = t1.tv_sec - t2.tv_sec;
58 res.tv_nsec = t1.tv_nsec - t2.tv_nsec;
59 /* unlikely : given equal chance to be anywhere in t1.tv_nsec, and
60 * higher probability of low value for t2.tv_sec, we will habitually
61 * not wrap.
62 */
63 if(unlikely(t1.tv_nsec < t2.tv_nsec)) {
64 res.tv_sec--;
65 res.tv_nsec += NANOSECONDS_PER_SECOND;
66 }
67 return res;
68 }
69
70
71 static inline LttTime ltt_time_add(LttTime t1, LttTime t2)
72 {
73 LttTime res;
74 res.tv_nsec = t1.tv_nsec + t2.tv_nsec;
75 res.tv_sec = t1.tv_sec + t2.tv_sec;
76 /* unlikely : given equal chance to be anywhere in t1.tv_nsec, and
77 * higher probability of low value for t2.tv_sec, we will habitually
78 * not wrap.
79 */
80 if(unlikely(res.tv_nsec >= NANOSECONDS_PER_SECOND)) {
81 res.tv_sec++;
82 res.tv_nsec -= NANOSECONDS_PER_SECOND;
83 }
84 return res;
85 }
86
87 /* Fastest comparison : t1 > t2 */
88 static inline int ltt_time_compare(LttTime t1, LttTime t2)
89 {
90 int ret=0;
91 if(likely(t1.tv_sec > t2.tv_sec)) ret = 1;
92 else if(unlikely(t1.tv_sec < t2.tv_sec)) ret = -1;
93 else if(likely(t1.tv_nsec > t2.tv_nsec)) ret = 1;
94 else if(unlikely(t1.tv_nsec < t2.tv_nsec)) ret = -1;
95
96 return ret;
97 }
98
99 #define LTT_TIME_MIN(a,b) ((ltt_time_compare((a),(b)) < 0) ? (a) : (b))
100 #define LTT_TIME_MAX(a,b) ((ltt_time_compare((a),(b)) > 0) ? (a) : (b))
101
102 #define MAX_TV_SEC_TO_DOUBLE 0x7FFFFF
103 static inline double ltt_time_to_double(LttTime t1)
104 {
105 /* We lose precision if tv_sec is > than (2^23)-1
106 *
107 * Max values that fits in a double (53 bits precision on normalised
108 * mantissa):
109 * tv_nsec : NANOSECONDS_PER_SECONDS : 2^30
110 *
111 * So we have 53-30 = 23 bits left for tv_sec.
112 * */
113 #ifdef EXTRA_CHECK
114 g_assert(t1.tv_sec <= MAX_TV_SEC_TO_DOUBLE);
115 if(t1.tv_sec > MAX_TV_SEC_TO_DOUBLE)
116 g_warning("Precision loss in conversion LttTime to double");
117 #endif //EXTRA_CHECK
118 return round(((double)((guint64)t1.tv_sec<<DOUBLE_SHIFT)
119 * (double)DOUBLE_SHIFT_CONST_MUL)
120 + (double)t1.tv_nsec);
121 }
122
123
124 static inline LttTime ltt_time_from_double(double t1)
125 {
126 /* We lose precision if tv_sec is > than (2^23)-1
127 *
128 * Max values that fits in a double (53 bits precision on normalised
129 * mantissa):
130 * tv_nsec : NANOSECONDS_PER_SECONDS : 2^30
131 *
132 * So we have 53-30 = 23 bits left for tv_sec.
133 * */
134 #ifdef EXTRA_CHECK
135 g_assert(t1 <= MAX_TV_SEC_TO_DOUBLE);
136 if(t1 > MAX_TV_SEC_TO_DOUBLE)
137 g_warning("Conversion from non precise double to LttTime");
138 #endif //EXTRA_CHECK
139 LttTime res;
140 //res.tv_sec = t1/(double)NANOSECONDS_PER_SECOND;
141 res.tv_sec = (guint64)(t1 * DOUBLE_SHIFT_CONST_DIV) >> DOUBLE_SHIFT;
142 res.tv_nsec = (round(t1) - (((guint64)res.tv_sec<<LTT_TIME_UINT_SHIFT))
143 * LTT_TIME_UINT_SHIFT_CONST);
144 return res;
145 }
146
147 /* Use ltt_time_to_double and ltt_time_from_double to check for lack
148 * of precision.
149 */
150 static inline LttTime ltt_time_mul(LttTime t1, double d)
151 {
152 LttTime res;
153
154 double time_double = ltt_time_to_double(t1);
155
156 time_double = time_double * d;
157
158 res = ltt_time_from_double(time_double);
159
160 return res;
161
162 #if 0
163 /* What is that ? (Mathieu) */
164 if(f == 0.0){
165 res.tv_sec = 0;
166 res.tv_nsec = 0;
167 }else{
168 double d;
169 d = 1.0/f;
170 sec = t1.tv_sec / (double)d;
171 res.tv_sec = sec;
172 res.tv_nsec = t1.tv_nsec / (double)d + (sec - res.tv_sec) *
173 NANOSECONDS_PER_SECOND;
174 res.tv_sec += res.tv_nsec / NANOSECONDS_PER_SECOND;
175 res.tv_nsec %= NANOSECONDS_PER_SECOND;
176 }
177 return res;
178 #endif //0
179 }
180
181
182 /* Use ltt_time_to_double and ltt_time_from_double to check for lack
183 * of precision.
184 */
185 static inline LttTime ltt_time_div(LttTime t1, double d)
186 {
187 LttTime res;
188
189 double time_double = ltt_time_to_double(t1);
190
191 time_double = time_double / d;
192
193 res = ltt_time_from_double(time_double);
194
195 return res;
196
197
198 #if 0
199 double sec;
200 LttTime res;
201
202 sec = t1.tv_sec / (double)f;
203 res.tv_sec = sec;
204 res.tv_nsec = t1.tv_nsec / (double)f + (sec - res.tv_sec) *
205 NANOSECONDS_PER_SECOND;
206 res.tv_sec += res.tv_nsec / NANOSECONDS_PER_SECOND;
207 res.tv_nsec %= NANOSECONDS_PER_SECOND;
208 return res;
209 #endif //0
210 }
211
212
213 static inline guint64 ltt_time_to_uint64(LttTime t1)
214 {
215 return (guint64)((t1.tv_sec*LTT_TIME_UINT_SHIFT_CONST) >> LTT_TIME_UINT_SHIFT)
216 + (guint64)t1.tv_nsec;
217 }
218
219
220 #define MAX_TV_SEC_TO_UINT64 0x3FFFFFFFFFFFFFFFULL
221
222 /* The likely branch is with sec != 0, because most events in a bloc
223 * will be over 1s from the block start. (see tracefile.c)
224 */
225 static inline LttTime ltt_time_from_uint64(guint64 t1)
226 {
227 /* We lose precision if tv_sec is > than (2^62)-1
228 * */
229 #ifdef EXTRA_CHECK
230 g_assert(t1 <= MAX_TV_SEC_TO_UINT64);
231 if(t1 > MAX_TV_SEC_TO_UINT64)
232 g_warning("Conversion from uint64 to non precise LttTime");
233 #endif //EXTRA_CHECK
234 LttTime res;
235 //if(unlikely(t1 >= NANOSECONDS_PER_SECOND)) {
236 if(likely(t1>>LTT_TIME_UINT_SHIFT >= LTT_TIME_UINT_SHIFT_CONST)) {
237 //res.tv_sec = t1/NANOSECONDS_PER_SECOND;
238 res.tv_sec = (t1>>LTT_TIME_UINT_SHIFT)
239 /LTT_TIME_UINT_SHIFT_CONST; // acceleration
240 res.tv_nsec = (t1 - res.tv_sec*NANOSECONDS_PER_SECOND);
241 } else {
242 res.tv_sec = 0;
243 res.tv_nsec = (guint32)t1;
244 }
245 return res;
246 }
247
248 #endif // LTT_TIME_H
This page took 0.034314 seconds and 5 git commands to generate.