3b575d4f540e368c4cbe70ec394b61e829ef6048
[lttng-docs.git] / 2.7 / lttng-docs-2.7.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.7, 25 October 2016
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/welcome.txt[]
11
12
13 include::../common/audience.txt[]
14
15
16 [[chapters]]
17 === What's in this documentation?
18
19 The LTTng Documentation is divided into the following sections:
20
21 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24 +
25 You can skip this section if you’re familiar with software tracing and
26 with the LTTng project.
27
28 * **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31 +
32 You can skip this section if you already properly installed LTTng on
33 your target system.
34
35 * **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37 +
38 We recommend this section if you're new to LTTng or to software tracing
39 in general.
40 +
41 You can skip this section if you're not new to LTTng.
42
43 * **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45 +
46 It's a good idea to become familiar with the core concepts
47 before attempting to use the toolkit.
48
49 * **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52 * **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54 +
55 Instrumenting source code is essential to provide a meaningful
56 source of events.
57 +
58 You can skip this section if you do not have a programming background.
59
60 * **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63 * **<<reference,Reference>>** contains reference links and tables.
64 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68 include::../common/convention.txt[]
69
70
71 include::../common/acknowledgements.txt[]
72
73
74 [[whats-new]]
75 == What's new in LTTng {revision}?
76
77 * **Tracing control**:
78 ** Dynamic filter support for <<event,event rules>> in the Linux kernel
79 <<domain,tracing domain>>. For example:
80 +
81 --
82 [role="term"]
83 ----
84 lttng enable-event --kernel irq_handler_entry --filter='irq == 28'
85 ----
86 --
87
88 ** Wildcard support in the instrumentation point name of an event rule
89 in the Linux kernel tracing domain. For example:
90 +
91 --
92 [role="term"]
93 ----
94 lttng enable-event --kernel 'sched_*'
95 ----
96 --
97
98 ** New `lttng track` and `lttng untrack` commands to make
99 <<pid-tracking,PID tracking>> super-fast for both the Linux kernel
100 and the user space tracing domains.
101 +
102 When LTTng _tracks_ one or more PIDs, only the processes having those PIDs
103 can emit events for a given tracing session.
104
105 ** New `--shm-path` option of the `lttng create` command to specify the
106 path where LTTng creates the shared memory holding the ring buffers.
107 +
108 This feature is useful when used with persistent memory file systems to
109 extract the latest recorded trace data in the event of a crash requiring
110 a reboot.
111 +
112 The new man:lttng-crash(1) command-line utility can extract trace data
113 from such a file (see <<persistent-memory-file-systems,Record trace data
114 on persistent memory file systems>>).
115
116 * **User space tracing**:
117 ** New <<python-application,LTTng-UST Python agent>> which makes it easy
118 to trace existing Python applications that are using the standard
119 https://docs.python.org/3/howto/logging.html[`logging` package].
120 +
121 This agent is compatible with both the Python 2 and Python 3 languages.
122
123 ** New <<tracelog,`tracelog()`>> facility to ease the migration from
124 logging to tracing.
125 +
126 `tracelog()` is similar to <<tracef,`tracef()`>>,
127 but it accepts an additional log level parameter.
128
129 ** Plugin support in LTTng-UST to provide a custom clock source and to
130 retrieve the current CPU number.
131 +
132 This feature exists for very advanced use cases.
133 +
134 See the
135 https://github.com/lttng/lttng-ust/tree/stable-{revision}/doc/examples/clock-override[clock-override]
136 and
137 https://github.com/lttng/lttng-ust/tree/stable-{revision}/doc/examples/getcpu-override[getcpu-override]
138 examples for more details.
139
140 Moreover, LTTng{nbsp}{revision} boasts great stability, benifiting from
141 piles of bug fixes and more-than-welcome internal refactorings.
142
143 To learn more about the new features of LTTng{nbsp}{revision}, see
144 https://lttng.org/blog/2015/10/14/lttng-2.7-released/[the release announcement].
145
146
147 [[nuts-and-bolts]]
148 == Nuts and bolts
149
150 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
151 generation_ is a modern toolkit for tracing Linux systems and
152 applications. So your first question might be:
153 **what is tracing?**
154
155
156 [[what-is-tracing]]
157 === What is tracing?
158
159 As the history of software engineering progressed and led to what
160 we now take for granted--complex, numerous and
161 interdependent software applications running in parallel on
162 sophisticated operating systems like Linux--the authors of such
163 components, software developers, began feeling a natural
164 urge to have tools that would ensure the robustness and good performance
165 of their masterpieces.
166
167 One major achievement in this field is, inarguably, the
168 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
169 an essential tool for developers to find and fix bugs. But even the best
170 debugger won't help make your software run faster, and nowadays, faster
171 software means either more work done by the same hardware, or cheaper
172 hardware for the same work.
173
174 A _profiler_ is often the tool of choice to identify performance
175 bottlenecks. Profiling is suitable to identify _where_ performance is
176 lost in a given software. The profiler outputs a profile, a statistical
177 summary of observed events, which you may use to discover which
178 functions took the most time to execute. However, a profiler won't
179 report _why_ some identified functions are the bottleneck. Bottlenecks
180 might only occur when specific conditions are met, conditions that are
181 sometimes impossible to capture by a statistical profiler, or impossible
182 to reproduce with an application altered by the overhead of an
183 event-based profiler. For a thorough investigation of software
184 performance issues, a history of execution is essential, with the
185 recorded values of variables and context fields you choose, and
186 with as little influence as possible on the instrumented software. This
187 is where tracing comes in handy.
188
189 _Tracing_ is a technique used to understand what goes on in a running
190 software system. The software used for tracing is called a _tracer_,
191 which is conceptually similar to a tape recorder. When recording,
192 specific instrumentation points placed in the software source code
193 generate events that are saved on a giant tape: a _trace_ file. You
194 can trace user applications and the operating system at the same time,
195 opening the possibility of resolving a wide range of problems that would
196 otherwise be extremely challenging.
197
198 Tracing is often compared to _logging_. However, tracers and loggers are
199 two different tools, serving two different purposes. Tracers are
200 designed to record much lower-level events that occur much more
201 frequently than log messages, often in the range of thousands per
202 second, with very little execution overhead. Logging is more appropriate
203 for a very high-level analysis of less frequent events: user accesses,
204 exceptional conditions (errors and warnings, for example), database
205 transactions, instant messaging communications, and such. Simply put,
206 logging is one of the many use cases that can be satisfied with tracing.
207
208 The list of recorded events inside a trace file can be read manually
209 like a log file for the maximum level of detail, but it is generally
210 much more interesting to perform application-specific analyses to
211 produce reduced statistics and graphs that are useful to resolve a
212 given problem. Trace viewers and analyzers are specialized tools
213 designed to do this.
214
215 In the end, this is what LTTng is: a powerful, open source set of
216 tools to trace the Linux kernel and user applications at the same time.
217 LTTng is composed of several components actively maintained and
218 developed by its link:/community/#where[community].
219
220
221 [[lttng-alternatives]]
222 === Alternatives to noch:{LTTng}
223
224 Excluding proprietary solutions, a few competing software tracers
225 exist for Linux:
226
227 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
228 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
229 user scripts and is responsible for loading code into the
230 Linux kernel for further execution and collecting the outputted data.
231 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
232 subsystem in the Linux kernel in which a virtual machine can execute
233 programs passed from the user space to the kernel. You can attach
234 such programs to tracepoints and KProbes thanks to a system call, and
235 they can output data to the user space when executed thanks to
236 different mechanisms (pipe, VM register values, and eBPF maps, to name
237 a few).
238 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
239 is the de facto function tracer of the Linux kernel. Its user
240 interface is a set of special files in sysfs.
241 * https://perf.wiki.kernel.org/[perf] is
242 a performance analyzing tool for Linux which supports hardware
243 performance counters, tracepoints, as well as other counters and
244 types of probes. perf's controlling utility is the cmd:perf command
245 line/curses tool.
246 * http://linux.die.net/man/1/strace[strace]
247 is a command-line utility which records system calls made by a
248 user process, as well as signal deliveries and changes of process
249 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
250 to fulfill its function.
251 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
252 analyze Linux kernel events. You write scripts, or _chisels_ in
253 sysdig's jargon, in Lua and sysdig executes them while the system is
254 being traced or afterwards. sysdig's interface is the cmd:sysdig
255 command-line tool as well as the curses-based cmd:csysdig tool.
256 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
257 user space tracer which uses custom user scripts to produce plain text
258 traces. SystemTap converts the scripts to the C language, and then
259 compiles them as Linux kernel modules which are loaded to produce
260 trace data. SystemTap's primary user interface is the cmd:stap
261 command-line tool.
262
263 The main distinctive features of LTTng is that it produces correlated
264 kernel and user space traces, as well as doing so with the lowest
265 overhead amongst other solutions. It produces trace files in the
266 http://diamon.org/ctf[CTF] format, a file format optimized
267 for the production and analyses of multi-gigabyte data.
268
269 LTTng is the result of more than 10 years of active open source
270 development by a community of passionate developers.
271 LTTng{nbsp}{revision} is currently available on major desktop and server
272 Linux distributions.
273
274 The main interface for tracing control is a single command-line tool
275 named cmd:lttng. The latter can create several tracing sessions, enable
276 and disable events on the fly, filter events efficiently with custom
277 user expressions, start and stop tracing, and much more. LTTng can
278 record the traces on the file system or send them over the network, and
279 keep them totally or partially. You can view the traces once tracing
280 becomes inactive or in real-time.
281
282 <<installing-lttng,Install LTTng now>> and
283 <<getting-started,start tracing>>!
284
285
286 [[installing-lttng]]
287 == Installation
288
289 **LTTng** is a set of software <<plumbing,components>> which interact to
290 <<instrumenting,instrument>> the Linux kernel and user applications, and
291 to <<controlling-tracing,control tracing>> (start and stop
292 tracing, enable and disable event rules, and the rest). Those
293 components are bundled into the following packages:
294
295 * **LTTng-tools**: Libraries and command-line interface to
296 control tracing.
297 * **LTTng-modules**: Linux kernel modules to instrument and
298 trace the kernel.
299 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
300 trace user applications.
301
302 Most distributions mark the LTTng-modules and LTTng-UST packages as
303 optional when installing LTTng-tools (which is always required). In the
304 following sections, we always provide the steps to install all three,
305 but note that:
306
307 * You only need to install LTTng-modules if you intend to trace the
308 Linux kernel.
309 * You only need to install LTTng-UST if you intend to trace user
310 applications.
311
312 [role="growable"]
313 .Availability of LTTng{nbsp}{revision} for major Linux distributions.
314 |====
315 |Distribution |Available in releases |Alternatives
316
317 |Ubuntu
318 |<<ubuntu,Ubuntu{nbsp}16.04 _Xenial Xerus_>>
319 |LTTng{nbsp}2.8 for Ubuntu{nbsp}16.10 _Yakkety Yak_.
320
321 LTTng{nbsp}{revision} for Ubuntu{nbsp}12.04 _Precise Pangolin_,
322 Ubuntu{nbsp}14.04 _Trusty Tahr_, and Ubuntu{nbsp}16.04 _Xenial Xerus_:
323 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
324
325 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
326 other Ubuntu releases.
327
328 |Fedora
329 |_Not available_
330 |LTTng-tools{nbsp}{revision} and LTTng-UST{nbsp}{revision} for
331 Fedora{nbsp}25 and Fedora{nbsp}26 (both are not released yet).
332
333 <<building-from-source,Build LTTng-modules{nbsp}{revision} from
334 source>>.
335
336 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
337 other Fedora releases.
338
339 |Debian
340 |_Not available_
341 |LTTng{nbsp}2.8 for Debian "stretch" (testing).
342
343 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
344 other Debian releases.
345
346 |openSUSE
347 |<<opensuse,openSUSE Leap{nbsp}42.1>>
348 |<<building-from-source,Build LTTng{nbsp}{revision} from source>> for
349 other openSUSE releases.
350
351 |Arch Linux
352 |_Not available_
353 |<<building-from-source,Build LTTng{nbsp}{revision} from source>>.
354
355 |Alpine Linux
356 |_Not available_
357 |LTTng{nbsp}2.8 for Alpine Linux "edge".
358
359 LTTng{nbsp}2.8 for Alpine Linux{nbsp}3.5 (not released yet).
360
361 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
362 other Alpine Linux releases.
363
364 |RHEL and SLES
365 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
366 |
367
368 |Buildroot
369 |<<"buildroot","Buildroot{nbsp}2016.02, Buildroot{nbsp}2016.05,
370 and Buildroot{nbsp}2016.08">>
371 |LTTng{nbsp}2.8 for Buildroot{nbsp}2016.11 (not released yet).
372
373 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
374 other Buildroot releases.
375
376 |OpenEmbedded and Yocto
377 |<<oe-yocto,Yocto Project{nbsp}2.1 _Krogoth_>> (`openembedded-core` layer)
378 |LTTng{nbsp}2.8 for Yocto Project{nbsp}2.2 _Morty_.
379
380 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
381 other Yocto releases.
382 |====
383
384
385 [[ubuntu]]
386 === [[ubuntu-official-repositories]]Ubuntu
387
388 LTTng{nbsp}{revision} is available on Ubuntu{nbsp}16.04 _Xenial Xerus_.
389 For previous releases of Ubuntu, <<ubuntu-ppa,use the LTTng
390 Stable{nbsp}{revision} PPA>>.
391
392 To install LTTng{nbsp}{revision} on Ubuntu{nbsp}16.04 _Xenial Xerus_:
393
394 . Install the main LTTng{nbsp}{revision} packages:
395 +
396 --
397 [role="term"]
398 ----
399 sudo apt-get install lttng-tools
400 sudo apt-get install lttng-modules-dkms
401 sudo apt-get install liblttng-ust-dev
402 ----
403 --
404
405 . **If you need to instrument and trace
406 <<java-application,Java applications>>**, install the LTTng-UST
407 Java agent:
408 +
409 --
410 [role="term"]
411 ----
412 sudo apt-get install liblttng-ust-agent-java
413 ----
414 --
415
416 . **If you need to instrument and trace
417 <<python-application,Python applications>>**, install the
418 LTTng-UST Python agent:
419 +
420 --
421 [role="term"]
422 ----
423 sudo apt-get install python3-lttngust
424 ----
425 --
426
427
428 [[ubuntu-ppa]]
429 ==== noch:{LTTng} Stable {revision} PPA
430
431 The
432 https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng Stable{nbsp}{revision} PPA]
433 offers the latest stable LTTng{nbsp}{revision} packages for:
434
435 * Ubuntu{nbsp}12.04 _Precise Pangolin_
436 * Ubuntu{nbsp}14.04 _Trusty Tahr_
437 * Ubuntu{nbsp}16.04 _Xenial Xerus_
438
439 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision}
440 PPA:
441
442 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
443 list of packages:
444 +
445 --
446 [role="term"]
447 ----
448 sudo apt-add-repository ppa:lttng/stable-2.7
449 sudo apt-get update
450 ----
451 --
452
453 . Install the main LTTng{nbsp}{revision} packages:
454 +
455 --
456 [role="term"]
457 ----
458 sudo apt-get install lttng-tools
459 sudo apt-get install lttng-modules-dkms
460 sudo apt-get install liblttng-ust-dev
461 ----
462 --
463
464 . **If you need to instrument and trace
465 <<java-application,Java applications>>**, install the LTTng-UST
466 Java agent:
467 +
468 --
469 [role="term"]
470 ----
471 sudo apt-get install liblttng-ust-agent-java
472 ----
473 --
474
475 . **If you need to instrument and trace
476 <<python-application,Python applications>>**, install the
477 LTTng-UST Python agent:
478 +
479 --
480 [role="term"]
481 ----
482 sudo apt-get install python3-lttngust
483 ----
484 --
485
486
487 [[opensuse]]
488 === noch:{openSUSE}/RPM
489
490 To install LTTng{nbsp}{revision} on openSUSE Leap{nbsp}42.1:
491
492 * Install the main LTTng{nbsp}{revision} packages:
493 +
494 --
495 [role="term"]
496 ----
497 sudo zypper install lttng-tools
498 sudo zypper install lttng-modules
499 sudo zypper install lttng-ust-devel
500 ----
501 --
502
503 [IMPORTANT]
504 .Java and Python application instrumentation and tracing
505 ====
506 If you need to instrument and trace <<java-application,Java
507 applications>> on openSUSE, you need to build and install
508 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
509 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
510 `--enable-java-agent-all` options to the `configure` script, depending
511 on which Java logging framework you use.
512
513 If you need to instrument and trace <<python-application,Python
514 applications>> on openSUSE, you need to build and install
515 LTTng-UST{nbsp}{revision} from source and pass the
516 `--enable-python-agent` option to the `configure` script.
517 ====
518
519
520 [[buildroot]]
521 === Buildroot
522
523 To install LTTng{nbsp}{revision} on Buildroot{nbsp}2016.02,
524 Buildroot{nbsp}2016.05, or Buildroot{nbsp}2016.08:
525
526 . Launch the Buildroot configuration tool:
527 +
528 --
529 [role="term"]
530 ----
531 make menuconfig
532 ----
533 --
534
535 . In **Kernel**, check **Linux kernel**.
536 . In **Toolchain**, check **Enable WCHAR support**.
537 . In **Target packages**{nbsp}&#8594; **Debugging, profiling and benchmark**,
538 check **lttng-modules** and **lttng-tools**.
539 . In **Target packages**{nbsp}&#8594; **Libraries**{nbsp}&#8594;
540 **Other**, check **lttng-libust**.
541
542
543 [[oe-yocto]]
544 === OpenEmbedded and Yocto
545
546 LTTng{nbsp}{revision} recipes are available in the
547 http://layers.openembedded.org/layerindex/branch/master/layer/openembedded-core/[`openembedded-core`]
548 layer for Yocto Project{nbsp}2.1 _Krogoth_ under the following names:
549
550 * `lttng-tools`
551 * `lttng-modules`
552 * `lttng-ust`
553
554 With BitBake, the simplest way to include LTTng recipes in your target
555 image is to add them to `IMAGE_INSTALL_append` in path:{conf/local.conf}:
556
557 ----
558 IMAGE_INSTALL_append = " lttng-tools lttng-modules lttng-ust"
559 ----
560
561 If you use Hob:
562
563 . Select a machine and an image recipe.
564 . Click **Edit image recipe**.
565 . Under the **All recipes** tab, search for **lttng**.
566 . Check the desired LTTng recipes.
567
568 [IMPORTANT]
569 .Java and Python application instrumentation and tracing
570 ====
571 If you need to instrument and trace <<java-application,Java
572 applications>> on openSUSE, you need to build and install
573 LTTng-UST{nbsp}{revision} <<building-from-source,from source>> and pass
574 the `--enable-java-agent-jul`, `--enable-java-agent-log4j`, or
575 `--enable-java-agent-all` options to the `configure` script, depending
576 on which Java logging framework you use.
577
578 If you need to instrument and trace <<python-application,Python
579 applications>> on openSUSE, you need to build and install
580 LTTng-UST{nbsp}{revision} from source and pass the
581 `--enable-python-agent` option to the `configure` script.
582 ====
583
584
585 [[enterprise-distributions]]
586 === RHEL, SUSE, and other enterprise distributions
587
588 To install LTTng on enterprise Linux distributions, such as Red Hat
589 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
590 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
591
592
593 [[building-from-source]]
594 === Build from source
595
596 To build and install LTTng{nbsp}{revision} from source:
597
598 . Using your distribution's package manager, or from source, install
599 the following dependencies of LTTng-tools and LTTng-UST:
600 +
601 --
602 * https://sourceforge.net/projects/libuuid/[libuuid]
603 * http://directory.fsf.org/wiki/Popt[popt]
604 * http://liburcu.org/[Userspace RCU]
605 * http://www.xmlsoft.org/[libxml2]
606 --
607
608 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
609 +
610 --
611 [role="term"]
612 ----
613 cd $(mktemp -d) &&
614 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.7.tar.bz2 &&
615 tar -xf lttng-modules-latest-2.7.tar.bz2 &&
616 cd lttng-modules-2.7.* &&
617 make &&
618 sudo make modules_install &&
619 sudo depmod -a
620 ----
621 --
622
623 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
624 +
625 --
626 [role="term"]
627 ----
628 cd $(mktemp -d) &&
629 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.7.tar.bz2 &&
630 tar -xf lttng-ust-latest-2.7.tar.bz2 &&
631 cd lttng-ust-2.7.* &&
632 ./configure &&
633 make &&
634 sudo make install &&
635 sudo ldconfig
636 ----
637 --
638 +
639 --
640 [IMPORTANT]
641 .Java and Python application tracing
642 ====
643 If you need to instrument and trace <<java-application,Java
644 applications>>, pass the `--enable-java-agent-jul`,
645 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
646 `configure` script, depending on which Java logging framework you use.
647
648 If you need to instrument and trace <<python-application,Python
649 applications>>, pass the `--enable-python-agent` option to the
650 `configure` script. You can set the `PYTHON` environment variable to the
651 path to the Python interpreter for which to install the LTTng-UST Python
652 agent package.
653 ====
654 --
655 +
656 --
657 [NOTE]
658 ====
659 By default, LTTng-UST libraries are installed to
660 dir:{/usr/local/lib}, which is the de facto directory in which to
661 keep self-compiled and third-party libraries.
662
663 When <<building-tracepoint-providers-and-user-application,linking an
664 instrumented user application with `liblttng-ust`>>:
665
666 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
667 variable.
668 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
669 man:gcc(1), man:g++(1), or man:clang(1).
670 ====
671 --
672
673 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
674 +
675 --
676 [role="term"]
677 ----
678 cd $(mktemp -d) &&
679 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.7.tar.bz2 &&
680 tar -xf lttng-tools-latest-2.7.tar.bz2 &&
681 cd lttng-tools-2.7.* &&
682 ./configure &&
683 make &&
684 sudo make install &&
685 sudo ldconfig
686 ----
687 --
688
689 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
690 previous steps automatically for a given version of LTTng and confine
691 the installed files in a specific directory. This can be useful to test
692 LTTng without installing it on your system.
693
694
695 [[getting-started]]
696 == Quick start
697
698 This is a short guide to get started quickly with LTTng kernel and user
699 space tracing.
700
701 Before you follow this guide, make sure to <<installing-lttng,install>>
702 LTTng.
703
704 This tutorial walks you through the steps to:
705
706 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
707 . <<tracing-your-own-user-application,Trace a user application>> written
708 in C.
709 . <<viewing-and-analyzing-your-traces,View and analyze the
710 recorded events>>.
711
712
713 [[tracing-the-linux-kernel]]
714 === Trace the Linux kernel
715
716 The following command lines start with cmd:sudo because you need root
717 privileges to trace the Linux kernel. You can avoid using cmd:sudo if
718 your Unix user is a member of the <<lttng-sessiond,tracing group>>.
719
720 . Create a <<tracing-session,tracing session>>:
721 +
722 --
723 [role="term"]
724 ----
725 sudo lttng create my-kernel-session
726 ----
727 --
728
729 . List the available kernel tracepoints and system calls:
730 +
731 --
732 [role="term"]
733 ----
734 lttng list --kernel
735 ----
736 --
737
738 . Create an <<event,event rule>> which matches the desired event names,
739 for example `sched_switch` and `sched_process_fork`:
740 +
741 --
742 [role="term"]
743 ----
744 sudo lttng enable-event --kernel sched_switch,sched_process_fork
745 ----
746 --
747 +
748 You can also create an event rule which _matches_ all the Linux kernel
749 tracepoints (this will generate a lot of data when tracing):
750 +
751 --
752 [role="term"]
753 ----
754 sudo lttng enable-event --kernel --all
755 ----
756 --
757
758 . Start tracing:
759 +
760 --
761 [role="term"]
762 ----
763 sudo lttng start
764 ----
765 --
766
767 . Do some operation on your system for a few seconds. For example,
768 load a website, or list the files of a directory.
769 . Stop tracing and destroy the tracing session:
770 +
771 --
772 [role="term"]
773 ----
774 sudo lttng stop
775 sudo lttng destroy
776 ----
777 --
778 +
779 The `destroy` command does not destroy the trace data; it only destroys
780 the state of the tracing session.
781
782 By default, LTTng saves the traces in
783 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
784 where +__name__+ is the tracing session name. Note that the
785 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
786
787 See <<viewing-and-analyzing-your-traces,View and analyze the
788 recorded events>> to view the recorded events.
789
790
791 [[tracing-your-own-user-application]]
792 === Trace a user application
793
794 This section steps you through a simple example to trace a
795 _Hello world_ program written in C.
796
797 To create the traceable user application:
798
799 . Create the tracepoint provider header file, which defines the
800 tracepoints and the events they can generate:
801 +
802 --
803 [source,c]
804 .path:{hello-tp.h}
805 ----
806 #undef TRACEPOINT_PROVIDER
807 #define TRACEPOINT_PROVIDER hello_world
808
809 #undef TRACEPOINT_INCLUDE
810 #define TRACEPOINT_INCLUDE "./hello-tp.h"
811
812 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
813 #define _HELLO_TP_H
814
815 #include <lttng/tracepoint.h>
816
817 TRACEPOINT_EVENT(
818 hello_world,
819 my_first_tracepoint,
820 TP_ARGS(
821 int, my_integer_arg,
822 char*, my_string_arg
823 ),
824 TP_FIELDS(
825 ctf_string(my_string_field, my_string_arg)
826 ctf_integer(int, my_integer_field, my_integer_arg)
827 )
828 )
829
830 #endif /* _HELLO_TP_H */
831
832 #include <lttng/tracepoint-event.h>
833 ----
834 --
835
836 . Create the tracepoint provider package source file:
837 +
838 --
839 [source,c]
840 .path:{hello-tp.c}
841 ----
842 #define TRACEPOINT_CREATE_PROBES
843 #define TRACEPOINT_DEFINE
844
845 #include "hello-tp.h"
846 ----
847 --
848
849 . Build the tracepoint provider package:
850 +
851 --
852 [role="term"]
853 ----
854 gcc -c -I. hello-tp.c
855 ----
856 --
857
858 . Create the _Hello World_ application source file:
859 +
860 --
861 [source,c]
862 .path:{hello.c}
863 ----
864 #include <stdio.h>
865 #include "hello-tp.h"
866
867 int main(int argc, char *argv[])
868 {
869 int x;
870
871 puts("Hello, World!\nPress Enter to continue...");
872
873 /*
874 * The following getchar() call is only placed here for the purpose
875 * of this demonstration, to pause the application in order for
876 * you to have time to list its tracepoints. It is not
877 * needed otherwise.
878 */
879 getchar();
880
881 /*
882 * A tracepoint() call.
883 *
884 * Arguments, as defined in hello-tp.h:
885 *
886 * 1. Tracepoint provider name (required)
887 * 2. Tracepoint name (required)
888 * 3. my_integer_arg (first user-defined argument)
889 * 4. my_string_arg (second user-defined argument)
890 *
891 * Notice the tracepoint provider and tracepoint names are
892 * NOT strings: they are in fact parts of variables that the
893 * macros in hello-tp.h create.
894 */
895 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
896
897 for (x = 0; x < argc; ++x) {
898 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
899 }
900
901 puts("Quitting now!");
902 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
903
904 return 0;
905 }
906 ----
907 --
908
909 . Build the application:
910 +
911 --
912 [role="term"]
913 ----
914 gcc -c hello.c
915 ----
916 --
917
918 . Link the application with the tracepoint provider package,
919 `liblttng-ust`, and `libdl`:
920 +
921 --
922 [role="term"]
923 ----
924 gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
925 ----
926 --
927
928 Here's the whole build process:
929
930 [role="img-100"]
931 .User space tracing tutorial's build steps.
932 image::ust-flow.png[]
933
934 To trace the user application:
935
936 . Run the application with a few arguments:
937 +
938 --
939 [role="term"]
940 ----
941 ./hello world and beyond
942 ----
943 --
944 +
945 You see:
946 +
947 --
948 ----
949 Hello, World!
950 Press Enter to continue...
951 ----
952 --
953
954 . Start an LTTng <<lttng-sessiond,session daemon>>:
955 +
956 --
957 [role="term"]
958 ----
959 lttng-sessiond --daemonize
960 ----
961 --
962 +
963 Note that a session daemon might already be running, for example as
964 a service that the distribution's service manager started.
965
966 . List the available user space tracepoints:
967 +
968 --
969 [role="term"]
970 ----
971 lttng list --userspace
972 ----
973 --
974 +
975 You see the `hello_world:my_first_tracepoint` tracepoint listed
976 under the `./hello` process.
977
978 . Create a <<tracing-session,tracing session>>:
979 +
980 --
981 [role="term"]
982 ----
983 lttng create my-user-space-session
984 ----
985 --
986
987 . Create an <<event,event rule>> which matches the
988 `hello_world:my_first_tracepoint` event name:
989 +
990 --
991 [role="term"]
992 ----
993 lttng enable-event --userspace hello_world:my_first_tracepoint
994 ----
995 --
996
997 . Start tracing:
998 +
999 --
1000 [role="term"]
1001 ----
1002 lttng start
1003 ----
1004 --
1005
1006 . Go back to the running `hello` application and press Enter. The
1007 program executes all `tracepoint()` instrumentation points and exits.
1008 . Stop tracing and destroy the tracing session:
1009 +
1010 --
1011 [role="term"]
1012 ----
1013 sudo lttng stop
1014 sudo lttng destroy
1015 ----
1016 --
1017 +
1018 The `destroy` command does not destroy the trace data; it only destroys
1019 the state of the tracing session.
1020
1021 By default, LTTng saves the traces in
1022 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
1023 where +__name__+ is the tracing session name. Note that the
1024 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
1025
1026 See <<viewing-and-analyzing-your-traces,View and analyze the
1027 recorded events>> to view the recorded events.
1028
1029
1030 [[viewing-and-analyzing-your-traces]]
1031 === View and analyze the recorded events
1032
1033 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
1034 kernel>> and <<tracing-your-own-user-application,Trace a user
1035 application>> tutorials, you can inspect the recorded events.
1036
1037 Many tools are available to read LTTng traces:
1038
1039 * **cmd:babeltrace** is a command-line utility which converts trace
1040 formats; it supports the format that LTTng produces, CTF, as well as a
1041 basic text output which can be ++grep++ed. The cmd:babeltrace command
1042 is part of the http://diamon.org/babeltrace[Babeltrace] project.
1043 * Babeltrace also includes
1044 **https://www.python.org/[Python] bindings** so
1045 that you can easily open and read an LTTng trace with your own script,
1046 benefiting from the power of Python.
1047 * http://tracecompass.org/[**Trace Compass**]
1048 is a graphical user interface for viewing and analyzing any type of
1049 logs or traces, including LTTng's.
1050 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
1051 project which includes many high-level analyses of LTTng kernel
1052 traces, like scheduling statistics, interrupt frequency distribution,
1053 top CPU usage, and more.
1054
1055 NOTE: This section assumes that the traces recorded during the previous
1056 tutorials were saved to their default location, in the
1057 dir:{$LTTNG_HOME/lttng-traces} directory. Note that the env:LTTNG_HOME
1058 environment variable defaults to `$HOME` if not set.
1059
1060
1061 [[viewing-and-analyzing-your-traces-bt]]
1062 ==== Use the cmd:babeltrace command-line tool
1063
1064 The simplest way to list all the recorded events of a trace is to pass
1065 its path to cmd:babeltrace with no options:
1066
1067 [role="term"]
1068 ----
1069 babeltrace ~/lttng-traces/my-user-space-session*
1070 ----
1071
1072 cmd:babeltrace finds all traces recursively within the given path and
1073 prints all their events, merging them in chronological order.
1074
1075 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
1076 further filtering:
1077
1078 [role="term"]
1079 ----
1080 babeltrace ~/lttng-traces/my-kernel-session* | grep sys_
1081 ----
1082
1083 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
1084 count the recorded events:
1085
1086 [role="term"]
1087 ----
1088 babeltrace ~/lttng-traces/my-kernel-session* | grep sys_read | wc --lines
1089 ----
1090
1091
1092 [[viewing-and-analyzing-your-traces-bt-python]]
1093 ==== Use the Babeltrace Python bindings
1094
1095 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
1096 is useful to isolate events by simple matching using man:grep(1) and
1097 similar utilities. However, more elaborate filters, such as keeping only
1098 event records with a field value falling within a specific range, are
1099 not trivial to write using a shell. Moreover, reductions and even the
1100 most basic computations involving multiple event records are virtually
1101 impossible to implement.
1102
1103 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
1104 to read the event records of an LTTng trace sequentially and compute the
1105 desired information.
1106
1107 The following script accepts an LTTng Linux kernel trace path as its
1108 first argument and prints the short names of the top 5 running processes
1109 on CPU 0 during the whole trace:
1110
1111 [source,python]
1112 .path:{top5proc.py}
1113 ----
1114 from collections import Counter
1115 import babeltrace
1116 import sys
1117
1118
1119 def top5proc():
1120 if len(sys.argv) != 2:
1121 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
1122 print(msg, file=sys.stderr)
1123 return False
1124
1125 # A trace collection contains one or more traces
1126 col = babeltrace.TraceCollection()
1127
1128 # Add the trace provided by the user (LTTng traces always have
1129 # the 'ctf' format)
1130 if col.add_trace(sys.argv[1], 'ctf') is None:
1131 raise RuntimeError('Cannot add trace')
1132
1133 # This counter dict contains execution times:
1134 #
1135 # task command name -> total execution time (ns)
1136 exec_times = Counter()
1137
1138 # This contains the last `sched_switch` timestamp
1139 last_ts = None
1140
1141 # Iterate on events
1142 for event in col.events:
1143 # Keep only `sched_switch` events
1144 if event.name != 'sched_switch':
1145 continue
1146
1147 # Keep only events which happened on CPU 0
1148 if event['cpu_id'] != 0:
1149 continue
1150
1151 # Event timestamp
1152 cur_ts = event.timestamp
1153
1154 if last_ts is None:
1155 # We start here
1156 last_ts = cur_ts
1157
1158 # Previous task command (short) name
1159 prev_comm = event['prev_comm']
1160
1161 # Initialize entry in our dict if not yet done
1162 if prev_comm not in exec_times:
1163 exec_times[prev_comm] = 0
1164
1165 # Compute previous command execution time
1166 diff = cur_ts - last_ts
1167
1168 # Update execution time of this command
1169 exec_times[prev_comm] += diff
1170
1171 # Update last timestamp
1172 last_ts = cur_ts
1173
1174 # Display top 5
1175 for name, ns in exec_times.most_common(5):
1176 s = ns / 1000000000
1177 print('{:20}{} s'.format(name, s))
1178
1179 return True
1180
1181
1182 if __name__ == '__main__':
1183 sys.exit(0 if top5proc() else 1)
1184 ----
1185
1186 Run this script:
1187
1188 [role="term"]
1189 ----
1190 python3 top5proc.py ~/lttng-traces/my-kernel-session*/kernel
1191 ----
1192
1193 Output example:
1194
1195 ----
1196 swapper/0 48.607245889 s
1197 chromium 7.192738188 s
1198 pavucontrol 0.709894415 s
1199 Compositor 0.660867933 s
1200 Xorg.bin 0.616753786 s
1201 ----
1202
1203 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1204 weren't using the CPU that much when tracing, its first position in the
1205 list makes sense.
1206
1207
1208 [[core-concepts]]
1209 == [[understanding-lttng]]Core concepts
1210
1211 From a user's perspective, the LTTng system is built on a few concepts,
1212 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1213 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1214 Understanding how those objects relate to eachother is key in mastering
1215 the toolkit.
1216
1217 The core concepts are:
1218
1219 * <<tracing-session,Tracing session>>
1220 * <<domain,Tracing domain>>
1221 * <<channel,Channel and ring buffer>>
1222 * <<"event","Instrumentation point, event rule, event, and event record">>
1223
1224
1225 [[tracing-session]]
1226 === Tracing session
1227
1228 A _tracing session_ is a stateful dialogue between you and
1229 a <<lttng-sessiond,session daemon>>. You can
1230 <<creating-destroying-tracing-sessions,create a new tracing
1231 session>> with the `lttng create` command.
1232
1233 Anything that you do when you control LTTng tracers happens within a
1234 tracing session. In particular, a tracing session:
1235
1236 * Has its own name.
1237 * Has its own set of trace files.
1238 * Has its own state of activity (started or stopped).
1239 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1240 snapshot, or live).
1241 * Has its own <<channel,channels>> which have their own
1242 <<event,event rules>>.
1243
1244 [role="img-100"]
1245 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1246 image::concepts.png[]
1247
1248 Those attributes and objects are completely isolated between different
1249 tracing sessions.
1250
1251 A tracing session is analogous to a cash machine session:
1252 the operations you do on the banking system through the cash machine do
1253 not alter the data of other users of the same system. In the case of
1254 the cash machine, a session lasts as long as your bank card is inside.
1255 In the case of LTTng, a tracing session lasts from the `lttng create`
1256 command to the `lttng destroy` command.
1257
1258 [role="img-100"]
1259 .Each Unix user has its own set of tracing sessions.
1260 image::many-sessions.png[]
1261
1262
1263 [[tracing-session-mode]]
1264 ==== Tracing session mode
1265
1266 LTTng can send the generated trace data to different locations. The
1267 _tracing session mode_ dictates where to send it. The following modes
1268 are available in LTTng{nbsp}{revision}:
1269
1270 Local mode::
1271 LTTng writes the traces to the file system of the machine being traced
1272 (target system).
1273
1274 Network streaming mode::
1275 LTTng sends the traces over the network to a
1276 <<lttng-relayd,relay daemon>> running on a remote system.
1277
1278 Snapshot mode::
1279 LTTng does not write the traces by default. Instead, you can request
1280 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1281 current tracing buffers, and to write it to the target's file system
1282 or to send it over the network to a <<lttng-relayd,relay daemon>>
1283 running on a remote system.
1284
1285 Live mode::
1286 This mode is similar to the network streaming mode, but a live
1287 trace viewer can connect to the distant relay daemon to
1288 <<lttng-live,view event records as LTTng generates them>> by
1289 the tracers.
1290
1291
1292 [[domain]]
1293 === Tracing domain
1294
1295 A _tracing domain_ is a namespace for event sources. A tracing domain
1296 has its own properties and features.
1297
1298 There are currently five available tracing domains:
1299
1300 * Linux kernel
1301 * User space
1302 * `java.util.logging` (JUL)
1303 * log4j
1304 * Python
1305
1306 You must specify a tracing domain when using some commands to avoid
1307 ambiguity. For example, since all the domains support named tracepoints
1308 as event sources (instrumentation points that you manually insert in the
1309 source code), you need to specify a tracing domain when
1310 <<enabling-disabling-events,creating an event rule>> because all the
1311 tracing domains could have tracepoints with the same names.
1312
1313 Some features are reserved to specific tracing domains. Dynamic function
1314 entry and return instrumentation points, for example, are currently only
1315 supported in the Linux kernel tracing domain, but support for other
1316 tracing domains could be added in the future.
1317
1318 You can create <<channel,channels>> in the Linux kernel and user space
1319 tracing domains. The other tracing domains have a single default
1320 channel.
1321
1322
1323 [[channel]]
1324 === Channel and ring buffer
1325
1326 A _channel_ is an object which is responsible for a set of ring buffers.
1327 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1328 tracer emits an event, it can record it to one or more
1329 sub-buffers. The attributes of a channel determine what to do when
1330 there's no space left for a new event record because all sub-buffers
1331 are full, where to send a full sub-buffer, and other behaviours.
1332
1333 A channel is always associated to a <<domain,tracing domain>>. The
1334 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1335 a default channel which you cannot configure.
1336
1337 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1338 an event, it records it to the sub-buffers of all
1339 the enabled channels with a satisfied event rule, as long as those
1340 channels are part of active <<tracing-session,tracing sessions>>.
1341
1342
1343 [[channel-buffering-schemes]]
1344 ==== Per-user vs. per-process buffering schemes
1345
1346 A channel has at least one ring buffer _per CPU_. LTTng always
1347 records an event to the ring buffer associated to the CPU on which it
1348 occurred.
1349
1350 Two _buffering schemes_ are available when you
1351 <<enabling-disabling-channels,create a channel>> in the
1352 user space <<domain,tracing domain>>:
1353
1354 Per-user buffering::
1355 Allocate one set of ring buffers--one per CPU--shared by all the
1356 instrumented processes of each Unix user.
1357 +
1358 --
1359 [role="img-100"]
1360 .Per-user buffering scheme.
1361 image::per-user-buffering.png[]
1362 --
1363
1364 Per-process buffering::
1365 Allocate one set of ring buffers--one per CPU--for each
1366 instrumented process.
1367 +
1368 --
1369 [role="img-100"]
1370 .Per-process buffering scheme.
1371 image::per-process-buffering.png[]
1372 --
1373 +
1374 The per-process buffering scheme tends to consume more memory than the
1375 per-user option because systems generally have more instrumented
1376 processes than Unix users running instrumented processes. However, the
1377 per-process buffering scheme ensures that one process having a high
1378 event throughput won't fill all the shared sub-buffers of the same
1379 user, only its own.
1380
1381 The Linux kernel tracing domain has only one available buffering scheme
1382 which is to allocate a single set of ring buffers for the whole system.
1383 This scheme is similar to the per-user option, but with a single, global
1384 user "running" the kernel.
1385
1386
1387 [[channel-overwrite-mode-vs-discard-mode]]
1388 ==== Overwrite vs. discard event loss modes
1389
1390 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1391 arc in the following animation) of a specific channel's ring buffer.
1392 When there's no space left in a sub-buffer, the tracer marks it as
1393 consumable (red) and another, empty sub-buffer starts receiving the
1394 following event records. A <<lttng-consumerd,consumer daemon>>
1395 eventually consumes the marked sub-buffer (returns to white).
1396
1397 [NOTE]
1398 [role="docsvg-channel-subbuf-anim"]
1399 ====
1400 {note-no-anim}
1401 ====
1402
1403 In an ideal world, sub-buffers are consumed faster than they are filled,
1404 as is the case in the previous animation. In the real world,
1405 however, all sub-buffers can be full at some point, leaving no space to
1406 record the following events.
1407
1408 By design, LTTng is a _non-blocking_ tracer: when no empty sub-buffer is
1409 available, it is acceptable to lose event records when the alternative
1410 would be to cause substantial delays in the instrumented application's
1411 execution. LTTng privileges performance over integrity; it aims at
1412 perturbing the traced system as little as possible in order to make
1413 tracing of subtle race conditions and rare interrupt cascades possible.
1414
1415 When it comes to losing event records because no empty sub-buffer is
1416 available, the channel's _event loss mode_ determines what to do. The
1417 available event loss modes are:
1418
1419 Discard mode::
1420 Drop the newest event records until a the tracer
1421 releases a sub-buffer.
1422
1423 Overwrite mode::
1424 Clear the sub-buffer containing the oldest event records and start
1425 writing the newest event records there.
1426 +
1427 This mode is sometimes called _flight recorder mode_ because it's
1428 similar to a
1429 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1430 always keep a fixed amount of the latest data.
1431
1432 Which mechanism you should choose depends on your context: prioritize
1433 the newest or the oldest event records in the ring buffer?
1434
1435 Beware that, in overwrite mode, the tracer abandons a whole sub-buffer
1436 as soon as a there's no space left for a new event record, whereas in
1437 discard mode, the tracer only discards the event record that doesn't
1438 fit.
1439
1440 In discard mode, LTTng increments a count of lost event records when
1441 an event record is lost and saves this count to the trace. In
1442 overwrite mode, LTTng keeps no information when it overwrites a
1443 sub-buffer before consuming it.
1444
1445 There are a few ways to decrease your probability of losing event
1446 records.
1447 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1448 how you can fine-une the sub-buffer count and size of a channel to
1449 virtually stop losing event records, though at the cost of greater
1450 memory usage.
1451
1452
1453 [[channel-subbuf-size-vs-subbuf-count]]
1454 ==== Sub-buffer count and size
1455
1456 When you <<enabling-disabling-channels,create a channel>>, you can
1457 set its number of sub-buffers and their size.
1458
1459 Note that there is noticeable CPU overhead introduced when
1460 switching sub-buffers (marking a full one as consumable and switching
1461 to an empty one for the following events to be recorded). Knowing this,
1462 the following list presents a few practical situations along with how
1463 to configure the sub-buffer count and size for them:
1464
1465 * **High event throughput**: In general, prefer bigger sub-buffers to
1466 lower the risk of losing event records.
1467 +
1468 Having bigger sub-buffers also ensures a lower sub-buffer switching
1469 frequency.
1470 +
1471 The number of sub-buffers is only meaningful if you create the channel
1472 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1473 other sub-buffers are left unaltered.
1474
1475 * **Low event throughput**: In general, prefer smaller sub-buffers
1476 since the risk of losing event records is low.
1477 +
1478 Because events occur less frequently, the sub-buffer switching frequency
1479 should remain low and thus the tracer's overhead should not be a
1480 problem.
1481
1482 * **Low memory system**: If your target system has a low memory
1483 limit, prefer fewer first, then smaller sub-buffers.
1484 +
1485 Even if the system is limited in memory, you want to keep the
1486 sub-buffers as big as possible to avoid a high sub-buffer switching
1487 frequency.
1488
1489 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1490 which means event data is very compact. For example, the average
1491 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1492 sub-buffer size of 1{nbsp}MiB is considered big.
1493
1494 The previous situations highlight the major trade-off between a few big
1495 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1496 frequency vs. how much data is lost in overwrite mode. Assuming a
1497 constant event throughput and using the overwrite mode, the two
1498 following configurations have the same ring buffer total size:
1499
1500 [NOTE]
1501 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1502 ====
1503 {note-no-anim}
1504 ====
1505
1506 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1507 switching frequency, but if a sub-buffer overwrite happens, half of
1508 the event records so far (4{nbsp}MiB) are definitely lost.
1509 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1510 overhead as the previous configuration, but if a sub-buffer
1511 overwrite happens, only the eighth of event records so far are
1512 definitely lost.
1513
1514 In discard mode, the sub-buffers count parameter is pointless: use two
1515 sub-buffers and set their size according to the requirements of your
1516 situation.
1517
1518
1519 [[channel-switch-timer]]
1520 ==== Switch timer period
1521
1522 The _switch timer period_ is an important configurable attribute of
1523 a channel to ensure periodic sub-buffer flushing.
1524
1525 When the _switch timer_ expires, a sub-buffer switch happens. You can
1526 set the switch timer period attribute when you
1527 <<enabling-disabling-channels,create a channel>> to ensure that event
1528 data is consumed and committed to trace files or to a distant relay
1529 daemon periodically in case of a low event throughput.
1530
1531 [NOTE]
1532 [role="docsvg-channel-switch-timer"]
1533 ====
1534 {note-no-anim}
1535 ====
1536
1537 This attribute is also convenient when you use big sub-buffers to cope
1538 with a sporadic high event throughput, even if the throughput is
1539 normally low.
1540
1541
1542 [[channel-read-timer]]
1543 ==== Read timer period
1544
1545 By default, the LTTng tracers use a notification mechanism to signal a
1546 full sub-buffer so that a consumer daemon can consume it. When such
1547 notifications must be avoided, for example in real-time applications,
1548 you can use the channel's _read timer_ instead. When the read timer
1549 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1550 consumable sub-buffers.
1551
1552
1553 [[tracefile-rotation]]
1554 ==== Trace file count and size
1555
1556 By default, trace files can grow as large as needed. You can set the
1557 maximum size of each trace file that a channel writes when you
1558 <<enabling-disabling-channels,create a channel>>. When the size of
1559 a trace file reaches the channel's fixed maximum size, LTTng creates
1560 another file to contain the next event records. LTTng appends a file
1561 count to each trace file name in this case.
1562
1563 If you set the trace file size attribute when you create a channel, the
1564 maximum number of trace files that LTTng creates is _unlimited_ by
1565 default. To limit them, you can also set a maximum number of trace
1566 files. When the number of trace files reaches the channel's fixed
1567 maximum count, the oldest trace file is overwritten. This mechanism is
1568 called _trace file rotation_.
1569
1570
1571 [[event]]
1572 === Instrumentation point, event rule, event, and event record
1573
1574 An _event rule_ is a set of conditions which must be **all** satisfied
1575 for LTTng to record an occuring event.
1576
1577 You set the conditions when you <<enabling-disabling-events,create
1578 an event rule>>.
1579
1580 You always attach an event rule to <<channel,channel>> when you create
1581 it.
1582
1583 When an event passes the conditions of an event rule, LTTng records it
1584 in one of the attached channel's sub-buffers.
1585
1586 The available conditions, as of LTTng{nbsp}{revision}, are:
1587
1588 * The event rule _is enabled_.
1589 * The instrumentation point's type _is{nbsp}T_.
1590 * The instrumentation point's name (sometimes called _event name_)
1591 _matches{nbsp}N_, but _is not{nbsp}E_.
1592 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1593 _is exactly{nbsp}L_.
1594 * The fields of the event's payload _satisfy_ a filter
1595 expression{nbsp}__F__.
1596
1597 As you can see, all the conditions but the dynamic filter are related to
1598 the event rule's status or to the instrumentation point, not to the
1599 occurring events. This is why, without a filter, checking if an event
1600 passes an event rule is not a dynamic task: when you create or modify an
1601 event rule, all the tracers of its tracing domain enable or disable the
1602 instrumentation points themselves once. This is possible because the
1603 attributes of an instrumentation point (type, name, and log level) are
1604 defined statically. In other words, without a dynamic filter, the tracer
1605 _does not evaluate_ the arguments of an instrumentation point unless it
1606 matches an enabled event rule.
1607
1608 Note that, for LTTng to record an event, the <<channel,channel>> to
1609 which a matching event rule is attached must also be enabled, and the
1610 tracing session owning this channel must be active.
1611
1612 [role="img-100"]
1613 .Logical path from an instrumentation point to an event record.
1614 image::event-rule.png[]
1615
1616 .Event, event record, or event rule?
1617 ****
1618 With so many similar terms, it's easy to get confused.
1619
1620 An **event** is the consequence of the execution of an _instrumentation
1621 point_, like a tracepoint that you manually place in some source code,
1622 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1623 time. Different actions can be taken upon the occurance of an event,
1624 like record the event's payload to a buffer.
1625
1626 An **event record** is the representation of an event in a sub-buffer. A
1627 tracer is responsible for capturing the payload of an event, current
1628 context variables, the event's ID, and the event's timestamp. LTTng
1629 can append this sub-buffer to a trace file.
1630
1631 An **event rule** is a set of conditions which must all be satisfied for
1632 LTTng to record an occuring event. Events still occur without
1633 satisfying event rules, but LTTng does not record them.
1634 ****
1635
1636
1637 [[plumbing]]
1638 == Components of noch:{LTTng}
1639
1640 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1641 to call LTTng a simple _tool_ since it is composed of multiple
1642 interacting components. This section describes those components,
1643 explains their respective roles, and shows how they connect together to
1644 form the LTTng ecosystem.
1645
1646 The following diagram shows how the most important components of LTTng
1647 interact with user applications, the Linux kernel, and you:
1648
1649 [role="img-100"]
1650 .Control and trace data paths between LTTng components.
1651 image::plumbing.png[]
1652
1653 The LTTng project incorporates:
1654
1655 * **LTTng-tools**: Libraries and command-line interface to
1656 control tracing sessions.
1657 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1658 ** <<lttng-consumerd,Consumer daemon>> (man:lttng-consumerd(8)).
1659 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1660 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1661 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1662 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1663 applications.
1664 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1665 headers to instrument and trace any native user application.
1666 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1667 *** `liblttng-ust-libc-wrapper`
1668 *** `liblttng-ust-pthread-wrapper`
1669 *** `liblttng-ust-cyg-profile`
1670 *** `liblttng-ust-cyg-profile-fast`
1671 *** `liblttng-ust-dl`
1672 ** User space tracepoint provider source files generator command-line
1673 tool (man:lttng-gen-tp(1)).
1674 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1675 Java applications using `java.util.logging` or
1676 Apache log4j 1.2 logging.
1677 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1678 Python applications using the standard `logging` package.
1679 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1680 the kernel.
1681 ** LTTng kernel tracer module.
1682 ** Tracing ring buffer kernel modules.
1683 ** Probe kernel modules.
1684 ** LTTng logger kernel module.
1685
1686
1687 [[lttng-cli]]
1688 === Tracing control command-line interface
1689
1690 [role="img-100"]
1691 .The tracing control command-line interface.
1692 image::plumbing-lttng-cli.png[]
1693
1694 The _man:lttng(1) command-line tool_ is the standard user interface to
1695 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1696 is part of LTTng-tools.
1697
1698 The cmd:lttng tool is linked with
1699 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1700 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1701
1702 The cmd:lttng tool has a Git-like interface:
1703
1704 [role="term"]
1705 ----
1706 lttng <general options> <command> <command options>
1707 ----
1708
1709 The <<controlling-tracing,Tracing control>> section explores the
1710 available features of LTTng using the cmd:lttng tool.
1711
1712
1713 [[liblttng-ctl-lttng]]
1714 === Tracing control library
1715
1716 [role="img-100"]
1717 .The tracing control library.
1718 image::plumbing-liblttng-ctl.png[]
1719
1720 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1721 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1722 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1723
1724 The <<lttng-cli,cmd:lttng command-line tool>>
1725 is linked with `liblttng-ctl`.
1726
1727 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1728 "master" header:
1729
1730 [source,c]
1731 ----
1732 #include <lttng/lttng.h>
1733 ----
1734
1735 Some objects are referenced by name (C string), such as tracing
1736 sessions, but most of them require to create a handle first using
1737 `lttng_create_handle()`.
1738
1739 The best available developer documentation for `liblttng-ctl` is, as of
1740 LTTng{nbsp}{revision}, its installed header files. Every function and
1741 structure is thoroughly documented.
1742
1743
1744 [[lttng-ust]]
1745 === User space tracing library
1746
1747 [role="img-100"]
1748 .The user space tracing library.
1749 image::plumbing-liblttng-ust.png[]
1750
1751 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1752 is the LTTng user space tracer. It receives commands from a
1753 <<lttng-sessiond,session daemon>>, for example to
1754 enable and disable specific instrumentation points, and writes event
1755 records to ring buffers shared with a
1756 <<lttng-consumerd,consumer daemon>>.
1757 `liblttng-ust` is part of LTTng-UST.
1758
1759 Public C header files are installed beside `liblttng-ust` to
1760 instrument any <<c-application,C or $$C++$$ application>>.
1761
1762 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1763 packages, use their own library providing tracepoints which is
1764 linked with `liblttng-ust`.
1765
1766 An application or library does not have to initialize `liblttng-ust`
1767 manually: its constructor does the necessary tasks to properly register
1768 to a session daemon. The initialization phase also enables the
1769 instrumentation points matching the <<event,event rules>> that you
1770 already created.
1771
1772
1773 [[lttng-ust-agents]]
1774 === User space tracing agents
1775
1776 [role="img-100"]
1777 .The user space tracing agents.
1778 image::plumbing-lttng-ust-agents.png[]
1779
1780 The _LTTng-UST Java and Python agents_ are regular Java and Python
1781 packages which add LTTng tracing capabilities to the
1782 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1783
1784 In the case of Java, the
1785 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1786 core logging facilities] and
1787 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1788 Note that Apache Log4{nbsp}2 is not supported.
1789
1790 In the case of Python, the standard
1791 https://docs.python.org/3/library/logging.html[`logging`] package
1792 is supported. Both Python 2 and Python 3 modules can import the
1793 LTTng-UST Python agent package.
1794
1795 The applications using the LTTng-UST agents are in the
1796 `java.util.logging` (JUL),
1797 log4j, and Python <<domain,tracing domains>>.
1798
1799 Both agents use the same mechanism to trace the log statements. When an
1800 agent is initialized, it creates a log handler that attaches to the root
1801 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1802 When the application executes a log statement, it is passed to the
1803 agent's log handler by the root logger. The agent's log handler calls a
1804 native function in a tracepoint provider package shared library linked
1805 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1806 other fields, like its logger name and its log level. This native
1807 function contains a user space instrumentation point, hence tracing the
1808 log statement.
1809
1810 The log level condition of an
1811 <<event,event rule>> is considered when tracing
1812 a Java or a Python application, and it's compatible with the standard
1813 JUL, log4j, and Python log levels.
1814
1815
1816 [[lttng-modules]]
1817 === LTTng kernel modules
1818
1819 [role="img-100"]
1820 .The LTTng kernel modules.
1821 image::plumbing-lttng-modules.png[]
1822
1823 The _LTTng kernel modules_ are a set of Linux kernel modules
1824 which implement the kernel tracer of the LTTng project. The LTTng
1825 kernel modules are part of LTTng-modules.
1826
1827 The LTTng kernel modules include:
1828
1829 * A set of _probe_ modules.
1830 +
1831 Each module attaches to a specific subsystem
1832 of the Linux kernel using its tracepoint instrument points. There are
1833 also modules to attach to the entry and return points of the Linux
1834 system call functions.
1835
1836 * _Ring buffer_ modules.
1837 +
1838 A ring buffer implementation is provided as kernel modules. The LTTng
1839 kernel tracer writes to the ring buffer; a
1840 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1841
1842 * The _LTTng kernel tracer_ module.
1843 * The _LTTng logger_ module.
1844 +
1845 The LTTng logger module implements the special path:{/proc/lttng-logger}
1846 file so that any executable can generate LTTng events by opening and
1847 writing to this file.
1848 +
1849 See <<proc-lttng-logger-abi,LTTng logger>>.
1850
1851 Generally, you do not have to load the LTTng kernel modules manually
1852 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1853 daemon>> loads the necessary modules when starting. If you have extra
1854 probe modules, you can specify to load them to the session daemon on
1855 the command line.
1856
1857 The LTTng kernel modules are installed in
1858 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1859 the kernel release (see `uname --kernel-release`).
1860
1861
1862 [[lttng-sessiond]]
1863 === Session daemon
1864
1865 [role="img-100"]
1866 .The session daemon.
1867 image::plumbing-sessiond.png[]
1868
1869 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1870 managing tracing sessions and for controlling the various components of
1871 LTTng. The session daemon is part of LTTng-tools.
1872
1873 The session daemon sends control requests to and receives control
1874 responses from:
1875
1876 * The <<lttng-ust,user space tracing library>>.
1877 +
1878 Any instance of the user space tracing library first registers to
1879 a session daemon. Then, the session daemon can send requests to
1880 this instance, such as:
1881 +
1882 --
1883 ** Get the list of tracepoints.
1884 ** Share an <<event,event rule>> so that the user space tracing library
1885 can enable or disable tracepoints. Amongst the possible conditions
1886 of an event rule is a filter expression which `liblttng-ust` evalutes
1887 when an event occurs.
1888 ** Share <<channel,channel>> attributes and ring buffer locations.
1889 --
1890 +
1891 The session daemon and the user space tracing library use a Unix
1892 domain socket for their communication.
1893
1894 * The <<lttng-ust-agents,user space tracing agents>>.
1895 +
1896 Any instance of a user space tracing agent first registers to
1897 a session daemon. Then, the session daemon can send requests to
1898 this instance, such as:
1899 +
1900 --
1901 ** Get the list of loggers.
1902 ** Enable or disable a specific logger.
1903 --
1904 +
1905 The session daemon and the user space tracing agent use a TCP connection
1906 for their communication.
1907
1908 * The <<lttng-modules,LTTng kernel tracer>>.
1909 * The <<lttng-consumerd,consumer daemon>>.
1910 +
1911 The session daemon sends requests to the consumer daemon to instruct
1912 it where to send the trace data streams, amongst other information.
1913
1914 * The <<lttng-relayd,relay daemon>>.
1915
1916 The session daemon receives commands from the
1917 <<liblttng-ctl-lttng,tracing control library>>.
1918
1919 The root session daemon loads the appropriate
1920 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
1921 a <<lttng-consumerd,consumer daemon>> as soon as you create
1922 an <<event,event rule>>.
1923
1924 The session daemon does not send and receive trace data: this is the
1925 role of the <<lttng-consumerd,consumer daemon>> and
1926 <<lttng-relayd,relay daemon>>. It does, however, generate the
1927 http://diamon.org/ctf/[CTF] metadata stream.
1928
1929 Each Unix user can have its own session daemon instance. The
1930 tracing sessions managed by different session daemons are completely
1931 independent.
1932
1933 The root user's session daemon is the only one which is
1934 allowed to control the LTTng kernel tracer, and its spawned consumer
1935 daemon is the only one which is allowed to consume trace data from the
1936 LTTng kernel tracer. Note, however, that any Unix user which is a member
1937 of the <<tracing-group,tracing group>> is allowed
1938 to create <<channel,channels>> in the
1939 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
1940 kernel.
1941
1942 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
1943 session daemon when using its `create` command if none is currently
1944 running. You can also start the session daemon manually.
1945
1946
1947 [[lttng-consumerd]]
1948 === Consumer daemon
1949
1950 [role="img-100"]
1951 .The consumer daemon.
1952 image::plumbing-consumerd.png[]
1953
1954 The _consumer daemon_, man:lttng-consumerd(8), is a daemon which shares
1955 ring buffers with user applications or with the LTTng kernel modules to
1956 collect trace data and send it to some location (on disk or to a
1957 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
1958 is part of LTTng-tools.
1959
1960 You do not start a consumer daemon manually: a consumer daemon is always
1961 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
1962 <<event,event rule>>, that is, before you start tracing. When you kill
1963 its owner session daemon, the consumer daemon also exits because it is
1964 the session daemon's child process. Command-line options of
1965 man:lttng-sessiond(8) target the consumer daemon process.
1966
1967 There are up to two running consumer daemons per Unix user, whereas only
1968 one session daemon can run per user. This is because each process can be
1969 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
1970 and 64-bit processes, it is more efficient to have separate
1971 corresponding 32-bit and 64-bit consumer daemons. The root user is an
1972 exception: it can have up to _three_ running consumer daemons: 32-bit
1973 and 64-bit instances for its user applications, and one more
1974 reserved for collecting kernel trace data.
1975
1976
1977 [[lttng-relayd]]
1978 === Relay daemon
1979
1980 [role="img-100"]
1981 .The relay daemon.
1982 image::plumbing-relayd.png[]
1983
1984 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
1985 between remote session and consumer daemons, local trace files, and a
1986 remote live trace viewer. The relay daemon is part of LTTng-tools.
1987
1988 The main purpose of the relay daemon is to implement a receiver of
1989 <<sending-trace-data-over-the-network,trace data over the network>>.
1990 This is useful when the target system does not have much file system
1991 space to record trace files locally.
1992
1993 The relay daemon is also a server to which a
1994 <<lttng-live,live trace viewer>> can
1995 connect. The live trace viewer sends requests to the relay daemon to
1996 receive trace data as the target system emits events. The
1997 communication protocol is named _LTTng live_; it is used over TCP
1998 connections.
1999
2000 Note that you can start the relay daemon on the target system directly.
2001 This is the setup of choice when the use case is to view events as
2002 the target system emits them without the need of a remote system.
2003
2004
2005 [[instrumenting]]
2006 == [[using-lttng]]Instrumentation
2007
2008 There are many examples of tracing and monitoring in our everyday life:
2009
2010 * You have access to real-time and historical weather reports and
2011 forecasts thanks to weather stations installed around the country.
2012 * You know your heart is safe thanks to an electrocardiogram.
2013 * You make sure not to drive your car too fast and to have enough fuel
2014 to reach your destination thanks to gauges visible on your dashboard.
2015
2016 All the previous examples have something in common: they rely on
2017 **instruments**. Without the electrodes attached to the surface of your
2018 body's skin, cardiac monitoring is futile.
2019
2020 LTTng, as a tracer, is no different from those real life examples. If
2021 you're about to trace a software system or, in other words, record its
2022 history of execution, you better have **instrumentation points** in the
2023 subject you're tracing, that is, the actual software.
2024
2025 Various ways were developed to instrument a piece of software for LTTng
2026 tracing. The most straightforward one is to manually place
2027 instrumentation points, called _tracepoints_, in the software's source
2028 code. It is also possible to add instrumentation points dynamically in
2029 the Linux kernel <<domain,tracing domain>>.
2030
2031 If you're only interested in tracing the Linux kernel, your
2032 instrumentation needs are probably already covered by LTTng's built-in
2033 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
2034 user application which is already instrumented for LTTng tracing.
2035 In such cases, you can skip this whole section and read the topics of
2036 the <<controlling-tracing,Tracing control>> section.
2037
2038 Many methods are available to instrument a piece of software for LTTng
2039 tracing. They are:
2040
2041 * <<c-application,User space instrumentation for C and $$C++$$
2042 applications>>.
2043 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
2044 * <<java-application,User space Java agent>>.
2045 * <<python-application,User space Python agent>>.
2046 * <<proc-lttng-logger-abi,LTTng logger>>.
2047 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
2048
2049
2050 [[c-application]]
2051 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
2052
2053 The procedure to instrument a C or $$C++$$ user application with
2054 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
2055
2056 . <<tracepoint-provider,Create the source files of a tracepoint provider
2057 package>>.
2058 . <<probing-the-application-source-code,Add tracepoints to
2059 the application's source code>>.
2060 . <<building-tracepoint-providers-and-user-application,Build and link
2061 a tracepoint provider package and the user application>>.
2062
2063 If you need quick, man:printf(3)-like instrumentation, you can skip
2064 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
2065 instead.
2066
2067 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
2068 instrument a user application with `liblttng-ust`.
2069
2070
2071 [[tracepoint-provider]]
2072 ==== Create the source files of a tracepoint provider package
2073
2074 A _tracepoint provider_ is a set of compiled functions which provide
2075 **tracepoints** to an application, the type of instrumentation point
2076 supported by LTTng-UST. Those functions can emit events with
2077 user-defined fields and serialize those events as event records to one
2078 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
2079 macro, which you <<probing-the-application-source-code,insert in a user
2080 application's source code>>, calls those functions.
2081
2082 A _tracepoint provider package_ is an object file (`.o`) or a shared
2083 library (`.so`) which contains one or more tracepoint providers.
2084 Its source files are:
2085
2086 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
2087 * A <<tpp-source,tracepoint provider package source>> (`.c`).
2088
2089 A tracepoint provider package is dynamically linked with `liblttng-ust`,
2090 the LTTng user space tracer, at run time.
2091
2092 [role="img-100"]
2093 .User application linked with `liblttng-ust` and containing a tracepoint provider.
2094 image::ust-app.png[]
2095
2096 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
2097 skip creating and using a tracepoint provider and use
2098 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
2099
2100
2101 [[tpp-header]]
2102 ===== Create a tracepoint provider header file template
2103
2104 A _tracepoint provider header file_ contains the tracepoint
2105 definitions of a tracepoint provider.
2106
2107 To create a tracepoint provider header file:
2108
2109 . Start from this template:
2110 +
2111 --
2112 [source,c]
2113 .Tracepoint provider header file template (`.h` file extension).
2114 ----
2115 #undef TRACEPOINT_PROVIDER
2116 #define TRACEPOINT_PROVIDER provider_name
2117
2118 #undef TRACEPOINT_INCLUDE
2119 #define TRACEPOINT_INCLUDE "./tp.h"
2120
2121 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2122 #define _TP_H
2123
2124 #include <lttng/tracepoint.h>
2125
2126 /*
2127 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2128 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2129 */
2130
2131 #endif /* _TP_H */
2132
2133 #include <lttng/tracepoint-event.h>
2134 ----
2135 --
2136
2137 . Replace:
2138 +
2139 * `provider_name` with the name of your tracepoint provider.
2140 * `"tp.h"` with the name of your tracepoint provider header file.
2141
2142 . Below the `#include <lttng/tracepoint.h>` line, put your
2143 <<defining-tracepoints,tracepoint definitions>>.
2144
2145 Your tracepoint provider name must be unique amongst all the possible
2146 tracepoint provider names used on the same target system. We
2147 suggest to include the name of your project or company in the name,
2148 for example, `org_lttng_my_project_tpp`.
2149
2150 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2151 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2152 write are the <<defining-tracepoints,tracepoint definitions>>.
2153
2154
2155 [[defining-tracepoints]]
2156 ===== Create a tracepoint definition
2157
2158 A _tracepoint definition_ defines, for a given tracepoint:
2159
2160 * Its **input arguments**. They are the macro parameters that the
2161 `tracepoint()` macro accepts for this particular tracepoint
2162 in the user application's source code.
2163 * Its **output event fields**. They are the sources of event fields
2164 that form the payload of any event that the execution of the
2165 `tracepoint()` macro emits for this particular tracepoint.
2166
2167 You can create a tracepoint definition by using the
2168 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2169 line in the
2170 <<tpp-header,tracepoint provider header file template>>.
2171
2172 The syntax of the `TRACEPOINT_EVENT()` macro is:
2173
2174 [source,c]
2175 .`TRACEPOINT_EVENT()` macro syntax.
2176 ----
2177 TRACEPOINT_EVENT(
2178 /* Tracepoint provider name */
2179 provider_name,
2180
2181 /* Tracepoint name */
2182 tracepoint_name,
2183
2184 /* Input arguments */
2185 TP_ARGS(
2186 arguments
2187 ),
2188
2189 /* Output event fields */
2190 TP_FIELDS(
2191 fields
2192 )
2193 )
2194 ----
2195
2196 Replace:
2197
2198 * `provider_name` with your tracepoint provider name.
2199 * `tracepoint_name` with your tracepoint name.
2200 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2201 * `fields` with the <<tpp-def-output-fields,output event field>>
2202 definitions.
2203
2204 This tracepoint emits events named `provider_name:tracepoint_name`.
2205
2206 [IMPORTANT]
2207 .Event name's length limitation
2208 ====
2209 The concatenation of the tracepoint provider name and the
2210 tracepoint name must not exceed **254 characters**. If it does, the
2211 instrumented application compiles and runs, but LTTng throws multiple
2212 warnings and you could experience serious issues.
2213 ====
2214
2215 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2216
2217 [source,c]
2218 .`TP_ARGS()` macro syntax.
2219 ----
2220 TP_ARGS(
2221 type, arg_name
2222 )
2223 ----
2224
2225 Replace:
2226
2227 * `type` with the C type of the argument.
2228 * `arg_name` with the argument name.
2229
2230 You can repeat `type` and `arg_name` up to 10 times to have
2231 more than one argument.
2232
2233 .`TP_ARGS()` usage with three arguments.
2234 ====
2235 [source,c]
2236 ----
2237 TP_ARGS(
2238 int, count,
2239 float, ratio,
2240 const char*, query
2241 )
2242 ----
2243 ====
2244
2245 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2246 tracepoint definition with no input arguments.
2247
2248 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2249 `ctf_*()` macros. Each `ctf_*()` macro defines one event field.
2250 See <<liblttng-ust-tp-fields,Tracepoint fields macros>> for a
2251 complete description of the available `ctf_*()` macros.
2252 A `ctf_*()` macro specifies the type, size, and byte order of
2253 one event field.
2254
2255 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2256 C expression that the tracer evalutes at the `tracepoint()` macro site
2257 in the application's source code. This expression provides a field's
2258 source of data. The argument expression can include input argument names
2259 listed in the `TP_ARGS()` macro.
2260
2261 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2262 must be unique within a given tracepoint definition.
2263
2264 Here's a complete tracepoint definition example:
2265
2266 .Tracepoint definition.
2267 ====
2268 The following tracepoint definition defines a tracepoint which takes
2269 three input arguments and has four output event fields.
2270
2271 [source,c]
2272 ----
2273 #include "my-custom-structure.h"
2274
2275 TRACEPOINT_EVENT(
2276 my_provider,
2277 my_tracepoint,
2278 TP_ARGS(
2279 const struct my_custom_structure*, my_custom_structure,
2280 float, ratio,
2281 const char*, query
2282 ),
2283 TP_FIELDS(
2284 ctf_string(query_field, query)
2285 ctf_float(double, ratio_field, ratio)
2286 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2287 ctf_integer(int, send_size, my_custom_structure->send_size)
2288 )
2289 )
2290 ----
2291
2292 You can refer to this tracepoint definition with the `tracepoint()`
2293 macro in your application's source code like this:
2294
2295 [source,c]
2296 ----
2297 tracepoint(my_provider, my_tracepoint,
2298 my_structure, some_ratio, the_query);
2299 ----
2300 ====
2301
2302 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2303 if they satisfy an enabled <<event,event rule>>.
2304
2305
2306 [[using-tracepoint-classes]]
2307 ===== Use a tracepoint class
2308
2309 A _tracepoint class_ is a class of tracepoints which share the same
2310 output event field definitions. A _tracepoint instance_ is one
2311 instance of such a defined tracepoint class, with its own tracepoint
2312 name.
2313
2314 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2315 shorthand which defines both a tracepoint class and a tracepoint
2316 instance at the same time.
2317
2318 When you build a tracepoint provider package, the C or $$C++$$ compiler
2319 creates one serialization function for each **tracepoint class**. A
2320 serialization function is responsible for serializing the event fields
2321 of a tracepoint to a sub-buffer when tracing.
2322
2323 For various performance reasons, when your situation requires multiple
2324 tracepoint definitions with different names, but with the same event
2325 fields, we recommend that you manually create a tracepoint class
2326 and instantiate as many tracepoint instances as needed. One positive
2327 effect of such a design, amongst other advantages, is that all
2328 tracepoint instances of the same tracepoint class reuse the same
2329 serialization function, thus reducing
2330 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2331
2332 .Use a tracepoint class and tracepoint instances.
2333 ====
2334 Consider the following three tracepoint definitions:
2335
2336 [source,c]
2337 ----
2338 TRACEPOINT_EVENT(
2339 my_app,
2340 get_account,
2341 TP_ARGS(
2342 int, userid,
2343 size_t, len
2344 ),
2345 TP_FIELDS(
2346 ctf_integer(int, userid, userid)
2347 ctf_integer(size_t, len, len)
2348 )
2349 )
2350
2351 TRACEPOINT_EVENT(
2352 my_app,
2353 get_settings,
2354 TP_ARGS(
2355 int, userid,
2356 size_t, len
2357 ),
2358 TP_FIELDS(
2359 ctf_integer(int, userid, userid)
2360 ctf_integer(size_t, len, len)
2361 )
2362 )
2363
2364 TRACEPOINT_EVENT(
2365 my_app,
2366 get_transaction,
2367 TP_ARGS(
2368 int, userid,
2369 size_t, len
2370 ),
2371 TP_FIELDS(
2372 ctf_integer(int, userid, userid)
2373 ctf_integer(size_t, len, len)
2374 )
2375 )
2376 ----
2377
2378 In this case, we create three tracepoint classes, with one implicit
2379 tracepoint instance for each of them: `get_account`, `get_settings`, and
2380 `get_transaction`. However, they all share the same event field names
2381 and types. Hence three identical, yet independent serialization
2382 functions are created when you build the tracepoint provider package.
2383
2384 A better design choice is to define a single tracepoint class and three
2385 tracepoint instances:
2386
2387 [source,c]
2388 ----
2389 /* The tracepoint class */
2390 TRACEPOINT_EVENT_CLASS(
2391 /* Tracepoint provider name */
2392 my_app,
2393
2394 /* Tracepoint class name */
2395 my_class,
2396
2397 /* Input arguments */
2398 TP_ARGS(
2399 int, userid,
2400 size_t, len
2401 ),
2402
2403 /* Output event fields */
2404 TP_FIELDS(
2405 ctf_integer(int, userid, userid)
2406 ctf_integer(size_t, len, len)
2407 )
2408 )
2409
2410 /* The tracepoint instances */
2411 TRACEPOINT_EVENT_INSTANCE(
2412 /* Tracepoint provider name */
2413 my_app,
2414
2415 /* Tracepoint class name */
2416 my_class,
2417
2418 /* Tracepoint name */
2419 get_account,
2420
2421 /* Input arguments */
2422 TP_ARGS(
2423 int, userid,
2424 size_t, len
2425 )
2426 )
2427 TRACEPOINT_EVENT_INSTANCE(
2428 my_app,
2429 my_class,
2430 get_settings,
2431 TP_ARGS(
2432 int, userid,
2433 size_t, len
2434 )
2435 )
2436 TRACEPOINT_EVENT_INSTANCE(
2437 my_app,
2438 my_class,
2439 get_transaction,
2440 TP_ARGS(
2441 int, userid,
2442 size_t, len
2443 )
2444 )
2445 ----
2446 ====
2447
2448
2449 [[assigning-log-levels]]
2450 ===== Assign a log level to a tracepoint definition
2451
2452 You can assign an optional _log level_ to a
2453 <<defining-tracepoints,tracepoint definition>>.
2454
2455 Assigning different levels of severity to tracepoint definitions can
2456 be useful: when you <<enabling-disabling-events,create an event rule>>,
2457 you can target tracepoints having a log level as severe as a specific
2458 value.
2459
2460 The concept of LTTng-UST log levels is similar to the levels found
2461 in typical logging frameworks:
2462
2463 * In a logging framework, the log level is given by the function
2464 or method name you use at the log statement site: `debug()`,
2465 `info()`, `warn()`, `error()`, and so on.
2466 * In LTTng-UST, you statically assign the log level to a tracepoint
2467 definition; any `tracepoint()` macro invocation which refers to
2468 this definition has this log level.
2469
2470 You can assign a log level to a tracepoint definition with the
2471 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2472 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2473 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2474 tracepoint.
2475
2476 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2477
2478 [source,c]
2479 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2480 ----
2481 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2482 ----
2483
2484 Replace:
2485
2486 * `provider_name` with the tracepoint provider name.
2487 * `tracepoint_name` with the tracepoint name.
2488 * `log_level` with the log level to assign to the tracepoint
2489 definition named `tracepoint_name` in the `provider_name`
2490 tracepoint provider.
2491 +
2492 See <<liblttng-ust-tracepoint-loglevel,Tracepoint log levels>> for
2493 a list of available log level names.
2494
2495 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2496 ====
2497 [source,c]
2498 ----
2499 /* Tracepoint definition */
2500 TRACEPOINT_EVENT(
2501 my_app,
2502 get_transaction,
2503 TP_ARGS(
2504 int, userid,
2505 size_t, len
2506 ),
2507 TP_FIELDS(
2508 ctf_integer(int, userid, userid)
2509 ctf_integer(size_t, len, len)
2510 )
2511 )
2512
2513 /* Log level assignment */
2514 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2515 ----
2516 ====
2517
2518
2519 [[tpp-source]]
2520 ===== Create a tracepoint provider package source file
2521
2522 A _tracepoint provider package source file_ is a C source file which
2523 includes a <<tpp-header,tracepoint provider header file>> to expand its
2524 macros into event serialization and other functions.
2525
2526 You can always use the following tracepoint provider package source
2527 file template:
2528
2529 [source,c]
2530 .Tracepoint provider package source file template.
2531 ----
2532 #define TRACEPOINT_CREATE_PROBES
2533
2534 #include "tp.h"
2535 ----
2536
2537 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2538 header file>> name. You may also include more than one tracepoint
2539 provider header file here to create a tracepoint provider package
2540 holding more than one tracepoint providers.
2541
2542
2543 [[probing-the-application-source-code]]
2544 ==== Add tracepoints to an application's source code
2545
2546 Once you <<tpp-header,create a tracepoint provider header file>>, you
2547 can use the `tracepoint()` macro in your application's
2548 source code to insert the tracepoints that this header
2549 <<defining-tracepoints,defines>>.
2550
2551 The `tracepoint()` macro takes at least two parameters: the tracepoint
2552 provider name and the tracepoint name. The corresponding tracepoint
2553 definition defines the other parameters.
2554
2555 .`tracepoint()` usage.
2556 ====
2557 The following <<defining-tracepoints,tracepoint definition>> defines a
2558 tracepoint which takes two input arguments and has two output event
2559 fields.
2560
2561 [source,c]
2562 .Tracepoint provider header file.
2563 ----
2564 #include "my-custom-structure.h"
2565
2566 TRACEPOINT_EVENT(
2567 my_provider,
2568 my_tracepoint,
2569 TP_ARGS(
2570 int, argc,
2571 const char*, cmd_name
2572 ),
2573 TP_FIELDS(
2574 ctf_string(cmd_name, cmd_name)
2575 ctf_integer(int, number_of_args, argc)
2576 )
2577 )
2578 ----
2579
2580 You can refer to this tracepoint definition with the `tracepoint()`
2581 macro in your application's source code like this:
2582
2583 [source,c]
2584 .Application's source file.
2585 ----
2586 #include "tp.h"
2587
2588 int main(int argc, char* argv[])
2589 {
2590 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2591
2592 return 0;
2593 }
2594 ----
2595
2596 Note how the application's source code includes
2597 the tracepoint provider header file containing the tracepoint
2598 definitions to use, path:{tp.h}.
2599 ====
2600
2601 .`tracepoint()` usage with a complex tracepoint definition.
2602 ====
2603 Consider this complex tracepoint definition, where multiple event
2604 fields refer to the same input arguments in their argument expression
2605 parameter:
2606
2607 [source,c]
2608 .Tracepoint provider header file.
2609 ----
2610 /* For `struct stat` */
2611 #include <sys/types.h>
2612 #include <sys/stat.h>
2613 #include <unistd.h>
2614
2615 TRACEPOINT_EVENT(
2616 my_provider,
2617 my_tracepoint,
2618 TP_ARGS(
2619 int, my_int_arg,
2620 char*, my_str_arg,
2621 struct stat*, st
2622 ),
2623 TP_FIELDS(
2624 ctf_integer(int, my_constant_field, 23 + 17)
2625 ctf_integer(int, my_int_arg_field, my_int_arg)
2626 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2627 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2628 my_str_arg[2] + my_str_arg[3])
2629 ctf_string(my_str_arg_field, my_str_arg)
2630 ctf_integer_hex(off_t, size_field, st->st_size)
2631 ctf_float(double, size_dbl_field, (double) st->st_size)
2632 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2633 size_t, strlen(my_str_arg) / 2)
2634 )
2635 )
2636 ----
2637
2638 You can refer to this tracepoint definition with the `tracepoint()`
2639 macro in your application's source code like this:
2640
2641 [source,c]
2642 .Application's source file.
2643 ----
2644 #define TRACEPOINT_DEFINE
2645 #include "tp.h"
2646
2647 int main(void)
2648 {
2649 struct stat s;
2650
2651 stat("/etc/fstab", &s);
2652 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2653
2654 return 0;
2655 }
2656 ----
2657
2658 If you look at the event record that LTTng writes when tracing this
2659 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2660 it should look like this:
2661
2662 .Event record fields
2663 |====
2664 |Field's name |Field's value
2665 |`my_constant_field` |40
2666 |`my_int_arg_field` |23
2667 |`my_int_arg_field2` |529
2668 |`sum4_field` |389
2669 |`my_str_arg_field` |`Hello, World!`
2670 |`size_field` |0x12d
2671 |`size_dbl_field` |301.0
2672 |`half_my_str_arg_field` |`Hello,`
2673 |====
2674 ====
2675
2676 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2677 compute--they use the call stack, for example. To avoid this
2678 computation when the tracepoint is disabled, you can use the
2679 `tracepoint_enabled()` and `do_tracepoint()` macros.
2680
2681 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2682 is:
2683
2684 [source,c]
2685 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2686 ----
2687 tracepoint_enabled(provider_name, tracepoint_name)
2688 do_tracepoint(provider_name, tracepoint_name, ...)
2689 ----
2690
2691 Replace:
2692
2693 * `provider_name` with the tracepoint provider name.
2694 * `tracepoint_name` with the tracepoint name.
2695
2696 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2697 `tracepoint_name` from the provider named `provider_name` is enabled
2698 **at run time**.
2699
2700 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2701 if the tracepoint is enabled. Using `tracepoint()` with
2702 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2703 the `tracepoint_enabled()` check, thus a race condition is
2704 possible in this situation:
2705
2706 [source,c]
2707 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2708 ----
2709 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2710 stuff = prepare_stuff();
2711 }
2712
2713 tracepoint(my_provider, my_tracepoint, stuff);
2714 ----
2715
2716 If the tracepoint is enabled after the condition, then `stuff` is not
2717 prepared: the emitted event will either contain wrong data, or the whole
2718 application could crash (segmentation fault, for example).
2719
2720 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2721 `STAP_PROBEV()` call. If you need it, you must emit
2722 this call yourself.
2723
2724
2725 [[building-tracepoint-providers-and-user-application]]
2726 ==== Build and link a tracepoint provider package and an application
2727
2728 Once you have one or more <<tpp-header,tracepoint provider header
2729 files>> and a <<tpp-source,tracepoint provider package source file>>,
2730 you can create the tracepoint provider package by compiling its source
2731 file. From here, multiple build and run scenarios are possible. The
2732 following table shows common application and library configurations
2733 along with the required command lines to achieve them.
2734
2735 In the following diagrams, we use the following file names:
2736
2737 `app`::
2738 Executable application.
2739
2740 `app.o`::
2741 Application's object file.
2742
2743 `tpp.o`::
2744 Tracepoint provider package object file.
2745
2746 `tpp.a`::
2747 Tracepoint provider package archive file.
2748
2749 `libtpp.so`::
2750 Tracepoint provider package shared object file.
2751
2752 `emon.o`::
2753 User library object file.
2754
2755 `libemon.so`::
2756 User library shared object file.
2757
2758 We use the following symbols in the diagrams of table below:
2759
2760 [role="img-100"]
2761 .Symbols used in the build scenario diagrams.
2762 image::ust-sit-symbols.png[]
2763
2764 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2765 variable in the following instructions.
2766
2767 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2768 .Common tracepoint provider package scenarios.
2769 |====
2770 |Scenario |Instructions
2771
2772 |
2773 The instrumented application is statically linked with
2774 the tracepoint provider package object.
2775
2776 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2777
2778 |
2779 include::../common/ust-sit-step-tp-o.txt[]
2780
2781 To build the instrumented application:
2782
2783 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2784 +
2785 --
2786 [source,c]
2787 ----
2788 #define TRACEPOINT_DEFINE
2789 ----
2790 --
2791
2792 . Compile the application source file:
2793 +
2794 --
2795 [role="term"]
2796 ----
2797 gcc -c app.c
2798 ----
2799 --
2800
2801 . Build the application:
2802 +
2803 --
2804 [role="term"]
2805 ----
2806 gcc -o app app.o tpp.o -llttng-ust -ldl
2807 ----
2808 --
2809
2810 To run the instrumented application:
2811
2812 * Start the application:
2813 +
2814 --
2815 [role="term"]
2816 ----
2817 ./app
2818 ----
2819 --
2820
2821 |
2822 The instrumented application is statically linked with the
2823 tracepoint provider package archive file.
2824
2825 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2826
2827 |
2828 To create the tracepoint provider package archive file:
2829
2830 . Compile the <<tpp-source,tracepoint provider package source file>>:
2831 +
2832 --
2833 [role="term"]
2834 ----
2835 gcc -I. -c tpp.c
2836 ----
2837 --
2838
2839 . Create the tracepoint provider package archive file:
2840 +
2841 --
2842 [role="term"]
2843 ----
2844 ar rcs tpp.a tpp.o
2845 ----
2846 --
2847
2848 To build the instrumented application:
2849
2850 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2851 +
2852 --
2853 [source,c]
2854 ----
2855 #define TRACEPOINT_DEFINE
2856 ----
2857 --
2858
2859 . Compile the application source file:
2860 +
2861 --
2862 [role="term"]
2863 ----
2864 gcc -c app.c
2865 ----
2866 --
2867
2868 . Build the application:
2869 +
2870 --
2871 [role="term"]
2872 ----
2873 gcc -o app app.o tpp.a -llttng-ust -ldl
2874 ----
2875 --
2876
2877 To run the instrumented application:
2878
2879 * Start the application:
2880 +
2881 --
2882 [role="term"]
2883 ----
2884 ./app
2885 ----
2886 --
2887
2888 |
2889 The instrumented application is linked with the tracepoint provider
2890 package shared object.
2891
2892 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2893
2894 |
2895 include::../common/ust-sit-step-tp-so.txt[]
2896
2897 To build the instrumented application:
2898
2899 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2900 +
2901 --
2902 [source,c]
2903 ----
2904 #define TRACEPOINT_DEFINE
2905 ----
2906 --
2907
2908 . Compile the application source file:
2909 +
2910 --
2911 [role="term"]
2912 ----
2913 gcc -c app.c
2914 ----
2915 --
2916
2917 . Build the application:
2918 +
2919 --
2920 [role="term"]
2921 ----
2922 gcc -o app app.o -ldl -L. -ltpp
2923 ----
2924 --
2925
2926 To run the instrumented application:
2927
2928 * Start the application:
2929 +
2930 --
2931 [role="term"]
2932 ----
2933 ./app
2934 ----
2935 --
2936
2937 |
2938 The tracepoint provider package shared object is preloaded before the
2939 instrumented application starts.
2940
2941 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
2942
2943 |
2944 include::../common/ust-sit-step-tp-so.txt[]
2945
2946 To build the instrumented application:
2947
2948 . In path:{app.c}, before including path:{tpp.h}, add the
2949 following lines:
2950 +
2951 --
2952 [source,c]
2953 ----
2954 #define TRACEPOINT_DEFINE
2955 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2956 ----
2957 --
2958
2959 . Compile the application source file:
2960 +
2961 --
2962 [role="term"]
2963 ----
2964 gcc -c app.c
2965 ----
2966 --
2967
2968 . Build the application:
2969 +
2970 --
2971 [role="term"]
2972 ----
2973 gcc -o app app.o -ldl
2974 ----
2975 --
2976
2977 To run the instrumented application with tracing support:
2978
2979 * Preload the tracepoint provider package shared object and
2980 start the application:
2981 +
2982 --
2983 [role="term"]
2984 ----
2985 LD_PRELOAD=./libtpp.so ./app
2986 ----
2987 --
2988
2989 To run the instrumented application without tracing support:
2990
2991 * Start the application:
2992 +
2993 --
2994 [role="term"]
2995 ----
2996 ./app
2997 ----
2998 --
2999
3000 |
3001 The instrumented application dynamically loads the tracepoint provider
3002 package shared object.
3003
3004 See the <<dlclose-warning,warning about `dlclose()`>>.
3005
3006 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
3007
3008 |
3009 include::../common/ust-sit-step-tp-so.txt[]
3010
3011 To build the instrumented application:
3012
3013 . In path:{app.c}, before including path:{tpp.h}, add the
3014 following lines:
3015 +
3016 --
3017 [source,c]
3018 ----
3019 #define TRACEPOINT_DEFINE
3020 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3021 ----
3022 --
3023
3024 . Compile the application source file:
3025 +
3026 --
3027 [role="term"]
3028 ----
3029 gcc -c app.c
3030 ----
3031 --
3032
3033 . Build the application:
3034 +
3035 --
3036 [role="term"]
3037 ----
3038 gcc -o app app.o -ldl
3039 ----
3040 --
3041
3042 To run the instrumented application:
3043
3044 * Start the application:
3045 +
3046 --
3047 [role="term"]
3048 ----
3049 ./app
3050 ----
3051 --
3052
3053 |
3054 The application is linked with the instrumented user library.
3055
3056 The instrumented user library is statically linked with the tracepoint
3057 provider package object file.
3058
3059 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
3060
3061 |
3062 include::../common/ust-sit-step-tp-o-fpic.txt[]
3063
3064 To build the instrumented user library:
3065
3066 . In path:{emon.c}, before including path:{tpp.h}, add the
3067 following line:
3068 +
3069 --
3070 [source,c]
3071 ----
3072 #define TRACEPOINT_DEFINE
3073 ----
3074 --
3075
3076 . Compile the user library source file:
3077 +
3078 --
3079 [role="term"]
3080 ----
3081 gcc -I. -fpic -c emon.c
3082 ----
3083 --
3084
3085 . Build the user library shared object:
3086 +
3087 --
3088 [role="term"]
3089 ----
3090 gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
3091 ----
3092 --
3093
3094 To build the application:
3095
3096 . Compile the application source file:
3097 +
3098 --
3099 [role="term"]
3100 ----
3101 gcc -c app.c
3102 ----
3103 --
3104
3105 . Build the application:
3106 +
3107 --
3108 [role="term"]
3109 ----
3110 gcc -o app app.o -L. -lemon
3111 ----
3112 --
3113
3114 To run the application:
3115
3116 * Start the application:
3117 +
3118 --
3119 [role="term"]
3120 ----
3121 ./app
3122 ----
3123 --
3124
3125 |
3126 The application is linked with the instrumented user library.
3127
3128 The instrumented user library is linked with the tracepoint provider
3129 package shared object.
3130
3131 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3132
3133 |
3134 include::../common/ust-sit-step-tp-so.txt[]
3135
3136 To build the instrumented user library:
3137
3138 . In path:{emon.c}, before including path:{tpp.h}, add the
3139 following line:
3140 +
3141 --
3142 [source,c]
3143 ----
3144 #define TRACEPOINT_DEFINE
3145 ----
3146 --
3147
3148 . Compile the user library source file:
3149 +
3150 --
3151 [role="term"]
3152 ----
3153 gcc -I. -fpic -c emon.c
3154 ----
3155 --
3156
3157 . Build the user library shared object:
3158 +
3159 --
3160 [role="term"]
3161 ----
3162 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3163 ----
3164 --
3165
3166 To build the application:
3167
3168 . Compile the application source file:
3169 +
3170 --
3171 [role="term"]
3172 ----
3173 gcc -c app.c
3174 ----
3175 --
3176
3177 . Build the application:
3178 +
3179 --
3180 [role="term"]
3181 ----
3182 gcc -o app app.o -L. -lemon
3183 ----
3184 --
3185
3186 To run the application:
3187
3188 * Start the application:
3189 +
3190 --
3191 [role="term"]
3192 ----
3193 ./app
3194 ----
3195 --
3196
3197 |
3198 The tracepoint provider package shared object is preloaded before the
3199 application starts.
3200
3201 The application is linked with the instrumented user library.
3202
3203 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3204
3205 |
3206 include::../common/ust-sit-step-tp-so.txt[]
3207
3208 To build the instrumented user library:
3209
3210 . In path:{emon.c}, before including path:{tpp.h}, add the
3211 following line:
3212 +
3213 --
3214 [source,c]
3215 ----
3216 #define TRACEPOINT_DEFINE
3217 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3218 ----
3219 --
3220
3221 . Compile the user library source file:
3222 +
3223 --
3224 [role="term"]
3225 ----
3226 gcc -I. -fpic -c emon.c
3227 ----
3228 --
3229
3230 . Build the user library shared object:
3231 +
3232 --
3233 [role="term"]
3234 ----
3235 gcc -shared -o libemon.so emon.o -ldl
3236 ----
3237 --
3238
3239 To build the application:
3240
3241 . Compile the application source file:
3242 +
3243 --
3244 [role="term"]
3245 ----
3246 gcc -c app.c
3247 ----
3248 --
3249
3250 . Build the application:
3251 +
3252 --
3253 [role="term"]
3254 ----
3255 gcc -o app app.o -L. -lemon
3256 ----
3257 --
3258
3259 To run the application with tracing support:
3260
3261 * Preload the tracepoint provider package shared object and
3262 start the application:
3263 +
3264 --
3265 [role="term"]
3266 ----
3267 LD_PRELOAD=./libtpp.so ./app
3268 ----
3269 --
3270
3271 To run the application without tracing support:
3272
3273 * Start the application:
3274 +
3275 --
3276 [role="term"]
3277 ----
3278 ./app
3279 ----
3280 --
3281
3282 |
3283 The application is linked with the instrumented user library.
3284
3285 The instrumented user library dynamically loads the tracepoint provider
3286 package shared object.
3287
3288 See the <<dlclose-warning,warning about `dlclose()`>>.
3289
3290 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3291
3292 |
3293 include::../common/ust-sit-step-tp-so.txt[]
3294
3295 To build the instrumented user library:
3296
3297 . In path:{emon.c}, before including path:{tpp.h}, add the
3298 following line:
3299 +
3300 --
3301 [source,c]
3302 ----
3303 #define TRACEPOINT_DEFINE
3304 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3305 ----
3306 --
3307
3308 . Compile the user library source file:
3309 +
3310 --
3311 [role="term"]
3312 ----
3313 gcc -I. -fpic -c emon.c
3314 ----
3315 --
3316
3317 . Build the user library shared object:
3318 +
3319 --
3320 [role="term"]
3321 ----
3322 gcc -shared -o libemon.so emon.o -ldl
3323 ----
3324 --
3325
3326 To build the application:
3327
3328 . Compile the application source file:
3329 +
3330 --
3331 [role="term"]
3332 ----
3333 gcc -c app.c
3334 ----
3335 --
3336
3337 . Build the application:
3338 +
3339 --
3340 [role="term"]
3341 ----
3342 gcc -o app app.o -L. -lemon
3343 ----
3344 --
3345
3346 To run the application:
3347
3348 * Start the application:
3349 +
3350 --
3351 [role="term"]
3352 ----
3353 ./app
3354 ----
3355 --
3356
3357 |
3358 The application dynamically loads the instrumented user library.
3359
3360 The instrumented user library is linked with the tracepoint provider
3361 package shared object.
3362
3363 See the <<dlclose-warning,warning about `dlclose()`>>.
3364
3365 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3366
3367 |
3368 include::../common/ust-sit-step-tp-so.txt[]
3369
3370 To build the instrumented user library:
3371
3372 . In path:{emon.c}, before including path:{tpp.h}, add the
3373 following line:
3374 +
3375 --
3376 [source,c]
3377 ----
3378 #define TRACEPOINT_DEFINE
3379 ----
3380 --
3381
3382 . Compile the user library source file:
3383 +
3384 --
3385 [role="term"]
3386 ----
3387 gcc -I. -fpic -c emon.c
3388 ----
3389 --
3390
3391 . Build the user library shared object:
3392 +
3393 --
3394 [role="term"]
3395 ----
3396 gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3397 ----
3398 --
3399
3400 To build the application:
3401
3402 . Compile the application source file:
3403 +
3404 --
3405 [role="term"]
3406 ----
3407 gcc -c app.c
3408 ----
3409 --
3410
3411 . Build the application:
3412 +
3413 --
3414 [role="term"]
3415 ----
3416 gcc -o app app.o -ldl -L. -lemon
3417 ----
3418 --
3419
3420 To run the application:
3421
3422 * Start the application:
3423 +
3424 --
3425 [role="term"]
3426 ----
3427 ./app
3428 ----
3429 --
3430
3431 |
3432 The application dynamically loads the instrumented user library.
3433
3434 The instrumented user library dynamically loads the tracepoint provider
3435 package shared object.
3436
3437 See the <<dlclose-warning,warning about `dlclose()`>>.
3438
3439 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3440
3441 |
3442 include::../common/ust-sit-step-tp-so.txt[]
3443
3444 To build the instrumented user library:
3445
3446 . In path:{emon.c}, before including path:{tpp.h}, add the
3447 following line:
3448 +
3449 --
3450 [source,c]
3451 ----
3452 #define TRACEPOINT_DEFINE
3453 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3454 ----
3455 --
3456
3457 . Compile the user library source file:
3458 +
3459 --
3460 [role="term"]
3461 ----
3462 gcc -I. -fpic -c emon.c
3463 ----
3464 --
3465
3466 . Build the user library shared object:
3467 +
3468 --
3469 [role="term"]
3470 ----
3471 gcc -shared -o libemon.so emon.o -ldl
3472 ----
3473 --
3474
3475 To build the application:
3476
3477 . Compile the application source file:
3478 +
3479 --
3480 [role="term"]
3481 ----
3482 gcc -c app.c
3483 ----
3484 --
3485
3486 . Build the application:
3487 +
3488 --
3489 [role="term"]
3490 ----
3491 gcc -o app app.o -ldl -L. -lemon
3492 ----
3493 --
3494
3495 To run the application:
3496
3497 * Start the application:
3498 +
3499 --
3500 [role="term"]
3501 ----
3502 ./app
3503 ----
3504 --
3505
3506 |
3507 The tracepoint provider package shared object is preloaded before the
3508 application starts.
3509
3510 The application dynamically loads the instrumented user library.
3511
3512 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3513
3514 |
3515 include::../common/ust-sit-step-tp-so.txt[]
3516
3517 To build the instrumented user library:
3518
3519 . In path:{emon.c}, before including path:{tpp.h}, add the
3520 following line:
3521 +
3522 --
3523 [source,c]
3524 ----
3525 #define TRACEPOINT_DEFINE
3526 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3527 ----
3528 --
3529
3530 . Compile the user library source file:
3531 +
3532 --
3533 [role="term"]
3534 ----
3535 gcc -I. -fpic -c emon.c
3536 ----
3537 --
3538
3539 . Build the user library shared object:
3540 +
3541 --
3542 [role="term"]
3543 ----
3544 gcc -shared -o libemon.so emon.o -ldl
3545 ----
3546 --
3547
3548 To build the application:
3549
3550 . Compile the application source file:
3551 +
3552 --
3553 [role="term"]
3554 ----
3555 gcc -c app.c
3556 ----
3557 --
3558
3559 . Build the application:
3560 +
3561 --
3562 [role="term"]
3563 ----
3564 gcc -o app app.o -L. -lemon
3565 ----
3566 --
3567
3568 To run the application with tracing support:
3569
3570 * Preload the tracepoint provider package shared object and
3571 start the application:
3572 +
3573 --
3574 [role="term"]
3575 ----
3576 LD_PRELOAD=./libtpp.so ./app
3577 ----
3578 --
3579
3580 To run the application without tracing support:
3581
3582 * Start the application:
3583 +
3584 --
3585 [role="term"]
3586 ----
3587 ./app
3588 ----
3589 --
3590
3591 |
3592 The application is statically linked with the tracepoint provider
3593 package object file.
3594
3595 The application is linked with the instrumented user library.
3596
3597 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3598
3599 |
3600 include::../common/ust-sit-step-tp-o.txt[]
3601
3602 To build the instrumented user library:
3603
3604 . In path:{emon.c}, before including path:{tpp.h}, add the
3605 following line:
3606 +
3607 --
3608 [source,c]
3609 ----
3610 #define TRACEPOINT_DEFINE
3611 ----
3612 --
3613
3614 . Compile the user library source file:
3615 +
3616 --
3617 [role="term"]
3618 ----
3619 gcc -I. -fpic -c emon.c
3620 ----
3621 --
3622
3623 . Build the user library shared object:
3624 +
3625 --
3626 [role="term"]
3627 ----
3628 gcc -shared -o libemon.so emon.o
3629 ----
3630 --
3631
3632 To build the application:
3633
3634 . Compile the application source file:
3635 +
3636 --
3637 [role="term"]
3638 ----
3639 gcc -c app.c
3640 ----
3641 --
3642
3643 . Build the application:
3644 +
3645 --
3646 [role="term"]
3647 ----
3648 gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3649 ----
3650 --
3651
3652 To run the instrumented application:
3653
3654 * Start the application:
3655 +
3656 --
3657 [role="term"]
3658 ----
3659 ./app
3660 ----
3661 --
3662
3663 |
3664 The application is statically linked with the tracepoint provider
3665 package object file.
3666
3667 The application dynamically loads the instrumented user library.
3668
3669 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3670
3671 |
3672 include::../common/ust-sit-step-tp-o.txt[]
3673
3674 To build the application:
3675
3676 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3677 +
3678 --
3679 [source,c]
3680 ----
3681 #define TRACEPOINT_DEFINE
3682 ----
3683 --
3684
3685 . Compile the application source file:
3686 +
3687 --
3688 [role="term"]
3689 ----
3690 gcc -c app.c
3691 ----
3692 --
3693
3694 . Build the application:
3695 +
3696 --
3697 [role="term"]
3698 ----
3699 gcc -Wl,--export-dynamic -o app app.o tpp.o \
3700 -llttng-ust -ldl
3701 ----
3702 --
3703 +
3704 The `--export-dynamic` option passed to the linker is necessary for the
3705 dynamically loaded library to ``see'' the tracepoint symbols defined in
3706 the application.
3707
3708 To build the instrumented user library:
3709
3710 . Compile the user library source file:
3711 +
3712 --
3713 [role="term"]
3714 ----
3715 gcc -I. -fpic -c emon.c
3716 ----
3717 --
3718
3719 . Build the user library shared object:
3720 +
3721 --
3722 [role="term"]
3723 ----
3724 gcc -shared -o libemon.so emon.o
3725 ----
3726 --
3727
3728 To run the application:
3729
3730 * Start the application:
3731 +
3732 --
3733 [role="term"]
3734 ----
3735 ./app
3736 ----
3737 --
3738 |====
3739
3740 [[dlclose-warning]]
3741 [IMPORTANT]
3742 .Do not use man:dlclose(3) on a tracepoint provider package
3743 ====
3744 Never use man:dlclose(3) on any shared object which:
3745
3746 * Is linked with, statically or dynamically, a tracepoint provider
3747 package.
3748 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3749 package shared object.
3750
3751 This is currently considered **unsafe** due to a lack of reference
3752 counting from LTTng-UST to the shared object.
3753
3754 A known workaround (available since glibc 2.2) is to use the
3755 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3756 effect of not unloading the loaded shared object, even if man:dlclose(3)
3757 is called.
3758
3759 You can also preload the tracepoint provider package shared object with
3760 the env:LD_PRELOAD environment variable to overcome this limitation.
3761 ====
3762
3763
3764 [[using-lttng-ust-with-daemons]]
3765 ===== Use noch:{LTTng-UST} with daemons
3766
3767 If your instrumented application calls man:fork(2), man:clone(2),
3768 or BSD's man:rfork(2), without a following man:exec(3)-family
3769 system call, you must preload the path:{liblttng-ust-fork.so} shared
3770 object when starting the application.
3771
3772 [role="term"]
3773 ----
3774 LD_PRELOAD=liblttng-ust-fork.so ./my-app
3775 ----
3776
3777 If your tracepoint provider package is
3778 a shared library which you also preload, you must put both
3779 shared objects in env:LD_PRELOAD:
3780
3781 [role="term"]
3782 ----
3783 LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3784 ----
3785
3786
3787 [[lttng-ust-pkg-config]]
3788 ===== Use noch:{pkg-config}
3789
3790 On some distributions, LTTng-UST ships with a
3791 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3792 metadata file. If this is your case, then you can use cmd:pkg-config to
3793 build an application on the command line:
3794
3795 [role="term"]
3796 ----
3797 gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3798 ----
3799
3800
3801 [[instrumenting-32-bit-app-on-64-bit-system]]
3802 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3803
3804 In order to trace a 32-bit application running on a 64-bit system,
3805 LTTng must use a dedicated 32-bit
3806 <<lttng-consumerd,consumer daemon>>.
3807
3808 The following steps show how to build and install a 32-bit consumer
3809 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3810 build and install the 32-bit LTTng-UST libraries, and how to build and
3811 link an instrumented 32-bit application in that context.
3812
3813 To build a 32-bit instrumented application for a 64-bit target system,
3814 assuming you have a fresh target system with no installed Userspace RCU
3815 or LTTng packages:
3816
3817 . Download, build, and install a 32-bit version of Userspace RCU:
3818 +
3819 --
3820 [role="term"]
3821 ----
3822 cd $(mktemp -d) &&
3823 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3824 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3825 cd userspace-rcu-0.9.* &&
3826 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3827 make &&
3828 sudo make install &&
3829 sudo ldconfig
3830 ----
3831 --
3832
3833 . Using your distribution's package manager, or from source, install
3834 the following 32-bit versions of the following dependencies of
3835 LTTng-tools and LTTng-UST:
3836 +
3837 --
3838 * https://sourceforge.net/projects/libuuid/[libuuid]
3839 * http://directory.fsf.org/wiki/Popt[popt]
3840 * http://www.xmlsoft.org/[libxml2]
3841 --
3842
3843 . Download, build, and install a 32-bit version of the latest
3844 LTTng-UST{nbsp}{revision}:
3845 +
3846 --
3847 [role="term"]
3848 ----
3849 cd $(mktemp -d) &&
3850 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.7.tar.bz2 &&
3851 tar -xf lttng-ust-latest-2.7.tar.bz2 &&
3852 cd lttng-ust-2.7.* &&
3853 ./configure --libdir=/usr/local/lib32 \
3854 CFLAGS=-m32 CXXFLAGS=-m32 \
3855 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3856 make &&
3857 sudo make install &&
3858 sudo ldconfig
3859 ----
3860 --
3861 +
3862 [NOTE]
3863 ====
3864 Depending on your distribution,
3865 32-bit libraries could be installed at a different location than
3866 `/usr/lib32`. For example, Debian is known to install
3867 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3868
3869 In this case, make sure to set `LDFLAGS` to all the
3870 relevant 32-bit library paths, for example:
3871
3872 [role="term"]
3873 ----
3874 LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3875 ----
3876 ====
3877
3878 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3879 the 32-bit consumer daemon:
3880 +
3881 --
3882 [role="term"]
3883 ----
3884 cd $(mktemp -d) &&
3885 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.7.tar.bz2 &&
3886 tar -xf lttng-tools-latest-2.7.tar.bz2 &&
3887 cd lttng-tools-2.7.* &&
3888 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3889 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3890 make &&
3891 cd src/bin/lttng-consumerd &&
3892 sudo make install &&
3893 sudo ldconfig
3894 ----
3895 --
3896
3897 . From your distribution or from source,
3898 <<installing-lttng,install>> the 64-bit versions of
3899 LTTng-UST and Userspace RCU.
3900 . Download, build, and install the 64-bit version of the
3901 latest LTTng-tools{nbsp}{revision}:
3902 +
3903 --
3904 [role="term"]
3905 ----
3906 cd $(mktemp -d) &&
3907 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.7.tar.bz2 &&
3908 tar -xf lttng-tools-latest-2.7.tar.bz2 &&
3909 cd lttng-tools-2.7.* &&
3910 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
3911 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
3912 make &&
3913 sudo make install &&
3914 sudo ldconfig
3915 ----
3916 --
3917
3918 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
3919 when linking your 32-bit application:
3920 +
3921 ----
3922 -m32 -L/usr/lib32 -L/usr/local/lib32 \
3923 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
3924 ----
3925 +
3926 For example, let's rebuild the quick start example in
3927 <<tracing-your-own-user-application,Trace a user application>> as an
3928 instrumented 32-bit application:
3929 +
3930 --
3931 [role="term"]
3932 ----
3933 gcc -m32 -c -I. hello-tp.c
3934 gcc -m32 -c hello.c
3935 gcc -m32 -o hello hello.o hello-tp.o \
3936 -L/usr/lib32 -L/usr/local/lib32 \
3937 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
3938 -llttng-ust -ldl
3939 ----
3940 --
3941
3942 No special action is required to execute the 32-bit application and
3943 to trace it: use the command-line man:lttng(1) tool as usual.
3944
3945
3946 [role="since-2.5"]
3947 [[tracef]]
3948 ==== Use `tracef()`
3949
3950 `tracef()` is a small LTTng-UST API designed for quick,
3951 man:printf(3)-like instrumentation without the burden of
3952 <<tracepoint-provider,creating>> and
3953 <<building-tracepoint-providers-and-user-application,building>>
3954 a tracepoint provider package.
3955
3956 To use `tracef()` in your application:
3957
3958 . In the C or C++ source files where you need to use `tracef()`,
3959 include `<lttng/tracef.h>`:
3960 +
3961 --
3962 [source,c]
3963 ----
3964 #include <lttng/tracef.h>
3965 ----
3966 --
3967
3968 . In the application's source code, use `tracef()` like you would use
3969 man:printf(3):
3970 +
3971 --
3972 [source,c]
3973 ----
3974 /* ... */
3975
3976 tracef("my message: %d (%s)", my_integer, my_string);
3977
3978 /* ... */
3979 ----
3980 --
3981
3982 . Link your application with `liblttng-ust`:
3983 +
3984 --
3985 [role="term"]
3986 ----
3987 gcc -o app app.c -llttng-ust
3988 ----
3989 --
3990
3991 To trace the events that `tracef()` calls emit:
3992
3993 * <<enabling-disabling-events,Create an event rule>> which matches the
3994 `lttng_ust_tracef:*` event name:
3995 +
3996 --
3997 [role="term"]
3998 ----
3999 lttng enable-event --userspace 'lttng_ust_tracef:*'
4000 ----
4001 --
4002
4003 [IMPORTANT]
4004 .Limitations of `tracef()`
4005 ====
4006 The `tracef()` utility function was developed to make user space tracing
4007 super simple, albeit with notable disadvantages compared to
4008 <<defining-tracepoints,user-defined tracepoints>>:
4009
4010 * All the emitted events have the same tracepoint provider and
4011 tracepoint names, respectively `lttng_ust_tracef` and `event`.
4012 * There is no static type checking.
4013 * The only event record field you actually get, named `msg`, is a string
4014 potentially containing the values you passed to `tracef()`
4015 using your own format string. This also means that you cannot filter
4016 events with a custom expression at run time because there are no
4017 isolated fields.
4018 * Since `tracef()` uses the C standard library's man:vasprintf(3)
4019 function behind the scenes to format the strings at run time, its
4020 expected performance is lower than with user-defined tracepoints,
4021 which do not require a conversion to a string.
4022
4023 Taking this into consideration, `tracef()` is useful for some quick
4024 prototyping and debugging, but you should not consider it for any
4025 permanent and serious applicative instrumentation.
4026 ====
4027
4028
4029 [role="since-2.7"]
4030 [[tracelog]]
4031 ==== Use `tracelog()`
4032
4033 The `tracelog()` API is very similar to <<tracef,`tracef()`>>, with
4034 the difference that it accepts an additional log level parameter.
4035
4036 The goal of `tracelog()` is to ease the migration from logging to
4037 tracing.
4038
4039 To use `tracelog()` in your application:
4040
4041 . In the C or C++ source files where you need to use `tracelog()`,
4042 include `<lttng/tracelog.h>`:
4043 +
4044 --
4045 [source,c]
4046 ----
4047 #include <lttng/tracelog.h>
4048 ----
4049 --
4050
4051 . In the application's source code, use `tracelog()` like you would use
4052 man:printf(3), except for the first parameter which is the log
4053 level:
4054 +
4055 --
4056 [source,c]
4057 ----
4058 /* ... */
4059
4060 tracelog(TRACE_WARNING, "my message: %d (%s)",
4061 my_integer, my_string);
4062
4063 /* ... */
4064 ----
4065 --
4066 +
4067 See <<liblttng-ust-tracepoint-loglevel,Tracepoint log levels>> for
4068 a list of available log level names.
4069
4070 . Link your application with `liblttng-ust`:
4071 +
4072 --
4073 [role="term"]
4074 ----
4075 gcc -o app app.c -llttng-ust
4076 ----
4077 --
4078
4079 To trace the events that `tracelog()` calls emit with a log level
4080 _as severe as_ a specific log level:
4081
4082 * <<enabling-disabling-events,Create an event rule>> which matches the
4083 `lttng_ust_tracelog:*` event name and a minimum level
4084 of severity:
4085 +
4086 --
4087 [role="term"]
4088 ----
4089 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4090 --loglevel=TRACE_WARNING
4091 ----
4092 --
4093
4094 To trace the events that `tracelog()` calls emit with a
4095 _specific log level_:
4096
4097 * Create an event rule which matches the `lttng_ust_tracelog:*`
4098 event name and a specific log level:
4099 +
4100 --
4101 [role="term"]
4102 ----
4103 lttng enable-event --userspace 'lttng_ust_tracelog:*'
4104 --loglevel-only=TRACE_INFO
4105 ----
4106 --
4107
4108
4109 [[prebuilt-ust-helpers]]
4110 === Prebuilt user space tracing helpers
4111
4112 The LTTng-UST package provides a few helpers in the form or preloadable
4113 shared objects which automatically instrument system functions and
4114 calls.
4115
4116 The helper shared objects are normally found in dir:{/usr/lib}. If you
4117 built LTTng-UST <<building-from-source,from source>>, they are probably
4118 located in dir:{/usr/local/lib}.
4119
4120 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4121 are:
4122
4123 path:{liblttng-ust-libc-wrapper.so}::
4124 path:{liblttng-ust-pthread-wrapper.so}::
4125 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4126 memory and POSIX threads function tracing>>.
4127
4128 path:{liblttng-ust-cyg-profile.so}::
4129 path:{liblttng-ust-cyg-profile-fast.so}::
4130 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4131
4132 path:{liblttng-ust-dl.so}::
4133 <<liblttng-ust-dl,Dynamic linker tracing>>.
4134
4135 To use a user space tracing helper with any user application:
4136
4137 * Preload the helper shared object when you start the application:
4138 +
4139 --
4140 [role="term"]
4141 ----
4142 LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4143 ----
4144 --
4145 +
4146 You can preload more than one helper:
4147 +
4148 --
4149 [role="term"]
4150 ----
4151 LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4152 ----
4153 --
4154
4155
4156 [role="since-2.3"]
4157 [[liblttng-ust-libc-pthread-wrapper]]
4158 ==== Instrument C standard library memory and POSIX threads functions
4159
4160 The path:{liblttng-ust-libc-wrapper.so} and
4161 path:{liblttng-ust-pthread-wrapper.so} helpers
4162 add instrumentation to some C standard library and POSIX
4163 threads functions.
4164
4165 [role="growable"]
4166 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4167 |====
4168 |TP provider name |TP name |Instrumented function
4169
4170 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4171 |`calloc` |man:calloc(3)
4172 |`realloc` |man:realloc(3)
4173 |`free` |man:free(3)
4174 |`memalign` |man:memalign(3)
4175 |`posix_memalign` |man:posix_memalign(3)
4176 |====
4177
4178 [role="growable"]
4179 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4180 |====
4181 |TP provider name |TP name |Instrumented function
4182
4183 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4184 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4185 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4186 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4187 |====
4188
4189 When you preload the shared object, it replaces the functions listed
4190 in the previous tables by wrappers which contain tracepoints and call
4191 the replaced functions.
4192
4193
4194 [[liblttng-ust-cyg-profile]]
4195 ==== Instrument function entry and exit
4196
4197 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4198 to the entry and exit points of functions.
4199
4200 man:gcc(1) and man:clang(1) have an option named
4201 https://gcc.gnu.org/onlinedocs/gcc/Code-Gen-Options.html[`-finstrument-functions`]
4202 which generates instrumentation calls for entry and exit to functions.
4203 The LTTng-UST function tracing helpers,
4204 path:{liblttng-ust-cyg-profile.so} and
4205 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4206 to add tracepoints to the two generated functions (which contain
4207 `cyg_profile` in their names, hence the helper's name).
4208
4209 To use the LTTng-UST function tracing helper, the source files to
4210 instrument must be built using the `-finstrument-functions` compiler
4211 flag.
4212
4213 There are two versions of the LTTng-UST function tracing helper:
4214
4215 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4216 that you should only use when it can be _guaranteed_ that the
4217 complete event stream is recorded without any lost event record.
4218 Any kind of duplicate information is left out.
4219 +
4220 This version contains the following tracepoints:
4221 +
4222 --
4223 [role="growable"]
4224 .Points instrumented by preloading path:{liblttng-ust-cyg-profile-fast.so}.
4225 |====
4226 |TP provider name |TP name |Instrumented points
4227
4228 .2+|`lttng_ust_cyg_profile_fast`
4229
4230 |`func_entry`
4231 a|Function entry.
4232
4233 `addr`::
4234 Address of called function.
4235
4236 |`func_exit`
4237 |Function exit.
4238 |====
4239 --
4240 +
4241 Assuming no event record is lost, having only the function addresses on
4242 entry is enough to create a call graph, since an event record always
4243 contains the ID of the CPU that generated it.
4244 +
4245 You can use a tool like man:addr2line(1) to convert function addresses
4246 back to source file names and line numbers.
4247
4248 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4249 which also works in use cases where event records might get discarded or
4250 not recorded from application startup.
4251 In these cases, the trace analyzer needs more information to be
4252 able to reconstruct the program flow.
4253 +
4254 This version contains the following tracepoints:
4255 +
4256 --
4257 [role="growable"]
4258 .Points instrumented by preloading path:{liblttng-ust-cyg-profile.so}.
4259 |====
4260 |TP provider name |TP name |Instrumented point
4261
4262 .2+|`lttng_ust_cyg_profile`
4263
4264 |`func_entry`
4265 a|Function entry.
4266
4267 `addr`::
4268 Address of called function.
4269
4270 `call_site`::
4271 Call site address.
4272
4273 |`func_exit`
4274 a|Function exit.
4275
4276 `addr`::
4277 Address of called function.
4278
4279 `call_site`::
4280 Call site address.
4281 |====
4282 --
4283
4284 TIP: It's sometimes a good idea to limit the number of source files that
4285 you compile with the `-finstrument-functions` option to prevent LTTng
4286 from writing an excessive amount of trace data at run time. When using
4287 man:gcc(1), you can use the
4288 `-finstrument-functions-exclude-function-list` option to avoid
4289 instrument entries and exits of specific function names.
4290
4291 All the tracepoints that this helper contains have the
4292 <<liblttng-ust-tracepoint-loglevel,log level>> `TRACE_DEBUG_FUNCTION`.
4293
4294
4295 [role="since-2.4"]
4296 [[liblttng-ust-dl]]
4297 ==== Instrument the dynamic linker
4298
4299 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4300 man:dlopen(3) and man:dlclose(3) function calls.
4301
4302 [role="growable"]
4303 .Functions instrumented by preloading path:{liblttng-ust-dl.so}.
4304 |====
4305 |TP provider name |TP name |Instrumented function
4306
4307 .2+|`lttng_ust_dl`
4308
4309 |`dlopen`
4310 a|man:dlopen(3)
4311
4312 `baddr`::
4313 Memory base address (where the dynamic linker placed the shared
4314 object).
4315
4316 `sopath`::
4317 File system path to the loaded shared object.
4318
4319 `size`::
4320 File size of the the loaded shared object.
4321
4322 `mtime`::
4323 Last modification time (seconds since Epoch time) of the loaded shared
4324 object.
4325
4326 |`dlclose`
4327 a|man:dlclose(3)
4328
4329 `baddr`::
4330 Memory base address (where the dynamic linker placed the shared
4331 object).
4332 |====
4333
4334
4335 [role="since-2.4"]
4336 [[java-application]]
4337 === User space Java agent
4338
4339 You can instrument a Java application which uses one of the following
4340 logging frameworks:
4341
4342 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4343 (JUL) core logging facilities.
4344 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4345 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4346
4347 Each log statement emits an LTTng event once the
4348 application initializes the <<lttng-ust-agents,LTTng-UST Java agent>>
4349 package.
4350
4351 [role="img-100"]
4352 .LTTng-UST Java agent imported by a Java application.
4353 image::java-app.png[]
4354
4355 NOTE: We use http://openjdk.java.net/[OpenJDK] 7 for development and
4356 https://ci.lttng.org/[continuous integration], thus this version is
4357 directly supported. However, the LTTng-UST Java agent is also
4358 tested with OpenJDK 6.
4359
4360 To use the LTTng-UST Java agent:
4361
4362 . In the Java application's source code, import the LTTng-UST Java
4363 agent:
4364 +
4365 --
4366 [source,java]
4367 ----
4368 import org.lttng.ust.agent.LTTngAgent;
4369 ----
4370 --
4371
4372 . As soon as possible after the entry point of the application,
4373 initialize the LTTng-UST Java agent:
4374 +
4375 --
4376 [source,java]
4377 ----
4378 LTTngAgent lttngAgent = LTTngAgent.getLTTngAgent();
4379 ----
4380 --
4381 +
4382 Any log statement that the application executes before this
4383 initialization does not emit an LTTng event.
4384
4385 . Use `java.util.logging` and/or log4j log statements and configuration
4386 as usual. Since the LTTng-UST Java agent adds a handler to the _root_
4387 loggers, you can trace any log statement from any logger.
4388
4389 . Before exiting the application, dispose the LTTng-UST Java agent:
4390 +
4391 --
4392 [source,java]
4393 ----
4394 lttngAgent.dispose();
4395 ----
4396 --
4397 +
4398 This is not strictly necessary, but it is recommended for a clean
4399 disposal of the agent's resources.
4400 +
4401 Any log statement that the application executes after this disposal does
4402 not emit an LTTng event.
4403
4404 . Include the LTTng-UST Java agent's JAR file, path:{liblttng-ust-agent.jar},
4405 in the
4406 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class path]
4407 when building the Java application.
4408 +
4409 path:{liblttng-ust-agent.jar} is typically located in
4410 dir:{/usr/share/java}.
4411 +
4412 IMPORTANT: The LTTng-UST Java agent must be
4413 <<installing-lttng,installed>> for the logging framework your
4414 application uses.
4415
4416 .[[jul]]Use the LTTng-UST Java agent with `java.util.logging`.
4417 ====
4418 [source,java]
4419 .path:{Test.java}
4420 ----
4421 import java.util.logging.Logger;
4422 import org.lttng.ust.agent.LTTngAgent;
4423
4424 public class Test
4425 {
4426 private static final int answer = 42;
4427
4428 public static void main(String[] argv) throws Exception
4429 {
4430 // Create a logger
4431 Logger logger = Logger.getLogger("jello");
4432
4433 // Call this as soon as possible (before logging)
4434 LTTngAgent lttngAgent = LTTngAgent.getLTTngAgent();
4435
4436 // Log at will!
4437 logger.info("some info");
4438 logger.warning("some warning");
4439 Thread.sleep(500);
4440 logger.finer("finer information; the answer is " + answer);
4441 Thread.sleep(123);
4442 logger.severe("error!");
4443
4444 // Not mandatory, but cleaner
4445 lttngAgent.dispose();
4446 }
4447 }
4448 ----
4449
4450 You can build this example like this:
4451
4452 [role="term"]
4453 ----
4454 javac -cp /usr/share/java/liblttng-ust-agent.jar Test.java
4455 ----
4456
4457 You can run the compiled class like this:
4458
4459 [role="term"]
4460 ----
4461 java -cp /usr/share/java/liblttng-ust-agent.jar:. Test
4462 ----
4463 ====
4464
4465 .[[log4j]]Use the LTTng-UST Java agent with Apache log4j 1.2.
4466 ====
4467 [source,java]
4468 .path:{Test.java}
4469 ----
4470 import org.apache.log4j.Logger;
4471 import org.apache.log4j.BasicConfigurator;
4472 import org.lttng.ust.agent.LTTngAgent;
4473
4474 public class Test
4475 {
4476 private static final int answer = 42;
4477
4478 public static void main(String[] argv) throws Exception
4479 {
4480 // Create and configure a logger
4481 Logger logger = Logger.getLogger(Test.class);
4482 BasicConfigurator.configure();
4483
4484 // Call this as soon as possible (before logging)
4485 LTTngAgent lttngAgent = LTTngAgent.getLTTngAgent();
4486
4487 // Log at will!
4488 logger.info("some info");
4489 logger.warn("some warning");
4490 Thread.sleep(500);
4491 logger.debug("debug information; the answer is " + answer);
4492 Thread.sleep(123);
4493 logger.error("error!");
4494 logger.fatal("fatal error!");
4495
4496 // Not mandatory, but cleaner
4497 lttngAgent.dispose();
4498 }
4499 }
4500 ----
4501
4502 You can build this example like this:
4503
4504 [role="term"]
4505 ----
4506 javac -cp /usr/share/java/liblttng-ust-agent.jar:$LOG4JCP Test.java
4507 ----
4508
4509 where `$LOG4JCP` is the path to log4j's JAR file.
4510
4511 You can run the compiled class like this:
4512
4513 [role="term"]
4514 ----
4515 java -cp /usr/share/java/liblttng-ust-agent.jar:$LOG4JCP:. Test
4516 ----
4517 ====
4518
4519 When you <<enabling-disabling-events,create an event rule>>, use the
4520 `--jul` (`java.util.logging`) or `--log4j` (log4j) option to target
4521 the desired Java
4522 <<domain,tracing domain>>. You can also use the `--loglevel` or
4523 `--loglevel-only` option to target a range of JUL/log4j log levels or a
4524 specific JUL/log4j log level.
4525
4526
4527 [role="since-2.7"]
4528 [[python-application]]
4529 === User space Python agent
4530
4531 You can instrument a Python 2 or Python 3 application which uses the
4532 standard https://docs.python.org/3/library/logging.html[`logging`]
4533 package.
4534
4535 Each log statement emits an LTTng event once the
4536 application module imports the
4537 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4538
4539 [role="img-100"]
4540 .A Python application importing the LTTng-UST Python agent.
4541 image::python-app.png[]
4542
4543 To use the LTTng-UST Python agent:
4544
4545 . In the Python application's source code, import the LTTng-UST Python
4546 agent:
4547 +
4548 --
4549 [source,python]
4550 ----
4551 import lttngust
4552 ----
4553 --
4554 +
4555 The LTTng-UST Python agent automatically adds its logging handler to the
4556 root logger at import time.
4557 +
4558 Any log statement that the application executes before this import does
4559 not emit an LTTng event.
4560 +
4561 IMPORTANT: The LTTng-UST Python agent must be
4562 <<installing-lttng,installed>>.
4563
4564 . Use log statements and logging configuration as usual.
4565 Since the LTTng-UST Python agent adds a handler to the _root_
4566 logger, you can trace any log statement from any logger.
4567
4568 .Use the LTTng-UST Python agent.
4569 ====
4570 [source,python]
4571 ----
4572 import lttngust
4573 import logging
4574 import time
4575
4576
4577 def example():
4578 logging.basicConfig()
4579 logger = logging.getLogger('my-logger')
4580
4581 while True:
4582 logger.debug('debug message')
4583 logger.info('info message')
4584 logger.warn('warn message')
4585 logger.error('error message')
4586 logger.critical('critical message')
4587 time.sleep(1)
4588
4589
4590 if __name__ == '__main__':
4591 example()
4592 ----
4593
4594 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
4595 logging handler which prints to the standard error stream, is not
4596 strictly required for LTTng-UST tracing to work, but in versions of
4597 Python preceding 3.2, you could see a warning message which indicates
4598 that no handler exists for the logger `my-logger`.
4599 ====
4600
4601 When you <<enabling-disabling-events,create an event rule>>, use the
4602 `--python` option to target the Python
4603 <<domain,tracing domain>>. You can also use
4604 the `--loglevel` or `--loglevel-only` option to target a range of
4605 Python log levels or a specific Python log level.
4606
4607 When an application imports the LTTng-UST Python agent, the agent tries
4608 to register to a <<lttng-sessiond,session daemon>>. Note that you must
4609 start the session daemon _before_ you start the Python application.
4610 If a session daemon is found, the agent tries to register to it
4611 during 5{nbsp}seconds, after which the application continues without
4612 LTTng tracing support. You can override this timeout value with the
4613 env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
4614 (milliseconds).
4615
4616 If the session daemon stops while a Python application with an imported
4617 LTTng-UST Python agent runs, the agent retries to connect and to
4618 register to a session daemon every 3{nbsp}seconds. You can override this
4619 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
4620 variable.
4621
4622
4623 [role="since-2.5"]
4624 [[proc-lttng-logger-abi]]
4625 === LTTng logger
4626
4627 The `lttng-tracer` Linux kernel module, part of
4628 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
4629 path:{/proc/lttng-logger} when it's loaded. Any application can write
4630 text data to this file to emit an LTTng event.
4631
4632 [role="img-100"]
4633 .An application writes to the LTTng logger file to emit an LTTng event.
4634 image::lttng-logger.png[]
4635
4636 The LTTng logger is the quickest method--not the most efficient,
4637 however--to add instrumentation to an application. It is designed
4638 mostly to instrument shell scripts:
4639
4640 [role="term"]
4641 ----
4642 echo "Some message, some $variable" > /proc/lttng-logger
4643 ----
4644
4645 Any event that the LTTng logger emits is named `lttng_logger` and
4646 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
4647 other instrumentation points in the kernel tracing domain, **any Unix
4648 user** can <<enabling-disabling-events,create an event rule>> which
4649 matches its event name, not only the root user or users in the tracing
4650 group.
4651
4652 To use the LTTng logger:
4653
4654 * From any application, write text data to the path:{/proc/lttng-logger}
4655 file.
4656
4657 The `msg` field of `lttng_logger` event records contains the
4658 recorded message.
4659
4660 NOTE: The maximum message length of an LTTng logger event is
4661 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
4662 than one event to contain the remaining data.
4663
4664 You should not use the LTTng logger to trace a user application which
4665 can be instrumented in a more efficient way, namely:
4666
4667 * <<c-application,C and $$C++$$ applications>>.
4668 * <<java-application,Java applications>>.
4669 * <<python-application,Python applications>>.
4670
4671
4672 [[instrumenting-linux-kernel]]
4673 === LTTng kernel tracepoints
4674
4675 NOTE: This section shows how to _add_ instrumentation points to the
4676 Linux kernel. The kernel's subsystems are already thoroughly
4677 instrumented at strategic places for LTTng when you
4678 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
4679 package.
4680
4681 ////
4682 There are two methods to instrument the Linux kernel:
4683
4684 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
4685 tracepoint which uses the `TRACE_EVENT()` API.
4686 +
4687 Choose this if you want to instrumentation a Linux kernel tree with an
4688 instrumentation point compatible with ftrace, perf, and SystemTap.
4689
4690 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
4691 instrument an out-of-tree kernel module.
4692 +
4693 Choose this if you don't need ftrace, perf, or SystemTap support.
4694 ////
4695
4696
4697 [[linux-add-lttng-layer]]
4698 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
4699
4700 This section shows how to add an LTTng layer to existing ftrace
4701 instrumentation using the `TRACE_EVENT()` API.
4702
4703 This section does not document the `TRACE_EVENT()` macro. You can
4704 read the following articles to learn more about this API:
4705
4706 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
4707 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
4708 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
4709
4710 The following procedure assumes that your ftrace tracepoints are
4711 correctly defined in their own header and that they are created in
4712 one source file using the `CREATE_TRACE_POINTS` definition.
4713
4714 To add an LTTng layer over an existing ftrace tracepoint:
4715
4716 . Make sure the following kernel configuration options are
4717 enabled:
4718 +
4719 --
4720 * `CONFIG_MODULES`
4721 * `CONFIG_KALLSYMS`
4722 * `CONFIG_HIGH_RES_TIMERS`
4723 * `CONFIG_TRACEPOINTS`
4724 --
4725
4726 . Build the Linux source tree with your custom ftrace tracepoints.
4727 . Boot the resulting Linux image on your target system.
4728 +
4729 Confirm that the tracepoints exist by looking for their names in the
4730 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
4731 is your subsystem's name.
4732
4733 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
4734 +
4735 --
4736 [role="term"]
4737 ----
4738 cd $(mktemp -d) &&
4739 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.8.tar.bz2 &&
4740 tar -xf lttng-modules-latest-2.8.tar.bz2 &&
4741 cd lttng-modules-2.8.*
4742 ----
4743 --
4744
4745 . In dir:{instrumentation/events/lttng-module}, relative to the root
4746 of the LTTng-modules source tree, create a header file named
4747 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
4748 LTTng-modules tracepoint definitions using the LTTng-modules
4749 macros in it.
4750 +
4751 Start with this template:
4752 +
4753 --
4754 [source,c]
4755 .path:{instrumentation/events/lttng-module/my_subsys.h}
4756 ----
4757 #undef TRACE_SYSTEM
4758 #define TRACE_SYSTEM my_subsys
4759
4760 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
4761 #define _LTTNG_MY_SUBSYS_H
4762
4763 #include "../../../probes/lttng-tracepoint-event.h"
4764 #include <linux/tracepoint.h>
4765
4766 LTTNG_TRACEPOINT_EVENT(
4767 /*
4768 * Format is identical to TRACE_EVENT()'s version for the three
4769 * following macro parameters:
4770 */
4771 my_subsys_my_event,
4772 TP_PROTO(int my_int, const char *my_string),
4773 TP_ARGS(my_int, my_string),
4774
4775 /* LTTng-modules specific macros */
4776 TP_FIELDS(
4777 ctf_integer(int, my_int_field, my_int)
4778 ctf_string(my_bar_field, my_bar)
4779 )
4780 )
4781
4782 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
4783
4784 #include "../../../probes/define_trace.h"
4785 ----
4786 --
4787 +
4788 The entries in the `TP_FIELDS()` section are the list of fields for the
4789 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
4790 ftrace's `TRACE_EVENT()` macro.
4791 +
4792 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
4793 complete description of the available `ctf_*()` macros.
4794
4795 . Create the LTTng-modules probe's kernel module C source file,
4796 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
4797 subsystem name:
4798 +
4799 --
4800 [source,c]
4801 .path:{probes/lttng-probe-my-subsys.c}
4802 ----
4803 #include <linux/module.h>
4804 #include "../lttng-tracer.h"
4805
4806 /*
4807 * Build-time verification of mismatch between mainline
4808 * TRACE_EVENT() arguments and the LTTng-modules adaptation
4809 * layer LTTNG_TRACEPOINT_EVENT() arguments.
4810 */
4811 #include <trace/events/my_subsys.h>
4812
4813 /* Create LTTng tracepoint probes */
4814 #define LTTNG_PACKAGE_BUILD
4815 #define CREATE_TRACE_POINTS
4816 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
4817
4818 #include "../instrumentation/events/lttng-module/my_subsys.h"
4819
4820 MODULE_LICENSE("GPL and additional rights");
4821 MODULE_AUTHOR("Your name <your-email>");
4822 MODULE_DESCRIPTION("LTTng my_subsys probes");
4823 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
4824 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
4825 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
4826 LTTNG_MODULES_EXTRAVERSION);
4827 ----
4828 --
4829
4830 . Edit path:{probes/Makefile} and add your new kernel module object
4831 next to the existing ones:
4832 +
4833 --
4834 [source,make]
4835 .path:{probes/Makefile}
4836 ----
4837 # ...
4838
4839 obj-m += lttng-probe-module.o
4840 obj-m += lttng-probe-power.o
4841
4842 obj-m += lttng-probe-my-subsys.o
4843
4844 # ...
4845 ----
4846 --
4847
4848 . Build and install the LTTng kernel modules:
4849 +
4850 --
4851 [role="term"]
4852 ----
4853 make KERNELDIR=/path/to/linux
4854 sudo make modules_install
4855 ----
4856 --
4857 +
4858 Replace `/path/to/linux` with the path to the Linux source tree where
4859 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
4860
4861 Note that you can also use the
4862 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
4863 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
4864 C code that need to be executed before the event fields are recorded.
4865
4866 The best way to learn how to use the previous LTTng-modules macros is to
4867 inspect the existing LTTng-modules tracepoint definitions in the
4868 dir:{instrumentation/events/lttng-module} header files. Compare them
4869 with the Linux kernel mainline versions in the
4870 dir:{include/trace/events} directory of the Linux source tree.
4871
4872
4873 [role="since-2.7"]
4874 [[lttng-tracepoint-event-code]]
4875 ===== Use custom C code to access the data for tracepoint fields
4876
4877 Although we recommended to always use the
4878 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
4879 the arguments and fields of an LTTng-modules tracepoint when possible,
4880 sometimes you need a more complex process to access the data that the
4881 tracer records as event record fields. In other words, you need local
4882 variables and multiple C{nbsp}statements instead of simple
4883 argument-based expressions that you pass to the
4884 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
4885
4886 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
4887 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
4888 a block of C{nbsp}code to be executed before LTTng records the fields.
4889 The structure of this macro is:
4890
4891 [source,c]
4892 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
4893 ----
4894 LTTNG_TRACEPOINT_EVENT_CODE(
4895 /*
4896 * Format identical to the LTTNG_TRACEPOINT_EVENT()
4897 * version for the following three macro parameters:
4898 */
4899 my_subsys_my_event,
4900 TP_PROTO(int my_int, const char *my_string),
4901 TP_ARGS(my_int, my_string),
4902
4903 /* Declarations of custom local variables */
4904 TP_locvar(
4905 int a = 0;
4906 unsigned long b = 0;
4907 const char *name = "(undefined)";
4908 struct my_struct *my_struct;
4909 ),
4910
4911 /*
4912 * Custom code which uses both tracepoint arguments
4913 * (in TP_ARGS()) and local variables (in TP_locvar()).
4914 *
4915 * Local variables are actually members of a structure pointed
4916 * to by the special variable tp_locvar.
4917 */
4918 TP_code(
4919 if (my_int) {
4920 tp_locvar->a = my_int + 17;
4921 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
4922 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
4923 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
4924 put_my_struct(tp_locvar->my_struct);
4925
4926 if (tp_locvar->b) {
4927 tp_locvar->a = 1;
4928 }
4929 }
4930 ),
4931
4932 /*
4933 * Format identical to the LTTNG_TRACEPOINT_EVENT()
4934 * version for this, except that tp_locvar members can be
4935 * used in the argument expression parameters of
4936 * the ctf_*() macros.
4937 */
4938 TP_FIELDS(
4939 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
4940 ctf_integer(int, my_struct_a, tp_locvar->a)
4941 ctf_string(my_string_field, my_string)
4942 ctf_string(my_struct_name, tp_locvar->name)
4943 )
4944 )
4945 ----
4946
4947 IMPORTANT: The C code defined in `TP_code()` must not have any side
4948 effects when executed. In particular, the code must not allocate
4949 memory or get resources without deallocating this memory or putting
4950 those resources afterwards.
4951
4952
4953 [[instrumenting-linux-kernel-tracing]]
4954 ==== Load and unload a custom probe kernel module
4955
4956 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
4957 kernel module>> in the kernel before it can emit LTTng events.
4958
4959 To load the default probe kernel modules and a custom probe kernel
4960 module:
4961
4962 * Use the `--extra-kmod-probes` option to give extra probe modules
4963 to load when starting a root <<lttng-sessiond,session daemon>>:
4964 +
4965 --
4966 .Load the `my_subsys`, `usb`, and the default probe modules.
4967 ====
4968 [role="term"]
4969 ----
4970 sudo lttng-sessiond --extra-kmod-probes=my_subsys,usb
4971 ----
4972 ====
4973 --
4974 +
4975 You only need to pass the subsystem name, not the whole kernel module
4976 name.
4977
4978 To load _only_ a given custom probe kernel module:
4979
4980 * Use the `--kmod-probes` option to give the probe modules
4981 to load when starting a root session daemon:
4982 +
4983 --
4984 .Load only the `my_subsys` and `usb` probe modules.
4985 ====
4986 [role="term"]
4987 ----
4988 sudo lttng-sessiond --kmod-probes=my_subsys,usb
4989 ----
4990 ====
4991 --
4992
4993 To confirm that a probe module is loaded:
4994
4995 * Use man:lsmod(8):
4996 +
4997 --
4998 [role="term"]
4999 ----
5000 lsmod | grep lttng_probe_usb
5001 ----
5002 --
5003
5004 To unload the loaded probe modules:
5005
5006 * Kill the session daemon with `SIGTERM`:
5007 +
5008 --
5009 [role="term"]
5010 ----
5011 sudo pkill lttng-sessiond
5012 ----
5013 --
5014 +
5015 You can also use man:modprobe(8)'s `--remove` option if the session
5016 daemon terminates abnormally.
5017
5018
5019 [[controlling-tracing]]
5020 == Tracing control
5021
5022 Once an application or a Linux kernel is
5023 <<instrumenting,instrumented>> for LTTng tracing,
5024 you can _trace_ it.
5025
5026 This section is divided in topics on how to use the various
5027 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5028 command-line tool>>, to _control_ the LTTng daemons and tracers.
5029
5030 Note that the <<online-lttng-manpages,Online LTTng man pages>> are
5031 more comprehensive than the guides of this section. Refer to them if
5032 your use case is not included in this section.
5033
5034
5035 [[start-sessiond]]
5036 === Start a session daemon
5037
5038 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5039 _before_ you can use the cmd:lttng command-line tool.
5040
5041 You will see the following error when you run a command while no session
5042 daemon is running:
5043
5044 ----
5045 Error: No session daemon is available
5046 ----
5047
5048 The only command that automatically runs a session daemon is `create`,
5049 which you use to <<creating-destroying-tracing-sessions,create a tracing
5050 session>>. While this is most of the time the first operation that you
5051 do, sometimes it's not. Some examples are:
5052
5053 * <<list-instrumentation-points,List the available instrumentation points>>.
5054 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5055
5056 [[tracing-group]] Each Unix user must have its own running session
5057 daemon to trace user applications. The session daemon that the root user
5058 starts is the only one allowed to control the LTTng kernel tracer. Users
5059 that are part of the _tracing group_ can control the root session
5060 daemon. The default tracing group name is `tracing`; you can set it to
5061 something else with the `--group` option when you start the root session
5062 daemon.
5063
5064 To start a user session daemon:
5065
5066 * Run cmd:lttng-sessiond:
5067 +
5068 --
5069 [role="term"]
5070 ----
5071 lttng-sessiond --daemonize
5072 ----
5073 --
5074
5075 To start the root session daemon:
5076
5077 * Run cmd:lttng-sessiond as the root user:
5078 +
5079 --
5080 [role="term"]
5081 ----
5082 sudo lttng-sessiond --daemonize
5083 ----
5084 --
5085
5086 In both cases, remove the `--daemonize` option to start the session
5087 daemon in foreground.
5088
5089 To stop a session daemon, use cmd:kill on its process ID (standard
5090 `TERM` signal).
5091
5092 Note that some Linux distributions could manage the LTTng session daemon
5093 as a service. In this case, you should use the service manager to
5094 start, restart, and stop session daemons.
5095
5096
5097 [[creating-destroying-tracing-sessions]]
5098 === Create and destroy a tracing session
5099
5100 Almost all the LTTng control operations happen in the scope of
5101 a <<tracing-session,tracing session>>, which is the dialogue between the
5102 <<lttng-sessiond,session daemon>> and you.
5103
5104 To create a tracing session with a generated name:
5105
5106 * Use the `create` command:
5107 +
5108 --
5109 [role="term"]
5110 ----
5111 lttng create
5112 ----
5113 --
5114
5115 The created tracing session's name is `auto` followed by the
5116 creation date.
5117
5118 To create a tracing session with a specific name:
5119
5120 * Use the optional argument of the `create` command:
5121 +
5122 --
5123 [role="term"]
5124 ----
5125 lttng create my-session
5126 ----
5127 --
5128 +
5129 Replace `my-session` with the specific tracing session name.
5130
5131 LTTng appends the creation date to the created tracing session's name.
5132
5133 LTTng writes the traces of a tracing session in
5134 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5135 name of the tracing session. Note that the env:LTTNG_HOME environment
5136 variable defaults to `$HOME` if not set.
5137
5138 To output LTTng traces to a non-default location:
5139
5140 * Use the `--output` option of the `create` command:
5141 +
5142 --
5143 [role="term"]
5144 ----
5145 lttng create --output=/tmp/some-directory my-session
5146 ----
5147 --
5148
5149 You may create as many tracing sessions as you wish.
5150
5151 To list all the existing tracing sessions for your Unix user:
5152
5153 * Use the `list` command:
5154 +
5155 --
5156 [role="term"]
5157 ----
5158 lttng list
5159 ----
5160 --
5161
5162 When you create a tracing session, it is set as the _current tracing
5163 session_. The following man:lttng(1) commands operate on the current
5164 tracing session when you don't specify one:
5165
5166 [role="list-3-cols"]
5167 * `add-context`
5168 * `destroy`
5169 * `disable-channel`
5170 * `disable-event`
5171 * `enable-channel`
5172 * `enable-event`
5173 * `load`
5174 * `save`
5175 * `snapshot`
5176 * `start`
5177 * `stop`
5178 * `track`
5179 * `untrack`
5180 * `view`
5181
5182 To change the current tracing session:
5183
5184 * Use the `set-session` command:
5185 +
5186 --
5187 [role="term"]
5188 ----
5189 lttng set-session new-session
5190 ----
5191 --
5192 +
5193 Replace `new-session` by the name of the new current tracing session.
5194
5195 When you are done tracing in a given tracing session, you can destroy
5196 it. This operation frees the resources taken by the tracing session
5197 to destroy; it does not destroy the trace data that LTTng wrote for
5198 this tracing session.
5199
5200 To destroy the current tracing session:
5201
5202 * Use the `destroy` command:
5203 +
5204 --
5205 [role="term"]
5206 ----
5207 lttng destroy
5208 ----
5209 --
5210
5211
5212 [[list-instrumentation-points]]
5213 === List the available instrumentation points
5214
5215 The <<lttng-sessiond,session daemon>> can query the running instrumented
5216 user applications and the Linux kernel to get a list of available
5217 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5218 they are tracepoints and system calls. For the user space tracing
5219 domain, they are tracepoints. For the other tracing domains, they are
5220 logger names.
5221
5222 To list the available instrumentation points:
5223
5224 * Use the `list` command with the requested tracing domain's option
5225 amongst:
5226 +
5227 --
5228 * `--kernel`: Linux kernel tracepoints (your Unix user must be a root
5229 user, or it must be a member of the tracing group).
5230 * `--kernel --syscall`: Linux kernel system calls (your Unix user must
5231 be a root user, or it must be a member of the tracing group).
5232 * `--userspace`: user space tracepoints.
5233 * `--jul`: `java.util.logging` loggers.
5234 * `--log4j`: Apache log4j loggers.
5235 * `--python`: Python loggers.
5236 --
5237
5238 .List the available user space tracepoints.
5239 ====
5240 [role="term"]
5241 ----
5242 lttng list --userspace
5243 ----
5244 ====
5245
5246 .List the available Linux kernel system call tracepoints.
5247 ====
5248 [role="term"]
5249 ----
5250 lttng list --kernel --syscall
5251 ----
5252 ====
5253
5254
5255 [[enabling-disabling-events]]
5256 === Create and enable an event rule
5257
5258 Once you <<creating-destroying-tracing-sessions,create a tracing
5259 session>>, you can create <<event,event rules>> with the
5260 `enable-event` command.
5261
5262 You specify each condition with a command-line option. The available
5263 condition options are shown in the following table.
5264
5265 [role="growable",cols="asciidoc,asciidoc,default"]
5266 .Condition command-line options for the `enable-event` command.
5267 |====
5268 |Option |Description |Applicable tracing domains
5269
5270 |
5271 One of:
5272
5273 . `--syscall`
5274 . +--probe=__ADDR__+
5275 . +--function=__ADDR__+
5276
5277 |
5278 Instead of using the default _tracepoint_ instrumentation type, use:
5279
5280 . A Linux system call.
5281 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5282 . The entry and return points of a Linux function (symbol or address).
5283
5284 |Linux kernel.
5285
5286 |First positional argument.
5287
5288 |
5289 Tracepoint or system call name. In the case of a Linux KProbe or
5290 function, this is a custom name given to the event rule. With the
5291 JUL, log4j, and Python domains, this is a logger name.
5292
5293 With a tracepoint, logger, or system call name, the last character
5294 can be `*` to match anything that remains.
5295
5296 |All.
5297
5298 |
5299 One of:
5300
5301 . +--loglevel=__LEVEL__+
5302 . +--loglevel-only=__LEVEL__+
5303
5304 |
5305 . Match only tracepoints or log statements with a logging level at
5306 least as severe as +__LEVEL__+.
5307 . Match only tracepoints or log statements with a logging level
5308 equal to +__LEVEL__+.
5309
5310 You can get the list of available logging level names with
5311 `lttng enable-event --help`.
5312
5313 |User space, JUL, log4j, and Python.
5314
5315 |+--exclude=__EXCLUSIONS__+
5316
5317 |
5318 When you use a `*` character at the end of the tracepoint or logger
5319 name (first positional argument), exclude the specific names in the
5320 comma-delimited list +__EXCLUSIONS__+.
5321
5322 |
5323 User space, JUL, log4j, and Python.
5324
5325 |+--filter=__EXPR__+
5326
5327 |
5328 Match only events which satisfy the expression +__EXPR__+.
5329
5330 +__EXPR__+ is a C-like logical expression where identifiers are event
5331 fields (preceded with `$ctx.` for context fields). Nested expressions
5332 with `(` and `)`, and all the logical and comparison operators of the C
5333 language are supported. The precedence rules of those operators are the
5334 same as in the C language.
5335
5336 When a comparison includes a non-existent event field, the whole filter
5337 expression evaluates to false.
5338
5339 C integer and floating point number constants are supported, as well as
5340 literal strings between double quotes (`"`). Literal strings can
5341 contain a wildcard character (`*`) at the end to match anything that
5342 remains. This wildcard can be escaped using `\*`.
5343
5344 Note that, although it is possible to use this option with the JUL,
5345 log4j, and Python tracing domains, the tracer evalutes the expression
5346 against the equivalent user space event.
5347
5348 |All.
5349
5350 |====
5351
5352 See man:lttng(1)
5353 for more details about those command-line options.
5354
5355 You attach an event rule to a <<channel,channel>> on creation. If you
5356 do not specify the channel with the `--channel` option, and if the event
5357 rule to create is the first in its <<domain,tracing domain>> for a given
5358 tracing session, then LTTng creates a _default channel_ for you. This
5359 default channel is reused in subsequent invocations of the
5360 `enable-event` command for the same tracing domain.
5361
5362 An event rule is always enabled at creation time.
5363
5364 The following examples show how you can combine the previous
5365 command-line options to create simple to more complex event rules.
5366
5367 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5368 ====
5369 [role="term"]
5370 ----
5371 lttng enable-event --kernel sched_switch
5372 ----
5373 ====
5374
5375 .Create an event rule matching four Linux kernel system calls (default channel).
5376 ====
5377 [role="term"]
5378 ----
5379 lttng enable-event --kernel --syscall open,write,read,close
5380 ----
5381 ====
5382
5383 .Create an event rule matching a Linux kernel tracepoint with a filter expression (default channel).
5384 ====
5385 [role="term"]
5386 ----
5387 lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5388 ----
5389
5390 IMPORTANT: Make sure to always quote the filter string when you
5391 use man:lttng(1) from a shell.
5392 ====
5393
5394 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5395 ====
5396 [role="term"]
5397 ----
5398 lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5399 ----
5400
5401 IMPORTANT: Make sure to always quote the wildcard character when you
5402 use man:lttng(1) from a shell.
5403 ====
5404
5405 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5406 ====
5407 [role="term"]
5408 ----
5409 lttng enable-event --python my-app.'*' \
5410 --exclude='my-app.module,my-app.hello'
5411 ----
5412 ====
5413
5414 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5415 ====
5416 [role="term"]
5417 ----
5418 lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5419 ----
5420 ====
5421
5422 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5423 ====
5424 [role="term"]
5425 ----
5426 lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5427 ----
5428 ====
5429
5430 The event rules of a given channel form a whitelist: as soon as an
5431 emitted event passes one of them, LTTng can record the event. For
5432 example, an event named `my_app:my_tracepoint` emitted from a user space
5433 tracepoint with a `TRACE_ERROR` log level passes both of the following
5434 rules:
5435
5436 [role="term"]
5437 ----
5438 lttng enable-event --userspace my_app:my_tracepoint
5439 lttng enable-event --userspace my_app:my_tracepoint \
5440 --loglevel=TRACE_INFO
5441 ----
5442
5443 The second event rule is redundant: the first one includes
5444 the second one.
5445
5446
5447 [[disable-event-rule]]
5448 === Disable an event rule
5449
5450 To disable an event rule that you <<enabling-disabling-events,created>>
5451 previously, use the `disable-event` command. This command disables _all_
5452 the event rules (of a given tracing domain and channel) which match an
5453 instrumentation point. The other conditions are not supported as of
5454 LTTng{nbsp}{revision}.
5455
5456 The LTTng tracer does not record an emitted event which passes
5457 a _disabled_ event rule.
5458
5459 .Disable an event rule matching a Python logger (default channel).
5460 ====
5461 [role="term"]
5462 ----
5463 lttng disable-event --python my-logger
5464 ----
5465 ====
5466
5467 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5468 ====
5469 [role="term"]
5470 ----
5471 lttng disable-event --jul '*'
5472 ----
5473 ====
5474
5475 .Disable _all_ the event rules of the default channel.
5476 ====
5477 The `--all-events` option is not, like the `--all` option of
5478 `enable-event`, the equivalent of the event name `*` (wildcard): it
5479 disables _all_ the event rules of a given channel.
5480
5481 [role="term"]
5482 ----
5483 lttng disable-event --jul --all-events
5484 ----
5485 ====
5486
5487 NOTE: You cannot delete an event rule once you create it.
5488
5489
5490 [[status]]
5491 === Get the status of a tracing session
5492
5493 To get the status of a tracing session, that is, its channels, event
5494 rules, and their attributes:
5495
5496 * Use the `list` command with the tracing session's name:
5497 +
5498 --
5499 [role="term"]
5500 ----
5501 lttng list my-session
5502 ----
5503 --
5504 +
5505 Replace `my-session` with your tracing session's name.
5506
5507
5508 [[basic-tracing-session-control]]
5509 === Start and stop a tracing session
5510
5511 Once you <<creating-destroying-tracing-sessions,create a tracing
5512 session>> and
5513 <<enabling-disabling-events,create one or more event rules>>,
5514 you can start and stop the tracers for this tracing session.
5515
5516 To start tracing in the current tracing session:
5517
5518 * Use the `start` command:
5519 +
5520 --
5521 [role="term"]
5522 ----
5523 lttng start
5524 ----
5525 --
5526
5527 To stop tracing in the current tracing session:
5528
5529 * Use the `stop` command:
5530 +
5531 --
5532 [role="term"]
5533 ----
5534 lttng stop
5535 ----
5536 --
5537
5538 LTTng is very flexible: you can launch user applications before
5539 or after the you start the tracers. The tracers only record the events
5540 if they pass enabled event rules and if they occur while the tracers are
5541 started.
5542
5543
5544 [[enabling-disabling-channels]]
5545 === Create a channel
5546
5547 Once you create a tracing session, you can create a <<channel,channel>>
5548 with the `enable-channel` command.
5549
5550 Note that LTTng automatically creates a default channel when, for a
5551 given <<domain,tracing domain>>, no channels exist and you
5552 <<enabling-disabling-events,create>> the first event rule. This default
5553 channel is named `channel0` and its attributes are set to reasonable
5554 values. Therefore, you only need to create a channel when you need
5555 non-default attributes.
5556
5557 You specify each non-default channel attribute with a command-line
5558 option when you use the `enable-channel` command. The available
5559 command-line options are:
5560
5561 [role="growable",cols="asciidoc,asciidoc"]
5562 .Command-line options for the `enable-channel` command.
5563 |====
5564 |Option |Description
5565
5566 |`--overwrite`
5567
5568 |
5569 Use the _overwrite_
5570 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
5571 the default _discard_ mode.
5572
5573 |`--buffers-pid` (user space tracing domain only)
5574
5575 |
5576 Use the per-process <<channel-buffering-schemes,buffering scheme>>
5577 instead of the default per-user buffering scheme.
5578
5579 |+--subbuf-size=__SIZE__+
5580
5581 |
5582 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
5583 either for each Unix user (default), or for each instrumented process.
5584
5585 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5586
5587 |+--num-subbuf=__COUNT__+
5588
5589 |
5590 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
5591 for each Unix user (default), or for each instrumented process.
5592
5593 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5594
5595 |+--tracefile-size=__SIZE__+
5596
5597 |
5598 Set the maximum size of each trace file that this channel writes within
5599 a stream to +__SIZE__+ bytes instead of no maximum.
5600
5601 See <<tracefile-rotation,Trace file count and size>>.
5602
5603 |+--tracefile-count=__COUNT__+
5604
5605 |
5606 Limit the number of trace files that this channel creates to
5607 +__COUNT__+ channels instead of no limit.
5608
5609 See <<tracefile-rotation,Trace file count and size>>.
5610
5611 |+--switch-timer=__PERIODUS__+
5612
5613 |
5614 Set the <<channel-switch-timer,switch timer period>>
5615 to +__PERIODUS__+{nbsp}µs.
5616
5617 |+--read-timer=__PERIODUS__+
5618
5619 |
5620 Set the <<channel-read-timer,read timer period>>
5621 to +__PERIODUS__+{nbsp}µs.
5622
5623 |+--output=__TYPE__+ (Linux kernel tracing domain only)
5624
5625 |
5626 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
5627
5628 |====
5629
5630 See man:lttng(1)
5631 for more details about those command-line options.
5632
5633 You can only create a channel in the Linux kernel and user space
5634 <<domain,tracing domains>>: other tracing domains have their own
5635 channel created on the fly when
5636 <<enabling-disabling-events,creating event rules>>.
5637
5638 [IMPORTANT]
5639 ====
5640 Because of a current LTTng limitation, you must create all channels
5641 _before_ you <<basic-tracing-session-control,start tracing>> in a given
5642 tracing session, that is, before the first time you run `lttng start`.
5643
5644 Since LTTng automatically creates a default channel when you use the
5645 `enable-event` command with a specific tracing domain, you cannot, for
5646 example, create a Linux kernel event rule, start tracing, and then
5647 create a user space event rule, because no user space channel exists yet
5648 and it's too late to create one.
5649
5650 For this reason, make sure to configure your channels properly
5651 before starting the tracers for the first time!
5652 ====
5653
5654 The following examples show how you can combine the previous
5655 command-line options to create simple to more complex channels.
5656
5657 .Create a Linux kernel channel with default attributes.
5658 ====
5659 [role="term"]
5660 ----
5661 lttng enable-channel --kernel my-channel
5662 ----
5663 ====
5664
5665 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
5666 ====
5667 [role="term"]
5668 ----
5669 lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
5670 --buffers-pid my-channel
5671 ----
5672 ====
5673
5674 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
5675 ====
5676 [role="term"]
5677 ----
5678 lttng enable-channel --kernel --tracefile-count=8 \
5679 --tracefile-size=4194304 my-channel
5680 ----
5681 ====
5682
5683 .Create a user space channel in overwrite (or _flight recorder_) mode.
5684 ====
5685 [role="term"]
5686 ----
5687 lttng enable-channel --userspace --overwrite my-channel
5688 ----
5689 ====
5690
5691 You can <<enabling-disabling-events,create>> the same event rule in
5692 two different channels:
5693
5694 [role="term"]
5695 ----
5696 lttng enable-event --userspace --channel=my-channel app:tp
5697 lttng enable-event --userspace --channel=other-channel app:tp
5698 ----
5699
5700 If both channels are enabled, when a tracepoint named `app:tp` is
5701 reached, LTTng records two events, one for each channel.
5702
5703
5704 [[disable-channel]]
5705 === Disable a channel
5706
5707 To disable a specific channel that you <<enabling-disabling-channels,created>>
5708 previously, use the `disable-channel` command.
5709
5710 .Disable a specific Linux kernel channel.
5711 ====
5712 [role="term"]
5713 ----
5714 lttng disable-channel --kernel my-channel
5715 ----
5716 ====
5717
5718 The state of a channel precedes the individual states of event rules
5719 attached to it: event rules which belong to a disabled channel, even if
5720 they are enabled, are also considered disabled.
5721
5722
5723 [[adding-context]]
5724 === Add context fields to a channel
5725
5726 Event record fields in trace files provide important information about
5727 events that occured previously, but sometimes some external context may
5728 help you solve a problem faster. Examples of context fields are:
5729
5730 * The **process ID**, **thread ID**, **process name**, and
5731 **process priority** of the thread in which the event occurs.
5732 * The **hostname** of the system on which the event occurs.
5733 * The current values of many possible **performance counters** using
5734 perf, for example:
5735 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
5736 ** Cache misses.
5737 ** Branch instructions, misses, and loads.
5738 ** CPU faults.
5739
5740 To get the full list of available context fields, see
5741 `lttng add-context --help`. Some context fields are reserved for a
5742 specific <<domain,tracing domain>> (Linux kernel or user space).
5743
5744 You add context fields to <<channel,channels>>. All the events
5745 that a channel with added context fields records contain those fields.
5746
5747 To add context fields to one or all the channels of a given tracing
5748 session, use the `add-context` command.
5749
5750 .Add context fields to all the channels of the current tracing session.
5751 ====
5752 The following command line adds the virtual process identifier and
5753 the per-thread CPU cycles count fields to all the user space channels
5754 of the current tracing session.
5755
5756 [role="term"]
5757 ----
5758 lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
5759 ----
5760 ====
5761
5762 .Add a context field to a specific channel.
5763 ====
5764 The following command line adds the thread identifier context field
5765 to the Linux kernel channel named `my-channel` in the current
5766 tracing session.
5767
5768 [role="term"]
5769 ----
5770 lttng add-context --kernel --channel=my-channel --type=tid
5771 ----
5772 ====
5773
5774 NOTE: You cannot remove context fields from a channel once you add it.
5775
5776
5777 [role="since-2.7"]
5778 [[pid-tracking]]
5779 === Track process IDs
5780
5781 It's often useful to allow only specific process IDs (PIDs) to emit
5782 events. For example, you may wish to record all the system calls made by
5783 a given process (Ă  la http://linux.die.net/man/1/strace[strace]).
5784
5785 The `track` and `untrack` commands serve this purpose. Both commands
5786 operate on a whitelist of process IDs. You _add_ entries to this
5787 whitelist with the `track` command and remove entries with the `untrack`
5788 command. Any process which has one of the PIDs in the whitelist is
5789 allowed to emit LTTng events which pass an enabled <<event,event rule>>.
5790
5791 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
5792 process with a given tracked ID exit and another process be given this
5793 ID, then the latter would also be allowed to emit events.
5794
5795 .Track and untrack process IDs.
5796 ====
5797 For the sake of the following example, assume the target system has 16
5798 possible PIDs.
5799
5800 When you
5801 <<creating-destroying-tracing-sessions,create a tracing session>>,
5802 the whitelist contains all the possible PIDs:
5803
5804 [role="img-100"]
5805 .All PIDs are tracked.
5806 image::track-all.png[]
5807
5808 When the whitelist is full and you use the `track` command to specify
5809 some PIDs to track, LTTng first clears the whitelist, then it tracks
5810 the specific PIDs. After:
5811
5812 [role="term"]
5813 ----
5814 lttng track --pid=3,4,7,10,13
5815 ----
5816
5817 the whitelist is:
5818
5819 [role="img-100"]
5820 .PIDs 3, 4, 7, 10, and 13 are tracked.
5821 image::track-3-4-7-10-13.png[]
5822
5823 You can add more PIDs to the whitelist afterwards:
5824
5825 [role="term"]
5826 ----
5827 lttng track --pid=1,15,16
5828 ----
5829
5830 The result is:
5831
5832 [role="img-100"]
5833 .PIDs 1, 15, and 16 are added to the whitelist.
5834 image::track-1-3-4-7-10-13-15-16.png[]
5835
5836 The `untrack` command removes entries from the PID tracker's whitelist.
5837 Given the previous example, the following command:
5838
5839 [role="term"]
5840 ----
5841 lttng untrack --pid=3,7,10,13
5842 ----
5843
5844 leads to this whitelist:
5845
5846 [role="img-100"]
5847 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
5848 image::track-1-4-15-16.png[]
5849
5850 LTTng can track all possible PIDs again using the `--all` option:
5851
5852 [role="term"]
5853 ----
5854 lttng track --pid --all
5855 ----
5856
5857 The result is, again:
5858
5859 [role="img-100"]
5860 .All PIDs are tracked.
5861 image::track-all.png[]
5862 ====
5863
5864 .Track only specific PIDs
5865 ====
5866 A very typical use case with PID tracking is to start with an empty
5867 whitelist, then <<basic-tracing-session-control,start the tracers>>,
5868 and then add PIDs manually while tracers are active. You can accomplish
5869 this by using the `--all` option of the `untrack` command to clear the
5870 whitelist after you create a tracing session:
5871
5872 [role="term"]
5873 ----
5874 lttng untrack --pid --all
5875 ----
5876
5877 gives:
5878
5879 [role="img-100"]
5880 .No PIDs are tracked.
5881 image::untrack-all.png[]
5882
5883 If you trace with this whitelist configuration, the tracer records no
5884 events for this <<domain,tracing domain>> because no processes are
5885 tracked. You can use the `track` command as usual to track specific
5886 PIDs, for example:
5887
5888 [role="term"]
5889 ----
5890 lttng track --pid=6,11
5891 ----
5892
5893 Result:
5894
5895 [role="img-100"]
5896 .PIDs 6 and 11 are tracked.
5897 image::track-6-11.png[]
5898 ====
5899
5900
5901 [role="since-2.5"]
5902 [[saving-loading-tracing-session]]
5903 === Save and load tracing session configurations
5904
5905 Configuring a <<tracing-session,tracing session>> can be long. Some of
5906 the tasks involved are:
5907
5908 * <<enabling-disabling-channels,Create channels>> with
5909 specific attributes.
5910 * <<adding-context,Add context fields>> to specific channels.
5911 * <<enabling-disabling-events,Create event rules>> with specific log
5912 level and filter conditions.
5913
5914 If you use LTTng to solve real world problems, chances are you have to
5915 record events using the same tracing session setup over and over,
5916 modifying a few variables each time in your instrumented program
5917 or environment. To avoid constant tracing session reconfiguration,
5918 the cmd:lttng command-line tool can save and load tracing session
5919 configurations to/from XML files.
5920
5921 To save a given tracing session configuration:
5922
5923 * Use the `save` command:
5924 +
5925 --
5926 [role="term"]
5927 ----
5928 lttng save my-session
5929 ----
5930 --
5931 +
5932 Replace `my-session` with the name of the tracing session to save.
5933
5934 LTTng saves tracing session configurations to
5935 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
5936 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
5937 the `--output-path` option to change this destination directory.
5938
5939 LTTng saves all configuration parameters, for example:
5940
5941 * The tracing session name.
5942 * The trace data output path.
5943 * The channels with their state and all their attributes.
5944 * The context fields you added to channels.
5945 * The event rules with their state, log level and filter conditions.
5946
5947 To load a tracing session:
5948
5949 * Use the `load` command:
5950 +
5951 --
5952 [role="term"]
5953 ----
5954 lttng load my-session
5955 ----
5956 --
5957 +
5958 Replace `my-session` with the name of the tracing session to load.
5959
5960 When LTTng loads a configuration, it restores your saved tracing session
5961 as if you just configured it manually.
5962
5963 See man:lttng(1) for the complete list of command-line options. You
5964 can also save and load all many sessions at a time, and decide in which
5965 directory to output the XML files.
5966
5967
5968 [[sending-trace-data-over-the-network]]
5969 === Send trace data over the network
5970
5971 LTTng can send the recorded trace data to a remote system over the
5972 network instead of writing it to the local file system.
5973
5974 To send the trace data over the network:
5975
5976 . On the _remote_ system (which can also be the target system),
5977 start an LTTng <<lttng-relayd,relay daemon>>:
5978 +
5979 --
5980 [role="term"]
5981 ----
5982 lttng-relayd
5983 ----
5984 --
5985
5986 . On the _target_ system, create a tracing session configured to
5987 send trace data over the network:
5988 +
5989 --
5990 [role="term"]
5991 ----
5992 lttng create my-session --set-url=net://remote-system
5993 ----
5994 --
5995 +
5996 Replace `remote-system` by the host name or IP address of the
5997 remote system. See `lttng create --help` for the exact URL format.
5998
5999 . On the target system, use the cmd:lttng command-line tool as usual.
6000 When tracing is active, the target's consumer daemon sends sub-buffers
6001 to the relay daemon running on the remote system intead of flushing
6002 them to the local file system. The relay daemon writes the received
6003 packets to the local file system.
6004
6005 The relay daemon writes trace files to
6006 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6007 +__hostname__+ is the host name of the target system and +__session__+
6008 is the tracing session name. Note that the env:LTTNG_HOME environment
6009 variable defaults to `$HOME` if not set. Use the `--output` option of
6010 cmd:lttng-relayd to write trace files to another base directory.
6011
6012
6013 [role="since-2.4"]
6014 [[lttng-live]]
6015 === View events as LTTng emits them (noch:{LTTng} live)
6016
6017 LTTng live is a network protocol implemented by the
6018 <<lttng-relayd,relay daemon>> to allow compatible trace viewers to
6019 display events as LTTng emits them on the target system while tracing
6020 is active.
6021
6022 The relay daemon creates a _tee_: it forwards the trace data to both
6023 the local file system and to connected live viewers:
6024
6025 [role="img-90"]
6026 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6027 image::live.png[]
6028
6029 To use LTTng live:
6030
6031 . On the _target system_, create a <<tracing-session,tracing session>>
6032 in _live mode_:
6033 +
6034 --
6035 [role="term"]
6036 ----
6037 lttng create --live my-session
6038 ----
6039 --
6040 +
6041 This spawns a local relay daemon.
6042
6043 . Start the live viewer and configure it to connect to the relay
6044 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6045 +
6046 --
6047 [role="term"]
6048 ----
6049 babeltrace --input-format=lttng-live net://localhost/host/hostname/my-session
6050 ----
6051 --
6052 +
6053 Replace:
6054 +
6055 --
6056 * `hostname` with the host name of the target system.
6057 * `my-session` with the name of the tracing session to view.
6058 --
6059
6060 . Configure the tracing session as usual with the cmd:lttng
6061 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6062
6063 You can list the available live tracing sessions with Babeltrace:
6064
6065 [role="term"]
6066 ----
6067 babeltrace --input-format=lttng-live net://localhost
6068 ----
6069
6070 You can start the relay daemon on another system. In this case, you need
6071 to specify the relay daemon's URL when you create the tracing session
6072 with the `--set-url` option. You also need to replace `localhost`
6073 in the procedure above with the host name of the system on which the
6074 relay daemon is running.
6075
6076 See man:lttng(1) and man:lttng-relayd(8) for the complete list of
6077 command-line options.
6078
6079
6080 [role="since-2.3"]
6081 [[taking-a-snapshot]]
6082 === Take a snapshot of the current sub-buffers of a tracing session
6083
6084 The normal behavior of LTTng is to append full sub-buffers to growing
6085 trace data files. This is ideal to keep a full history of the events
6086 that occurred on the target system, but it can
6087 represent too much data in some situations. For example, you may wish
6088 to trace your application continuously until some critical situation
6089 happens, in which case you only need the latest few recorded
6090 events to perform the desired analysis, not multi-gigabyte trace files.
6091
6092 With the `snapshot` command, you can take a snapshot of the current
6093 sub-buffers of a given <<tracing-session,tracing session>>. LTTng can
6094 write the snapshot to the local file system or send it over the network.
6095
6096 To take a snapshot:
6097
6098 . Create a tracing session in _snapshot mode_:
6099 +
6100 --
6101 [role="term"]
6102 ----
6103 lttng create --snapshot my-session
6104 ----
6105 --
6106 +
6107 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6108 <<channel,channels>> created in this mode is automatically set to
6109 _overwrite_ (flight recorder mode).
6110
6111 . Configure the tracing session as usual with the cmd:lttng
6112 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6113
6114 . **Optional**: When you need to take a snapshot, stop tracing.
6115 +
6116 You can take a snapshot when the tracers are active, but if you stop
6117 them first, you are sure that the data in the sub-buffers does not
6118 change before you actually take the snapshot.
6119
6120 . Take a snapshot:
6121 +
6122 --
6123 [role="term"]
6124 ----
6125 lttng snapshot record --name=my-first-snapshot
6126 ----
6127 --
6128 +
6129 LTTng writes the current sub-buffers of all the current tracing
6130 session's channels to trace files on the local file system. Those trace
6131 files have `my-first-snapshot` in their name.
6132
6133 There is no difference between the format of a normal trace file and the
6134 format of a snapshot: viewers of LTTng traces also support LTTng
6135 snapshots.
6136
6137 By default, LTTng writes snapshot files to the path shown by
6138 `lttng snapshot list-output`. You can change this path or decide to send
6139 snapshots over the network using either:
6140
6141 . An output path or URL that you specify when you create the
6142 tracing session.
6143 . An snapshot output path or URL that you add using
6144 `lttng snapshot add-output`
6145 . An output path or URL that you provide directly to the
6146 `lttng snapshot record` command.
6147
6148 Method 3 overrides method 2, which overrides method 1. When you
6149 specify a URL, a relay daemon must listen on a remote system (see
6150 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6151
6152
6153 [role="since-2.6"]
6154 [[mi]]
6155 === Use the machine interface
6156
6157 With any command of the cmd:lttng command-line tool, you can use the
6158 `--mi=xml` argument (before the command name) to get an XML machine
6159 interface output, for example:
6160
6161 [role="term"]
6162 ----
6163 lttng --mi=xml enable-event --kernel --syscall open
6164 ----
6165
6166 A schema definition (XSD) is
6167 https://github.com/lttng/lttng-tools/blob/stable-{revision}/src/common/mi_lttng.xsd[available]
6168 to ease the integration with external tools as much as possible.
6169
6170
6171 [role="since-2.7"]
6172 [[persistent-memory-file-systems]]
6173 === Record trace data on persistent memory file systems
6174
6175 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6176 (NVRAM) is random-access memory that retains its information when power
6177 is turned off (non-volatile). Systems with such memory can store data
6178 structures in RAM and retrieve them after a reboot, without flushing
6179 to typical _storage_.
6180
6181 Linux supports NVRAM file systems thanks to either
6182 http://pramfs.sourceforge.net/[PRAMFS] or
6183 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6184 (requires Linux 4.1+).
6185
6186 This section does not describe how to operate such file systems;
6187 we assume that you have a working persistent memory file system.
6188
6189 When you create a <<tracing-session,tracing session>>, you can specify
6190 the path of the shared memory holding the sub-buffers. If you specify a
6191 location on an NVRAM file system, then you can retrieve the latest
6192 recorded trace data when the system reboots after a crash.
6193
6194 To record trace data on a persistent memory file system and retrieve the
6195 trace data after a system crash:
6196
6197 . Create a tracing session with a sub-buffer shared memory path located
6198 on an NVRAM file system:
6199 +
6200 --
6201 [role="term"]
6202 ----
6203 lttng create --shm-path=/path/to/shm
6204 ----
6205 --
6206
6207 . Configure the tracing session as usual with the cmd:lttng
6208 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6209
6210 . After a system crash, use the cmd:lttng-crash command-line tool to
6211 view the trace data recorded on the NVRAM file system:
6212 +
6213 --
6214 [role="term"]
6215 ----
6216 lttng-crash /path/to/shm
6217 ----
6218 --
6219
6220 The binary layout of the ring buffer files is not exactly the same as
6221 the trace files layout. This is why you need to use the cmd:lttng-crash
6222 utility instead of your preferred trace viewer directly.
6223
6224 To convert the ring buffer files to LTTng trace files:
6225
6226 * Use the `--extract` option of cmd:lttng-crash:
6227 +
6228 --
6229 [role="term"]
6230 ----
6231 lttng-crash --extract=/path/to/trace /path/to/shm
6232 ----
6233 --
6234
6235 See man:lttng-crash(1) for the complete list of command-line options.
6236
6237
6238 [[reference]]
6239 == Reference
6240
6241 This section presents various references for LTTng packages such as
6242 links to online manpages, tables that the rest of the text needs,
6243 descriptions of library functions, and more.
6244
6245
6246 [[online-lttng-manpages]]
6247 === Online noch:{LTTng} manpages
6248
6249 LTTng packages currently install the following link:/man[man pages],
6250 available online using the links below:
6251
6252 * **LTTng-tools**
6253 ** man:lttng(1)
6254 ** man:lttng-crash(1)
6255 ** man:lttng-sessiond(8)
6256 ** man:lttng-relayd(8)
6257 * **LTTng-UST**
6258 ** man:lttng-gen-tp(1)
6259 ** man:lttng-ust(3)
6260 ** man:lttng-ust-cyg-profile(3)
6261 ** man:lttng-ust-dl(3)
6262
6263
6264 [[lttng-ust-ref]]
6265 === noch:{LTTng-UST}
6266
6267 This section presents references of the LTTng-UST package.
6268
6269
6270 [[liblttng-ust]]
6271 ==== noch:{LTTng-UST} library (+liblttng&#8209;ust+)
6272
6273 The LTTng-UST library, or `liblttng-ust`, is the main shared object
6274 against which user applications are linked to make LTTng user space
6275 tracing possible.
6276
6277 The <<c-application,C application>> guide shows the complete
6278 process to instrument, build and run a C/$$C++$$ application using
6279 LTTng-UST, while this section contains a few important tables.
6280
6281
6282 [[liblttng-ust-tp-fields]]
6283 ===== Tracepoint fields macros (for `TP_FIELDS()`)
6284
6285 The available macros to define tracepoint fields, which you must use
6286 within `TP_FIELDS()` in `TRACEPOINT_EVENT()`, are:
6287
6288 [role="func-desc growable",cols="asciidoc,asciidoc"]
6289 .Available macros to define LTTng-UST tracepoint fields
6290 |====
6291 |Macro |Description and parameters
6292
6293 |
6294 +ctf_integer(__t__, __n__, __e__)+
6295
6296 +ctf_integer_nowrite(__t__, __n__, __e__)+
6297 |
6298 Standard integer, displayed in base 10.
6299
6300 +__t__+::
6301 Integer C type (`int`, `long`, `size_t`, ...).
6302
6303 +__n__+::
6304 Field name.
6305
6306 +__e__+::
6307 Argument expression.
6308
6309 |+ctf_integer_hex(__t__, __n__, __e__)+
6310 |
6311 Standard integer, displayed in base 16.
6312
6313 +__t__+::
6314 Integer C type.
6315
6316 +__n__+::
6317 Field name.
6318
6319 +__e__+::
6320 Argument expression.
6321
6322 |+ctf_integer_network(__t__, __n__, __e__)+
6323 |
6324 Integer in network byte order (big-endian), displayed in base 10.
6325
6326 +__t__+::
6327 Integer C type.
6328
6329 +__n__+::
6330 Field name.
6331
6332 +__e__+::
6333 Argument expression.
6334
6335 |+ctf_integer_network_hex(__t__, __n__, __e__)+
6336 |
6337 Integer in network byte order, displayed in base 16.
6338
6339 +__t__+::
6340 Integer C type.
6341
6342 +__n__+::
6343 Field name.
6344
6345 +__e__+::
6346 Argument expression.
6347
6348 |
6349 +ctf_float(__t__, __n__, __e__)+
6350
6351 +ctf_float_nowrite(__t__, __n__, __e__)+
6352 |
6353 Floating point number.
6354
6355 +__t__+::
6356 Floating point number C type (`float` or `double`).
6357
6358 +__n__+::
6359 Field name.
6360
6361 +__e__+::
6362 Argument expression.
6363
6364 |
6365 +ctf_string(__n__, __e__)+
6366
6367 +ctf_string_nowrite(__n__, __e__)+
6368 |
6369 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
6370
6371 +__n__+::
6372 Field name.
6373
6374 +__e__+::
6375 Argument expression.
6376
6377 |
6378 +ctf_array(__t__, __n__, __e__, __s__)+
6379
6380 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
6381 |
6382 Statically-sized array of integers
6383
6384 +__t__+::
6385 Array element C type.
6386
6387 +__n__+::
6388 Field name.
6389
6390 +__e__+::
6391 Argument expression.
6392
6393 +__s__+::
6394 Number of elements.
6395
6396 |
6397 +ctf_array_text(__t__, __n__, __e__, __s__)+
6398
6399 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
6400 |
6401 Statically-sized array, printed as text.
6402
6403 The string does not need to be null-terminated.
6404
6405 +__t__+::
6406 Array element C type (always `char`).
6407
6408 +__n__+::
6409 Field name.
6410
6411 +__e__+::
6412 Argument expression.
6413
6414 +__s__+::
6415 Number of elements.
6416
6417 |
6418 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
6419
6420 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
6421 |
6422 Dynamically-sized array of integers.
6423
6424 The type of +__E__+ must be unsigned.
6425
6426 +__t__+::
6427 Array element C type.
6428
6429 +__n__+::
6430 Field name.
6431
6432 +__e__+::
6433 Argument expression.
6434
6435 +__T__+::
6436 Length expression C type.
6437
6438 +__E__+::
6439 Length expression.
6440
6441 |
6442 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
6443
6444 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
6445 |
6446 Dynamically-sized array, displayed as text.
6447
6448 The string does not need to be null-terminated.
6449
6450 The type of +__E__+ must be unsigned.
6451
6452 The behaviour is undefined if +__e__+ is `NULL`.
6453
6454 +__t__+::
6455 Sequence element C type (always `char`).
6456
6457 +__n__+::
6458 Field name.
6459
6460 +__e__+::
6461 Argument expression.
6462
6463 +__T__+::
6464 Length expression C type.
6465
6466 +__E__+::
6467 Length expression.
6468 |====
6469
6470 The `_nowrite` versions omit themselves from the session trace, but are
6471 otherwise identical. This means the tracer does not write the `_nowrite`
6472 fields to the trace. Their primary purpose is to make some of the event
6473 context available to the <<enabling-disabling-events,event filters>>
6474 without having to commit the data to sub-buffers.
6475
6476
6477 [[liblttng-ust-tracepoint-loglevel]]
6478 ===== Tracepoint log levels (for `TRACEPOINT_LOGLEVEL()`)
6479
6480 The following table shows the available log level values for the
6481 `TRACEPOINT_LOGLEVEL()` macro:
6482
6483 `TRACE_EMERG`::
6484 System is unusable.
6485
6486 `TRACE_ALERT`::
6487 Action must be taken immediately.
6488
6489 `TRACE_CRIT`::
6490 Critical conditions.
6491
6492 `TRACE_ERR`::
6493 Error conditions.
6494
6495 `TRACE_WARNING`::
6496 Warning conditions.
6497
6498 `TRACE_NOTICE`::
6499 Normal, but significant, condition.
6500
6501 `TRACE_INFO`::
6502 Informational message.
6503
6504 `TRACE_DEBUG_SYSTEM`::
6505 Debug information with system-level scope (set of programs).
6506
6507 `TRACE_DEBUG_PROGRAM`::
6508 Debug information with program-level scope (set of processes).
6509
6510 `TRACE_DEBUG_PROCESS`::
6511 Debug information with process-level scope (set of modules).
6512
6513 `TRACE_DEBUG_MODULE`::
6514 Debug information with module (executable/library) scope (set of units).
6515
6516 `TRACE_DEBUG_UNIT`::
6517 Debug information with compilation unit scope (set of functions).
6518
6519 `TRACE_DEBUG_FUNCTION`::
6520 Debug information with function-level scope.
6521
6522 `TRACE_DEBUG_LINE`::
6523 Debug information with line-level scope (TRACEPOINT_EVENT default).
6524
6525 `TRACE_DEBUG`::
6526 Debug-level message.
6527
6528 Log levels `TRACE_EMERG` through `TRACE_INFO` and `TRACE_DEBUG` match
6529 http://man7.org/linux/man-pages/man3/syslog.3.html[syslog]
6530 level semantics. Log levels `TRACE_DEBUG_SYSTEM` through `TRACE_DEBUG`
6531 offer more fine-grained selection of debug information.
6532
6533
6534 [[lttng-modules-ref]]
6535 === noch:{LTTng-modules}
6536
6537 This section presents references of the LTTng-modules package.
6538
6539
6540 [role="since-2.7"]
6541 [[lttng-modules-tp-fields]]
6542 ==== Tracepoint fields macros (for `TP_FIELDS()`)
6543
6544 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
6545 tracepoint fields, which must be listed within `TP_FIELDS()` in
6546 `LTTNG_TRACEPOINT_EVENT()`, are:
6547
6548 [role="func-desc growable",cols="asciidoc,asciidoc"]
6549 .Available macros to define LTTng-modules tracepoint fields
6550 |====
6551 |Macro |Description and parameters
6552
6553 |
6554 +ctf_integer(__t__, __n__, __e__)+
6555
6556 +ctf_integer_nowrite(__t__, __n__, __e__)+
6557
6558 +ctf_user_integer(__t__, __n__, __e__)+
6559
6560 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
6561 |
6562 Standard integer, displayed in base 10.
6563
6564 +__t__+::
6565 Integer C type (`int`, `long`, `size_t`, ...).
6566
6567 +__n__+::
6568 Field name.
6569
6570 +__e__+::
6571 Argument expression.
6572
6573 |
6574 +ctf_integer_hex(__t__, __n__, __e__)+
6575
6576 +ctf_user_integer_hex(__t__, __n__, __e__)+
6577 |
6578 Standard integer, displayed in base 16.
6579
6580 +__t__+::
6581 Integer C type.
6582
6583 +__n__+::
6584 Field name.
6585
6586 +__e__+::
6587 Argument expression.
6588
6589 |+ctf_integer_oct(__t__, __n__, __e__)+
6590 |
6591 Standard integer, displayed in base 8.
6592
6593 +__t__+::
6594 Integer C type.
6595
6596 +__n__+::
6597 Field name.
6598
6599 +__e__+::
6600 Argument expression.
6601
6602 |
6603 +ctf_integer_network(__t__, __n__, __e__)+
6604
6605 +ctf_user_integer_network(__t__, __n__, __e__)+
6606 |
6607 Integer in network byte order (big-endian), displayed in base 10.
6608
6609 +__t__+::
6610 Integer C type.
6611
6612 +__n__+::
6613 Field name.
6614
6615 +__e__+::
6616 Argument expression.
6617
6618 |
6619 +ctf_integer_network_hex(__t__, __n__, __e__)+
6620
6621 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
6622 |
6623 Integer in network byte order, displayed in base 16.
6624
6625 +__t__+::
6626 Integer C type.
6627
6628 +__n__+::
6629 Field name.
6630
6631 +__e__+::
6632 Argument expression.
6633
6634 |
6635 +ctf_string(__n__, __e__)+
6636
6637 +ctf_string_nowrite(__n__, __e__)+
6638
6639 +ctf_user_string(__n__, __e__)+
6640
6641 +ctf_user_string_nowrite(__n__, __e__)+
6642 |
6643 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
6644
6645 +__n__+::
6646 Field name.
6647
6648 +__e__+::
6649 Argument expression.
6650
6651 |
6652 +ctf_array(__t__, __n__, __e__, __s__)+
6653
6654 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
6655
6656 +ctf_user_array(__t__, __n__, __e__, __s__)+
6657
6658 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
6659 |
6660 Statically-sized array of integers
6661
6662 +__t__+::
6663 Array element C type.
6664
6665 +__n__+::
6666 Field name.
6667
6668 +__e__+::
6669 Argument expression.
6670
6671 +__s__+::
6672 Number of elements.
6673
6674 |
6675 +ctf_array_text(__t__, __n__, __e__, __s__)+
6676
6677 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
6678
6679 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
6680
6681 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
6682 |
6683 Statically-sized array, printed as text.
6684
6685 The string does not need to be null-terminated.
6686
6687 +__t__+::
6688 Array element C type (always `char`).
6689
6690 +__n__+::
6691 Field name.
6692
6693 +__e__+::
6694 Argument expression.
6695
6696 +__s__+::
6697 Number of elements.
6698
6699 |
6700 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
6701
6702 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
6703
6704 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
6705
6706 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
6707 |
6708 Dynamically-sized array of integers.
6709
6710 The type of +__E__+ must be unsigned.
6711
6712 +__t__+::
6713 Array element C type.
6714
6715 +__n__+::
6716 Field name.
6717
6718 +__e__+::
6719 Argument expression.
6720
6721 +__T__+::
6722 Length expression C type.
6723
6724 +__E__+::
6725 Length expression.
6726
6727 |+ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
6728 |
6729 Dynamically-sized array of integers, displayed in base 16.
6730
6731 The type of +__E__+ must be unsigned.
6732
6733 +__t__+::
6734 Array element C type.
6735
6736 +__n__+::
6737 Field name.
6738
6739 +__e__+::
6740 Argument expression.
6741
6742 +__T__+::
6743 Length expression C type.
6744
6745 +__E__+::
6746 Length expression.
6747
6748 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
6749 |
6750 Dynamically-sized array of integers in network byte order (big-endian),
6751 displayed in base 10.
6752
6753 The type of +__E__+ must be unsigned.
6754
6755 +__t__+::
6756 Array element C type.
6757
6758 +__n__+::
6759 Field name.
6760
6761 +__e__+::
6762 Argument expression.
6763
6764 +__T__+::
6765 Length expression C type.
6766
6767 +__E__+::
6768 Length expression.
6769
6770 |
6771 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
6772
6773 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
6774
6775 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
6776
6777 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
6778 |
6779 Dynamically-sized array, displayed as text.
6780
6781 The string does not need to be null-terminated.
6782
6783 The type of +__E__+ must be unsigned.
6784
6785 The behaviour is undefined if +__e__+ is `NULL`.
6786
6787 +__t__+::
6788 Sequence element C type (always `char`).
6789
6790 +__n__+::
6791 Field name.
6792
6793 +__e__+::
6794 Argument expression.
6795
6796 +__T__+::
6797 Length expression C type.
6798
6799 +__E__+::
6800 Length expression.
6801 |====
6802
6803 Use the `_user` versions when the argument expression, `e`, is
6804 a user space address. In the cases of `ctf_user_integer*()` and
6805 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
6806 be addressable.
6807
6808 The `_nowrite` versions omit themselves from the session trace, but are
6809 otherwise identical. This means the `_nowrite` fields won't be written
6810 in the recorded trace. Their primary purpose is to make some
6811 of the event context available to the
6812 <<enabling-disabling-events,event filters>> without having to
6813 commit the data to sub-buffers.
6814
6815
6816 [[glossary]]
6817 == Glossary
6818
6819 Terms related to LTTng and to tracing in general:
6820
6821 Babeltrace::
6822 The http://diamon.org/babeltrace[Babeltrace] project, which includes
6823 the cmd:babeltrace command, some libraries, and Python bindings.
6824
6825 <<channel-buffering-schemes,buffering scheme>>::
6826 A layout of sub-buffers applied to a given channel.
6827
6828 <<channel,channel>>::
6829 An entity which is responsible for a set of ring buffers.
6830 +
6831 <<event,Event rules>> are always attached to a specific channel.
6832
6833 clock::
6834 A reference of time for a tracer.
6835
6836 <<lttng-consumerd,consumer daemon>>::
6837 A process which is responsible for consuming the full sub-buffers
6838 and write them to a file system or send them over the network.
6839
6840 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
6841 mode in which the tracer _discards_ new event records when there's no
6842 sub-buffer space left to store them.
6843
6844 event::
6845 The consequence of the execution of an instrumentation
6846 point, like a tracepoint that you manually place in some source code,
6847 or a Linux kernel KProbe.
6848 +
6849 An event is said to _occur_ at a specific time. Different actions can
6850 be taken upon the occurance of an event, like record the event's payload
6851 to a sub-buffer.
6852
6853 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
6854 The mechanism by which event records of a given channel are lost
6855 (not recorded) when there is no sub-buffer space left to store them.
6856
6857 [[def-event-name]]event name::
6858 The name of an event, which is also the name of the event record.
6859 This is also called the _instrumentation point name_.
6860
6861 event record::
6862 A record, in a trace, of the payload of an event which occured.
6863
6864 <<event,event rule>>::
6865 Set of conditions which must be satisfied for one or more occuring
6866 events to be recorded.
6867
6868 `java.util.logging`::
6869 Java platform's
6870 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
6871
6872 <<instrumenting,instrumentation>>::
6873 The use of LTTng probes to make a piece of software traceable.
6874
6875 instrumentation point::
6876 A point in the execution path of a piece of software that, when
6877 reached by this execution, can emit an event.
6878
6879 instrumentation point name::
6880 See _<<def-event-name,event name>>_.
6881
6882 log4j::
6883 A http://logging.apache.org/log4j/1.2/[logging library] for Java
6884 developed by the Apache Software Foundation.
6885
6886 log level::
6887 Level of severity of a log statement or user space
6888 instrumentation point.
6889
6890 LTTng::
6891 The _Linux Trace Toolkit: next generation_ project.
6892
6893 <<lttng-cli,cmd:lttng>>::
6894 A command-line tool provided by the LTTng-tools project which you
6895 can use to send and receive control messages to and from a
6896 session daemon.
6897
6898 LTTng analyses::
6899 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
6900 which is a set of analyzing programs that are used to obtain a
6901 higher level view of an LTTng trace.
6902
6903 cmd:lttng-consumerd::
6904 The name of the consumer daemon program.
6905
6906 cmd:lttng-crash::
6907 A utility provided by the LTTng-tools project which can convert
6908 ring buffer files (usually
6909 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
6910 to trace files.
6911
6912 LTTng Documentation::
6913 This document.
6914
6915 <<lttng-live,LTTng live>>::
6916 A communication protocol between the relay daemon and live viewers
6917 which makes it possible to see events "live", as they are received by
6918 the relay daemon.
6919
6920 <<lttng-modules,LTTng-modules>>::
6921 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
6922 which contains the Linux kernel modules to make the Linux kernel
6923 instrumentation points available for LTTng tracing.
6924
6925 cmd:lttng-relayd::
6926 The name of the relay daemon program.
6927
6928 cmd:lttng-sessiond::
6929 The name of the session daemon program.
6930
6931 LTTng-tools::
6932 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
6933 contains the various programs and libraries used to
6934 <<controlling-tracing,control tracing>>.
6935
6936 <<lttng-ust,LTTng-UST>>::
6937 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
6938 contains libraries to instrument user applications.
6939
6940 <<lttng-ust-agents,LTTng-UST Java agent>>::
6941 A Java package provided by the LTTng-UST project to allow the
6942 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
6943 logging statements.
6944
6945 <<lttng-ust-agents,LTTng-UST Python agent>>::
6946 A Python package provided by the LTTng-UST project to allow the
6947 LTTng instrumentation of Python logging statements.
6948
6949 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
6950 The event loss mode in which new event records overwrite older
6951 event records when there's no sub-buffer space left to store them.
6952
6953 <<channel-buffering-schemes,per-process buffering>>::
6954 A buffering scheme in which each instrumented process has its own
6955 sub-buffers for a given user space channel.
6956
6957 <<channel-buffering-schemes,per-user buffering>>::
6958 A buffering scheme in which all the processes of a Unix user share the
6959 same sub-buffer for a given user space channel.
6960
6961 <<lttng-relayd,relay daemon>>::
6962 A process which is responsible for receiving the trace data sent by
6963 a distant consumer daemon.
6964
6965 ring buffer::
6966 A set of sub-buffers.
6967
6968 <<lttng-sessiond,session daemon>>::
6969 A process which receives control commands from you and orchestrates
6970 the tracers and various LTTng daemons.
6971
6972 <<taking-a-snapshot,snapshot>>::
6973 A copy of the current data of all the sub-buffers of a given tracing
6974 session, saved as trace files.
6975
6976 sub-buffer::
6977 One part of an LTTng ring buffer which contains event records.
6978
6979 timestamp::
6980 The time information attached to an event when it is emitted.
6981
6982 trace (_noun_)::
6983 A set of files which are the concatenations of one or more
6984 flushed sub-buffers.
6985
6986 trace (_verb_)::
6987 The action of recording the events emitted by an application
6988 or by a system, or to initiate such recording by controlling
6989 a tracer.
6990
6991 Trace Compass::
6992 The http://tracecompass.org[Trace Compass] project and application.
6993
6994 tracepoint::
6995 An instrumentation point using the tracepoint mechanism of the Linux
6996 kernel or of LTTng-UST.
6997
6998 tracepoint definition::
6999 The definition of a single tracepoint.
7000
7001 tracepoint name::
7002 The name of a tracepoint.
7003
7004 tracepoint provider::
7005 A set of functions providing tracepoints to an instrumented user
7006 application.
7007 +
7008 Not to be confused with a _tracepoint provider package_: many tracepoint
7009 providers can exist within a tracepoint provider package.
7010
7011 tracepoint provider package::
7012 One or more tracepoint providers compiled as an object file or as
7013 a shared library.
7014
7015 tracer::
7016 A software which records emitted events.
7017
7018 <<domain,tracing domain>>::
7019 A namespace for event sources.
7020
7021 tracing group::
7022 The Unix group in which a Unix user can be to be allowed to trace the
7023 Linux kernel.
7024
7025 <<tracing-session,tracing session>>::
7026 A stateful dialogue between you and a <<lttng-sessiond,session
7027 daemon>>.
7028
7029 user application::
7030 An application running in user space, as opposed to a Linux kernel
7031 module, for example.
This page took 0.190165 seconds and 3 git commands to generate.