2.8, 2.9, 2.10: since 2.8, LTTng keeps lost sub-buffer count in overwrite mode
[lttng-docs.git] / 2.10 / lttng-docs-2.10.txt
1 The LTTng Documentation
2 =======================
3 Philippe Proulx <pproulx@efficios.com>
4 v2.10, 1 August 2017
5
6
7 include::../common/copyright.txt[]
8
9
10 include::../common/welcome.txt[]
11
12
13 include::../common/audience.txt[]
14
15
16 [[chapters]]
17 === What's in this documentation?
18
19 The LTTng Documentation is divided into the following sections:
20
21 * **<<nuts-and-bolts,Nuts and bolts>>** explains the
22 rudiments of software tracing and the rationale behind the
23 LTTng project.
24 +
25 You can skip this section if you’re familiar with software tracing and
26 with the LTTng project.
27
28 * **<<installing-lttng,Installation>>** describes the steps to
29 install the LTTng packages on common Linux distributions and from
30 their sources.
31 +
32 You can skip this section if you already properly installed LTTng on
33 your target system.
34
35 * **<<getting-started,Quick start>>** is a concise guide to
36 getting started quickly with LTTng kernel and user space tracing.
37 +
38 We recommend this section if you're new to LTTng or to software tracing
39 in general.
40 +
41 You can skip this section if you're not new to LTTng.
42
43 * **<<core-concepts,Core concepts>>** explains the concepts at
44 the heart of LTTng.
45 +
46 It's a good idea to become familiar with the core concepts
47 before attempting to use the toolkit.
48
49 * **<<plumbing,Components of LTTng>>** describes the various components
50 of the LTTng machinery, like the daemons, the libraries, and the
51 command-line interface.
52 * **<<instrumenting,Instrumentation>>** shows different ways to
53 instrument user applications and the Linux kernel.
54 +
55 Instrumenting source code is essential to provide a meaningful
56 source of events.
57 +
58 You can skip this section if you do not have a programming background.
59
60 * **<<controlling-tracing,Tracing control>>** is divided into topics
61 which demonstrate how to use the vast array of features that
62 LTTng{nbsp}{revision} offers.
63 * **<<reference,Reference>>** contains reference tables.
64 * **<<glossary,Glossary>>** is a specialized dictionary of terms related
65 to LTTng or to the field of software tracing.
66
67
68 include::../common/convention.txt[]
69
70
71 include::../common/acknowledgements.txt[]
72
73
74 [[whats-new]]
75 == What's new in LTTng {revision}?
76
77 LTTng{nbsp}{revision} bears the name _KeKriek_. From
78 http://brasseriedunham.com/[Brasserie Dunham], the _**KeKriek**_ is a
79 sour mashed golden wheat ale fermented with local sour cherries from
80 Tougas orchards. Fresh sweet cherry notes with some tartness, lively
81 carbonation with a dry finish.
82
83 New features and changes in LTTng{nbsp}{revision}:
84
85 * **Tracing control**:
86 ** You can put more than one wildcard special character (`*`), and not
87 only at the end, when you <<enabling-disabling-events,create an event
88 rule>>, in both the instrumentation point name and the literal
89 strings of
90 link:/man/1/lttng-enable-event/v{revision}/#doc-filter-syntax[filter expressions]:
91 +
92 --
93 [role="term"]
94 ----
95 # lttng enable-event --kernel 'x86_*_local_timer_*' \
96 --filter='name == "*a*b*c*d*e" && count >= 23'
97 ----
98 --
99 +
100 --
101 [role="term"]
102 ----
103 $ lttng enable-event --userspace '*_my_org:*msg*'
104 ----
105 --
106
107 ** New trigger and notification API for
108 <<liblttng-ctl-lttng,`liblttng-ctl`>>. This new subsystem allows you
109 to register triggers which emit a notification when a given
110 condition is satisfied. As of LTTng{nbsp}{revision}, only
111 <<channel,channel>> buffer usage conditions are available.
112 Documentation is available in the
113 https://github.com/lttng/lttng-tools/tree/stable-{revision}/include/lttng[`liblttng-ctl`
114 header files] and in
115 <<notif-trigger-api,Get notified when a channel's buffer usage is too
116 high or too low>>.
117
118 ** You can now embed the whole textual LTTng-tools man pages into the
119 executables at build time with the `--enable-embedded-help`
120 configuration option. Thanks to this option, you don't need the
121 http://www.methods.co.nz/asciidoc/[AsciiDoc] and
122 https://directory.fsf.org/wiki/Xmlto[xmlto] tools at build time, and
123 a manual pager at run time, to get access to this documentation.
124
125 * **User space tracing**:
126 ** New blocking mode: an LTTng-UST tracepoint can now block until
127 <<channel,sub-buffer>> space is available instead of discarding event
128 records in <<channel-overwrite-mode-vs-discard-mode,discard mode>>.
129 With this feature, you can be sure that no event records are
130 discarded during your application's execution at the expense of
131 performance.
132 +
133 For example, the following command lines create a user space tracing
134 channel with an infinite blocking timeout and run an application
135 instrumented with LTTng-UST which is explicitly allowed to block:
136 +
137 --
138 [role="term"]
139 ----
140 $ lttng create
141 $ lttng enable-channel --userspace --blocking-timeout=-1 blocking-channel
142 $ lttng enable-event --userspace --channel=blocking-channel --all
143 $ lttng start
144 $ LTTNG_UST_ALLOW_BLOCKING=1 my-app
145 ----
146 --
147 +
148 See the complete <<blocking-timeout-example,blocking timeout example>>.
149
150 * **Linux kernel tracing**:
151 ** Linux 4.10, 4.11, and 4.12 support.
152 ** The thread state dump events recorded by LTTng-modules now contain
153 the task's CPU identifier. This improves the precision of the
154 scheduler model for analyses.
155 ** Extended man:socketpair(2) system call tracing data.
156
157
158 [[nuts-and-bolts]]
159 == Nuts and bolts
160
161 What is LTTng? As its name suggests, the _Linux Trace Toolkit: next
162 generation_ is a modern toolkit for tracing Linux systems and
163 applications. So your first question might be:
164 **what is tracing?**
165
166
167 [[what-is-tracing]]
168 === What is tracing?
169
170 As the history of software engineering progressed and led to what
171 we now take for granted--complex, numerous and
172 interdependent software applications running in parallel on
173 sophisticated operating systems like Linux--the authors of such
174 components, software developers, began feeling a natural
175 urge to have tools that would ensure the robustness and good performance
176 of their masterpieces.
177
178 One major achievement in this field is, inarguably, the
179 https://www.gnu.org/software/gdb/[GNU debugger (GDB)],
180 an essential tool for developers to find and fix bugs. But even the best
181 debugger won't help make your software run faster, and nowadays, faster
182 software means either more work done by the same hardware, or cheaper
183 hardware for the same work.
184
185 A _profiler_ is often the tool of choice to identify performance
186 bottlenecks. Profiling is suitable to identify _where_ performance is
187 lost in a given software. The profiler outputs a profile, a statistical
188 summary of observed events, which you may use to discover which
189 functions took the most time to execute. However, a profiler won't
190 report _why_ some identified functions are the bottleneck. Bottlenecks
191 might only occur when specific conditions are met, conditions that are
192 sometimes impossible to capture by a statistical profiler, or impossible
193 to reproduce with an application altered by the overhead of an
194 event-based profiler. For a thorough investigation of software
195 performance issues, a history of execution is essential, with the
196 recorded values of variables and context fields you choose, and
197 with as little influence as possible on the instrumented software. This
198 is where tracing comes in handy.
199
200 _Tracing_ is a technique used to understand what goes on in a running
201 software system. The software used for tracing is called a _tracer_,
202 which is conceptually similar to a tape recorder. When recording,
203 specific instrumentation points placed in the software source code
204 generate events that are saved on a giant tape: a _trace_ file. You
205 can trace user applications and the operating system at the same time,
206 opening the possibility of resolving a wide range of problems that would
207 otherwise be extremely challenging.
208
209 Tracing is often compared to _logging_. However, tracers and loggers are
210 two different tools, serving two different purposes. Tracers are
211 designed to record much lower-level events that occur much more
212 frequently than log messages, often in the range of thousands per
213 second, with very little execution overhead. Logging is more appropriate
214 for a very high-level analysis of less frequent events: user accesses,
215 exceptional conditions (errors and warnings, for example), database
216 transactions, instant messaging communications, and such. Simply put,
217 logging is one of the many use cases that can be satisfied with tracing.
218
219 The list of recorded events inside a trace file can be read manually
220 like a log file for the maximum level of detail, but it is generally
221 much more interesting to perform application-specific analyses to
222 produce reduced statistics and graphs that are useful to resolve a
223 given problem. Trace viewers and analyzers are specialized tools
224 designed to do this.
225
226 In the end, this is what LTTng is: a powerful, open source set of
227 tools to trace the Linux kernel and user applications at the same time.
228 LTTng is composed of several components actively maintained and
229 developed by its link:/community/#where[community].
230
231
232 [[lttng-alternatives]]
233 === Alternatives to noch:{LTTng}
234
235 Excluding proprietary solutions, a few competing software tracers
236 exist for Linux:
237
238 * https://github.com/dtrace4linux/linux[dtrace4linux] is a port of
239 Sun Microsystems's DTrace to Linux. The cmd:dtrace tool interprets
240 user scripts and is responsible for loading code into the
241 Linux kernel for further execution and collecting the outputted data.
242 * https://en.wikipedia.org/wiki/Berkeley_Packet_Filter[eBPF] is a
243 subsystem in the Linux kernel in which a virtual machine can execute
244 programs passed from the user space to the kernel. You can attach
245 such programs to tracepoints and KProbes thanks to a system call, and
246 they can output data to the user space when executed thanks to
247 different mechanisms (pipe, VM register values, and eBPF maps, to name
248 a few).
249 * https://www.kernel.org/doc/Documentation/trace/ftrace.txt[ftrace]
250 is the de facto function tracer of the Linux kernel. Its user
251 interface is a set of special files in sysfs.
252 * https://perf.wiki.kernel.org/[perf] is
253 a performance analyzing tool for Linux which supports hardware
254 performance counters, tracepoints, as well as other counters and
255 types of probes. perf's controlling utility is the cmd:perf command
256 line/curses tool.
257 * http://linux.die.net/man/1/strace[strace]
258 is a command-line utility which records system calls made by a
259 user process, as well as signal deliveries and changes of process
260 state. strace makes use of https://en.wikipedia.org/wiki/Ptrace[ptrace]
261 to fulfill its function.
262 * http://www.sysdig.org/[sysdig], like SystemTap, uses scripts to
263 analyze Linux kernel events. You write scripts, or _chisels_ in
264 sysdig's jargon, in Lua and sysdig executes them while the system is
265 being traced or afterwards. sysdig's interface is the cmd:sysdig
266 command-line tool as well as the curses-based cmd:csysdig tool.
267 * https://sourceware.org/systemtap/[SystemTap] is a Linux kernel and
268 user space tracer which uses custom user scripts to produce plain text
269 traces. SystemTap converts the scripts to the C language, and then
270 compiles them as Linux kernel modules which are loaded to produce
271 trace data. SystemTap's primary user interface is the cmd:stap
272 command-line tool.
273
274 The main distinctive features of LTTng is that it produces correlated
275 kernel and user space traces, as well as doing so with the lowest
276 overhead amongst other solutions. It produces trace files in the
277 http://diamon.org/ctf[CTF] format, a file format optimized
278 for the production and analyses of multi-gigabyte data.
279
280 LTTng is the result of more than 10 years of active open source
281 development by a community of passionate developers.
282 LTTng{nbsp}{revision} is currently available on major desktop and server
283 Linux distributions.
284
285 The main interface for tracing control is a single command-line tool
286 named cmd:lttng. The latter can create several tracing sessions, enable
287 and disable events on the fly, filter events efficiently with custom
288 user expressions, start and stop tracing, and much more. LTTng can
289 record the traces on the file system or send them over the network, and
290 keep them totally or partially. You can view the traces once tracing
291 becomes inactive or in real-time.
292
293 <<installing-lttng,Install LTTng now>> and
294 <<getting-started,start tracing>>!
295
296
297 [[installing-lttng]]
298 == Installation
299
300 **LTTng** is a set of software <<plumbing,components>> which interact to
301 <<instrumenting,instrument>> the Linux kernel and user applications, and
302 to <<controlling-tracing,control tracing>> (start and stop
303 tracing, enable and disable event rules, and the rest). Those
304 components are bundled into the following packages:
305
306 * **LTTng-tools**: Libraries and command-line interface to
307 control tracing.
308 * **LTTng-modules**: Linux kernel modules to instrument and
309 trace the kernel.
310 * **LTTng-UST**: Libraries and Java/Python packages to instrument and
311 trace user applications.
312
313 Most distributions mark the LTTng-modules and LTTng-UST packages as
314 optional when installing LTTng-tools (which is always required). In the
315 following sections, we always provide the steps to install all three,
316 but note that:
317
318 * You only need to install LTTng-modules if you intend to trace the
319 Linux kernel.
320 * You only need to install LTTng-UST if you intend to trace user
321 applications.
322
323 [role="growable"]
324 .Availability of LTTng{nbsp}{revision} for major Linux distributions as of 25 July 2017.
325 |====
326 |Distribution |Available in releases |Alternatives
327
328 |https://www.ubuntu.com/[Ubuntu]
329 |Ubuntu{nbsp}14.04 _Trusty Tahr_ and Ubuntu{nbsp}16.04 _Xenial Xerus_:
330 <<ubuntu-ppa,use the LTTng Stable{nbsp}{revision} PPA>>.
331 |link:/docs/v2.9#doc-ubuntu[LTTng{nbsp}2.9 for Ubuntu{nbsp}17.04 _Zesty Zapus_].
332
333 <<building-from-source,Build LTTng{nbsp}{revision} from source>> for
334 other Ubuntu releases.
335
336 |https://getfedora.org/[Fedora]
337 |_Not available_
338 |link:/docs/v2.9#doc-fedora[LTTng{nbsp}2.9 for Fedora 26].
339
340 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
341
342 |https://www.debian.org/[Debian]
343 |_Not available_
344 |link:/docs/v2.9#doc-debian[LTTng{nbsp}2.9 for Debian "stretch"
345 (stable), Debian "buster" (testing), and Debian "sid" (unstable)].
346
347 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
348
349 |https://www.archlinux.org/[Arch Linux]
350 |_Not available_
351 |link:/docs/v2.9#doc-arch-linux[LTTng{nbsp}2.9 in the latest AUR packages].
352
353 |https://alpinelinux.org/[Alpine Linux]
354 |_Not available_
355 |link:/docs/v2.9#doc-alpine-linux[LTTng{nbsp}2.9 for Alpine Linux "edge"].
356
357 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
358
359 |https://www.redhat.com/[RHEL] and https://www.suse.com/[SLES]
360 |See http://packages.efficios.com/[EfficiOS Enterprise Packages].
361 |
362
363 |https://buildroot.org/[Buildroot]
364 |_Not available_
365 |link:/docs/v2.9#doc-buildroot[LTTng{nbsp}2.9 for Buildroot{nbsp}2017.02 and
366 Buildroot{nbsp}2017.05].
367
368 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
369
370 |http://www.openembedded.org/wiki/Main_Page[OpenEmbedded] and
371 https://www.yoctoproject.org/[Yocto]
372 |_Not available_
373 |link:/docs/v2.9#doc-oe-yocto[LTTng{nbsp}2.9 for Yocto Project{nbsp}2.3 _Pyro_]
374 (`openembedded-core` layer).
375
376 <<building-from-source,Build LTTng{nbsp}{revision} from source>>.
377 |====
378
379
380 [[ubuntu]]
381 === [[ubuntu-official-repositories]]Ubuntu
382
383 [[ubuntu-ppa]]
384 ==== noch:{LTTng} Stable {revision} PPA
385
386 The https://launchpad.net/~lttng/+archive/ubuntu/stable-{revision}[LTTng
387 Stable{nbsp}{revision} PPA] offers the latest stable
388 LTTng{nbsp}{revision} packages for:
389
390 * Ubuntu{nbsp}14.04 _Trusty Tahr_
391 * Ubuntu{nbsp}16.04 _Xenial Xerus_
392
393 To install LTTng{nbsp}{revision} from the LTTng Stable{nbsp}{revision} PPA:
394
395 . Add the LTTng Stable{nbsp}{revision} PPA repository and update the
396 list of packages:
397 +
398 --
399 [role="term"]
400 ----
401 # apt-add-repository ppa:lttng/stable-2.10
402 # apt-get update
403 ----
404 --
405
406 . Install the main LTTng{nbsp}{revision} packages:
407 +
408 --
409 [role="term"]
410 ----
411 # apt-get install lttng-tools
412 # apt-get install lttng-modules-dkms
413 # apt-get install liblttng-ust-dev
414 ----
415 --
416
417 . **If you need to instrument and trace
418 <<java-application,Java applications>>**, install the LTTng-UST
419 Java agent:
420 +
421 --
422 [role="term"]
423 ----
424 # apt-get install liblttng-ust-agent-java
425 ----
426 --
427
428 . **If you need to instrument and trace
429 <<python-application,Python{nbsp}3 applications>>**, install the
430 LTTng-UST Python agent:
431 +
432 --
433 [role="term"]
434 ----
435 # apt-get install python3-lttngust
436 ----
437 --
438
439
440 [[enterprise-distributions]]
441 === RHEL, SUSE, and other enterprise distributions
442
443 To install LTTng on enterprise Linux distributions, such as Red Hat
444 Enterprise Linux (RHEL) and SUSE Linux Enterprise Server (SUSE), please
445 see http://packages.efficios.com/[EfficiOS Enterprise Packages].
446
447
448 [[building-from-source]]
449 === Build from source
450
451 To build and install LTTng{nbsp}{revision} from source:
452
453 . Using your distribution's package manager, or from source, install
454 the following dependencies of LTTng-tools and LTTng-UST:
455 +
456 --
457 * https://sourceforge.net/projects/libuuid/[libuuid]
458 * http://directory.fsf.org/wiki/Popt[popt]
459 * http://liburcu.org/[Userspace RCU]
460 * http://www.xmlsoft.org/[libxml2]
461 --
462
463 . Download, build, and install the latest LTTng-modules{nbsp}{revision}:
464 +
465 --
466 [role="term"]
467 ----
468 $ cd $(mktemp -d) &&
469 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
470 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
471 cd lttng-modules-2.10.* &&
472 make &&
473 sudo make modules_install &&
474 sudo depmod -a
475 ----
476 --
477
478 . Download, build, and install the latest LTTng-UST{nbsp}{revision}:
479 +
480 --
481 [role="term"]
482 ----
483 $ cd $(mktemp -d) &&
484 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.10.tar.bz2 &&
485 tar -xf lttng-ust-latest-2.10.tar.bz2 &&
486 cd lttng-ust-2.10.* &&
487 ./configure &&
488 make &&
489 sudo make install &&
490 sudo ldconfig
491 ----
492 --
493 +
494 --
495 [IMPORTANT]
496 .Java and Python application tracing
497 ====
498 If you need to instrument and trace <<java-application,Java
499 applications>>, pass the `--enable-java-agent-jul`,
500 `--enable-java-agent-log4j`, or `--enable-java-agent-all` options to the
501 `configure` script, depending on which Java logging framework you use.
502
503 If you need to instrument and trace <<python-application,Python
504 applications>>, pass the `--enable-python-agent` option to the
505 `configure` script. You can set the `PYTHON` environment variable to the
506 path to the Python interpreter for which to install the LTTng-UST Python
507 agent package.
508 ====
509 --
510 +
511 --
512 [NOTE]
513 ====
514 By default, LTTng-UST libraries are installed to
515 dir:{/usr/local/lib}, which is the de facto directory in which to
516 keep self-compiled and third-party libraries.
517
518 When <<building-tracepoint-providers-and-user-application,linking an
519 instrumented user application with `liblttng-ust`>>:
520
521 * Append `/usr/local/lib` to the env:LD_LIBRARY_PATH environment
522 variable.
523 * Pass the `-L/usr/local/lib` and `-Wl,-rpath,/usr/local/lib` options to
524 man:gcc(1), man:g++(1), or man:clang(1).
525 ====
526 --
527
528 . Download, build, and install the latest LTTng-tools{nbsp}{revision}:
529 +
530 --
531 [role="term"]
532 ----
533 $ cd $(mktemp -d) &&
534 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
535 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
536 cd lttng-tools-2.10.* &&
537 ./configure &&
538 make &&
539 sudo make install &&
540 sudo ldconfig
541 ----
542 --
543
544 TIP: The https://github.com/eepp/vlttng[vlttng tool] can do all the
545 previous steps automatically for a given version of LTTng and confine
546 the installed files in a specific directory. This can be useful to test
547 LTTng without installing it on your system.
548
549
550 [[getting-started]]
551 == Quick start
552
553 This is a short guide to get started quickly with LTTng kernel and user
554 space tracing.
555
556 Before you follow this guide, make sure to <<installing-lttng,install>>
557 LTTng.
558
559 This tutorial walks you through the steps to:
560
561 . <<tracing-the-linux-kernel,Trace the Linux kernel>>.
562 . <<tracing-your-own-user-application,Trace a user application>> written
563 in C.
564 . <<viewing-and-analyzing-your-traces,View and analyze the
565 recorded events>>.
566
567
568 [[tracing-the-linux-kernel]]
569 === Trace the Linux kernel
570
571 The following command lines start with the `#` prompt because you need
572 root privileges to trace the Linux kernel. You can also trace the kernel
573 as a regular user if your Unix user is a member of the
574 <<tracing-group,tracing group>>.
575
576 . Create a <<tracing-session,tracing session>> which writes its traces
577 to dir:{/tmp/my-kernel-trace}:
578 +
579 --
580 [role="term"]
581 ----
582 # lttng create my-kernel-session --output=/tmp/my-kernel-trace
583 ----
584 --
585
586 . List the available kernel tracepoints and system calls:
587 +
588 --
589 [role="term"]
590 ----
591 # lttng list --kernel
592 # lttng list --kernel --syscall
593 ----
594 --
595
596 . Create <<event,event rules>> which match the desired instrumentation
597 point names, for example the `sched_switch` and `sched_process_fork`
598 tracepoints, and the man:open(2) and man:close(2) system calls:
599 +
600 --
601 [role="term"]
602 ----
603 # lttng enable-event --kernel sched_switch,sched_process_fork
604 # lttng enable-event --kernel --syscall open,close
605 ----
606 --
607 +
608 You can also create an event rule which matches _all_ the Linux kernel
609 tracepoints (this will generate a lot of data when tracing):
610 +
611 --
612 [role="term"]
613 ----
614 # lttng enable-event --kernel --all
615 ----
616 --
617
618 . <<basic-tracing-session-control,Start tracing>>:
619 +
620 --
621 [role="term"]
622 ----
623 # lttng start
624 ----
625 --
626
627 . Do some operation on your system for a few seconds. For example,
628 load a website, or list the files of a directory.
629 . <<basic-tracing-session-control,Stop tracing>> and destroy the
630 tracing session:
631 +
632 --
633 [role="term"]
634 ----
635 # lttng stop
636 # lttng destroy
637 ----
638 --
639 +
640 The man:lttng-destroy(1) command does not destroy the trace data; it
641 only destroys the state of the tracing session.
642
643 . For the sake of this example, make the recorded trace accessible to
644 the non-root users:
645 +
646 --
647 [role="term"]
648 ----
649 # chown -R $(whoami) /tmp/my-kernel-trace
650 ----
651 --
652
653 See <<viewing-and-analyzing-your-traces,View and analyze the
654 recorded events>> to view the recorded events.
655
656
657 [[tracing-your-own-user-application]]
658 === Trace a user application
659
660 This section steps you through a simple example to trace a
661 _Hello world_ program written in C.
662
663 To create the traceable user application:
664
665 . Create the tracepoint provider header file, which defines the
666 tracepoints and the events they can generate:
667 +
668 --
669 [source,c]
670 .path:{hello-tp.h}
671 ----
672 #undef TRACEPOINT_PROVIDER
673 #define TRACEPOINT_PROVIDER hello_world
674
675 #undef TRACEPOINT_INCLUDE
676 #define TRACEPOINT_INCLUDE "./hello-tp.h"
677
678 #if !defined(_HELLO_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
679 #define _HELLO_TP_H
680
681 #include <lttng/tracepoint.h>
682
683 TRACEPOINT_EVENT(
684 hello_world,
685 my_first_tracepoint,
686 TP_ARGS(
687 int, my_integer_arg,
688 char*, my_string_arg
689 ),
690 TP_FIELDS(
691 ctf_string(my_string_field, my_string_arg)
692 ctf_integer(int, my_integer_field, my_integer_arg)
693 )
694 )
695
696 #endif /* _HELLO_TP_H */
697
698 #include <lttng/tracepoint-event.h>
699 ----
700 --
701
702 . Create the tracepoint provider package source file:
703 +
704 --
705 [source,c]
706 .path:{hello-tp.c}
707 ----
708 #define TRACEPOINT_CREATE_PROBES
709 #define TRACEPOINT_DEFINE
710
711 #include "hello-tp.h"
712 ----
713 --
714
715 . Build the tracepoint provider package:
716 +
717 --
718 [role="term"]
719 ----
720 $ gcc -c -I. hello-tp.c
721 ----
722 --
723
724 . Create the _Hello World_ application source file:
725 +
726 --
727 [source,c]
728 .path:{hello.c}
729 ----
730 #include <stdio.h>
731 #include "hello-tp.h"
732
733 int main(int argc, char *argv[])
734 {
735 int x;
736
737 puts("Hello, World!\nPress Enter to continue...");
738
739 /*
740 * The following getchar() call is only placed here for the purpose
741 * of this demonstration, to pause the application in order for
742 * you to have time to list its tracepoints. It is not
743 * needed otherwise.
744 */
745 getchar();
746
747 /*
748 * A tracepoint() call.
749 *
750 * Arguments, as defined in hello-tp.h:
751 *
752 * 1. Tracepoint provider name (required)
753 * 2. Tracepoint name (required)
754 * 3. my_integer_arg (first user-defined argument)
755 * 4. my_string_arg (second user-defined argument)
756 *
757 * Notice the tracepoint provider and tracepoint names are
758 * NOT strings: they are in fact parts of variables that the
759 * macros in hello-tp.h create.
760 */
761 tracepoint(hello_world, my_first_tracepoint, 23, "hi there!");
762
763 for (x = 0; x < argc; ++x) {
764 tracepoint(hello_world, my_first_tracepoint, x, argv[x]);
765 }
766
767 puts("Quitting now!");
768 tracepoint(hello_world, my_first_tracepoint, x * x, "x^2");
769
770 return 0;
771 }
772 ----
773 --
774
775 . Build the application:
776 +
777 --
778 [role="term"]
779 ----
780 $ gcc -c hello.c
781 ----
782 --
783
784 . Link the application with the tracepoint provider package,
785 `liblttng-ust`, and `libdl`:
786 +
787 --
788 [role="term"]
789 ----
790 $ gcc -o hello hello.o hello-tp.o -llttng-ust -ldl
791 ----
792 --
793
794 Here's the whole build process:
795
796 [role="img-100"]
797 .User space tracing tutorial's build steps.
798 image::ust-flow.png[]
799
800 To trace the user application:
801
802 . Run the application with a few arguments:
803 +
804 --
805 [role="term"]
806 ----
807 $ ./hello world and beyond
808 ----
809 --
810 +
811 You see:
812 +
813 --
814 ----
815 Hello, World!
816 Press Enter to continue...
817 ----
818 --
819
820 . Start an LTTng <<lttng-sessiond,session daemon>>:
821 +
822 --
823 [role="term"]
824 ----
825 $ lttng-sessiond --daemonize
826 ----
827 --
828 +
829 Note that a session daemon might already be running, for example as
830 a service that the distribution's service manager started.
831
832 . List the available user space tracepoints:
833 +
834 --
835 [role="term"]
836 ----
837 $ lttng list --userspace
838 ----
839 --
840 +
841 You see the `hello_world:my_first_tracepoint` tracepoint listed
842 under the `./hello` process.
843
844 . Create a <<tracing-session,tracing session>>:
845 +
846 --
847 [role="term"]
848 ----
849 $ lttng create my-user-space-session
850 ----
851 --
852
853 . Create an <<event,event rule>> which matches the
854 `hello_world:my_first_tracepoint` event name:
855 +
856 --
857 [role="term"]
858 ----
859 $ lttng enable-event --userspace hello_world:my_first_tracepoint
860 ----
861 --
862
863 . <<basic-tracing-session-control,Start tracing>>:
864 +
865 --
866 [role="term"]
867 ----
868 $ lttng start
869 ----
870 --
871
872 . Go back to the running `hello` application and press Enter. The
873 program executes all `tracepoint()` instrumentation points and exits.
874 . <<basic-tracing-session-control,Stop tracing>> and destroy the
875 tracing session:
876 +
877 --
878 [role="term"]
879 ----
880 $ lttng stop
881 $ lttng destroy
882 ----
883 --
884 +
885 The man:lttng-destroy(1) command does not destroy the trace data; it
886 only destroys the state of the tracing session.
887
888 By default, LTTng saves the traces in
889 +$LTTNG_HOME/lttng-traces/__name__-__date__-__time__+,
890 where +__name__+ is the tracing session name. The
891 env:LTTNG_HOME environment variable defaults to `$HOME` if not set.
892
893 See <<viewing-and-analyzing-your-traces,View and analyze the
894 recorded events>> to view the recorded events.
895
896
897 [[viewing-and-analyzing-your-traces]]
898 === View and analyze the recorded events
899
900 Once you have completed the <<tracing-the-linux-kernel,Trace the Linux
901 kernel>> and <<tracing-your-own-user-application,Trace a user
902 application>> tutorials, you can inspect the recorded events.
903
904 Many tools are available to read LTTng traces:
905
906 * **cmd:babeltrace** is a command-line utility which converts trace
907 formats; it supports the format that LTTng produces, CTF, as well as a
908 basic text output which can be ++grep++ed. The cmd:babeltrace command
909 is part of the http://diamon.org/babeltrace[Babeltrace] project.
910 * Babeltrace also includes
911 **https://www.python.org/[Python] bindings** so
912 that you can easily open and read an LTTng trace with your own script,
913 benefiting from the power of Python.
914 * http://tracecompass.org/[**Trace Compass**]
915 is a graphical user interface for viewing and analyzing any type of
916 logs or traces, including LTTng's.
917 * https://github.com/lttng/lttng-analyses[**LTTng analyses**] is a
918 project which includes many high-level analyses of LTTng kernel
919 traces, like scheduling statistics, interrupt frequency distribution,
920 top CPU usage, and more.
921
922 NOTE: This section assumes that the traces recorded during the previous
923 tutorials were saved to their default location, in the
924 dir:{$LTTNG_HOME/lttng-traces} directory. The env:LTTNG_HOME
925 environment variable defaults to `$HOME` if not set.
926
927
928 [[viewing-and-analyzing-your-traces-bt]]
929 ==== Use the cmd:babeltrace command-line tool
930
931 The simplest way to list all the recorded events of a trace is to pass
932 its path to cmd:babeltrace with no options:
933
934 [role="term"]
935 ----
936 $ babeltrace ~/lttng-traces/my-user-space-session*
937 ----
938
939 cmd:babeltrace finds all traces recursively within the given path and
940 prints all their events, merging them in chronological order.
941
942 You can pipe the output of cmd:babeltrace into a tool like man:grep(1) for
943 further filtering:
944
945 [role="term"]
946 ----
947 $ babeltrace /tmp/my-kernel-trace | grep _switch
948 ----
949
950 You can pipe the output of cmd:babeltrace into a tool like man:wc(1) to
951 count the recorded events:
952
953 [role="term"]
954 ----
955 $ babeltrace /tmp/my-kernel-trace | grep _open | wc --lines
956 ----
957
958
959 [[viewing-and-analyzing-your-traces-bt-python]]
960 ==== Use the Babeltrace Python bindings
961
962 The <<viewing-and-analyzing-your-traces-bt,text output of cmd:babeltrace>>
963 is useful to isolate events by simple matching using man:grep(1) and
964 similar utilities. However, more elaborate filters, such as keeping only
965 event records with a field value falling within a specific range, are
966 not trivial to write using a shell. Moreover, reductions and even the
967 most basic computations involving multiple event records are virtually
968 impossible to implement.
969
970 Fortunately, Babeltrace ships with Python 3 bindings which makes it easy
971 to read the event records of an LTTng trace sequentially and compute the
972 desired information.
973
974 The following script accepts an LTTng Linux kernel trace path as its
975 first argument and prints the short names of the top 5 running processes
976 on CPU 0 during the whole trace:
977
978 [source,python]
979 .path:{top5proc.py}
980 ----
981 from collections import Counter
982 import babeltrace
983 import sys
984
985
986 def top5proc():
987 if len(sys.argv) != 2:
988 msg = 'Usage: python3 {} TRACEPATH'.format(sys.argv[0])
989 print(msg, file=sys.stderr)
990 return False
991
992 # A trace collection contains one or more traces
993 col = babeltrace.TraceCollection()
994
995 # Add the trace provided by the user (LTTng traces always have
996 # the 'ctf' format)
997 if col.add_trace(sys.argv[1], 'ctf') is None:
998 raise RuntimeError('Cannot add trace')
999
1000 # This counter dict contains execution times:
1001 #
1002 # task command name -> total execution time (ns)
1003 exec_times = Counter()
1004
1005 # This contains the last `sched_switch` timestamp
1006 last_ts = None
1007
1008 # Iterate on events
1009 for event in col.events:
1010 # Keep only `sched_switch` events
1011 if event.name != 'sched_switch':
1012 continue
1013
1014 # Keep only events which happened on CPU 0
1015 if event['cpu_id'] != 0:
1016 continue
1017
1018 # Event timestamp
1019 cur_ts = event.timestamp
1020
1021 if last_ts is None:
1022 # We start here
1023 last_ts = cur_ts
1024
1025 # Previous task command (short) name
1026 prev_comm = event['prev_comm']
1027
1028 # Initialize entry in our dict if not yet done
1029 if prev_comm not in exec_times:
1030 exec_times[prev_comm] = 0
1031
1032 # Compute previous command execution time
1033 diff = cur_ts - last_ts
1034
1035 # Update execution time of this command
1036 exec_times[prev_comm] += diff
1037
1038 # Update last timestamp
1039 last_ts = cur_ts
1040
1041 # Display top 5
1042 for name, ns in exec_times.most_common(5):
1043 s = ns / 1000000000
1044 print('{:20}{} s'.format(name, s))
1045
1046 return True
1047
1048
1049 if __name__ == '__main__':
1050 sys.exit(0 if top5proc() else 1)
1051 ----
1052
1053 Run this script:
1054
1055 [role="term"]
1056 ----
1057 $ python3 top5proc.py /tmp/my-kernel-trace/kernel
1058 ----
1059
1060 Output example:
1061
1062 ----
1063 swapper/0 48.607245889 s
1064 chromium 7.192738188 s
1065 pavucontrol 0.709894415 s
1066 Compositor 0.660867933 s
1067 Xorg.bin 0.616753786 s
1068 ----
1069
1070 Note that `swapper/0` is the "idle" process of CPU 0 on Linux; since we
1071 weren't using the CPU that much when tracing, its first position in the
1072 list makes sense.
1073
1074
1075 [[core-concepts]]
1076 == [[understanding-lttng]]Core concepts
1077
1078 From a user's perspective, the LTTng system is built on a few concepts,
1079 or objects, on which the <<lttng-cli,cmd:lttng command-line tool>>
1080 operates by sending commands to the <<lttng-sessiond,session daemon>>.
1081 Understanding how those objects relate to eachother is key in mastering
1082 the toolkit.
1083
1084 The core concepts are:
1085
1086 * <<tracing-session,Tracing session>>
1087 * <<domain,Tracing domain>>
1088 * <<channel,Channel and ring buffer>>
1089 * <<"event","Instrumentation point, event rule, event, and event record">>
1090
1091
1092 [[tracing-session]]
1093 === Tracing session
1094
1095 A _tracing session_ is a stateful dialogue between you and
1096 a <<lttng-sessiond,session daemon>>. You can
1097 <<creating-destroying-tracing-sessions,create a new tracing
1098 session>> with the `lttng create` command.
1099
1100 Anything that you do when you control LTTng tracers happens within a
1101 tracing session. In particular, a tracing session:
1102
1103 * Has its own name.
1104 * Has its own set of trace files.
1105 * Has its own state of activity (started or stopped).
1106 * Has its own <<tracing-session-mode,mode>> (local, network streaming,
1107 snapshot, or live).
1108 * Has its own <<channel,channels>> which have their own
1109 <<event,event rules>>.
1110
1111 [role="img-100"]
1112 .A _tracing session_ contains <<channel,channels>> that are members of <<domain,tracing domains>> and contain <<event,event rules>>.
1113 image::concepts.png[]
1114
1115 Those attributes and objects are completely isolated between different
1116 tracing sessions.
1117
1118 A tracing session is analogous to a cash machine session:
1119 the operations you do on the banking system through the cash machine do
1120 not alter the data of other users of the same system. In the case of
1121 the cash machine, a session lasts as long as your bank card is inside.
1122 In the case of LTTng, a tracing session lasts from the `lttng create`
1123 command to the `lttng destroy` command.
1124
1125 [role="img-100"]
1126 .Each Unix user has its own set of tracing sessions.
1127 image::many-sessions.png[]
1128
1129
1130 [[tracing-session-mode]]
1131 ==== Tracing session mode
1132
1133 LTTng can send the generated trace data to different locations. The
1134 _tracing session mode_ dictates where to send it. The following modes
1135 are available in LTTng{nbsp}{revision}:
1136
1137 Local mode::
1138 LTTng writes the traces to the file system of the machine being traced
1139 (target system).
1140
1141 Network streaming mode::
1142 LTTng sends the traces over the network to a
1143 <<lttng-relayd,relay daemon>> running on a remote system.
1144
1145 Snapshot mode::
1146 LTTng does not write the traces by default. Instead, you can request
1147 LTTng to <<taking-a-snapshot,take a snapshot>>, that is, a copy of the
1148 current tracing buffers, and to write it to the target's file system
1149 or to send it over the network to a <<lttng-relayd,relay daemon>>
1150 running on a remote system.
1151
1152 Live mode::
1153 This mode is similar to the network streaming mode, but a live
1154 trace viewer can connect to the distant relay daemon to
1155 <<lttng-live,view event records as LTTng generates them>> by
1156 the tracers.
1157
1158
1159 [[domain]]
1160 === Tracing domain
1161
1162 A _tracing domain_ is a namespace for event sources. A tracing domain
1163 has its own properties and features.
1164
1165 There are currently five available tracing domains:
1166
1167 * Linux kernel
1168 * User space
1169 * `java.util.logging` (JUL)
1170 * log4j
1171 * Python
1172
1173 You must specify a tracing domain when using some commands to avoid
1174 ambiguity. For example, since all the domains support named tracepoints
1175 as event sources (instrumentation points that you manually insert in the
1176 source code), you need to specify a tracing domain when
1177 <<enabling-disabling-events,creating an event rule>> because all the
1178 tracing domains could have tracepoints with the same names.
1179
1180 Some features are reserved to specific tracing domains. Dynamic function
1181 entry and return instrumentation points, for example, are currently only
1182 supported in the Linux kernel tracing domain, but support for other
1183 tracing domains could be added in the future.
1184
1185 You can create <<channel,channels>> in the Linux kernel and user space
1186 tracing domains. The other tracing domains have a single default
1187 channel.
1188
1189
1190 [[channel]]
1191 === Channel and ring buffer
1192
1193 A _channel_ is an object which is responsible for a set of ring buffers.
1194 Each ring buffer is divided into multiple sub-buffers. When an LTTng
1195 tracer emits an event, it can record it to one or more
1196 sub-buffers. The attributes of a channel determine what to do when
1197 there's no space left for a new event record because all sub-buffers
1198 are full, where to send a full sub-buffer, and other behaviours.
1199
1200 A channel is always associated to a <<domain,tracing domain>>. The
1201 `java.util.logging` (JUL), log4j, and Python tracing domains each have
1202 a default channel which you cannot configure.
1203
1204 A channel also owns <<event,event rules>>. When an LTTng tracer emits
1205 an event, it records it to the sub-buffers of all
1206 the enabled channels with a satisfied event rule, as long as those
1207 channels are part of active <<tracing-session,tracing sessions>>.
1208
1209
1210 [[channel-buffering-schemes]]
1211 ==== Per-user vs. per-process buffering schemes
1212
1213 A channel has at least one ring buffer _per CPU_. LTTng always
1214 records an event to the ring buffer associated to the CPU on which it
1215 occurred.
1216
1217 Two _buffering schemes_ are available when you
1218 <<enabling-disabling-channels,create a channel>> in the
1219 user space <<domain,tracing domain>>:
1220
1221 Per-user buffering::
1222 Allocate one set of ring buffers--one per CPU--shared by all the
1223 instrumented processes of each Unix user.
1224 +
1225 --
1226 [role="img-100"]
1227 .Per-user buffering scheme.
1228 image::per-user-buffering.png[]
1229 --
1230
1231 Per-process buffering::
1232 Allocate one set of ring buffers--one per CPU--for each
1233 instrumented process.
1234 +
1235 --
1236 [role="img-100"]
1237 .Per-process buffering scheme.
1238 image::per-process-buffering.png[]
1239 --
1240 +
1241 The per-process buffering scheme tends to consume more memory than the
1242 per-user option because systems generally have more instrumented
1243 processes than Unix users running instrumented processes. However, the
1244 per-process buffering scheme ensures that one process having a high
1245 event throughput won't fill all the shared sub-buffers of the same
1246 user, only its own.
1247
1248 The Linux kernel tracing domain has only one available buffering scheme
1249 which is to allocate a single set of ring buffers for the whole system.
1250 This scheme is similar to the per-user option, but with a single, global
1251 user "running" the kernel.
1252
1253
1254 [[channel-overwrite-mode-vs-discard-mode]]
1255 ==== Overwrite vs. discard event loss modes
1256
1257 When an event occurs, LTTng records it to a specific sub-buffer (yellow
1258 arc in the following animation) of a specific channel's ring buffer.
1259 When there's no space left in a sub-buffer, the tracer marks it as
1260 consumable (red) and another, empty sub-buffer starts receiving the
1261 following event records. A <<lttng-consumerd,consumer daemon>>
1262 eventually consumes the marked sub-buffer (returns to white).
1263
1264 [NOTE]
1265 [role="docsvg-channel-subbuf-anim"]
1266 ====
1267 {note-no-anim}
1268 ====
1269
1270 In an ideal world, sub-buffers are consumed faster than they are filled,
1271 as is the case in the previous animation. In the real world,
1272 however, all sub-buffers can be full at some point, leaving no space to
1273 record the following events.
1274
1275 By default, LTTng-modules and LTTng-UST are _non-blocking_ tracers: when
1276 no empty sub-buffer is available, it is acceptable to lose event records
1277 when the alternative would be to cause substantial delays in the
1278 instrumented application's execution. LTTng privileges performance over
1279 integrity; it aims at perturbing the traced system as little as possible
1280 in order to make tracing of subtle race conditions and rare interrupt
1281 cascades possible.
1282
1283 Starting from LTTng{nbsp}2.10, the LTTng user space tracer, LTTng-UST,
1284 supports a _blocking mode_. See the <<blocking-timeout-example,blocking
1285 timeout example>> to learn how to use the blocking mode.
1286
1287 When it comes to losing event records because no empty sub-buffer is
1288 available, or because the <<opt-blocking-timeout,blocking timeout>> is
1289 reached, the channel's _event loss mode_ determines what to do. The
1290 available event loss modes are:
1291
1292 Discard mode::
1293 Drop the newest event records until a the tracer releases a
1294 sub-buffer.
1295 +
1296 This is the only available mode when you specify a
1297 <<opt-blocking-timeout,blocking timeout>>.
1298
1299 Overwrite mode::
1300 Clear the sub-buffer containing the oldest event records and start
1301 writing the newest event records there.
1302 +
1303 This mode is sometimes called _flight recorder mode_ because it's
1304 similar to a
1305 https://en.wikipedia.org/wiki/Flight_recorder[flight recorder]:
1306 always keep a fixed amount of the latest data.
1307
1308 Which mechanism you should choose depends on your context: prioritize
1309 the newest or the oldest event records in the ring buffer?
1310
1311 Beware that, in overwrite mode, the tracer abandons a _whole sub-buffer_
1312 as soon as a there's no space left for a new event record, whereas in
1313 discard mode, the tracer only discards the event record that doesn't
1314 fit.
1315
1316 In discard mode, LTTng increments a count of lost event records when an
1317 event record is lost and saves this count to the trace. In overwrite
1318 mode, since LTTng 2.8, LTTng increments a count of lost sub-buffers when
1319 a sub-buffer is lost and saves this count to the trace. In this mode,
1320 the exact number of lost event records in those lost sub-buffers is not
1321 saved to the trace. Trace analyses can use the trace's saved discarded
1322 event record and sub-buffer counts to decide whether or not to perform
1323 the analyses even if trace data is known to be missing.
1324
1325 There are a few ways to decrease your probability of losing event
1326 records.
1327 <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>> shows
1328 how you can fine-une the sub-buffer count and size of a channel to
1329 virtually stop losing event records, though at the cost of greater
1330 memory usage.
1331
1332
1333 [[channel-subbuf-size-vs-subbuf-count]]
1334 ==== Sub-buffer count and size
1335
1336 When you <<enabling-disabling-channels,create a channel>>, you can
1337 set its number of sub-buffers and their size.
1338
1339 Note that there is noticeable CPU overhead introduced when
1340 switching sub-buffers (marking a full one as consumable and switching
1341 to an empty one for the following events to be recorded). Knowing this,
1342 the following list presents a few practical situations along with how
1343 to configure the sub-buffer count and size for them:
1344
1345 * **High event throughput**: In general, prefer bigger sub-buffers to
1346 lower the risk of losing event records.
1347 +
1348 Having bigger sub-buffers also ensures a lower
1349 <<channel-switch-timer,sub-buffer switching frequency>>.
1350 +
1351 The number of sub-buffers is only meaningful if you create the channel
1352 in overwrite mode: in this case, if a sub-buffer overwrite happens, the
1353 other sub-buffers are left unaltered.
1354
1355 * **Low event throughput**: In general, prefer smaller sub-buffers
1356 since the risk of losing event records is low.
1357 +
1358 Because events occur less frequently, the sub-buffer switching frequency
1359 should remain low and thus the tracer's overhead should not be a
1360 problem.
1361
1362 * **Low memory system**: If your target system has a low memory
1363 limit, prefer fewer first, then smaller sub-buffers.
1364 +
1365 Even if the system is limited in memory, you want to keep the
1366 sub-buffers as big as possible to avoid a high sub-buffer switching
1367 frequency.
1368
1369 Note that LTTng uses http://diamon.org/ctf/[CTF] as its trace format,
1370 which means event data is very compact. For example, the average
1371 LTTng kernel event record weights about 32{nbsp}bytes. Thus, a
1372 sub-buffer size of 1{nbsp}MiB is considered big.
1373
1374 The previous situations highlight the major trade-off between a few big
1375 sub-buffers and more, smaller sub-buffers: sub-buffer switching
1376 frequency vs. how much data is lost in overwrite mode. Assuming a
1377 constant event throughput and using the overwrite mode, the two
1378 following configurations have the same ring buffer total size:
1379
1380 [NOTE]
1381 [role="docsvg-channel-subbuf-size-vs-count-anim"]
1382 ====
1383 {note-no-anim}
1384 ====
1385
1386 * **2 sub-buffers of 4{nbsp}MiB each**: Expect a very low sub-buffer
1387 switching frequency, but if a sub-buffer overwrite happens, half of
1388 the event records so far (4{nbsp}MiB) are definitely lost.
1389 * **8 sub-buffers of 1{nbsp}MiB each**: Expect 4{nbsp}times the tracer's
1390 overhead as the previous configuration, but if a sub-buffer
1391 overwrite happens, only the eighth of event records so far are
1392 definitely lost.
1393
1394 In discard mode, the sub-buffers count parameter is pointless: use two
1395 sub-buffers and set their size according to the requirements of your
1396 situation.
1397
1398
1399 [[channel-switch-timer]]
1400 ==== Switch timer period
1401
1402 The _switch timer period_ is an important configurable attribute of
1403 a channel to ensure periodic sub-buffer flushing.
1404
1405 When the _switch timer_ expires, a sub-buffer switch happens. You can
1406 set the switch timer period attribute when you
1407 <<enabling-disabling-channels,create a channel>> to ensure that event
1408 data is consumed and committed to trace files or to a distant relay
1409 daemon periodically in case of a low event throughput.
1410
1411 [NOTE]
1412 [role="docsvg-channel-switch-timer"]
1413 ====
1414 {note-no-anim}
1415 ====
1416
1417 This attribute is also convenient when you use big sub-buffers to cope
1418 with a sporadic high event throughput, even if the throughput is
1419 normally low.
1420
1421
1422 [[channel-read-timer]]
1423 ==== Read timer period
1424
1425 By default, the LTTng tracers use a notification mechanism to signal a
1426 full sub-buffer so that a consumer daemon can consume it. When such
1427 notifications must be avoided, for example in real-time applications,
1428 you can use the channel's _read timer_ instead. When the read timer
1429 fires, the <<lttng-consumerd,consumer daemon>> checks for full,
1430 consumable sub-buffers.
1431
1432
1433 [[tracefile-rotation]]
1434 ==== Trace file count and size
1435
1436 By default, trace files can grow as large as needed. You can set the
1437 maximum size of each trace file that a channel writes when you
1438 <<enabling-disabling-channels,create a channel>>. When the size of
1439 a trace file reaches the channel's fixed maximum size, LTTng creates
1440 another file to contain the next event records. LTTng appends a file
1441 count to each trace file name in this case.
1442
1443 If you set the trace file size attribute when you create a channel, the
1444 maximum number of trace files that LTTng creates is _unlimited_ by
1445 default. To limit them, you can also set a maximum number of trace
1446 files. When the number of trace files reaches the channel's fixed
1447 maximum count, the oldest trace file is overwritten. This mechanism is
1448 called _trace file rotation_.
1449
1450
1451 [[event]]
1452 === Instrumentation point, event rule, event, and event record
1453
1454 An _event rule_ is a set of conditions which must be **all** satisfied
1455 for LTTng to record an occuring event.
1456
1457 You set the conditions when you <<enabling-disabling-events,create
1458 an event rule>>.
1459
1460 You always attach an event rule to <<channel,channel>> when you create
1461 it.
1462
1463 When an event passes the conditions of an event rule, LTTng records it
1464 in one of the attached channel's sub-buffers.
1465
1466 The available conditions, as of LTTng{nbsp}{revision}, are:
1467
1468 * The event rule _is enabled_.
1469 * The instrumentation point's type _is{nbsp}T_.
1470 * The instrumentation point's name (sometimes called _event name_)
1471 _matches{nbsp}N_, but _is not{nbsp}E_.
1472 * The instrumentation point's log level _is as severe as{nbsp}L_, or
1473 _is exactly{nbsp}L_.
1474 * The fields of the event's payload _satisfy_ a filter
1475 expression{nbsp}__F__.
1476
1477 As you can see, all the conditions but the dynamic filter are related to
1478 the event rule's status or to the instrumentation point, not to the
1479 occurring events. This is why, without a filter, checking if an event
1480 passes an event rule is not a dynamic task: when you create or modify an
1481 event rule, all the tracers of its tracing domain enable or disable the
1482 instrumentation points themselves once. This is possible because the
1483 attributes of an instrumentation point (type, name, and log level) are
1484 defined statically. In other words, without a dynamic filter, the tracer
1485 _does not evaluate_ the arguments of an instrumentation point unless it
1486 matches an enabled event rule.
1487
1488 Note that, for LTTng to record an event, the <<channel,channel>> to
1489 which a matching event rule is attached must also be enabled, and the
1490 tracing session owning this channel must be active.
1491
1492 [role="img-100"]
1493 .Logical path from an instrumentation point to an event record.
1494 image::event-rule.png[]
1495
1496 .Event, event record, or event rule?
1497 ****
1498 With so many similar terms, it's easy to get confused.
1499
1500 An **event** is the consequence of the execution of an _instrumentation
1501 point_, like a tracepoint that you manually place in some source code,
1502 or a Linux kernel KProbe. An event is said to _occur_ at a specific
1503 time. Different actions can be taken upon the occurrence of an event,
1504 like record the event's payload to a buffer.
1505
1506 An **event record** is the representation of an event in a sub-buffer. A
1507 tracer is responsible for capturing the payload of an event, current
1508 context variables, the event's ID, and the event's timestamp. LTTng
1509 can append this sub-buffer to a trace file.
1510
1511 An **event rule** is a set of conditions which must all be satisfied for
1512 LTTng to record an occuring event. Events still occur without
1513 satisfying event rules, but LTTng does not record them.
1514 ****
1515
1516
1517 [[plumbing]]
1518 == Components of noch:{LTTng}
1519
1520 The second _T_ in _LTTng_ stands for _toolkit_: it would be wrong
1521 to call LTTng a simple _tool_ since it is composed of multiple
1522 interacting components. This section describes those components,
1523 explains their respective roles, and shows how they connect together to
1524 form the LTTng ecosystem.
1525
1526 The following diagram shows how the most important components of LTTng
1527 interact with user applications, the Linux kernel, and you:
1528
1529 [role="img-100"]
1530 .Control and trace data paths between LTTng components.
1531 image::plumbing.png[]
1532
1533 The LTTng project incorporates:
1534
1535 * **LTTng-tools**: Libraries and command-line interface to
1536 control tracing sessions.
1537 ** <<lttng-sessiond,Session daemon>> (man:lttng-sessiond(8)).
1538 ** <<lttng-consumerd,Consumer daemon>> (man:lttng-consumerd(8)).
1539 ** <<lttng-relayd,Relay daemon>> (man:lttng-relayd(8)).
1540 ** <<liblttng-ctl-lttng,Tracing control library>> (`liblttng-ctl`).
1541 ** <<lttng-cli,Tracing control command-line tool>> (man:lttng(1)).
1542 * **LTTng-UST**: Libraries and Java/Python packages to trace user
1543 applications.
1544 ** <<lttng-ust,User space tracing library>> (`liblttng-ust`) and its
1545 headers to instrument and trace any native user application.
1546 ** <<prebuilt-ust-helpers,Preloadable user space tracing helpers>>:
1547 *** `liblttng-ust-libc-wrapper`
1548 *** `liblttng-ust-pthread-wrapper`
1549 *** `liblttng-ust-cyg-profile`
1550 *** `liblttng-ust-cyg-profile-fast`
1551 *** `liblttng-ust-dl`
1552 ** User space tracepoint provider source files generator command-line
1553 tool (man:lttng-gen-tp(1)).
1554 ** <<lttng-ust-agents,LTTng-UST Java agent>> to instrument and trace
1555 Java applications using `java.util.logging` or
1556 Apache log4j 1.2 logging.
1557 ** <<lttng-ust-agents,LTTng-UST Python agent>> to instrument
1558 Python applications using the standard `logging` package.
1559 * **LTTng-modules**: <<lttng-modules,Linux kernel modules>> to trace
1560 the kernel.
1561 ** LTTng kernel tracer module.
1562 ** Tracing ring buffer kernel modules.
1563 ** Probe kernel modules.
1564 ** LTTng logger kernel module.
1565
1566
1567 [[lttng-cli]]
1568 === Tracing control command-line interface
1569
1570 [role="img-100"]
1571 .The tracing control command-line interface.
1572 image::plumbing-lttng-cli.png[]
1573
1574 The _man:lttng(1) command-line tool_ is the standard user interface to
1575 control LTTng <<tracing-session,tracing sessions>>. The cmd:lttng tool
1576 is part of LTTng-tools.
1577
1578 The cmd:lttng tool is linked with
1579 <<liblttng-ctl-lttng,`liblttng-ctl`>> to communicate with
1580 one or more <<lttng-sessiond,session daemons>> behind the scenes.
1581
1582 The cmd:lttng tool has a Git-like interface:
1583
1584 [role="term"]
1585 ----
1586 $ lttng <GENERAL OPTIONS> <COMMAND> <COMMAND OPTIONS>
1587 ----
1588
1589 The <<controlling-tracing,Tracing control>> section explores the
1590 available features of LTTng using the cmd:lttng tool.
1591
1592
1593 [[liblttng-ctl-lttng]]
1594 === Tracing control library
1595
1596 [role="img-100"]
1597 .The tracing control library.
1598 image::plumbing-liblttng-ctl.png[]
1599
1600 The _LTTng control library_, `liblttng-ctl`, is used to communicate
1601 with a <<lttng-sessiond,session daemon>> using a C API that hides the
1602 underlying protocol's details. `liblttng-ctl` is part of LTTng-tools.
1603
1604 The <<lttng-cli,cmd:lttng command-line tool>>
1605 is linked with `liblttng-ctl`.
1606
1607 You can use `liblttng-ctl` in C or $$C++$$ source code by including its
1608 "master" header:
1609
1610 [source,c]
1611 ----
1612 #include <lttng/lttng.h>
1613 ----
1614
1615 Some objects are referenced by name (C string), such as tracing
1616 sessions, but most of them require to create a handle first using
1617 `lttng_create_handle()`.
1618
1619 The best available developer documentation for `liblttng-ctl` is, as of
1620 LTTng{nbsp}{revision}, its installed header files. Every function and
1621 structure is thoroughly documented.
1622
1623
1624 [[lttng-ust]]
1625 === User space tracing library
1626
1627 [role="img-100"]
1628 .The user space tracing library.
1629 image::plumbing-liblttng-ust.png[]
1630
1631 The _user space tracing library_, `liblttng-ust` (see man:lttng-ust(3)),
1632 is the LTTng user space tracer. It receives commands from a
1633 <<lttng-sessiond,session daemon>>, for example to
1634 enable and disable specific instrumentation points, and writes event
1635 records to ring buffers shared with a
1636 <<lttng-consumerd,consumer daemon>>.
1637 `liblttng-ust` is part of LTTng-UST.
1638
1639 Public C header files are installed beside `liblttng-ust` to
1640 instrument any <<c-application,C or $$C++$$ application>>.
1641
1642 <<lttng-ust-agents,LTTng-UST agents>>, which are regular Java and Python
1643 packages, use their own library providing tracepoints which is
1644 linked with `liblttng-ust`.
1645
1646 An application or library does not have to initialize `liblttng-ust`
1647 manually: its constructor does the necessary tasks to properly register
1648 to a session daemon. The initialization phase also enables the
1649 instrumentation points matching the <<event,event rules>> that you
1650 already created.
1651
1652
1653 [[lttng-ust-agents]]
1654 === User space tracing agents
1655
1656 [role="img-100"]
1657 .The user space tracing agents.
1658 image::plumbing-lttng-ust-agents.png[]
1659
1660 The _LTTng-UST Java and Python agents_ are regular Java and Python
1661 packages which add LTTng tracing capabilities to the
1662 native logging frameworks. The LTTng-UST agents are part of LTTng-UST.
1663
1664 In the case of Java, the
1665 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[`java.util.logging`
1666 core logging facilities] and
1667 https://logging.apache.org/log4j/1.2/[Apache log4j 1.2] are supported.
1668 Note that Apache Log4{nbsp}2 is not supported.
1669
1670 In the case of Python, the standard
1671 https://docs.python.org/3/library/logging.html[`logging`] package
1672 is supported. Both Python 2 and Python 3 modules can import the
1673 LTTng-UST Python agent package.
1674
1675 The applications using the LTTng-UST agents are in the
1676 `java.util.logging` (JUL),
1677 log4j, and Python <<domain,tracing domains>>.
1678
1679 Both agents use the same mechanism to trace the log statements. When an
1680 agent is initialized, it creates a log handler that attaches to the root
1681 logger. The agent also registers to a <<lttng-sessiond,session daemon>>.
1682 When the application executes a log statement, it is passed to the
1683 agent's log handler by the root logger. The agent's log handler calls a
1684 native function in a tracepoint provider package shared library linked
1685 with <<lttng-ust,`liblttng-ust`>>, passing the formatted log message and
1686 other fields, like its logger name and its log level. This native
1687 function contains a user space instrumentation point, hence tracing the
1688 log statement.
1689
1690 The log level condition of an
1691 <<event,event rule>> is considered when tracing
1692 a Java or a Python application, and it's compatible with the standard
1693 JUL, log4j, and Python log levels.
1694
1695
1696 [[lttng-modules]]
1697 === LTTng kernel modules
1698
1699 [role="img-100"]
1700 .The LTTng kernel modules.
1701 image::plumbing-lttng-modules.png[]
1702
1703 The _LTTng kernel modules_ are a set of Linux kernel modules
1704 which implement the kernel tracer of the LTTng project. The LTTng
1705 kernel modules are part of LTTng-modules.
1706
1707 The LTTng kernel modules include:
1708
1709 * A set of _probe_ modules.
1710 +
1711 Each module attaches to a specific subsystem
1712 of the Linux kernel using its tracepoint instrument points. There are
1713 also modules to attach to the entry and return points of the Linux
1714 system call functions.
1715
1716 * _Ring buffer_ modules.
1717 +
1718 A ring buffer implementation is provided as kernel modules. The LTTng
1719 kernel tracer writes to the ring buffer; a
1720 <<lttng-consumerd,consumer daemon>> reads from the ring buffer.
1721
1722 * The _LTTng kernel tracer_ module.
1723 * The _LTTng logger_ module.
1724 +
1725 The LTTng logger module implements the special path:{/proc/lttng-logger}
1726 file so that any executable can generate LTTng events by opening and
1727 writing to this file.
1728 +
1729 See <<proc-lttng-logger-abi,LTTng logger>>.
1730
1731 Generally, you do not have to load the LTTng kernel modules manually
1732 (using man:modprobe(8), for example): a root <<lttng-sessiond,session
1733 daemon>> loads the necessary modules when starting. If you have extra
1734 probe modules, you can specify to load them to the session daemon on
1735 the command line.
1736
1737 The LTTng kernel modules are installed in
1738 +/usr/lib/modules/__release__/extra+ by default, where +__release__+ is
1739 the kernel release (see `uname --kernel-release`).
1740
1741
1742 [[lttng-sessiond]]
1743 === Session daemon
1744
1745 [role="img-100"]
1746 .The session daemon.
1747 image::plumbing-sessiond.png[]
1748
1749 The _session daemon_, man:lttng-sessiond(8), is a daemon responsible for
1750 managing tracing sessions and for controlling the various components of
1751 LTTng. The session daemon is part of LTTng-tools.
1752
1753 The session daemon sends control requests to and receives control
1754 responses from:
1755
1756 * The <<lttng-ust,user space tracing library>>.
1757 +
1758 Any instance of the user space tracing library first registers to
1759 a session daemon. Then, the session daemon can send requests to
1760 this instance, such as:
1761 +
1762 --
1763 ** Get the list of tracepoints.
1764 ** Share an <<event,event rule>> so that the user space tracing library
1765 can enable or disable tracepoints. Amongst the possible conditions
1766 of an event rule is a filter expression which `liblttng-ust` evalutes
1767 when an event occurs.
1768 ** Share <<channel,channel>> attributes and ring buffer locations.
1769 --
1770 +
1771 The session daemon and the user space tracing library use a Unix
1772 domain socket for their communication.
1773
1774 * The <<lttng-ust-agents,user space tracing agents>>.
1775 +
1776 Any instance of a user space tracing agent first registers to
1777 a session daemon. Then, the session daemon can send requests to
1778 this instance, such as:
1779 +
1780 --
1781 ** Get the list of loggers.
1782 ** Enable or disable a specific logger.
1783 --
1784 +
1785 The session daemon and the user space tracing agent use a TCP connection
1786 for their communication.
1787
1788 * The <<lttng-modules,LTTng kernel tracer>>.
1789 * The <<lttng-consumerd,consumer daemon>>.
1790 +
1791 The session daemon sends requests to the consumer daemon to instruct
1792 it where to send the trace data streams, amongst other information.
1793
1794 * The <<lttng-relayd,relay daemon>>.
1795
1796 The session daemon receives commands from the
1797 <<liblttng-ctl-lttng,tracing control library>>.
1798
1799 The root session daemon loads the appropriate
1800 <<lttng-modules,LTTng kernel modules>> on startup. It also spawns
1801 a <<lttng-consumerd,consumer daemon>> as soon as you create
1802 an <<event,event rule>>.
1803
1804 The session daemon does not send and receive trace data: this is the
1805 role of the <<lttng-consumerd,consumer daemon>> and
1806 <<lttng-relayd,relay daemon>>. It does, however, generate the
1807 http://diamon.org/ctf/[CTF] metadata stream.
1808
1809 Each Unix user can have its own session daemon instance. The
1810 tracing sessions managed by different session daemons are completely
1811 independent.
1812
1813 The root user's session daemon is the only one which is
1814 allowed to control the LTTng kernel tracer, and its spawned consumer
1815 daemon is the only one which is allowed to consume trace data from the
1816 LTTng kernel tracer. Note, however, that any Unix user which is a member
1817 of the <<tracing-group,tracing group>> is allowed
1818 to create <<channel,channels>> in the
1819 Linux kernel <<domain,tracing domain>>, and thus to trace the Linux
1820 kernel.
1821
1822 The <<lttng-cli,cmd:lttng command-line tool>> automatically starts a
1823 session daemon when using its `create` command if none is currently
1824 running. You can also start the session daemon manually.
1825
1826
1827 [[lttng-consumerd]]
1828 === Consumer daemon
1829
1830 [role="img-100"]
1831 .The consumer daemon.
1832 image::plumbing-consumerd.png[]
1833
1834 The _consumer daemon_, man:lttng-consumerd(8), is a daemon which shares
1835 ring buffers with user applications or with the LTTng kernel modules to
1836 collect trace data and send it to some location (on disk or to a
1837 <<lttng-relayd,relay daemon>> over the network). The consumer daemon
1838 is part of LTTng-tools.
1839
1840 You do not start a consumer daemon manually: a consumer daemon is always
1841 spawned by a <<lttng-sessiond,session daemon>> as soon as you create an
1842 <<event,event rule>>, that is, before you start tracing. When you kill
1843 its owner session daemon, the consumer daemon also exits because it is
1844 the session daemon's child process. Command-line options of
1845 man:lttng-sessiond(8) target the consumer daemon process.
1846
1847 There are up to two running consumer daemons per Unix user, whereas only
1848 one session daemon can run per user. This is because each process can be
1849 either 32-bit or 64-bit: if the target system runs a mixture of 32-bit
1850 and 64-bit processes, it is more efficient to have separate
1851 corresponding 32-bit and 64-bit consumer daemons. The root user is an
1852 exception: it can have up to _three_ running consumer daemons: 32-bit
1853 and 64-bit instances for its user applications, and one more
1854 reserved for collecting kernel trace data.
1855
1856
1857 [[lttng-relayd]]
1858 === Relay daemon
1859
1860 [role="img-100"]
1861 .The relay daemon.
1862 image::plumbing-relayd.png[]
1863
1864 The _relay daemon_, man:lttng-relayd(8), is a daemon acting as a bridge
1865 between remote session and consumer daemons, local trace files, and a
1866 remote live trace viewer. The relay daemon is part of LTTng-tools.
1867
1868 The main purpose of the relay daemon is to implement a receiver of
1869 <<sending-trace-data-over-the-network,trace data over the network>>.
1870 This is useful when the target system does not have much file system
1871 space to record trace files locally.
1872
1873 The relay daemon is also a server to which a
1874 <<lttng-live,live trace viewer>> can
1875 connect. The live trace viewer sends requests to the relay daemon to
1876 receive trace data as the target system emits events. The
1877 communication protocol is named _LTTng live_; it is used over TCP
1878 connections.
1879
1880 Note that you can start the relay daemon on the target system directly.
1881 This is the setup of choice when the use case is to view events as
1882 the target system emits them without the need of a remote system.
1883
1884
1885 [[instrumenting]]
1886 == [[using-lttng]]Instrumentation
1887
1888 There are many examples of tracing and monitoring in our everyday life:
1889
1890 * You have access to real-time and historical weather reports and
1891 forecasts thanks to weather stations installed around the country.
1892 * You know your heart is safe thanks to an electrocardiogram.
1893 * You make sure not to drive your car too fast and to have enough fuel
1894 to reach your destination thanks to gauges visible on your dashboard.
1895
1896 All the previous examples have something in common: they rely on
1897 **instruments**. Without the electrodes attached to the surface of your
1898 body's skin, cardiac monitoring is futile.
1899
1900 LTTng, as a tracer, is no different from those real life examples. If
1901 you're about to trace a software system or, in other words, record its
1902 history of execution, you better have **instrumentation points** in the
1903 subject you're tracing, that is, the actual software.
1904
1905 Various ways were developed to instrument a piece of software for LTTng
1906 tracing. The most straightforward one is to manually place
1907 instrumentation points, called _tracepoints_, in the software's source
1908 code. It is also possible to add instrumentation points dynamically in
1909 the Linux kernel <<domain,tracing domain>>.
1910
1911 If you're only interested in tracing the Linux kernel, your
1912 instrumentation needs are probably already covered by LTTng's built-in
1913 <<lttng-modules,Linux kernel tracepoints>>. You may also wish to trace a
1914 user application which is already instrumented for LTTng tracing.
1915 In such cases, you can skip this whole section and read the topics of
1916 the <<controlling-tracing,Tracing control>> section.
1917
1918 Many methods are available to instrument a piece of software for LTTng
1919 tracing. They are:
1920
1921 * <<c-application,User space instrumentation for C and $$C++$$
1922 applications>>.
1923 * <<prebuilt-ust-helpers,Prebuilt user space tracing helpers>>.
1924 * <<java-application,User space Java agent>>.
1925 * <<python-application,User space Python agent>>.
1926 * <<proc-lttng-logger-abi,LTTng logger>>.
1927 * <<instrumenting-linux-kernel,LTTng kernel tracepoints>>.
1928
1929
1930 [[c-application]]
1931 === [[cxx-application]]User space instrumentation for C and $$C++$$ applications
1932
1933 The procedure to instrument a C or $$C++$$ user application with
1934 the <<lttng-ust,LTTng user space tracing library>>, `liblttng-ust`, is:
1935
1936 . <<tracepoint-provider,Create the source files of a tracepoint provider
1937 package>>.
1938 . <<probing-the-application-source-code,Add tracepoints to
1939 the application's source code>>.
1940 . <<building-tracepoint-providers-and-user-application,Build and link
1941 a tracepoint provider package and the user application>>.
1942
1943 If you need quick, man:printf(3)-like instrumentation, you can skip
1944 those steps and use <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>>
1945 instead.
1946
1947 IMPORTANT: You need to <<installing-lttng,install>> LTTng-UST to
1948 instrument a user application with `liblttng-ust`.
1949
1950
1951 [[tracepoint-provider]]
1952 ==== Create the source files of a tracepoint provider package
1953
1954 A _tracepoint provider_ is a set of compiled functions which provide
1955 **tracepoints** to an application, the type of instrumentation point
1956 supported by LTTng-UST. Those functions can emit events with
1957 user-defined fields and serialize those events as event records to one
1958 or more LTTng-UST <<channel,channel>> sub-buffers. The `tracepoint()`
1959 macro, which you <<probing-the-application-source-code,insert in a user
1960 application's source code>>, calls those functions.
1961
1962 A _tracepoint provider package_ is an object file (`.o`) or a shared
1963 library (`.so`) which contains one or more tracepoint providers.
1964 Its source files are:
1965
1966 * One or more <<tpp-header,tracepoint provider header>> (`.h`).
1967 * A <<tpp-source,tracepoint provider package source>> (`.c`).
1968
1969 A tracepoint provider package is dynamically linked with `liblttng-ust`,
1970 the LTTng user space tracer, at run time.
1971
1972 [role="img-100"]
1973 .User application linked with `liblttng-ust` and containing a tracepoint provider.
1974 image::ust-app.png[]
1975
1976 NOTE: If you need quick, man:printf(3)-like instrumentation, you can
1977 skip creating and using a tracepoint provider and use
1978 <<tracef,`tracef()`>> or <<tracelog,`tracelog()`>> instead.
1979
1980
1981 [[tpp-header]]
1982 ===== Create a tracepoint provider header file template
1983
1984 A _tracepoint provider header file_ contains the tracepoint
1985 definitions of a tracepoint provider.
1986
1987 To create a tracepoint provider header file:
1988
1989 . Start from this template:
1990 +
1991 --
1992 [source,c]
1993 .Tracepoint provider header file template (`.h` file extension).
1994 ----
1995 #undef TRACEPOINT_PROVIDER
1996 #define TRACEPOINT_PROVIDER provider_name
1997
1998 #undef TRACEPOINT_INCLUDE
1999 #define TRACEPOINT_INCLUDE "./tp.h"
2000
2001 #if !defined(_TP_H) || defined(TRACEPOINT_HEADER_MULTI_READ)
2002 #define _TP_H
2003
2004 #include <lttng/tracepoint.h>
2005
2006 /*
2007 * Use TRACEPOINT_EVENT(), TRACEPOINT_EVENT_CLASS(),
2008 * TRACEPOINT_EVENT_INSTANCE(), and TRACEPOINT_LOGLEVEL() here.
2009 */
2010
2011 #endif /* _TP_H */
2012
2013 #include <lttng/tracepoint-event.h>
2014 ----
2015 --
2016
2017 . Replace:
2018 +
2019 * `provider_name` with the name of your tracepoint provider.
2020 * `"tp.h"` with the name of your tracepoint provider header file.
2021
2022 . Below the `#include <lttng/tracepoint.h>` line, put your
2023 <<defining-tracepoints,tracepoint definitions>>.
2024
2025 Your tracepoint provider name must be unique amongst all the possible
2026 tracepoint provider names used on the same target system. We
2027 suggest to include the name of your project or company in the name,
2028 for example, `org_lttng_my_project_tpp`.
2029
2030 TIP: [[lttng-gen-tp]]You can use the man:lttng-gen-tp(1) tool to create
2031 this boilerplate for you. When using cmd:lttng-gen-tp, all you need to
2032 write are the <<defining-tracepoints,tracepoint definitions>>.
2033
2034
2035 [[defining-tracepoints]]
2036 ===== Create a tracepoint definition
2037
2038 A _tracepoint definition_ defines, for a given tracepoint:
2039
2040 * Its **input arguments**. They are the macro parameters that the
2041 `tracepoint()` macro accepts for this particular tracepoint
2042 in the user application's source code.
2043 * Its **output event fields**. They are the sources of event fields
2044 that form the payload of any event that the execution of the
2045 `tracepoint()` macro emits for this particular tracepoint.
2046
2047 You can create a tracepoint definition by using the
2048 `TRACEPOINT_EVENT()` macro below the `#include <lttng/tracepoint.h>`
2049 line in the
2050 <<tpp-header,tracepoint provider header file template>>.
2051
2052 The syntax of the `TRACEPOINT_EVENT()` macro is:
2053
2054 [source,c]
2055 .`TRACEPOINT_EVENT()` macro syntax.
2056 ----
2057 TRACEPOINT_EVENT(
2058 /* Tracepoint provider name */
2059 provider_name,
2060
2061 /* Tracepoint name */
2062 tracepoint_name,
2063
2064 /* Input arguments */
2065 TP_ARGS(
2066 arguments
2067 ),
2068
2069 /* Output event fields */
2070 TP_FIELDS(
2071 fields
2072 )
2073 )
2074 ----
2075
2076 Replace:
2077
2078 * `provider_name` with your tracepoint provider name.
2079 * `tracepoint_name` with your tracepoint name.
2080 * `arguments` with the <<tpp-def-input-args,input arguments>>.
2081 * `fields` with the <<tpp-def-output-fields,output event field>>
2082 definitions.
2083
2084 This tracepoint emits events named `provider_name:tracepoint_name`.
2085
2086 [IMPORTANT]
2087 .Event name's length limitation
2088 ====
2089 The concatenation of the tracepoint provider name and the
2090 tracepoint name must not exceed **254 characters**. If it does, the
2091 instrumented application compiles and runs, but LTTng throws multiple
2092 warnings and you could experience serious issues.
2093 ====
2094
2095 [[tpp-def-input-args]]The syntax of the `TP_ARGS()` macro is:
2096
2097 [source,c]
2098 .`TP_ARGS()` macro syntax.
2099 ----
2100 TP_ARGS(
2101 type, arg_name
2102 )
2103 ----
2104
2105 Replace:
2106
2107 * `type` with the C type of the argument.
2108 * `arg_name` with the argument name.
2109
2110 You can repeat `type` and `arg_name` up to 10 times to have
2111 more than one argument.
2112
2113 .`TP_ARGS()` usage with three arguments.
2114 ====
2115 [source,c]
2116 ----
2117 TP_ARGS(
2118 int, count,
2119 float, ratio,
2120 const char*, query
2121 )
2122 ----
2123 ====
2124
2125 The `TP_ARGS()` and `TP_ARGS(void)` forms are valid to create a
2126 tracepoint definition with no input arguments.
2127
2128 [[tpp-def-output-fields]]The `TP_FIELDS()` macro contains a list of
2129 `ctf_*()` macros. Each `ctf_*()` macro defines one event field. See
2130 man:lttng-ust(3) for a complete description of the available `ctf_*()`
2131 macros. A `ctf_*()` macro specifies the type, size, and byte order of
2132 one event field.
2133
2134 Each `ctf_*()` macro takes an _argument expression_ parameter. This is a
2135 C expression that the tracer evalutes at the `tracepoint()` macro site
2136 in the application's source code. This expression provides a field's
2137 source of data. The argument expression can include input argument names
2138 listed in the `TP_ARGS()` macro.
2139
2140 Each `ctf_*()` macro also takes a _field name_ parameter. Field names
2141 must be unique within a given tracepoint definition.
2142
2143 Here's a complete tracepoint definition example:
2144
2145 .Tracepoint definition.
2146 ====
2147 The following tracepoint definition defines a tracepoint which takes
2148 three input arguments and has four output event fields.
2149
2150 [source,c]
2151 ----
2152 #include "my-custom-structure.h"
2153
2154 TRACEPOINT_EVENT(
2155 my_provider,
2156 my_tracepoint,
2157 TP_ARGS(
2158 const struct my_custom_structure*, my_custom_structure,
2159 float, ratio,
2160 const char*, query
2161 ),
2162 TP_FIELDS(
2163 ctf_string(query_field, query)
2164 ctf_float(double, ratio_field, ratio)
2165 ctf_integer(int, recv_size, my_custom_structure->recv_size)
2166 ctf_integer(int, send_size, my_custom_structure->send_size)
2167 )
2168 )
2169 ----
2170
2171 You can refer to this tracepoint definition with the `tracepoint()`
2172 macro in your application's source code like this:
2173
2174 [source,c]
2175 ----
2176 tracepoint(my_provider, my_tracepoint,
2177 my_structure, some_ratio, the_query);
2178 ----
2179 ====
2180
2181 NOTE: The LTTng tracer only evaluates tracepoint arguments at run time
2182 if they satisfy an enabled <<event,event rule>>.
2183
2184
2185 [[using-tracepoint-classes]]
2186 ===== Use a tracepoint class
2187
2188 A _tracepoint class_ is a class of tracepoints which share the same
2189 output event field definitions. A _tracepoint instance_ is one
2190 instance of such a defined tracepoint class, with its own tracepoint
2191 name.
2192
2193 The <<defining-tracepoints,`TRACEPOINT_EVENT()` macro>> is actually a
2194 shorthand which defines both a tracepoint class and a tracepoint
2195 instance at the same time.
2196
2197 When you build a tracepoint provider package, the C or $$C++$$ compiler
2198 creates one serialization function for each **tracepoint class**. A
2199 serialization function is responsible for serializing the event fields
2200 of a tracepoint to a sub-buffer when tracing.
2201
2202 For various performance reasons, when your situation requires multiple
2203 tracepoint definitions with different names, but with the same event
2204 fields, we recommend that you manually create a tracepoint class
2205 and instantiate as many tracepoint instances as needed. One positive
2206 effect of such a design, amongst other advantages, is that all
2207 tracepoint instances of the same tracepoint class reuse the same
2208 serialization function, thus reducing
2209 https://en.wikipedia.org/wiki/Cache_pollution[cache pollution].
2210
2211 .Use a tracepoint class and tracepoint instances.
2212 ====
2213 Consider the following three tracepoint definitions:
2214
2215 [source,c]
2216 ----
2217 TRACEPOINT_EVENT(
2218 my_app,
2219 get_account,
2220 TP_ARGS(
2221 int, userid,
2222 size_t, len
2223 ),
2224 TP_FIELDS(
2225 ctf_integer(int, userid, userid)
2226 ctf_integer(size_t, len, len)
2227 )
2228 )
2229
2230 TRACEPOINT_EVENT(
2231 my_app,
2232 get_settings,
2233 TP_ARGS(
2234 int, userid,
2235 size_t, len
2236 ),
2237 TP_FIELDS(
2238 ctf_integer(int, userid, userid)
2239 ctf_integer(size_t, len, len)
2240 )
2241 )
2242
2243 TRACEPOINT_EVENT(
2244 my_app,
2245 get_transaction,
2246 TP_ARGS(
2247 int, userid,
2248 size_t, len
2249 ),
2250 TP_FIELDS(
2251 ctf_integer(int, userid, userid)
2252 ctf_integer(size_t, len, len)
2253 )
2254 )
2255 ----
2256
2257 In this case, we create three tracepoint classes, with one implicit
2258 tracepoint instance for each of them: `get_account`, `get_settings`, and
2259 `get_transaction`. However, they all share the same event field names
2260 and types. Hence three identical, yet independent serialization
2261 functions are created when you build the tracepoint provider package.
2262
2263 A better design choice is to define a single tracepoint class and three
2264 tracepoint instances:
2265
2266 [source,c]
2267 ----
2268 /* The tracepoint class */
2269 TRACEPOINT_EVENT_CLASS(
2270 /* Tracepoint provider name */
2271 my_app,
2272
2273 /* Tracepoint class name */
2274 my_class,
2275
2276 /* Input arguments */
2277 TP_ARGS(
2278 int, userid,
2279 size_t, len
2280 ),
2281
2282 /* Output event fields */
2283 TP_FIELDS(
2284 ctf_integer(int, userid, userid)
2285 ctf_integer(size_t, len, len)
2286 )
2287 )
2288
2289 /* The tracepoint instances */
2290 TRACEPOINT_EVENT_INSTANCE(
2291 /* Tracepoint provider name */
2292 my_app,
2293
2294 /* Tracepoint class name */
2295 my_class,
2296
2297 /* Tracepoint name */
2298 get_account,
2299
2300 /* Input arguments */
2301 TP_ARGS(
2302 int, userid,
2303 size_t, len
2304 )
2305 )
2306 TRACEPOINT_EVENT_INSTANCE(
2307 my_app,
2308 my_class,
2309 get_settings,
2310 TP_ARGS(
2311 int, userid,
2312 size_t, len
2313 )
2314 )
2315 TRACEPOINT_EVENT_INSTANCE(
2316 my_app,
2317 my_class,
2318 get_transaction,
2319 TP_ARGS(
2320 int, userid,
2321 size_t, len
2322 )
2323 )
2324 ----
2325 ====
2326
2327
2328 [[assigning-log-levels]]
2329 ===== Assign a log level to a tracepoint definition
2330
2331 You can assign an optional _log level_ to a
2332 <<defining-tracepoints,tracepoint definition>>.
2333
2334 Assigning different levels of severity to tracepoint definitions can
2335 be useful: when you <<enabling-disabling-events,create an event rule>>,
2336 you can target tracepoints having a log level as severe as a specific
2337 value.
2338
2339 The concept of LTTng-UST log levels is similar to the levels found
2340 in typical logging frameworks:
2341
2342 * In a logging framework, the log level is given by the function
2343 or method name you use at the log statement site: `debug()`,
2344 `info()`, `warn()`, `error()`, and so on.
2345 * In LTTng-UST, you statically assign the log level to a tracepoint
2346 definition; any `tracepoint()` macro invocation which refers to
2347 this definition has this log level.
2348
2349 You can assign a log level to a tracepoint definition with the
2350 `TRACEPOINT_LOGLEVEL()` macro. You must use this macro _after_ the
2351 <<defining-tracepoints,`TRACEPOINT_EVENT()`>> or
2352 <<using-tracepoint-classes,`TRACEPOINT_INSTANCE()`>> macro for a given
2353 tracepoint.
2354
2355 The syntax of the `TRACEPOINT_LOGLEVEL()` macro is:
2356
2357 [source,c]
2358 .`TRACEPOINT_LOGLEVEL()` macro syntax.
2359 ----
2360 TRACEPOINT_LOGLEVEL(provider_name, tracepoint_name, log_level)
2361 ----
2362
2363 Replace:
2364
2365 * `provider_name` with the tracepoint provider name.
2366 * `tracepoint_name` with the tracepoint name.
2367 * `log_level` with the log level to assign to the tracepoint
2368 definition named `tracepoint_name` in the `provider_name`
2369 tracepoint provider.
2370 +
2371 See man:lttng-ust(3) for a list of available log level names.
2372
2373 .Assign the `TRACE_DEBUG_UNIT` log level to a tracepoint definition.
2374 ====
2375 [source,c]
2376 ----
2377 /* Tracepoint definition */
2378 TRACEPOINT_EVENT(
2379 my_app,
2380 get_transaction,
2381 TP_ARGS(
2382 int, userid,
2383 size_t, len
2384 ),
2385 TP_FIELDS(
2386 ctf_integer(int, userid, userid)
2387 ctf_integer(size_t, len, len)
2388 )
2389 )
2390
2391 /* Log level assignment */
2392 TRACEPOINT_LOGLEVEL(my_app, get_transaction, TRACE_DEBUG_UNIT)
2393 ----
2394 ====
2395
2396
2397 [[tpp-source]]
2398 ===== Create a tracepoint provider package source file
2399
2400 A _tracepoint provider package source file_ is a C source file which
2401 includes a <<tpp-header,tracepoint provider header file>> to expand its
2402 macros into event serialization and other functions.
2403
2404 You can always use the following tracepoint provider package source
2405 file template:
2406
2407 [source,c]
2408 .Tracepoint provider package source file template.
2409 ----
2410 #define TRACEPOINT_CREATE_PROBES
2411
2412 #include "tp.h"
2413 ----
2414
2415 Replace `tp.h` with the name of your <<tpp-header,tracepoint provider
2416 header file>> name. You may also include more than one tracepoint
2417 provider header file here to create a tracepoint provider package
2418 holding more than one tracepoint providers.
2419
2420
2421 [[probing-the-application-source-code]]
2422 ==== Add tracepoints to an application's source code
2423
2424 Once you <<tpp-header,create a tracepoint provider header file>>, you
2425 can use the `tracepoint()` macro in your application's
2426 source code to insert the tracepoints that this header
2427 <<defining-tracepoints,defines>>.
2428
2429 The `tracepoint()` macro takes at least two parameters: the tracepoint
2430 provider name and the tracepoint name. The corresponding tracepoint
2431 definition defines the other parameters.
2432
2433 .`tracepoint()` usage.
2434 ====
2435 The following <<defining-tracepoints,tracepoint definition>> defines a
2436 tracepoint which takes two input arguments and has two output event
2437 fields.
2438
2439 [source,c]
2440 .Tracepoint provider header file.
2441 ----
2442 #include "my-custom-structure.h"
2443
2444 TRACEPOINT_EVENT(
2445 my_provider,
2446 my_tracepoint,
2447 TP_ARGS(
2448 int, argc,
2449 const char*, cmd_name
2450 ),
2451 TP_FIELDS(
2452 ctf_string(cmd_name, cmd_name)
2453 ctf_integer(int, number_of_args, argc)
2454 )
2455 )
2456 ----
2457
2458 You can refer to this tracepoint definition with the `tracepoint()`
2459 macro in your application's source code like this:
2460
2461 [source,c]
2462 .Application's source file.
2463 ----
2464 #include "tp.h"
2465
2466 int main(int argc, char* argv[])
2467 {
2468 tracepoint(my_provider, my_tracepoint, argc, argv[0]);
2469
2470 return 0;
2471 }
2472 ----
2473
2474 Note how the application's source code includes
2475 the tracepoint provider header file containing the tracepoint
2476 definitions to use, path:{tp.h}.
2477 ====
2478
2479 .`tracepoint()` usage with a complex tracepoint definition.
2480 ====
2481 Consider this complex tracepoint definition, where multiple event
2482 fields refer to the same input arguments in their argument expression
2483 parameter:
2484
2485 [source,c]
2486 .Tracepoint provider header file.
2487 ----
2488 /* For `struct stat` */
2489 #include <sys/types.h>
2490 #include <sys/stat.h>
2491 #include <unistd.h>
2492
2493 TRACEPOINT_EVENT(
2494 my_provider,
2495 my_tracepoint,
2496 TP_ARGS(
2497 int, my_int_arg,
2498 char*, my_str_arg,
2499 struct stat*, st
2500 ),
2501 TP_FIELDS(
2502 ctf_integer(int, my_constant_field, 23 + 17)
2503 ctf_integer(int, my_int_arg_field, my_int_arg)
2504 ctf_integer(int, my_int_arg_field2, my_int_arg * my_int_arg)
2505 ctf_integer(int, sum4_field, my_str_arg[0] + my_str_arg[1] +
2506 my_str_arg[2] + my_str_arg[3])
2507 ctf_string(my_str_arg_field, my_str_arg)
2508 ctf_integer_hex(off_t, size_field, st->st_size)
2509 ctf_float(double, size_dbl_field, (double) st->st_size)
2510 ctf_sequence_text(char, half_my_str_arg_field, my_str_arg,
2511 size_t, strlen(my_str_arg) / 2)
2512 )
2513 )
2514 ----
2515
2516 You can refer to this tracepoint definition with the `tracepoint()`
2517 macro in your application's source code like this:
2518
2519 [source,c]
2520 .Application's source file.
2521 ----
2522 #define TRACEPOINT_DEFINE
2523 #include "tp.h"
2524
2525 int main(void)
2526 {
2527 struct stat s;
2528
2529 stat("/etc/fstab", &s);
2530 tracepoint(my_provider, my_tracepoint, 23, "Hello, World!", &s);
2531
2532 return 0;
2533 }
2534 ----
2535
2536 If you look at the event record that LTTng writes when tracing this
2537 program, assuming the file size of path:{/etc/fstab} is 301{nbsp}bytes,
2538 it should look like this:
2539
2540 .Event record fields
2541 |====
2542 |Field's name |Field's value
2543 |`my_constant_field` |40
2544 |`my_int_arg_field` |23
2545 |`my_int_arg_field2` |529
2546 |`sum4_field` |389
2547 |`my_str_arg_field` |`Hello, World!`
2548 |`size_field` |0x12d
2549 |`size_dbl_field` |301.0
2550 |`half_my_str_arg_field` |`Hello,`
2551 |====
2552 ====
2553
2554 Sometimes, the arguments you pass to `tracepoint()` are expensive to
2555 compute--they use the call stack, for example. To avoid this
2556 computation when the tracepoint is disabled, you can use the
2557 `tracepoint_enabled()` and `do_tracepoint()` macros.
2558
2559 The syntax of the `tracepoint_enabled()` and `do_tracepoint()` macros
2560 is:
2561
2562 [source,c]
2563 .`tracepoint_enabled()` and `do_tracepoint()` macros syntax.
2564 ----
2565 tracepoint_enabled(provider_name, tracepoint_name)
2566 do_tracepoint(provider_name, tracepoint_name, ...)
2567 ----
2568
2569 Replace:
2570
2571 * `provider_name` with the tracepoint provider name.
2572 * `tracepoint_name` with the tracepoint name.
2573
2574 `tracepoint_enabled()` returns a non-zero value if the tracepoint named
2575 `tracepoint_name` from the provider named `provider_name` is enabled
2576 **at run time**.
2577
2578 `do_tracepoint()` is like `tracepoint()`, except that it doesn't check
2579 if the tracepoint is enabled. Using `tracepoint()` with
2580 `tracepoint_enabled()` is dangerous since `tracepoint()` also contains
2581 the `tracepoint_enabled()` check, thus a race condition is
2582 possible in this situation:
2583
2584 [source,c]
2585 .Possible race condition when using `tracepoint_enabled()` with `tracepoint()`.
2586 ----
2587 if (tracepoint_enabled(my_provider, my_tracepoint)) {
2588 stuff = prepare_stuff();
2589 }
2590
2591 tracepoint(my_provider, my_tracepoint, stuff);
2592 ----
2593
2594 If the tracepoint is enabled after the condition, then `stuff` is not
2595 prepared: the emitted event will either contain wrong data, or the whole
2596 application could crash (segmentation fault, for example).
2597
2598 NOTE: Neither `tracepoint_enabled()` nor `do_tracepoint()` have an
2599 `STAP_PROBEV()` call. If you need it, you must emit
2600 this call yourself.
2601
2602
2603 [[building-tracepoint-providers-and-user-application]]
2604 ==== Build and link a tracepoint provider package and an application
2605
2606 Once you have one or more <<tpp-header,tracepoint provider header
2607 files>> and a <<tpp-source,tracepoint provider package source file>>,
2608 you can create the tracepoint provider package by compiling its source
2609 file. From here, multiple build and run scenarios are possible. The
2610 following table shows common application and library configurations
2611 along with the required command lines to achieve them.
2612
2613 In the following diagrams, we use the following file names:
2614
2615 `app`::
2616 Executable application.
2617
2618 `app.o`::
2619 Application's object file.
2620
2621 `tpp.o`::
2622 Tracepoint provider package object file.
2623
2624 `tpp.a`::
2625 Tracepoint provider package archive file.
2626
2627 `libtpp.so`::
2628 Tracepoint provider package shared object file.
2629
2630 `emon.o`::
2631 User library object file.
2632
2633 `libemon.so`::
2634 User library shared object file.
2635
2636 We use the following symbols in the diagrams of table below:
2637
2638 [role="img-100"]
2639 .Symbols used in the build scenario diagrams.
2640 image::ust-sit-symbols.png[]
2641
2642 We assume that path:{.} is part of the env:LD_LIBRARY_PATH environment
2643 variable in the following instructions.
2644
2645 [role="growable ust-scenarios",cols="asciidoc,asciidoc"]
2646 .Common tracepoint provider package scenarios.
2647 |====
2648 |Scenario |Instructions
2649
2650 |
2651 The instrumented application is statically linked with
2652 the tracepoint provider package object.
2653
2654 image::ust-sit+app-linked-with-tp-o+app-instrumented.png[]
2655
2656 |
2657 include::../common/ust-sit-step-tp-o.txt[]
2658
2659 To build the instrumented application:
2660
2661 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2662 +
2663 --
2664 [source,c]
2665 ----
2666 #define TRACEPOINT_DEFINE
2667 ----
2668 --
2669
2670 . Compile the application source file:
2671 +
2672 --
2673 [role="term"]
2674 ----
2675 $ gcc -c app.c
2676 ----
2677 --
2678
2679 . Build the application:
2680 +
2681 --
2682 [role="term"]
2683 ----
2684 $ gcc -o app app.o tpp.o -llttng-ust -ldl
2685 ----
2686 --
2687
2688 To run the instrumented application:
2689
2690 * Start the application:
2691 +
2692 --
2693 [role="term"]
2694 ----
2695 $ ./app
2696 ----
2697 --
2698
2699 |
2700 The instrumented application is statically linked with the
2701 tracepoint provider package archive file.
2702
2703 image::ust-sit+app-linked-with-tp-a+app-instrumented.png[]
2704
2705 |
2706 To create the tracepoint provider package archive file:
2707
2708 . Compile the <<tpp-source,tracepoint provider package source file>>:
2709 +
2710 --
2711 [role="term"]
2712 ----
2713 $ gcc -I. -c tpp.c
2714 ----
2715 --
2716
2717 . Create the tracepoint provider package archive file:
2718 +
2719 --
2720 [role="term"]
2721 ----
2722 $ ar rcs tpp.a tpp.o
2723 ----
2724 --
2725
2726 To build the instrumented application:
2727
2728 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2729 +
2730 --
2731 [source,c]
2732 ----
2733 #define TRACEPOINT_DEFINE
2734 ----
2735 --
2736
2737 . Compile the application source file:
2738 +
2739 --
2740 [role="term"]
2741 ----
2742 $ gcc -c app.c
2743 ----
2744 --
2745
2746 . Build the application:
2747 +
2748 --
2749 [role="term"]
2750 ----
2751 $ gcc -o app app.o tpp.a -llttng-ust -ldl
2752 ----
2753 --
2754
2755 To run the instrumented application:
2756
2757 * Start the application:
2758 +
2759 --
2760 [role="term"]
2761 ----
2762 $ ./app
2763 ----
2764 --
2765
2766 |
2767 The instrumented application is linked with the tracepoint provider
2768 package shared object.
2769
2770 image::ust-sit+app-linked-with-tp-so+app-instrumented.png[]
2771
2772 |
2773 include::../common/ust-sit-step-tp-so.txt[]
2774
2775 To build the instrumented application:
2776
2777 . In path:{app.c}, before including path:{tpp.h}, add the following line:
2778 +
2779 --
2780 [source,c]
2781 ----
2782 #define TRACEPOINT_DEFINE
2783 ----
2784 --
2785
2786 . Compile the application source file:
2787 +
2788 --
2789 [role="term"]
2790 ----
2791 $ gcc -c app.c
2792 ----
2793 --
2794
2795 . Build the application:
2796 +
2797 --
2798 [role="term"]
2799 ----
2800 $ gcc -o app app.o -ldl -L. -ltpp
2801 ----
2802 --
2803
2804 To run the instrumented application:
2805
2806 * Start the application:
2807 +
2808 --
2809 [role="term"]
2810 ----
2811 $ ./app
2812 ----
2813 --
2814
2815 |
2816 The tracepoint provider package shared object is preloaded before the
2817 instrumented application starts.
2818
2819 image::ust-sit+tp-so-preloaded+app-instrumented.png[]
2820
2821 |
2822 include::../common/ust-sit-step-tp-so.txt[]
2823
2824 To build the instrumented application:
2825
2826 . In path:{app.c}, before including path:{tpp.h}, add the
2827 following lines:
2828 +
2829 --
2830 [source,c]
2831 ----
2832 #define TRACEPOINT_DEFINE
2833 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2834 ----
2835 --
2836
2837 . Compile the application source file:
2838 +
2839 --
2840 [role="term"]
2841 ----
2842 $ gcc -c app.c
2843 ----
2844 --
2845
2846 . Build the application:
2847 +
2848 --
2849 [role="term"]
2850 ----
2851 $ gcc -o app app.o -ldl
2852 ----
2853 --
2854
2855 To run the instrumented application with tracing support:
2856
2857 * Preload the tracepoint provider package shared object and
2858 start the application:
2859 +
2860 --
2861 [role="term"]
2862 ----
2863 $ LD_PRELOAD=./libtpp.so ./app
2864 ----
2865 --
2866
2867 To run the instrumented application without tracing support:
2868
2869 * Start the application:
2870 +
2871 --
2872 [role="term"]
2873 ----
2874 $ ./app
2875 ----
2876 --
2877
2878 |
2879 The instrumented application dynamically loads the tracepoint provider
2880 package shared object.
2881
2882 See the <<dlclose-warning,warning about `dlclose()`>>.
2883
2884 image::ust-sit+app-dlopens-tp-so+app-instrumented.png[]
2885
2886 |
2887 include::../common/ust-sit-step-tp-so.txt[]
2888
2889 To build the instrumented application:
2890
2891 . In path:{app.c}, before including path:{tpp.h}, add the
2892 following lines:
2893 +
2894 --
2895 [source,c]
2896 ----
2897 #define TRACEPOINT_DEFINE
2898 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
2899 ----
2900 --
2901
2902 . Compile the application source file:
2903 +
2904 --
2905 [role="term"]
2906 ----
2907 $ gcc -c app.c
2908 ----
2909 --
2910
2911 . Build the application:
2912 +
2913 --
2914 [role="term"]
2915 ----
2916 $ gcc -o app app.o -ldl
2917 ----
2918 --
2919
2920 To run the instrumented application:
2921
2922 * Start the application:
2923 +
2924 --
2925 [role="term"]
2926 ----
2927 $ ./app
2928 ----
2929 --
2930
2931 |
2932 The application is linked with the instrumented user library.
2933
2934 The instrumented user library is statically linked with the tracepoint
2935 provider package object file.
2936
2937 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-o+lib-instrumented.png[]
2938
2939 |
2940 include::../common/ust-sit-step-tp-o-fpic.txt[]
2941
2942 To build the instrumented user library:
2943
2944 . In path:{emon.c}, before including path:{tpp.h}, add the
2945 following line:
2946 +
2947 --
2948 [source,c]
2949 ----
2950 #define TRACEPOINT_DEFINE
2951 ----
2952 --
2953
2954 . Compile the user library source file:
2955 +
2956 --
2957 [role="term"]
2958 ----
2959 $ gcc -I. -fpic -c emon.c
2960 ----
2961 --
2962
2963 . Build the user library shared object:
2964 +
2965 --
2966 [role="term"]
2967 ----
2968 $ gcc -shared -o libemon.so emon.o tpp.o -llttng-ust -ldl
2969 ----
2970 --
2971
2972 To build the application:
2973
2974 . Compile the application source file:
2975 +
2976 --
2977 [role="term"]
2978 ----
2979 $ gcc -c app.c
2980 ----
2981 --
2982
2983 . Build the application:
2984 +
2985 --
2986 [role="term"]
2987 ----
2988 $ gcc -o app app.o -L. -lemon
2989 ----
2990 --
2991
2992 To run the application:
2993
2994 * Start the application:
2995 +
2996 --
2997 [role="term"]
2998 ----
2999 $ ./app
3000 ----
3001 --
3002
3003 |
3004 The application is linked with the instrumented user library.
3005
3006 The instrumented user library is linked with the tracepoint provider
3007 package shared object.
3008
3009 image::ust-sit+app-linked-with-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3010
3011 |
3012 include::../common/ust-sit-step-tp-so.txt[]
3013
3014 To build the instrumented user library:
3015
3016 . In path:{emon.c}, before including path:{tpp.h}, add the
3017 following line:
3018 +
3019 --
3020 [source,c]
3021 ----
3022 #define TRACEPOINT_DEFINE
3023 ----
3024 --
3025
3026 . Compile the user library source file:
3027 +
3028 --
3029 [role="term"]
3030 ----
3031 $ gcc -I. -fpic -c emon.c
3032 ----
3033 --
3034
3035 . Build the user library shared object:
3036 +
3037 --
3038 [role="term"]
3039 ----
3040 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3041 ----
3042 --
3043
3044 To build the application:
3045
3046 . Compile the application source file:
3047 +
3048 --
3049 [role="term"]
3050 ----
3051 $ gcc -c app.c
3052 ----
3053 --
3054
3055 . Build the application:
3056 +
3057 --
3058 [role="term"]
3059 ----
3060 $ gcc -o app app.o -L. -lemon
3061 ----
3062 --
3063
3064 To run the application:
3065
3066 * Start the application:
3067 +
3068 --
3069 [role="term"]
3070 ----
3071 $ ./app
3072 ----
3073 --
3074
3075 |
3076 The tracepoint provider package shared object is preloaded before the
3077 application starts.
3078
3079 The application is linked with the instrumented user library.
3080
3081 image::ust-sit+tp-so-preloaded+app-linked-with-lib+lib-instrumented.png[]
3082
3083 |
3084 include::../common/ust-sit-step-tp-so.txt[]
3085
3086 To build the instrumented user library:
3087
3088 . In path:{emon.c}, before including path:{tpp.h}, add the
3089 following lines:
3090 +
3091 --
3092 [source,c]
3093 ----
3094 #define TRACEPOINT_DEFINE
3095 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3096 ----
3097 --
3098
3099 . Compile the user library source file:
3100 +
3101 --
3102 [role="term"]
3103 ----
3104 $ gcc -I. -fpic -c emon.c
3105 ----
3106 --
3107
3108 . Build the user library shared object:
3109 +
3110 --
3111 [role="term"]
3112 ----
3113 $ gcc -shared -o libemon.so emon.o -ldl
3114 ----
3115 --
3116
3117 To build the application:
3118
3119 . Compile the application source file:
3120 +
3121 --
3122 [role="term"]
3123 ----
3124 $ gcc -c app.c
3125 ----
3126 --
3127
3128 . Build the application:
3129 +
3130 --
3131 [role="term"]
3132 ----
3133 $ gcc -o app app.o -L. -lemon
3134 ----
3135 --
3136
3137 To run the application with tracing support:
3138
3139 * Preload the tracepoint provider package shared object and
3140 start the application:
3141 +
3142 --
3143 [role="term"]
3144 ----
3145 $ LD_PRELOAD=./libtpp.so ./app
3146 ----
3147 --
3148
3149 To run the application without tracing support:
3150
3151 * Start the application:
3152 +
3153 --
3154 [role="term"]
3155 ----
3156 $ ./app
3157 ----
3158 --
3159
3160 |
3161 The application is linked with the instrumented user library.
3162
3163 The instrumented user library dynamically loads the tracepoint provider
3164 package shared object.
3165
3166 See the <<dlclose-warning,warning about `dlclose()`>>.
3167
3168 image::ust-sit+app-linked-with-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3169
3170 |
3171 include::../common/ust-sit-step-tp-so.txt[]
3172
3173 To build the instrumented user library:
3174
3175 . In path:{emon.c}, before including path:{tpp.h}, add the
3176 following lines:
3177 +
3178 --
3179 [source,c]
3180 ----
3181 #define TRACEPOINT_DEFINE
3182 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3183 ----
3184 --
3185
3186 . Compile the user library source file:
3187 +
3188 --
3189 [role="term"]
3190 ----
3191 $ gcc -I. -fpic -c emon.c
3192 ----
3193 --
3194
3195 . Build the user library shared object:
3196 +
3197 --
3198 [role="term"]
3199 ----
3200 $ gcc -shared -o libemon.so emon.o -ldl
3201 ----
3202 --
3203
3204 To build the application:
3205
3206 . Compile the application source file:
3207 +
3208 --
3209 [role="term"]
3210 ----
3211 $ gcc -c app.c
3212 ----
3213 --
3214
3215 . Build the application:
3216 +
3217 --
3218 [role="term"]
3219 ----
3220 $ gcc -o app app.o -L. -lemon
3221 ----
3222 --
3223
3224 To run the application:
3225
3226 * Start the application:
3227 +
3228 --
3229 [role="term"]
3230 ----
3231 $ ./app
3232 ----
3233 --
3234
3235 |
3236 The application dynamically loads the instrumented user library.
3237
3238 The instrumented user library is linked with the tracepoint provider
3239 package shared object.
3240
3241 See the <<dlclose-warning,warning about `dlclose()`>>.
3242
3243 image::ust-sit+app-dlopens-lib+lib-linked-with-tp-so+lib-instrumented.png[]
3244
3245 |
3246 include::../common/ust-sit-step-tp-so.txt[]
3247
3248 To build the instrumented user library:
3249
3250 . In path:{emon.c}, before including path:{tpp.h}, add the
3251 following line:
3252 +
3253 --
3254 [source,c]
3255 ----
3256 #define TRACEPOINT_DEFINE
3257 ----
3258 --
3259
3260 . Compile the user library source file:
3261 +
3262 --
3263 [role="term"]
3264 ----
3265 $ gcc -I. -fpic -c emon.c
3266 ----
3267 --
3268
3269 . Build the user library shared object:
3270 +
3271 --
3272 [role="term"]
3273 ----
3274 $ gcc -shared -o libemon.so emon.o -ldl -L. -ltpp
3275 ----
3276 --
3277
3278 To build the application:
3279
3280 . Compile the application source file:
3281 +
3282 --
3283 [role="term"]
3284 ----
3285 $ gcc -c app.c
3286 ----
3287 --
3288
3289 . Build the application:
3290 +
3291 --
3292 [role="term"]
3293 ----
3294 $ gcc -o app app.o -ldl -L. -lemon
3295 ----
3296 --
3297
3298 To run the application:
3299
3300 * Start the application:
3301 +
3302 --
3303 [role="term"]
3304 ----
3305 $ ./app
3306 ----
3307 --
3308
3309 |
3310 The application dynamically loads the instrumented user library.
3311
3312 The instrumented user library dynamically loads the tracepoint provider
3313 package shared object.
3314
3315 See the <<dlclose-warning,warning about `dlclose()`>>.
3316
3317 image::ust-sit+app-dlopens-lib+lib-dlopens-tp-so+lib-instrumented.png[]
3318
3319 |
3320 include::../common/ust-sit-step-tp-so.txt[]
3321
3322 To build the instrumented user library:
3323
3324 . In path:{emon.c}, before including path:{tpp.h}, add the
3325 following lines:
3326 +
3327 --
3328 [source,c]
3329 ----
3330 #define TRACEPOINT_DEFINE
3331 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3332 ----
3333 --
3334
3335 . Compile the user library source file:
3336 +
3337 --
3338 [role="term"]
3339 ----
3340 $ gcc -I. -fpic -c emon.c
3341 ----
3342 --
3343
3344 . Build the user library shared object:
3345 +
3346 --
3347 [role="term"]
3348 ----
3349 $ gcc -shared -o libemon.so emon.o -ldl
3350 ----
3351 --
3352
3353 To build the application:
3354
3355 . Compile the application source file:
3356 +
3357 --
3358 [role="term"]
3359 ----
3360 $ gcc -c app.c
3361 ----
3362 --
3363
3364 . Build the application:
3365 +
3366 --
3367 [role="term"]
3368 ----
3369 $ gcc -o app app.o -ldl -L. -lemon
3370 ----
3371 --
3372
3373 To run the application:
3374
3375 * Start the application:
3376 +
3377 --
3378 [role="term"]
3379 ----
3380 $ ./app
3381 ----
3382 --
3383
3384 |
3385 The tracepoint provider package shared object is preloaded before the
3386 application starts.
3387
3388 The application dynamically loads the instrumented user library.
3389
3390 image::ust-sit+tp-so-preloaded+app-dlopens-lib+lib-instrumented.png[]
3391
3392 |
3393 include::../common/ust-sit-step-tp-so.txt[]
3394
3395 To build the instrumented user library:
3396
3397 . In path:{emon.c}, before including path:{tpp.h}, add the
3398 following lines:
3399 +
3400 --
3401 [source,c]
3402 ----
3403 #define TRACEPOINT_DEFINE
3404 #define TRACEPOINT_PROBE_DYNAMIC_LINKAGE
3405 ----
3406 --
3407
3408 . Compile the user library source file:
3409 +
3410 --
3411 [role="term"]
3412 ----
3413 $ gcc -I. -fpic -c emon.c
3414 ----
3415 --
3416
3417 . Build the user library shared object:
3418 +
3419 --
3420 [role="term"]
3421 ----
3422 $ gcc -shared -o libemon.so emon.o -ldl
3423 ----
3424 --
3425
3426 To build the application:
3427
3428 . Compile the application source file:
3429 +
3430 --
3431 [role="term"]
3432 ----
3433 $ gcc -c app.c
3434 ----
3435 --
3436
3437 . Build the application:
3438 +
3439 --
3440 [role="term"]
3441 ----
3442 $ gcc -o app app.o -L. -lemon
3443 ----
3444 --
3445
3446 To run the application with tracing support:
3447
3448 * Preload the tracepoint provider package shared object and
3449 start the application:
3450 +
3451 --
3452 [role="term"]
3453 ----
3454 $ LD_PRELOAD=./libtpp.so ./app
3455 ----
3456 --
3457
3458 To run the application without tracing support:
3459
3460 * Start the application:
3461 +
3462 --
3463 [role="term"]
3464 ----
3465 $ ./app
3466 ----
3467 --
3468
3469 |
3470 The application is statically linked with the tracepoint provider
3471 package object file.
3472
3473 The application is linked with the instrumented user library.
3474
3475 image::ust-sit+app-linked-with-tp-o+app-linked-with-lib+lib-instrumented.png[]
3476
3477 |
3478 include::../common/ust-sit-step-tp-o.txt[]
3479
3480 To build the instrumented user library:
3481
3482 . In path:{emon.c}, before including path:{tpp.h}, add the
3483 following line:
3484 +
3485 --
3486 [source,c]
3487 ----
3488 #define TRACEPOINT_DEFINE
3489 ----
3490 --
3491
3492 . Compile the user library source file:
3493 +
3494 --
3495 [role="term"]
3496 ----
3497 $ gcc -I. -fpic -c emon.c
3498 ----
3499 --
3500
3501 . Build the user library shared object:
3502 +
3503 --
3504 [role="term"]
3505 ----
3506 $ gcc -shared -o libemon.so emon.o
3507 ----
3508 --
3509
3510 To build the application:
3511
3512 . Compile the application source file:
3513 +
3514 --
3515 [role="term"]
3516 ----
3517 $ gcc -c app.c
3518 ----
3519 --
3520
3521 . Build the application:
3522 +
3523 --
3524 [role="term"]
3525 ----
3526 $ gcc -o app app.o tpp.o -llttng-ust -ldl -L. -lemon
3527 ----
3528 --
3529
3530 To run the instrumented application:
3531
3532 * Start the application:
3533 +
3534 --
3535 [role="term"]
3536 ----
3537 $ ./app
3538 ----
3539 --
3540
3541 |
3542 The application is statically linked with the tracepoint provider
3543 package object file.
3544
3545 The application dynamically loads the instrumented user library.
3546
3547 image::ust-sit+app-linked-with-tp-o+app-dlopens-lib+lib-instrumented.png[]
3548
3549 |
3550 include::../common/ust-sit-step-tp-o.txt[]
3551
3552 To build the application:
3553
3554 . In path:{app.c}, before including path:{tpp.h}, add the following line:
3555 +
3556 --
3557 [source,c]
3558 ----
3559 #define TRACEPOINT_DEFINE
3560 ----
3561 --
3562
3563 . Compile the application source file:
3564 +
3565 --
3566 [role="term"]
3567 ----
3568 $ gcc -c app.c
3569 ----
3570 --
3571
3572 . Build the application:
3573 +
3574 --
3575 [role="term"]
3576 ----
3577 $ gcc -Wl,--export-dynamic -o app app.o tpp.o \
3578 -llttng-ust -ldl
3579 ----
3580 --
3581 +
3582 The `--export-dynamic` option passed to the linker is necessary for the
3583 dynamically loaded library to ``see'' the tracepoint symbols defined in
3584 the application.
3585
3586 To build the instrumented user library:
3587
3588 . Compile the user library source file:
3589 +
3590 --
3591 [role="term"]
3592 ----
3593 $ gcc -I. -fpic -c emon.c
3594 ----
3595 --
3596
3597 . Build the user library shared object:
3598 +
3599 --
3600 [role="term"]
3601 ----
3602 $ gcc -shared -o libemon.so emon.o
3603 ----
3604 --
3605
3606 To run the application:
3607
3608 * Start the application:
3609 +
3610 --
3611 [role="term"]
3612 ----
3613 $ ./app
3614 ----
3615 --
3616 |====
3617
3618 [[dlclose-warning]]
3619 [IMPORTANT]
3620 .Do not use man:dlclose(3) on a tracepoint provider package
3621 ====
3622 Never use man:dlclose(3) on any shared object which:
3623
3624 * Is linked with, statically or dynamically, a tracepoint provider
3625 package.
3626 * Calls man:dlopen(3) itself to dynamically open a tracepoint provider
3627 package shared object.
3628
3629 This is currently considered **unsafe** due to a lack of reference
3630 counting from LTTng-UST to the shared object.
3631
3632 A known workaround (available since glibc 2.2) is to use the
3633 `RTLD_NODELETE` flag when calling man:dlopen(3) initially. This has the
3634 effect of not unloading the loaded shared object, even if man:dlclose(3)
3635 is called.
3636
3637 You can also preload the tracepoint provider package shared object with
3638 the env:LD_PRELOAD environment variable to overcome this limitation.
3639 ====
3640
3641
3642 [[using-lttng-ust-with-daemons]]
3643 ===== Use noch:{LTTng-UST} with daemons
3644
3645 If your instrumented application calls man:fork(2), man:clone(2),
3646 or BSD's man:rfork(2), without a following man:exec(3)-family
3647 system call, you must preload the path:{liblttng-ust-fork.so} shared
3648 object when you start the application.
3649
3650 [role="term"]
3651 ----
3652 $ LD_PRELOAD=liblttng-ust-fork.so ./my-app
3653 ----
3654
3655 If your tracepoint provider package is
3656 a shared library which you also preload, you must put both
3657 shared objects in env:LD_PRELOAD:
3658
3659 [role="term"]
3660 ----
3661 $ LD_PRELOAD=liblttng-ust-fork.so:/path/to/tp.so ./my-app
3662 ----
3663
3664
3665 [role="since-2.9"]
3666 [[liblttng-ust-fd]]
3667 ===== Use noch:{LTTng-UST} with applications which close file descriptors that don't belong to them
3668
3669 If your instrumented application closes one or more file descriptors
3670 which it did not open itself, you must preload the
3671 path:{liblttng-ust-fd.so} shared object when you start the application:
3672
3673 [role="term"]
3674 ----
3675 $ LD_PRELOAD=liblttng-ust-fd.so ./my-app
3676 ----
3677
3678 Typical use cases include closing all the file descriptors after
3679 man:fork(2) or man:rfork(2) and buggy applications doing
3680 ``double closes''.
3681
3682
3683 [[lttng-ust-pkg-config]]
3684 ===== Use noch:{pkg-config}
3685
3686 On some distributions, LTTng-UST ships with a
3687 https://www.freedesktop.org/wiki/Software/pkg-config/[pkg-config]
3688 metadata file. If this is your case, then you can use cmd:pkg-config to
3689 build an application on the command line:
3690
3691 [role="term"]
3692 ----
3693 $ gcc -o my-app my-app.o tp.o $(pkg-config --cflags --libs lttng-ust)
3694 ----
3695
3696
3697 [[instrumenting-32-bit-app-on-64-bit-system]]
3698 ===== [[advanced-instrumenting-techniques]]Build a 32-bit instrumented application for a 64-bit target system
3699
3700 In order to trace a 32-bit application running on a 64-bit system,
3701 LTTng must use a dedicated 32-bit
3702 <<lttng-consumerd,consumer daemon>>.
3703
3704 The following steps show how to build and install a 32-bit consumer
3705 daemon, which is _not_ part of the default 64-bit LTTng build, how to
3706 build and install the 32-bit LTTng-UST libraries, and how to build and
3707 link an instrumented 32-bit application in that context.
3708
3709 To build a 32-bit instrumented application for a 64-bit target system,
3710 assuming you have a fresh target system with no installed Userspace RCU
3711 or LTTng packages:
3712
3713 . Download, build, and install a 32-bit version of Userspace RCU:
3714 +
3715 --
3716 [role="term"]
3717 ----
3718 $ cd $(mktemp -d) &&
3719 wget http://lttng.org/files/urcu/userspace-rcu-latest-0.9.tar.bz2 &&
3720 tar -xf userspace-rcu-latest-0.9.tar.bz2 &&
3721 cd userspace-rcu-0.9.* &&
3722 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 &&
3723 make &&
3724 sudo make install &&
3725 sudo ldconfig
3726 ----
3727 --
3728
3729 . Using your distribution's package manager, or from source, install
3730 the following 32-bit versions of the following dependencies of
3731 LTTng-tools and LTTng-UST:
3732 +
3733 --
3734 * https://sourceforge.net/projects/libuuid/[libuuid]
3735 * http://directory.fsf.org/wiki/Popt[popt]
3736 * http://www.xmlsoft.org/[libxml2]
3737 --
3738
3739 . Download, build, and install a 32-bit version of the latest
3740 LTTng-UST{nbsp}{revision}:
3741 +
3742 --
3743 [role="term"]
3744 ----
3745 $ cd $(mktemp -d) &&
3746 wget http://lttng.org/files/lttng-ust/lttng-ust-latest-2.10.tar.bz2 &&
3747 tar -xf lttng-ust-latest-2.10.tar.bz2 &&
3748 cd lttng-ust-2.10.* &&
3749 ./configure --libdir=/usr/local/lib32 \
3750 CFLAGS=-m32 CXXFLAGS=-m32 \
3751 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' &&
3752 make &&
3753 sudo make install &&
3754 sudo ldconfig
3755 ----
3756 --
3757 +
3758 [NOTE]
3759 ====
3760 Depending on your distribution,
3761 32-bit libraries could be installed at a different location than
3762 `/usr/lib32`. For example, Debian is known to install
3763 some 32-bit libraries in `/usr/lib/i386-linux-gnu`.
3764
3765 In this case, make sure to set `LDFLAGS` to all the
3766 relevant 32-bit library paths, for example:
3767
3768 [role="term"]
3769 ----
3770 $ LDFLAGS='-L/usr/lib/i386-linux-gnu -L/usr/lib32'
3771 ----
3772 ====
3773
3774 . Download the latest LTTng-tools{nbsp}{revision}, build, and install
3775 the 32-bit consumer daemon:
3776 +
3777 --
3778 [role="term"]
3779 ----
3780 $ cd $(mktemp -d) &&
3781 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
3782 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
3783 cd lttng-tools-2.10.* &&
3784 ./configure --libdir=/usr/local/lib32 CFLAGS=-m32 CXXFLAGS=-m32 \
3785 LDFLAGS='-L/usr/local/lib32 -L/usr/lib32' \
3786 --disable-bin-lttng --disable-bin-lttng-crash \
3787 --disable-bin-lttng-relayd --disable-bin-lttng-sessiond &&
3788 make &&
3789 cd src/bin/lttng-consumerd &&
3790 sudo make install &&
3791 sudo ldconfig
3792 ----
3793 --
3794
3795 . From your distribution or from source,
3796 <<installing-lttng,install>> the 64-bit versions of
3797 LTTng-UST and Userspace RCU.
3798 . Download, build, and install the 64-bit version of the
3799 latest LTTng-tools{nbsp}{revision}:
3800 +
3801 --
3802 [role="term"]
3803 ----
3804 $ cd $(mktemp -d) &&
3805 wget http://lttng.org/files/lttng-tools/lttng-tools-latest-2.10.tar.bz2 &&
3806 tar -xf lttng-tools-latest-2.10.tar.bz2 &&
3807 cd lttng-tools-2.10.* &&
3808 ./configure --with-consumerd32-libdir=/usr/local/lib32 \
3809 --with-consumerd32-bin=/usr/local/lib32/lttng/libexec/lttng-consumerd &&
3810 make &&
3811 sudo make install &&
3812 sudo ldconfig
3813 ----
3814 --
3815
3816 . Pass the following options to man:gcc(1), man:g++(1), or man:clang(1)
3817 when linking your 32-bit application:
3818 +
3819 ----
3820 -m32 -L/usr/lib32 -L/usr/local/lib32 \
3821 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32
3822 ----
3823 +
3824 For example, let's rebuild the quick start example in
3825 <<tracing-your-own-user-application,Trace a user application>> as an
3826 instrumented 32-bit application:
3827 +
3828 --
3829 [role="term"]
3830 ----
3831 $ gcc -m32 -c -I. hello-tp.c
3832 $ gcc -m32 -c hello.c
3833 $ gcc -m32 -o hello hello.o hello-tp.o \
3834 -L/usr/lib32 -L/usr/local/lib32 \
3835 -Wl,-rpath,/usr/lib32,-rpath,/usr/local/lib32 \
3836 -llttng-ust -ldl
3837 ----
3838 --
3839
3840 No special action is required to execute the 32-bit application and
3841 to trace it: use the command-line man:lttng(1) tool as usual.
3842
3843
3844 [role="since-2.5"]
3845 [[tracef]]
3846 ==== Use `tracef()`
3847
3848 man:tracef(3) is a small LTTng-UST API designed for quick,
3849 man:printf(3)-like instrumentation without the burden of
3850 <<tracepoint-provider,creating>> and
3851 <<building-tracepoint-providers-and-user-application,building>>
3852 a tracepoint provider package.
3853
3854 To use `tracef()` in your application:
3855
3856 . In the C or C++ source files where you need to use `tracef()`,
3857 include `<lttng/tracef.h>`:
3858 +
3859 --
3860 [source,c]
3861 ----
3862 #include <lttng/tracef.h>
3863 ----
3864 --
3865
3866 . In the application's source code, use `tracef()` like you would use
3867 man:printf(3):
3868 +
3869 --
3870 [source,c]
3871 ----
3872 /* ... */
3873
3874 tracef("my message: %d (%s)", my_integer, my_string);
3875
3876 /* ... */
3877 ----
3878 --
3879
3880 . Link your application with `liblttng-ust`:
3881 +
3882 --
3883 [role="term"]
3884 ----
3885 $ gcc -o app app.c -llttng-ust
3886 ----
3887 --
3888
3889 To trace the events that `tracef()` calls emit:
3890
3891 * <<enabling-disabling-events,Create an event rule>> which matches the
3892 `lttng_ust_tracef:*` event name:
3893 +
3894 --
3895 [role="term"]
3896 ----
3897 $ lttng enable-event --userspace 'lttng_ust_tracef:*'
3898 ----
3899 --
3900
3901 [IMPORTANT]
3902 .Limitations of `tracef()`
3903 ====
3904 The `tracef()` utility function was developed to make user space tracing
3905 super simple, albeit with notable disadvantages compared to
3906 <<defining-tracepoints,user-defined tracepoints>>:
3907
3908 * All the emitted events have the same tracepoint provider and
3909 tracepoint names, respectively `lttng_ust_tracef` and `event`.
3910 * There is no static type checking.
3911 * The only event record field you actually get, named `msg`, is a string
3912 potentially containing the values you passed to `tracef()`
3913 using your own format string. This also means that you cannot filter
3914 events with a custom expression at run time because there are no
3915 isolated fields.
3916 * Since `tracef()` uses the C standard library's man:vasprintf(3)
3917 function behind the scenes to format the strings at run time, its
3918 expected performance is lower than with user-defined tracepoints,
3919 which do not require a conversion to a string.
3920
3921 Taking this into consideration, `tracef()` is useful for some quick
3922 prototyping and debugging, but you should not consider it for any
3923 permanent and serious applicative instrumentation.
3924 ====
3925
3926
3927 [role="since-2.7"]
3928 [[tracelog]]
3929 ==== Use `tracelog()`
3930
3931 The man:tracelog(3) API is very similar to <<tracef,`tracef()`>>, with
3932 the difference that it accepts an additional log level parameter.
3933
3934 The goal of `tracelog()` is to ease the migration from logging to
3935 tracing.
3936
3937 To use `tracelog()` in your application:
3938
3939 . In the C or C++ source files where you need to use `tracelog()`,
3940 include `<lttng/tracelog.h>`:
3941 +
3942 --
3943 [source,c]
3944 ----
3945 #include <lttng/tracelog.h>
3946 ----
3947 --
3948
3949 . In the application's source code, use `tracelog()` like you would use
3950 man:printf(3), except for the first parameter which is the log
3951 level:
3952 +
3953 --
3954 [source,c]
3955 ----
3956 /* ... */
3957
3958 tracelog(TRACE_WARNING, "my message: %d (%s)",
3959 my_integer, my_string);
3960
3961 /* ... */
3962 ----
3963 --
3964 +
3965 See man:lttng-ust(3) for a list of available log level names.
3966
3967 . Link your application with `liblttng-ust`:
3968 +
3969 --
3970 [role="term"]
3971 ----
3972 $ gcc -o app app.c -llttng-ust
3973 ----
3974 --
3975
3976 To trace the events that `tracelog()` calls emit with a log level
3977 _as severe as_ a specific log level:
3978
3979 * <<enabling-disabling-events,Create an event rule>> which matches the
3980 `lttng_ust_tracelog:*` event name and a minimum level
3981 of severity:
3982 +
3983 --
3984 [role="term"]
3985 ----
3986 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
3987 --loglevel=TRACE_WARNING
3988 ----
3989 --
3990
3991 To trace the events that `tracelog()` calls emit with a
3992 _specific log level_:
3993
3994 * Create an event rule which matches the `lttng_ust_tracelog:*`
3995 event name and a specific log level:
3996 +
3997 --
3998 [role="term"]
3999 ----
4000 $ lttng enable-event --userspace 'lttng_ust_tracelog:*'
4001 --loglevel-only=TRACE_INFO
4002 ----
4003 --
4004
4005
4006 [[prebuilt-ust-helpers]]
4007 === Prebuilt user space tracing helpers
4008
4009 The LTTng-UST package provides a few helpers in the form or preloadable
4010 shared objects which automatically instrument system functions and
4011 calls.
4012
4013 The helper shared objects are normally found in dir:{/usr/lib}. If you
4014 built LTTng-UST <<building-from-source,from source>>, they are probably
4015 located in dir:{/usr/local/lib}.
4016
4017 The installed user space tracing helpers in LTTng-UST{nbsp}{revision}
4018 are:
4019
4020 path:{liblttng-ust-libc-wrapper.so}::
4021 path:{liblttng-ust-pthread-wrapper.so}::
4022 <<liblttng-ust-libc-pthread-wrapper,C{nbsp}standard library
4023 memory and POSIX threads function tracing>>.
4024
4025 path:{liblttng-ust-cyg-profile.so}::
4026 path:{liblttng-ust-cyg-profile-fast.so}::
4027 <<liblttng-ust-cyg-profile,Function entry and exit tracing>>.
4028
4029 path:{liblttng-ust-dl.so}::
4030 <<liblttng-ust-dl,Dynamic linker tracing>>.
4031
4032 To use a user space tracing helper with any user application:
4033
4034 * Preload the helper shared object when you start the application:
4035 +
4036 --
4037 [role="term"]
4038 ----
4039 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so my-app
4040 ----
4041 --
4042 +
4043 You can preload more than one helper:
4044 +
4045 --
4046 [role="term"]
4047 ----
4048 $ LD_PRELOAD=liblttng-ust-libc-wrapper.so:liblttng-ust-dl.so my-app
4049 ----
4050 --
4051
4052
4053 [role="since-2.3"]
4054 [[liblttng-ust-libc-pthread-wrapper]]
4055 ==== Instrument C standard library memory and POSIX threads functions
4056
4057 The path:{liblttng-ust-libc-wrapper.so} and
4058 path:{liblttng-ust-pthread-wrapper.so} helpers
4059 add instrumentation to some C standard library and POSIX
4060 threads functions.
4061
4062 [role="growable"]
4063 .Functions instrumented by preloading path:{liblttng-ust-libc-wrapper.so}.
4064 |====
4065 |TP provider name |TP name |Instrumented function
4066
4067 .6+|`lttng_ust_libc` |`malloc` |man:malloc(3)
4068 |`calloc` |man:calloc(3)
4069 |`realloc` |man:realloc(3)
4070 |`free` |man:free(3)
4071 |`memalign` |man:memalign(3)
4072 |`posix_memalign` |man:posix_memalign(3)
4073 |====
4074
4075 [role="growable"]
4076 .Functions instrumented by preloading path:{liblttng-ust-pthread-wrapper.so}.
4077 |====
4078 |TP provider name |TP name |Instrumented function
4079
4080 .4+|`lttng_ust_pthread` |`pthread_mutex_lock_req` |man:pthread_mutex_lock(3p) (request time)
4081 |`pthread_mutex_lock_acq` |man:pthread_mutex_lock(3p) (acquire time)
4082 |`pthread_mutex_trylock` |man:pthread_mutex_trylock(3p)
4083 |`pthread_mutex_unlock` |man:pthread_mutex_unlock(3p)
4084 |====
4085
4086 When you preload the shared object, it replaces the functions listed
4087 in the previous tables by wrappers which contain tracepoints and call
4088 the replaced functions.
4089
4090
4091 [[liblttng-ust-cyg-profile]]
4092 ==== Instrument function entry and exit
4093
4094 The path:{liblttng-ust-cyg-profile*.so} helpers can add instrumentation
4095 to the entry and exit points of functions.
4096
4097 man:gcc(1) and man:clang(1) have an option named
4098 https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html[`-finstrument-functions`]
4099 which generates instrumentation calls for entry and exit to functions.
4100 The LTTng-UST function tracing helpers,
4101 path:{liblttng-ust-cyg-profile.so} and
4102 path:{liblttng-ust-cyg-profile-fast.so}, take advantage of this feature
4103 to add tracepoints to the two generated functions (which contain
4104 `cyg_profile` in their names, hence the helper's name).
4105
4106 To use the LTTng-UST function tracing helper, the source files to
4107 instrument must be built using the `-finstrument-functions` compiler
4108 flag.
4109
4110 There are two versions of the LTTng-UST function tracing helper:
4111
4112 * **path:{liblttng-ust-cyg-profile-fast.so}** is a lightweight variant
4113 that you should only use when it can be _guaranteed_ that the
4114 complete event stream is recorded without any lost event record.
4115 Any kind of duplicate information is left out.
4116 +
4117 Assuming no event record is lost, having only the function addresses on
4118 entry is enough to create a call graph, since an event record always
4119 contains the ID of the CPU that generated it.
4120 +
4121 You can use a tool like man:addr2line(1) to convert function addresses
4122 back to source file names and line numbers.
4123
4124 * **path:{liblttng-ust-cyg-profile.so}** is a more robust variant
4125 which also works in use cases where event records might get discarded or
4126 not recorded from application startup.
4127 In these cases, the trace analyzer needs more information to be
4128 able to reconstruct the program flow.
4129
4130 See man:lttng-ust-cyg-profile(3) to learn more about the instrumentation
4131 points of this helper.
4132
4133 All the tracepoints that this helper provides have the
4134 log level `TRACE_DEBUG_FUNCTION` (see man:lttng-ust(3)).
4135
4136 TIP: It's sometimes a good idea to limit the number of source files that
4137 you compile with the `-finstrument-functions` option to prevent LTTng
4138 from writing an excessive amount of trace data at run time. When using
4139 man:gcc(1), you can use the
4140 `-finstrument-functions-exclude-function-list` option to avoid
4141 instrument entries and exits of specific function names.
4142
4143
4144 [role="since-2.4"]
4145 [[liblttng-ust-dl]]
4146 ==== Instrument the dynamic linker
4147
4148 The path:{liblttng-ust-dl.so} helper adds instrumentation to the
4149 man:dlopen(3) and man:dlclose(3) function calls.
4150
4151 See man:lttng-ust-dl(3) to learn more about the instrumentation points
4152 of this helper.
4153
4154
4155 [role="since-2.4"]
4156 [[java-application]]
4157 === User space Java agent
4158
4159 You can instrument any Java application which uses one of the following
4160 logging frameworks:
4161
4162 * The https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[**`java.util.logging`**]
4163 (JUL) core logging facilities.
4164 * http://logging.apache.org/log4j/1.2/[**Apache log4j 1.2**], since
4165 LTTng 2.6. Note that Apache Log4j{nbsp}2 is not supported.
4166
4167 [role="img-100"]
4168 .LTTng-UST Java agent imported by a Java application.
4169 image::java-app.png[]
4170
4171 Note that the methods described below are new in LTTng{nbsp}{revision}.
4172 Previous LTTng versions use another technique.
4173
4174 NOTE: We use http://openjdk.java.net/[OpenJDK]{nbsp}8 for development
4175 and https://ci.lttng.org/[continuous integration], thus this version is
4176 directly supported. However, the LTTng-UST Java agent is also tested
4177 with OpenJDK{nbsp}7.
4178
4179
4180 [role="since-2.8"]
4181 [[jul]]
4182 ==== Use the LTTng-UST Java agent for `java.util.logging`
4183
4184 To use the LTTng-UST Java agent in a Java application which uses
4185 `java.util.logging` (JUL):
4186
4187 . In the Java application's source code, import the LTTng-UST
4188 log handler package for `java.util.logging`:
4189 +
4190 --
4191 [source,java]
4192 ----
4193 import org.lttng.ust.agent.jul.LttngLogHandler;
4194 ----
4195 --
4196
4197 . Create an LTTng-UST JUL log handler:
4198 +
4199 --
4200 [source,java]
4201 ----
4202 Handler lttngUstLogHandler = new LttngLogHandler();
4203 ----
4204 --
4205
4206 . Add this handler to the JUL loggers which should emit LTTng events:
4207 +
4208 --
4209 [source,java]
4210 ----
4211 Logger myLogger = Logger.getLogger("some-logger");
4212
4213 myLogger.addHandler(lttngUstLogHandler);
4214 ----
4215 --
4216
4217 . Use `java.util.logging` log statements and configuration as usual.
4218 The loggers with an attached LTTng-UST log handler can emit
4219 LTTng events.
4220
4221 . Before exiting the application, remove the LTTng-UST log handler from
4222 the loggers attached to it and call its `close()` method:
4223 +
4224 --
4225 [source,java]
4226 ----
4227 myLogger.removeHandler(lttngUstLogHandler);
4228 lttngUstLogHandler.close();
4229 ----
4230 --
4231 +
4232 This is not strictly necessary, but it is recommended for a clean
4233 disposal of the handler's resources.
4234
4235 . Include the LTTng-UST Java agent's common and JUL-specific JAR files,
4236 path:{lttng-ust-agent-common.jar} and path:{lttng-ust-agent-jul.jar},
4237 in the
4238 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4239 path] when you build the Java application.
4240 +
4241 The JAR files are typically located in dir:{/usr/share/java}.
4242 +
4243 IMPORTANT: The LTTng-UST Java agent must be
4244 <<installing-lttng,installed>> for the logging framework your
4245 application uses.
4246
4247 .Use the LTTng-UST Java agent for `java.util.logging`.
4248 ====
4249 [source,java]
4250 .path:{Test.java}
4251 ----
4252 import java.io.IOException;
4253 import java.util.logging.Handler;
4254 import java.util.logging.Logger;
4255 import org.lttng.ust.agent.jul.LttngLogHandler;
4256
4257 public class Test
4258 {
4259 private static final int answer = 42;
4260
4261 public static void main(String[] argv) throws Exception
4262 {
4263 // Create a logger
4264 Logger logger = Logger.getLogger("jello");
4265
4266 // Create an LTTng-UST log handler
4267 Handler lttngUstLogHandler = new LttngLogHandler();
4268
4269 // Add the LTTng-UST log handler to our logger
4270 logger.addHandler(lttngUstLogHandler);
4271
4272 // Log at will!
4273 logger.info("some info");
4274 logger.warning("some warning");
4275 Thread.sleep(500);
4276 logger.finer("finer information; the answer is " + answer);
4277 Thread.sleep(123);
4278 logger.severe("error!");
4279
4280 // Not mandatory, but cleaner
4281 logger.removeHandler(lttngUstLogHandler);
4282 lttngUstLogHandler.close();
4283 }
4284 }
4285 ----
4286
4287 Build this example:
4288
4289 [role="term"]
4290 ----
4291 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4292 ----
4293
4294 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4295 <<enabling-disabling-events,create an event rule>> matching the
4296 `jello` JUL logger, and <<basic-tracing-session-control,start tracing>>:
4297
4298 [role="term"]
4299 ----
4300 $ lttng create
4301 $ lttng enable-event --jul jello
4302 $ lttng start
4303 ----
4304
4305 Run the compiled class:
4306
4307 [role="term"]
4308 ----
4309 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4310 ----
4311
4312 <<basic-tracing-session-control,Stop tracing>> and inspect the
4313 recorded events:
4314
4315 [role="term"]
4316 ----
4317 $ lttng stop
4318 $ lttng view
4319 ----
4320 ====
4321
4322 In the resulting trace, an <<event,event record>> generated by a Java
4323 application using `java.util.logging` is named `lttng_jul:event` and
4324 has the following fields:
4325
4326 `msg`::
4327 Log record's message.
4328
4329 `logger_name`::
4330 Logger name.
4331
4332 `class_name`::
4333 Name of the class in which the log statement was executed.
4334
4335 `method_name`::
4336 Name of the method in which the log statement was executed.
4337
4338 `long_millis`::
4339 Logging time (timestamp in milliseconds).
4340
4341 `int_loglevel`::
4342 Log level integer value.
4343
4344 `int_threadid`::
4345 ID of the thread in which the log statement was executed.
4346
4347 You can use the opt:lttng-enable-event(1):--loglevel or
4348 opt:lttng-enable-event(1):--loglevel-only option of the
4349 man:lttng-enable-event(1) command to target a range of JUL log levels
4350 or a specific JUL log level.
4351
4352
4353 [role="since-2.8"]
4354 [[log4j]]
4355 ==== Use the LTTng-UST Java agent for Apache log4j
4356
4357 To use the LTTng-UST Java agent in a Java application which uses
4358 Apache log4j 1.2:
4359
4360 . In the Java application's source code, import the LTTng-UST
4361 log appender package for Apache log4j:
4362 +
4363 --
4364 [source,java]
4365 ----
4366 import org.lttng.ust.agent.log4j.LttngLogAppender;
4367 ----
4368 --
4369
4370 . Create an LTTng-UST log4j log appender:
4371 +
4372 --
4373 [source,java]
4374 ----
4375 Appender lttngUstLogAppender = new LttngLogAppender();
4376 ----
4377 --
4378
4379 . Add this appender to the log4j loggers which should emit LTTng events:
4380 +
4381 --
4382 [source,java]
4383 ----
4384 Logger myLogger = Logger.getLogger("some-logger");
4385
4386 myLogger.addAppender(lttngUstLogAppender);
4387 ----
4388 --
4389
4390 . Use Apache log4j log statements and configuration as usual. The
4391 loggers with an attached LTTng-UST log appender can emit LTTng events.
4392
4393 . Before exiting the application, remove the LTTng-UST log appender from
4394 the loggers attached to it and call its `close()` method:
4395 +
4396 --
4397 [source,java]
4398 ----
4399 myLogger.removeAppender(lttngUstLogAppender);
4400 lttngUstLogAppender.close();
4401 ----
4402 --
4403 +
4404 This is not strictly necessary, but it is recommended for a clean
4405 disposal of the appender's resources.
4406
4407 . Include the LTTng-UST Java agent's common and log4j-specific JAR
4408 files, path:{lttng-ust-agent-common.jar} and
4409 path:{lttng-ust-agent-log4j.jar}, in the
4410 https://docs.oracle.com/javase/tutorial/essential/environment/paths.html[class
4411 path] when you build the Java application.
4412 +
4413 The JAR files are typically located in dir:{/usr/share/java}.
4414 +
4415 IMPORTANT: The LTTng-UST Java agent must be
4416 <<installing-lttng,installed>> for the logging framework your
4417 application uses.
4418
4419 .Use the LTTng-UST Java agent for Apache log4j.
4420 ====
4421 [source,java]
4422 .path:{Test.java}
4423 ----
4424 import org.apache.log4j.Appender;
4425 import org.apache.log4j.Logger;
4426 import org.lttng.ust.agent.log4j.LttngLogAppender;
4427
4428 public class Test
4429 {
4430 private static final int answer = 42;
4431
4432 public static void main(String[] argv) throws Exception
4433 {
4434 // Create a logger
4435 Logger logger = Logger.getLogger("jello");
4436
4437 // Create an LTTng-UST log appender
4438 Appender lttngUstLogAppender = new LttngLogAppender();
4439
4440 // Add the LTTng-UST log appender to our logger
4441 logger.addAppender(lttngUstLogAppender);
4442
4443 // Log at will!
4444 logger.info("some info");
4445 logger.warn("some warning");
4446 Thread.sleep(500);
4447 logger.debug("debug information; the answer is " + answer);
4448 Thread.sleep(123);
4449 logger.fatal("error!");
4450
4451 // Not mandatory, but cleaner
4452 logger.removeAppender(lttngUstLogAppender);
4453 lttngUstLogAppender.close();
4454 }
4455 }
4456
4457 ----
4458
4459 Build this example (`$LOG4JPATH` is the path to the Apache log4j JAR
4460 file):
4461
4462 [role="term"]
4463 ----
4464 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH Test.java
4465 ----
4466
4467 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4468 <<enabling-disabling-events,create an event rule>> matching the
4469 `jello` log4j logger, and <<basic-tracing-session-control,start tracing>>:
4470
4471 [role="term"]
4472 ----
4473 $ lttng create
4474 $ lttng enable-event --log4j jello
4475 $ lttng start
4476 ----
4477
4478 Run the compiled class:
4479
4480 [role="term"]
4481 ----
4482 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-log4j.jar:$LOG4JPATH:. Test
4483 ----
4484
4485 <<basic-tracing-session-control,Stop tracing>> and inspect the
4486 recorded events:
4487
4488 [role="term"]
4489 ----
4490 $ lttng stop
4491 $ lttng view
4492 ----
4493 ====
4494
4495 In the resulting trace, an <<event,event record>> generated by a Java
4496 application using log4j is named `lttng_log4j:event` and
4497 has the following fields:
4498
4499 `msg`::
4500 Log record's message.
4501
4502 `logger_name`::
4503 Logger name.
4504
4505 `class_name`::
4506 Name of the class in which the log statement was executed.
4507
4508 `method_name`::
4509 Name of the method in which the log statement was executed.
4510
4511 `filename`::
4512 Name of the file in which the executed log statement is located.
4513
4514 `line_number`::
4515 Line number at which the log statement was executed.
4516
4517 `timestamp`::
4518 Logging timestamp.
4519
4520 `int_loglevel`::
4521 Log level integer value.
4522
4523 `thread_name`::
4524 Name of the Java thread in which the log statement was executed.
4525
4526 You can use the opt:lttng-enable-event(1):--loglevel or
4527 opt:lttng-enable-event(1):--loglevel-only option of the
4528 man:lttng-enable-event(1) command to target a range of Apache log4j log levels
4529 or a specific log4j log level.
4530
4531
4532 [role="since-2.8"]
4533 [[java-application-context]]
4534 ==== Provide application-specific context fields in a Java application
4535
4536 A Java application-specific context field is a piece of state provided
4537 by the application which <<adding-context,you can add>>, using the
4538 man:lttng-add-context(1) command, to each <<event,event record>>
4539 produced by the log statements of this application.
4540
4541 For example, a given object might have a current request ID variable.
4542 You can create a context information retriever for this object and
4543 assign a name to this current request ID. You can then, using the
4544 man:lttng-add-context(1) command, add this context field by name to
4545 the JUL or log4j <<channel,channel>>.
4546
4547 To provide application-specific context fields in a Java application:
4548
4549 . In the Java application's source code, import the LTTng-UST
4550 Java agent context classes and interfaces:
4551 +
4552 --
4553 [source,java]
4554 ----
4555 import org.lttng.ust.agent.context.ContextInfoManager;
4556 import org.lttng.ust.agent.context.IContextInfoRetriever;
4557 ----
4558 --
4559
4560 . Create a context information retriever class, that is, a class which
4561 implements the `IContextInfoRetriever` interface:
4562 +
4563 --
4564 [source,java]
4565 ----
4566 class MyContextInfoRetriever implements IContextInfoRetriever
4567 {
4568 @Override
4569 public Object retrieveContextInfo(String key)
4570 {
4571 if (key.equals("intCtx")) {
4572 return (short) 17;
4573 } else if (key.equals("strContext")) {
4574 return "context value!";
4575 } else {
4576 return null;
4577 }
4578 }
4579 }
4580 ----
4581 --
4582 +
4583 This `retrieveContextInfo()` method is the only member of the
4584 `IContextInfoRetriever` interface. Its role is to return the current
4585 value of a state by name to create a context field. The names of the
4586 context fields and which state variables they return depends on your
4587 specific scenario.
4588 +
4589 All primitive types and objects are supported as context fields.
4590 When `retrieveContextInfo()` returns an object, the context field
4591 serializer calls its `toString()` method to add a string field to
4592 event records. The method can also return `null`, which means that
4593 no context field is available for the required name.
4594
4595 . Register an instance of your context information retriever class to
4596 the context information manager singleton:
4597 +
4598 --
4599 [source,java]
4600 ----
4601 IContextInfoRetriever cir = new MyContextInfoRetriever();
4602 ContextInfoManager cim = ContextInfoManager.getInstance();
4603 cim.registerContextInfoRetriever("retrieverName", cir);
4604 ----
4605 --
4606
4607 . Before exiting the application, remove your context information
4608 retriever from the context information manager singleton:
4609 +
4610 --
4611 [source,java]
4612 ----
4613 ContextInfoManager cim = ContextInfoManager.getInstance();
4614 cim.unregisterContextInfoRetriever("retrieverName");
4615 ----
4616 --
4617 +
4618 This is not strictly necessary, but it is recommended for a clean
4619 disposal of some manager's resources.
4620
4621 . Build your Java application with LTTng-UST Java agent support as
4622 usual, following the procedure for either the <<jul,JUL>> or
4623 <<log4j,Apache log4j>> framework.
4624
4625
4626 .Provide application-specific context fields in a Java application.
4627 ====
4628 [source,java]
4629 .path:{Test.java}
4630 ----
4631 import java.util.logging.Handler;
4632 import java.util.logging.Logger;
4633 import org.lttng.ust.agent.jul.LttngLogHandler;
4634 import org.lttng.ust.agent.context.ContextInfoManager;
4635 import org.lttng.ust.agent.context.IContextInfoRetriever;
4636
4637 public class Test
4638 {
4639 // Our context information retriever class
4640 private static class MyContextInfoRetriever
4641 implements IContextInfoRetriever
4642 {
4643 @Override
4644 public Object retrieveContextInfo(String key) {
4645 if (key.equals("intCtx")) {
4646 return (short) 17;
4647 } else if (key.equals("strContext")) {
4648 return "context value!";
4649 } else {
4650 return null;
4651 }
4652 }
4653 }
4654
4655 private static final int answer = 42;
4656
4657 public static void main(String args[]) throws Exception
4658 {
4659 // Get the context information manager instance
4660 ContextInfoManager cim = ContextInfoManager.getInstance();
4661
4662 // Create and register our context information retriever
4663 IContextInfoRetriever cir = new MyContextInfoRetriever();
4664 cim.registerContextInfoRetriever("myRetriever", cir);
4665
4666 // Create a logger
4667 Logger logger = Logger.getLogger("jello");
4668
4669 // Create an LTTng-UST log handler
4670 Handler lttngUstLogHandler = new LttngLogHandler();
4671
4672 // Add the LTTng-UST log handler to our logger
4673 logger.addHandler(lttngUstLogHandler);
4674
4675 // Log at will!
4676 logger.info("some info");
4677 logger.warning("some warning");
4678 Thread.sleep(500);
4679 logger.finer("finer information; the answer is " + answer);
4680 Thread.sleep(123);
4681 logger.severe("error!");
4682
4683 // Not mandatory, but cleaner
4684 logger.removeHandler(lttngUstLogHandler);
4685 lttngUstLogHandler.close();
4686 cim.unregisterContextInfoRetriever("myRetriever");
4687 }
4688 }
4689 ----
4690
4691 Build this example:
4692
4693 [role="term"]
4694 ----
4695 $ javac -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar Test.java
4696 ----
4697
4698 <<creating-destroying-tracing-sessions,Create a tracing session>>
4699 and <<enabling-disabling-events,create an event rule>> matching the
4700 `jello` JUL logger:
4701
4702 [role="term"]
4703 ----
4704 $ lttng create
4705 $ lttng enable-event --jul jello
4706 ----
4707
4708 <<adding-context,Add the application-specific context fields>> to the
4709 JUL channel:
4710
4711 [role="term"]
4712 ----
4713 $ lttng add-context --jul --type='$app.myRetriever:intCtx'
4714 $ lttng add-context --jul --type='$app.myRetriever:strContext'
4715 ----
4716
4717 <<basic-tracing-session-control,Start tracing>>:
4718
4719 [role="term"]
4720 ----
4721 $ lttng start
4722 ----
4723
4724 Run the compiled class:
4725
4726 [role="term"]
4727 ----
4728 $ java -cp /usr/share/java/jarpath/lttng-ust-agent-common.jar:/usr/share/java/jarpath/lttng-ust-agent-jul.jar:. Test
4729 ----
4730
4731 <<basic-tracing-session-control,Stop tracing>> and inspect the
4732 recorded events:
4733
4734 [role="term"]
4735 ----
4736 $ lttng stop
4737 $ lttng view
4738 ----
4739 ====
4740
4741
4742 [role="since-2.7"]
4743 [[python-application]]
4744 === User space Python agent
4745
4746 You can instrument a Python 2 or Python 3 application which uses the
4747 standard https://docs.python.org/3/library/logging.html[`logging`]
4748 package.
4749
4750 Each log statement emits an LTTng event once the
4751 application module imports the
4752 <<lttng-ust-agents,LTTng-UST Python agent>> package.
4753
4754 [role="img-100"]
4755 .A Python application importing the LTTng-UST Python agent.
4756 image::python-app.png[]
4757
4758 To use the LTTng-UST Python agent:
4759
4760 . In the Python application's source code, import the LTTng-UST Python
4761 agent:
4762 +
4763 --
4764 [source,python]
4765 ----
4766 import lttngust
4767 ----
4768 --
4769 +
4770 The LTTng-UST Python agent automatically adds its logging handler to the
4771 root logger at import time.
4772 +
4773 Any log statement that the application executes before this import does
4774 not emit an LTTng event.
4775 +
4776 IMPORTANT: The LTTng-UST Python agent must be
4777 <<installing-lttng,installed>>.
4778
4779 . Use log statements and logging configuration as usual.
4780 Since the LTTng-UST Python agent adds a handler to the _root_
4781 logger, you can trace any log statement from any logger.
4782
4783 .Use the LTTng-UST Python agent.
4784 ====
4785 [source,python]
4786 .path:{test.py}
4787 ----
4788 import lttngust
4789 import logging
4790 import time
4791
4792
4793 def example():
4794 logging.basicConfig()
4795 logger = logging.getLogger('my-logger')
4796
4797 while True:
4798 logger.debug('debug message')
4799 logger.info('info message')
4800 logger.warn('warn message')
4801 logger.error('error message')
4802 logger.critical('critical message')
4803 time.sleep(1)
4804
4805
4806 if __name__ == '__main__':
4807 example()
4808 ----
4809
4810 NOTE: `logging.basicConfig()`, which adds to the root logger a basic
4811 logging handler which prints to the standard error stream, is not
4812 strictly required for LTTng-UST tracing to work, but in versions of
4813 Python preceding 3.2, you could see a warning message which indicates
4814 that no handler exists for the logger `my-logger`.
4815
4816 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4817 <<enabling-disabling-events,create an event rule>> matching the
4818 `my-logger` Python logger, and <<basic-tracing-session-control,start
4819 tracing>>:
4820
4821 [role="term"]
4822 ----
4823 $ lttng create
4824 $ lttng enable-event --python my-logger
4825 $ lttng start
4826 ----
4827
4828 Run the Python script:
4829
4830 [role="term"]
4831 ----
4832 $ python test.py
4833 ----
4834
4835 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4836 events:
4837
4838 [role="term"]
4839 ----
4840 $ lttng stop
4841 $ lttng view
4842 ----
4843 ====
4844
4845 In the resulting trace, an <<event,event record>> generated by a Python
4846 application is named `lttng_python:event` and has the following fields:
4847
4848 `asctime`::
4849 Logging time (string).
4850
4851 `msg`::
4852 Log record's message.
4853
4854 `logger_name`::
4855 Logger name.
4856
4857 `funcName`::
4858 Name of the function in which the log statement was executed.
4859
4860 `lineno`::
4861 Line number at which the log statement was executed.
4862
4863 `int_loglevel`::
4864 Log level integer value.
4865
4866 `thread`::
4867 ID of the Python thread in which the log statement was executed.
4868
4869 `threadName`::
4870 Name of the Python thread in which the log statement was executed.
4871
4872 You can use the opt:lttng-enable-event(1):--loglevel or
4873 opt:lttng-enable-event(1):--loglevel-only option of the
4874 man:lttng-enable-event(1) command to target a range of Python log levels
4875 or a specific Python log level.
4876
4877 When an application imports the LTTng-UST Python agent, the agent tries
4878 to register to a <<lttng-sessiond,session daemon>>. Note that you must
4879 <<start-sessiond,start the session daemon>> _before_ you run the Python
4880 application. If a session daemon is found, the agent tries to register
4881 to it during 5{nbsp}seconds, after which the application continues
4882 without LTTng tracing support. You can override this timeout value with
4883 the env:LTTNG_UST_PYTHON_REGISTER_TIMEOUT environment variable
4884 (milliseconds).
4885
4886 If the session daemon stops while a Python application with an imported
4887 LTTng-UST Python agent runs, the agent retries to connect and to
4888 register to a session daemon every 3{nbsp}seconds. You can override this
4889 delay with the env:LTTNG_UST_PYTHON_REGISTER_RETRY_DELAY environment
4890 variable.
4891
4892
4893 [role="since-2.5"]
4894 [[proc-lttng-logger-abi]]
4895 === LTTng logger
4896
4897 The `lttng-tracer` Linux kernel module, part of
4898 <<lttng-modules,LTTng-modules>>, creates the special LTTng logger file
4899 path:{/proc/lttng-logger} when it's loaded. Any application can write
4900 text data to this file to emit an LTTng event.
4901
4902 [role="img-100"]
4903 .An application writes to the LTTng logger file to emit an LTTng event.
4904 image::lttng-logger.png[]
4905
4906 The LTTng logger is the quickest method--not the most efficient,
4907 however--to add instrumentation to an application. It is designed
4908 mostly to instrument shell scripts:
4909
4910 [role="term"]
4911 ----
4912 $ echo "Some message, some $variable" > /proc/lttng-logger
4913 ----
4914
4915 Any event that the LTTng logger emits is named `lttng_logger` and
4916 belongs to the Linux kernel <<domain,tracing domain>>. However, unlike
4917 other instrumentation points in the kernel tracing domain, **any Unix
4918 user** can <<enabling-disabling-events,create an event rule>> which
4919 matches its event name, not only the root user or users in the
4920 <<tracing-group,tracing group>>.
4921
4922 To use the LTTng logger:
4923
4924 * From any application, write text data to the path:{/proc/lttng-logger}
4925 file.
4926
4927 The `msg` field of `lttng_logger` event records contains the
4928 recorded message.
4929
4930 NOTE: The maximum message length of an LTTng logger event is
4931 1024{nbsp}bytes. Writing more than this makes the LTTng logger emit more
4932 than one event to contain the remaining data.
4933
4934 You should not use the LTTng logger to trace a user application which
4935 can be instrumented in a more efficient way, namely:
4936
4937 * <<c-application,C and $$C++$$ applications>>.
4938 * <<java-application,Java applications>>.
4939 * <<python-application,Python applications>>.
4940
4941 .Use the LTTng logger.
4942 ====
4943 [source,bash]
4944 .path:{test.bash}
4945 ----
4946 echo 'Hello, World!' > /proc/lttng-logger
4947 sleep 2
4948 df --human-readable --print-type / > /proc/lttng-logger
4949 ----
4950
4951 <<creating-destroying-tracing-sessions,Create a tracing session>>,
4952 <<enabling-disabling-events,create an event rule>> matching the
4953 `lttng_logger` Linux kernel tracepoint, and
4954 <<basic-tracing-session-control,start tracing>>:
4955
4956 [role="term"]
4957 ----
4958 $ lttng create
4959 $ lttng enable-event --kernel lttng_logger
4960 $ lttng start
4961 ----
4962
4963 Run the Bash script:
4964
4965 [role="term"]
4966 ----
4967 $ bash test.bash
4968 ----
4969
4970 <<basic-tracing-session-control,Stop tracing>> and inspect the recorded
4971 events:
4972
4973 [role="term"]
4974 ----
4975 $ lttng stop
4976 $ lttng view
4977 ----
4978 ====
4979
4980
4981 [[instrumenting-linux-kernel]]
4982 === LTTng kernel tracepoints
4983
4984 NOTE: This section shows how to _add_ instrumentation points to the
4985 Linux kernel. The kernel's subsystems are already thoroughly
4986 instrumented at strategic places for LTTng when you
4987 <<installing-lttng,install>> the <<lttng-modules,LTTng-modules>>
4988 package.
4989
4990 ////
4991 There are two methods to instrument the Linux kernel:
4992
4993 . <<linux-add-lttng-layer,Add an LTTng layer>> over an existing ftrace
4994 tracepoint which uses the `TRACE_EVENT()` API.
4995 +
4996 Choose this if you want to instrumentation a Linux kernel tree with an
4997 instrumentation point compatible with ftrace, perf, and SystemTap.
4998
4999 . Use an <<linux-lttng-tracepoint-event,LTTng-only approach>> to
5000 instrument an out-of-tree kernel module.
5001 +
5002 Choose this if you don't need ftrace, perf, or SystemTap support.
5003 ////
5004
5005
5006 [[linux-add-lttng-layer]]
5007 ==== [[instrumenting-linux-kernel-itself]][[mainline-trace-event]][[lttng-adaptation-layer]]Add an LTTng layer to an existing ftrace tracepoint
5008
5009 This section shows how to add an LTTng layer to existing ftrace
5010 instrumentation using the `TRACE_EVENT()` API.
5011
5012 This section does not document the `TRACE_EVENT()` macro. You can
5013 read the following articles to learn more about this API:
5014
5015 * http://lwn.net/Articles/379903/[Using the TRACE_EVENT() macro (Part 1)]
5016 * http://lwn.net/Articles/381064/[Using the TRACE_EVENT() macro (Part 2)]
5017 * http://lwn.net/Articles/383362/[Using the TRACE_EVENT() macro (Part 3)]
5018
5019 The following procedure assumes that your ftrace tracepoints are
5020 correctly defined in their own header and that they are created in
5021 one source file using the `CREATE_TRACE_POINTS` definition.
5022
5023 To add an LTTng layer over an existing ftrace tracepoint:
5024
5025 . Make sure the following kernel configuration options are
5026 enabled:
5027 +
5028 --
5029 * `CONFIG_MODULES`
5030 * `CONFIG_KALLSYMS`
5031 * `CONFIG_HIGH_RES_TIMERS`
5032 * `CONFIG_TRACEPOINTS`
5033 --
5034
5035 . Build the Linux source tree with your custom ftrace tracepoints.
5036 . Boot the resulting Linux image on your target system.
5037 +
5038 Confirm that the tracepoints exist by looking for their names in the
5039 dir:{/sys/kernel/debug/tracing/events/subsys} directory, where `subsys`
5040 is your subsystem's name.
5041
5042 . Get a copy of the latest LTTng-modules{nbsp}{revision}:
5043 +
5044 --
5045 [role="term"]
5046 ----
5047 $ cd $(mktemp -d) &&
5048 wget http://lttng.org/files/lttng-modules/lttng-modules-latest-2.10.tar.bz2 &&
5049 tar -xf lttng-modules-latest-2.10.tar.bz2 &&
5050 cd lttng-modules-2.10.*
5051 ----
5052 --
5053
5054 . In dir:{instrumentation/events/lttng-module}, relative to the root
5055 of the LTTng-modules source tree, create a header file named
5056 +__subsys__.h+ for your custom subsystem +__subsys__+ and write your
5057 LTTng-modules tracepoint definitions using the LTTng-modules
5058 macros in it.
5059 +
5060 Start with this template:
5061 +
5062 --
5063 [source,c]
5064 .path:{instrumentation/events/lttng-module/my_subsys.h}
5065 ----
5066 #undef TRACE_SYSTEM
5067 #define TRACE_SYSTEM my_subsys
5068
5069 #if !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ)
5070 #define _LTTNG_MY_SUBSYS_H
5071
5072 #include "../../../probes/lttng-tracepoint-event.h"
5073 #include <linux/tracepoint.h>
5074
5075 LTTNG_TRACEPOINT_EVENT(
5076 /*
5077 * Format is identical to TRACE_EVENT()'s version for the three
5078 * following macro parameters:
5079 */
5080 my_subsys_my_event,
5081 TP_PROTO(int my_int, const char *my_string),
5082 TP_ARGS(my_int, my_string),
5083
5084 /* LTTng-modules specific macros */
5085 TP_FIELDS(
5086 ctf_integer(int, my_int_field, my_int)
5087 ctf_string(my_bar_field, my_bar)
5088 )
5089 )
5090
5091 #endif /* !defined(_LTTNG_MY_SUBSYS_H) || defined(TRACE_HEADER_MULTI_READ) */
5092
5093 #include "../../../probes/define_trace.h"
5094 ----
5095 --
5096 +
5097 The entries in the `TP_FIELDS()` section are the list of fields for the
5098 LTTng tracepoint. This is similar to the `TP_STRUCT__entry()` part of
5099 ftrace's `TRACE_EVENT()` macro.
5100 +
5101 See <<lttng-modules-tp-fields,Tracepoint fields macros>> for a
5102 complete description of the available `ctf_*()` macros.
5103
5104 . Create the LTTng-modules probe's kernel module C source file,
5105 +probes/lttng-probe-__subsys__.c+, where +__subsys__+ is your
5106 subsystem name:
5107 +
5108 --
5109 [source,c]
5110 .path:{probes/lttng-probe-my-subsys.c}
5111 ----
5112 #include <linux/module.h>
5113 #include "../lttng-tracer.h"
5114
5115 /*
5116 * Build-time verification of mismatch between mainline
5117 * TRACE_EVENT() arguments and the LTTng-modules adaptation
5118 * layer LTTNG_TRACEPOINT_EVENT() arguments.
5119 */
5120 #include <trace/events/my_subsys.h>
5121
5122 /* Create LTTng tracepoint probes */
5123 #define LTTNG_PACKAGE_BUILD
5124 #define CREATE_TRACE_POINTS
5125 #define TRACE_INCLUDE_PATH ../instrumentation/events/lttng-module
5126
5127 #include "../instrumentation/events/lttng-module/my_subsys.h"
5128
5129 MODULE_LICENSE("GPL and additional rights");
5130 MODULE_AUTHOR("Your name <your-email>");
5131 MODULE_DESCRIPTION("LTTng my_subsys probes");
5132 MODULE_VERSION(__stringify(LTTNG_MODULES_MAJOR_VERSION) "."
5133 __stringify(LTTNG_MODULES_MINOR_VERSION) "."
5134 __stringify(LTTNG_MODULES_PATCHLEVEL_VERSION)
5135 LTTNG_MODULES_EXTRAVERSION);
5136 ----
5137 --
5138
5139 . Edit path:{probes/KBuild} and add your new kernel module object
5140 next to the existing ones:
5141 +
5142 --
5143 [source,make]
5144 .path:{probes/KBuild}
5145 ----
5146 # ...
5147
5148 obj-m += lttng-probe-module.o
5149 obj-m += lttng-probe-power.o
5150
5151 obj-m += lttng-probe-my-subsys.o
5152
5153 # ...
5154 ----
5155 --
5156
5157 . Build and install the LTTng kernel modules:
5158 +
5159 --
5160 [role="term"]
5161 ----
5162 $ make KERNELDIR=/path/to/linux
5163 # make modules_install && depmod -a
5164 ----
5165 --
5166 +
5167 Replace `/path/to/linux` with the path to the Linux source tree where
5168 you defined and used tracepoints with ftrace's `TRACE_EVENT()` macro.
5169
5170 Note that you can also use the
5171 <<lttng-tracepoint-event-code,`LTTNG_TRACEPOINT_EVENT_CODE()` macro>>
5172 instead of `LTTNG_TRACEPOINT_EVENT()` to use custom local variables and
5173 C code that need to be executed before the event fields are recorded.
5174
5175 The best way to learn how to use the previous LTTng-modules macros is to
5176 inspect the existing LTTng-modules tracepoint definitions in the
5177 dir:{instrumentation/events/lttng-module} header files. Compare them
5178 with the Linux kernel mainline versions in the
5179 dir:{include/trace/events} directory of the Linux source tree.
5180
5181
5182 [role="since-2.7"]
5183 [[lttng-tracepoint-event-code]]
5184 ===== Use custom C code to access the data for tracepoint fields
5185
5186 Although we recommended to always use the
5187 <<lttng-adaptation-layer,`LTTNG_TRACEPOINT_EVENT()`>> macro to describe
5188 the arguments and fields of an LTTng-modules tracepoint when possible,
5189 sometimes you need a more complex process to access the data that the
5190 tracer records as event record fields. In other words, you need local
5191 variables and multiple C{nbsp}statements instead of simple
5192 argument-based expressions that you pass to the
5193 <<lttng-modules-tp-fields,`ctf_*()` macros of `TP_FIELDS()`>>.
5194
5195 You can use the `LTTNG_TRACEPOINT_EVENT_CODE()` macro instead of
5196 `LTTNG_TRACEPOINT_EVENT()` to declare custom local variables and define
5197 a block of C{nbsp}code to be executed before LTTng records the fields.
5198 The structure of this macro is:
5199
5200 [source,c]
5201 .`LTTNG_TRACEPOINT_EVENT_CODE()` macro syntax.
5202 ----
5203 LTTNG_TRACEPOINT_EVENT_CODE(
5204 /*
5205 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5206 * version for the following three macro parameters:
5207 */
5208 my_subsys_my_event,
5209 TP_PROTO(int my_int, const char *my_string),
5210 TP_ARGS(my_int, my_string),
5211
5212 /* Declarations of custom local variables */
5213 TP_locvar(
5214 int a = 0;
5215 unsigned long b = 0;
5216 const char *name = "(undefined)";
5217 struct my_struct *my_struct;
5218 ),
5219
5220 /*
5221 * Custom code which uses both tracepoint arguments
5222 * (in TP_ARGS()) and local variables (in TP_locvar()).
5223 *
5224 * Local variables are actually members of a structure pointed
5225 * to by the special variable tp_locvar.
5226 */
5227 TP_code(
5228 if (my_int) {
5229 tp_locvar->a = my_int + 17;
5230 tp_locvar->my_struct = get_my_struct_at(tp_locvar->a);
5231 tp_locvar->b = my_struct_compute_b(tp_locvar->my_struct);
5232 tp_locvar->name = my_struct_get_name(tp_locvar->my_struct);
5233 put_my_struct(tp_locvar->my_struct);
5234
5235 if (tp_locvar->b) {
5236 tp_locvar->a = 1;
5237 }
5238 }
5239 ),
5240
5241 /*
5242 * Format identical to the LTTNG_TRACEPOINT_EVENT()
5243 * version for this, except that tp_locvar members can be
5244 * used in the argument expression parameters of
5245 * the ctf_*() macros.
5246 */
5247 TP_FIELDS(
5248 ctf_integer(unsigned long, my_struct_b, tp_locvar->b)
5249 ctf_integer(int, my_struct_a, tp_locvar->a)
5250 ctf_string(my_string_field, my_string)
5251 ctf_string(my_struct_name, tp_locvar->name)
5252 )
5253 )
5254 ----
5255
5256 IMPORTANT: The C code defined in `TP_code()` must not have any side
5257 effects when executed. In particular, the code must not allocate
5258 memory or get resources without deallocating this memory or putting
5259 those resources afterwards.
5260
5261
5262 [[instrumenting-linux-kernel-tracing]]
5263 ==== Load and unload a custom probe kernel module
5264
5265 You must load a <<lttng-adaptation-layer,created LTTng-modules probe
5266 kernel module>> in the kernel before it can emit LTTng events.
5267
5268 To load the default probe kernel modules and a custom probe kernel
5269 module:
5270
5271 * Use the opt:lttng-sessiond(8):--extra-kmod-probes option to give extra
5272 probe modules to load when starting a root <<lttng-sessiond,session
5273 daemon>>:
5274 +
5275 --
5276 .Load the `my_subsys`, `usb`, and the default probe modules.
5277 ====
5278 [role="term"]
5279 ----
5280 # lttng-sessiond --extra-kmod-probes=my_subsys,usb
5281 ----
5282 ====
5283 --
5284 +
5285 You only need to pass the subsystem name, not the whole kernel module
5286 name.
5287
5288 To load _only_ a given custom probe kernel module:
5289
5290 * Use the opt:lttng-sessiond(8):--kmod-probes option to give the probe
5291 modules to load when starting a root session daemon:
5292 +
5293 --
5294 .Load only the `my_subsys` and `usb` probe modules.
5295 ====
5296 [role="term"]
5297 ----
5298 # lttng-sessiond --kmod-probes=my_subsys,usb
5299 ----
5300 ====
5301 --
5302
5303 To confirm that a probe module is loaded:
5304
5305 * Use man:lsmod(8):
5306 +
5307 --
5308 [role="term"]
5309 ----
5310 $ lsmod | grep lttng_probe_usb
5311 ----
5312 --
5313
5314 To unload the loaded probe modules:
5315
5316 * Kill the session daemon with `SIGTERM`:
5317 +
5318 --
5319 [role="term"]
5320 ----
5321 # pkill lttng-sessiond
5322 ----
5323 --
5324 +
5325 You can also use man:modprobe(8)'s `--remove` option if the session
5326 daemon terminates abnormally.
5327
5328
5329 [[controlling-tracing]]
5330 == Tracing control
5331
5332 Once an application or a Linux kernel is
5333 <<instrumenting,instrumented>> for LTTng tracing,
5334 you can _trace_ it.
5335
5336 This section is divided in topics on how to use the various
5337 <<plumbing,components of LTTng>>, in particular the <<lttng-cli,cmd:lttng
5338 command-line tool>>, to _control_ the LTTng daemons and tracers.
5339
5340 NOTE: In the following subsections, we refer to an man:lttng(1) command
5341 using its man page name. For example, instead of _Run the `create`
5342 command to..._, we use _Run the man:lttng-create(1) command to..._.
5343
5344
5345 [[start-sessiond]]
5346 === Start a session daemon
5347
5348 In some situations, you need to run a <<lttng-sessiond,session daemon>>
5349 (man:lttng-sessiond(8)) _before_ you can use the man:lttng(1)
5350 command-line tool.
5351
5352 You will see the following error when you run a command while no session
5353 daemon is running:
5354
5355 ----
5356 Error: No session daemon is available
5357 ----
5358
5359 The only command that automatically runs a session daemon is
5360 man:lttng-create(1), which you use to
5361 <<creating-destroying-tracing-sessions,create a tracing session>>. While
5362 this is most of the time the first operation that you do, sometimes it's
5363 not. Some examples are:
5364
5365 * <<list-instrumentation-points,List the available instrumentation points>>.
5366 * <<saving-loading-tracing-session,Load a tracing session configuration>>.
5367
5368 [[tracing-group]] Each Unix user must have its own running session
5369 daemon to trace user applications. The session daemon that the root user
5370 starts is the only one allowed to control the LTTng kernel tracer. Users
5371 that are part of the _tracing group_ can control the root session
5372 daemon. The default tracing group name is `tracing`; you can set it to
5373 something else with the opt:lttng-sessiond(8):--group option when you
5374 start the root session daemon.
5375
5376 To start a user session daemon:
5377
5378 * Run man:lttng-sessiond(8):
5379 +
5380 --
5381 [role="term"]
5382 ----
5383 $ lttng-sessiond --daemonize
5384 ----
5385 --
5386
5387 To start the root session daemon:
5388
5389 * Run man:lttng-sessiond(8) as the root user:
5390 +
5391 --
5392 [role="term"]
5393 ----
5394 # lttng-sessiond --daemonize
5395 ----
5396 --
5397
5398 In both cases, remove the opt:lttng-sessiond(8):--daemonize option to
5399 start the session daemon in foreground.
5400
5401 To stop a session daemon, use man:kill(1) on its process ID (standard
5402 `TERM` signal).
5403
5404 Note that some Linux distributions could manage the LTTng session daemon
5405 as a service. In this case, you should use the service manager to
5406 start, restart, and stop session daemons.
5407
5408
5409 [[creating-destroying-tracing-sessions]]
5410 === Create and destroy a tracing session
5411
5412 Almost all the LTTng control operations happen in the scope of
5413 a <<tracing-session,tracing session>>, which is the dialogue between the
5414 <<lttng-sessiond,session daemon>> and you.
5415
5416 To create a tracing session with a generated name:
5417
5418 * Use the man:lttng-create(1) command:
5419 +
5420 --
5421 [role="term"]
5422 ----
5423 $ lttng create
5424 ----
5425 --
5426
5427 The created tracing session's name is `auto` followed by the
5428 creation date.
5429
5430 To create a tracing session with a specific name:
5431
5432 * Use the optional argument of the man:lttng-create(1) command:
5433 +
5434 --
5435 [role="term"]
5436 ----
5437 $ lttng create my-session
5438 ----
5439 --
5440 +
5441 Replace `my-session` with the specific tracing session name.
5442
5443 LTTng appends the creation date to the created tracing session's name.
5444
5445 LTTng writes the traces of a tracing session in
5446 +$LTTNG_HOME/lttng-trace/__name__+ by default, where +__name__+ is the
5447 name of the tracing session. Note that the env:LTTNG_HOME environment
5448 variable defaults to `$HOME` if not set.
5449
5450 To output LTTng traces to a non-default location:
5451
5452 * Use the opt:lttng-create(1):--output option of the man:lttng-create(1) command:
5453 +
5454 --
5455 [role="term"]
5456 ----
5457 $ lttng create my-session --output=/tmp/some-directory
5458 ----
5459 --
5460
5461 You may create as many tracing sessions as you wish.
5462
5463 To list all the existing tracing sessions for your Unix user:
5464
5465 * Use the man:lttng-list(1) command:
5466 +
5467 --
5468 [role="term"]
5469 ----
5470 $ lttng list
5471 ----
5472 --
5473
5474 When you create a tracing session, it is set as the _current tracing
5475 session_. The following man:lttng(1) commands operate on the current
5476 tracing session when you don't specify one:
5477
5478 [role="list-3-cols"]
5479 * `add-context`
5480 * `destroy`
5481 * `disable-channel`
5482 * `disable-event`
5483 * `enable-channel`
5484 * `enable-event`
5485 * `load`
5486 * `regenerate`
5487 * `save`
5488 * `snapshot`
5489 * `start`
5490 * `stop`
5491 * `track`
5492 * `untrack`
5493 * `view`
5494
5495 To change the current tracing session:
5496
5497 * Use the man:lttng-set-session(1) command:
5498 +
5499 --
5500 [role="term"]
5501 ----
5502 $ lttng set-session new-session
5503 ----
5504 --
5505 +
5506 Replace `new-session` by the name of the new current tracing session.
5507
5508 When you are done tracing in a given tracing session, you can destroy
5509 it. This operation frees the resources taken by the tracing session
5510 to destroy; it does not destroy the trace data that LTTng wrote for
5511 this tracing session.
5512
5513 To destroy the current tracing session:
5514
5515 * Use the man:lttng-destroy(1) command:
5516 +
5517 --
5518 [role="term"]
5519 ----
5520 $ lttng destroy
5521 ----
5522 --
5523
5524
5525 [[list-instrumentation-points]]
5526 === List the available instrumentation points
5527
5528 The <<lttng-sessiond,session daemon>> can query the running instrumented
5529 user applications and the Linux kernel to get a list of available
5530 instrumentation points. For the Linux kernel <<domain,tracing domain>>,
5531 they are tracepoints and system calls. For the user space tracing
5532 domain, they are tracepoints. For the other tracing domains, they are
5533 logger names.
5534
5535 To list the available instrumentation points:
5536
5537 * Use the man:lttng-list(1) command with the requested tracing domain's
5538 option amongst:
5539 +
5540 --
5541 * opt:lttng-list(1):--kernel: Linux kernel tracepoints (your Unix user
5542 must be a root user, or it must be a member of the
5543 <<tracing-group,tracing group>>).
5544 * opt:lttng-list(1):--kernel with opt:lttng-list(1):--syscall: Linux
5545 kernel system calls (your Unix user must be a root user, or it must be
5546 a member of the tracing group).
5547 * opt:lttng-list(1):--userspace: user space tracepoints.
5548 * opt:lttng-list(1):--jul: `java.util.logging` loggers.
5549 * opt:lttng-list(1):--log4j: Apache log4j loggers.
5550 * opt:lttng-list(1):--python: Python loggers.
5551 --
5552
5553 .List the available user space tracepoints.
5554 ====
5555 [role="term"]
5556 ----
5557 $ lttng list --userspace
5558 ----
5559 ====
5560
5561 .List the available Linux kernel system call tracepoints.
5562 ====
5563 [role="term"]
5564 ----
5565 $ lttng list --kernel --syscall
5566 ----
5567 ====
5568
5569
5570 [[enabling-disabling-events]]
5571 === Create and enable an event rule
5572
5573 Once you <<creating-destroying-tracing-sessions,create a tracing
5574 session>>, you can create <<event,event rules>> with the
5575 man:lttng-enable-event(1) command.
5576
5577 You specify each condition with a command-line option. The available
5578 condition options are shown in the following table.
5579
5580 [role="growable",cols="asciidoc,asciidoc,default"]
5581 .Condition command-line options for the man:lttng-enable-event(1) command.
5582 |====
5583 |Option |Description |Applicable tracing domains
5584
5585 |
5586 One of:
5587
5588 . `--syscall`
5589 . +--probe=__ADDR__+
5590 . +--function=__ADDR__+
5591
5592 |
5593 Instead of using the default _tracepoint_ instrumentation type, use:
5594
5595 . A Linux system call.
5596 . A Linux https://lwn.net/Articles/132196/[KProbe] (symbol or address).
5597 . The entry and return points of a Linux function (symbol or address).
5598
5599 |Linux kernel.
5600
5601 |First positional argument.
5602
5603 |
5604 Tracepoint or system call name. In the case of a Linux KProbe or
5605 function, this is a custom name given to the event rule. With the
5606 JUL, log4j, and Python domains, this is a logger name.
5607
5608 With a tracepoint, logger, or system call name, the last character
5609 can be `*` to match anything that remains.
5610
5611 |All.
5612
5613 |
5614 One of:
5615
5616 . +--loglevel=__LEVEL__+
5617 . +--loglevel-only=__LEVEL__+
5618
5619 |
5620 . Match only tracepoints or log statements with a logging level at
5621 least as severe as +__LEVEL__+.
5622 . Match only tracepoints or log statements with a logging level
5623 equal to +__LEVEL__+.
5624
5625 See man:lttng-enable-event(1) for the list of available logging level
5626 names.
5627
5628 |User space, JUL, log4j, and Python.
5629
5630 |+--exclude=__EXCLUSIONS__+
5631
5632 |
5633 When you use a `*` character at the end of the tracepoint or logger
5634 name (first positional argument), exclude the specific names in the
5635 comma-delimited list +__EXCLUSIONS__+.
5636
5637 |
5638 User space, JUL, log4j, and Python.
5639
5640 |+--filter=__EXPR__+
5641
5642 |
5643 Match only events which satisfy the expression +__EXPR__+.
5644
5645 See man:lttng-enable-event(1) to learn more about the syntax of a
5646 filter expression.
5647
5648 |All.
5649
5650 |====
5651
5652 You attach an event rule to a <<channel,channel>> on creation. If you do
5653 not specify the channel with the opt:lttng-enable-event(1):--channel
5654 option, and if the event rule to create is the first in its
5655 <<domain,tracing domain>> for a given tracing session, then LTTng
5656 creates a _default channel_ for you. This default channel is reused in
5657 subsequent invocations of the man:lttng-enable-event(1) command for the
5658 same tracing domain.
5659
5660 An event rule is always enabled at creation time.
5661
5662 The following examples show how you can combine the previous
5663 command-line options to create simple to more complex event rules.
5664
5665 .Create an event rule targetting a Linux kernel tracepoint (default channel).
5666 ====
5667 [role="term"]
5668 ----
5669 $ lttng enable-event --kernel sched_switch
5670 ----
5671 ====
5672
5673 .Create an event rule matching four Linux kernel system calls (default channel).
5674 ====
5675 [role="term"]
5676 ----
5677 $ lttng enable-event --kernel --syscall open,write,read,close
5678 ----
5679 ====
5680
5681 .Create event rules matching tracepoints with filter expressions (default channel).
5682 ====
5683 [role="term"]
5684 ----
5685 $ lttng enable-event --kernel sched_switch --filter='prev_comm == "bash"'
5686 ----
5687
5688 [role="term"]
5689 ----
5690 $ lttng enable-event --kernel --all \
5691 --filter='$ctx.tid == 1988 || $ctx.tid == 1534'
5692 ----
5693
5694 [role="term"]
5695 ----
5696 $ lttng enable-event --jul my_logger \
5697 --filter='$app.retriever:cur_msg_id > 3'
5698 ----
5699
5700 IMPORTANT: Make sure to always quote the filter string when you
5701 use man:lttng(1) from a shell.
5702 ====
5703
5704 .Create an event rule matching any user space tracepoint of a given tracepoint provider with a log level range (default channel).
5705 ====
5706 [role="term"]
5707 ----
5708 $ lttng enable-event --userspace my_app:'*' --loglevel=TRACE_INFO
5709 ----
5710
5711 IMPORTANT: Make sure to always quote the wildcard character when you
5712 use man:lttng(1) from a shell.
5713 ====
5714
5715 .Create an event rule matching multiple Python loggers with a wildcard and with exclusions (default channel).
5716 ====
5717 [role="term"]
5718 ----
5719 $ lttng enable-event --python my-app.'*' \
5720 --exclude='my-app.module,my-app.hello'
5721 ----
5722 ====
5723
5724 .Create an event rule matching any Apache log4j logger with a specific log level (default channel).
5725 ====
5726 [role="term"]
5727 ----
5728 $ lttng enable-event --log4j --all --loglevel-only=LOG4J_WARN
5729 ----
5730 ====
5731
5732 .Create an event rule attached to a specific channel matching a specific user space tracepoint provider and tracepoint.
5733 ====
5734 [role="term"]
5735 ----
5736 $ lttng enable-event --userspace my_app:my_tracepoint --channel=my-channel
5737 ----
5738 ====
5739
5740 The event rules of a given channel form a whitelist: as soon as an
5741 emitted event passes one of them, LTTng can record the event. For
5742 example, an event named `my_app:my_tracepoint` emitted from a user space
5743 tracepoint with a `TRACE_ERROR` log level passes both of the following
5744 rules:
5745
5746 [role="term"]
5747 ----
5748 $ lttng enable-event --userspace my_app:my_tracepoint
5749 $ lttng enable-event --userspace my_app:my_tracepoint \
5750 --loglevel=TRACE_INFO
5751 ----
5752
5753 The second event rule is redundant: the first one includes
5754 the second one.
5755
5756
5757 [[disable-event-rule]]
5758 === Disable an event rule
5759
5760 To disable an event rule that you <<enabling-disabling-events,created>>
5761 previously, use the man:lttng-disable-event(1) command. This command
5762 disables _all_ the event rules (of a given tracing domain and channel)
5763 which match an instrumentation point. The other conditions are not
5764 supported as of LTTng{nbsp}{revision}.
5765
5766 The LTTng tracer does not record an emitted event which passes
5767 a _disabled_ event rule.
5768
5769 .Disable an event rule matching a Python logger (default channel).
5770 ====
5771 [role="term"]
5772 ----
5773 $ lttng disable-event --python my-logger
5774 ----
5775 ====
5776
5777 .Disable an event rule matching all `java.util.logging` loggers (default channel).
5778 ====
5779 [role="term"]
5780 ----
5781 $ lttng disable-event --jul '*'
5782 ----
5783 ====
5784
5785 .Disable _all_ the event rules of the default channel.
5786 ====
5787 The opt:lttng-disable-event(1):--all-events option is not, like the
5788 opt:lttng-enable-event(1):--all option of man:lttng-enable-event(1), the
5789 equivalent of the event name `*` (wildcard): it disables _all_ the event
5790 rules of a given channel.
5791
5792 [role="term"]
5793 ----
5794 $ lttng disable-event --jul --all-events
5795 ----
5796 ====
5797
5798 NOTE: You cannot delete an event rule once you create it.
5799
5800
5801 [[status]]
5802 === Get the status of a tracing session
5803
5804 To get the status of the current tracing session, that is, its
5805 parameters, its channels, event rules, and their attributes:
5806
5807 * Use the man:lttng-status(1) command:
5808 +
5809 --
5810 [role="term"]
5811 ----
5812 $ lttng status
5813 ----
5814 --
5815 +
5816
5817 To get the status of any tracing session:
5818
5819 * Use the man:lttng-list(1) command with the tracing session's name:
5820 +
5821 --
5822 [role="term"]
5823 ----
5824 $ lttng list my-session
5825 ----
5826 --
5827 +
5828 Replace `my-session` with the desired tracing session's name.
5829
5830
5831 [[basic-tracing-session-control]]
5832 === Start and stop a tracing session
5833
5834 Once you <<creating-destroying-tracing-sessions,create a tracing
5835 session>> and
5836 <<enabling-disabling-events,create one or more event rules>>,
5837 you can start and stop the tracers for this tracing session.
5838
5839 To start tracing in the current tracing session:
5840
5841 * Use the man:lttng-start(1) command:
5842 +
5843 --
5844 [role="term"]
5845 ----
5846 $ lttng start
5847 ----
5848 --
5849
5850 LTTng is very flexible: you can launch user applications before
5851 or after the you start the tracers. The tracers only record the events
5852 if they pass enabled event rules and if they occur while the tracers are
5853 started.
5854
5855 To stop tracing in the current tracing session:
5856
5857 * Use the man:lttng-stop(1) command:
5858 +
5859 --
5860 [role="term"]
5861 ----
5862 $ lttng stop
5863 ----
5864 --
5865 +
5866 If there were <<channel-overwrite-mode-vs-discard-mode,lost event
5867 records>> or lost sub-buffers since the last time you ran
5868 man:lttng-start(1), warnings are printed when you run the
5869 man:lttng-stop(1) command.
5870
5871
5872 [[enabling-disabling-channels]]
5873 === Create a channel
5874
5875 Once you create a tracing session, you can create a <<channel,channel>>
5876 with the man:lttng-enable-channel(1) command.
5877
5878 Note that LTTng automatically creates a default channel when, for a
5879 given <<domain,tracing domain>>, no channels exist and you
5880 <<enabling-disabling-events,create>> the first event rule. This default
5881 channel is named `channel0` and its attributes are set to reasonable
5882 values. Therefore, you only need to create a channel when you need
5883 non-default attributes.
5884
5885 You specify each non-default channel attribute with a command-line
5886 option when you use the man:lttng-enable-channel(1) command. The
5887 available command-line options are:
5888
5889 [role="growable",cols="asciidoc,asciidoc"]
5890 .Command-line options for the man:lttng-enable-channel(1) command.
5891 |====
5892 |Option |Description
5893
5894 |`--overwrite`
5895
5896 |
5897 Use the _overwrite_
5898 <<channel-overwrite-mode-vs-discard-mode,event loss mode>> instead of
5899 the default _discard_ mode.
5900
5901 |`--buffers-pid` (user space tracing domain only)
5902
5903 |
5904 Use the per-process <<channel-buffering-schemes,buffering scheme>>
5905 instead of the default per-user buffering scheme.
5906
5907 |+--subbuf-size=__SIZE__+
5908
5909 |
5910 Allocate sub-buffers of +__SIZE__+ bytes (power of two), for each CPU,
5911 either for each Unix user (default), or for each instrumented process.
5912
5913 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5914
5915 |+--num-subbuf=__COUNT__+
5916
5917 |
5918 Allocate +__COUNT__+ sub-buffers (power of two), for each CPU, either
5919 for each Unix user (default), or for each instrumented process.
5920
5921 See <<channel-subbuf-size-vs-subbuf-count,Sub-buffer count and size>>.
5922
5923 |+--tracefile-size=__SIZE__+
5924
5925 |
5926 Set the maximum size of each trace file that this channel writes within
5927 a stream to +__SIZE__+ bytes instead of no maximum.
5928
5929 See <<tracefile-rotation,Trace file count and size>>.
5930
5931 |+--tracefile-count=__COUNT__+
5932
5933 |
5934 Limit the number of trace files that this channel creates to
5935 +__COUNT__+ channels instead of no limit.
5936
5937 See <<tracefile-rotation,Trace file count and size>>.
5938
5939 |+--switch-timer=__PERIODUS__+
5940
5941 |
5942 Set the <<channel-switch-timer,switch timer period>>
5943 to +__PERIODUS__+{nbsp}µs.
5944
5945 |+--read-timer=__PERIODUS__+
5946
5947 |
5948 Set the <<channel-read-timer,read timer period>>
5949 to +__PERIODUS__+{nbsp}µs.
5950
5951 |[[opt-blocking-timeout]]+--blocking-timeout=__TIMEOUTUS__+
5952
5953 |
5954 Set the timeout of user space applications which load LTTng-UST
5955 in blocking mode to +__TIMEOUTUS__+:
5956
5957 0 (default)::
5958 Never block (non-blocking mode).
5959
5960 -1::
5961 Block forever until space is available in a sub-buffer to record
5962 the event.
5963
5964 __n__, a positive value::
5965 Wait for at most __n__ µs when trying to write into a sub-buffer.
5966
5967 Note that, for this option to have any effect on an instrumented
5968 user space application, you need to run the application with a set
5969 env:LTTNG_UST_ALLOW_BLOCKING environment variable.
5970
5971 |+--output=__TYPE__+ (Linux kernel tracing domain only)
5972
5973 |
5974 Set the channel's output type to +__TYPE__+, either `mmap` or `splice`.
5975
5976 |====
5977
5978 You can only create a channel in the Linux kernel and user space
5979 <<domain,tracing domains>>: other tracing domains have their own channel
5980 created on the fly when <<enabling-disabling-events,creating event
5981 rules>>.
5982
5983 [IMPORTANT]
5984 ====
5985 Because of a current LTTng limitation, you must create all channels
5986 _before_ you <<basic-tracing-session-control,start tracing>> in a given
5987 tracing session, that is, before the first time you run
5988 man:lttng-start(1).
5989
5990 Since LTTng automatically creates a default channel when you use the
5991 man:lttng-enable-event(1) command with a specific tracing domain, you
5992 cannot, for example, create a Linux kernel event rule, start tracing,
5993 and then create a user space event rule, because no user space channel
5994 exists yet and it's too late to create one.
5995
5996 For this reason, make sure to configure your channels properly
5997 before starting the tracers for the first time!
5998 ====
5999
6000 The following examples show how you can combine the previous
6001 command-line options to create simple to more complex channels.
6002
6003 .Create a Linux kernel channel with default attributes.
6004 ====
6005 [role="term"]
6006 ----
6007 $ lttng enable-channel --kernel my-channel
6008 ----
6009 ====
6010
6011 .Create a user space channel with 4 sub-buffers or 1{nbsp}MiB each, per CPU, per instrumented process.
6012 ====
6013 [role="term"]
6014 ----
6015 $ lttng enable-channel --userspace --num-subbuf=4 --subbuf-size=1M \
6016 --buffers-pid my-channel
6017 ----
6018 ====
6019
6020 .[[blocking-timeout-example]]Create a default user space channel with an infinite blocking timeout.
6021 ====
6022 <<creating-destroying-tracing-sessions,Create a tracing-session>>,
6023 create the channel, <<enabling-disabling-events,create an event rule>>,
6024 and <<basic-tracing-session-control,start tracing>>:
6025
6026 [role="term"]
6027 ----
6028 $ lttng create
6029 $ lttng enable-channel --userspace --blocking-timeout=-1 blocking-channel
6030 $ lttng enable-event --userspace --channel=blocking-channel --all
6031 $ lttng start
6032 ----
6033
6034 Run an application instrumented with LTTng-UST and allow it to block:
6035
6036 [role="term"]
6037 ----
6038 $ LTTNG_UST_ALLOW_BLOCKING=1 my-app
6039 ----
6040 ====
6041
6042 .Create a Linux kernel channel which rotates 8 trace files of 4{nbsp}MiB each for each stream
6043 ====
6044 [role="term"]
6045 ----
6046 $ lttng enable-channel --kernel --tracefile-count=8 \
6047 --tracefile-size=4194304 my-channel
6048 ----
6049 ====
6050
6051 .Create a user space channel in overwrite (or _flight recorder_) mode.
6052 ====
6053 [role="term"]
6054 ----
6055 $ lttng enable-channel --userspace --overwrite my-channel
6056 ----
6057 ====
6058
6059 You can <<enabling-disabling-events,create>> the same event rule in
6060 two different channels:
6061
6062 [role="term"]
6063 ----
6064 $ lttng enable-event --userspace --channel=my-channel app:tp
6065 $ lttng enable-event --userspace --channel=other-channel app:tp
6066 ----
6067
6068 If both channels are enabled, when a tracepoint named `app:tp` is
6069 reached, LTTng records two events, one for each channel.
6070
6071
6072 [[disable-channel]]
6073 === Disable a channel
6074
6075 To disable a specific channel that you <<enabling-disabling-channels,created>>
6076 previously, use the man:lttng-disable-channel(1) command.
6077
6078 .Disable a specific Linux kernel channel.
6079 ====
6080 [role="term"]
6081 ----
6082 $ lttng disable-channel --kernel my-channel
6083 ----
6084 ====
6085
6086 The state of a channel precedes the individual states of event rules
6087 attached to it: event rules which belong to a disabled channel, even if
6088 they are enabled, are also considered disabled.
6089
6090
6091 [[adding-context]]
6092 === Add context fields to a channel
6093
6094 Event record fields in trace files provide important information about
6095 events that occured previously, but sometimes some external context may
6096 help you solve a problem faster. Examples of context fields are:
6097
6098 * The **process ID**, **thread ID**, **process name**, and
6099 **process priority** of the thread in which the event occurs.
6100 * The **hostname** of the system on which the event occurs.
6101 * The current values of many possible **performance counters** using
6102 perf, for example:
6103 ** CPU cycles, stalled cycles, idle cycles, and the other cycle types.
6104 ** Cache misses.
6105 ** Branch instructions, misses, and loads.
6106 ** CPU faults.
6107 * Any context defined at the application level (supported for the
6108 JUL and log4j <<domain,tracing domains>>).
6109
6110 To get the full list of available context fields, see
6111 `lttng add-context --list`. Some context fields are reserved for a
6112 specific <<domain,tracing domain>> (Linux kernel or user space).
6113
6114 You add context fields to <<channel,channels>>. All the events
6115 that a channel with added context fields records contain those fields.
6116
6117 To add context fields to one or all the channels of a given tracing
6118 session:
6119
6120 * Use the man:lttng-add-context(1) command.
6121
6122 .Add context fields to all the channels of the current tracing session.
6123 ====
6124 The following command line adds the virtual process identifier and
6125 the per-thread CPU cycles count fields to all the user space channels
6126 of the current tracing session.
6127
6128 [role="term"]
6129 ----
6130 $ lttng add-context --userspace --type=vpid --type=perf:thread:cpu-cycles
6131 ----
6132 ====
6133
6134 .Add performance counter context fields by raw ID
6135 ====
6136 See man:lttng-add-context(1) for the exact format of the context field
6137 type, which is partly compatible with the format used in
6138 man:perf-record(1).
6139
6140 [role="term"]
6141 ----
6142 $ lttng add-context --userspace --type=perf:thread:raw:r0110:test
6143 $ lttng add-context --kernel --type=perf:cpu:raw:r0013c:x86unhalted
6144 ----
6145 ====
6146
6147 .Add a context field to a specific channel.
6148 ====
6149 The following command line adds the thread identifier context field
6150 to the Linux kernel channel named `my-channel` in the current
6151 tracing session.
6152
6153 [role="term"]
6154 ----
6155 $ lttng add-context --kernel --channel=my-channel --type=tid
6156 ----
6157 ====
6158
6159 .Add an application-specific context field to a specific channel.
6160 ====
6161 The following command line adds the `cur_msg_id` context field of the
6162 `retriever` context retriever for all the instrumented
6163 <<java-application,Java applications>> recording <<event,event records>>
6164 in the channel named `my-channel`:
6165
6166 [role="term"]
6167 ----
6168 $ lttng add-context --kernel --channel=my-channel \
6169 --type='$app:retriever:cur_msg_id'
6170 ----
6171
6172 IMPORTANT: Make sure to always quote the `$` character when you
6173 use man:lttng-add-context(1) from a shell.
6174 ====
6175
6176 NOTE: You cannot remove context fields from a channel once you add it.
6177
6178
6179 [role="since-2.7"]
6180 [[pid-tracking]]
6181 === Track process IDs
6182
6183 It's often useful to allow only specific process IDs (PIDs) to emit
6184 events. For example, you may wish to record all the system calls made by
6185 a given process (Ă  la http://linux.die.net/man/1/strace[strace]).
6186
6187 The man:lttng-track(1) and man:lttng-untrack(1) commands serve this
6188 purpose. Both commands operate on a whitelist of process IDs. You _add_
6189 entries to this whitelist with the man:lttng-track(1) command and remove
6190 entries with the man:lttng-untrack(1) command. Any process which has one
6191 of the PIDs in the whitelist is allowed to emit LTTng events which pass
6192 an enabled <<event,event rule>>.
6193
6194 NOTE: The PID tracker tracks the _numeric process IDs_. Should a
6195 process with a given tracked ID exit and another process be given this
6196 ID, then the latter would also be allowed to emit events.
6197
6198 .Track and untrack process IDs.
6199 ====
6200 For the sake of the following example, assume the target system has 16
6201 possible PIDs.
6202
6203 When you
6204 <<creating-destroying-tracing-sessions,create a tracing session>>,
6205 the whitelist contains all the possible PIDs:
6206
6207 [role="img-100"]
6208 .All PIDs are tracked.
6209 image::track-all.png[]
6210
6211 When the whitelist is full and you use the man:lttng-track(1) command to
6212 specify some PIDs to track, LTTng first clears the whitelist, then it
6213 tracks the specific PIDs. After:
6214
6215 [role="term"]
6216 ----
6217 $ lttng track --pid=3,4,7,10,13
6218 ----
6219
6220 the whitelist is:
6221
6222 [role="img-100"]
6223 .PIDs 3, 4, 7, 10, and 13 are tracked.
6224 image::track-3-4-7-10-13.png[]
6225
6226 You can add more PIDs to the whitelist afterwards:
6227
6228 [role="term"]
6229 ----
6230 $ lttng track --pid=1,15,16
6231 ----
6232
6233 The result is:
6234
6235 [role="img-100"]
6236 .PIDs 1, 15, and 16 are added to the whitelist.
6237 image::track-1-3-4-7-10-13-15-16.png[]
6238
6239 The man:lttng-untrack(1) command removes entries from the PID tracker's
6240 whitelist. Given the previous example, the following command:
6241
6242 [role="term"]
6243 ----
6244 $ lttng untrack --pid=3,7,10,13
6245 ----
6246
6247 leads to this whitelist:
6248
6249 [role="img-100"]
6250 .PIDs 3, 7, 10, and 13 are removed from the whitelist.
6251 image::track-1-4-15-16.png[]
6252
6253 LTTng can track all possible PIDs again using the opt:track(1):--all
6254 option:
6255
6256 [role="term"]
6257 ----
6258 $ lttng track --pid --all
6259 ----
6260
6261 The result is, again:
6262
6263 [role="img-100"]
6264 .All PIDs are tracked.
6265 image::track-all.png[]
6266 ====
6267
6268 .Track only specific PIDs
6269 ====
6270 A very typical use case with PID tracking is to start with an empty
6271 whitelist, then <<basic-tracing-session-control,start the tracers>>, and
6272 then add PIDs manually while tracers are active. You can accomplish this
6273 by using the opt:lttng-untrack(1):--all option of the
6274 man:lttng-untrack(1) command to clear the whitelist after you
6275 <<creating-destroying-tracing-sessions,create a tracing session>>:
6276
6277 [role="term"]
6278 ----
6279 $ lttng untrack --pid --all
6280 ----
6281
6282 gives:
6283
6284 [role="img-100"]
6285 .No PIDs are tracked.
6286 image::untrack-all.png[]
6287
6288 If you trace with this whitelist configuration, the tracer records no
6289 events for this <<domain,tracing domain>> because no processes are
6290 tracked. You can use the man:lttng-track(1) command as usual to track
6291 specific PIDs, for example:
6292
6293 [role="term"]
6294 ----
6295 $ lttng track --pid=6,11
6296 ----
6297
6298 Result:
6299
6300 [role="img-100"]
6301 .PIDs 6 and 11 are tracked.
6302 image::track-6-11.png[]
6303 ====
6304
6305
6306 [role="since-2.5"]
6307 [[saving-loading-tracing-session]]
6308 === Save and load tracing session configurations
6309
6310 Configuring a <<tracing-session,tracing session>> can be long. Some of
6311 the tasks involved are:
6312
6313 * <<enabling-disabling-channels,Create channels>> with
6314 specific attributes.
6315 * <<adding-context,Add context fields>> to specific channels.
6316 * <<enabling-disabling-events,Create event rules>> with specific log
6317 level and filter conditions.
6318
6319 If you use LTTng to solve real world problems, chances are you have to
6320 record events using the same tracing session setup over and over,
6321 modifying a few variables each time in your instrumented program
6322 or environment. To avoid constant tracing session reconfiguration,
6323 the man:lttng(1) command-line tool can save and load tracing session
6324 configurations to/from XML files.
6325
6326 To save a given tracing session configuration:
6327
6328 * Use the man:lttng-save(1) command:
6329 +
6330 --
6331 [role="term"]
6332 ----
6333 $ lttng save my-session
6334 ----
6335 --
6336 +
6337 Replace `my-session` with the name of the tracing session to save.
6338
6339 LTTng saves tracing session configurations to
6340 dir:{$LTTNG_HOME/.lttng/sessions} by default. Note that the
6341 env:LTTNG_HOME environment variable defaults to `$HOME` if not set. Use
6342 the opt:lttng-save(1):--output-path option to change this destination
6343 directory.
6344
6345 LTTng saves all configuration parameters, for example:
6346
6347 * The tracing session name.
6348 * The trace data output path.
6349 * The channels with their state and all their attributes.
6350 * The context fields you added to channels.
6351 * The event rules with their state, log level and filter conditions.
6352
6353 To load a tracing session:
6354
6355 * Use the man:lttng-load(1) command:
6356 +
6357 --
6358 [role="term"]
6359 ----
6360 $ lttng load my-session
6361 ----
6362 --
6363 +
6364 Replace `my-session` with the name of the tracing session to load.
6365
6366 When LTTng loads a configuration, it restores your saved tracing session
6367 as if you just configured it manually.
6368
6369 See man:lttng(1) for the complete list of command-line options. You
6370 can also save and load all many sessions at a time, and decide in which
6371 directory to output the XML files.
6372
6373
6374 [[sending-trace-data-over-the-network]]
6375 === Send trace data over the network
6376
6377 LTTng can send the recorded trace data to a remote system over the
6378 network instead of writing it to the local file system.
6379
6380 To send the trace data over the network:
6381
6382 . On the _remote_ system (which can also be the target system),
6383 start an LTTng <<lttng-relayd,relay daemon>> (man:lttng-relayd(8)):
6384 +
6385 --
6386 [role="term"]
6387 ----
6388 $ lttng-relayd
6389 ----
6390 --
6391
6392 . On the _target_ system, create a tracing session configured to
6393 send trace data over the network:
6394 +
6395 --
6396 [role="term"]
6397 ----
6398 $ lttng create my-session --set-url=net://remote-system
6399 ----
6400 --
6401 +
6402 Replace `remote-system` by the host name or IP address of the
6403 remote system. See man:lttng-create(1) for the exact URL format.
6404
6405 . On the target system, use the man:lttng(1) command-line tool as usual.
6406 When tracing is active, the target's consumer daemon sends sub-buffers
6407 to the relay daemon running on the remote system instead of flushing
6408 them to the local file system. The relay daemon writes the received
6409 packets to the local file system.
6410
6411 The relay daemon writes trace files to
6412 +$LTTNG_HOME/lttng-traces/__hostname__/__session__+ by default, where
6413 +__hostname__+ is the host name of the target system and +__session__+
6414 is the tracing session name. Note that the env:LTTNG_HOME environment
6415 variable defaults to `$HOME` if not set. Use the
6416 opt:lttng-relayd(8):--output option of man:lttng-relayd(8) to write
6417 trace files to another base directory.
6418
6419
6420 [role="since-2.4"]
6421 [[lttng-live]]
6422 === View events as LTTng emits them (noch:{LTTng} live)
6423
6424 LTTng live is a network protocol implemented by the <<lttng-relayd,relay
6425 daemon>> (man:lttng-relayd(8)) to allow compatible trace viewers to
6426 display events as LTTng emits them on the target system while tracing is
6427 active.
6428
6429 The relay daemon creates a _tee_: it forwards the trace data to both
6430 the local file system and to connected live viewers:
6431
6432 [role="img-90"]
6433 .The relay daemon creates a _tee_, forwarding the trace data to both trace files and a connected live viewer.
6434 image::live.png[]
6435
6436 To use LTTng live:
6437
6438 . On the _target system_, create a <<tracing-session,tracing session>>
6439 in _live mode_:
6440 +
6441 --
6442 [role="term"]
6443 ----
6444 $ lttng create my-session --live
6445 ----
6446 --
6447 +
6448 This spawns a local relay daemon.
6449
6450 . Start the live viewer and configure it to connect to the relay
6451 daemon. For example, with http://diamon.org/babeltrace[Babeltrace]:
6452 +
6453 --
6454 [role="term"]
6455 ----
6456 $ babeltrace --input-format=lttng-live \
6457 net://localhost/host/hostname/my-session
6458 ----
6459 --
6460 +
6461 Replace:
6462 +
6463 --
6464 * `hostname` with the host name of the target system.
6465 * `my-session` with the name of the tracing session to view.
6466 --
6467
6468 . Configure the tracing session as usual with the man:lttng(1)
6469 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6470
6471 You can list the available live tracing sessions with Babeltrace:
6472
6473 [role="term"]
6474 ----
6475 $ babeltrace --input-format=lttng-live net://localhost
6476 ----
6477
6478 You can start the relay daemon on another system. In this case, you need
6479 to specify the relay daemon's URL when you create the tracing session
6480 with the opt:lttng-create(1):--set-url option. You also need to replace
6481 `localhost` in the procedure above with the host name of the system on
6482 which the relay daemon is running.
6483
6484 See man:lttng-create(1) and man:lttng-relayd(8) for the complete list of
6485 command-line options.
6486
6487
6488 [role="since-2.3"]
6489 [[taking-a-snapshot]]
6490 === Take a snapshot of the current sub-buffers of a tracing session
6491
6492 The normal behavior of LTTng is to append full sub-buffers to growing
6493 trace data files. This is ideal to keep a full history of the events
6494 that occurred on the target system, but it can
6495 represent too much data in some situations. For example, you may wish
6496 to trace your application continuously until some critical situation
6497 happens, in which case you only need the latest few recorded
6498 events to perform the desired analysis, not multi-gigabyte trace files.
6499
6500 With the man:lttng-snapshot(1) command, you can take a snapshot of the
6501 current sub-buffers of a given <<tracing-session,tracing session>>.
6502 LTTng can write the snapshot to the local file system or send it over
6503 the network.
6504
6505 To take a snapshot:
6506
6507 . Create a tracing session in _snapshot mode_:
6508 +
6509 --
6510 [role="term"]
6511 ----
6512 $ lttng create my-session --snapshot
6513 ----
6514 --
6515 +
6516 The <<channel-overwrite-mode-vs-discard-mode,event loss mode>> of
6517 <<channel,channels>> created in this mode is automatically set to
6518 _overwrite_ (flight recorder mode).
6519
6520 . Configure the tracing session as usual with the man:lttng(1)
6521 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6522
6523 . **Optional**: When you need to take a snapshot,
6524 <<basic-tracing-session-control,stop tracing>>.
6525 +
6526 You can take a snapshot when the tracers are active, but if you stop
6527 them first, you are sure that the data in the sub-buffers does not
6528 change before you actually take the snapshot.
6529
6530 . Take a snapshot:
6531 +
6532 --
6533 [role="term"]
6534 ----
6535 $ lttng snapshot record --name=my-first-snapshot
6536 ----
6537 --
6538 +
6539 LTTng writes the current sub-buffers of all the current tracing
6540 session's channels to trace files on the local file system. Those trace
6541 files have `my-first-snapshot` in their name.
6542
6543 There is no difference between the format of a normal trace file and the
6544 format of a snapshot: viewers of LTTng traces also support LTTng
6545 snapshots.
6546
6547 By default, LTTng writes snapshot files to the path shown by
6548 `lttng snapshot list-output`. You can change this path or decide to send
6549 snapshots over the network using either:
6550
6551 . An output path or URL that you specify when you create the
6552 tracing session.
6553 . An snapshot output path or URL that you add using
6554 `lttng snapshot add-output`
6555 . An output path or URL that you provide directly to the
6556 `lttng snapshot record` command.
6557
6558 Method 3 overrides method 2, which overrides method 1. When you
6559 specify a URL, a relay daemon must listen on a remote system (see
6560 <<sending-trace-data-over-the-network,Send trace data over the network>>).
6561
6562
6563 [role="since-2.6"]
6564 [[mi]]
6565 === Use the machine interface
6566
6567 With any command of the man:lttng(1) command-line tool, you can set the
6568 opt:lttng(1):--mi option to `xml` (before the command name) to get an
6569 XML machine interface output, for example:
6570
6571 [role="term"]
6572 ----
6573 $ lttng --mi=xml enable-event --kernel --syscall open
6574 ----
6575
6576 A schema definition (XSD) is
6577 https://github.com/lttng/lttng-tools/blob/stable-2.10/src/common/mi-lttng-3.0.xsd[available]
6578 to ease the integration with external tools as much as possible.
6579
6580
6581 [role="since-2.8"]
6582 [[metadata-regenerate]]
6583 === Regenerate the metadata of an LTTng trace
6584
6585 An LTTng trace, which is a http://diamon.org/ctf[CTF] trace, has both
6586 data stream files and a metadata file. This metadata file contains,
6587 amongst other things, information about the offset of the clock sources
6588 used to timestamp <<event,event records>> when tracing.
6589
6590 If, once a <<tracing-session,tracing session>> is
6591 <<basic-tracing-session-control,started>>, a major
6592 https://en.wikipedia.org/wiki/Network_Time_Protocol[NTP] correction
6593 happens, the trace's clock offset also needs to be updated. You
6594 can use the `metadata` item of the man:lttng-regenerate(1) command
6595 to do so.
6596
6597 The main use case of this command is to allow a system to boot with
6598 an incorrect wall time and trace it with LTTng before its wall time
6599 is corrected. Once the system is known to be in a state where its
6600 wall time is correct, it can run `lttng regenerate metadata`.
6601
6602 To regenerate the metadata of an LTTng trace:
6603
6604 * Use the `metadata` item of the man:lttng-regenerate(1) command:
6605 +
6606 --
6607 [role="term"]
6608 ----
6609 $ lttng regenerate metadata
6610 ----
6611 --
6612
6613 [IMPORTANT]
6614 ====
6615 `lttng regenerate metadata` has the following limitations:
6616
6617 * Tracing session <<creating-destroying-tracing-sessions,created>>
6618 in non-live mode.
6619 * User space <<channel,channels>>, if any, are using
6620 <<channel-buffering-schemes,per-user buffering>>.
6621 ====
6622
6623
6624 [role="since-2.9"]
6625 [[regenerate-statedump]]
6626 === Regenerate the state dump of a tracing session
6627
6628 The LTTng kernel and user space tracers generate state dump
6629 <<event,event records>> when the application starts or when you
6630 <<basic-tracing-session-control,start a tracing session>>. An analysis
6631 can use the state dump event records to set an initial state before it
6632 builds the rest of the state from the following event records.
6633 http://tracecompass.org/[Trace Compass] is a notable example of an
6634 application which uses the state dump of an LTTng trace.
6635
6636 When you <<taking-a-snapshot,take a snapshot>>, it's possible that the
6637 state dump event records are not included in the snapshot because they
6638 were recorded to a sub-buffer that has been consumed or overwritten
6639 already.
6640
6641 You can use the `lttng regenerate statedump` command to emit the state
6642 dump event records again.
6643
6644 To regenerate the state dump of the current tracing session, provided
6645 create it in snapshot mode, before you take a snapshot:
6646
6647 . Use the `statedump` item of the man:lttng-regenerate(1) command:
6648 +
6649 --
6650 [role="term"]
6651 ----
6652 $ lttng regenerate statedump
6653 ----
6654 --
6655
6656 . <<basic-tracing-session-control,Stop the tracing session>>:
6657 +
6658 --
6659 [role="term"]
6660 ----
6661 $ lttng stop
6662 ----
6663 --
6664
6665 . <<taking-a-snapshot,Take a snapshot>>:
6666 +
6667 --
6668 [role="term"]
6669 ----
6670 $ lttng snapshot record --name=my-snapshot
6671 ----
6672 --
6673
6674 Depending on the event throughput, you should run steps 1 and 2
6675 as closely as possible.
6676
6677 NOTE: To record the state dump events, you need to
6678 <<enabling-disabling-events,create event rules>> which enable them.
6679 LTTng-UST state dump tracepoints start with `lttng_ust_statedump:`.
6680 LTTng-modules state dump tracepoints start with `lttng_statedump_`.
6681
6682
6683 [role="since-2.7"]
6684 [[persistent-memory-file-systems]]
6685 === Record trace data on persistent memory file systems
6686
6687 https://en.wikipedia.org/wiki/Non-volatile_random-access_memory[Non-volatile random-access memory]
6688 (NVRAM) is random-access memory that retains its information when power
6689 is turned off (non-volatile). Systems with such memory can store data
6690 structures in RAM and retrieve them after a reboot, without flushing
6691 to typical _storage_.
6692
6693 Linux supports NVRAM file systems thanks to either
6694 http://pramfs.sourceforge.net/[PRAMFS] or
6695 https://www.kernel.org/doc/Documentation/filesystems/dax.txt[DAX]{nbsp}+{nbsp}http://lkml.iu.edu/hypermail/linux/kernel/1504.1/03463.html[pmem]
6696 (requires Linux 4.1+).
6697
6698 This section does not describe how to operate such file systems;
6699 we assume that you have a working persistent memory file system.
6700
6701 When you create a <<tracing-session,tracing session>>, you can specify
6702 the path of the shared memory holding the sub-buffers. If you specify a
6703 location on an NVRAM file system, then you can retrieve the latest
6704 recorded trace data when the system reboots after a crash.
6705
6706 To record trace data on a persistent memory file system and retrieve the
6707 trace data after a system crash:
6708
6709 . Create a tracing session with a sub-buffer shared memory path located
6710 on an NVRAM file system:
6711 +
6712 --
6713 [role="term"]
6714 ----
6715 $ lttng create my-session --shm-path=/path/to/shm
6716 ----
6717 --
6718
6719 . Configure the tracing session as usual with the man:lttng(1)
6720 command-line tool, and <<basic-tracing-session-control,start tracing>>.
6721
6722 . After a system crash, use the man:lttng-crash(1) command-line tool to
6723 view the trace data recorded on the NVRAM file system:
6724 +
6725 --
6726 [role="term"]
6727 ----
6728 $ lttng-crash /path/to/shm
6729 ----
6730 --
6731
6732 The binary layout of the ring buffer files is not exactly the same as
6733 the trace files layout. This is why you need to use man:lttng-crash(1)
6734 instead of your preferred trace viewer directly.
6735
6736 To convert the ring buffer files to LTTng trace files:
6737
6738 * Use the opt:lttng-crash(1):--extract option of man:lttng-crash(1):
6739 +
6740 --
6741 [role="term"]
6742 ----
6743 $ lttng-crash --extract=/path/to/trace /path/to/shm
6744 ----
6745 --
6746
6747
6748 [role="since-2.10"]
6749 [[notif-trigger-api]]
6750 === Get notified when a channel's buffer usage is too high or too low
6751
6752 With LTTng's $$C/C++$$ notification and trigger API, your user
6753 application can get notified when the buffer usage of one or more
6754 <<channel,channels>> becomes too low or too high. You can use this API
6755 and enable or disable <<event,event rules>> during tracing to avoid
6756 <<channel-overwrite-mode-vs-discard-mode,discarded event records>>.
6757
6758 .Have a user application get notified when an LTTng channel's buffer usage is too high.
6759 ====
6760 In this example, we create and build an application which gets notified
6761 when the buffer usage of a specific LTTng channel is higher than
6762 75{nbsp}%. We only print that it is the case in the example, but we
6763 could as well use the API of <<liblttng-ctl-lttng,`liblttng-ctl`>> to
6764 disable event rules when this happens.
6765
6766 . Create the application's C source file:
6767 +
6768 --
6769 [source,c]
6770 .path:{notif-app.c}
6771 ----
6772 #include <stdio.h>
6773 #include <assert.h>
6774 #include <lttng/domain.h>
6775 #include <lttng/action/action.h>
6776 #include <lttng/action/notify.h>
6777 #include <lttng/condition/condition.h>
6778 #include <lttng/condition/buffer-usage.h>
6779 #include <lttng/condition/evaluation.h>
6780 #include <lttng/notification/channel.h>
6781 #include <lttng/notification/notification.h>
6782 #include <lttng/trigger/trigger.h>
6783 #include <lttng/endpoint.h>
6784
6785 int main(int argc, char *argv[])
6786 {
6787 int exit_status = 0;
6788 struct lttng_notification_channel *notification_channel;
6789 struct lttng_condition *condition;
6790 struct lttng_action *action;
6791 struct lttng_trigger *trigger;
6792 const char *tracing_session_name;
6793 const char *channel_name;
6794
6795 assert(argc >= 3);
6796 tracing_session_name = argv[1];
6797 channel_name = argv[2];
6798
6799 /*
6800 * Create a notification channel. A notification channel
6801 * connects the user application to the LTTng session daemon.
6802 * This notification channel can be used to listen to various
6803 * types of notifications.
6804 */
6805 notification_channel = lttng_notification_channel_create(
6806 lttng_session_daemon_notification_endpoint);
6807
6808 /*
6809 * Create a "high buffer usage" condition. In this case, the
6810 * condition is reached when the buffer usage is greater than or
6811 * equal to 75 %. We create the condition for a specific tracing
6812 * session name, channel name, and for the user space tracing
6813 * domain.
6814 *
6815 * The "low buffer usage" condition type also exists.
6816 */
6817 condition = lttng_condition_buffer_usage_high_create();
6818 lttng_condition_buffer_usage_set_threshold_ratio(condition, .75);
6819 lttng_condition_buffer_usage_set_session_name(
6820 condition, tracing_session_name);
6821 lttng_condition_buffer_usage_set_channel_name(condition,
6822 channel_name);
6823 lttng_condition_buffer_usage_set_domain_type(condition,
6824 LTTNG_DOMAIN_UST);
6825
6826 /*
6827 * Create an action (get a notification) to take when the
6828 * condition created above is reached.
6829 */
6830 action = lttng_action_notify_create();
6831
6832 /*
6833 * Create a trigger. A trigger associates a condition to an
6834 * action: the action is executed when the condition is reached.
6835 */
6836 trigger = lttng_trigger_create(condition, action);
6837
6838 /* Register the trigger to LTTng. */
6839 lttng_register_trigger(trigger);
6840
6841 /*
6842 * Now that we have registered a trigger, a notification will be
6843 * emitted everytime its condition is met. To receive this
6844 * notification, we must subscribe to notifications that match
6845 * the same condition.
6846 */
6847 lttng_notification_channel_subscribe(notification_channel,
6848 condition);
6849
6850 /*
6851 * Notification loop. You can put this in a dedicated thread to
6852 * avoid blocking the main thread.
6853 */
6854 for (;;) {
6855 struct lttng_notification *notification;
6856 enum lttng_notification_channel_status status;
6857 const struct lttng_evaluation *notification_evaluation;
6858 const struct lttng_condition *notification_condition;
6859 double buffer_usage;
6860
6861 /* Receive the next notification. */
6862 status = lttng_notification_channel_get_next_notification(
6863 notification_channel, &notification);
6864
6865 switch (status) {
6866 case LTTNG_NOTIFICATION_CHANNEL_STATUS_OK:
6867 break;
6868 case LTTNG_NOTIFICATION_CHANNEL_STATUS_NOTIFICATIONS_DROPPED:
6869 /*
6870 * The session daemon can drop notifications if
6871 * a monitoring application is not consuming the
6872 * notifications fast enough.
6873 */
6874 continue;
6875 case LTTNG_NOTIFICATION_CHANNEL_STATUS_CLOSED:
6876 /*
6877 * The notification channel has been closed by the
6878 * session daemon. This is typically caused by a session
6879 * daemon shutting down.
6880 */
6881 goto end;
6882 default:
6883 /* Unhandled conditions or errors. */
6884 exit_status = 1;
6885 goto end;
6886 }
6887
6888 /*
6889 * A notification provides, amongst other things:
6890 *
6891 * * The condition that caused this notification to be
6892 * emitted.
6893 * * The condition evaluation, which provides more
6894 * specific information on the evaluation of the
6895 * condition.
6896 *
6897 * The condition evaluation provides the buffer usage
6898 * value at the moment the condition was reached.
6899 */
6900 notification_condition = lttng_notification_get_condition(
6901 notification);
6902 notification_evaluation = lttng_notification_get_evaluation(
6903 notification);
6904
6905 /* We're subscribed to only one condition. */
6906 assert(lttng_condition_get_type(notification_condition) ==
6907 LTTNG_CONDITION_TYPE_BUFFER_USAGE_HIGH);
6908
6909 /*
6910 * Get the exact sampled buffer usage from the
6911 * condition evaluation.
6912 */
6913 lttng_evaluation_buffer_usage_get_usage_ratio(
6914 notification_evaluation, &buffer_usage);
6915
6916 /*
6917 * At this point, instead of printing a message, we
6918 * could do something to reduce the channel's buffer
6919 * usage, like disable specific events.
6920 */
6921 printf("Buffer usage is %f %% in tracing session \"%s\", "
6922 "user space channel \"%s\".\n", buffer_usage * 100,
6923 tracing_session_name, channel_name);
6924 lttng_notification_destroy(notification);
6925 }
6926
6927 end:
6928 lttng_action_destroy(action);
6929 lttng_condition_destroy(condition);
6930 lttng_trigger_destroy(trigger);
6931 lttng_notification_channel_destroy(notification_channel);
6932 return exit_status;
6933 }
6934 ----
6935 --
6936
6937 . Build the `notif-app` application, linking it to `liblttng-ctl`:
6938 +
6939 --
6940 [role="term"]
6941 ----
6942 $ gcc -o notif-app notif-app.c -llttng-ctl
6943 ----
6944 --
6945
6946 . <<creating-destroying-tracing-sessions,Create a tracing session>>,
6947 <<enabling-disabling-events,create an event rule>> matching all the
6948 user space tracepoints, and
6949 <<basic-tracing-session-control,start tracing>>:
6950 +
6951 --
6952 [role="term"]
6953 ----
6954 $ lttng create my-session
6955 $ lttng enable-event --userspace --all
6956 $ lttng start
6957 ----
6958 --
6959 +
6960 If you create the channel manually with the man:lttng-enable-channel(1)
6961 command, you can control how frequently are the current values of the
6962 channel's properties sampled to evaluate user conditions with the
6963 opt:lttng-enable-channel(1):--monitor-timer option.
6964
6965 . Run the `notif-app` application. This program accepts the
6966 <<tracing-session,tracing session>> name and the user space channel
6967 name as its two first arguments. The channel which LTTng automatically
6968 creates with the man:lttng-enable-event(1) command above is named
6969 `channel0`:
6970 +
6971 --
6972 [role="term"]
6973 ----
6974 $ ./notif-app my-session channel0
6975 ----
6976 --
6977
6978 . In another terminal, run an application with a very high event
6979 throughput so that the 75{nbsp}% buffer usage condition is reached.
6980 +
6981 In the first terminal, the application should print lines like this:
6982 +
6983 ----
6984 Buffer usage is 81.45197 % in tracing session "my-session", user space
6985 channel "channel0".
6986 ----
6987 +
6988 If you don't see anything, try modifying the condition in
6989 path:{notif-app.c} to a lower value (0.1, for example), rebuilding it
6990 (step 2) and running it again (step 4).
6991 ====
6992
6993
6994 [[reference]]
6995 == Reference
6996
6997 [[lttng-modules-ref]]
6998 === noch:{LTTng-modules}
6999
7000
7001 [role="since-2.9"]
7002 [[lttng-tracepoint-enum]]
7003 ==== `LTTNG_TRACEPOINT_ENUM()` usage
7004
7005 Use the `LTTNG_TRACEPOINT_ENUM()` macro to define an enumeration:
7006
7007 [source,c]
7008 ----
7009 LTTNG_TRACEPOINT_ENUM(name, TP_ENUM_VALUES(entries))
7010 ----
7011
7012 Replace:
7013
7014 * `name` with the name of the enumeration (C identifier, unique
7015 amongst all the defined enumerations).
7016 * `entries` with a list of enumeration entries.
7017
7018 The available enumeration entry macros are:
7019
7020 +ctf_enum_value(__name__, __value__)+::
7021 Entry named +__name__+ mapped to the integral value +__value__+.
7022
7023 +ctf_enum_range(__name__, __begin__, __end__)+::
7024 Entry named +__name__+ mapped to the range of integral values between
7025 +__begin__+ (included) and +__end__+ (included).
7026
7027 +ctf_enum_auto(__name__)+::
7028 Entry named +__name__+ mapped to the integral value following the
7029 last mapping's value.
7030 +
7031 The last value of a `ctf_enum_value()` entry is its +__value__+
7032 parameter.
7033 +
7034 The last value of a `ctf_enum_range()` entry is its +__end__+ parameter.
7035 +
7036 If `ctf_enum_auto()` is the first entry in the list, its integral
7037 value is 0.
7038
7039 Use the `ctf_enum()` <<lttng-modules-tp-fields,field definition macro>>
7040 to use a defined enumeration as a tracepoint field.
7041
7042 .Define an enumeration with `LTTNG_TRACEPOINT_ENUM()`.
7043 ====
7044 [source,c]
7045 ----
7046 LTTNG_TRACEPOINT_ENUM(
7047 my_enum,
7048 TP_ENUM_VALUES(
7049 ctf_enum_auto("AUTO: EXPECT 0")
7050 ctf_enum_value("VALUE: 23", 23)
7051 ctf_enum_value("VALUE: 27", 27)
7052 ctf_enum_auto("AUTO: EXPECT 28")
7053 ctf_enum_range("RANGE: 101 TO 303", 101, 303)
7054 ctf_enum_auto("AUTO: EXPECT 304")
7055 )
7056 )
7057 ----
7058 ====
7059
7060
7061 [role="since-2.7"]
7062 [[lttng-modules-tp-fields]]
7063 ==== Tracepoint fields macros (for `TP_FIELDS()`)
7064
7065 [[tp-fast-assign]][[tp-struct-entry]]The available macros to define
7066 tracepoint fields, which must be listed within `TP_FIELDS()` in
7067 `LTTNG_TRACEPOINT_EVENT()`, are:
7068
7069 [role="func-desc growable",cols="asciidoc,asciidoc"]
7070 .Available macros to define LTTng-modules tracepoint fields
7071 |====
7072 |Macro |Description and parameters
7073
7074 |
7075 +ctf_integer(__t__, __n__, __e__)+
7076
7077 +ctf_integer_nowrite(__t__, __n__, __e__)+
7078
7079 +ctf_user_integer(__t__, __n__, __e__)+
7080
7081 +ctf_user_integer_nowrite(__t__, __n__, __e__)+
7082 |
7083 Standard integer, displayed in base 10.
7084
7085 +__t__+::
7086 Integer C type (`int`, `long`, `size_t`, ...).
7087
7088 +__n__+::
7089 Field name.
7090
7091 +__e__+::
7092 Argument expression.
7093
7094 |
7095 +ctf_integer_hex(__t__, __n__, __e__)+
7096
7097 +ctf_user_integer_hex(__t__, __n__, __e__)+
7098 |
7099 Standard integer, displayed in base 16.
7100
7101 +__t__+::
7102 Integer C type.
7103
7104 +__n__+::
7105 Field name.
7106
7107 +__e__+::
7108 Argument expression.
7109
7110 |+ctf_integer_oct(__t__, __n__, __e__)+
7111 |
7112 Standard integer, displayed in base 8.
7113
7114 +__t__+::
7115 Integer C type.
7116
7117 +__n__+::
7118 Field name.
7119
7120 +__e__+::
7121 Argument expression.
7122
7123 |
7124 +ctf_integer_network(__t__, __n__, __e__)+
7125
7126 +ctf_user_integer_network(__t__, __n__, __e__)+
7127 |
7128 Integer in network byte order (big-endian), displayed in base 10.
7129
7130 +__t__+::
7131 Integer C type.
7132
7133 +__n__+::
7134 Field name.
7135
7136 +__e__+::
7137 Argument expression.
7138
7139 |
7140 +ctf_integer_network_hex(__t__, __n__, __e__)+
7141
7142 +ctf_user_integer_network_hex(__t__, __n__, __e__)+
7143 |
7144 Integer in network byte order, displayed in base 16.
7145
7146 +__t__+::
7147 Integer C type.
7148
7149 +__n__+::
7150 Field name.
7151
7152 +__e__+::
7153 Argument expression.
7154
7155 |
7156 +ctf_enum(__N__, __t__, __n__, __e__)+
7157
7158 +ctf_enum_nowrite(__N__, __t__, __n__, __e__)+
7159
7160 +ctf_user_enum(__N__, __t__, __n__, __e__)+
7161
7162 +ctf_user_enum_nowrite(__N__, __t__, __n__, __e__)+
7163 |
7164 Enumeration.
7165
7166 +__N__+::
7167 Name of a <<lttng-tracepoint-enum,previously defined enumeration>>.
7168
7169 +__t__+::
7170 Integer C type (`int`, `long`, `size_t`, ...).
7171
7172 +__n__+::
7173 Field name.
7174
7175 +__e__+::
7176 Argument expression.
7177
7178 |
7179 +ctf_string(__n__, __e__)+
7180
7181 +ctf_string_nowrite(__n__, __e__)+
7182
7183 +ctf_user_string(__n__, __e__)+
7184
7185 +ctf_user_string_nowrite(__n__, __e__)+
7186 |
7187 Null-terminated string; undefined behavior if +__e__+ is `NULL`.
7188
7189 +__n__+::
7190 Field name.
7191
7192 +__e__+::
7193 Argument expression.
7194
7195 |
7196 +ctf_array(__t__, __n__, __e__, __s__)+
7197
7198 +ctf_array_nowrite(__t__, __n__, __e__, __s__)+
7199
7200 +ctf_user_array(__t__, __n__, __e__, __s__)+
7201
7202 +ctf_user_array_nowrite(__t__, __n__, __e__, __s__)+
7203 |
7204 Statically-sized array of integers.
7205
7206 +__t__+::
7207 Array element C type.
7208
7209 +__n__+::
7210 Field name.
7211
7212 +__e__+::
7213 Argument expression.
7214
7215 +__s__+::
7216 Number of elements.
7217
7218 |
7219 +ctf_array_bitfield(__t__, __n__, __e__, __s__)+
7220
7221 +ctf_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7222
7223 +ctf_user_array_bitfield(__t__, __n__, __e__, __s__)+
7224
7225 +ctf_user_array_bitfield_nowrite(__t__, __n__, __e__, __s__)+
7226 |
7227 Statically-sized array of bits.
7228
7229 The type of +__e__+ must be an integer type. +__s__+ is the number
7230 of elements of such type in +__e__+, not the number of bits.
7231
7232 +__t__+::
7233 Array element C type.
7234
7235 +__n__+::
7236 Field name.
7237
7238 +__e__+::
7239 Argument expression.
7240
7241 +__s__+::
7242 Number of elements.
7243
7244 |
7245 +ctf_array_text(__t__, __n__, __e__, __s__)+
7246
7247 +ctf_array_text_nowrite(__t__, __n__, __e__, __s__)+
7248
7249 +ctf_user_array_text(__t__, __n__, __e__, __s__)+
7250
7251 +ctf_user_array_text_nowrite(__t__, __n__, __e__, __s__)+
7252 |
7253 Statically-sized array, printed as text.
7254
7255 The string does not need to be null-terminated.
7256
7257 +__t__+::
7258 Array element C type (always `char`).
7259
7260 +__n__+::
7261 Field name.
7262
7263 +__e__+::
7264 Argument expression.
7265
7266 +__s__+::
7267 Number of elements.
7268
7269 |
7270 +ctf_sequence(__t__, __n__, __e__, __T__, __E__)+
7271
7272 +ctf_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7273
7274 +ctf_user_sequence(__t__, __n__, __e__, __T__, __E__)+
7275
7276 +ctf_user_sequence_nowrite(__t__, __n__, __e__, __T__, __E__)+
7277 |
7278 Dynamically-sized array of integers.
7279
7280 The type of +__E__+ must be unsigned.
7281
7282 +__t__+::
7283 Array element C type.
7284
7285 +__n__+::
7286 Field name.
7287
7288 +__e__+::
7289 Argument expression.
7290
7291 +__T__+::
7292 Length expression C type.
7293
7294 +__E__+::
7295 Length expression.
7296
7297 |
7298 +ctf_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7299
7300 +ctf_user_sequence_hex(__t__, __n__, __e__, __T__, __E__)+
7301 |
7302 Dynamically-sized array of integers, displayed in base 16.
7303
7304 The type of +__E__+ must be unsigned.
7305
7306 +__t__+::
7307 Array element C type.
7308
7309 +__n__+::
7310 Field name.
7311
7312 +__e__+::
7313 Argument expression.
7314
7315 +__T__+::
7316 Length expression C type.
7317
7318 +__E__+::
7319 Length expression.
7320
7321 |+ctf_sequence_network(__t__, __n__, __e__, __T__, __E__)+
7322 |
7323 Dynamically-sized array of integers in network byte order (big-endian),
7324 displayed in base 10.
7325
7326 The type of +__E__+ must be unsigned.
7327
7328 +__t__+::
7329 Array element C type.
7330
7331 +__n__+::
7332 Field name.
7333
7334 +__e__+::
7335 Argument expression.
7336
7337 +__T__+::
7338 Length expression C type.
7339
7340 +__E__+::
7341 Length expression.
7342
7343 |
7344 +ctf_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7345
7346 +ctf_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7347
7348 +ctf_user_sequence_bitfield(__t__, __n__, __e__, __T__, __E__)+
7349
7350 +ctf_user_sequence_bitfield_nowrite(__t__, __n__, __e__, __T__, __E__)+
7351 |
7352 Dynamically-sized array of bits.
7353
7354 The type of +__e__+ must be an integer type. +__s__+ is the number
7355 of elements of such type in +__e__+, not the number of bits.
7356
7357 The type of +__E__+ must be unsigned.
7358
7359 +__t__+::
7360 Array element C type.
7361
7362 +__n__+::
7363 Field name.
7364
7365 +__e__+::
7366 Argument expression.
7367
7368 +__T__+::
7369 Length expression C type.
7370
7371 +__E__+::
7372 Length expression.
7373
7374 |
7375 +ctf_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7376
7377 +ctf_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7378
7379 +ctf_user_sequence_text(__t__, __n__, __e__, __T__, __E__)+
7380
7381 +ctf_user_sequence_text_nowrite(__t__, __n__, __e__, __T__, __E__)+
7382 |
7383 Dynamically-sized array, displayed as text.
7384
7385 The string does not need to be null-terminated.
7386
7387 The type of +__E__+ must be unsigned.
7388
7389 The behaviour is undefined if +__e__+ is `NULL`.
7390
7391 +__t__+::
7392 Sequence element C type (always `char`).
7393
7394 +__n__+::
7395 Field name.
7396
7397 +__e__+::
7398 Argument expression.
7399
7400 +__T__+::
7401 Length expression C type.
7402
7403 +__E__+::
7404 Length expression.
7405 |====
7406
7407 Use the `_user` versions when the argument expression, `e`, is
7408 a user space address. In the cases of `ctf_user_integer*()` and
7409 `ctf_user_float*()`, `&e` must be a user space address, thus `e` must
7410 be addressable.
7411
7412 The `_nowrite` versions omit themselves from the session trace, but are
7413 otherwise identical. This means the `_nowrite` fields won't be written
7414 in the recorded trace. Their primary purpose is to make some
7415 of the event context available to the
7416 <<enabling-disabling-events,event filters>> without having to
7417 commit the data to sub-buffers.
7418
7419
7420 [[glossary]]
7421 == Glossary
7422
7423 Terms related to LTTng and to tracing in general:
7424
7425 Babeltrace::
7426 The http://diamon.org/babeltrace[Babeltrace] project, which includes
7427 the cmd:babeltrace command, some libraries, and Python bindings.
7428
7429 <<channel-buffering-schemes,buffering scheme>>::
7430 A layout of sub-buffers applied to a given channel.
7431
7432 <<channel,channel>>::
7433 An entity which is responsible for a set of ring buffers.
7434 +
7435 <<event,Event rules>> are always attached to a specific channel.
7436
7437 clock::
7438 A reference of time for a tracer.
7439
7440 <<lttng-consumerd,consumer daemon>>::
7441 A process which is responsible for consuming the full sub-buffers
7442 and write them to a file system or send them over the network.
7443
7444 <<channel-overwrite-mode-vs-discard-mode,discard mode>>:: The event loss
7445 mode in which the tracer _discards_ new event records when there's no
7446 sub-buffer space left to store them.
7447
7448 event::
7449 The consequence of the execution of an instrumentation
7450 point, like a tracepoint that you manually place in some source code,
7451 or a Linux kernel KProbe.
7452 +
7453 An event is said to _occur_ at a specific time. Different actions can
7454 be taken upon the occurrence of an event, like record the event's payload
7455 to a sub-buffer.
7456
7457 <<channel-overwrite-mode-vs-discard-mode,event loss mode>>::
7458 The mechanism by which event records of a given channel are lost
7459 (not recorded) when there is no sub-buffer space left to store them.
7460
7461 [[def-event-name]]event name::
7462 The name of an event, which is also the name of the event record.
7463 This is also called the _instrumentation point name_.
7464
7465 event record::
7466 A record, in a trace, of the payload of an event which occured.
7467
7468 <<event,event rule>>::
7469 Set of conditions which must be satisfied for one or more occuring
7470 events to be recorded.
7471
7472 `java.util.logging`::
7473 Java platform's
7474 https://docs.oracle.com/javase/7/docs/api/java/util/logging/package-summary.html[core logging facilities].
7475
7476 <<instrumenting,instrumentation>>::
7477 The use of LTTng probes to make a piece of software traceable.
7478
7479 instrumentation point::
7480 A point in the execution path of a piece of software that, when
7481 reached by this execution, can emit an event.
7482
7483 instrumentation point name::
7484 See _<<def-event-name,event name>>_.
7485
7486 log4j::
7487 A http://logging.apache.org/log4j/1.2/[logging library] for Java
7488 developed by the Apache Software Foundation.
7489
7490 log level::
7491 Level of severity of a log statement or user space
7492 instrumentation point.
7493
7494 LTTng::
7495 The _Linux Trace Toolkit: next generation_ project.
7496
7497 <<lttng-cli,cmd:lttng>>::
7498 A command-line tool provided by the LTTng-tools project which you
7499 can use to send and receive control messages to and from a
7500 session daemon.
7501
7502 LTTng analyses::
7503 The https://github.com/lttng/lttng-analyses[LTTng analyses] project,
7504 which is a set of analyzing programs that are used to obtain a
7505 higher level view of an LTTng trace.
7506
7507 cmd:lttng-consumerd::
7508 The name of the consumer daemon program.
7509
7510 cmd:lttng-crash::
7511 A utility provided by the LTTng-tools project which can convert
7512 ring buffer files (usually
7513 <<persistent-memory-file-systems,saved on a persistent memory file system>>)
7514 to trace files.
7515
7516 LTTng Documentation::
7517 This document.
7518
7519 <<lttng-live,LTTng live>>::
7520 A communication protocol between the relay daemon and live viewers
7521 which makes it possible to see events "live", as they are received by
7522 the relay daemon.
7523
7524 <<lttng-modules,LTTng-modules>>::
7525 The https://github.com/lttng/lttng-modules[LTTng-modules] project,
7526 which contains the Linux kernel modules to make the Linux kernel
7527 instrumentation points available for LTTng tracing.
7528
7529 cmd:lttng-relayd::
7530 The name of the relay daemon program.
7531
7532 cmd:lttng-sessiond::
7533 The name of the session daemon program.
7534
7535 LTTng-tools::
7536 The https://github.com/lttng/lttng-tools[LTTng-tools] project, which
7537 contains the various programs and libraries used to
7538 <<controlling-tracing,control tracing>>.
7539
7540 <<lttng-ust,LTTng-UST>>::
7541 The https://github.com/lttng/lttng-ust[LTTng-UST] project, which
7542 contains libraries to instrument user applications.
7543
7544 <<lttng-ust-agents,LTTng-UST Java agent>>::
7545 A Java package provided by the LTTng-UST project to allow the
7546 LTTng instrumentation of `java.util.logging` and Apache log4j 1.2
7547 logging statements.
7548
7549 <<lttng-ust-agents,LTTng-UST Python agent>>::
7550 A Python package provided by the LTTng-UST project to allow the
7551 LTTng instrumentation of Python logging statements.
7552
7553 <<channel-overwrite-mode-vs-discard-mode,overwrite mode>>::
7554 The event loss mode in which new event records overwrite older
7555 event records when there's no sub-buffer space left to store them.
7556
7557 <<channel-buffering-schemes,per-process buffering>>::
7558 A buffering scheme in which each instrumented process has its own
7559 sub-buffers for a given user space channel.
7560
7561 <<channel-buffering-schemes,per-user buffering>>::
7562 A buffering scheme in which all the processes of a Unix user share the
7563 same sub-buffer for a given user space channel.
7564
7565 <<lttng-relayd,relay daemon>>::
7566 A process which is responsible for receiving the trace data sent by
7567 a distant consumer daemon.
7568
7569 ring buffer::
7570 A set of sub-buffers.
7571
7572 <<lttng-sessiond,session daemon>>::
7573 A process which receives control commands from you and orchestrates
7574 the tracers and various LTTng daemons.
7575
7576 <<taking-a-snapshot,snapshot>>::
7577 A copy of the current data of all the sub-buffers of a given tracing
7578 session, saved as trace files.
7579
7580 sub-buffer::
7581 One part of an LTTng ring buffer which contains event records.
7582
7583 timestamp::
7584 The time information attached to an event when it is emitted.
7585
7586 trace (_noun_)::
7587 A set of files which are the concatenations of one or more
7588 flushed sub-buffers.
7589
7590 trace (_verb_)::
7591 The action of recording the events emitted by an application
7592 or by a system, or to initiate such recording by controlling
7593 a tracer.
7594
7595 Trace Compass::
7596 The http://tracecompass.org[Trace Compass] project and application.
7597
7598 tracepoint::
7599 An instrumentation point using the tracepoint mechanism of the Linux
7600 kernel or of LTTng-UST.
7601
7602 tracepoint definition::
7603 The definition of a single tracepoint.
7604
7605 tracepoint name::
7606 The name of a tracepoint.
7607
7608 tracepoint provider::
7609 A set of functions providing tracepoints to an instrumented user
7610 application.
7611 +
7612 Not to be confused with a _tracepoint provider package_: many tracepoint
7613 providers can exist within a tracepoint provider package.
7614
7615 tracepoint provider package::
7616 One or more tracepoint providers compiled as an object file or as
7617 a shared library.
7618
7619 tracer::
7620 A software which records emitted events.
7621
7622 <<domain,tracing domain>>::
7623 A namespace for event sources.
7624
7625 <<tracing-group,tracing group>>::
7626 The Unix group in which a Unix user can be to be allowed to trace the
7627 Linux kernel.
7628
7629 <<tracing-session,tracing session>>::
7630 A stateful dialogue between you and a <<lttng-sessiond,session
7631 daemon>>.
7632
7633 user application::
7634 An application running in user space, as opposed to a Linux kernel
7635 module, for example.
This page took 0.234647 seconds and 4 git commands to generate.