a90ec94ca3867fe5808ff3d19030032a71a785c7
[lttng-docs.git] / 2.8 / lttng-docs-2.8.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.8, 24 July 2017
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/warning-not-maintained.txt[]
11
12
13 include::../common/welcome.txt[]
14
15
16 include::../common/audience.txt[]
17
18
19 [[chapters]]
20 === What's in this documentation?
21
22 The LTTng Documentation is divided into the following sections:
23
24 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
25 rudiments of software tracing and the rationale behind the
26 LTTng project.
27 +
28 You can skip this section if you’re familiar with software tracing and
29 with the LTTng project.
30
31 * **<<installing-lttng,Installation>>** describes the steps to
32 install the LTTng packages on common Linux distributions and from
33 their sources.
34 +
35 You can skip this section if you already properly installed LTTng on
36 your target system.
37
38 * **<<getting-started,Quick start>>** is a concise guide to
39 getting started quickly with LTTng kernel and user space tracing.
40 +
41 We recommend this section if you're new to LTTng or to software tracing
42 in general.
43 +
44 You can skip this section if you're not new to LTTng.
45
46 * **<<core-concepts,Core concepts>>** explains the concepts at
47 the heart of LTTng.
48 +
49 It's a good idea to become familiar with the core concepts
50 before attempting to use the toolkit.
51
52 * **<<plumbing,Components of LTTng>>** describes the various components
53 of the LTTng machinery, like the daemons, the libraries, and the
54 command-line interface.
55 * **<<instrumenting,Instrumentation>>** shows different ways to
56 instrument user applications and the Linux kernel.
57 +
58 Instrumenting source code is essential to provide a meaningful
59 source of events.
60 +
61 You can skip this section if you do not have a programming background.
62
63 * **<<controlling-tracing,Tracing control>>** is divided into topics
64 which demonstrate how to use the vast array of features that
65 LTTng{nbsp}{revision} offers.
66 * **<<reference,Reference>>** contains reference tables.
67 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
68 to LTTng or to the field of software tracing.
69
70
71 include::../common/convention.txt[]
72
73
74 include::../common/acknowledgements.txt[]
75
76
77 [[whats-new]]
78 == What's new in LTTng {revision}?
79
80 LTTng{nbsp}{revision} bears the name _Isseki Nicho_. The result of a
81 collaboration between http://www.dieuduciel.com/[Dieu du Ciel!] and
82 Nagano-based Shiga Kogen,
83 https://www.beeradvocate.com/beer/profile/1141/53111/[_**Isseki
84 Nicho**_] is a strong Imperial Dark Saison offering a rich roasted malt
85 flavor combined with a complex fruity finish typical of Saison yeasts.
86
87 New features and changes in LTTng{nbsp}{revision}:
88
89 * **Tracing control**:
90 ** You can attach <<java-application-context,Java application-specific
91 context fields>> to a <<channel,channel>> with the
92 man:lttng-add-context(1) command:
93 +
94 --
95 [role="term"]
96 ----
97 $ lttng add-context --jul --type='$app.retriever:cur_msg_id'
98 ----
99 --
100 +
101 Here, `$app` is the prefix of all application-specific context fields,
102 `retriever` names a _context information retriever_ defined at the
103 application level, and `cur_msg_id` names a context field read from this
104 retriever.
105 +
106 Both the `java.util.logging` and Apache log4j <<domain,tracing domains>>
107 are supported.
108
109 ** You can use Java application-specific <<adding-context,context>>
110 fields in the <<enabling-disabling-events,filter expression>> of an
111 <<event,event rule>>:
112 +
113 --
114 [role="term"]
115 ----
116 $ lttng enable-event --log4j my_logger \
117 --filter='$app.retriever:cur_msg_id == 23'
118 ----
119 --
120
121 ** New `lttng status` command which is the equivalent of +lttng list
122 __CUR__+, where +__CUR__+ is the name of the current
123 <<tracing-session,tracing session>>.
124 +
125 See man:lttng-status(1).
126
127 ** New `lttng metadata regenerate` command to
128 <<metadata-regenerate,regenerate the metadata file of an LTTng
129 trace>> at any moment. This command is meant to be used to resample
130 the wall time following a major
131 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
132 so that a system which boots with an incorrect wall time can be
133 traced before its wall time is NTP-corrected.
134 +
135 See man:lttng-metadata(1).
136
137 ** New command-line interface warnings when <<event,event records>> or
138 whole sub-buffers are
139 <<channel-overwrite-mode-vs-discard-mode,lost>>. The warning messages
140 are printed when a <<tracing-session,tracing session>> is
141 <<basic-tracing-session-control,stopped>> (man:lttng-stop(1)
142 command).
143
144 * **User space tracing**:
145 ** Shared object base address dump in order to map <<event,event
146 records>> to original source location (file and line number).
147 +
148 If you attach the `ip` and `vpid` <<adding-context,context fields>> to a
149 user space <<channel,channel>> and if you use the
150 <<liblttng-ust-dl,path:{liblttng-ust-dl.so} helper>>, you can retrieve
151 the source location where a given event record was generated.
152 +
153 The http://diamon.org/babeltrace/[Babeltrace] trace viewer supports this
154 state dump and those context fields since version 1.4 to print the
155 source location of a given event record. http://tracecompass.org/[Trace
156 Compass] also supports this since version 2.0.
157
158 ** A <<java-application,Java application>> which uses
159 `java.util.logging` now adds an LTTng-UST log handler to the desired
160 JUL loggers.
161 +
162 The previous workflow was to initialize the LTTng-UST Java agent
163 by calling `LTTngAgent.getLTTngAgent()`. This had the effect of adding
164 an LTTng-UST log handler to the root loggers.
165
166 ** A <<java-application,Java application>> which uses Apache log4j now
167 adds an LTTng-UST log appender to the desired log4j loggers.
168 +
169 The previous workflow was to initialize the LTTng-UST Java agent
170 by calling `LTTngAgent.getLTTngAgent()`. This had the effect of adding
171 an LTTng-UST appender to the root loggers.
172
173 ** Any <<java-application,Java application>> can provide
174 <<java-application-context,dynamic context fields>> while running
175 thanks to a new API provided by the <<lttng-ust-agents,LTTng-UST Java
176 agent>>. You can require LTTng to record specific context fields in
177 event records, and you can use them in the filter expression of
178 <<event,event rules>>.
179
180 * **Linux kernel tracing**:
181 ** The LTTng kernel modules can now be built into a Linux kernel image,
182 that is, not as loadable modules.
183 +
184 Follow the project's
185 https://github.com/lttng/lttng-modules/blob/stable-{revision}/README.md#kernel-built-in-support[`README.md`]
186 file to learn how.
187
188 ** New instrumentation:
189 *** ARM64 architecture support.
190 *** x86 page faults.
191 *** x86 `irq_vectors`.
192 ** New <<adding-context,context fields>>:
193 *** `interruptible`
194 *** `preemptible`
195 *** `need_reschedule`
196 *** `migratable` (specific to RT-Preempt)
197 ** Clock source plugin support for advanced cases where a custom source
198 of time is needed to timestamp LTTng event records.
199 +
200 See https://github.com/lttng/lttng-modules/blob/stable-{revision}/lttng-clock.h[`lttng-clock.h`]
201 for an overview of the small API.
202
203 * **Documentation**:
204 ** The link:/man[man pages] of the man:lttng(1) command-line tool are
205 split into one man page per command (à la Git), for example:
206 +
207 --
208 [role="term"]
209 ----
210 $ man lttng-enable-event
211 ----
212 --
213 +
214 You can also use the `--help` option of any man:lttng(1) command to
215 open its man page.
216 +
217 The content and formatting of all the LTTng man pages has improved
218 dramatically.
219
220
221 [[nuts-and-bolts]]
222 == Nuts and bolts
223
224 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
225 generation_ is a modern toolkit for tracing Linux systems and
226 applications. So your first question might be:
227 **what is tracing?**
228
229
230 [[what-is-tracing]]
231 === What is tracing?
232
233 As the history of software engineering progressed and led to what
234 we now take for granted--complex, numerous and
235 interdependent software applications running in parallel on
236 sophisticated operating systems like Linux--the authors of such
237 components, software developers, began feeling a natural
238 urge to have tools that would ensure the robustness and good performance
239 of their masterpieces.
240
241 One major achievement in this field is, inarguably, the
242 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
243 an essential tool for developers to find and fix bugs. But even the best
244 debugger won't help make your software run faster, and nowadays, faster
245 software means either more work done by the same hardware, or cheaper
246 hardware for the same work.
247
248 A _profiler_ is often the tool of choice to identify performance
249 bottlenecks. Profiling is suitable to identify _where_ performance is
250 lost in a given software. The profiler outputs a profile, a statistical
251 summary of observed events, which you may use to discover which
252 functions took the most time to execute. However, a profiler won't
253 report _why_ some identified functions are the bottleneck. Bottlenecks
254 might only occur when specific conditions are met, conditions that are
255 sometimes impossible to capture by a statistical profiler, or impossible
256 to reproduce with an application altered by the overhead of an
257 event-based profiler. For a thorough investigation of software
258 performance issues, a history of execution is essential, with the
259 recorded values of variables and context fields you choose, and
260 with as little influence as possible on the instrumented software. This
261 is where tracing comes in handy.
262
263 _Tracing_ is a technique used to understand what goes on in a running
264 software system. The software used for tracing is called a _tracer_,
265 which is conceptually similar to a tape recorder. When recording,
266 specific instrumentation points placed in the software source code
267 generate events that are saved on a giant tape: a _trace_ file. You
268 can trace user applications and the operating system at the same time,
269 opening the possibility of resolving a wide range of problems that would
270 otherwise be extremely challenging.
271
272 Tracing is often compared to _logging_. However, tracers and loggers are
273 two different tools, serving two different purposes. Tracers are
274 designed to record much lower-level events that occur much more
275 frequently than log messages, often in the range of thousands per
276 second, with very little execution overhead. Logging is more appropriate
277 for a very high-level analysis of less frequent events: user accesses,
278 exceptional conditions (errors and warnings, for example), database
279 transactions, instant messaging communications, and such. Simply put,
280 logging is one of the many use cases that can be satisfied with tracing.
281
282 The list of recorded events inside a trace file can be read manually
283 like a log file for the maximum level of detail, but it is generally
284 much more interesting to perform application-specific analyses to
285 produce reduced statistics and graphs that are useful to resolve a
286 given problem. Trace viewers and analyzers are specialized tools
287 designed to do this.
288
289 In the end, this is what LTTng is: a powerful, open source set of
290 tools to trace the Linux kernel and user applications at the same time.
291 LTTng is composed of several components actively maintained and
292 developed by its link:/community/#where[community].
293
294
295 [[lttng-alternatives]]
296 === Alternatives to noch:{LTTng}
297
298 Excluding proprietary solutions, a few competing software tracers
299 exist for Linux:
300
301 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
302 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
303 user scripts and is responsible for loading code into the
304 Linux kernel for further execution and collecting the outputted data.
305 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
306 subsystem in the Linux kernel in which a virtual machine can execute
307 programs passed from the user space to the kernel. You can attach
308 such programs to tracepoints and KProbes thanks to a system call, and
309 they can output data to the user space when executed thanks to
310 different mechanisms (pipe, VM register values, and eBPF maps, to name
311 a few).
312 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
313 is the de facto function tracer of the Linux kernel. Its user
314 interface is a set of special files in sysfs.
315 * https://perf.wiki.kernel.org/[perf] is
316 a performance analyzing tool for Linux which supports hardware
317 performance counters, tracepoints, as well as other counters and
318 types of probes. perf's controlling utility is the cmd:perf command
319 line/curses tool.
320 * http://linux.die.net/man/1/strace[strace]
321 is a command-line utility which records system calls made by a
322 user process, as well as signal deliveries and changes of process
323 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
324 to fulfill its function.
325 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
326 analyze Linux kernel events. You write scripts, or _chisels_ in
327 sysdig's jargon, in Lua and sysdig executes them while the system is
328 being traced or afterwards. sysdig's interface is the cmd:sysdig
329 command-line tool as well as the curses-based cmd:csysdig tool.
330 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
331 user space tracer which uses custom user scripts to produce plain text
332 traces. SystemTap converts the scripts to the C language, and then
333 compiles them as Linux kernel modules which are loaded to produce
334 trace data. SystemTap's primary user interface is the cmd:stap
335 command-line tool.
336
337 The main distinctive features of LTTng is that it produces correlated
338 kernel and user space traces, as well as doing so with the lowest
339 overhead amongst other solutions. It produces trace files in the
340 http://diamon.org/ctf[CTF] format, a file format optimized
341 for the production and analyses of multi-gigabyte data.
342
343 LTTng is the result of more than 10 years of active open source
344 development by a community of passionate developers.
345 LTTng{nbsp}{revision} is currently available on major desktop and server
346 Linux distributions.
347
348 The main interface for tracing control is a single command-line tool
349 named cmd:lttng. The latter can create several tracing sessions, enable
350 and disable events on the fly, filter events efficiently with custom
351 user expressions, start and stop tracing, and much more. LTTng can
352 record the traces on the file system or send them over the network, and
353 keep them totally or partially. You can view the traces once tracing
354 becomes inactive or in real-time.
355
356 <<installing-lttng,Install LTTng now>> and
357 <<getting-started,start tracing>>!
358
359
360 [[installing-lttng]]
361 == Installation
362
363 include::../common/warning-installation-outdated.txt[]
364
365 **LTTng** is a set of software <<plumbing,components>> which interact to
366 <<instrumenting,instrument>> the Linux kernel and user applications, and
367 to <<controlling-tracing,control tracing>> (start and stop
368 tracing, enable and disable event rules, and the rest). Those
369 components are bundled into the following packages:
370
371 * **LTTng-tools**: Libraries and command-line interface to
372 control tracing.
373 * **LTTng-modules**: Linux kernel modules to instrument and
374 trace the kernel.
375 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
376 trace user applications.
377
378 Most distributions mark the LTTng-modules and LTTng-UST packages as
379 optional when installing LTTng-tools (which is always required). In the
380 following sections, we always provide the steps to install all three,
381 but note that:
382
383 * You only need to install LTTng-modules if you intend to trace the
384 Linux kernel.
385 * You only need to install LTTng-UST if you intend to trace user
386 applications.
387
388 [role="growable"]
389 .Availability of LTTng{nbsp}{revision} for major Linux distributions as of 14 March 2017.
390 |====
391 |Distribution |Available in releases |Alternatives
392
393 |https://www.ubuntu.com/[Ubuntu]
394 |<<ubuntu,Ubuntu{nbsp}16.10 _Yakkety Yak_>>.
395 |LTTng{nbsp}{revision} for Ubuntu{nbsp}14.04 _Trusty Tahr_
396 and Ubuntu{nbsp}16.04 _Xenial Xerus_:
397 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
398
399 LTTng{nbsp}2.9 for Ubuntu{nbsp}14.04 _Trusty Tahr_
400 and Ubuntu{nbsp}16.04 _Xenial Xerus_:
401 link:/docs/v2.9#doc-ubuntu-ppa[use the LTTng Stable{nbsp}2.9 PPA].
402
403 LTTng{nbsp}2.9 for Ubuntu{nbsp}17.04 _Zesty Zapus_ (not released
404 yet).
405
406 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
407 other Ubuntu releases.
408
409 |https://getfedora.org/[Fedora]
410 |<<fedora,Fedora{nbsp}25>>.
411 |<<building-from-source,Build LTTng{nbsp}{revision} from source>> for
412 other Fedora releases.
413
414 |https://www.debian.org/[Debian]
415 |_Not available_
416 |link:/docs/v2.9#doc-debian[LTTng{nbsp}2.9 for Debian "stretch" (testing)
417 and Debian "sid" (unstable)].
418
419 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
420
421 |https://www.opensuse.org/[openSUSE]
422 |_Not available_
423 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
424
425 |https://www.archlinux.org/[Arch Linux]
426 |_Not available_
427 |link:/docs/v2.9#doc-arch-linux[LTTng{nbsp}2.9 from the AUR].
428
429 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
430
431 |https://alpinelinux.org/[Alpine Linux]
432 |_Not available_
433 |link:/docs/v2.9#doc-alpine-linux[LTTng{nbsp}2.9 for Alpine Linux "edge"].
434
435 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
436
437 |https://www.redhat.com/[RHEL] and https://www.suse.com/[SLES]
438 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
439 |
440
441 |https://buildroot.org/[Buildroot]
442 |<<buildroot,Buildroot 2016.11>>.
443 |link:/docs/v2.9#doc-buildroot[LTTng{nbsp}2.9 for Buildroot 2017.02].
444
445 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
446 other Buildroot releases.
447
448 |http://www.openembedded.org/wiki/Main_Page[OpenEmbedded] and
449 https://www.yoctoproject.org/[Yocto]
450 |<<oe-yocto,Yocto Project{nbsp}2.2 _Morty_>> (`openembedded-core` layer).
451 |LTTng{nbsp}2.9 for Yocto Project{nbsp}2.3 _Pyro_
452 (`openembedded-core` layer) (not released yet).
453
454 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
455 other OpenEmbedded releases.
456 |====
457
458
459 [[ubuntu]]
460 === [[ubuntu-official-repositories]]Ubuntu
461
462 LTTng{nbsp}{revision} is available on Ubuntu{nbsp}16.10 _Yakkety Yak_.
463 For previous releases of Ubuntu, <<ubuntu-ppa,use the LTTng
464 Stable{nbsp}{revision} PPA>>.
465
466 To install LTTng{nbsp}{revision} on Ubuntu{nbsp}16.10 _Yakkety Yak_:
467
468 . Install the main LTTng{nbsp}{revision} packages:
469 +
470 --
471 [role="term"]
472 ----
473 # apt-get install lttng-tools
474 # apt-get install lttng-modules-dkms
475 # apt-get install liblttng-ust-dev
476 ----
477 --
478
479 . **If you need to instrument and trace
480 <<java-application,Java applications>>**, install the LTTng-UST
481 Java agent:
482 +
483 --
484 [role="term"]
485 ----
486 # apt-get install liblttng-ust-agent-java
487 ----
488 --
489
490 . **If you need to instrument and trace
491 <<python-application,Python{nbsp}3 applications>>**, install the
492 LTTng-UST Python agent:
493 +
494 --
495 [role="term"]
496 ----
497 # apt-get install python3-lttngust
498 ----
499 --
500
501
502 [[ubuntu-ppa]]
503 ==== noch:{LTTng} Stable {revision} PPA
504
505 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
506 Stable{nbsp}{revision} PPA] offers the latest stable
507 LTTng{nbsp}{revision} packages for:
508
509 * Ubuntu{nbsp}14.04 _Trusty Tahr_
510 * Ubuntu{nbsp}16.04 _Xenial Xerus_
511
512 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
513
514 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
515 list of packages:
516 +
517 --
518 [role="term"]
519 ----
520 # apt-add-repository ppa:lttng/stable-2.8
521 # apt-get update
522 ----
523 --
524
525 . Install the main LTTng{nbsp}{revision} packages:
526 +
527 --
528 [role="term"]
529 ----
530 # apt-get install lttng-tools
531 # apt-get install lttng-modules-dkms
532 # apt-get install liblttng-ust-dev
533 ----
534 --
535
536 . **If you need to instrument and trace
537 <<java-application,Java applications>>**, install the LTTng-UST
538 Java agent:
539 +
540 --
541 [role="term"]
542 ----
543 # apt-get install liblttng-ust-agent-java
544 ----
545 --
546
547 . **If you need to instrument and trace
548 <<python-application,Python{nbsp}3 applications>>**, install the
549 LTTng-UST Python agent:
550 +
551 --
552 [role="term"]
553 ----
554 # apt-get install python3-lttngust
555 ----
556 --
557
558
559 [[fedora]]
560 === Fedora
561
562 To install LTTng{nbsp}{revision} on Fedora{nbsp}25:
563
564 . Install the LTTng-tools{nbsp}{revision} and LTTng-UST{nbsp}{revision}
565 packages:
566 +
567 --
568 [role="term"]
569 ----
570 # yum install lttng-tools
571 # yum install lttng-ust
572 ----
573 --
574
575 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
576 +
577 --
578 [role="term"]
579 ----
580 $ cd $(mktemp -d) &&
581 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
582 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
583 cd lttng-modules-2.8.* &&
584 make &&
585 sudo make modules_install &&
586 sudo depmod -a
587 ----
588 --
589
590 [IMPORTANT]
591 .Java and Python application instrumentation and tracing
592 ====
593 If you need to instrument and trace <<java-application,Java
594 applications>> on Fedora, you need to build and install
595 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
596 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
597 `--enable-java-agent-all` options to the `configure` script, depending
598 on which Java logging framework you use.
599
600 If you need to instrument and trace <<python-application,Python
601 applications>> on Fedora, you need to build and install
602 LTTng-UST{nbsp}{revision} from source and pass the
603 `--enable-python-agent` option to the `configure` script.
604 ====
605
606
607 [[enterprise-distributions]]
608 === RHEL, SUSE, and other enterprise distributions
609
610 To install LTTng on enterprise Linux distributions, such as Red Hat
611 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
612 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
613
614
615 [[buildroot]]
616 === Buildroot
617
618 To install LTTng{nbsp}{revision} on Buildroot{nbsp}2016.11:
619
620 . Launch the Buildroot configuration tool:
621 +
622 --
623 [role="term"]
624 ----
625 $ make menuconfig
626 ----
627 --
628
629 . In **Kernel**, check **Linux kernel**.
630 . In **Toolchain**, check **Enable WCHAR support**.
631 . In **Target packages**{nbsp}&#8594; **Debugging, profiling and benchmark**,
632 check **lttng-modules** and **lttng-tools**.
633 . In **Target packages**{nbsp}&#8594; **Libraries**{nbsp}&#8594;
634 **Other**, check **lttng-libust**.
635
636
637 [[oe-yocto]]
638 === OpenEmbedded and Yocto
639
640 LTTng{nbsp}{revision} recipes are available in the
641 http://layers.openembedded.org/layerindex/branch/master/layer/openembedded-core/[`openembedded-core`]
642 layer for Yocto Project{nbsp}2.2 _Morty_ under the following names:
643
644 * `lttng-tools`
645 * `lttng-modules`
646 * `lttng-ust`
647
648 With BitBake, the simplest way to include LTTng recipes in your target
649 image is to add them to `IMAGE_INSTALL_append` in path:{conf/local.conf}:
650
651 ----
652 IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"
653 ----
654
655 If you use Hob:
656
657 . Select a machine and an image recipe.
658 . Click **Edit image recipe**.
659 . Under the **All recipes** tab, search for **lttng**.
660 . Check the desired LTTng recipes.
661
662 [IMPORTANT]
663 .Java and Python application instrumentation and tracing
664 ====
665 If you need to instrument and trace <<java-application,Java
666 applications>> on Yocto/OpenEmbedded, you need to build and install
667 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
668 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
669 `--enable-java-agent-all` options to the `configure` script, depending
670 on which Java logging framework you use.
671
672 If you need to instrument and trace <<python-application,Python
673 applications>> on Yocto/OpenEmbedded, you need to build and install
674 LTTng-UST{nbsp}{revision} from source and pass the
675 `--enable-python-agent` option to the `configure` script.
676 ====
677
678
679 [[building-from-source]]
680 === Build from source
681
682 To build and install LTTng{nbsp}{revision} from source:
683
684 . Using your distribution's package manager, or from source, install
685 the following dependencies of LTTng-tools and LTTng-UST:
686 +
687 --
688 * https://sourceforge.net/projects/libuuid/[libuuid]
689 * http://directory.fsf.org/wiki/Popt[popt]
690 * http://liburcu.org/[Userspace RCU]
691 * http://www.xmlsoft.org/[libxml2]
692 --
693
694 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
695 +
696 --
697 [role="term"]
698 ----
699 $ cd $(mktemp -d) &&
700 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
701 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
702 cd lttng-modules-2.8.* &&
703 make &&
704 sudo make modules_install &&
705 sudo depmod -a
706 ----
707 --
708
709 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
710 +
711 --
712 [role="term"]
713 ----
714 $ cd $(mktemp -d) &&
715 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.8.tar.bz2 &&
716 tar -xf lttng-ust-latest-2.8.tar.bz2 &&
717 cd lttng-ust-2.8.* &&
718 ./configure &&
719 make &&
720 sudo make install &&
721 sudo ldconfig
722 ----
723 --
724 +
725 --
726 [IMPORTANT]
727 .Java and Python application tracing
728 ====
729 If you need to instrument and trace <<java-application,Java
730 applications>>, pass the `--enable-java-agent-jul`,
731 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
732 `configure` script, depending on which Java logging framework you use.
733
734 If you need to instrument and trace <<python-application,Python
735 applications>>, pass the `--enable-python-agent` option to the
736 `configure` script. You can set the `PYTHON` environment variable to the
737 path to the Python interpreter for which to install the LTTng-UST Python
738 agent package.
739 ====
740 --
741 +
742 --
743 [NOTE]
744 ====
745 By default, LTTng-UST libraries are installed to
746 dir:{/usr/local/lib}, which is the de facto directory in which to
747 keep self-compiled and third-party libraries.
748
749 When <<building-tracepoint-providers-and-user-application,linking an
750 instrumented user application with `liblttng-ust`>>:
751
752 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
753 variable.
754 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
755 man:gcc(1), man:g++(1), or man:clang(1).
756 ====
757 --
758
759 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
760 +
761 --
762 [role="term"]
763 ----
764 $ cd $(mktemp -d) &&
765 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
766 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
767 cd lttng-tools-2.8.* &&
768 ./configure &&
769 make &&
770 sudo make install &&
771 sudo ldconfig
772 ----
773 --
774
775 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
776 previous steps automatically for a given version of LTTng and confine
777 the installed files in a specific directory. This can be useful to test
778 LTTng without installing it on your system.
779
780
781 [[getting-started]]
782 == Quick start
783
784 This is a short guide to get started quickly with LTTng kernel and user
785 space tracing.
786
787 Before you follow this guide, make sure to <<installing-lttng,install>>
788 LTTng.
789
790 This tutorial walks you through the steps to:
791
792 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
793 . <<tracing-your-own-user-application,Trace a user application>> written
794 in C.
795 . <<viewing-and-analyzing-your-traces,View and analyze the
796 recorded events>>.
797
798
799 [[tracing-the-linux-kernel]]
800 === Trace the Linux kernel
801
802 The following command lines start with the `#` prompt because you need
803 root privileges to trace the Linux kernel. You can also trace the kernel
804 as a regular user if your Unix user is a member of the
805 <<tracing-group,tracing group>>.
806
807 . Create a <<tracing-session,tracing session>> which writes its traces
808 to dir:{/tmp/my-kernel-trace}:
809 +
810 --
811 [role="term"]
812 ----
813 # lttng create my-kernel-session --output=/tmp/my-kernel-trace
814 ----
815 --
816
817 . List the available kernel tracepoints and system calls:
818 +
819 --
820 [role="term"]
821 ----
822 # lttng list --kernel
823 # lttng list --kernel --syscall
824 ----
825 --
826
827 . Create <<event,event rules>> which match the desired instrumentation
828 point names, for example the `sched_switch` and `sched_process_fork`
829 tracepoints, and the man:open(2) and man:close(2) system calls:
830 +
831 --
832 [role="term"]
833 ----
834 # lttng enable-event --kernel sched_switch,sched_process_fork
835 # lttng enable-event --kernel --syscall open,close
836 ----
837 --
838 +
839 You can also create an event rule which matches _all_ the Linux kernel
840 tracepoints (this will generate a lot of data when tracing):
841 +
842 --
843 [role="term"]
844 ----
845 # lttng enable-event --kernel --all
846 ----
847 --
848
849 . <<basic-tracing-session-control,Start tracing>>:
850 +
851 --
852 [role="term"]
853 ----
854 # lttng start
855 ----
856 --
857
858 . Do some operation on your system for a few seconds. For example,
859 load a website, or list the files of a directory.
860 . <<basic-tracing-session-control,Stop tracing>> and destroy the
861 tracing session:
862 +
863 --
864 [role="term"]
865 ----
866 sudo lttng stop
867 sudo lttng destroy
868 ----
869 --
870 +
871 The man:lttng-destroy(1) command does not destroy the trace data; it
872 only destroys the state of the tracing session.
873
874 . For the sake of this example, make the recorded trace accessible to
875 the non-root users:
876 +
877 --
878 [role="term"]
879 ----
880 sudo chown -R $(whoami) /tmp/my-kernel-trace
881 ----
882 --
883
884 See <<viewing-and-analyzing-your-traces,View and analyze the
885 recorded events>> to view the recorded events.
886
887
888 [[tracing-your-own-user-application]]
889 === Trace a user application
890
891 This section steps you through a simple example to trace a
892 _Hello world_ program written in C.
893
894 To create the traceable user application:
895
896 . Create the tracepoint provider header file, which defines the
897 tracepoints and the events they can generate:
898 +
899 --
900 [source,c]
901 .path:{hello-tp.h}
902 ----
903 #undef TRACEPOINT_PROVIDER
904 #define TRACEPOINT_PROVIDER hello_world
905
906 #undef TRACEPOINT_INCLUDE
907 #define TRACEPOINT_INCLUDE "./hello-tp.h"
908
909 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
910 #define _HELLO_TP_H
911
912 #include <lttng/tracepoint.h>
913
914 TRACEPOINT_EVENT(
915 hello_world,
916 my_first_tracepoint,
917 TP_ARGS(
918 int, my_integer_arg,
919 char*, my_string_arg
920 ),
921 TP_FIELDS(
922 ctf_string(my_string_field, my_string_arg)
923 ctf_integer(int, my_integer_field, my_integer_arg)
924 )
925 )
926
927 #endif /* _HELLO_TP_H */
928
929 #include <lttng/tracepoint-event.h>
930 ----
931 --
932
933 . Create the tracepoint provider package source file:
934 +
935 --
936 [source,c]
937 .path:{hello-tp.c}
938 ----
939 #define TRACEPOINT_CREATE_PROBES
940 #define TRACEPOINT_DEFINE
941
942 #include "hello-tp.h"
943 ----
944 --
945
946 . Build the tracepoint provider package:
947 +
948 --
949 [role="term"]
950 ----
951 $ gcc -c -I. hello-tp.c
952 ----
953 --
954
955 . Create the _Hello World_ application source file:
956 +
957 --
958 [source,c]
959 .path:{hello.c}
960 ----
961 #include <stdio.h>
962 #include "hello-tp.h"
963
964 int main(int argc, char *argv[])
965 {
966 int x;
967
968 puts("Hello, World!\nPress Enter to continue...");
969
970 /*
971 * The following getchar() call is only placed here for the purpose
972 * of this demonstration, to pause the application in order for
973 * you to have time to list its tracepoints. It is not
974 * needed otherwise.
975 */
976 getchar();
977
978 /*
979 * A tracepoint() call.
980 *
981 * Arguments, as defined in hello-tp.h:
982 *
983 * 1. Tracepoint provider name (required)
984 * 2. Tracepoint name (required)
985 * 3. my_integer_arg (first user-defined argument)
986 * 4. my_string_arg (second user-defined argument)
987 *
988 * Notice the tracepoint provider and tracepoint names are
989 * NOT strings: they are in fact parts of variables that the
990 * macros in hello-tp.h create.
991 */
992 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
993
994 for (x = 0; x < argc; ++x) {
995 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
996 }
997
998 puts("Quitting now!");
999 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
1000
1001 return 0;
1002 }
1003 ----
1004 --
1005
1006 . Build the application:
1007 +
1008 --
1009 [role="term"]
1010 ----
1011 $ gcc -c hello.c
1012 ----
1013 --
1014
1015 . Link the application with the tracepoint provider package,
1016 `liblttng-ust`, and `libdl`:
1017 +
1018 --
1019 [role="term"]
1020 ----
1021 $ gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
1022 ----
1023 --
1024
1025 Here's the whole build process:
1026
1027 [role="img-100"]
1028 .User space tracing tutorial's build steps.
1029 image::ust-flow.png[]
1030
1031 To trace the user application:
1032
1033 . Run the application with a few arguments:
1034 +
1035 --
1036 [role="term"]
1037 ----
1038 $ ./hello world and beyond
1039 ----
1040 --
1041 +
1042 You see:
1043 +
1044 --
1045 ----
1046 Hello, World!
1047 Press Enter to continue...
1048 ----
1049 --
1050
1051 . Start an LTTng <<lttng-sessiond,session daemon>>:
1052 +
1053 --
1054 [role="term"]
1055 ----
1056 $ lttng-sessiond --daemonize
1057 ----
1058 --
1059 +
1060 Note that a session daemon might already be running, for example as
1061 a service that the distribution's service manager started.
1062
1063 . List the available user space tracepoints:
1064 +
1065 --
1066 [role="term"]
1067 ----
1068 $ lttng list --userspace
1069 ----
1070 --
1071 +
1072 You see the `hello_world:my_first_tracepoint` tracepoint listed
1073 under the `./hello` process.
1074
1075 . Create a <<tracing-session,tracing session>>:
1076 +
1077 --
1078 [role="term"]
1079 ----
1080 $ lttng create my-user-space-session
1081 ----
1082 --
1083
1084 . Create an <<event,event rule>> which matches the
1085 `hello_world:my_first_tracepoint` event name:
1086 +
1087 --
1088 [role="term"]
1089 ----
1090 $ lttng enable-event --userspace hello_world:my_first_tracepoint
1091 ----
1092 --
1093
1094 . <<basic-tracing-session-control,Start tracing>>:
1095 +
1096 --
1097 [role="term"]
1098 ----
1099 $ lttng start
1100 ----
1101 --
1102
1103 . Go back to the running `hello` application and press Enter. The
1104 program executes all `tracepoint()` instrumentation points and exits.
1105 . <<basic-tracing-session-control,Stop tracing>> and destroy the
1106 tracing session:
1107 +
1108 --
1109 [role="term"]
1110 ----
1111 $ lttng stop
1112 $ lttng destroy
1113 ----
1114 --
1115 +
1116 The man:lttng-destroy(1) command does not destroy the trace data; it
1117 only destroys the state of the tracing session.
1118
1119 By default, LTTng saves the traces in
1120 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
1121 where +__name__+ is the tracing session name. The
1122 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
1123
1124 See <<viewing-and-analyzing-your-traces,View and analyze the
1125 recorded events>> to view the recorded events.
1126
1127
1128 [[viewing-and-analyzing-your-traces]]
1129 === View and analyze the recorded events
1130
1131 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
1132 kernel>> and <<tracing-your-own-user-application,Trace a user
1133 application>> tutorials, you can inspect the recorded events.
1134
1135 Many tools are available to read LTTng traces:
1136
1137 * **cmd:babeltrace** is a command-line utility which converts trace
1138 formats; it supports the format that LTTng produces, CTF, as well as a
1139 basic text output which can be ++grep++ed. The cmd:babeltrace command
1140 is part of the http://diamon.org/babeltrace[Babeltrace] project.
1141 * Babeltrace also includes
1142 **https://www.python.org/[Python] bindings** so
1143 that you can easily open and read an LTTng trace with your own script,
1144 benefiting from the power of Python.
1145 * http://tracecompass.org/[**Trace Compass**]
1146 is a graphical user interface for viewing and analyzing any type of
1147 logs or traces, including LTTng's.
1148 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
1149 project which includes many high-level analyses of LTTng kernel
1150 traces, like scheduling statistics, interrupt frequency distribution,
1151 top CPU usage, and more.
1152
1153 NOTE: This section assumes that the traces recorded during the previous
1154 tutorials were saved to their default location, in the
1155 dir:{$LTTNG_HOME/lttng-traces} directory. The env:LTTNG_HOME
1156 environment variable defaults to `$HOME` if not set.
1157
1158
1159 [[viewing-and-analyzing-your-traces-bt]]
1160 ==== Use the cmd:babeltrace command-line tool
1161
1162 The simplest way to list all the recorded events of a trace is to pass
1163 its path to cmd:babeltrace with no options:
1164
1165 [role="term"]
1166 ----
1167 $ babeltrace ~/lttng-traces/my-user-space-session*
1168 ----
1169
1170 cmd:babeltrace finds all traces recursively within the given path and
1171 prints all their events, merging them in chronological order.
1172
1173 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
1174 further filtering:
1175
1176 [role="term"]
1177 ----
1178 $ babeltrace /tmp/my-kernel-trace | grep _switch
1179 ----
1180
1181 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
1182 count the recorded events:
1183
1184 [role="term"]
1185 ----
1186 $ babeltrace /tmp/my-kernel-trace | grep _open | wc --lines
1187 ----
1188
1189
1190 [[viewing-and-analyzing-your-traces-bt-python]]
1191 ==== Use the Babeltrace Python bindings
1192
1193 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
1194 is useful to isolate events by simple matching using man:grep(1) and
1195 similar utilities. However, more elaborate filters, such as keeping only
1196 event records with a field value falling within a specific range, are
1197 not trivial to write using a shell. Moreover, reductions and even the
1198 most basic computations involving multiple event records are virtually
1199 impossible to implement.
1200
1201 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
1202 to read the event records of an LTTng trace sequentially and compute the
1203 desired information.
1204
1205 The following script accepts an LTTng Linux kernel trace path as its
1206 first argument and prints the short names of the top 5 running processes
1207 on CPU 0 during the whole trace:
1208
1209 [source,python]
1210 .path:{top5proc.py}
1211 ----
1212 from collections import Counter
1213 import babeltrace
1214 import sys
1215
1216
1217 def top5proc():
1218 if len(sys.argv) != 2:
1219 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
1220 print(msg, file=sys.stderr)
1221 return False
1222
1223 # A trace collection contains one or more traces
1224 col = babeltrace.TraceCollection()
1225
1226 # Add the trace provided by the user (LTTng traces always have
1227 # the 'ctf' format)
1228 if col.add_trace(sys.argv[1], 'ctf') is None:
1229 raise RuntimeError('Cannot add trace')
1230
1231 # This counter dict contains execution times:
1232 #
1233 # task command name -> total execution time (ns)
1234 exec_times = Counter()
1235
1236 # This contains the last `sched_switch` timestamp
1237 last_ts = None
1238
1239 # Iterate on events
1240 for event in col.events:
1241 # Keep only `sched_switch` events
1242 if event.name != 'sched_switch':
1243 continue
1244
1245 # Keep only events which happened on CPU 0
1246 if event['cpu_id'] != 0:
1247 continue
1248
1249 # Event timestamp
1250 cur_ts = event.timestamp
1251
1252 if last_ts is None:
1253 # We start here
1254 last_ts = cur_ts
1255
1256 # Previous task command (short) name
1257 prev_comm = event['prev_comm']
1258
1259 # Initialize entry in our dict if not yet done
1260 if prev_comm not in exec_times:
1261 exec_times[prev_comm] = 0
1262
1263 # Compute previous command execution time
1264 diff = cur_ts - last_ts
1265
1266 # Update execution time of this command
1267 exec_times[prev_comm] += diff
1268
1269 # Update last timestamp
1270 last_ts = cur_ts
1271
1272 # Display top 5
1273 for name, ns in exec_times.most_common(5):
1274 s = ns / 1000000000
1275 print('{:20}{} s'.format(name, s))
1276
1277 return True
1278
1279
1280 if __name__ == '__main__':
1281 sys.exit(0 if top5proc() else 1)
1282 ----
1283
1284 Run this script:
1285
1286 [role="term"]
1287 ----
1288 $ python3 top5proc.py /tmp/my-kernel-trace/kernel
1289 ----
1290
1291 Output example:
1292
1293 ----
1294 swapper/0 48.607245889 s
1295 chromium 7.192738188 s
1296 pavucontrol 0.709894415 s
1297 Compositor 0.660867933 s
1298 Xorg.bin 0.616753786 s
1299 ----
1300
1301 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1302 weren't using the CPU that much when tracing, its first position in the
1303 list makes sense.
1304
1305
1306 [[core-concepts]]
1307 == [[understanding-lttng]]Core concepts
1308
1309 From a user's perspective, the LTTng system is built on a few concepts,
1310 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1311 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1312 Understanding how those objects relate to eachother is key in mastering
1313 the toolkit.
1314
1315 The core concepts are:
1316
1317 * <<tracing-session,Tracing session>>
1318 * <<domain,Tracing domain>>
1319 * <<channel,Channel and ring buffer>>
1320 * <<"event","Instrumentation point, event rule, event, and event record">>
1321
1322
1323 [[tracing-session]]
1324 === Tracing session
1325
1326 A _tracing session_ is a stateful dialogue between you and
1327 a <<lttng-sessiond,session daemon>>. You can
1328 <<creating-destroying-tracing-sessions,create a new tracing
1329 session>> with the `lttng create` command.
1330
1331 Anything that you do when you control LTTng tracers happens within a
1332 tracing session. In particular, a tracing session:
1333
1334 * Has its own name.
1335 * Has its own set of trace files.
1336 * Has its own state of activity (started or stopped).
1337 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1338 snapshot, or live).
1339 * Has its own <<channel,channels>> which have their own
1340 <<event,event rules>>.
1341
1342 [role="img-100"]
1343 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1344 image::concepts.png[]
1345
1346 Those attributes and objects are completely isolated between different
1347 tracing sessions.
1348
1349 A tracing session is analogous to a cash machine session:
1350 the operations you do on the banking system through the cash machine do
1351 not alter the data of other users of the same system. In the case of
1352 the cash machine, a session lasts as long as your bank card is inside.
1353 In the case of LTTng, a tracing session lasts from the `lttng create`
1354 command to the `lttng destroy` command.
1355
1356 [role="img-100"]
1357 .Each Unix user has its own set of tracing sessions.
1358 image::many-sessions.png[]
1359
1360
1361 [[tracing-session-mode]]
1362 ==== Tracing session mode
1363
1364 LTTng can send the generated trace data to different locations. The
1365 _tracing session mode_ dictates where to send it. The following modes
1366 are available in LTTng{nbsp}{revision}:
1367
1368 Local mode::
1369 LTTng writes the traces to the file system of the machine being traced
1370 (target system).
1371
1372 Network streaming mode::
1373 LTTng sends the traces over the network to a
1374 <<lttng-relayd,relay daemon>> running on a remote system.
1375
1376 Snapshot mode::
1377 LTTng does not write the traces by default. Instead, you can request
1378 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1379 current tracing buffers, and to write it to the target's file system
1380 or to send it over the network to a <<lttng-relayd,relay daemon>>
1381 running on a remote system.
1382
1383 Live mode::
1384 This mode is similar to the network streaming mode, but a live
1385 trace viewer can connect to the distant relay daemon to
1386 <<lttng-live,view event records as LTTng generates them>> by
1387 the tracers.
1388
1389
1390 [[domain]]
1391 === Tracing domain
1392
1393 A _tracing domain_ is a namespace for event sources. A tracing domain
1394 has its own properties and features.
1395
1396 There are currently five available tracing domains:
1397
1398 * Linux kernel
1399 * User space
1400 * `java.util.logging` (JUL)
1401 * log4j
1402 * Python
1403
1404 You must specify a tracing domain when using some commands to avoid
1405 ambiguity. For example, since all the domains support named tracepoints
1406 as event sources (instrumentation points that you manually insert in the
1407 source code), you need to specify a tracing domain when
1408 <<enabling-disabling-events,creating an event rule>> because all the
1409 tracing domains could have tracepoints with the same names.
1410
1411 Some features are reserved to specific tracing domains. Dynamic function
1412 entry and return instrumentation points, for example, are currently only
1413 supported in the Linux kernel tracing domain, but support for other
1414 tracing domains could be added in the future.
1415
1416 You can create <<channel,channels>> in the Linux kernel and user space
1417 tracing domains. The other tracing domains have a single default
1418 channel.
1419
1420
1421 [[channel]]
1422 === Channel and ring buffer
1423
1424 A _channel_ is an object which is responsible for a set of ring buffers.
1425 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1426 tracer emits an event, it can record it to one or more
1427 sub-buffers. The attributes of a channel determine what to do when
1428 there's no space left for a new event record because all sub-buffers
1429 are full, where to send a full sub-buffer, and other behaviours.
1430
1431 A channel is always associated to a <<domain,tracing domain>>. The
1432 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1433 a default channel which you cannot configure.
1434
1435 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1436 an event, it records it to the sub-buffers of all
1437 the enabled channels with a satisfied event rule, as long as those
1438 channels are part of active <<tracing-session,tracing sessions>>.
1439
1440
1441 [[channel-buffering-schemes]]
1442 ==== Per-user vs. per-process buffering schemes
1443
1444 A channel has at least one ring buffer _per CPU_. LTTng always
1445 records an event to the ring buffer associated to the CPU on which it
1446 occurred.
1447
1448 Two _buffering schemes_ are available when you
1449 <<enabling-disabling-channels,create a channel>> in the
1450 user space <<domain,tracing domain>>:
1451
1452 Per-user buffering::
1453 Allocate one set of ring buffers--one per CPU--shared by all the
1454 instrumented processes of each Unix user.
1455 +
1456 --
1457 [role="img-100"]
1458 .Per-user buffering scheme.
1459 image::per-user-buffering.png[]
1460 --
1461
1462 Per-process buffering::
1463 Allocate one set of ring buffers--one per CPU--for each
1464 instrumented process.
1465 +
1466 --
1467 [role="img-100"]
1468 .Per-process buffering scheme.
1469 image::per-process-buffering.png[]
1470 --
1471 +
1472 The per-process buffering scheme tends to consume more memory than the
1473 per-user option because systems generally have more instrumented
1474 processes than Unix users running instrumented processes. However, the
1475 per-process buffering scheme ensures that one process having a high
1476 event throughput won't fill all the shared sub-buffers of the same
1477 user, only its own.
1478
1479 The Linux kernel tracing domain has only one available buffering scheme
1480 which is to allocate a single set of ring buffers for the whole system.
1481 This scheme is similar to the per-user option, but with a single, global
1482 user "running" the kernel.
1483
1484
1485 [[channel-overwrite-mode-vs-discard-mode]]
1486 ==== Overwrite vs. discard event loss modes
1487
1488 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1489 arc in the following animation) of a specific channel's ring buffer.
1490 When there's no space left in a sub-buffer, the tracer marks it as
1491 consumable (red) and another, empty sub-buffer starts receiving the
1492 following event records. A <<lttng-consumerd,consumer daemon>>
1493 eventually consumes the marked sub-buffer (returns to white).
1494
1495 [NOTE]
1496 [role="docsvg-channel-subbuf-anim"]
1497 ====
1498 {note-no-anim}
1499 ====
1500
1501 In an ideal world, sub-buffers are consumed faster than they are filled,
1502 as is the case in the previous animation. In the real world,
1503 however, all sub-buffers can be full at some point, leaving no space to
1504 record the following events.
1505
1506 By design, LTTng is a _non-blocking_ tracer: when no empty sub-buffer is
1507 available, it is acceptable to lose event records when the alternative
1508 would be to cause substantial delays in the instrumented application's
1509 execution. LTTng privileges performance over integrity; it aims at
1510 perturbing the traced system as little as possible in order to make
1511 tracing of subtle race conditions and rare interrupt cascades possible.
1512
1513 When it comes to losing event records because no empty sub-buffer is
1514 available, the channel's _event loss mode_ determines what to do. The
1515 available event loss modes are:
1516
1517 Discard mode::
1518 Drop the newest event records until a the tracer
1519 releases a sub-buffer.
1520
1521 Overwrite mode::
1522 Clear the sub-buffer containing the oldest event records and start
1523 writing the newest event records there.
1524 +
1525 This mode is sometimes called _flight recorder mode_ because it's
1526 similar to a
1527 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1528 always keep a fixed amount of the latest data.
1529
1530 Which mechanism you should choose depends on your context: prioritize
1531 the newest or the oldest event records in the ring buffer?
1532
1533 Beware that, in overwrite mode, the tracer abandons a whole sub-buffer
1534 as soon as a there's no space left for a new event record, whereas in
1535 discard mode, the tracer only discards the event record that doesn't
1536 fit.
1537
1538 In discard mode, LTTng increments a count of lost event records when
1539 an event record is lost and saves this count to the trace. In
1540 overwrite mode, LTTng keeps no information when it overwrites a
1541 sub-buffer before consuming it.
1542
1543 There are a few ways to decrease your probability of losing event
1544 records.
1545 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1546 how you can fine-une the sub-buffer count and size of a channel to
1547 virtually stop losing event records, though at the cost of greater
1548 memory usage.
1549
1550
1551 [[channel-subbuf-size-vs-subbuf-count]]
1552 ==== Sub-buffer count and size
1553
1554 When you <<enabling-disabling-channels,create a channel>>, you can
1555 set its number of sub-buffers and their size.
1556
1557 Note that there is noticeable CPU overhead introduced when
1558 switching sub-buffers (marking a full one as consumable and switching
1559 to an empty one for the following events to be recorded). Knowing this,
1560 the following list presents a few practical situations along with how
1561 to configure the sub-buffer count and size for them:
1562
1563 * **High event throughput**: In general, prefer bigger sub-buffers to
1564 lower the risk of losing event records.
1565 +
1566 Having bigger sub-buffers also ensures a lower
1567 <<channel-switch-timer,sub-buffer switching frequency>>.
1568 +
1569 The number of sub-buffers is only meaningful if you create the channel
1570 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1571 other sub-buffers are left unaltered.
1572
1573 * **Low event throughput**: In general, prefer smaller sub-buffers
1574 since the risk of losing event records is low.
1575 +
1576 Because events occur less frequently, the sub-buffer switching frequency
1577 should remain low and thus the tracer's overhead should not be a
1578 problem.
1579
1580 * **Low memory system**: If your target system has a low memory
1581 limit, prefer fewer first, then smaller sub-buffers.
1582 +
1583 Even if the system is limited in memory, you want to keep the
1584 sub-buffers as big as possible to avoid a high sub-buffer switching
1585 frequency.
1586
1587 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1588 which means event data is very compact. For example, the average
1589 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1590 sub-buffer size of 1{nbsp}MiB is considered big.
1591
1592 The previous situations highlight the major trade-off between a few big
1593 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1594 frequency vs. how much data is lost in overwrite mode. Assuming a
1595 constant event throughput and using the overwrite mode, the two
1596 following configurations have the same ring buffer total size:
1597
1598 [NOTE]
1599 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1600 ====
1601 {note-no-anim}
1602 ====
1603
1604 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1605 switching frequency, but if a sub-buffer overwrite happens, half of
1606 the event records so far (4{nbsp}MiB) are definitely lost.
1607 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1608 overhead as the previous configuration, but if a sub-buffer
1609 overwrite happens, only the eighth of event records so far are
1610 definitely lost.
1611
1612 In discard mode, the sub-buffers count parameter is pointless: use two
1613 sub-buffers and set their size according to the requirements of your
1614 situation.
1615
1616
1617 [[channel-switch-timer]]
1618 ==== Switch timer period
1619
1620 The _switch timer period_ is an important configurable attribute of
1621 a channel to ensure periodic sub-buffer flushing.
1622
1623 When the _switch timer_ expires, a sub-buffer switch happens. You can
1624 set the switch timer period attribute when you
1625 <<enabling-disabling-channels,create a channel>> to ensure that event
1626 data is consumed and committed to trace files or to a distant relay
1627 daemon periodically in case of a low event throughput.
1628
1629 [NOTE]
1630 [role="docsvg-channel-switch-timer"]
1631 ====
1632 {note-no-anim}
1633 ====
1634
1635 This attribute is also convenient when you use big sub-buffers to cope
1636 with a sporadic high event throughput, even if the throughput is
1637 normally low.
1638
1639
1640 [[channel-read-timer]]
1641 ==== Read timer period
1642
1643 By default, the LTTng tracers use a notification mechanism to signal a
1644 full sub-buffer so that a consumer daemon can consume it. When such
1645 notifications must be avoided, for example in real-time applications,
1646 you can use the channel's _read timer_ instead. When the read timer
1647 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1648 consumable sub-buffers.
1649
1650
1651 [[tracefile-rotation]]
1652 ==== Trace file count and size
1653
1654 By default, trace files can grow as large as needed. You can set the
1655 maximum size of each trace file that a channel writes when you
1656 <<enabling-disabling-channels,create a channel>>. When the size of
1657 a trace file reaches the channel's fixed maximum size, LTTng creates
1658 another file to contain the next event records. LTTng appends a file
1659 count to each trace file name in this case.
1660
1661 If you set the trace file size attribute when you create a channel, the
1662 maximum number of trace files that LTTng creates is _unlimited_ by
1663 default. To limit them, you can also set a maximum number of trace
1664 files. When the number of trace files reaches the channel's fixed
1665 maximum count, the oldest trace file is overwritten. This mechanism is
1666 called _trace file rotation_.
1667
1668
1669 [[event]]
1670 === Instrumentation point, event rule, event, and event record
1671
1672 An _event rule_ is a set of conditions which must be **all** satisfied
1673 for LTTng to record an occuring event.
1674
1675 You set the conditions when you <<enabling-disabling-events,create
1676 an event rule>>.
1677
1678 You always attach an event rule to <<channel,channel>> when you create
1679 it.
1680
1681 When an event passes the conditions of an event rule, LTTng records it
1682 in one of the attached channel's sub-buffers.
1683
1684 The available conditions, as of LTTng{nbsp}{revision}, are:
1685
1686 * The event rule _is enabled_.
1687 * The instrumentation point's type _is{nbsp}T_.
1688 * The instrumentation point's name (sometimes called _event name_)
1689 _matches{nbsp}N_, but _is not{nbsp}E_.
1690 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1691 _is exactly{nbsp}L_.
1692 * The fields of the event's payload _satisfy_ a filter
1693 expression{nbsp}__F__.
1694
1695 As you can see, all the conditions but the dynamic filter are related to
1696 the event rule's status or to the instrumentation point, not to the
1697 occurring events. This is why, without a filter, checking if an event
1698 passes an event rule is not a dynamic task: when you create or modify an
1699 event rule, all the tracers of its tracing domain enable or disable the
1700 instrumentation points themselves once. This is possible because the
1701 attributes of an instrumentation point (type, name, and log level) are
1702 defined statically. In other words, without a dynamic filter, the tracer
1703 _does not evaluate_ the arguments of an instrumentation point unless it
1704 matches an enabled event rule.
1705
1706 Note that, for LTTng to record an event, the <<channel,channel>> to
1707 which a matching event rule is attached must also be enabled, and the
1708 tracing session owning this channel must be active.
1709
1710 [role="img-100"]
1711 .Logical path from an instrumentation point to an event record.
1712 image::event-rule.png[]
1713
1714 .Event, event record, or event rule?
1715 ****
1716 With so many similar terms, it's easy to get confused.
1717
1718 An **event** is the consequence of the execution of an _instrumentation
1719 point_, like a tracepoint that you manually place in some source code,
1720 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1721 time. Different actions can be taken upon the occurrence of an event,
1722 like record the event's payload to a buffer.
1723
1724 An **event record** is the representation of an event in a sub-buffer. A
1725 tracer is responsible for capturing the payload of an event, current
1726 context variables, the event's ID, and the event's timestamp. LTTng
1727 can append this sub-buffer to a trace file.
1728
1729 An **event rule** is a set of conditions which must all be satisfied for
1730 LTTng to record an occuring event. Events still occur without
1731 satisfying event rules, but LTTng does not record them.
1732 ****
1733
1734
1735 [[plumbing]]
1736 == Components of noch:{LTTng}
1737
1738 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1739 to call LTTng a simple _tool_ since it is composed of multiple
1740 interacting components. This section describes those components,
1741 explains their respective roles, and shows how they connect together to
1742 form the LTTng ecosystem.
1743
1744 The following diagram shows how the most important components of LTTng
1745 interact with user applications, the Linux kernel, and you:
1746
1747 [role="img-100"]
1748 .Control and trace data paths between LTTng components.
1749 image::plumbing.png[]
1750
1751 The LTTng project incorporates:
1752
1753 * **LTTng-tools**: Libraries and command-line interface to
1754 control tracing sessions.
1755 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1756 ** <<lttng-consumerd,Consumer daemon>> (man:lttng-consumerd(8)).
1757 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1758 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1759 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1760 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1761 applications.
1762 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1763 headers to instrument and trace any native user application.
1764 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1765 *** `liblttng-ust-libc-wrapper`
1766 *** `liblttng-ust-pthread-wrapper`
1767 *** `liblttng-ust-cyg-profile`
1768 *** `liblttng-ust-cyg-profile-fast`
1769 *** `liblttng-ust-dl`
1770 ** User space tracepoint provider source files generator command-line
1771 tool (man:lttng-gen-tp(1)).
1772 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1773 Java applications using `java.util.logging` or
1774 Apache log4j 1.2 logging.
1775 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1776 Python applications using the standard `logging` package.
1777 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1778 the kernel.
1779 ** LTTng kernel tracer module.
1780 ** Tracing ring buffer kernel modules.
1781 ** Probe kernel modules.
1782 ** LTTng logger kernel module.
1783
1784
1785 [[lttng-cli]]
1786 === Tracing control command-line interface
1787
1788 [role="img-100"]
1789 .The tracing control command-line interface.
1790 image::plumbing-lttng-cli.png[]
1791
1792 The _man:lttng(1) command-line tool_ is the standard user interface to
1793 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1794 is part of LTTng-tools.
1795
1796 The cmd:lttng tool is linked with
1797 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1798 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1799
1800 The cmd:lttng tool has a Git-like interface:
1801
1802 [role="term"]
1803 ----
1804 $ lttng <GENERAL OPTIONS> <COMMAND> <COMMAND OPTIONS>
1805 ----
1806
1807 The <<controlling-tracing,Tracing control>> section explores the
1808 available features of LTTng using the cmd:lttng tool.
1809
1810
1811 [[liblttng-ctl-lttng]]
1812 === Tracing control library
1813
1814 [role="img-100"]
1815 .The tracing control library.
1816 image::plumbing-liblttng-ctl.png[]
1817
1818 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1819 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1820 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1821
1822 The <<lttng-cli,cmd:lttng command-line tool>>
1823 is linked with `liblttng-ctl`.
1824
1825 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1826 "master" header:
1827
1828 [source,c]
1829 ----
1830 #include <lttng/lttng.h>
1831 ----
1832
1833 Some objects are referenced by name (C string), such as tracing
1834 sessions, but most of them require to create a handle first using
1835 `lttng_create_handle()`.
1836
1837 The best available developer documentation for `liblttng-ctl` is, as of
1838 LTTng{nbsp}{revision}, its installed header files. Every function and
1839 structure is thoroughly documented.
1840
1841
1842 [[lttng-ust]]
1843 === User space tracing library
1844
1845 [role="img-100"]
1846 .The user space tracing library.
1847 image::plumbing-liblttng-ust.png[]
1848
1849 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1850 is the LTTng user space tracer. It receives commands from a
1851 <<lttng-sessiond,session daemon>>, for example to
1852 enable and disable specific instrumentation points, and writes event
1853 records to ring buffers shared with a
1854 <<lttng-consumerd,consumer daemon>>.
1855 `liblttng-ust` is part of LTTng-UST.
1856
1857 Public C header files are installed beside `liblttng-ust` to
1858 instrument any <<c-application,C or $$C++$$ application>>.
1859
1860 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1861 packages, use their own library providing tracepoints which is
1862 linked with `liblttng-ust`.
1863
1864 An application or library does not have to initialize `liblttng-ust`
1865 manually: its constructor does the necessary tasks to properly register
1866 to a session daemon. The initialization phase also enables the
1867 instrumentation points matching the <<event,event rules>> that you
1868 already created.
1869
1870
1871 [[lttng-ust-agents]]
1872 === User space tracing agents
1873
1874 [role="img-100"]
1875 .The user space tracing agents.
1876 image::plumbing-lttng-ust-agents.png[]
1877
1878 The _LTTng-UST Java and Python agents_ are regular Java and Python
1879 packages which add LTTng tracing capabilities to the
1880 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1881
1882 In the case of Java, the
1883 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1884 core logging facilities] and
1885 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1886 Note that Apache Log4{nbsp}2 is not supported.
1887
1888 In the case of Python, the standard
1889 https://docs.python.org/3/library/logging.html[`logging`] package
1890 is supported. Both Python 2 and Python 3 modules can import the
1891 LTTng-UST Python agent package.
1892
1893 The applications using the LTTng-UST agents are in the
1894 `java.util.logging` (JUL),
1895 log4j, and Python <<domain,tracing domains>>.
1896
1897 Both agents use the same mechanism to trace the log statements. When an
1898 agent is initialized, it creates a log handler that attaches to the root
1899 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1900 When the application executes a log statement, it is passed to the
1901 agent's log handler by the root logger. The agent's log handler calls a
1902 native function in a tracepoint provider package shared library linked
1903 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1904 other fields, like its logger name and its log level. This native
1905 function contains a user space instrumentation point, hence tracing the
1906 log statement.
1907
1908 The log level condition of an
1909 <<event,event rule>> is considered when tracing
1910 a Java or a Python application, and it's compatible with the standard
1911 JUL, log4j, and Python log levels.
1912
1913
1914 [[lttng-modules]]
1915 === LTTng kernel modules
1916
1917 [role="img-100"]
1918 .The LTTng kernel modules.
1919 image::plumbing-lttng-modules.png[]
1920
1921 The _LTTng kernel modules_ are a set of Linux kernel modules
1922 which implement the kernel tracer of the LTTng project. The LTTng
1923 kernel modules are part of LTTng-modules.
1924
1925 The LTTng kernel modules include:
1926
1927 * A set of _probe_ modules.
1928 +
1929 Each module attaches to a specific subsystem
1930 of the Linux kernel using its tracepoint instrument points. There are
1931 also modules to attach to the entry and return points of the Linux
1932 system call functions.
1933
1934 * _Ring buffer_ modules.
1935 +
1936 A ring buffer implementation is provided as kernel modules. The LTTng
1937 kernel tracer writes to the ring buffer; a
1938 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1939
1940 * The _LTTng kernel tracer_ module.
1941 * The _LTTng logger_ module.
1942 +
1943 The LTTng logger module implements the special path:{/proc/lttng-logger}
1944 file so that any executable can generate LTTng events by opening and
1945 writing to this file.
1946 +
1947 See <<proc-lttng-logger-abi,LTTng logger>>.
1948
1949 Generally, you do not have to load the LTTng kernel modules manually
1950 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1951 daemon>> loads the necessary modules when starting. If you have extra
1952 probe modules, you can specify to load them to the session daemon on
1953 the command line.
1954
1955 The LTTng kernel modules are installed in
1956 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1957 the kernel release (see `uname --kernel-release`).
1958
1959
1960 [[lttng-sessiond]]
1961 === Session daemon
1962
1963 [role="img-100"]
1964 .The session daemon.
1965 image::plumbing-sessiond.png[]
1966
1967 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1968 managing tracing sessions and for controlling the various components of
1969 LTTng. The session daemon is part of LTTng-tools.
1970
1971 The session daemon sends control requests to and receives control
1972 responses from:
1973
1974 * The <<lttng-ust,user space tracing library>>.
1975 +
1976 Any instance of the user space tracing library first registers to
1977 a session daemon. Then, the session daemon can send requests to
1978 this instance, such as:
1979 +
1980 --
1981 ** Get the list of tracepoints.
1982 ** Share an <<event,event rule>> so that the user space tracing library
1983 can enable or disable tracepoints. Amongst the possible conditions
1984 of an event rule is a filter expression which `liblttng-ust` evalutes
1985 when an event occurs.
1986 ** Share <<channel,channel>> attributes and ring buffer locations.
1987 --
1988 +
1989 The session daemon and the user space tracing library use a Unix
1990 domain socket for their communication.
1991
1992 * The <<lttng-ust-agents,user space tracing agents>>.
1993 +
1994 Any instance of a user space tracing agent first registers to
1995 a session daemon. Then, the session daemon can send requests to
1996 this instance, such as:
1997 +
1998 --
1999 ** Get the list of loggers.
2000 ** Enable or disable a specific logger.
2001 --
2002 +
2003 The session daemon and the user space tracing agent use a TCP connection
2004 for their communication.
2005
2006 * The <<lttng-modules,LTTng kernel tracer>>.
2007 * The <<lttng-consumerd,consumer daemon>>.
2008 +
2009 The session daemon sends requests to the consumer daemon to instruct
2010 it where to send the trace data streams, amongst other information.
2011
2012 * The <<lttng-relayd,relay daemon>>.
2013
2014 The session daemon receives commands from the
2015 <<liblttng-ctl-lttng,tracing control library>>.
2016
2017 The root session daemon loads the appropriate
2018 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
2019 a <<lttng-consumerd,consumer daemon>> as soon as you create
2020 an <<event,event rule>>.
2021
2022 The session daemon does not send and receive trace data: this is the
2023 role of the <<lttng-consumerd,consumer daemon>> and
2024 <<lttng-relayd,relay daemon>>. It does, however, generate the
2025 http://diamon.org/ctf/[CTF] metadata stream.
2026
2027 Each Unix user can have its own session daemon instance. The
2028 tracing sessions managed by different session daemons are completely
2029 independent.
2030
2031 The root user's session daemon is the only one which is
2032 allowed to control the LTTng kernel tracer, and its spawned consumer
2033 daemon is the only one which is allowed to consume trace data from the
2034 LTTng kernel tracer. Note, however, that any Unix user which is a member
2035 of the <<tracing-group,tracing group>> is allowed
2036 to create <<channel,channels>> in the
2037 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
2038 kernel.
2039
2040 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
2041 session daemon when using its `create` command if none is currently
2042 running. You can also start the session daemon manually.
2043
2044
2045 [[lttng-consumerd]]
2046 === Consumer daemon
2047
2048 [role="img-100"]
2049 .The consumer daemon.
2050 image::plumbing-consumerd.png[]
2051
2052 The _consumer daemon_, man:lttng-consumerd(8), is a daemon which shares
2053 ring buffers with user applications or with the LTTng kernel modules to
2054 collect trace data and send it to some location (on disk or to a
2055 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
2056 is part of LTTng-tools.
2057
2058 You do not start a consumer daemon manually: a consumer daemon is always
2059 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
2060 <<event,event rule>>, that is, before you start tracing. When you kill
2061 its owner session daemon, the consumer daemon also exits because it is
2062 the session daemon's child process. Command-line options of
2063 man:lttng-sessiond(8) target the consumer daemon process.
2064
2065 There are up to two running consumer daemons per Unix user, whereas only
2066 one session daemon can run per user. This is because each process can be
2067 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
2068 and 64-bit processes, it is more efficient to have separate
2069 corresponding 32-bit and 64-bit consumer daemons. The root user is an
2070 exception: it can have up to _three_ running consumer daemons: 32-bit
2071 and 64-bit instances for its user applications, and one more
2072 reserved for collecting kernel trace data.
2073
2074
2075 [[lttng-relayd]]
2076 === Relay daemon
2077
2078 [role="img-100"]
2079 .The relay daemon.
2080 image::plumbing-relayd.png[]
2081
2082 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
2083 between remote session and consumer daemons, local trace files, and a
2084 remote live trace viewer. The relay daemon is part of LTTng-tools.
2085
2086 The main purpose of the relay daemon is to implement a receiver of
2087 <<sending-trace-data-over-the-network,trace data over the network>>.
2088 This is useful when the target system does not have much file system
2089 space to record trace files locally.
2090
2091 The relay daemon is also a server to which a
2092 <<lttng-live,live trace viewer>> can
2093 connect. The live trace viewer sends requests to the relay daemon to
2094 receive trace data as the target system emits events. The
2095 communication protocol is named _LTTng live_; it is used over TCP
2096 connections.
2097
2098 Note that you can start the relay daemon on the target system directly.
2099 This is the setup of choice when the use case is to view events as
2100 the target system emits them without the need of a remote system.
2101
2102
2103 [[instrumenting]]
2104 == [[using-lttng]]Instrumentation
2105
2106 There are many examples of tracing and monitoring in our everyday life:
2107
2108 * You have access to real-time and historical weather reports and
2109 forecasts thanks to weather stations installed around the country.
2110 * You know your heart is safe thanks to an electrocardiogram.
2111 * You make sure not to drive your car too fast and to have enough fuel
2112 to reach your destination thanks to gauges visible on your dashboard.
2113
2114 All the previous examples have something in common: they rely on
2115 **instruments**. Without the electrodes attached to the surface of your
2116 body's skin, cardiac monitoring is futile.
2117
2118 LTTng, as a tracer, is no different from those real life examples. If
2119 you're about to trace a software system or, in other words, record its
2120 history of execution, you better have **instrumentation points** in the
2121 subject you're tracing, that is, the actual software.
2122
2123 Various ways were developed to instrument a piece of software for LTTng
2124 tracing. The most straightforward one is to manually place
2125 instrumentation points, called _tracepoints_, in the software's source
2126 code. It is also possible to add instrumentation points dynamically in
2127 the Linux kernel <<domain,tracing domain>>.
2128
2129 If you're only interested in tracing the Linux kernel, your
2130 instrumentation needs are probably already covered by LTTng's built-in
2131 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
2132 user application which is already instrumented for LTTng tracing.
2133 In such cases, you can skip this whole section and read the topics of
2134 the <<controlling-tracing,Tracing control>> section.
2135
2136 Many methods are available to instrument a piece of software for LTTng
2137 tracing. They are:
2138
2139 * <<c-application,User space instrumentation for C and $$C++$$
2140 applications>>.
2141 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
2142 * <<java-application,User space Java agent>>.
2143 * <<python-application,User space Python agent>>.
2144 * <<proc-lttng-logger-abi,LTTng logger>>.
2145 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
2146
2147
2148 [[c-application]]
2149 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
2150
2151 The procedure to instrument a C or $$C++$$ user application with
2152 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
2153
2154 . <<tracepoint-provider,Create the source files of a tracepoint provider
2155 package>>.
2156 . <<probing-the-application-source-code,Add tracepoints to
2157 the application's source code>>.
2158 . <<building-tracepoint-providers-and-user-application,Build and link
2159 a tracepoint provider package and the user application>>.
2160
2161 If you need quick, man:printf(3)-like instrumentation, you can skip
2162 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
2163 instead.
2164
2165 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
2166 instrument a user application with `liblttng-ust`.
2167
2168
2169 [[tracepoint-provider]]
2170 ==== Create the source files of a tracepoint provider package
2171
2172 A _tracepoint provider_ is a set of compiled functions which provide
2173 **tracepoints** to an application, the type of instrumentation point
2174 supported by LTTng-UST. Those functions can emit events with
2175 user-defined fields and serialize those events as event records to one
2176 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
2177 macro, which you <<probing-the-application-source-code,insert in a user
2178 application's source code>>, calls those functions.
2179
2180 A _tracepoint provider package_ is an object file (`.o`) or a shared
2181 library (`.so`) which contains one or more tracepoint providers.
2182 Its source files are:
2183
2184 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
2185 * A <<tpp-source,tracepoint provider package source>> (`.c`).
2186
2187 A tracepoint provider package is dynamically linked with `liblttng-ust`,
2188 the LTTng user space tracer, at run time.
2189
2190 [role="img-100"]
2191 .User application linked with `liblttng-ust` and containing a tracepoint provider.
2192 image::ust-app.png[]
2193
2194 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
2195 skip creating and using a tracepoint provider and use
2196 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
2197
2198
2199 [[tpp-header]]
2200 ===== Create a tracepoint provider header file template
2201
2202 A _tracepoint provider header file_ contains the tracepoint
2203 definitions of a tracepoint provider.
2204
2205 To create a tracepoint provider header file:
2206
2207 . Start from this template:
2208 +
2209 --
2210 [source,c]
2211 .Tracepoint provider header file template (`.h` file extension).
2212 ----
2213 #undef TRACEPOINT_PROVIDER
2214 #define TRACEPOINT_PROVIDER provider_name
2215
2216 #undef TRACEPOINT_INCLUDE
2217 #define TRACEPOINT_INCLUDE "./tp.h"
2218
2219 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2220 #define _TP_H
2221
2222 #include <lttng/tracepoint.h>
2223
2224 /*
2225 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2226 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2227 */
2228
2229 #endif /* _TP_H */
2230
2231 #include <lttng/tracepoint-event.h>
2232 ----
2233 --
2234
2235 . Replace:
2236 +
2237 * `provider_name` with the name of your tracepoint provider.
2238 * `"tp.h"` with the name of your tracepoint provider header file.
2239
2240 . Below the `#include <lttng/tracepoint.h>` line, put your
2241 <<defining-tracepoints,tracepoint definitions>>.
2242
2243 Your tracepoint provider name must be unique amongst all the possible
2244 tracepoint provider names used on the same target system. We
2245 suggest to include the name of your project or company in the name,
2246 for example, `org_lttng_my_project_tpp`.
2247
2248 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2249 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2250 write are the <<defining-tracepoints,tracepoint definitions>>.
2251
2252
2253 [[defining-tracepoints]]
2254 ===== Create a tracepoint definition
2255
2256 A _tracepoint definition_ defines, for a given tracepoint:
2257
2258 * Its **input arguments**. They are the macro parameters that the
2259 `tracepoint()` macro accepts for this particular tracepoint
2260 in the user application's source code.
2261 * Its **output event fields**. They are the sources of event fields
2262 that form the payload of any event that the execution of the
2263 `tracepoint()` macro emits for this particular tracepoint.
2264
2265 You can create a tracepoint definition by using the
2266 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2267 line in the
2268 <<tpp-header,tracepoint provider header file template>>.
2269
2270 The syntax of the `TRACEPOINT_EVENT()` macro is:
2271
2272 [source,c]
2273 .`TRACEPOINT_EVENT()` macro syntax.
2274 ----
2275 TRACEPOINT_EVENT(
2276 /* Tracepoint provider name */
2277 provider_name,
2278
2279 /* Tracepoint name */
2280 tracepoint_name,
2281
2282 /* Input arguments */
2283 TP_ARGS(
2284 arguments
2285 ),
2286
2287 /* Output event fields */
2288 TP_FIELDS(
2289 fields
2290 )
2291 )
2292 ----
2293
2294 Replace:
2295
2296 * `provider_name` with your tracepoint provider name.
2297 * `tracepoint_name` with your tracepoint name.
2298 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2299 * `fields` with the <<tpp-def-output-fields,output event field>>
2300 definitions.
2301
2302 This tracepoint emits events named `provider_name:tracepoint_name`.
2303
2304 [IMPORTANT]
2305 .Event name's length limitation
2306 ====
2307 The concatenation of the tracepoint provider name and the
2308 tracepoint name must not exceed **254 characters**. If it does, the
2309 instrumented application compiles and runs, but LTTng throws multiple
2310 warnings and you could experience serious issues.
2311 ====
2312
2313 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2314
2315 [source,c]
2316 .`TP_ARGS()` macro syntax.
2317 ----
2318 TP_ARGS(
2319 type, arg_name
2320 )
2321 ----
2322
2323 Replace:
2324
2325 * `type` with the C type of the argument.
2326 * `arg_name` with the argument name.
2327
2328 You can repeat `type` and `arg_name` up to 10 times to have
2329 more than one argument.
2330
2331 .`TP_ARGS()` usage with three arguments.
2332 ====
2333 [source,c]
2334 ----
2335 TP_ARGS(
2336 int, count,
2337 float, ratio,
2338 const char*, query
2339 )
2340 ----
2341 ====
2342
2343 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2344 tracepoint definition with no input arguments.
2345
2346 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2347 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2348 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2349 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2350 one event field.
2351
2352 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2353 C expression that the tracer evalutes at the `tracepoint()` macro site
2354 in the application's source code. This expression provides a field's
2355 source of data. The argument expression can include input argument names
2356 listed in the `TP_ARGS()` macro.
2357
2358 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2359 must be unique within a given tracepoint definition.
2360
2361 Here's a complete tracepoint definition example:
2362
2363 .Tracepoint definition.
2364 ====
2365 The following tracepoint definition defines a tracepoint which takes
2366 three input arguments and has four output event fields.
2367
2368 [source,c]
2369 ----
2370 #include "my-custom-structure.h"
2371
2372 TRACEPOINT_EVENT(
2373 my_provider,
2374 my_tracepoint,
2375 TP_ARGS(
2376 const struct my_custom_structure*, my_custom_structure,
2377 float, ratio,
2378 const char*, query
2379 ),
2380 TP_FIELDS(
2381 ctf_string(query_field, query)
2382 ctf_float(double, ratio_field, ratio)
2383 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2384 ctf_integer(int, send_size, my_custom_structure->send_size)
2385 )
2386 )
2387 ----
2388
2389 You can refer to this tracepoint definition with the `tracepoint()`
2390 macro in your application's source code like this:
2391
2392 [source,c]
2393 ----
2394 tracepoint(my_provider, my_tracepoint,
2395 my_structure, some_ratio, the_query);
2396 ----
2397 ====
2398
2399 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2400 if they satisfy an enabled <<event,event rule>>.
2401
2402
2403 [[using-tracepoint-classes]]
2404 ===== Use a tracepoint class
2405
2406 A _tracepoint class_ is a class of tracepoints which share the same
2407 output event field definitions. A _tracepoint instance_ is one
2408 instance of such a defined tracepoint class, with its own tracepoint
2409 name.
2410
2411 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2412 shorthand which defines both a tracepoint class and a tracepoint
2413 instance at the same time.
2414
2415 When you build a tracepoint provider package, the C or $$C++$$ compiler
2416 creates one serialization function for each **tracepoint class**. A
2417 serialization function is responsible for serializing the event fields
2418 of a tracepoint to a sub-buffer when tracing.
2419
2420 For various performance reasons, when your situation requires multiple
2421 tracepoint definitions with different names, but with the same event
2422 fields, we recommend that you manually create a tracepoint class
2423 and instantiate as many tracepoint instances as needed. One positive
2424 effect of such a design, amongst other advantages, is that all
2425 tracepoint instances of the same tracepoint class reuse the same
2426 serialization function, thus reducing
2427 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2428
2429 .Use a tracepoint class and tracepoint instances.
2430 ====
2431 Consider the following three tracepoint definitions:
2432
2433 [source,c]
2434 ----
2435 TRACEPOINT_EVENT(
2436 my_app,
2437 get_account,
2438 TP_ARGS(
2439 int, userid,
2440 size_t, len
2441 ),
2442 TP_FIELDS(
2443 ctf_integer(int, userid, userid)
2444 ctf_integer(size_t, len, len)
2445 )
2446 )
2447
2448 TRACEPOINT_EVENT(
2449 my_app,
2450 get_settings,
2451 TP_ARGS(
2452 int, userid,
2453 size_t, len
2454 ),
2455 TP_FIELDS(
2456 ctf_integer(int, userid, userid)
2457 ctf_integer(size_t, len, len)
2458 )
2459 )
2460
2461 TRACEPOINT_EVENT(
2462 my_app,
2463 get_transaction,
2464 TP_ARGS(
2465 int, userid,
2466 size_t, len
2467 ),
2468 TP_FIELDS(
2469 ctf_integer(int, userid, userid)
2470 ctf_integer(size_t, len, len)
2471 )
2472 )
2473 ----
2474
2475 In this case, we create three tracepoint classes, with one implicit
2476 tracepoint instance for each of them: `get_account`, `get_settings`, and
2477 `get_transaction`. However, they all share the same event field names
2478 and types. Hence three identical, yet independent serialization
2479 functions are created when you build the tracepoint provider package.
2480
2481 A better design choice is to define a single tracepoint class and three
2482 tracepoint instances:
2483
2484 [source,c]
2485 ----
2486 /* The tracepoint class */
2487 TRACEPOINT_EVENT_CLASS(
2488 /* Tracepoint provider name */
2489 my_app,
2490
2491 /* Tracepoint class name */
2492 my_class,
2493
2494 /* Input arguments */
2495 TP_ARGS(
2496 int, userid,
2497 size_t, len
2498 ),
2499
2500 /* Output event fields */
2501 TP_FIELDS(
2502 ctf_integer(int, userid, userid)
2503 ctf_integer(size_t, len, len)
2504 )
2505 )
2506
2507 /* The tracepoint instances */
2508 TRACEPOINT_EVENT_INSTANCE(
2509 /* Tracepoint provider name */
2510 my_app,
2511
2512 /* Tracepoint class name */
2513 my_class,
2514
2515 /* Tracepoint name */
2516 get_account,
2517
2518 /* Input arguments */
2519 TP_ARGS(
2520 int, userid,
2521 size_t, len
2522 )
2523 )
2524 TRACEPOINT_EVENT_INSTANCE(
2525 my_app,
2526 my_class,
2527 get_settings,
2528 TP_ARGS(
2529 int, userid,
2530 size_t, len
2531 )
2532 )
2533 TRACEPOINT_EVENT_INSTANCE(
2534 my_app,
2535 my_class,
2536 get_transaction,
2537 TP_ARGS(
2538 int, userid,
2539 size_t, len
2540 )
2541 )
2542 ----
2543 ====
2544
2545
2546 [[assigning-log-levels]]
2547 ===== Assign a log level to a tracepoint definition
2548
2549 You can assign an optional _log level_ to a
2550 <<defining-tracepoints,tracepoint definition>>.
2551
2552 Assigning different levels of severity to tracepoint definitions can
2553 be useful: when you <<enabling-disabling-events,create an event rule>>,
2554 you can target tracepoints having a log level as severe as a specific
2555 value.
2556
2557 The concept of LTTng-UST log levels is similar to the levels found
2558 in typical logging frameworks:
2559
2560 * In a logging framework, the log level is given by the function
2561 or method name you use at the log statement site: `debug()`,
2562 `info()`, `warn()`, `error()`, and so on.
2563 * In LTTng-UST, you statically assign the log level to a tracepoint
2564 definition; any `tracepoint()` macro invocation which refers to
2565 this definition has this log level.
2566
2567 You can assign a log level to a tracepoint definition with the
2568 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2569 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2570 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2571 tracepoint.
2572
2573 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2574
2575 [source,c]
2576 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2577 ----
2578 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2579 ----
2580
2581 Replace:
2582
2583 * `provider_name` with the tracepoint provider name.
2584 * `tracepoint_name` with the tracepoint name.
2585 * `log_level` with the log level to assign to the tracepoint
2586 definition named `tracepoint_name` in the `provider_name`
2587 tracepoint provider.
2588 +
2589 See man:lttng-ust(3) for a list of available log level names.
2590
2591 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2592 ====
2593 [source,c]
2594 ----
2595 /* Tracepoint definition */
2596 TRACEPOINT_EVENT(
2597 my_app,
2598 get_transaction,
2599 TP_ARGS(
2600 int, userid,
2601 size_t, len
2602 ),
2603 TP_FIELDS(
2604 ctf_integer(int, userid, userid)
2605 ctf_integer(size_t, len, len)
2606 )
2607 )
2608
2609 /* Log level assignment */
2610 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2611 ----
2612 ====
2613
2614
2615 [[tpp-source]]
2616 ===== Create a tracepoint provider package source file
2617
2618 A _tracepoint provider package source file_ is a C source file which
2619 includes a <<tpp-header,tracepoint provider header file>> to expand its
2620 macros into event serialization and other functions.
2621
2622 You can always use the following tracepoint provider package source
2623 file template:
2624
2625 [source,c]
2626 .Tracepoint provider package source file template.
2627 ----
2628 #define TRACEPOINT_CREATE_PROBES
2629
2630 #include "tp.h"
2631 ----
2632
2633 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2634 header file>> name. You may also include more than one tracepoint
2635 provider header file here to create a tracepoint provider package
2636 holding more than one tracepoint providers.
2637
2638
2639 [[probing-the-application-source-code]]
2640 ==== Add tracepoints to an application's source code
2641
2642 Once you <<tpp-header,create a tracepoint provider header file>>, you
2643 can use the `tracepoint()` macro in your application's
2644 source code to insert the tracepoints that this header
2645 <<defining-tracepoints,defines>>.
2646
2647 The `tracepoint()` macro takes at least two parameters: the tracepoint
2648 provider name and the tracepoint name. The corresponding tracepoint
2649 definition defines the other parameters.
2650
2651 .`tracepoint()` usage.
2652 ====
2653 The following <<defining-tracepoints,tracepoint definition>> defines a
2654 tracepoint which takes two input arguments and has two output event
2655 fields.
2656
2657 [source,c]
2658 .Tracepoint provider header file.
2659 ----
2660 #include "my-custom-structure.h"
2661
2662 TRACEPOINT_EVENT(
2663 my_provider,
2664 my_tracepoint,
2665 TP_ARGS(
2666 int, argc,
2667 const char*, cmd_name
2668 ),
2669 TP_FIELDS(
2670 ctf_string(cmd_name, cmd_name)
2671 ctf_integer(int, number_of_args, argc)
2672 )
2673 )
2674 ----
2675
2676 You can refer to this tracepoint definition with the `tracepoint()`
2677 macro in your application's source code like this:
2678
2679 [source,c]
2680 .Application's source file.
2681 ----
2682 #include "tp.h"
2683
2684 int main(int argc, char* argv[])
2685 {
2686 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2687
2688 return 0;
2689 }
2690 ----
2691
2692 Note how the application's source code includes
2693 the tracepoint provider header file containing the tracepoint
2694 definitions to use, path:{tp.h}.
2695 ====
2696
2697 .`tracepoint()` usage with a complex tracepoint definition.
2698 ====
2699 Consider this complex tracepoint definition, where multiple event
2700 fields refer to the same input arguments in their argument expression
2701 parameter:
2702
2703 [source,c]
2704 .Tracepoint provider header file.
2705 ----
2706 /* For `struct stat` */
2707 #include <sys/types.h>
2708 #include <sys/stat.h>
2709 #include <unistd.h>
2710
2711 TRACEPOINT_EVENT(
2712 my_provider,
2713 my_tracepoint,
2714 TP_ARGS(
2715 int, my_int_arg,
2716 char*, my_str_arg,
2717 struct stat*, st
2718 ),
2719 TP_FIELDS(
2720 ctf_integer(int, my_constant_field, 23 + 17)
2721 ctf_integer(int, my_int_arg_field, my_int_arg)
2722 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2723 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2724 my_str_arg[2] + my_str_arg[3])
2725 ctf_string(my_str_arg_field, my_str_arg)
2726 ctf_integer_hex(off_t, size_field, st->st_size)
2727 ctf_float(double, size_dbl_field, (double) st->st_size)
2728 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2729 size_t, strlen(my_str_arg) / 2)
2730 )
2731 )
2732 ----
2733
2734 You can refer to this tracepoint definition with the `tracepoint()`
2735 macro in your application's source code like this:
2736
2737 [source,c]
2738 .Application's source file.
2739 ----
2740 #define TRACEPOINT_DEFINE
2741 #include "tp.h"
2742
2743 int main(void)
2744 {
2745 struct stat s;
2746
2747 stat("/etc/fstab", &s);
2748 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2749
2750 return 0;
2751 }
2752 ----
2753
2754 If you look at the event record that LTTng writes when tracing this
2755 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2756 it should look like this:
2757
2758 .Event record fields
2759 |====
2760 |Field's name |Field's value
2761 |`my_constant_field` |40
2762 |`my_int_arg_field` |23
2763 |`my_int_arg_field2` |529
2764 |`sum4_field` |389
2765 |`my_str_arg_field` |`Hello, World!`
2766 |`size_field` |0x12d
2767 |`size_dbl_field` |301.0
2768 |`half_my_str_arg_field` |`Hello,`
2769 |====
2770 ====
2771
2772 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2773 compute--they use the call stack, for example. To avoid this
2774 computation when the tracepoint is disabled, you can use the
2775 `tracepoint_enabled()` and `do_tracepoint()` macros.
2776
2777 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2778 is:
2779
2780 [source,c]
2781 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2782 ----
2783 tracepoint_enabled(provider_name, tracepoint_name)
2784 do_tracepoint(provider_name, tracepoint_name, ...)
2785 ----
2786
2787 Replace:
2788
2789 * `provider_name` with the tracepoint provider name.
2790 * `tracepoint_name` with the tracepoint name.
2791
2792 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2793 `tracepoint_name` from the provider named `provider_name` is enabled
2794 **at run time**.
2795
2796 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2797 if the tracepoint is enabled. Using `tracepoint()` with
2798 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2799 the `tracepoint_enabled()` check, thus a race condition is
2800 possible in this situation:
2801
2802 [source,c]
2803 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2804 ----
2805 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2806 stuff = prepare_stuff();
2807 }
2808
2809 tracepoint(my_provider, my_tracepoint, stuff);
2810 ----
2811
2812 If the tracepoint is enabled after the condition, then `stuff` is not
2813 prepared: the emitted event will either contain wrong data, or the whole
2814 application could crash (segmentation fault, for example).
2815
2816 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2817 `STAP_PROBEV()` call. If you need it, you must emit
2818 this call yourself.
2819
2820
2821 [[building-tracepoint-providers-and-user-application]]
2822 ==== Build and link a tracepoint provider package and an application
2823
2824 Once you have one or more <<tpp-header,tracepoint provider header
2825 files>> and a <<tpp-source,tracepoint provider package source file>>,
2826 you can create the tracepoint provider package by compiling its source
2827 file. From here, multiple build and run scenarios are possible. The
2828 following table shows common application and library configurations
2829 along with the required command lines to achieve them.
2830
2831 In the following diagrams, we use the following file names:
2832
2833 `app`::
2834 Executable application.
2835
2836 `app.o`::
2837 Application's object file.
2838
2839 `tpp.o`::
2840 Tracepoint provider package object file.
2841
2842 `tpp.a`::
2843 Tracepoint provider package archive file.
2844
2845 `libtpp.so`::
2846 Tracepoint provider package shared object file.
2847
2848 `emon.o`::
2849 User library object file.
2850
2851 `libemon.so`::
2852 User library shared object file.
2853
2854 We use the following symbols in the diagrams of table below:
2855
2856 [role="img-100"]
2857 .Symbols used in the build scenario diagrams.
2858 image::ust-sit-symbols.png[]
2859
2860 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2861 variable in the following instructions.
2862
2863 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2864 .Common tracepoint provider package scenarios.
2865 |====
2866 |Scenario |Instructions
2867
2868 |
2869 The instrumented application is statically linked with
2870 the tracepoint provider package object.
2871
2872 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2873
2874 |
2875 include::../common/ust-sit-step-tp-o.txt[]
2876
2877 To build the instrumented application:
2878
2879 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2880 +
2881 --
2882 [source,c]
2883 ----
2884 #define TRACEPOINT_DEFINE
2885 ----
2886 --
2887
2888 . Compile the application source file:
2889 +
2890 --
2891 [role="term"]
2892 ----
2893 $ gcc -c app.c
2894 ----
2895 --
2896
2897 . Build the application:
2898 +
2899 --
2900 [role="term"]
2901 ----
2902 $ gcc -o app app.o tpp.o -llttng-ust -ldl
2903 ----
2904 --
2905
2906 To run the instrumented application:
2907
2908 * Start the application:
2909 +
2910 --
2911 [role="term"]
2912 ----
2913 $ ./app
2914 ----
2915 --
2916
2917 |
2918 The instrumented application is statically linked with the
2919 tracepoint provider package archive file.
2920
2921 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2922
2923 |
2924 To create the tracepoint provider package archive file:
2925
2926 . Compile the <<tpp-source,tracepoint provider package source file>>:
2927 +
2928 --
2929 [role="term"]
2930 ----
2931 $ gcc -I. -c tpp.c
2932 ----
2933 --
2934
2935 . Create the tracepoint provider package archive file:
2936 +
2937 --
2938 [role="term"]
2939 ----
2940 $ ar rcs tpp.a tpp.o
2941 ----
2942 --
2943
2944 To build the instrumented application:
2945
2946 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2947 +
2948 --
2949 [source,c]
2950 ----
2951 #define TRACEPOINT_DEFINE
2952 ----
2953 --
2954
2955 . Compile the application source file:
2956 +
2957 --
2958 [role="term"]
2959 ----
2960 $ gcc -c app.c
2961 ----
2962 --
2963
2964 . Build the application:
2965 +
2966 --
2967 [role="term"]
2968 ----
2969 $ gcc -o app app.o tpp.a -llttng-ust -ldl
2970 ----
2971 --
2972
2973 To run the instrumented application:
2974
2975 * Start the application:
2976 +
2977 --
2978 [role="term"]
2979 ----
2980 $ ./app
2981 ----
2982 --
2983
2984 |
2985 The instrumented application is linked with the tracepoint provider
2986 package shared object.
2987
2988 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2989
2990 |
2991 include::../common/ust-sit-step-tp-so.txt[]
2992
2993 To build the instrumented application:
2994
2995 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2996 +
2997 --
2998 [source,c]
2999 ----
3000 #define TRACEPOINT_DEFINE
3001 ----
3002 --
3003
3004 . Compile the application source file:
3005 +
3006 --
3007 [role="term"]
3008 ----
3009 $ gcc -c app.c
3010 ----
3011 --
3012
3013 . Build the application:
3014 +
3015 --
3016 [role="term"]
3017 ----
3018 $ gcc -o app app.o -ldl -L. -ltpp
3019 ----
3020 --
3021
3022 To run the instrumented application:
3023
3024 * Start the application:
3025 +
3026 --
3027 [role="term"]
3028 ----
3029 $ ./app
3030 ----
3031 --
3032
3033 |
3034 The tracepoint provider package shared object is preloaded before the
3035 instrumented application starts.
3036
3037 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
3038
3039 |
3040 include::../common/ust-sit-step-tp-so.txt[]
3041
3042 To build the instrumented application:
3043
3044 . In path:{app.c}, before including path:{tpp.h}, add the
3045 following lines:
3046 +
3047 --
3048 [source,c]
3049 ----
3050 #define TRACEPOINT_DEFINE
3051 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3052 ----
3053 --
3054
3055 . Compile the application source file:
3056 +
3057 --
3058 [role="term"]
3059 ----
3060 $ gcc -c app.c
3061 ----
3062 --
3063
3064 . Build the application:
3065 +
3066 --
3067 [role="term"]
3068 ----
3069 $ gcc -o app app.o -ldl
3070 ----
3071 --
3072
3073 To run the instrumented application with tracing support:
3074
3075 * Preload the tracepoint provider package shared object and
3076 start the application:
3077 +
3078 --
3079 [role="term"]
3080 ----
3081 $ LD_PRELOAD=./libtpp.so ./app
3082 ----
3083 --
3084
3085 To run the instrumented application without tracing support:
3086
3087 * Start the application:
3088 +
3089 --
3090 [role="term"]
3091 ----
3092 $ ./app
3093 ----
3094 --
3095
3096 |
3097 The instrumented application dynamically loads the tracepoint provider
3098 package shared object.
3099
3100 See the <<dlclose-warning,warning about `dlclose()`>>.
3101
3102 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
3103
3104 |
3105 include::../common/ust-sit-step-tp-so.txt[]
3106
3107 To build the instrumented application:
3108
3109 . In path:{app.c}, before including path:{tpp.h}, add the
3110 following lines:
3111 +
3112 --
3113 [source,c]
3114 ----
3115 #define TRACEPOINT_DEFINE
3116 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3117 ----
3118 --
3119
3120 . Compile the application source file:
3121 +
3122 --
3123 [role="term"]
3124 ----
3125 $ gcc -c app.c
3126 ----
3127 --
3128
3129 . Build the application:
3130 +
3131 --
3132 [role="term"]
3133 ----
3134 $ gcc -o app app.o -ldl
3135 ----
3136 --
3137
3138 To run the instrumented application:
3139
3140 * Start the application:
3141 +
3142 --
3143 [role="term"]
3144 ----
3145 $ ./app
3146 ----
3147 --
3148
3149 |
3150 The application is linked with the instrumented user library.
3151
3152 The instrumented user library is statically linked with the tracepoint
3153 provider package object file.
3154
3155 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
3156
3157 |
3158 include::../common/ust-sit-step-tp-o-fpic.txt[]
3159
3160 To build the instrumented user library:
3161
3162 . In path:{emon.c}, before including path:{tpp.h}, add the
3163 following line:
3164 +
3165 --
3166 [source,c]
3167 ----
3168 #define TRACEPOINT_DEFINE
3169 ----
3170 --
3171
3172 . Compile the user library source file:
3173 +
3174 --
3175 [role="term"]
3176 ----
3177 $ gcc -I. -fpic -c emon.c
3178 ----
3179 --
3180
3181 . Build the user library shared object:
3182 +
3183 --
3184 [role="term"]
3185 ----
3186 $ gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
3187 ----
3188 --
3189
3190 To build the application:
3191
3192 . Compile the application source file:
3193 +
3194 --
3195 [role="term"]
3196 ----
3197 $ gcc -c app.c
3198 ----
3199 --
3200
3201 . Build the application:
3202 +
3203 --
3204 [role="term"]
3205 ----
3206 $ gcc -o app app.o -L. -lemon
3207 ----
3208 --
3209
3210 To run the application:
3211
3212 * Start the application:
3213 +
3214 --
3215 [role="term"]
3216 ----
3217 $ ./app
3218 ----
3219 --
3220
3221 |
3222 The application is linked with the instrumented user library.
3223
3224 The instrumented user library is linked with the tracepoint provider
3225 package shared object.
3226
3227 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3228
3229 |
3230 include::../common/ust-sit-step-tp-so.txt[]
3231
3232 To build the instrumented user library:
3233
3234 . In path:{emon.c}, before including path:{tpp.h}, add the
3235 following line:
3236 +
3237 --
3238 [source,c]
3239 ----
3240 #define TRACEPOINT_DEFINE
3241 ----
3242 --
3243
3244 . Compile the user library source file:
3245 +
3246 --
3247 [role="term"]
3248 ----
3249 $ gcc -I. -fpic -c emon.c
3250 ----
3251 --
3252
3253 . Build the user library shared object:
3254 +
3255 --
3256 [role="term"]
3257 ----
3258 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3259 ----
3260 --
3261
3262 To build the application:
3263
3264 . Compile the application source file:
3265 +
3266 --
3267 [role="term"]
3268 ----
3269 $ gcc -c app.c
3270 ----
3271 --
3272
3273 . Build the application:
3274 +
3275 --
3276 [role="term"]
3277 ----
3278 $ gcc -o app app.o -L. -lemon
3279 ----
3280 --
3281
3282 To run the application:
3283
3284 * Start the application:
3285 +
3286 --
3287 [role="term"]
3288 ----
3289 $ ./app
3290 ----
3291 --
3292
3293 |
3294 The tracepoint provider package shared object is preloaded before the
3295 application starts.
3296
3297 The application is linked with the instrumented user library.
3298
3299 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3300
3301 |
3302 include::../common/ust-sit-step-tp-so.txt[]
3303
3304 To build the instrumented user library:
3305
3306 . In path:{emon.c}, before including path:{tpp.h}, add the
3307 following lines:
3308 +
3309 --
3310 [source,c]
3311 ----
3312 #define TRACEPOINT_DEFINE
3313 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3314 ----
3315 --
3316
3317 . Compile the user library source file:
3318 +
3319 --
3320 [role="term"]
3321 ----
3322 $ gcc -I. -fpic -c emon.c
3323 ----
3324 --
3325
3326 . Build the user library shared object:
3327 +
3328 --
3329 [role="term"]
3330 ----
3331 $ gcc -shared -o libemon.so emon.o -ldl
3332 ----
3333 --
3334
3335 To build the application:
3336
3337 . Compile the application source file:
3338 +
3339 --
3340 [role="term"]
3341 ----
3342 $ gcc -c app.c
3343 ----
3344 --
3345
3346 . Build the application:
3347 +
3348 --
3349 [role="term"]
3350 ----
3351 $ gcc -o app app.o -L. -lemon
3352 ----
3353 --
3354
3355 To run the application with tracing support:
3356
3357 * Preload the tracepoint provider package shared object and
3358 start the application:
3359 +
3360 --
3361 [role="term"]
3362 ----
3363 $ LD_PRELOAD=./libtpp.so ./app
3364 ----
3365 --
3366
3367 To run the application without tracing support:
3368
3369 * Start the application:
3370 +
3371 --
3372 [role="term"]
3373 ----
3374 $ ./app
3375 ----
3376 --
3377
3378 |
3379 The application is linked with the instrumented user library.
3380
3381 The instrumented user library dynamically loads the tracepoint provider
3382 package shared object.
3383
3384 See the <<dlclose-warning,warning about `dlclose()`>>.
3385
3386 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3387
3388 |
3389 include::../common/ust-sit-step-tp-so.txt[]
3390
3391 To build the instrumented user library:
3392
3393 . In path:{emon.c}, before including path:{tpp.h}, add the
3394 following lines:
3395 +
3396 --
3397 [source,c]
3398 ----
3399 #define TRACEPOINT_DEFINE
3400 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3401 ----
3402 --
3403
3404 . Compile the user library source file:
3405 +
3406 --
3407 [role="term"]
3408 ----
3409 $ gcc -I. -fpic -c emon.c
3410 ----
3411 --
3412
3413 . Build the user library shared object:
3414 +
3415 --
3416 [role="term"]
3417 ----
3418 $ gcc -shared -o libemon.so emon.o -ldl
3419 ----
3420 --
3421
3422 To build the application:
3423
3424 . Compile the application source file:
3425 +
3426 --
3427 [role="term"]
3428 ----
3429 $ gcc -c app.c
3430 ----
3431 --
3432
3433 . Build the application:
3434 +
3435 --
3436 [role="term"]
3437 ----
3438 $ gcc -o app app.o -L. -lemon
3439 ----
3440 --
3441
3442 To run the application:
3443
3444 * Start the application:
3445 +
3446 --
3447 [role="term"]
3448 ----
3449 $ ./app
3450 ----
3451 --
3452
3453 |
3454 The application dynamically loads the instrumented user library.
3455
3456 The instrumented user library is linked with the tracepoint provider
3457 package shared object.
3458
3459 See the <<dlclose-warning,warning about `dlclose()`>>.
3460
3461 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3462
3463 |
3464 include::../common/ust-sit-step-tp-so.txt[]
3465
3466 To build the instrumented user library:
3467
3468 . In path:{emon.c}, before including path:{tpp.h}, add the
3469 following line:
3470 +
3471 --
3472 [source,c]
3473 ----
3474 #define TRACEPOINT_DEFINE
3475 ----
3476 --
3477
3478 . Compile the user library source file:
3479 +
3480 --
3481 [role="term"]
3482 ----
3483 $ gcc -I. -fpic -c emon.c
3484 ----
3485 --
3486
3487 . Build the user library shared object:
3488 +
3489 --
3490 [role="term"]
3491 ----
3492 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3493 ----
3494 --
3495
3496 To build the application:
3497
3498 . Compile the application source file:
3499 +
3500 --
3501 [role="term"]
3502 ----
3503 $ gcc -c app.c
3504 ----
3505 --
3506
3507 . Build the application:
3508 +
3509 --
3510 [role="term"]
3511 ----
3512 $ gcc -o app app.o -ldl -L. -lemon
3513 ----
3514 --
3515
3516 To run the application:
3517
3518 * Start the application:
3519 +
3520 --
3521 [role="term"]
3522 ----
3523 $ ./app
3524 ----
3525 --
3526
3527 |
3528 The application dynamically loads the instrumented user library.
3529
3530 The instrumented user library dynamically loads the tracepoint provider
3531 package shared object.
3532
3533 See the <<dlclose-warning,warning about `dlclose()`>>.
3534
3535 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3536
3537 |
3538 include::../common/ust-sit-step-tp-so.txt[]
3539
3540 To build the instrumented user library:
3541
3542 . In path:{emon.c}, before including path:{tpp.h}, add the
3543 following lines:
3544 +
3545 --
3546 [source,c]
3547 ----
3548 #define TRACEPOINT_DEFINE
3549 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3550 ----
3551 --
3552
3553 . Compile the user library source file:
3554 +
3555 --
3556 [role="term"]
3557 ----
3558 $ gcc -I. -fpic -c emon.c
3559 ----
3560 --
3561
3562 . Build the user library shared object:
3563 +
3564 --
3565 [role="term"]
3566 ----
3567 $ gcc -shared -o libemon.so emon.o -ldl
3568 ----
3569 --
3570
3571 To build the application:
3572
3573 . Compile the application source file:
3574 +
3575 --
3576 [role="term"]
3577 ----
3578 $ gcc -c app.c
3579 ----
3580 --
3581
3582 . Build the application:
3583 +
3584 --
3585 [role="term"]
3586 ----
3587 $ gcc -o app app.o -ldl -L. -lemon
3588 ----
3589 --
3590
3591 To run the application:
3592
3593 * Start the application:
3594 +
3595 --
3596 [role="term"]
3597 ----
3598 $ ./app
3599 ----
3600 --
3601
3602 |
3603 The tracepoint provider package shared object is preloaded before the
3604 application starts.
3605
3606 The application dynamically loads the instrumented user library.
3607
3608 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3609
3610 |
3611 include::../common/ust-sit-step-tp-so.txt[]
3612
3613 To build the instrumented user library:
3614
3615 . In path:{emon.c}, before including path:{tpp.h}, add the
3616 following lines:
3617 +
3618 --
3619 [source,c]
3620 ----
3621 #define TRACEPOINT_DEFINE
3622 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3623 ----
3624 --
3625
3626 . Compile the user library source file:
3627 +
3628 --
3629 [role="term"]
3630 ----
3631 $ gcc -I. -fpic -c emon.c
3632 ----
3633 --
3634
3635 . Build the user library shared object:
3636 +
3637 --
3638 [role="term"]
3639 ----
3640 $ gcc -shared -o libemon.so emon.o -ldl
3641 ----
3642 --
3643
3644 To build the application:
3645
3646 . Compile the application source file:
3647 +
3648 --
3649 [role="term"]
3650 ----
3651 $ gcc -c app.c
3652 ----
3653 --
3654
3655 . Build the application:
3656 +
3657 --
3658 [role="term"]
3659 ----
3660 $ gcc -o app app.o -L. -lemon
3661 ----
3662 --
3663
3664 To run the application with tracing support:
3665
3666 * Preload the tracepoint provider package shared object and
3667 start the application:
3668 +
3669 --
3670 [role="term"]
3671 ----
3672 $ LD_PRELOAD=./libtpp.so ./app
3673 ----
3674 --
3675
3676 To run the application without tracing support:
3677
3678 * Start the application:
3679 +
3680 --
3681 [role="term"]
3682 ----
3683 $ ./app
3684 ----
3685 --
3686
3687 |
3688 The application is statically linked with the tracepoint provider
3689 package object file.
3690
3691 The application is linked with the instrumented user library.
3692
3693 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3694
3695 |
3696 include::../common/ust-sit-step-tp-o.txt[]
3697
3698 To build the instrumented user library:
3699
3700 . In path:{emon.c}, before including path:{tpp.h}, add the
3701 following line:
3702 +
3703 --
3704 [source,c]
3705 ----
3706 #define TRACEPOINT_DEFINE
3707 ----
3708 --
3709
3710 . Compile the user library source file:
3711 +
3712 --
3713 [role="term"]
3714 ----
3715 $ gcc -I. -fpic -c emon.c
3716 ----
3717 --
3718
3719 . Build the user library shared object:
3720 +
3721 --
3722 [role="term"]
3723 ----
3724 $ gcc -shared -o libemon.so emon.o
3725 ----
3726 --
3727
3728 To build the application:
3729
3730 . Compile the application source file:
3731 +
3732 --
3733 [role="term"]
3734 ----
3735 $ gcc -c app.c
3736 ----
3737 --
3738
3739 . Build the application:
3740 +
3741 --
3742 [role="term"]
3743 ----
3744 $ gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3745 ----
3746 --
3747
3748 To run the instrumented application:
3749
3750 * Start the application:
3751 +
3752 --
3753 [role="term"]
3754 ----
3755 $ ./app
3756 ----
3757 --
3758
3759 |
3760 The application is statically linked with the tracepoint provider
3761 package object file.
3762
3763 The application dynamically loads the instrumented user library.
3764
3765 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3766
3767 |
3768 include::../common/ust-sit-step-tp-o.txt[]
3769
3770 To build the application:
3771
3772 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3773 +
3774 --
3775 [source,c]
3776 ----
3777 #define TRACEPOINT_DEFINE
3778 ----
3779 --
3780
3781 . Compile the application source file:
3782 +
3783 --
3784 [role="term"]
3785 ----
3786 $ gcc -c app.c
3787 ----
3788 --
3789
3790 . Build the application:
3791 +
3792 --
3793 [role="term"]
3794 ----
3795 $ gcc -Wl,--export-dynamic -o app app.o tpp.o \
3796 -llttng-ust -ldl
3797 ----
3798 --
3799 +
3800 The `--export-dynamic` option passed to the linker is necessary for the
3801 dynamically loaded library to ``see'' the tracepoint symbols defined in
3802 the application.
3803
3804 To build the instrumented user library:
3805
3806 . Compile the user library source file:
3807 +
3808 --
3809 [role="term"]
3810 ----
3811 $ gcc -I. -fpic -c emon.c
3812 ----
3813 --
3814
3815 . Build the user library shared object:
3816 +
3817 --
3818 [role="term"]
3819 ----
3820 $ gcc -shared -o libemon.so emon.o
3821 ----
3822 --
3823
3824 To run the application:
3825
3826 * Start the application:
3827 +
3828 --
3829 [role="term"]
3830 ----
3831 $ ./app
3832 ----
3833 --
3834 |====
3835
3836 [[dlclose-warning]]
3837 [IMPORTANT]
3838 .Do not use man:dlclose(3) on a tracepoint provider package
3839 ====
3840 Never use man:dlclose(3) on any shared object which:
3841
3842 * Is linked with, statically or dynamically, a tracepoint provider
3843 package.
3844 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3845 package shared object.
3846
3847 This is currently considered **unsafe** due to a lack of reference
3848 counting from LTTng-UST to the shared object.
3849
3850 A known workaround (available since glibc 2.2) is to use the
3851 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3852 effect of not unloading the loaded shared object, even if man:dlclose(3)
3853 is called.
3854
3855 You can also preload the tracepoint provider package shared object with
3856 the env:LD_PRELOAD environment variable to overcome this limitation.
3857 ====
3858
3859
3860 [[using-lttng-ust-with-daemons]]
3861 ===== Use noch:{LTTng-UST} with daemons
3862
3863 If your instrumented application calls man:fork(2), man:clone(2),
3864 or BSD's man:rfork(2), without a following man:exec(3)-family
3865 system call, you must preload the path:{liblttng-ust-fork.so} shared
3866 object when starting the application.
3867
3868 [role="term"]
3869 ----
3870 $ LD_PRELOAD=liblttng-ust-fork.so ./my-app
3871 ----
3872
3873 If your tracepoint provider package is
3874 a shared library which you also preload, you must put both
3875 shared objects in env:LD_PRELOAD:
3876
3877 [role="term"]
3878 ----
3879 $ LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3880 ----
3881
3882
3883 [[lttng-ust-pkg-config]]
3884 ===== Use noch:{pkg-config}
3885
3886 On some distributions, LTTng-UST ships with a
3887 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3888 metadata file. If this is your case, then you can use cmd:pkg-config to
3889 build an application on the command line:
3890
3891 [role="term"]
3892 ----
3893 $ gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3894 ----
3895
3896
3897 [[instrumenting-32-bit-app-on-64-bit-system]]
3898 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3899
3900 In order to trace a 32-bit application running on a 64-bit system,
3901 LTTng must use a dedicated 32-bit
3902 <<lttng-consumerd,consumer daemon>>.
3903
3904 The following steps show how to build and install a 32-bit consumer
3905 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3906 build and install the 32-bit LTTng-UST libraries, and how to build and
3907 link an instrumented 32-bit application in that context.
3908
3909 To build a 32-bit instrumented application for a 64-bit target system,
3910 assuming you have a fresh target system with no installed Userspace RCU
3911 or LTTng packages:
3912
3913 . Download, build, and install a 32-bit version of Userspace RCU:
3914 +
3915 --
3916 [role="term"]
3917 ----
3918 $ cd $(mktemp -d) &&
3919 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3920 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3921 cd userspace-rcu-0.9.* &&
3922 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3923 make &&
3924 sudo make install &&
3925 sudo ldconfig
3926 ----
3927 --
3928
3929 . Using your distribution's package manager, or from source, install
3930 the following 32-bit versions of the following dependencies of
3931 LTTng-tools and LTTng-UST:
3932 +
3933 --
3934 * https://sourceforge.net/projects/libuuid/[libuuid]
3935 * http://directory.fsf.org/wiki/Popt[popt]
3936 * http://www.xmlsoft.org/[libxml2]
3937 --
3938
3939 . Download, build, and install a 32-bit version of the latest
3940 LTTng-UST{nbsp}{revision}:
3941 +
3942 --
3943 [role="term"]
3944 ----
3945 $ cd $(mktemp -d) &&
3946 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.8.tar.bz2 &&
3947 tar -xf lttng-ust-latest-2.8.tar.bz2 &&
3948 cd lttng-ust-2.8.* &&
3949 ./configure --libdir=/usr/local/lib32 \
3950 CFLAGS=-m32 CXXFLAGS=-m32 \
3951 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3952 make &&
3953 sudo make install &&
3954 sudo ldconfig
3955 ----
3956 --
3957 +
3958 [NOTE]
3959 ====
3960 Depending on your distribution,
3961 32-bit libraries could be installed at a different location than
3962 `/usr/lib32`. For example, Debian is known to install
3963 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3964
3965 In this case, make sure to set `LDFLAGS` to all the
3966 relevant 32-bit library paths, for example:
3967
3968 [role="term"]
3969 ----
3970 $ LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3971 ----
3972 ====
3973
3974 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3975 the 32-bit consumer daemon:
3976 +
3977 --
3978 [role="term"]
3979 ----
3980 $ cd $(mktemp -d) &&
3981 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
3982 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
3983 cd lttng-tools-2.8.* &&
3984 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3985 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' \
3986 --disable-bin-lttng --disable-bin-lttng-crash \
3987 --disable-bin-lttng-relayd --disable-bin-lttng-sessiond &&
3988 make &&
3989 cd src/bin/lttng-consumerd &&
3990 sudo make install &&
3991 sudo ldconfig
3992 ----
3993 --
3994
3995 . From your distribution or from source,
3996 <<installing-lttng,install>> the 64-bit versions of
3997 LTTng-UST and Userspace RCU.
3998 . Download, build, and install the 64-bit version of the
3999 latest LTTng-tools{nbsp}{revision}:
4000 +
4001 --
4002 [role="term"]
4003 ----
4004 $ cd $(mktemp -d) &&
4005 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.8.tar.bz2 &&
4006 tar -xf lttng-tools-latest-2.8.tar.bz2 &&
4007 cd lttng-tools-2.8.* &&
4008 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
4009 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
4010 make &&
4011 sudo make install &&
4012 sudo ldconfig
4013 ----
4014 --
4015
4016 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
4017 when linking your 32-bit application:
4018 +
4019 ----
4020 -m32 -L/usr/lib32 -L/usr/local/lib32 \
4021 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
4022 ----
4023 +
4024 For example, let's rebuild the quick start example in
4025 <<tracing-your-own-user-application,Trace a user application>> as an
4026 instrumented 32-bit application:
4027 +
4028 --
4029 [role="term"]
4030 ----
4031 $ gcc -m32 -c -I. hello-tp.c
4032 $ gcc -m32 -c hello.c
4033 $ gcc -m32 -o hello hello.o hello-tp.o \
4034 -L/usr/lib32 -L/usr/local/lib32 \
4035 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
4036 -llttng-ust -ldl
4037 ----
4038 --
4039
4040 No special action is required to execute the 32-bit application and
4041 to trace it: use the command-line man:lttng(1) tool as usual.
4042
4043
4044 [role="since-2.5"]
4045 [[tracef]]
4046 ==== Use `tracef()`
4047
4048 man:tracef(3) is a small LTTng-UST API designed for quick,
4049 man:printf(3)-like instrumentation without the burden of
4050 <<tracepoint-provider,creating>> and
4051 <<building-tracepoint-providers-and-user-application,building>>
4052 a tracepoint provider package.
4053
4054 To use `tracef()` in your application:
4055
4056 . In the C or C++ source files where you need to use `tracef()`,
4057 include `<lttng/tracef.h>`:
4058 +
4059 --
4060 [source,c]
4061 ----
4062 #include <lttng/tracef.h>
4063 ----
4064 --
4065
4066 . In the application's source code, use `tracef()` like you would use
4067 man:printf(3):
4068 +
4069 --
4070 [source,c]
4071 ----
4072 /* ... */
4073
4074 tracef("my message: %d (%s)", my_integer, my_string);
4075
4076 /* ... */
4077 ----
4078 --
4079
4080 . Link your application with `liblttng-ust`:
4081 +
4082 --
4083 [role="term"]
4084 ----
4085 $ gcc -o app app.c -llttng-ust
4086 ----
4087 --
4088
4089 To trace the events that `tracef()` calls emit:
4090
4091 * <<enabling-disabling-events,Create an event rule>> which matches the
4092 `lttng_ust_tracef:*` event name:
4093 +
4094 --
4095 [role="term"]
4096 ----
4097 $ lttng enable-event --userspace 'lttng_ust_tracef:*'
4098 ----
4099 --
4100
4101 [IMPORTANT]
4102 .Limitations of `tracef()`
4103 ====
4104 The `tracef()` utility function was developed to make user space tracing
4105 super simple, albeit with notable disadvantages compared to
4106 <<defining-tracepoints,user-defined tracepoints>>:
4107
4108 * All the emitted events have the same tracepoint provider and
4109 tracepoint names, respectively `lttng_ust_tracef` and `event`.
4110 * There is no static type checking.
4111 * The only event record field you actually get, named `msg`, is a string
4112 potentially containing the values you passed to `tracef()`
4113 using your own format string. This also means that you cannot filter
4114 events with a custom expression at run time because there are no
4115 isolated fields.
4116 * Since `tracef()` uses the C standard library's man:vasprintf(3)
4117 function behind the scenes to format the strings at run time, its
4118 expected performance is lower than with user-defined tracepoints,
4119 which do not require a conversion to a string.
4120
4121 Taking this into consideration, `tracef()` is useful for some quick
4122 prototyping and debugging, but you should not consider it for any
4123 permanent and serious applicative instrumentation.
4124 ====
4125
4126
4127 [role="since-2.7"]
4128 [[tracelog]]
4129 ==== Use `tracelog()`
4130
4131 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
4132 the difference that it accepts an additional log level parameter.
4133
4134 The goal of `tracelog()` is to ease the migration from logging to
4135 tracing.
4136
4137 To use `tracelog()` in your application:
4138
4139 . In the C or C++ source files where you need to use `tracelog()`,
4140 include `<lttng/tracelog.h>`:
4141 +
4142 --
4143 [source,c]
4144 ----
4145 #include <lttng/tracelog.h>
4146 ----
4147 --
4148
4149 . In the application's source code, use `tracelog()` like you would use
4150 man:printf(3), except for the first parameter which is the log
4151 level:
4152 +
4153 --
4154 [source,c]
4155 ----
4156 /* ... */
4157
4158 tracelog(TRACE_WARNING, "my message: %d (%s)",
4159 my_integer, my_string);
4160
4161 /* ... */
4162 ----
4163 --
4164 +
4165 See man:lttng-ust(3) for a list of available log level names.
4166
4167 . Link your application with `liblttng-ust`:
4168 +
4169 --
4170 [role="term"]
4171 ----
4172 $ gcc -o app app.c -llttng-ust
4173 ----
4174 --
4175
4176 To trace the events that `tracelog()` calls emit with a log level
4177 _as severe as_ a specific log level:
4178
4179 * <<enabling-disabling-events,Create an event rule>> which matches the
4180 `lttng_ust_tracelog:*` event name and a minimum level
4181 of severity:
4182 +
4183 --
4184 [role="term"]
4185 ----
4186 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
4187 --loglevel=TRACE_WARNING
4188 ----
4189 --
4190
4191 To trace the events that `tracelog()` calls emit with a
4192 _specific log level_:
4193
4194 * Create an event rule which matches the `lttng_ust_tracelog:*`
4195 event name and a specific log level:
4196 +
4197 --
4198 [role="term"]
4199 ----
4200 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
4201 --loglevel-only=TRACE_INFO
4202 ----
4203 --
4204
4205
4206 [[prebuilt-ust-helpers]]
4207 === Prebuilt user space tracing helpers
4208
4209 The LTTng-UST package provides a few helpers in the form or preloadable
4210 shared objects which automatically instrument system functions and
4211 calls.
4212
4213 The helper shared objects are normally found in dir:{/usr/lib}. If you
4214 built LTTng-UST <<building-from-source,from source>>, they are probably
4215 located in dir:{/usr/local/lib}.
4216
4217 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4218 are:
4219
4220 path:{liblttng-ust-libc-wrapper.so}::
4221 path:{liblttng-ust-pthread-wrapper.so}::
4222 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4223 memory and POSIX threads function tracing>>.
4224
4225 path:{liblttng-ust-cyg-profile.so}::
4226 path:{liblttng-ust-cyg-profile-fast.so}::
4227 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4228
4229 path:{liblttng-ust-dl.so}::
4230 <<liblttng-ust-dl,Dynamic linker tracing>>.
4231
4232 To use a user space tracing helper with any user application:
4233
4234 * Preload the helper shared object when you start the application:
4235 +
4236 --
4237 [role="term"]
4238 ----
4239 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4240 ----
4241 --
4242 +
4243 You can preload more than one helper:
4244 +
4245 --
4246 [role="term"]
4247 ----
4248 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4249 ----
4250 --
4251
4252
4253 [role="since-2.3"]
4254 [[liblttng-ust-libc-pthread-wrapper]]
4255 ==== Instrument C standard library memory and POSIX threads functions
4256
4257 The path:{liblttng-ust-libc-wrapper.so} and
4258 path:{liblttng-ust-pthread-wrapper.so} helpers
4259 add instrumentation to some C standard library and POSIX
4260 threads functions.
4261
4262 [role="growable"]
4263 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4264 |====
4265 |TP provider name |TP name |Instrumented function
4266
4267 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4268 |`calloc` |man:calloc(3)
4269 |`realloc` |man:realloc(3)
4270 |`free` |man:free(3)
4271 |`memalign` |man:memalign(3)
4272 |`posix_memalign` |man:posix_memalign(3)
4273 |====
4274
4275 [role="growable"]
4276 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4277 |====
4278 |TP provider name |TP name |Instrumented function
4279
4280 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4281 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4282 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4283 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4284 |====
4285
4286 When you preload the shared object, it replaces the functions listed
4287 in the previous tables by wrappers which contain tracepoints and call
4288 the replaced functions.
4289
4290
4291 [[liblttng-ust-cyg-profile]]
4292 ==== Instrument function entry and exit
4293
4294 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4295 to the entry and exit points of functions.
4296
4297 man:gcc(1) and man:clang(1) have an option named
4298 https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html[`-finstrument-functions`]
4299 which generates instrumentation calls for entry and exit to functions.
4300 The LTTng-UST function tracing helpers,
4301 path:{liblttng-ust-cyg-profile.so} and
4302 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4303 to add tracepoints to the two generated functions (which contain
4304 `cyg_profile` in their names, hence the helper's name).
4305
4306 To use the LTTng-UST function tracing helper, the source files to
4307 instrument must be built using the `-finstrument-functions` compiler
4308 flag.
4309
4310 There are two versions of the LTTng-UST function tracing helper:
4311
4312 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4313 that you should only use when it can be _guaranteed_ that the
4314 complete event stream is recorded without any lost event record.
4315 Any kind of duplicate information is left out.
4316 +
4317 Assuming no event record is lost, having only the function addresses on
4318 entry is enough to create a call graph, since an event record always
4319 contains the ID of the CPU that generated it.
4320 +
4321 You can use a tool like man:addr2line(1) to convert function addresses
4322 back to source file names and line numbers.
4323
4324 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4325 which also works in use cases where event records might get discarded or
4326 not recorded from application startup.
4327 In these cases, the trace analyzer needs more information to be
4328 able to reconstruct the program flow.
4329
4330 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4331 points of this helper.
4332
4333 All the tracepoints that this helper provides have the
4334 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4335
4336 TIP: It's sometimes a good idea to limit the number of source files that
4337 you compile with the `-finstrument-functions` option to prevent LTTng
4338 from writing an excessive amount of trace data at run time. When using
4339 man:gcc(1), you can use the
4340 `-finstrument-functions-exclude-function-list` option to avoid
4341 instrument entries and exits of specific function names.
4342
4343
4344 [role="since-2.4"]
4345 [[liblttng-ust-dl]]
4346 ==== Instrument the dynamic linker
4347
4348 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4349 man:dlopen(3) and man:dlclose(3) function calls.
4350
4351 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4352 of this helper.
4353
4354
4355 [role="since-2.4"]
4356 [[java-application]]
4357 === User space Java agent
4358
4359 You can instrument any Java application which uses one of the following
4360 logging frameworks:
4361
4362 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4363 (JUL) core logging facilities.
4364 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4365 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4366
4367 [role="img-100"]
4368 .LTTng-UST Java agent imported by a Java application.
4369 image::java-app.png[]
4370
4371 Note that the methods described below are new in LTTng{nbsp}{revision}.
4372 Previous LTTng versions use another technique.
4373
4374 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4375 and https://ci.lttng.org/[continuous integration], thus this version is
4376 directly supported. However, the LTTng-UST Java agent is also tested
4377 with OpenJDK{nbsp}7.
4378
4379
4380 [role="since-2.8"]
4381 [[jul]]
4382 ==== Use the LTTng-UST Java agent for `java.util.logging`
4383
4384 To use the LTTng-UST Java agent in a Java application which uses
4385 `java.util.logging` (JUL):
4386
4387 . In the Java application's source code, import the LTTng-UST
4388 log handler package for `java.util.logging`:
4389 +
4390 --
4391 [source,java]
4392 ----
4393 import org.lttng.ust.agent.jul.LttngLogHandler;
4394 ----
4395 --
4396
4397 . Create an LTTng-UST JUL log handler:
4398 +
4399 --
4400 [source,java]
4401 ----
4402 Handler lttngUstLogHandler = new LttngLogHandler();
4403 ----
4404 --
4405
4406 . Add this handler to the JUL loggers which should emit LTTng events:
4407 +
4408 --
4409 [source,java]
4410 ----
4411 Logger myLogger = Logger.getLogger("some-logger");
4412
4413 myLogger.addHandler(lttngUstLogHandler);
4414 ----
4415 --
4416
4417 . Use `java.util.logging` log statements and configuration as usual.
4418 The loggers with an attached LTTng-UST log handler can emit
4419 LTTng events.
4420
4421 . Before exiting the application, remove the LTTng-UST log handler from
4422 the loggers attached to it and call its `close()` method:
4423 +
4424 --
4425 [source,java]
4426 ----
4427 myLogger.removeHandler(lttngUstLogHandler);
4428 lttngUstLogHandler.close();
4429 ----
4430 --
4431 +
4432 This is not strictly necessary, but it is recommended for a clean
4433 disposal of the handler's resources.
4434
4435 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4436 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4437 in the
4438 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4439 path] when you build the Java application.
4440 +
4441 The JAR files are typically located in dir:{/usr/share/java}.
4442 +
4443 IMPORTANT: The LTTng-UST Java agent must be
4444 <<installing-lttng,installed>> for the logging framework your
4445 application uses.
4446
4447 .Use the LTTng-UST Java agent for `java.util.logging`.
4448 ====
4449 [source,java]
4450 .path:{Test.java}
4451 ----
4452 import java.io.IOException;
4453 import java.util.logging.Handler;
4454 import java.util.logging.Logger;
4455 import org.lttng.ust.agent.jul.LttngLogHandler;
4456
4457 public class Test
4458 {
4459 private static final int answer = 42;
4460
4461 public static void main(String[] argv) throws Exception
4462 {
4463 // Create a logger
4464 Logger logger = Logger.getLogger("jello");
4465
4466 // Create an LTTng-UST log handler
4467 Handler lttngUstLogHandler = new LttngLogHandler();
4468
4469 // Add the LTTng-UST log handler to our logger
4470 logger.addHandler(lttngUstLogHandler);
4471
4472 // Log at will!
4473 logger.info("some info");
4474 logger.warning("some warning");
4475 Thread.sleep(500);
4476 logger.finer("finer information; the answer is " + answer);
4477 Thread.sleep(123);
4478 logger.severe("error!");
4479
4480 // Not mandatory, but cleaner
4481 logger.removeHandler(lttngUstLogHandler);
4482 lttngUstLogHandler.close();
4483 }
4484 }
4485 ----
4486
4487 Build this example:
4488
4489 [role="term"]
4490 ----
4491 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4492 ----
4493
4494 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4495 <<enabling-disabling-events,create an event rule>> matching the
4496 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4497
4498 [role="term"]
4499 ----
4500 $ lttng create
4501 $ lttng enable-event --jul jello
4502 $ lttng start
4503 ----
4504
4505 Run the compiled class:
4506
4507 [role="term"]
4508 ----
4509 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4510 ----
4511
4512 <<basic-tracing-session-control,Stop tracing>> and inspect the
4513 recorded events:
4514
4515 [role="term"]
4516 ----
4517 $ lttng stop
4518 $ lttng view
4519 ----
4520 ====
4521
4522 In the resulting trace, an <<event,event record>> generated by a Java
4523 application using `java.util.logging` is named `lttng_jul:event` and
4524 has the following fields:
4525
4526 `msg`::
4527 Log record's message.
4528
4529 `logger_name`::
4530 Logger name.
4531
4532 `class_name`::
4533 Name of the class in which the log statement was executed.
4534
4535 `method_name`::
4536 Name of the method in which the log statement was executed.
4537
4538 `long_millis`::
4539 Logging time (timestamp in milliseconds).
4540
4541 `int_loglevel`::
4542 Log level integer value.
4543
4544 `int_threadid`::
4545 ID of the thread in which the log statement was executed.
4546
4547 You can use the opt:lttng-enable-event(1):--loglevel or
4548 opt:lttng-enable-event(1):--loglevel-only option of the
4549 man:lttng-enable-event(1) command to target a range of JUL log levels
4550 or a specific JUL log level.
4551
4552
4553 [role="since-2.8"]
4554 [[log4j]]
4555 ==== Use the LTTng-UST Java agent for Apache log4j
4556
4557 To use the LTTng-UST Java agent in a Java application which uses
4558 Apache log4j 1.2:
4559
4560 . In the Java application's source code, import the LTTng-UST
4561 log appender package for Apache log4j:
4562 +
4563 --
4564 [source,java]
4565 ----
4566 import org.lttng.ust.agent.log4j.LttngLogAppender;
4567 ----
4568 --
4569
4570 . Create an LTTng-UST log4j log appender:
4571 +
4572 --
4573 [source,java]
4574 ----
4575 Appender lttngUstLogAppender = new LttngLogAppender();
4576 ----
4577 --
4578
4579 . Add this appender to the log4j loggers which should emit LTTng events:
4580 +
4581 --
4582 [source,java]
4583 ----
4584 Logger myLogger = Logger.getLogger("some-logger");
4585
4586 myLogger.addAppender(lttngUstLogAppender);
4587 ----
4588 --
4589
4590 . Use Apache log4j log statements and configuration as usual. The
4591 loggers with an attached LTTng-UST log appender can emit LTTng events.
4592
4593 . Before exiting the application, remove the LTTng-UST log appender from
4594 the loggers attached to it and call its `close()` method:
4595 +
4596 --
4597 [source,java]
4598 ----
4599 myLogger.removeAppender(lttngUstLogAppender);
4600 lttngUstLogAppender.close();
4601 ----
4602 --
4603 +
4604 This is not strictly necessary, but it is recommended for a clean
4605 disposal of the appender's resources.
4606
4607 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4608 files, path:{lttng-ust-agent-common.jar} and
4609 path:{lttng-ust-agent-log4j.jar}, in the
4610 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4611 path] when you build the Java application.
4612 +
4613 The JAR files are typically located in dir:{/usr/share/java}.
4614 +
4615 IMPORTANT: The LTTng-UST Java agent must be
4616 <<installing-lttng,installed>> for the logging framework your
4617 application uses.
4618
4619 .Use the LTTng-UST Java agent for Apache log4j.
4620 ====
4621 [source,java]
4622 .path:{Test.java}
4623 ----
4624 import org.apache.log4j.Appender;
4625 import org.apache.log4j.Logger;
4626 import org.lttng.ust.agent.log4j.LttngLogAppender;
4627
4628 public class Test
4629 {
4630 private static final int answer = 42;
4631
4632 public static void main(String[] argv) throws Exception
4633 {
4634 // Create a logger
4635 Logger logger = Logger.getLogger("jello");
4636
4637 // Create an LTTng-UST log appender
4638 Appender lttngUstLogAppender = new LttngLogAppender();
4639
4640 // Add the LTTng-UST log appender to our logger
4641 logger.addAppender(lttngUstLogAppender);
4642
4643 // Log at will!
4644 logger.info("some info");
4645 logger.warn("some warning");
4646 Thread.sleep(500);
4647 logger.debug("debug information; the answer is " + answer);
4648 Thread.sleep(123);
4649 logger.fatal("error!");
4650
4651 // Not mandatory, but cleaner
4652 logger.removeAppender(lttngUstLogAppender);
4653 lttngUstLogAppender.close();
4654 }
4655 }
4656
4657 ----
4658
4659 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4660 file):
4661
4662 [role="term"]
4663 ----
4664 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4665 ----
4666
4667 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4668 <<enabling-disabling-events,create an event rule>> matching the
4669 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4670
4671 [role="term"]
4672 ----
4673 $ lttng create
4674 $ lttng enable-event --log4j jello
4675 $ lttng start
4676 ----
4677
4678 Run the compiled class:
4679
4680 [role="term"]
4681 ----
4682 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4683 ----
4684
4685 <<basic-tracing-session-control,Stop tracing>> and inspect the
4686 recorded events:
4687
4688 [role="term"]
4689 ----
4690 $ lttng stop
4691 $ lttng view
4692 ----
4693 ====
4694
4695 In the resulting trace, an <<event,event record>> generated by a Java
4696 application using log4j is named `lttng_log4j:event` and
4697 has the following fields:
4698
4699 `msg`::
4700 Log record's message.
4701
4702 `logger_name`::
4703 Logger name.
4704
4705 `class_name`::
4706 Name of the class in which the log statement was executed.
4707
4708 `method_name`::
4709 Name of the method in which the log statement was executed.
4710
4711 `filename`::
4712 Name of the file in which the executed log statement is located.
4713
4714 `line_number`::
4715 Line number at which the log statement was executed.
4716
4717 `timestamp`::
4718 Logging timestamp.
4719
4720 `int_loglevel`::
4721 Log level integer value.
4722
4723 `thread_name`::
4724 Name of the Java thread in which the log statement was executed.
4725
4726 You can use the opt:lttng-enable-event(1):--loglevel or
4727 opt:lttng-enable-event(1):--loglevel-only option of the
4728 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4729 or a specific log4j log level.
4730
4731
4732 [role="since-2.8"]
4733 [[java-application-context]]
4734 ==== Provide application-specific context fields in a Java application
4735
4736 A Java application-specific context field is a piece of state provided
4737 by the application which <<adding-context,you can add>>, using the
4738 man:lttng-add-context(1) command, to each <<event,event record>>
4739 produced by the log statements of this application.
4740
4741 For example, a given object might have a current request ID variable.
4742 You can create a context information retriever for this object and
4743 assign a name to this current request ID. You can then, using the
4744 man:lttng-add-context(1) command, add this context field by name to
4745 the JUL or log4j <<channel,channel>>.
4746
4747 To provide application-specific context fields in a Java application:
4748
4749 . In the Java application's source code, import the LTTng-UST
4750 Java agent context classes and interfaces:
4751 +
4752 --
4753 [source,java]
4754 ----
4755 import org.lttng.ust.agent.context.ContextInfoManager;
4756 import org.lttng.ust.agent.context.IContextInfoRetriever;
4757 ----
4758 --
4759
4760 . Create a context information retriever class, that is, a class which
4761 implements the `IContextInfoRetriever` interface:
4762 +
4763 --
4764 [source,java]
4765 ----
4766 class MyContextInfoRetriever implements IContextInfoRetriever
4767 {
4768 @Override
4769 public Object retrieveContextInfo(String key)
4770 {
4771 if (key.equals("intCtx")) {
4772 return (short) 17;
4773 } else if (key.equals("strContext")) {
4774 return "context value!";
4775 } else {
4776 return null;
4777 }
4778 }
4779 }
4780 ----
4781 --
4782 +
4783 This `retrieveContextInfo()` method is the only member of the
4784 `IContextInfoRetriever` interface. Its role is to return the current
4785 value of a state by name to create a context field. The names of the
4786 context fields and which state variables they return depends on your
4787 specific scenario.
4788 +
4789 All primitive types and objects are supported as context fields.
4790 When `retrieveContextInfo()` returns an object, the context field
4791 serializer calls its `toString()` method to add a string field to
4792 event records. The method can also return `null`, which means that
4793 no context field is available for the required name.
4794
4795 . Register an instance of your context information retriever class to
4796 the context information manager singleton:
4797 +
4798 --
4799 [source,java]
4800 ----
4801 IContextInfoRetriever cir = new MyContextInfoRetriever();
4802 ContextInfoManager cim = ContextInfoManager.getInstance();
4803 cim.registerContextInfoRetriever("retrieverName", cir);
4804 ----
4805 --
4806
4807 . Before exiting the application, remove your context information
4808 retriever from the context information manager singleton:
4809 +
4810 --
4811 [source,java]
4812 ----
4813 ContextInfoManager cim = ContextInfoManager.getInstance();
4814 cim.unregisterContextInfoRetriever("retrieverName");
4815 ----
4816 --
4817 +
4818 This is not strictly necessary, but it is recommended for a clean
4819 disposal of some manager's resources.
4820
4821 . Build your Java application with LTTng-UST Java agent support as
4822 usual, following the procedure for either the <<jul,JUL>> or
4823 <<log4j,Apache log4j>> framework.
4824
4825
4826 .Provide application-specific context fields in a Java application.
4827 ====
4828 [source,java]
4829 .path:{Test.java}
4830 ----
4831 import java.util.logging.Handler;
4832 import java.util.logging.Logger;
4833 import org.lttng.ust.agent.jul.LttngLogHandler;
4834 import org.lttng.ust.agent.context.ContextInfoManager;
4835 import org.lttng.ust.agent.context.IContextInfoRetriever;
4836
4837 public class Test
4838 {
4839 // Our context information retriever class
4840 private static class MyContextInfoRetriever
4841 implements IContextInfoRetriever
4842 {
4843 @Override
4844 public Object retrieveContextInfo(String key) {
4845 if (key.equals("intCtx")) {
4846 return (short) 17;
4847 } else if (key.equals("strContext")) {
4848 return "context value!";
4849 } else {
4850 return null;
4851 }
4852 }
4853 }
4854
4855 private static final int answer = 42;
4856
4857 public static void main(String args[]) throws Exception
4858 {
4859 // Get the context information manager instance
4860 ContextInfoManager cim = ContextInfoManager.getInstance();
4861
4862 // Create and register our context information retriever
4863 IContextInfoRetriever cir = new MyContextInfoRetriever();
4864 cim.registerContextInfoRetriever("myRetriever", cir);
4865
4866 // Create a logger
4867 Logger logger = Logger.getLogger("jello");
4868
4869 // Create an LTTng-UST log handler
4870 Handler lttngUstLogHandler = new LttngLogHandler();
4871
4872 // Add the LTTng-UST log handler to our logger
4873 logger.addHandler(lttngUstLogHandler);
4874
4875 // Log at will!
4876 logger.info("some info");
4877 logger.warning("some warning");
4878 Thread.sleep(500);
4879 logger.finer("finer information; the answer is " + answer);
4880 Thread.sleep(123);
4881 logger.severe("error!");
4882
4883 // Not mandatory, but cleaner
4884 logger.removeHandler(lttngUstLogHandler);
4885 lttngUstLogHandler.close();
4886 cim.unregisterContextInfoRetriever("myRetriever");
4887 }
4888 }
4889 ----
4890
4891 Build this example:
4892
4893 [role="term"]
4894 ----
4895 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4896 ----
4897
4898 <<creating-destroying-tracing-sessions,Create a tracing session>>
4899 and <<enabling-disabling-events,create an event rule>> matching the
4900 `jello` JUL logger:
4901
4902 [role="term"]
4903 ----
4904 $ lttng create
4905 $ lttng enable-event --jul jello
4906 ----
4907
4908 <<adding-context,Add the application-specific context fields>> to the
4909 JUL channel:
4910
4911 [role="term"]
4912 ----
4913 $ lttng add-context --jul --type='$app.myRetriever:intCtx'
4914 $ lttng add-context --jul --type='$app.myRetriever:strContext'
4915 ----
4916
4917 <<basic-tracing-session-control,Start tracing>>:
4918
4919 [role="term"]
4920 ----
4921 $ lttng start
4922 ----
4923
4924 Run the compiled class:
4925
4926 [role="term"]
4927 ----
4928 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4929 ----
4930
4931 <<basic-tracing-session-control,Stop tracing>> and inspect the
4932 recorded events:
4933
4934 [role="term"]
4935 ----
4936 $ lttng stop
4937 $ lttng view
4938 ----
4939 ====
4940
4941
4942 [role="since-2.7"]
4943 [[python-application]]
4944 === User space Python agent
4945
4946 You can instrument a Python 2 or Python 3 application which uses the
4947 standard https://docs.python.org/3/library/logging.html[`logging`]
4948 package.
4949
4950 Each log statement emits an LTTng event once the
4951 application module imports the
4952 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4953
4954 [role="img-100"]
4955 .A Python application importing the LTTng-UST Python agent.
4956 image::python-app.png[]
4957
4958 To use the LTTng-UST Python agent:
4959
4960 . In the Python application's source code, import the LTTng-UST Python
4961 agent:
4962 +
4963 --
4964 [source,python]
4965 ----
4966 import lttngust
4967 ----
4968 --
4969 +
4970 The LTTng-UST Python agent automatically adds its logging handler to the
4971 root logger at import time.
4972 +
4973 Any log statement that the application executes before this import does
4974 not emit an LTTng event.
4975 +
4976 IMPORTANT: The LTTng-UST Python agent must be
4977 <<installing-lttng,installed>>.
4978
4979 . Use log statements and logging configuration as usual.
4980 Since the LTTng-UST Python agent adds a handler to the _root_
4981 logger, you can trace any log statement from any logger.
4982
4983 .Use the LTTng-UST Python agent.
4984 ====
4985 [source,python]
4986 .path:{test.py}
4987 ----
4988 import lttngust
4989 import logging
4990 import time
4991
4992
4993 def example():
4994 logging.basicConfig()
4995 logger = logging.getLogger('my-logger')
4996
4997 while True:
4998 logger.debug('debug message')
4999 logger.info('info message')
5000 logger.warn('warn message')
5001 logger.error('error message')
5002 logger.critical('critical message')
5003 time.sleep(1)
5004
5005
5006 if __name__ == '__main__':
5007 example()
5008 ----
5009
5010 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
5011 logging handler which prints to the standard error stream, is not
5012 strictly required for LTTng-UST tracing to work, but in versions of
5013 Python preceding 3.2, you could see a warning message which indicates
5014 that no handler exists for the logger `my-logger`.
5015
5016 <<creating-destroying-tracing-sessions,Create a tracing session>>,
5017 <<enabling-disabling-events,create an event rule>> matching the
5018 `my-logger` Python logger, and <<basic-tracing-session-control,start
5019 tracing>>:
5020
5021 [role="term"]
5022 ----
5023 $ lttng create
5024 $ lttng enable-event --python my-logger
5025 $ lttng start
5026 ----
5027
5028 Run the Python script:
5029
5030 [role="term"]
5031 ----
5032 $ python test.py
5033 ----
5034
5035 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5036 events:
5037
5038 [role="term"]
5039 ----
5040 $ lttng stop
5041 $ lttng view
5042 ----
5043 ====
5044
5045 In the resulting trace, an <<event,event record>> generated by a Python
5046 application is named `lttng_python:event` and has the following fields:
5047
5048 `asctime`::
5049 Logging time (string).
5050
5051 `msg`::
5052 Log record's message.
5053
5054 `logger_name`::
5055 Logger name.
5056
5057 `funcName`::
5058 Name of the function in which the log statement was executed.
5059
5060 `lineno`::
5061 Line number at which the log statement was executed.
5062
5063 `int_loglevel`::
5064 Log level integer value.
5065
5066 `thread`::
5067 ID of the Python thread in which the log statement was executed.
5068
5069 `threadName`::
5070 Name of the Python thread in which the log statement was executed.
5071
5072 You can use the opt:lttng-enable-event(1):--loglevel or
5073 opt:lttng-enable-event(1):--loglevel-only option of the
5074 man:lttng-enable-event(1) command to target a range of Python log levels
5075 or a specific Python log level.
5076
5077 When an application imports the LTTng-UST Python agent, the agent tries
5078 to register to a <<lttng-sessiond,session daemon>>. Note that you must
5079 <<start-sessiond,start the session daemon>> _before_ you run the Python
5080 application. If a session daemon is found, the agent tries to register
5081 to it during 5{nbsp}seconds, after which the application continues
5082 without LTTng tracing support. You can override this timeout value with
5083 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
5084 (milliseconds).
5085
5086 If the session daemon stops while a Python application with an imported
5087 LTTng-UST Python agent runs, the agent retries to connect and to
5088 register to a session daemon every 3{nbsp}seconds. You can override this
5089 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
5090 variable.
5091
5092
5093 [role="since-2.5"]
5094 [[proc-lttng-logger-abi]]
5095 === LTTng logger
5096
5097 The `lttng-tracer` Linux kernel module, part of
5098 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
5099 path:{/proc/lttng-logger} when it's loaded. Any application can write
5100 text data to this file to emit an LTTng event.
5101
5102 [role="img-100"]
5103 .An application writes to the LTTng logger file to emit an LTTng event.
5104 image::lttng-logger.png[]
5105
5106 The LTTng logger is the quickest method--not the most efficient,
5107 however--to add instrumentation to an application. It is designed
5108 mostly to instrument shell scripts:
5109
5110 [role="term"]
5111 ----
5112 $ echo "Some message, some $variable" > /proc/lttng-logger
5113 ----
5114
5115 Any event that the LTTng logger emits is named `lttng_logger` and
5116 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
5117 other instrumentation points in the kernel tracing domain, **any Unix
5118 user** can <<enabling-disabling-events,create an event rule>> which
5119 matches its event name, not only the root user or users in the
5120 <<tracing-group,tracing group>>.
5121
5122 To use the LTTng logger:
5123
5124 * From any application, write text data to the path:{/proc/lttng-logger}
5125 file.
5126
5127 The `msg` field of `lttng_logger` event records contains the
5128 recorded message.
5129
5130 NOTE: The maximum message length of an LTTng logger event is
5131 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
5132 than one event to contain the remaining data.
5133
5134 You should not use the LTTng logger to trace a user application which
5135 can be instrumented in a more efficient way, namely:
5136
5137 * <<c-application,C and $$C++$$ applications>>.
5138 * <<java-application,Java applications>>.
5139 * <<python-application,Python applications>>.
5140
5141 .Use the LTTng logger.
5142 ====
5143 [source,bash]
5144 .path:{test.bash}
5145 ----
5146 echo 'Hello, World!' > /proc/lttng-logger
5147 sleep 2
5148 df --human-readable --print-type / > /proc/lttng-logger
5149 ----
5150
5151 <<creating-destroying-tracing-sessions,Create a tracing session>>,
5152 <<enabling-disabling-events,create an event rule>> matching the
5153 `lttng_logger` Linux kernel tracepoint, and
5154 <<basic-tracing-session-control,start tracing>>:
5155
5156 [role="term"]
5157 ----
5158 $ lttng create
5159 $ lttng enable-event --kernel lttng_logger
5160 $ lttng start
5161 ----
5162
5163 Run the Bash script:
5164
5165 [role="term"]
5166 ----
5167 $ bash test.bash
5168 ----
5169
5170 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
5171 events:
5172
5173 [role="term"]
5174 ----
5175 $ lttng stop
5176 $ lttng view
5177 ----
5178 ====
5179
5180
5181 [[instrumenting-linux-kernel]]
5182 === LTTng kernel tracepoints
5183
5184 NOTE: This section shows how to _add_ instrumentation points to the
5185 Linux kernel. The kernel's subsystems are already thoroughly
5186 instrumented at strategic places for LTTng when you
5187 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
5188 package.
5189
5190 ////
5191 There are two methods to instrument the Linux kernel:
5192
5193 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
5194 tracepoint which uses the `TRACE_EVENT()` API.
5195 +
5196 Choose this if you want to instrumentation a Linux kernel tree with an
5197 instrumentation point compatible with ftrace, perf, and SystemTap.
5198
5199 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
5200 instrument an out-of-tree kernel module.
5201 +
5202 Choose this if you don't need ftrace, perf, or SystemTap support.
5203 ////
5204
5205
5206 [[linux-add-lttng-layer]]
5207 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
5208
5209 This section shows how to add an LTTng layer to existing ftrace
5210 instrumentation using the `TRACE_EVENT()` API.
5211
5212 This section does not document the `TRACE_EVENT()` macro. You can
5213 read the following articles to learn more about this API:
5214
5215 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
5216 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
5217 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
5218
5219 The following procedure assumes that your ftrace tracepoints are
5220 correctly defined in their own header and that they are created in
5221 one source file using the `CREATE_TRACE_POINTS` definition.
5222
5223 To add an LTTng layer over an existing ftrace tracepoint:
5224
5225 . Make sure the following kernel configuration options are
5226 enabled:
5227 +
5228 --
5229 * `CONFIG_MODULES`
5230 * `CONFIG_KALLSYMS`
5231 * `CONFIG_HIGH_RES_TIMERS`
5232 * `CONFIG_TRACEPOINTS`
5233 --
5234
5235 . Build the Linux source tree with your custom ftrace tracepoints.
5236 . Boot the resulting Linux image on your target system.
5237 +
5238 Confirm that the tracepoints exist by looking for their names in the
5239 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5240 is your subsystem's name.
5241
5242 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5243 +
5244 --
5245 [role="term"]
5246 ----
5247 $ cd $(mktemp -d) &&
5248 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
5249 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
5250 cd lttng-modules-2.8.*
5251 ----
5252 --
5253
5254 . In dir:{instrumentation/events/lttng-module}, relative to the root
5255 of the LTTng-modules source tree, create a header file named
5256 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5257 LTTng-modules tracepoint definitions using the LTTng-modules
5258 macros in it.
5259 +
5260 Start with this template:
5261 +
5262 --
5263 [source,c]
5264 .path:{instrumentation/events/lttng-module/my_subsys.h}
5265 ----
5266 #undef TRACE_SYSTEM
5267 #define TRACE_SYSTEM my_subsys
5268
5269 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5270 #define _LTTNG_MY_SUBSYS_H
5271
5272 #include "../../../probes/lttng-tracepoint-event.h"
5273 #include <linux/tracepoint.h>
5274
5275 LTTNG_TRACEPOINT_EVENT(
5276 /*
5277 * Format is identical to TRACE_EVENT()'s version for the three
5278 * following macro parameters:
5279 */
5280 my_subsys_my_event,
5281 TP_PROTO(int my_int, const char *my_string),
5282 TP_ARGS(my_int, my_string),
5283
5284 /* LTTng-modules specific macros */
5285 TP_FIELDS(
5286 ctf_integer(int, my_int_field, my_int)
5287 ctf_string(my_bar_field, my_bar)
5288 )
5289 )
5290
5291 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5292
5293 #include "../../../probes/define_trace.h"
5294 ----
5295 --
5296 +
5297 The entries in the `TP_FIELDS()` section are the list of fields for the
5298 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5299 ftrace's `TRACE_EVENT()` macro.
5300 +
5301 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5302 complete description of the available `ctf_*()` macros.
5303
5304 . Create the LTTng-modules probe's kernel module C source file,
5305 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5306 subsystem name:
5307 +
5308 --
5309 [source,c]
5310 .path:{probes/lttng-probe-my-subsys.c}
5311 ----
5312 #include <linux/module.h>
5313 #include "../lttng-tracer.h"
5314
5315 /*
5316 * Build-time verification of mismatch between mainline
5317 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5318 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5319 */
5320 #include <trace/events/my_subsys.h>
5321
5322 /* Create LTTng tracepoint probes */
5323 #define LTTNG_PACKAGE_BUILD
5324 #define CREATE_TRACE_POINTS
5325 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5326
5327 #include "../instrumentation/events/lttng-module/my_subsys.h"
5328
5329 MODULE_LICENSE("GPL and additional rights");
5330 MODULE_AUTHOR("Your name <your-email>");
5331 MODULE_DESCRIPTION("LTTng my_subsys probes");
5332 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5333 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5334 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5335 LTTNG_MODULES_EXTRAVERSION);
5336 ----
5337 --
5338
5339 . Edit path:{probes/KBuild} and add your new kernel module object
5340 next to the existing ones:
5341 +
5342 --
5343 [source,make]
5344 .path:{probes/KBuild}
5345 ----
5346 # ...
5347
5348 obj-m += lttng-probe-module.o
5349 obj-m += lttng-probe-power.o
5350
5351 obj-m += lttng-probe-my-subsys.o
5352
5353 # ...
5354 ----
5355 --
5356
5357 . Build and install the LTTng kernel modules:
5358 +
5359 --
5360 [role="term"]
5361 ----
5362 $ make KERNELDIR=/path/to/linux
5363 # make modules_install && depmod -a
5364 ----
5365 --
5366 +
5367 Replace `/path/to/linux` with the path to the Linux source tree where
5368 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5369
5370 Note that you can also use the
5371 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5372 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5373 C code that need to be executed before the event fields are recorded.
5374
5375 The best way to learn how to use the previous LTTng-modules macros is to
5376 inspect the existing LTTng-modules tracepoint definitions in the
5377 dir:{instrumentation/events/lttng-module} header files. Compare them
5378 with the Linux kernel mainline versions in the
5379 dir:{include/trace/events} directory of the Linux source tree.
5380
5381
5382 [role="since-2.7"]
5383 [[lttng-tracepoint-event-code]]
5384 ===== Use custom C code to access the data for tracepoint fields
5385
5386 Although we recommended to always use the
5387 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5388 the arguments and fields of an LTTng-modules tracepoint when possible,
5389 sometimes you need a more complex process to access the data that the
5390 tracer records as event record fields. In other words, you need local
5391 variables and multiple C{nbsp}statements instead of simple
5392 argument-based expressions that you pass to the
5393 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5394
5395 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5396 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5397 a block of C{nbsp}code to be executed before LTTng records the fields.
5398 The structure of this macro is:
5399
5400 [source,c]
5401 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5402 ----
5403 LTTNG_TRACEPOINT_EVENT_CODE(
5404 /*
5405 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5406 * version for the following three macro parameters:
5407 */
5408 my_subsys_my_event,
5409 TP_PROTO(int my_int, const char *my_string),
5410 TP_ARGS(my_int, my_string),
5411
5412 /* Declarations of custom local variables */
5413 TP_locvar(
5414 int a = 0;
5415 unsigned long b = 0;
5416 const char *name = "(undefined)";
5417 struct my_struct *my_struct;
5418 ),
5419
5420 /*
5421 * Custom code which uses both tracepoint arguments
5422 * (in TP_ARGS()) and local variables (in TP_locvar()).
5423 *
5424 * Local variables are actually members of a structure pointed
5425 * to by the special variable tp_locvar.
5426 */
5427 TP_code(
5428 if (my_int) {
5429 tp_locvar->a = my_int + 17;
5430 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5431 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5432 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5433 put_my_struct(tp_locvar->my_struct);
5434
5435 if (tp_locvar->b) {
5436 tp_locvar->a = 1;
5437 }
5438 }
5439 ),
5440
5441 /*
5442 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5443 * version for this, except that tp_locvar members can be
5444 * used in the argument expression parameters of
5445 * the ctf_*() macros.
5446 */
5447 TP_FIELDS(
5448 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5449 ctf_integer(int, my_struct_a, tp_locvar->a)
5450 ctf_string(my_string_field, my_string)
5451 ctf_string(my_struct_name, tp_locvar->name)
5452 )
5453 )
5454 ----
5455
5456 IMPORTANT: The C code defined in `TP_code()` must not have any side
5457 effects when executed. In particular, the code must not allocate
5458 memory or get resources without deallocating this memory or putting
5459 those resources afterwards.
5460
5461
5462 [[instrumenting-linux-kernel-tracing]]
5463 ==== Load and unload a custom probe kernel module
5464
5465 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5466 kernel module>> in the kernel before it can emit LTTng events.
5467
5468 To load the default probe kernel modules and a custom probe kernel
5469 module:
5470
5471 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5472 probe modules to load when starting a root <<lttng-sessiond,session
5473 daemon>>:
5474 +
5475 --
5476 .Load the `my_subsys`, `usb`, and the default probe modules.
5477 ====
5478 [role="term"]
5479 ----
5480 # lttng-sessiond --extra-kmod-probes=my_subsys,usb
5481 ----
5482 ====
5483 --
5484 +
5485 You only need to pass the subsystem name, not the whole kernel module
5486 name.
5487
5488 To load _only_ a given custom probe kernel module:
5489
5490 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5491 modules to load when starting a root session daemon:
5492 +
5493 --
5494 .Load only the `my_subsys` and `usb` probe modules.
5495 ====
5496 [role="term"]
5497 ----
5498 # lttng-sessiond --kmod-probes=my_subsys,usb
5499 ----
5500 ====
5501 --
5502
5503 To confirm that a probe module is loaded:
5504
5505 * Use man:lsmod(8):
5506 +
5507 --
5508 [role="term"]
5509 ----
5510 $ lsmod | grep lttng_probe_usb
5511 ----
5512 --
5513
5514 To unload the loaded probe modules:
5515
5516 * Kill the session daemon with `SIGTERM`:
5517 +
5518 --
5519 [role="term"]
5520 ----
5521 # pkill lttng-sessiond
5522 ----
5523 --
5524 +
5525 You can also use man:modprobe(8)'s `--remove` option if the session
5526 daemon terminates abnormally.
5527
5528
5529 [[controlling-tracing]]
5530 == Tracing control
5531
5532 Once an application or a Linux kernel is
5533 <<instrumenting,instrumented>> for LTTng tracing,
5534 you can _trace_ it.
5535
5536 This section is divided in topics on how to use the various
5537 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5538 command-line tool>>, to _control_ the LTTng daemons and tracers.
5539
5540 NOTE: In the following subsections, we refer to an man:lttng(1) command
5541 using its man page name. For example, instead of _Run the `create`
5542 command to..._, we use _Run the man:lttng-create(1) command to..._.
5543
5544
5545 [[start-sessiond]]
5546 === Start a session daemon
5547
5548 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5549 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5550 command-line tool.
5551
5552 You will see the following error when you run a command while no session
5553 daemon is running:
5554
5555 ----
5556 Error: No session daemon is available
5557 ----
5558
5559 The only command that automatically runs a session daemon is
5560 man:lttng-create(1), which you use to
5561 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5562 this is most of the time the first operation that you do, sometimes it's
5563 not. Some examples are:
5564
5565 * <<list-instrumentation-points,List the available instrumentation points>>.
5566 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5567
5568 [[tracing-group]] Each Unix user must have its own running session
5569 daemon to trace user applications. The session daemon that the root user
5570 starts is the only one allowed to control the LTTng kernel tracer. Users
5571 that are part of the _tracing group_ can control the root session
5572 daemon. The default tracing group name is `tracing`; you can set it to
5573 something else with the opt:lttng-sessiond(8):--group option when you
5574 start the root session daemon.
5575
5576 To start a user session daemon:
5577
5578 * Run man:lttng-sessiond(8):
5579 +
5580 --
5581 [role="term"]
5582 ----
5583 $ lttng-sessiond --daemonize
5584 ----
5585 --
5586
5587 To start the root session daemon:
5588
5589 * Run man:lttng-sessiond(8) as the root user:
5590 +
5591 --
5592 [role="term"]
5593 ----
5594 # lttng-sessiond --daemonize
5595 ----
5596 --
5597
5598 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5599 start the session daemon in foreground.
5600
5601 To stop a session daemon, use man:kill(1) on its process ID (standard
5602 `TERM` signal).
5603
5604 Note that some Linux distributions could manage the LTTng session daemon
5605 as a service. In this case, you should use the service manager to
5606 start, restart, and stop session daemons.
5607
5608
5609 [[creating-destroying-tracing-sessions]]
5610 === Create and destroy a tracing session
5611
5612 Almost all the LTTng control operations happen in the scope of
5613 a <<tracing-session,tracing session>>, which is the dialogue between the
5614 <<lttng-sessiond,session daemon>> and you.
5615
5616 To create a tracing session with a generated name:
5617
5618 * Use the man:lttng-create(1) command:
5619 +
5620 --
5621 [role="term"]
5622 ----
5623 $ lttng create
5624 ----
5625 --
5626
5627 The created tracing session's name is `auto` followed by the
5628 creation date.
5629
5630 To create a tracing session with a specific name:
5631
5632 * Use the optional argument of the man:lttng-create(1) command:
5633 +
5634 --
5635 [role="term"]
5636 ----
5637 $ lttng create my-session
5638 ----
5639 --
5640 +
5641 Replace `my-session` with the specific tracing session name.
5642
5643 LTTng appends the creation date to the created tracing session's name.
5644
5645 LTTng writes the traces of a tracing session in
5646 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5647 name of the tracing session. Note that the env:LTTNG_HOME environment
5648 variable defaults to `$HOME` if not set.
5649
5650 To output LTTng traces to a non-default location:
5651
5652 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5653 +
5654 --
5655 [role="term"]
5656 ----
5657 $ lttng create my-session --output=/tmp/some-directory
5658 ----
5659 --
5660
5661 You may create as many tracing sessions as you wish.
5662
5663 To list all the existing tracing sessions for your Unix user:
5664
5665 * Use the man:lttng-list(1) command:
5666 +
5667 --
5668 [role="term"]
5669 ----
5670 $ lttng list
5671 ----
5672 --
5673
5674 When you create a tracing session, it is set as the _current tracing
5675 session_. The following man:lttng(1) commands operate on the current
5676 tracing session when you don't specify one:
5677
5678 [role="list-3-cols"]
5679 * `add-context`
5680 * `destroy`
5681 * `disable-channel`
5682 * `disable-event`
5683 * `enable-channel`
5684 * `enable-event`
5685 * `load`
5686 * `save`
5687 * `snapshot`
5688 * `start`
5689 * `stop`
5690 * `track`
5691 * `untrack`
5692 * `view`
5693
5694 To change the current tracing session:
5695
5696 * Use the man:lttng-set-session(1) command:
5697 +
5698 --
5699 [role="term"]
5700 ----
5701 $ lttng set-session new-session
5702 ----
5703 --
5704 +
5705 Replace `new-session` by the name of the new current tracing session.
5706
5707 When you are done tracing in a given tracing session, you can destroy
5708 it. This operation frees the resources taken by the tracing session
5709 to destroy; it does not destroy the trace data that LTTng wrote for
5710 this tracing session.
5711
5712 To destroy the current tracing session:
5713
5714 * Use the man:lttng-destroy(1) command:
5715 +
5716 --
5717 [role="term"]
5718 ----
5719 $ lttng destroy
5720 ----
5721 --
5722
5723
5724 [[list-instrumentation-points]]
5725 === List the available instrumentation points
5726
5727 The <<lttng-sessiond,session daemon>> can query the running instrumented
5728 user applications and the Linux kernel to get a list of available
5729 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5730 they are tracepoints and system calls. For the user space tracing
5731 domain, they are tracepoints. For the other tracing domains, they are
5732 logger names.
5733
5734 To list the available instrumentation points:
5735
5736 * Use the man:lttng-list(1) command with the requested tracing domain's
5737 option amongst:
5738 +
5739 --
5740 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5741 must be a root user, or it must be a member of the
5742 <<tracing-group,tracing group>>).
5743 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5744 kernel system calls (your Unix user must be a root user, or it must be
5745 a member of the tracing group).
5746 * opt:lttng-list(1):--userspace: user space tracepoints.
5747 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5748 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5749 * opt:lttng-list(1):--python: Python loggers.
5750 --
5751
5752 .List the available user space tracepoints.
5753 ====
5754 [role="term"]
5755 ----
5756 $ lttng list --userspace
5757 ----
5758 ====
5759
5760 .List the available Linux kernel system call tracepoints.
5761 ====
5762 [role="term"]
5763 ----
5764 $ lttng list --kernel --syscall
5765 ----
5766 ====
5767
5768
5769 [[enabling-disabling-events]]
5770 === Create and enable an event rule
5771
5772 Once you <<creating-destroying-tracing-sessions,create a tracing
5773 session>>, you can create <<event,event rules>> with the
5774 man:lttng-enable-event(1) command.
5775
5776 You specify each condition with a command-line option. The available
5777 condition options are shown in the following table.
5778
5779 [role="growable",cols="asciidoc,asciidoc,default"]
5780 .Condition command-line options for the man:lttng-enable-event(1) command.
5781 |====
5782 |Option |Description |Applicable tracing domains
5783
5784 |
5785 One of:
5786
5787 . `--syscall`
5788 . +--probe=__ADDR__+
5789 . +--function=__ADDR__+
5790
5791 |
5792 Instead of using the default _tracepoint_ instrumentation type, use:
5793
5794 . A Linux system call.
5795 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5796 . The entry and return points of a Linux function (symbol or address).
5797
5798 |Linux kernel.
5799
5800 |First positional argument.
5801
5802 |
5803 Tracepoint or system call name. In the case of a Linux KProbe or
5804 function, this is a custom name given to the event rule. With the
5805 JUL, log4j, and Python domains, this is a logger name.
5806
5807 With a tracepoint, logger, or system call name, the last character
5808 can be `*` to match anything that remains.
5809
5810 |All.
5811
5812 |
5813 One of:
5814
5815 . +--loglevel=__LEVEL__+
5816 . +--loglevel-only=__LEVEL__+
5817
5818 |
5819 . Match only tracepoints or log statements with a logging level at
5820 least as severe as +__LEVEL__+.
5821 . Match only tracepoints or log statements with a logging level
5822 equal to +__LEVEL__+.
5823
5824 See man:lttng-enable-event(1) for the list of available logging level
5825 names.
5826
5827 |User space, JUL, log4j, and Python.
5828
5829 |+--exclude=__EXCLUSIONS__+
5830
5831 |
5832 When you use a `*` character at the end of the tracepoint or logger
5833 name (first positional argument), exclude the specific names in the
5834 comma-delimited list +__EXCLUSIONS__+.
5835
5836 |
5837 User space, JUL, log4j, and Python.
5838
5839 |+--filter=__EXPR__+
5840
5841 |
5842 Match only events which satisfy the expression +__EXPR__+.
5843
5844 See man:lttng-enable-event(1) to learn more about the syntax of a
5845 filter expression.
5846
5847 |All.
5848
5849 |====
5850
5851 You attach an event rule to a <<channel,channel>> on creation. If you do
5852 not specify the channel with the opt:lttng-enable-event(1):--channel
5853 option, and if the event rule to create is the first in its
5854 <<domain,tracing domain>> for a given tracing session, then LTTng
5855 creates a _default channel_ for you. This default channel is reused in
5856 subsequent invocations of the man:lttng-enable-event(1) command for the
5857 same tracing domain.
5858
5859 An event rule is always enabled at creation time.
5860
5861 The following examples show how you can combine the previous
5862 command-line options to create simple to more complex event rules.
5863
5864 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5865 ====
5866 [role="term"]
5867 ----
5868 $ lttng enable-event --kernel sched_switch
5869 ----
5870 ====
5871
5872 .Create an event rule matching four Linux kernel system calls (default channel).
5873 ====
5874 [role="term"]
5875 ----
5876 $ lttng enable-event --kernel --syscall open,write,read,close
5877 ----
5878 ====
5879
5880 .Create event rules matching tracepoints with filter expressions (default channel).
5881 ====
5882 [role="term"]
5883 ----
5884 $ lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5885 ----
5886
5887 [role="term"]
5888 ----
5889 $ lttng enable-event --kernel --all \
5890 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5891 ----
5892
5893 [role="term"]
5894 ----
5895 $ lttng enable-event --jul my_logger \
5896 --filter='$app.retriever:cur_msg_id > 3'
5897 ----
5898
5899 IMPORTANT: Make sure to always quote the filter string when you
5900 use man:lttng(1) from a shell.
5901 ====
5902
5903 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5904 ====
5905 [role="term"]
5906 ----
5907 $ lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5908 ----
5909
5910 IMPORTANT: Make sure to always quote the wildcard character when you
5911 use man:lttng(1) from a shell.
5912 ====
5913
5914 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5915 ====
5916 [role="term"]
5917 ----
5918 $ lttng enable-event --python my-app.'*' \
5919 --exclude='my-app.module,my-app.hello'
5920 ----
5921 ====
5922
5923 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5924 ====
5925 [role="term"]
5926 ----
5927 $ lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5928 ----
5929 ====
5930
5931 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5932 ====
5933 [role="term"]
5934 ----
5935 $ lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5936 ----
5937 ====
5938
5939 The event rules of a given channel form a whitelist: as soon as an
5940 emitted event passes one of them, LTTng can record the event. For
5941 example, an event named `my_app:my_tracepoint` emitted from a user space
5942 tracepoint with a `TRACE_ERROR` log level passes both of the following
5943 rules:
5944
5945 [role="term"]
5946 ----
5947 $ lttng enable-event --userspace my_app:my_tracepoint
5948 $ lttng enable-event --userspace my_app:my_tracepoint \
5949 --loglevel=TRACE_INFO
5950 ----
5951
5952 The second event rule is redundant: the first one includes
5953 the second one.
5954
5955
5956 [[disable-event-rule]]
5957 === Disable an event rule
5958
5959 To disable an event rule that you <<enabling-disabling-events,created>>
5960 previously, use the man:lttng-disable-event(1) command. This command
5961 disables _all_ the event rules (of a given tracing domain and channel)
5962 which match an instrumentation point. The other conditions are not
5963 supported as of LTTng{nbsp}{revision}.
5964
5965 The LTTng tracer does not record an emitted event which passes
5966 a _disabled_ event rule.
5967
5968 .Disable an event rule matching a Python logger (default channel).
5969 ====
5970 [role="term"]
5971 ----
5972 $ lttng disable-event --python my-logger
5973 ----
5974 ====
5975
5976 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5977 ====
5978 [role="term"]
5979 ----
5980 $ lttng disable-event --jul '*'
5981 ----
5982 ====
5983
5984 .Disable _all_ the event rules of the default channel.
5985 ====
5986 The opt:lttng-disable-event(1):--all-events option is not, like the
5987 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5988 equivalent of the event name `*` (wildcard): it disables _all_ the event
5989 rules of a given channel.
5990
5991 [role="term"]
5992 ----
5993 $ lttng disable-event --jul --all-events
5994 ----
5995 ====
5996
5997 NOTE: You cannot delete an event rule once you create it.
5998
5999
6000 [[status]]
6001 === Get the status of a tracing session
6002
6003 To get the status of the current tracing session, that is, its
6004 parameters, its channels, event rules, and their attributes:
6005
6006 * Use the man:lttng-status(1) command:
6007 +
6008 --
6009 [role="term"]
6010 ----
6011 $ lttng status
6012 ----
6013 --
6014 +
6015
6016 To get the status of any tracing session:
6017
6018 * Use the man:lttng-list(1) command with the tracing session's name:
6019 +
6020 --
6021 [role="term"]
6022 ----
6023 $ lttng list my-session
6024 ----
6025 --
6026 +
6027 Replace `my-session` with the desired tracing session's name.
6028
6029
6030 [[basic-tracing-session-control]]
6031 === Start and stop a tracing session
6032
6033 Once you <<creating-destroying-tracing-sessions,create a tracing
6034 session>> and
6035 <<enabling-disabling-events,create one or more event rules>>,
6036 you can start and stop the tracers for this tracing session.
6037
6038 To start tracing in the current tracing session:
6039
6040 * Use the man:lttng-start(1) command:
6041 +
6042 --
6043 [role="term"]
6044 ----
6045 $ lttng start
6046 ----
6047 --
6048
6049 LTTng is very flexible: you can launch user applications before
6050 or after the you start the tracers. The tracers only record the events
6051 if they pass enabled event rules and if they occur while the tracers are
6052 started.
6053
6054 To stop tracing in the current tracing session:
6055
6056 * Use the man:lttng-stop(1) command:
6057 +
6058 --
6059 [role="term"]
6060 ----
6061 $ lttng stop
6062 ----
6063 --
6064 +
6065 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
6066 records>> or lost sub-buffers since the last time you ran
6067 man:lttng-start(1), warnings are printed when you run the
6068 man:lttng-stop(1) command.
6069
6070
6071 [[enabling-disabling-channels]]
6072 === Create a channel
6073
6074 Once you create a tracing session, you can create a <<channel,channel>>
6075 with the man:lttng-enable-channel(1) command.
6076
6077 Note that LTTng automatically creates a default channel when, for a
6078 given <<domain,tracing domain>>, no channels exist and you
6079 <<enabling-disabling-events,create>> the first event rule. This default
6080 channel is named `channel0` and its attributes are set to reasonable
6081 values. Therefore, you only need to create a channel when you need
6082 non-default attributes.
6083
6084 You specify each non-default channel attribute with a command-line
6085 option when you use the man:lttng-enable-channel(1) command. The
6086 available command-line options are:
6087
6088 [role="growable",cols="asciidoc,asciidoc"]
6089 .Command-line options for the man:lttng-enable-channel(1) command.
6090 |====
6091 |Option |Description
6092
6093 |`--overwrite`
6094
6095 |
6096 Use the _overwrite_
6097 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
6098 the default _discard_ mode.
6099
6100 |`--buffers-pid` (user space tracing domain only)
6101
6102 |
6103 Use the per-process <<channel-buffering-schemes,buffering scheme>>
6104 instead of the default per-user buffering scheme.
6105
6106 |+--subbuf-size=__SIZE__+
6107
6108 |
6109 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
6110 either for each Unix user (default), or for each instrumented process.
6111
6112 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6113
6114 |+--num-subbuf=__COUNT__+
6115
6116 |
6117 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
6118 for each Unix user (default), or for each instrumented process.
6119
6120 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
6121
6122 |+--tracefile-size=__SIZE__+
6123
6124 |
6125 Set the maximum size of each trace file that this channel writes within
6126 a stream to +__SIZE__+ bytes instead of no maximum.
6127
6128 See <<tracefile-rotation,Trace file count and size>>.
6129
6130 |+--tracefile-count=__COUNT__+
6131
6132 |
6133 Limit the number of trace files that this channel creates to
6134 +__COUNT__+ channels instead of no limit.
6135
6136 See <<tracefile-rotation,Trace file count and size>>.
6137
6138 |+--switch-timer=__PERIODUS__+
6139
6140 |
6141 Set the <<channel-switch-timer,switch timer period>>
6142 to +__PERIODUS__+{nbsp}µs.
6143
6144 |+--read-timer=__PERIODUS__+
6145
6146 |
6147 Set the <<channel-read-timer,read timer period>>
6148 to +__PERIODUS__+{nbsp}µs.
6149
6150 |+--output=__TYPE__+ (Linux kernel tracing domain only)
6151
6152 |
6153 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
6154
6155 |====
6156
6157 You can only create a channel in the Linux kernel and user space
6158 <<domain,tracing domains>>: other tracing domains have their own channel
6159 created on the fly when <<enabling-disabling-events,creating event
6160 rules>>.
6161
6162 [IMPORTANT]
6163 ====
6164 Because of a current LTTng limitation, you must create all channels
6165 _before_ you <<basic-tracing-session-control,start tracing>> in a given
6166 tracing session, that is, before the first time you run
6167 man:lttng-start(1).
6168
6169 Since LTTng automatically creates a default channel when you use the
6170 man:lttng-enable-event(1) command with a specific tracing domain, you
6171 cannot, for example, create a Linux kernel event rule, start tracing,
6172 and then create a user space event rule, because no user space channel
6173 exists yet and it's too late to create one.
6174
6175 For this reason, make sure to configure your channels properly
6176 before starting the tracers for the first time!
6177 ====
6178
6179 The following examples show how you can combine the previous
6180 command-line options to create simple to more complex channels.
6181
6182 .Create a Linux kernel channel with default attributes.
6183 ====
6184 [role="term"]
6185 ----
6186 $ lttng enable-channel --kernel my-channel
6187 ----
6188 ====
6189
6190 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6191 ====
6192 [role="term"]
6193 ----
6194 $ lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6195 --buffers-pid my-channel
6196 ----
6197 ====
6198
6199 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
6200 ====
6201 [role="term"]
6202 ----
6203 $ lttng enable-channel --kernel --tracefile-count=8 \
6204 --tracefile-size=4194304 my-channel
6205 ----
6206 ====
6207
6208 .Create a user space channel in overwrite (or _flight recorder_) mode.
6209 ====
6210 [role="term"]
6211 ----
6212 $ lttng enable-channel --userspace --overwrite my-channel
6213 ----
6214 ====
6215
6216 You can <<enabling-disabling-events,create>> the same event rule in
6217 two different channels:
6218
6219 [role="term"]
6220 ----
6221 $ lttng enable-event --userspace --channel=my-channel app:tp
6222 $ lttng enable-event --userspace --channel=other-channel app:tp
6223 ----
6224
6225 If both channels are enabled, when a tracepoint named `app:tp` is
6226 reached, LTTng records two events, one for each channel.
6227
6228
6229 [[disable-channel]]
6230 === Disable a channel
6231
6232 To disable a specific channel that you <<enabling-disabling-channels,created>>
6233 previously, use the man:lttng-disable-channel(1) command.
6234
6235 .Disable a specific Linux kernel channel.
6236 ====
6237 [role="term"]
6238 ----
6239 $ lttng disable-channel --kernel my-channel
6240 ----
6241 ====
6242
6243 The state of a channel precedes the individual states of event rules
6244 attached to it: event rules which belong to a disabled channel, even if
6245 they are enabled, are also considered disabled.
6246
6247
6248 [[adding-context]]
6249 === Add context fields to a channel
6250
6251 Event record fields in trace files provide important information about
6252 events that occured previously, but sometimes some external context may
6253 help you solve a problem faster. Examples of context fields are:
6254
6255 * The **process ID**, **thread ID**, **process name**, and
6256 **process priority** of the thread in which the event occurs.
6257 * The **hostname** of the system on which the event occurs.
6258 * The current values of many possible **performance counters** using
6259 perf, for example:
6260 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6261 ** Cache misses.
6262 ** Branch instructions, misses, and loads.
6263 ** CPU faults.
6264 * Any context defined at the application level (supported for the
6265 JUL and log4j <<domain,tracing domains>>).
6266
6267 To get the full list of available context fields, see
6268 `lttng add-context --list`. Some context fields are reserved for a
6269 specific <<domain,tracing domain>> (Linux kernel or user space).
6270
6271 You add context fields to <<channel,channels>>. All the events
6272 that a channel with added context fields records contain those fields.
6273
6274 To add context fields to one or all the channels of a given tracing
6275 session:
6276
6277 * Use the man:lttng-add-context(1) command.
6278
6279 .Add context fields to all the channels of the current tracing session.
6280 ====
6281 The following command line adds the virtual process identifier and
6282 the per-thread CPU cycles count fields to all the user space channels
6283 of the current tracing session.
6284
6285 [role="term"]
6286 ----
6287 $ lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6288 ----
6289 ====
6290
6291 .Add a context field to a specific channel.
6292 ====
6293 The following command line adds the thread identifier context field
6294 to the Linux kernel channel named `my-channel` in the current
6295 tracing session.
6296
6297 [role="term"]
6298 ----
6299 $ lttng add-context --kernel --channel=my-channel --type=tid
6300 ----
6301 ====
6302
6303 .Add an application-specific context field to a specific channel.
6304 ====
6305 The following command line adds the `cur_msg_id` context field of the
6306 `retriever` context retriever for all the instrumented
6307 <<java-application,Java applications>> recording <<event,event records>>
6308 in the channel named `my-channel`:
6309
6310 [role="term"]
6311 ----
6312 $ lttng add-context --kernel --channel=my-channel \
6313 --type='$app:retriever:cur_msg_id'
6314 ----
6315
6316 IMPORTANT: Make sure to always quote the `$` character when you
6317 use man:lttng-add-context(1) from a shell.
6318 ====
6319
6320 NOTE: You cannot remove context fields from a channel once you add it.
6321
6322
6323 [role="since-2.7"]
6324 [[pid-tracking]]
6325 === Track process IDs
6326
6327 It's often useful to allow only specific process IDs (PIDs) to emit
6328 events. For example, you may wish to record all the system calls made by
6329 a given process (à la http://linux.die.net/man/1/strace[strace]).
6330
6331 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6332 purpose. Both commands operate on a whitelist of process IDs. You _add_
6333 entries to this whitelist with the man:lttng-track(1) command and remove
6334 entries with the man:lttng-untrack(1) command. Any process which has one
6335 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6336 an enabled <<event,event rule>>.
6337
6338 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6339 process with a given tracked ID exit and another process be given this
6340 ID, then the latter would also be allowed to emit events.
6341
6342 .Track and untrack process IDs.
6343 ====
6344 For the sake of the following example, assume the target system has 16
6345 possible PIDs.
6346
6347 When you
6348 <<creating-destroying-tracing-sessions,create a tracing session>>,
6349 the whitelist contains all the possible PIDs:
6350
6351 [role="img-100"]
6352 .All PIDs are tracked.
6353 image::track-all.png[]
6354
6355 When the whitelist is full and you use the man:lttng-track(1) command to
6356 specify some PIDs to track, LTTng first clears the whitelist, then it
6357 tracks the specific PIDs. After:
6358
6359 [role="term"]
6360 ----
6361 $ lttng track --pid=3,4,7,10,13
6362 ----
6363
6364 the whitelist is:
6365
6366 [role="img-100"]
6367 .PIDs 3, 4, 7, 10, and 13 are tracked.
6368 image::track-3-4-7-10-13.png[]
6369
6370 You can add more PIDs to the whitelist afterwards:
6371
6372 [role="term"]
6373 ----
6374 $ lttng track --pid=1,15,16
6375 ----
6376
6377 The result is:
6378
6379 [role="img-100"]
6380 .PIDs 1, 15, and 16 are added to the whitelist.
6381 image::track-1-3-4-7-10-13-15-16.png[]
6382
6383 The man:lttng-untrack(1) command removes entries from the PID tracker's
6384 whitelist. Given the previous example, the following command:
6385
6386 [role="term"]
6387 ----
6388 $ lttng untrack --pid=3,7,10,13
6389 ----
6390
6391 leads to this whitelist:
6392
6393 [role="img-100"]
6394 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6395 image::track-1-4-15-16.png[]
6396
6397 LTTng can track all possible PIDs again using the opt:track(1):--all
6398 option:
6399
6400 [role="term"]
6401 ----
6402 $ lttng track --pid --all
6403 ----
6404
6405 The result is, again:
6406
6407 [role="img-100"]
6408 .All PIDs are tracked.
6409 image::track-all.png[]
6410 ====
6411
6412 .Track only specific PIDs
6413 ====
6414 A very typical use case with PID tracking is to start with an empty
6415 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6416 then add PIDs manually while tracers are active. You can accomplish this
6417 by using the opt:lttng-untrack(1):--all option of the
6418 man:lttng-untrack(1) command to clear the whitelist after you
6419 <<creating-destroying-tracing-sessions,create a tracing session>>:
6420
6421 [role="term"]
6422 ----
6423 $ lttng untrack --pid --all
6424 ----
6425
6426 gives:
6427
6428 [role="img-100"]
6429 .No PIDs are tracked.
6430 image::untrack-all.png[]
6431
6432 If you trace with this whitelist configuration, the tracer records no
6433 events for this <<domain,tracing domain>> because no processes are
6434 tracked. You can use the man:lttng-track(1) command as usual to track
6435 specific PIDs, for example:
6436
6437 [role="term"]
6438 ----
6439 $ lttng track --pid=6,11
6440 ----
6441
6442 Result:
6443
6444 [role="img-100"]
6445 .PIDs 6 and 11 are tracked.
6446 image::track-6-11.png[]
6447 ====
6448
6449
6450 [role="since-2.5"]
6451 [[saving-loading-tracing-session]]
6452 === Save and load tracing session configurations
6453
6454 Configuring a <<tracing-session,tracing session>> can be long. Some of
6455 the tasks involved are:
6456
6457 * <<enabling-disabling-channels,Create channels>> with
6458 specific attributes.
6459 * <<adding-context,Add context fields>> to specific channels.
6460 * <<enabling-disabling-events,Create event rules>> with specific log
6461 level and filter conditions.
6462
6463 If you use LTTng to solve real world problems, chances are you have to
6464 record events using the same tracing session setup over and over,
6465 modifying a few variables each time in your instrumented program
6466 or environment. To avoid constant tracing session reconfiguration,
6467 the man:lttng(1) command-line tool can save and load tracing session
6468 configurations to/from XML files.
6469
6470 To save a given tracing session configuration:
6471
6472 * Use the man:lttng-save(1) command:
6473 +
6474 --
6475 [role="term"]
6476 ----
6477 $ lttng save my-session
6478 ----
6479 --
6480 +
6481 Replace `my-session` with the name of the tracing session to save.
6482
6483 LTTng saves tracing session configurations to
6484 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6485 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6486 the opt:lttng-save(1):--output-path option to change this destination
6487 directory.
6488
6489 LTTng saves all configuration parameters, for example:
6490
6491 * The tracing session name.
6492 * The trace data output path.
6493 * The channels with their state and all their attributes.
6494 * The context fields you added to channels.
6495 * The event rules with their state, log level and filter conditions.
6496
6497 To load a tracing session:
6498
6499 * Use the man:lttng-load(1) command:
6500 +
6501 --
6502 [role="term"]
6503 ----
6504 $ lttng load my-session
6505 ----
6506 --
6507 +
6508 Replace `my-session` with the name of the tracing session to load.
6509
6510 When LTTng loads a configuration, it restores your saved tracing session
6511 as if you just configured it manually.
6512
6513 See man:lttng(1) for the complete list of command-line options. You
6514 can also save and load all many sessions at a time, and decide in which
6515 directory to output the XML files.
6516
6517
6518 [[sending-trace-data-over-the-network]]
6519 === Send trace data over the network
6520
6521 LTTng can send the recorded trace data to a remote system over the
6522 network instead of writing it to the local file system.
6523
6524 To send the trace data over the network:
6525
6526 . On the _remote_ system (which can also be the target system),
6527 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6528 +
6529 --
6530 [role="term"]
6531 ----
6532 $ lttng-relayd
6533 ----
6534 --
6535
6536 . On the _target_ system, create a tracing session configured to
6537 send trace data over the network:
6538 +
6539 --
6540 [role="term"]
6541 ----
6542 $ lttng create my-session --set-url=net://remote-system
6543 ----
6544 --
6545 +
6546 Replace `remote-system` by the host name or IP address of the
6547 remote system. See man:lttng-create(1) for the exact URL format.
6548
6549 . On the target system, use the man:lttng(1) command-line tool as usual.
6550 When tracing is active, the target's consumer daemon sends sub-buffers
6551 to the relay daemon running on the remote system instead of flushing
6552 them to the local file system. The relay daemon writes the received
6553 packets to the local file system.
6554
6555 The relay daemon writes trace files to
6556 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6557 +__hostname__+ is the host name of the target system and +__session__+
6558 is the tracing session name. Note that the env:LTTNG_HOME environment
6559 variable defaults to `$HOME` if not set. Use the
6560 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6561 trace files to another base directory.
6562
6563
6564 [role="since-2.4"]
6565 [[lttng-live]]
6566 === View events as LTTng emits them (noch:{LTTng} live)
6567
6568 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6569 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6570 display events as LTTng emits them on the target system while tracing is
6571 active.
6572
6573 The relay daemon creates a _tee_: it forwards the trace data to both
6574 the local file system and to connected live viewers:
6575
6576 [role="img-90"]
6577 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6578 image::live.png[]
6579
6580 To use LTTng live:
6581
6582 . On the _target system_, create a <<tracing-session,tracing session>>
6583 in _live mode_:
6584 +
6585 --
6586 [role="term"]
6587 ----
6588 $ lttng create my-session --live
6589 ----
6590 --
6591 +
6592 This spawns a local relay daemon.
6593
6594 . Start the live viewer and configure it to connect to the relay
6595 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6596 +
6597 --
6598 [role="term"]
6599 ----
6600 $ babeltrace --input-format=lttng-live
6601 net://localhost/host/hostname/my-session
6602 ----
6603 --
6604 +
6605 Replace:
6606 +
6607 --
6608 * `hostname` with the host name of the target system.
6609 * `my-session` with the name of the tracing session to view.
6610 --
6611
6612 . Configure the tracing session as usual with the man:lttng(1)
6613 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6614
6615 You can list the available live tracing sessions with Babeltrace:
6616
6617 [role="term"]
6618 ----
6619 $ babeltrace --input-format=lttng-live net://localhost
6620 ----
6621
6622 You can start the relay daemon on another system. In this case, you need
6623 to specify the relay daemon's URL when you create the tracing session
6624 with the opt:lttng-create(1):--set-url option. You also need to replace
6625 `localhost` in the procedure above with the host name of the system on
6626 which the relay daemon is running.
6627
6628 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6629 command-line options.
6630
6631
6632 [role="since-2.3"]
6633 [[taking-a-snapshot]]
6634 === Take a snapshot of the current sub-buffers of a tracing session
6635
6636 The normal behavior of LTTng is to append full sub-buffers to growing
6637 trace data files. This is ideal to keep a full history of the events
6638 that occurred on the target system, but it can
6639 represent too much data in some situations. For example, you may wish
6640 to trace your application continuously until some critical situation
6641 happens, in which case you only need the latest few recorded
6642 events to perform the desired analysis, not multi-gigabyte trace files.
6643
6644 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6645 current sub-buffers of a given <<tracing-session,tracing session>>.
6646 LTTng can write the snapshot to the local file system or send it over
6647 the network.
6648
6649 To take a snapshot:
6650
6651 . Create a tracing session in _snapshot mode_:
6652 +
6653 --
6654 [role="term"]
6655 ----
6656 $ lttng create my-session --snapshot
6657 ----
6658 --
6659 +
6660 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6661 <<channel,channels>> created in this mode is automatically set to
6662 _overwrite_ (flight recorder mode).
6663
6664 . Configure the tracing session as usual with the man:lttng(1)
6665 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6666
6667 . **Optional**: When you need to take a snapshot,
6668 <<basic-tracing-session-control,stop tracing>>.
6669 +
6670 You can take a snapshot when the tracers are active, but if you stop
6671 them first, you are sure that the data in the sub-buffers does not
6672 change before you actually take the snapshot.
6673
6674 . Take a snapshot:
6675 +
6676 --
6677 [role="term"]
6678 ----
6679 $ lttng snapshot record --name=my-first-snapshot
6680 ----
6681 --
6682 +
6683 LTTng writes the current sub-buffers of all the current tracing
6684 session's channels to trace files on the local file system. Those trace
6685 files have `my-first-snapshot` in their name.
6686
6687 There is no difference between the format of a normal trace file and the
6688 format of a snapshot: viewers of LTTng traces also support LTTng
6689 snapshots.
6690
6691 By default, LTTng writes snapshot files to the path shown by
6692 `lttng snapshot list-output`. You can change this path or decide to send
6693 snapshots over the network using either:
6694
6695 . An output path or URL that you specify when you create the
6696 tracing session.
6697 . An snapshot output path or URL that you add using
6698 `lttng snapshot add-output`
6699 . An output path or URL that you provide directly to the
6700 `lttng snapshot record` command.
6701
6702 Method 3 overrides method 2, which overrides method 1. When you
6703 specify a URL, a relay daemon must listen on a remote system (see
6704 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6705
6706
6707 [role="since-2.6"]
6708 [[mi]]
6709 === Use the machine interface
6710
6711 With any command of the man:lttng(1) command-line tool, you can set the
6712 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6713 XML machine interface output, for example:
6714
6715 [role="term"]
6716 ----
6717 $ lttng --mi=xml enable-event --kernel --syscall open
6718 ----
6719
6720 A schema definition (XSD) is
6721 https://github.com/lttng/lttng-tools/blob/stable-2.8/src/common/mi-lttng-3.0.xsd[available]
6722 to ease the integration with external tools as much as possible.
6723
6724
6725 [role="since-2.8"]
6726 [[metadata-regenerate]]
6727 === Regenerate the metadata of an LTTng trace
6728
6729 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6730 data stream files and a metadata file. This metadata file contains,
6731 amongst other things, information about the offset of the clock sources
6732 used to timestamp <<event,event records>> when tracing.
6733
6734 If, once a <<tracing-session,tracing session>> is
6735 <<basic-tracing-session-control,started>>, a major
6736 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6737 happens, the trace's clock offset also needs to be updated. You
6738 can use the man:lttng-metadata(1) command to do so.
6739
6740 The main use case of this command is to allow a system to boot with
6741 an incorrect wall time and trace it with LTTng before its wall time
6742 is corrected. Once the system is known to be in a state where its
6743 wall time is correct, it can run `lttng metadata regenerate`.
6744
6745 To regenerate the metadata of an LTTng trace:
6746
6747 * Use the `regenerate` action of the man:lttng-metadata(1) command:
6748 +
6749 --
6750 [role="term"]
6751 ----
6752 $ lttng metadata regenerate
6753 ----
6754 --
6755
6756 [IMPORTANT]
6757 ====
6758 `lttng metadata regenerate` has the following limitations:
6759
6760 * Tracing session <<creating-destroying-tracing-sessions,created>>
6761 in non-live mode.
6762 * User space <<channel,channels>>, if any, using
6763 <<channel-buffering-schemes,per-user buffering>>.
6764 ====
6765
6766
6767 [role="since-2.7"]
6768 [[persistent-memory-file-systems]]
6769 === Record trace data on persistent memory file systems
6770
6771 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6772 (NVRAM) is random-access memory that retains its information when power
6773 is turned off (non-volatile). Systems with such memory can store data
6774 structures in RAM and retrieve them after a reboot, without flushing
6775 to typical _storage_.
6776
6777 Linux supports NVRAM file systems thanks to either
6778 http://pramfs.sourceforge.net/[PRAMFS] or
6779 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6780 (requires Linux 4.1+).
6781
6782 This section does not describe how to operate such file systems;
6783 we assume that you have a working persistent memory file system.
6784
6785 When you create a <<tracing-session,tracing session>>, you can specify
6786 the path of the shared memory holding the sub-buffers. If you specify a
6787 location on an NVRAM file system, then you can retrieve the latest
6788 recorded trace data when the system reboots after a crash.
6789
6790 To record trace data on a persistent memory file system and retrieve the
6791 trace data after a system crash:
6792
6793 . Create a tracing session with a sub-buffer shared memory path located
6794 on an NVRAM file system:
6795 +
6796 --
6797 [role="term"]
6798 ----
6799 $ lttng create my-session --shm-path=/path/to/shm
6800 ----
6801 --
6802
6803 . Configure the tracing session as usual with the man:lttng(1)
6804 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6805
6806 . After a system crash, use the man:lttng-crash(1) command-line tool to
6807 view the trace data recorded on the NVRAM file system:
6808 +
6809 --
6810 [role="term"]
6811 ----
6812 $ lttng-crash /path/to/shm
6813 ----
6814 --
6815
6816 The binary layout of the ring buffer files is not exactly the same as
6817 the trace files layout. This is why you need to use man:lttng-crash(1)
6818 instead of your preferred trace viewer directly.
6819
6820 To convert the ring buffer files to LTTng trace files:
6821
6822 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6823 +
6824 --
6825 [role="term"]
6826 ----
6827 $ lttng-crash --extract=/path/to/trace /path/to/shm
6828 ----
6829 --
6830
6831
6832 [[reference]]
6833 == Reference
6834
6835 [[lttng-modules-ref]]
6836 === noch:{LTTng-modules}
6837
6838 [role="since-2.7"]
6839 [[lttng-modules-tp-fields]]
6840 ==== Tracepoint fields macros (for `TP_FIELDS()`)
6841
6842 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
6843 tracepoint fields, which must be listed within `TP_FIELDS()` in
6844 `LTTNG_TRACEPOINT_EVENT()`, are:
6845
6846 [role="func-desc growable",cols="asciidoc,asciidoc"]
6847 .Available macros to define LTTng-modules tracepoint fields
6848 |====
6849 |Macro |Description and parameters
6850
6851 |
6852 +ctf_integer(__t__, __n__, __e__)+
6853
6854 +ctf_integer_nowrite(__t__, __n__, __e__)+
6855
6856 +ctf_user_integer(__t__, __n__, __e__)+
6857
6858 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
6859 |
6860 Standard integer, displayed in base 10.
6861
6862 +__t__+::
6863 Integer C type (`int`, `long`, `size_t`, ...).
6864
6865 +__n__+::
6866 Field name.
6867
6868 +__e__+::
6869 Argument expression.
6870
6871 |
6872 +ctf_integer_hex(__t__, __n__, __e__)+
6873
6874 +ctf_user_integer_hex(__t__, __n__, __e__)+
6875 |
6876 Standard integer, displayed in base 16.
6877
6878 +__t__+::
6879 Integer C type.
6880
6881 +__n__+::
6882 Field name.
6883
6884 +__e__+::
6885 Argument expression.
6886
6887 |+ctf_integer_oct(__t__, __n__, __e__)+
6888 |
6889 Standard integer, displayed in base 8.
6890
6891 +__t__+::
6892 Integer C type.
6893
6894 +__n__+::
6895 Field name.
6896
6897 +__e__+::
6898 Argument expression.
6899
6900 |
6901 +ctf_integer_network(__t__, __n__, __e__)+
6902
6903 +ctf_user_integer_network(__t__, __n__, __e__)+
6904 |
6905 Integer in network byte order (big-endian), displayed in base 10.
6906
6907 +__t__+::
6908 Integer C type.
6909
6910 +__n__+::
6911 Field name.
6912
6913 +__e__+::
6914 Argument expression.
6915
6916 |
6917 +ctf_integer_network_hex(__t__, __n__, __e__)+
6918
6919 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
6920 |
6921 Integer in network byte order, displayed in base 16.
6922
6923 +__t__+::
6924 Integer C type.
6925
6926 +__n__+::
6927 Field name.
6928
6929 +__e__+::
6930 Argument expression.
6931
6932 |
6933 +ctf_string(__n__, __e__)+
6934
6935 +ctf_string_nowrite(__n__, __e__)+
6936
6937 +ctf_user_string(__n__, __e__)+
6938
6939 +ctf_user_string_nowrite(__n__, __e__)+
6940 |
6941 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
6942
6943 +__n__+::
6944 Field name.
6945
6946 +__e__+::
6947 Argument expression.
6948
6949 |
6950 +ctf_array(__t__, __n__, __e__, __s__)+
6951
6952 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
6953
6954 +ctf_user_array(__t__, __n__, __e__, __s__)+
6955
6956 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
6957 |
6958 Statically-sized array of integers.
6959
6960 +__t__+::
6961 Array element C type.
6962
6963 +__n__+::
6964 Field name.
6965
6966 +__e__+::
6967 Argument expression.
6968
6969 +__s__+::
6970 Number of elements.
6971
6972 |
6973 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
6974
6975 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6976
6977 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
6978
6979 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
6980 |
6981 Statically-sized array of bits.
6982
6983 The type of +__e__+ must be an integer type. +__s__+ is the number
6984 of elements of such type in +__e__+, not the number of bits.
6985
6986 +__t__+::
6987 Array element C type.
6988
6989 +__n__+::
6990 Field name.
6991
6992 +__e__+::
6993 Argument expression.
6994
6995 +__s__+::
6996 Number of elements.
6997
6998 |
6999 +ctf_array_text(__t__, __n__, __e__, __s__)+
7000
7001 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
7002
7003 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
7004
7005 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
7006 |
7007 Statically-sized array, printed as text.
7008
7009 The string does not need to be null-terminated.
7010
7011 +__t__+::
7012 Array element C type (always `char`).
7013
7014 +__n__+::
7015 Field name.
7016
7017 +__e__+::
7018 Argument expression.
7019
7020 +__s__+::
7021 Number of elements.
7022
7023 |
7024 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
7025
7026 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7027
7028 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
7029
7030 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7031 |
7032 Dynamically-sized array of integers.
7033
7034 The type of +__E__+ must be unsigned.
7035
7036 +__t__+::
7037 Array element C type.
7038
7039 +__n__+::
7040 Field name.
7041
7042 +__e__+::
7043 Argument expression.
7044
7045 +__T__+::
7046 Length expression C type.
7047
7048 +__E__+::
7049 Length expression.
7050
7051 |
7052 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7053
7054 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7055 |
7056 Dynamically-sized array of integers, displayed in base 16.
7057
7058 The type of +__E__+ must be unsigned.
7059
7060 +__t__+::
7061 Array element C type.
7062
7063 +__n__+::
7064 Field name.
7065
7066 +__e__+::
7067 Argument expression.
7068
7069 +__T__+::
7070 Length expression C type.
7071
7072 +__E__+::
7073 Length expression.
7074
7075 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
7076 |
7077 Dynamically-sized array of integers in network byte order (big-endian),
7078 displayed in base 10.
7079
7080 The type of +__E__+ must be unsigned.
7081
7082 +__t__+::
7083 Array element C type.
7084
7085 +__n__+::
7086 Field name.
7087
7088 +__e__+::
7089 Argument expression.
7090
7091 +__T__+::
7092 Length expression C type.
7093
7094 +__E__+::
7095 Length expression.
7096
7097 |
7098 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7099
7100 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7101
7102 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7103
7104 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7105 |
7106 Dynamically-sized array of bits.
7107
7108 The type of +__e__+ must be an integer type. +__s__+ is the number
7109 of elements of such type in +__e__+, not the number of bits.
7110
7111 The type of +__E__+ must be unsigned.
7112
7113 +__t__+::
7114 Array element C type.
7115
7116 +__n__+::
7117 Field name.
7118
7119 +__e__+::
7120 Argument expression.
7121
7122 +__T__+::
7123 Length expression C type.
7124
7125 +__E__+::
7126 Length expression.
7127
7128 |
7129 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7130
7131 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7132
7133 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7134
7135 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7136 |
7137 Dynamically-sized array, displayed as text.
7138
7139 The string does not need to be null-terminated.
7140
7141 The type of +__E__+ must be unsigned.
7142
7143 The behaviour is undefined if +__e__+ is `NULL`.
7144
7145 +__t__+::
7146 Sequence element C type (always `char`).
7147
7148 +__n__+::
7149 Field name.
7150
7151 +__e__+::
7152 Argument expression.
7153
7154 +__T__+::
7155 Length expression C type.
7156
7157 +__E__+::
7158 Length expression.
7159 |====
7160
7161 Use the `_user` versions when the argument expression, `e`, is
7162 a user space address. In the cases of `ctf_user_integer*()` and
7163 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7164 be addressable.
7165
7166 The `_nowrite` versions omit themselves from the session trace, but are
7167 otherwise identical. This means the `_nowrite` fields won't be written
7168 in the recorded trace. Their primary purpose is to make some
7169 of the event context available to the
7170 <<enabling-disabling-events,event filters>> without having to
7171 commit the data to sub-buffers.
7172
7173
7174 [[glossary]]
7175 == Glossary
7176
7177 Terms related to LTTng and to tracing in general:
7178
7179 Babeltrace::
7180 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7181 the cmd:babeltrace command, some libraries, and Python bindings.
7182
7183 <<channel-buffering-schemes,buffering scheme>>::
7184 A layout of sub-buffers applied to a given channel.
7185
7186 <<channel,channel>>::
7187 An entity which is responsible for a set of ring buffers.
7188 +
7189 <<event,Event rules>> are always attached to a specific channel.
7190
7191 clock::
7192 A reference of time for a tracer.
7193
7194 <<lttng-consumerd,consumer daemon>>::
7195 A process which is responsible for consuming the full sub-buffers
7196 and write them to a file system or send them over the network.
7197
7198 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7199 mode in which the tracer _discards_ new event records when there's no
7200 sub-buffer space left to store them.
7201
7202 event::
7203 The consequence of the execution of an instrumentation
7204 point, like a tracepoint that you manually place in some source code,
7205 or a Linux kernel KProbe.
7206 +
7207 An event is said to _occur_ at a specific time. Different actions can
7208 be taken upon the occurrence of an event, like record the event's payload
7209 to a sub-buffer.
7210
7211 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7212 The mechanism by which event records of a given channel are lost
7213 (not recorded) when there is no sub-buffer space left to store them.
7214
7215 [[def-event-name]]event name::
7216 The name of an event, which is also the name of the event record.
7217 This is also called the _instrumentation point name_.
7218
7219 event record::
7220 A record, in a trace, of the payload of an event which occured.
7221
7222 <<event,event rule>>::
7223 Set of conditions which must be satisfied for one or more occuring
7224 events to be recorded.
7225
7226 `java.util.logging`::
7227 Java platform's
7228 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7229
7230 <<instrumenting,instrumentation>>::
7231 The use of LTTng probes to make a piece of software traceable.
7232
7233 instrumentation point::
7234 A point in the execution path of a piece of software that, when
7235 reached by this execution, can emit an event.
7236
7237 instrumentation point name::
7238 See _<<def-event-name,event name>>_.
7239
7240 log4j::
7241 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7242 developed by the Apache Software Foundation.
7243
7244 log level::
7245 Level of severity of a log statement or user space
7246 instrumentation point.
7247
7248 LTTng::
7249 The _Linux Trace Toolkit: next generation_ project.
7250
7251 <<lttng-cli,cmd:lttng>>::
7252 A command-line tool provided by the LTTng-tools project which you
7253 can use to send and receive control messages to and from a
7254 session daemon.
7255
7256 LTTng analyses::
7257 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7258 which is a set of analyzing programs that are used to obtain a
7259 higher level view of an LTTng trace.
7260
7261 cmd:lttng-consumerd::
7262 The name of the consumer daemon program.
7263
7264 cmd:lttng-crash::
7265 A utility provided by the LTTng-tools project which can convert
7266 ring buffer files (usually
7267 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7268 to trace files.
7269
7270 LTTng Documentation::
7271 This document.
7272
7273 <<lttng-live,LTTng live>>::
7274 A communication protocol between the relay daemon and live viewers
7275 which makes it possible to see events "live", as they are received by
7276 the relay daemon.
7277
7278 <<lttng-modules,LTTng-modules>>::
7279 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7280 which contains the Linux kernel modules to make the Linux kernel
7281 instrumentation points available for LTTng tracing.
7282
7283 cmd:lttng-relayd::
7284 The name of the relay daemon program.
7285
7286 cmd:lttng-sessiond::
7287 The name of the session daemon program.
7288
7289 LTTng-tools::
7290 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7291 contains the various programs and libraries used to
7292 <<controlling-tracing,control tracing>>.
7293
7294 <<lttng-ust,LTTng-UST>>::
7295 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7296 contains libraries to instrument user applications.
7297
7298 <<lttng-ust-agents,LTTng-UST Java agent>>::
7299 A Java package provided by the LTTng-UST project to allow the
7300 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7301 logging statements.
7302
7303 <<lttng-ust-agents,LTTng-UST Python agent>>::
7304 A Python package provided by the LTTng-UST project to allow the
7305 LTTng instrumentation of Python logging statements.
7306
7307 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7308 The event loss mode in which new event records overwrite older
7309 event records when there's no sub-buffer space left to store them.
7310
7311 <<channel-buffering-schemes,per-process buffering>>::
7312 A buffering scheme in which each instrumented process has its own
7313 sub-buffers for a given user space channel.
7314
7315 <<channel-buffering-schemes,per-user buffering>>::
7316 A buffering scheme in which all the processes of a Unix user share the
7317 same sub-buffer for a given user space channel.
7318
7319 <<lttng-relayd,relay daemon>>::
7320 A process which is responsible for receiving the trace data sent by
7321 a distant consumer daemon.
7322
7323 ring buffer::
7324 A set of sub-buffers.
7325
7326 <<lttng-sessiond,session daemon>>::
7327 A process which receives control commands from you and orchestrates
7328 the tracers and various LTTng daemons.
7329
7330 <<taking-a-snapshot,snapshot>>::
7331 A copy of the current data of all the sub-buffers of a given tracing
7332 session, saved as trace files.
7333
7334 sub-buffer::
7335 One part of an LTTng ring buffer which contains event records.
7336
7337 timestamp::
7338 The time information attached to an event when it is emitted.
7339
7340 trace (_noun_)::
7341 A set of files which are the concatenations of one or more
7342 flushed sub-buffers.
7343
7344 trace (_verb_)::
7345 The action of recording the events emitted by an application
7346 or by a system, or to initiate such recording by controlling
7347 a tracer.
7348
7349 Trace Compass::
7350 The http://tracecompass.org[Trace Compass] project and application.
7351
7352 tracepoint::
7353 An instrumentation point using the tracepoint mechanism of the Linux
7354 kernel or of LTTng-UST.
7355
7356 tracepoint definition::
7357 The definition of a single tracepoint.
7358
7359 tracepoint name::
7360 The name of a tracepoint.
7361
7362 tracepoint provider::
7363 A set of functions providing tracepoints to an instrumented user
7364 application.
7365 +
7366 Not to be confused with a _tracepoint provider package_: many tracepoint
7367 providers can exist within a tracepoint provider package.
7368
7369 tracepoint provider package::
7370 One or more tracepoint providers compiled as an object file or as
7371 a shared library.
7372
7373 tracer::
7374 A software which records emitted events.
7375
7376 <<domain,tracing domain>>::
7377 A namespace for event sources.
7378
7379 <<tracing-group,tracing group>>::
7380 The Unix group in which a Unix user can be to be allowed to trace the
7381 Linux kernel.
7382
7383 <<tracing-session,tracing session>>::
7384 A stateful dialogue between you and a <<lttng-sessiond,session
7385 daemon>>.
7386
7387 user application::
7388 An application running in user space, as opposed to a Linux kernel
7389 module, for example.
This page took 0.1733 seconds and 3 git commands to generate.