Fix: possible use after free in consumer
[lttng-tools.git] / src / common / consumer.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2011 - Julien Desfossez <julien.desfossez@polymtl.ca>
3 * Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
4 * 2012 - David Goulet <dgoulet@efficios.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20#define _GNU_SOURCE
21#include <assert.h>
22#include <poll.h>
23#include <pthread.h>
24#include <stdlib.h>
25#include <string.h>
26#include <sys/mman.h>
27#include <sys/socket.h>
28#include <sys/types.h>
29#include <unistd.h>
30#include <inttypes.h>
31#include <signal.h>
32
33#include <common/common.h>
34#include <common/utils.h>
35#include <common/compat/poll.h>
36#include <common/kernel-ctl/kernel-ctl.h>
37#include <common/sessiond-comm/relayd.h>
38#include <common/sessiond-comm/sessiond-comm.h>
39#include <common/kernel-consumer/kernel-consumer.h>
40#include <common/relayd/relayd.h>
41#include <common/ust-consumer/ust-consumer.h>
42
43#include "consumer.h"
44#include "consumer-stream.h"
45
46struct lttng_consumer_global_data consumer_data = {
47 .stream_count = 0,
48 .need_update = 1,
49 .type = LTTNG_CONSUMER_UNKNOWN,
50};
51
52enum consumer_channel_action {
53 CONSUMER_CHANNEL_ADD,
54 CONSUMER_CHANNEL_DEL,
55 CONSUMER_CHANNEL_QUIT,
56};
57
58struct consumer_channel_msg {
59 enum consumer_channel_action action;
60 struct lttng_consumer_channel *chan; /* add */
61 uint64_t key; /* del */
62};
63
64/*
65 * Flag to inform the polling thread to quit when all fd hung up. Updated by
66 * the consumer_thread_receive_fds when it notices that all fds has hung up.
67 * Also updated by the signal handler (consumer_should_exit()). Read by the
68 * polling threads.
69 */
70volatile int consumer_quit;
71
72/*
73 * Global hash table containing respectively metadata and data streams. The
74 * stream element in this ht should only be updated by the metadata poll thread
75 * for the metadata and the data poll thread for the data.
76 */
77static struct lttng_ht *metadata_ht;
78static struct lttng_ht *data_ht;
79
80/*
81 * Notify a thread lttng pipe to poll back again. This usually means that some
82 * global state has changed so we just send back the thread in a poll wait
83 * call.
84 */
85static void notify_thread_lttng_pipe(struct lttng_pipe *pipe)
86{
87 struct lttng_consumer_stream *null_stream = NULL;
88
89 assert(pipe);
90
91 (void) lttng_pipe_write(pipe, &null_stream, sizeof(null_stream));
92}
93
94static void notify_channel_pipe(struct lttng_consumer_local_data *ctx,
95 struct lttng_consumer_channel *chan,
96 uint64_t key,
97 enum consumer_channel_action action)
98{
99 struct consumer_channel_msg msg;
100 int ret;
101
102 memset(&msg, 0, sizeof(msg));
103
104 msg.action = action;
105 msg.chan = chan;
106 msg.key = key;
107 do {
108 ret = write(ctx->consumer_channel_pipe[1], &msg, sizeof(msg));
109 } while (ret < 0 && errno == EINTR);
110}
111
112void notify_thread_del_channel(struct lttng_consumer_local_data *ctx,
113 uint64_t key)
114{
115 notify_channel_pipe(ctx, NULL, key, CONSUMER_CHANNEL_DEL);
116}
117
118static int read_channel_pipe(struct lttng_consumer_local_data *ctx,
119 struct lttng_consumer_channel **chan,
120 uint64_t *key,
121 enum consumer_channel_action *action)
122{
123 struct consumer_channel_msg msg;
124 int ret;
125
126 do {
127 ret = read(ctx->consumer_channel_pipe[0], &msg, sizeof(msg));
128 } while (ret < 0 && errno == EINTR);
129 if (ret > 0) {
130 *action = msg.action;
131 *chan = msg.chan;
132 *key = msg.key;
133 }
134 return ret;
135}
136
137/*
138 * Find a stream. The consumer_data.lock must be locked during this
139 * call.
140 */
141static struct lttng_consumer_stream *find_stream(uint64_t key,
142 struct lttng_ht *ht)
143{
144 struct lttng_ht_iter iter;
145 struct lttng_ht_node_u64 *node;
146 struct lttng_consumer_stream *stream = NULL;
147
148 assert(ht);
149
150 /* -1ULL keys are lookup failures */
151 if (key == (uint64_t) -1ULL) {
152 return NULL;
153 }
154
155 rcu_read_lock();
156
157 lttng_ht_lookup(ht, &key, &iter);
158 node = lttng_ht_iter_get_node_u64(&iter);
159 if (node != NULL) {
160 stream = caa_container_of(node, struct lttng_consumer_stream, node);
161 }
162
163 rcu_read_unlock();
164
165 return stream;
166}
167
168static void steal_stream_key(uint64_t key, struct lttng_ht *ht)
169{
170 struct lttng_consumer_stream *stream;
171
172 rcu_read_lock();
173 stream = find_stream(key, ht);
174 if (stream) {
175 stream->key = (uint64_t) -1ULL;
176 /*
177 * We don't want the lookup to match, but we still need
178 * to iterate on this stream when iterating over the hash table. Just
179 * change the node key.
180 */
181 stream->node.key = (uint64_t) -1ULL;
182 }
183 rcu_read_unlock();
184}
185
186/*
187 * Return a channel object for the given key.
188 *
189 * RCU read side lock MUST be acquired before calling this function and
190 * protects the channel ptr.
191 */
192struct lttng_consumer_channel *consumer_find_channel(uint64_t key)
193{
194 struct lttng_ht_iter iter;
195 struct lttng_ht_node_u64 *node;
196 struct lttng_consumer_channel *channel = NULL;
197
198 /* -1ULL keys are lookup failures */
199 if (key == (uint64_t) -1ULL) {
200 return NULL;
201 }
202
203 lttng_ht_lookup(consumer_data.channel_ht, &key, &iter);
204 node = lttng_ht_iter_get_node_u64(&iter);
205 if (node != NULL) {
206 channel = caa_container_of(node, struct lttng_consumer_channel, node);
207 }
208
209 return channel;
210}
211
212static void free_stream_rcu(struct rcu_head *head)
213{
214 struct lttng_ht_node_u64 *node =
215 caa_container_of(head, struct lttng_ht_node_u64, head);
216 struct lttng_consumer_stream *stream =
217 caa_container_of(node, struct lttng_consumer_stream, node);
218
219 free(stream);
220}
221
222static void free_channel_rcu(struct rcu_head *head)
223{
224 struct lttng_ht_node_u64 *node =
225 caa_container_of(head, struct lttng_ht_node_u64, head);
226 struct lttng_consumer_channel *channel =
227 caa_container_of(node, struct lttng_consumer_channel, node);
228
229 free(channel);
230}
231
232/*
233 * RCU protected relayd socket pair free.
234 */
235static void free_relayd_rcu(struct rcu_head *head)
236{
237 struct lttng_ht_node_u64 *node =
238 caa_container_of(head, struct lttng_ht_node_u64, head);
239 struct consumer_relayd_sock_pair *relayd =
240 caa_container_of(node, struct consumer_relayd_sock_pair, node);
241
242 /*
243 * Close all sockets. This is done in the call RCU since we don't want the
244 * socket fds to be reassigned thus potentially creating bad state of the
245 * relayd object.
246 *
247 * We do not have to lock the control socket mutex here since at this stage
248 * there is no one referencing to this relayd object.
249 */
250 (void) relayd_close(&relayd->control_sock);
251 (void) relayd_close(&relayd->data_sock);
252
253 free(relayd);
254}
255
256/*
257 * Destroy and free relayd socket pair object.
258 */
259void consumer_destroy_relayd(struct consumer_relayd_sock_pair *relayd)
260{
261 int ret;
262 struct lttng_ht_iter iter;
263
264 if (relayd == NULL) {
265 return;
266 }
267
268 DBG("Consumer destroy and close relayd socket pair");
269
270 iter.iter.node = &relayd->node.node;
271 ret = lttng_ht_del(consumer_data.relayd_ht, &iter);
272 if (ret != 0) {
273 /* We assume the relayd is being or is destroyed */
274 return;
275 }
276
277 /* RCU free() call */
278 call_rcu(&relayd->node.head, free_relayd_rcu);
279}
280
281/*
282 * Remove a channel from the global list protected by a mutex. This function is
283 * also responsible for freeing its data structures.
284 */
285void consumer_del_channel(struct lttng_consumer_channel *channel)
286{
287 int ret;
288 struct lttng_ht_iter iter;
289 struct lttng_consumer_stream *stream, *stmp;
290
291 DBG("Consumer delete channel key %" PRIu64, channel->key);
292
293 pthread_mutex_lock(&consumer_data.lock);
294 pthread_mutex_lock(&channel->lock);
295
296 /* Delete streams that might have been left in the stream list. */
297 cds_list_for_each_entry_safe(stream, stmp, &channel->streams.head,
298 send_node) {
299 cds_list_del(&stream->send_node);
300 /*
301 * Once a stream is added to this list, the buffers were created so
302 * we have a guarantee that this call will succeed.
303 */
304 consumer_stream_destroy(stream, NULL);
305 }
306
307 switch (consumer_data.type) {
308 case LTTNG_CONSUMER_KERNEL:
309 break;
310 case LTTNG_CONSUMER32_UST:
311 case LTTNG_CONSUMER64_UST:
312 lttng_ustconsumer_del_channel(channel);
313 break;
314 default:
315 ERR("Unknown consumer_data type");
316 assert(0);
317 goto end;
318 }
319
320 rcu_read_lock();
321 iter.iter.node = &channel->node.node;
322 ret = lttng_ht_del(consumer_data.channel_ht, &iter);
323 assert(!ret);
324 rcu_read_unlock();
325
326 call_rcu(&channel->node.head, free_channel_rcu);
327end:
328 pthread_mutex_unlock(&channel->lock);
329 pthread_mutex_unlock(&consumer_data.lock);
330}
331
332/*
333 * Iterate over the relayd hash table and destroy each element. Finally,
334 * destroy the whole hash table.
335 */
336static void cleanup_relayd_ht(void)
337{
338 struct lttng_ht_iter iter;
339 struct consumer_relayd_sock_pair *relayd;
340
341 rcu_read_lock();
342
343 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
344 node.node) {
345 consumer_destroy_relayd(relayd);
346 }
347
348 rcu_read_unlock();
349
350 lttng_ht_destroy(consumer_data.relayd_ht);
351}
352
353/*
354 * Update the end point status of all streams having the given network sequence
355 * index (relayd index).
356 *
357 * It's atomically set without having the stream mutex locked which is fine
358 * because we handle the write/read race with a pipe wakeup for each thread.
359 */
360static void update_endpoint_status_by_netidx(uint64_t net_seq_idx,
361 enum consumer_endpoint_status status)
362{
363 struct lttng_ht_iter iter;
364 struct lttng_consumer_stream *stream;
365
366 DBG("Consumer set delete flag on stream by idx %" PRIu64, net_seq_idx);
367
368 rcu_read_lock();
369
370 /* Let's begin with metadata */
371 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
372 if (stream->net_seq_idx == net_seq_idx) {
373 uatomic_set(&stream->endpoint_status, status);
374 DBG("Delete flag set to metadata stream %d", stream->wait_fd);
375 }
376 }
377
378 /* Follow up by the data streams */
379 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
380 if (stream->net_seq_idx == net_seq_idx) {
381 uatomic_set(&stream->endpoint_status, status);
382 DBG("Delete flag set to data stream %d", stream->wait_fd);
383 }
384 }
385 rcu_read_unlock();
386}
387
388/*
389 * Cleanup a relayd object by flagging every associated streams for deletion,
390 * destroying the object meaning removing it from the relayd hash table,
391 * closing the sockets and freeing the memory in a RCU call.
392 *
393 * If a local data context is available, notify the threads that the streams'
394 * state have changed.
395 */
396static void cleanup_relayd(struct consumer_relayd_sock_pair *relayd,
397 struct lttng_consumer_local_data *ctx)
398{
399 uint64_t netidx;
400
401 assert(relayd);
402
403 DBG("Cleaning up relayd sockets");
404
405 /* Save the net sequence index before destroying the object */
406 netidx = relayd->net_seq_idx;
407
408 /*
409 * Delete the relayd from the relayd hash table, close the sockets and free
410 * the object in a RCU call.
411 */
412 consumer_destroy_relayd(relayd);
413
414 /* Set inactive endpoint to all streams */
415 update_endpoint_status_by_netidx(netidx, CONSUMER_ENDPOINT_INACTIVE);
416
417 /*
418 * With a local data context, notify the threads that the streams' state
419 * have changed. The write() action on the pipe acts as an "implicit"
420 * memory barrier ordering the updates of the end point status from the
421 * read of this status which happens AFTER receiving this notify.
422 */
423 if (ctx) {
424 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
425 notify_thread_lttng_pipe(ctx->consumer_metadata_pipe);
426 }
427}
428
429/*
430 * Flag a relayd socket pair for destruction. Destroy it if the refcount
431 * reaches zero.
432 *
433 * RCU read side lock MUST be aquired before calling this function.
434 */
435void consumer_flag_relayd_for_destroy(struct consumer_relayd_sock_pair *relayd)
436{
437 assert(relayd);
438
439 /* Set destroy flag for this object */
440 uatomic_set(&relayd->destroy_flag, 1);
441
442 /* Destroy the relayd if refcount is 0 */
443 if (uatomic_read(&relayd->refcount) == 0) {
444 consumer_destroy_relayd(relayd);
445 }
446}
447
448/*
449 * Completly destroy stream from every visiable data structure and the given
450 * hash table if one.
451 *
452 * One this call returns, the stream object is not longer usable nor visible.
453 */
454void consumer_del_stream(struct lttng_consumer_stream *stream,
455 struct lttng_ht *ht)
456{
457 consumer_stream_destroy(stream, ht);
458}
459
460/*
461 * XXX naming of del vs destroy is all mixed up.
462 */
463void consumer_del_stream_for_data(struct lttng_consumer_stream *stream)
464{
465 consumer_stream_destroy(stream, data_ht);
466}
467
468void consumer_del_stream_for_metadata(struct lttng_consumer_stream *stream)
469{
470 consumer_stream_destroy(stream, metadata_ht);
471}
472
473struct lttng_consumer_stream *consumer_allocate_stream(uint64_t channel_key,
474 uint64_t stream_key,
475 enum lttng_consumer_stream_state state,
476 const char *channel_name,
477 uid_t uid,
478 gid_t gid,
479 uint64_t relayd_id,
480 uint64_t session_id,
481 int cpu,
482 int *alloc_ret,
483 enum consumer_channel_type type,
484 unsigned int monitor)
485{
486 int ret;
487 struct lttng_consumer_stream *stream;
488
489 stream = zmalloc(sizeof(*stream));
490 if (stream == NULL) {
491 PERROR("malloc struct lttng_consumer_stream");
492 ret = -ENOMEM;
493 goto end;
494 }
495
496 rcu_read_lock();
497
498 stream->key = stream_key;
499 stream->out_fd = -1;
500 stream->out_fd_offset = 0;
501 stream->output_written = 0;
502 stream->state = state;
503 stream->uid = uid;
504 stream->gid = gid;
505 stream->net_seq_idx = relayd_id;
506 stream->session_id = session_id;
507 stream->monitor = monitor;
508 stream->endpoint_status = CONSUMER_ENDPOINT_ACTIVE;
509 pthread_mutex_init(&stream->lock, NULL);
510
511 /* If channel is the metadata, flag this stream as metadata. */
512 if (type == CONSUMER_CHANNEL_TYPE_METADATA) {
513 stream->metadata_flag = 1;
514 /* Metadata is flat out. */
515 strncpy(stream->name, DEFAULT_METADATA_NAME, sizeof(stream->name));
516 } else {
517 /* Format stream name to <channel_name>_<cpu_number> */
518 ret = snprintf(stream->name, sizeof(stream->name), "%s_%d",
519 channel_name, cpu);
520 if (ret < 0) {
521 PERROR("snprintf stream name");
522 goto error;
523 }
524 }
525
526 /* Key is always the wait_fd for streams. */
527 lttng_ht_node_init_u64(&stream->node, stream->key);
528
529 /* Init node per channel id key */
530 lttng_ht_node_init_u64(&stream->node_channel_id, channel_key);
531
532 /* Init session id node with the stream session id */
533 lttng_ht_node_init_u64(&stream->node_session_id, stream->session_id);
534
535 DBG3("Allocated stream %s (key %" PRIu64 ", chan_key %" PRIu64
536 " relayd_id %" PRIu64 ", session_id %" PRIu64,
537 stream->name, stream->key, channel_key,
538 stream->net_seq_idx, stream->session_id);
539
540 rcu_read_unlock();
541 return stream;
542
543error:
544 rcu_read_unlock();
545 free(stream);
546end:
547 if (alloc_ret) {
548 *alloc_ret = ret;
549 }
550 return NULL;
551}
552
553/*
554 * Add a stream to the global list protected by a mutex.
555 */
556int consumer_add_data_stream(struct lttng_consumer_stream *stream)
557{
558 struct lttng_ht *ht = data_ht;
559 int ret = 0;
560
561 assert(stream);
562 assert(ht);
563
564 DBG3("Adding consumer stream %" PRIu64, stream->key);
565
566 pthread_mutex_lock(&consumer_data.lock);
567 pthread_mutex_lock(&stream->chan->lock);
568 pthread_mutex_lock(&stream->chan->timer_lock);
569 pthread_mutex_lock(&stream->lock);
570 rcu_read_lock();
571
572 /* Steal stream identifier to avoid having streams with the same key */
573 steal_stream_key(stream->key, ht);
574
575 lttng_ht_add_unique_u64(ht, &stream->node);
576
577 lttng_ht_add_u64(consumer_data.stream_per_chan_id_ht,
578 &stream->node_channel_id);
579
580 /*
581 * Add stream to the stream_list_ht of the consumer data. No need to steal
582 * the key since the HT does not use it and we allow to add redundant keys
583 * into this table.
584 */
585 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
586
587 /*
588 * When nb_init_stream_left reaches 0, we don't need to trigger any action
589 * in terms of destroying the associated channel, because the action that
590 * causes the count to become 0 also causes a stream to be added. The
591 * channel deletion will thus be triggered by the following removal of this
592 * stream.
593 */
594 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
595 /* Increment refcount before decrementing nb_init_stream_left */
596 cmm_smp_wmb();
597 uatomic_dec(&stream->chan->nb_init_stream_left);
598 }
599
600 /* Update consumer data once the node is inserted. */
601 consumer_data.stream_count++;
602 consumer_data.need_update = 1;
603
604 rcu_read_unlock();
605 pthread_mutex_unlock(&stream->lock);
606 pthread_mutex_unlock(&stream->chan->timer_lock);
607 pthread_mutex_unlock(&stream->chan->lock);
608 pthread_mutex_unlock(&consumer_data.lock);
609
610 return ret;
611}
612
613void consumer_del_data_stream(struct lttng_consumer_stream *stream)
614{
615 consumer_del_stream(stream, data_ht);
616}
617
618/*
619 * Add relayd socket to global consumer data hashtable. RCU read side lock MUST
620 * be acquired before calling this.
621 */
622static int add_relayd(struct consumer_relayd_sock_pair *relayd)
623{
624 int ret = 0;
625 struct lttng_ht_node_u64 *node;
626 struct lttng_ht_iter iter;
627
628 assert(relayd);
629
630 lttng_ht_lookup(consumer_data.relayd_ht,
631 &relayd->net_seq_idx, &iter);
632 node = lttng_ht_iter_get_node_u64(&iter);
633 if (node != NULL) {
634 goto end;
635 }
636 lttng_ht_add_unique_u64(consumer_data.relayd_ht, &relayd->node);
637
638end:
639 return ret;
640}
641
642/*
643 * Allocate and return a consumer relayd socket.
644 */
645struct consumer_relayd_sock_pair *consumer_allocate_relayd_sock_pair(
646 uint64_t net_seq_idx)
647{
648 struct consumer_relayd_sock_pair *obj = NULL;
649
650 /* net sequence index of -1 is a failure */
651 if (net_seq_idx == (uint64_t) -1ULL) {
652 goto error;
653 }
654
655 obj = zmalloc(sizeof(struct consumer_relayd_sock_pair));
656 if (obj == NULL) {
657 PERROR("zmalloc relayd sock");
658 goto error;
659 }
660
661 obj->net_seq_idx = net_seq_idx;
662 obj->refcount = 0;
663 obj->destroy_flag = 0;
664 obj->control_sock.sock.fd = -1;
665 obj->data_sock.sock.fd = -1;
666 lttng_ht_node_init_u64(&obj->node, obj->net_seq_idx);
667 pthread_mutex_init(&obj->ctrl_sock_mutex, NULL);
668
669error:
670 return obj;
671}
672
673/*
674 * Find a relayd socket pair in the global consumer data.
675 *
676 * Return the object if found else NULL.
677 * RCU read-side lock must be held across this call and while using the
678 * returned object.
679 */
680struct consumer_relayd_sock_pair *consumer_find_relayd(uint64_t key)
681{
682 struct lttng_ht_iter iter;
683 struct lttng_ht_node_u64 *node;
684 struct consumer_relayd_sock_pair *relayd = NULL;
685
686 /* Negative keys are lookup failures */
687 if (key == (uint64_t) -1ULL) {
688 goto error;
689 }
690
691 lttng_ht_lookup(consumer_data.relayd_ht, &key,
692 &iter);
693 node = lttng_ht_iter_get_node_u64(&iter);
694 if (node != NULL) {
695 relayd = caa_container_of(node, struct consumer_relayd_sock_pair, node);
696 }
697
698error:
699 return relayd;
700}
701
702/*
703 * Find a relayd and send the stream
704 *
705 * Returns 0 on success, < 0 on error
706 */
707int consumer_send_relayd_stream(struct lttng_consumer_stream *stream,
708 char *path)
709{
710 int ret = 0;
711 struct consumer_relayd_sock_pair *relayd;
712
713 assert(stream);
714 assert(stream->net_seq_idx != -1ULL);
715 assert(path);
716
717 /* The stream is not metadata. Get relayd reference if exists. */
718 rcu_read_lock();
719 relayd = consumer_find_relayd(stream->net_seq_idx);
720 if (relayd != NULL) {
721 /* Add stream on the relayd */
722 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
723 ret = relayd_add_stream(&relayd->control_sock, stream->name,
724 path, &stream->relayd_stream_id,
725 stream->chan->tracefile_size, stream->chan->tracefile_count);
726 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
727 if (ret < 0) {
728 goto end;
729 }
730 uatomic_inc(&relayd->refcount);
731 stream->sent_to_relayd = 1;
732 } else {
733 ERR("Stream %" PRIu64 " relayd ID %" PRIu64 " unknown. Can't send it.",
734 stream->key, stream->net_seq_idx);
735 ret = -1;
736 goto end;
737 }
738
739 DBG("Stream %s with key %" PRIu64 " sent to relayd id %" PRIu64,
740 stream->name, stream->key, stream->net_seq_idx);
741
742end:
743 rcu_read_unlock();
744 return ret;
745}
746
747/*
748 * Find a relayd and close the stream
749 */
750void close_relayd_stream(struct lttng_consumer_stream *stream)
751{
752 struct consumer_relayd_sock_pair *relayd;
753
754 /* The stream is not metadata. Get relayd reference if exists. */
755 rcu_read_lock();
756 relayd = consumer_find_relayd(stream->net_seq_idx);
757 if (relayd) {
758 consumer_stream_relayd_close(stream, relayd);
759 }
760 rcu_read_unlock();
761}
762
763/*
764 * Handle stream for relayd transmission if the stream applies for network
765 * streaming where the net sequence index is set.
766 *
767 * Return destination file descriptor or negative value on error.
768 */
769static int write_relayd_stream_header(struct lttng_consumer_stream *stream,
770 size_t data_size, unsigned long padding,
771 struct consumer_relayd_sock_pair *relayd)
772{
773 int outfd = -1, ret;
774 struct lttcomm_relayd_data_hdr data_hdr;
775
776 /* Safety net */
777 assert(stream);
778 assert(relayd);
779
780 /* Reset data header */
781 memset(&data_hdr, 0, sizeof(data_hdr));
782
783 if (stream->metadata_flag) {
784 /* Caller MUST acquire the relayd control socket lock */
785 ret = relayd_send_metadata(&relayd->control_sock, data_size);
786 if (ret < 0) {
787 goto error;
788 }
789
790 /* Metadata are always sent on the control socket. */
791 outfd = relayd->control_sock.sock.fd;
792 } else {
793 /* Set header with stream information */
794 data_hdr.stream_id = htobe64(stream->relayd_stream_id);
795 data_hdr.data_size = htobe32(data_size);
796 data_hdr.padding_size = htobe32(padding);
797 /*
798 * Note that net_seq_num below is assigned with the *current* value of
799 * next_net_seq_num and only after that the next_net_seq_num will be
800 * increment. This is why when issuing a command on the relayd using
801 * this next value, 1 should always be substracted in order to compare
802 * the last seen sequence number on the relayd side to the last sent.
803 */
804 data_hdr.net_seq_num = htobe64(stream->next_net_seq_num);
805 /* Other fields are zeroed previously */
806
807 ret = relayd_send_data_hdr(&relayd->data_sock, &data_hdr,
808 sizeof(data_hdr));
809 if (ret < 0) {
810 goto error;
811 }
812
813 ++stream->next_net_seq_num;
814
815 /* Set to go on data socket */
816 outfd = relayd->data_sock.sock.fd;
817 }
818
819error:
820 return outfd;
821}
822
823/*
824 * Allocate and return a new lttng_consumer_channel object using the given key
825 * to initialize the hash table node.
826 *
827 * On error, return NULL.
828 */
829struct lttng_consumer_channel *consumer_allocate_channel(uint64_t key,
830 uint64_t session_id,
831 const char *pathname,
832 const char *name,
833 uid_t uid,
834 gid_t gid,
835 uint64_t relayd_id,
836 enum lttng_event_output output,
837 uint64_t tracefile_size,
838 uint64_t tracefile_count,
839 uint64_t session_id_per_pid,
840 unsigned int monitor)
841{
842 struct lttng_consumer_channel *channel;
843
844 channel = zmalloc(sizeof(*channel));
845 if (channel == NULL) {
846 PERROR("malloc struct lttng_consumer_channel");
847 goto end;
848 }
849
850 channel->key = key;
851 channel->refcount = 0;
852 channel->session_id = session_id;
853 channel->session_id_per_pid = session_id_per_pid;
854 channel->uid = uid;
855 channel->gid = gid;
856 channel->relayd_id = relayd_id;
857 channel->tracefile_size = tracefile_size;
858 channel->tracefile_count = tracefile_count;
859 channel->monitor = monitor;
860 pthread_mutex_init(&channel->lock, NULL);
861 pthread_mutex_init(&channel->timer_lock, NULL);
862
863 switch (output) {
864 case LTTNG_EVENT_SPLICE:
865 channel->output = CONSUMER_CHANNEL_SPLICE;
866 break;
867 case LTTNG_EVENT_MMAP:
868 channel->output = CONSUMER_CHANNEL_MMAP;
869 break;
870 default:
871 assert(0);
872 free(channel);
873 channel = NULL;
874 goto end;
875 }
876
877 /*
878 * In monitor mode, the streams associated with the channel will be put in
879 * a special list ONLY owned by this channel. So, the refcount is set to 1
880 * here meaning that the channel itself has streams that are referenced.
881 *
882 * On a channel deletion, once the channel is no longer visible, the
883 * refcount is decremented and checked for a zero value to delete it. With
884 * streams in no monitor mode, it will now be safe to destroy the channel.
885 */
886 if (!channel->monitor) {
887 channel->refcount = 1;
888 }
889
890 strncpy(channel->pathname, pathname, sizeof(channel->pathname));
891 channel->pathname[sizeof(channel->pathname) - 1] = '\0';
892
893 strncpy(channel->name, name, sizeof(channel->name));
894 channel->name[sizeof(channel->name) - 1] = '\0';
895
896 lttng_ht_node_init_u64(&channel->node, channel->key);
897
898 channel->wait_fd = -1;
899
900 CDS_INIT_LIST_HEAD(&channel->streams.head);
901
902 DBG("Allocated channel (key %" PRIu64 ")", channel->key)
903
904end:
905 return channel;
906}
907
908/*
909 * Add a channel to the global list protected by a mutex.
910 *
911 * On success 0 is returned else a negative value.
912 */
913int consumer_add_channel(struct lttng_consumer_channel *channel,
914 struct lttng_consumer_local_data *ctx)
915{
916 int ret = 0;
917 struct lttng_ht_node_u64 *node;
918 struct lttng_ht_iter iter;
919
920 pthread_mutex_lock(&consumer_data.lock);
921 pthread_mutex_lock(&channel->lock);
922 pthread_mutex_lock(&channel->timer_lock);
923 rcu_read_lock();
924
925 lttng_ht_lookup(consumer_data.channel_ht, &channel->key, &iter);
926 node = lttng_ht_iter_get_node_u64(&iter);
927 if (node != NULL) {
928 /* Channel already exist. Ignore the insertion */
929 ERR("Consumer add channel key %" PRIu64 " already exists!",
930 channel->key);
931 ret = -EEXIST;
932 goto end;
933 }
934
935 lttng_ht_add_unique_u64(consumer_data.channel_ht, &channel->node);
936
937end:
938 rcu_read_unlock();
939 pthread_mutex_unlock(&channel->timer_lock);
940 pthread_mutex_unlock(&channel->lock);
941 pthread_mutex_unlock(&consumer_data.lock);
942
943 if (!ret && channel->wait_fd != -1 &&
944 channel->type == CONSUMER_CHANNEL_TYPE_DATA) {
945 notify_channel_pipe(ctx, channel, -1, CONSUMER_CHANNEL_ADD);
946 }
947 return ret;
948}
949
950/*
951 * Allocate the pollfd structure and the local view of the out fds to avoid
952 * doing a lookup in the linked list and concurrency issues when writing is
953 * needed. Called with consumer_data.lock held.
954 *
955 * Returns the number of fds in the structures.
956 */
957static int update_poll_array(struct lttng_consumer_local_data *ctx,
958 struct pollfd **pollfd, struct lttng_consumer_stream **local_stream,
959 struct lttng_ht *ht)
960{
961 int i = 0;
962 struct lttng_ht_iter iter;
963 struct lttng_consumer_stream *stream;
964
965 assert(ctx);
966 assert(ht);
967 assert(pollfd);
968 assert(local_stream);
969
970 DBG("Updating poll fd array");
971 rcu_read_lock();
972 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
973 /*
974 * Only active streams with an active end point can be added to the
975 * poll set and local stream storage of the thread.
976 *
977 * There is a potential race here for endpoint_status to be updated
978 * just after the check. However, this is OK since the stream(s) will
979 * be deleted once the thread is notified that the end point state has
980 * changed where this function will be called back again.
981 */
982 if (stream->state != LTTNG_CONSUMER_ACTIVE_STREAM ||
983 stream->endpoint_status == CONSUMER_ENDPOINT_INACTIVE) {
984 continue;
985 }
986 /*
987 * This clobbers way too much the debug output. Uncomment that if you
988 * need it for debugging purposes.
989 *
990 * DBG("Active FD %d", stream->wait_fd);
991 */
992 (*pollfd)[i].fd = stream->wait_fd;
993 (*pollfd)[i].events = POLLIN | POLLPRI;
994 local_stream[i] = stream;
995 i++;
996 }
997 rcu_read_unlock();
998
999 /*
1000 * Insert the consumer_data_pipe at the end of the array and don't
1001 * increment i so nb_fd is the number of real FD.
1002 */
1003 (*pollfd)[i].fd = lttng_pipe_get_readfd(ctx->consumer_data_pipe);
1004 (*pollfd)[i].events = POLLIN | POLLPRI;
1005 return i;
1006}
1007
1008/*
1009 * Poll on the should_quit pipe and the command socket return -1 on error and
1010 * should exit, 0 if data is available on the command socket
1011 */
1012int lttng_consumer_poll_socket(struct pollfd *consumer_sockpoll)
1013{
1014 int num_rdy;
1015
1016restart:
1017 num_rdy = poll(consumer_sockpoll, 2, -1);
1018 if (num_rdy == -1) {
1019 /*
1020 * Restart interrupted system call.
1021 */
1022 if (errno == EINTR) {
1023 goto restart;
1024 }
1025 PERROR("Poll error");
1026 goto exit;
1027 }
1028 if (consumer_sockpoll[0].revents & (POLLIN | POLLPRI)) {
1029 DBG("consumer_should_quit wake up");
1030 goto exit;
1031 }
1032 return 0;
1033
1034exit:
1035 return -1;
1036}
1037
1038/*
1039 * Set the error socket.
1040 */
1041void lttng_consumer_set_error_sock(struct lttng_consumer_local_data *ctx,
1042 int sock)
1043{
1044 ctx->consumer_error_socket = sock;
1045}
1046
1047/*
1048 * Set the command socket path.
1049 */
1050void lttng_consumer_set_command_sock_path(
1051 struct lttng_consumer_local_data *ctx, char *sock)
1052{
1053 ctx->consumer_command_sock_path = sock;
1054}
1055
1056/*
1057 * Send return code to the session daemon.
1058 * If the socket is not defined, we return 0, it is not a fatal error
1059 */
1060int lttng_consumer_send_error(struct lttng_consumer_local_data *ctx, int cmd)
1061{
1062 if (ctx->consumer_error_socket > 0) {
1063 return lttcomm_send_unix_sock(ctx->consumer_error_socket, &cmd,
1064 sizeof(enum lttcomm_sessiond_command));
1065 }
1066
1067 return 0;
1068}
1069
1070/*
1071 * Close all the tracefiles and stream fds and MUST be called when all
1072 * instances are destroyed i.e. when all threads were joined and are ended.
1073 */
1074void lttng_consumer_cleanup(void)
1075{
1076 struct lttng_ht_iter iter;
1077 struct lttng_consumer_channel *channel;
1078
1079 rcu_read_lock();
1080
1081 cds_lfht_for_each_entry(consumer_data.channel_ht->ht, &iter.iter, channel,
1082 node.node) {
1083 consumer_del_channel(channel);
1084 }
1085
1086 rcu_read_unlock();
1087
1088 lttng_ht_destroy(consumer_data.channel_ht);
1089
1090 cleanup_relayd_ht();
1091
1092 lttng_ht_destroy(consumer_data.stream_per_chan_id_ht);
1093
1094 /*
1095 * This HT contains streams that are freed by either the metadata thread or
1096 * the data thread so we do *nothing* on the hash table and simply destroy
1097 * it.
1098 */
1099 lttng_ht_destroy(consumer_data.stream_list_ht);
1100}
1101
1102/*
1103 * Called from signal handler.
1104 */
1105void lttng_consumer_should_exit(struct lttng_consumer_local_data *ctx)
1106{
1107 int ret;
1108 consumer_quit = 1;
1109 do {
1110 ret = write(ctx->consumer_should_quit[1], "4", 1);
1111 } while (ret < 0 && errno == EINTR);
1112 if (ret < 0 || ret != 1) {
1113 PERROR("write consumer quit");
1114 }
1115
1116 DBG("Consumer flag that it should quit");
1117}
1118
1119void lttng_consumer_sync_trace_file(struct lttng_consumer_stream *stream,
1120 off_t orig_offset)
1121{
1122 int outfd = stream->out_fd;
1123
1124 /*
1125 * This does a blocking write-and-wait on any page that belongs to the
1126 * subbuffer prior to the one we just wrote.
1127 * Don't care about error values, as these are just hints and ways to
1128 * limit the amount of page cache used.
1129 */
1130 if (orig_offset < stream->max_sb_size) {
1131 return;
1132 }
1133 lttng_sync_file_range(outfd, orig_offset - stream->max_sb_size,
1134 stream->max_sb_size,
1135 SYNC_FILE_RANGE_WAIT_BEFORE
1136 | SYNC_FILE_RANGE_WRITE
1137 | SYNC_FILE_RANGE_WAIT_AFTER);
1138 /*
1139 * Give hints to the kernel about how we access the file:
1140 * POSIX_FADV_DONTNEED : we won't re-access data in a near future after
1141 * we write it.
1142 *
1143 * We need to call fadvise again after the file grows because the
1144 * kernel does not seem to apply fadvise to non-existing parts of the
1145 * file.
1146 *
1147 * Call fadvise _after_ having waited for the page writeback to
1148 * complete because the dirty page writeback semantic is not well
1149 * defined. So it can be expected to lead to lower throughput in
1150 * streaming.
1151 */
1152 posix_fadvise(outfd, orig_offset - stream->max_sb_size,
1153 stream->max_sb_size, POSIX_FADV_DONTNEED);
1154}
1155
1156/*
1157 * Initialise the necessary environnement :
1158 * - create a new context
1159 * - create the poll_pipe
1160 * - create the should_quit pipe (for signal handler)
1161 * - create the thread pipe (for splice)
1162 *
1163 * Takes a function pointer as argument, this function is called when data is
1164 * available on a buffer. This function is responsible to do the
1165 * kernctl_get_next_subbuf, read the data with mmap or splice depending on the
1166 * buffer configuration and then kernctl_put_next_subbuf at the end.
1167 *
1168 * Returns a pointer to the new context or NULL on error.
1169 */
1170struct lttng_consumer_local_data *lttng_consumer_create(
1171 enum lttng_consumer_type type,
1172 ssize_t (*buffer_ready)(struct lttng_consumer_stream *stream,
1173 struct lttng_consumer_local_data *ctx),
1174 int (*recv_channel)(struct lttng_consumer_channel *channel),
1175 int (*recv_stream)(struct lttng_consumer_stream *stream),
1176 int (*update_stream)(uint64_t stream_key, uint32_t state))
1177{
1178 int ret;
1179 struct lttng_consumer_local_data *ctx;
1180
1181 assert(consumer_data.type == LTTNG_CONSUMER_UNKNOWN ||
1182 consumer_data.type == type);
1183 consumer_data.type = type;
1184
1185 ctx = zmalloc(sizeof(struct lttng_consumer_local_data));
1186 if (ctx == NULL) {
1187 PERROR("allocating context");
1188 goto error;
1189 }
1190
1191 ctx->consumer_error_socket = -1;
1192 ctx->consumer_metadata_socket = -1;
1193 pthread_mutex_init(&ctx->metadata_socket_lock, NULL);
1194 /* assign the callbacks */
1195 ctx->on_buffer_ready = buffer_ready;
1196 ctx->on_recv_channel = recv_channel;
1197 ctx->on_recv_stream = recv_stream;
1198 ctx->on_update_stream = update_stream;
1199
1200 ctx->consumer_data_pipe = lttng_pipe_open(0);
1201 if (!ctx->consumer_data_pipe) {
1202 goto error_poll_pipe;
1203 }
1204
1205 ret = pipe(ctx->consumer_should_quit);
1206 if (ret < 0) {
1207 PERROR("Error creating recv pipe");
1208 goto error_quit_pipe;
1209 }
1210
1211 ret = pipe(ctx->consumer_thread_pipe);
1212 if (ret < 0) {
1213 PERROR("Error creating thread pipe");
1214 goto error_thread_pipe;
1215 }
1216
1217 ret = pipe(ctx->consumer_channel_pipe);
1218 if (ret < 0) {
1219 PERROR("Error creating channel pipe");
1220 goto error_channel_pipe;
1221 }
1222
1223 ctx->consumer_metadata_pipe = lttng_pipe_open(0);
1224 if (!ctx->consumer_metadata_pipe) {
1225 goto error_metadata_pipe;
1226 }
1227
1228 ret = utils_create_pipe(ctx->consumer_splice_metadata_pipe);
1229 if (ret < 0) {
1230 goto error_splice_pipe;
1231 }
1232
1233 return ctx;
1234
1235error_splice_pipe:
1236 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1237error_metadata_pipe:
1238 utils_close_pipe(ctx->consumer_channel_pipe);
1239error_channel_pipe:
1240 utils_close_pipe(ctx->consumer_thread_pipe);
1241error_thread_pipe:
1242 utils_close_pipe(ctx->consumer_should_quit);
1243error_quit_pipe:
1244 lttng_pipe_destroy(ctx->consumer_data_pipe);
1245error_poll_pipe:
1246 free(ctx);
1247error:
1248 return NULL;
1249}
1250
1251/*
1252 * Iterate over all streams of the hashtable and free them properly.
1253 */
1254static void destroy_data_stream_ht(struct lttng_ht *ht)
1255{
1256 struct lttng_ht_iter iter;
1257 struct lttng_consumer_stream *stream;
1258
1259 if (ht == NULL) {
1260 return;
1261 }
1262
1263 rcu_read_lock();
1264 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1265 /*
1266 * Ignore return value since we are currently cleaning up so any error
1267 * can't be handled.
1268 */
1269 (void) consumer_del_stream(stream, ht);
1270 }
1271 rcu_read_unlock();
1272
1273 lttng_ht_destroy(ht);
1274}
1275
1276/*
1277 * Iterate over all streams of the metadata hashtable and free them
1278 * properly.
1279 */
1280static void destroy_metadata_stream_ht(struct lttng_ht *ht)
1281{
1282 struct lttng_ht_iter iter;
1283 struct lttng_consumer_stream *stream;
1284
1285 if (ht == NULL) {
1286 return;
1287 }
1288
1289 rcu_read_lock();
1290 cds_lfht_for_each_entry(ht->ht, &iter.iter, stream, node.node) {
1291 /*
1292 * Ignore return value since we are currently cleaning up so any error
1293 * can't be handled.
1294 */
1295 (void) consumer_del_metadata_stream(stream, ht);
1296 }
1297 rcu_read_unlock();
1298
1299 lttng_ht_destroy(ht);
1300}
1301
1302/*
1303 * Close all fds associated with the instance and free the context.
1304 */
1305void lttng_consumer_destroy(struct lttng_consumer_local_data *ctx)
1306{
1307 int ret;
1308
1309 DBG("Consumer destroying it. Closing everything.");
1310
1311 if (!ctx) {
1312 return;
1313 }
1314
1315 destroy_data_stream_ht(data_ht);
1316 destroy_metadata_stream_ht(metadata_ht);
1317
1318 ret = close(ctx->consumer_error_socket);
1319 if (ret) {
1320 PERROR("close");
1321 }
1322 ret = close(ctx->consumer_metadata_socket);
1323 if (ret) {
1324 PERROR("close");
1325 }
1326 utils_close_pipe(ctx->consumer_thread_pipe);
1327 utils_close_pipe(ctx->consumer_channel_pipe);
1328 lttng_pipe_destroy(ctx->consumer_data_pipe);
1329 lttng_pipe_destroy(ctx->consumer_metadata_pipe);
1330 utils_close_pipe(ctx->consumer_should_quit);
1331 utils_close_pipe(ctx->consumer_splice_metadata_pipe);
1332
1333 unlink(ctx->consumer_command_sock_path);
1334 free(ctx);
1335}
1336
1337/*
1338 * Write the metadata stream id on the specified file descriptor.
1339 */
1340static int write_relayd_metadata_id(int fd,
1341 struct lttng_consumer_stream *stream,
1342 struct consumer_relayd_sock_pair *relayd, unsigned long padding)
1343{
1344 int ret;
1345 struct lttcomm_relayd_metadata_payload hdr;
1346
1347 hdr.stream_id = htobe64(stream->relayd_stream_id);
1348 hdr.padding_size = htobe32(padding);
1349 do {
1350 ret = write(fd, (void *) &hdr, sizeof(hdr));
1351 } while (ret < 0 && errno == EINTR);
1352 if (ret < 0 || ret != sizeof(hdr)) {
1353 /*
1354 * This error means that the fd's end is closed so ignore the perror
1355 * not to clubber the error output since this can happen in a normal
1356 * code path.
1357 */
1358 if (errno != EPIPE) {
1359 PERROR("write metadata stream id");
1360 }
1361 DBG3("Consumer failed to write relayd metadata id (errno: %d)", errno);
1362 /*
1363 * Set ret to a negative value because if ret != sizeof(hdr), we don't
1364 * handle writting the missing part so report that as an error and
1365 * don't lie to the caller.
1366 */
1367 ret = -1;
1368 goto end;
1369 }
1370 DBG("Metadata stream id %" PRIu64 " with padding %lu written before data",
1371 stream->relayd_stream_id, padding);
1372
1373end:
1374 return ret;
1375}
1376
1377/*
1378 * Mmap the ring buffer, read it and write the data to the tracefile. This is a
1379 * core function for writing trace buffers to either the local filesystem or
1380 * the network.
1381 *
1382 * It must be called with the stream lock held.
1383 *
1384 * Careful review MUST be put if any changes occur!
1385 *
1386 * Returns the number of bytes written
1387 */
1388ssize_t lttng_consumer_on_read_subbuffer_mmap(
1389 struct lttng_consumer_local_data *ctx,
1390 struct lttng_consumer_stream *stream, unsigned long len,
1391 unsigned long padding)
1392{
1393 unsigned long mmap_offset;
1394 void *mmap_base;
1395 ssize_t ret = 0, written = 0;
1396 off_t orig_offset = stream->out_fd_offset;
1397 /* Default is on the disk */
1398 int outfd = stream->out_fd;
1399 struct consumer_relayd_sock_pair *relayd = NULL;
1400 unsigned int relayd_hang_up = 0;
1401
1402 /* RCU lock for the relayd pointer */
1403 rcu_read_lock();
1404
1405 /* Flag that the current stream if set for network streaming. */
1406 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1407 relayd = consumer_find_relayd(stream->net_seq_idx);
1408 if (relayd == NULL) {
1409 ret = -EPIPE;
1410 goto end;
1411 }
1412 }
1413
1414 /* get the offset inside the fd to mmap */
1415 switch (consumer_data.type) {
1416 case LTTNG_CONSUMER_KERNEL:
1417 mmap_base = stream->mmap_base;
1418 ret = kernctl_get_mmap_read_offset(stream->wait_fd, &mmap_offset);
1419 if (ret != 0) {
1420 PERROR("tracer ctl get_mmap_read_offset");
1421 written = -errno;
1422 goto end;
1423 }
1424 break;
1425 case LTTNG_CONSUMER32_UST:
1426 case LTTNG_CONSUMER64_UST:
1427 mmap_base = lttng_ustctl_get_mmap_base(stream);
1428 if (!mmap_base) {
1429 ERR("read mmap get mmap base for stream %s", stream->name);
1430 written = -EPERM;
1431 goto end;
1432 }
1433 ret = lttng_ustctl_get_mmap_read_offset(stream, &mmap_offset);
1434 if (ret != 0) {
1435 PERROR("tracer ctl get_mmap_read_offset");
1436 written = ret;
1437 goto end;
1438 }
1439 break;
1440 default:
1441 ERR("Unknown consumer_data type");
1442 assert(0);
1443 }
1444
1445 /* Handle stream on the relayd if the output is on the network */
1446 if (relayd) {
1447 unsigned long netlen = len;
1448
1449 /*
1450 * Lock the control socket for the complete duration of the function
1451 * since from this point on we will use the socket.
1452 */
1453 if (stream->metadata_flag) {
1454 /* Metadata requires the control socket. */
1455 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1456 netlen += sizeof(struct lttcomm_relayd_metadata_payload);
1457 }
1458
1459 ret = write_relayd_stream_header(stream, netlen, padding, relayd);
1460 if (ret >= 0) {
1461 /* Use the returned socket. */
1462 outfd = ret;
1463
1464 /* Write metadata stream id before payload */
1465 if (stream->metadata_flag) {
1466 ret = write_relayd_metadata_id(outfd, stream, relayd, padding);
1467 if (ret < 0) {
1468 written = ret;
1469 /* Socket operation failed. We consider the relayd dead */
1470 if (ret == -EPIPE || ret == -EINVAL) {
1471 relayd_hang_up = 1;
1472 goto write_error;
1473 }
1474 goto end;
1475 }
1476 }
1477 } else {
1478 /* Socket operation failed. We consider the relayd dead */
1479 if (ret == -EPIPE || ret == -EINVAL) {
1480 relayd_hang_up = 1;
1481 goto write_error;
1482 }
1483 /* Else, use the default set before which is the filesystem. */
1484 }
1485 } else {
1486 /* No streaming, we have to set the len with the full padding */
1487 len += padding;
1488
1489 /*
1490 * Check if we need to change the tracefile before writing the packet.
1491 */
1492 if (stream->chan->tracefile_size > 0 &&
1493 (stream->tracefile_size_current + len) >
1494 stream->chan->tracefile_size) {
1495 ret = utils_rotate_stream_file(stream->chan->pathname,
1496 stream->name, stream->chan->tracefile_size,
1497 stream->chan->tracefile_count, stream->uid, stream->gid,
1498 stream->out_fd, &(stream->tracefile_count_current));
1499 if (ret < 0) {
1500 ERR("Rotating output file");
1501 goto end;
1502 }
1503 outfd = stream->out_fd = ret;
1504 /* Reset current size because we just perform a rotation. */
1505 stream->tracefile_size_current = 0;
1506 stream->out_fd_offset = 0;
1507 orig_offset = 0;
1508 }
1509 stream->tracefile_size_current += len;
1510 }
1511
1512 while (len > 0) {
1513 do {
1514 ret = write(outfd, mmap_base + mmap_offset, len);
1515 } while (ret < 0 && errno == EINTR);
1516 DBG("Consumer mmap write() ret %zd (len %lu)", ret, len);
1517 if (ret < 0) {
1518 /*
1519 * This is possible if the fd is closed on the other side (outfd)
1520 * or any write problem. It can be verbose a bit for a normal
1521 * execution if for instance the relayd is stopped abruptly. This
1522 * can happen so set this to a DBG statement.
1523 */
1524 DBG("Error in file write mmap");
1525 if (written == 0) {
1526 written = -errno;
1527 }
1528 /* Socket operation failed. We consider the relayd dead */
1529 if (errno == EPIPE || errno == EINVAL) {
1530 relayd_hang_up = 1;
1531 goto write_error;
1532 }
1533 goto end;
1534 } else if (ret > len) {
1535 PERROR("Error in file write (ret %zd > len %lu)", ret, len);
1536 written += ret;
1537 goto end;
1538 } else {
1539 len -= ret;
1540 mmap_offset += ret;
1541 }
1542
1543 /* This call is useless on a socket so better save a syscall. */
1544 if (!relayd) {
1545 /* This won't block, but will start writeout asynchronously */
1546 lttng_sync_file_range(outfd, stream->out_fd_offset, ret,
1547 SYNC_FILE_RANGE_WRITE);
1548 stream->out_fd_offset += ret;
1549 }
1550 stream->output_written += ret;
1551 written += ret;
1552 }
1553 lttng_consumer_sync_trace_file(stream, orig_offset);
1554
1555write_error:
1556 /*
1557 * This is a special case that the relayd has closed its socket. Let's
1558 * cleanup the relayd object and all associated streams.
1559 */
1560 if (relayd && relayd_hang_up) {
1561 cleanup_relayd(relayd, ctx);
1562 }
1563
1564end:
1565 /* Unlock only if ctrl socket used */
1566 if (relayd && stream->metadata_flag) {
1567 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1568 }
1569
1570 rcu_read_unlock();
1571 return written;
1572}
1573
1574/*
1575 * Splice the data from the ring buffer to the tracefile.
1576 *
1577 * It must be called with the stream lock held.
1578 *
1579 * Returns the number of bytes spliced.
1580 */
1581ssize_t lttng_consumer_on_read_subbuffer_splice(
1582 struct lttng_consumer_local_data *ctx,
1583 struct lttng_consumer_stream *stream, unsigned long len,
1584 unsigned long padding)
1585{
1586 ssize_t ret = 0, written = 0, ret_splice = 0;
1587 loff_t offset = 0;
1588 off_t orig_offset = stream->out_fd_offset;
1589 int fd = stream->wait_fd;
1590 /* Default is on the disk */
1591 int outfd = stream->out_fd;
1592 struct consumer_relayd_sock_pair *relayd = NULL;
1593 int *splice_pipe;
1594 unsigned int relayd_hang_up = 0;
1595
1596 switch (consumer_data.type) {
1597 case LTTNG_CONSUMER_KERNEL:
1598 break;
1599 case LTTNG_CONSUMER32_UST:
1600 case LTTNG_CONSUMER64_UST:
1601 /* Not supported for user space tracing */
1602 return -ENOSYS;
1603 default:
1604 ERR("Unknown consumer_data type");
1605 assert(0);
1606 }
1607
1608 /* RCU lock for the relayd pointer */
1609 rcu_read_lock();
1610
1611 /* Flag that the current stream if set for network streaming. */
1612 if (stream->net_seq_idx != (uint64_t) -1ULL) {
1613 relayd = consumer_find_relayd(stream->net_seq_idx);
1614 if (relayd == NULL) {
1615 ret = -EPIPE;
1616 goto end;
1617 }
1618 }
1619
1620 /*
1621 * Choose right pipe for splice. Metadata and trace data are handled by
1622 * different threads hence the use of two pipes in order not to race or
1623 * corrupt the written data.
1624 */
1625 if (stream->metadata_flag) {
1626 splice_pipe = ctx->consumer_splice_metadata_pipe;
1627 } else {
1628 splice_pipe = ctx->consumer_thread_pipe;
1629 }
1630
1631 /* Write metadata stream id before payload */
1632 if (relayd) {
1633 int total_len = len;
1634
1635 if (stream->metadata_flag) {
1636 /*
1637 * Lock the control socket for the complete duration of the function
1638 * since from this point on we will use the socket.
1639 */
1640 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1641
1642 ret = write_relayd_metadata_id(splice_pipe[1], stream, relayd,
1643 padding);
1644 if (ret < 0) {
1645 written = ret;
1646 /* Socket operation failed. We consider the relayd dead */
1647 if (ret == -EBADF) {
1648 WARN("Remote relayd disconnected. Stopping");
1649 relayd_hang_up = 1;
1650 goto write_error;
1651 }
1652 goto end;
1653 }
1654
1655 total_len += sizeof(struct lttcomm_relayd_metadata_payload);
1656 }
1657
1658 ret = write_relayd_stream_header(stream, total_len, padding, relayd);
1659 if (ret >= 0) {
1660 /* Use the returned socket. */
1661 outfd = ret;
1662 } else {
1663 /* Socket operation failed. We consider the relayd dead */
1664 if (ret == -EBADF) {
1665 WARN("Remote relayd disconnected. Stopping");
1666 relayd_hang_up = 1;
1667 goto write_error;
1668 }
1669 goto end;
1670 }
1671 } else {
1672 /* No streaming, we have to set the len with the full padding */
1673 len += padding;
1674
1675 /*
1676 * Check if we need to change the tracefile before writing the packet.
1677 */
1678 if (stream->chan->tracefile_size > 0 &&
1679 (stream->tracefile_size_current + len) >
1680 stream->chan->tracefile_size) {
1681 ret = utils_rotate_stream_file(stream->chan->pathname,
1682 stream->name, stream->chan->tracefile_size,
1683 stream->chan->tracefile_count, stream->uid, stream->gid,
1684 stream->out_fd, &(stream->tracefile_count_current));
1685 if (ret < 0) {
1686 ERR("Rotating output file");
1687 goto end;
1688 }
1689 outfd = stream->out_fd = ret;
1690 /* Reset current size because we just perform a rotation. */
1691 stream->tracefile_size_current = 0;
1692 stream->out_fd_offset = 0;
1693 orig_offset = 0;
1694 }
1695 stream->tracefile_size_current += len;
1696 }
1697
1698 while (len > 0) {
1699 DBG("splice chan to pipe offset %lu of len %lu (fd : %d, pipe: %d)",
1700 (unsigned long)offset, len, fd, splice_pipe[1]);
1701 ret_splice = splice(fd, &offset, splice_pipe[1], NULL, len,
1702 SPLICE_F_MOVE | SPLICE_F_MORE);
1703 DBG("splice chan to pipe, ret %zd", ret_splice);
1704 if (ret_splice < 0) {
1705 PERROR("Error in relay splice");
1706 if (written == 0) {
1707 written = ret_splice;
1708 }
1709 ret = errno;
1710 goto splice_error;
1711 }
1712
1713 /* Handle stream on the relayd if the output is on the network */
1714 if (relayd) {
1715 if (stream->metadata_flag) {
1716 size_t metadata_payload_size =
1717 sizeof(struct lttcomm_relayd_metadata_payload);
1718
1719 /* Update counter to fit the spliced data */
1720 ret_splice += metadata_payload_size;
1721 len += metadata_payload_size;
1722 /*
1723 * We do this so the return value can match the len passed as
1724 * argument to this function.
1725 */
1726 written -= metadata_payload_size;
1727 }
1728 }
1729
1730 /* Splice data out */
1731 ret_splice = splice(splice_pipe[0], NULL, outfd, NULL,
1732 ret_splice, SPLICE_F_MOVE | SPLICE_F_MORE);
1733 DBG("Consumer splice pipe to file, ret %zd", ret_splice);
1734 if (ret_splice < 0) {
1735 PERROR("Error in file splice");
1736 if (written == 0) {
1737 written = ret_splice;
1738 }
1739 /* Socket operation failed. We consider the relayd dead */
1740 if (errno == EBADF || errno == EPIPE) {
1741 WARN("Remote relayd disconnected. Stopping");
1742 relayd_hang_up = 1;
1743 goto write_error;
1744 }
1745 ret = errno;
1746 goto splice_error;
1747 } else if (ret_splice > len) {
1748 errno = EINVAL;
1749 PERROR("Wrote more data than requested %zd (len: %lu)",
1750 ret_splice, len);
1751 written += ret_splice;
1752 ret = errno;
1753 goto splice_error;
1754 }
1755 len -= ret_splice;
1756
1757 /* This call is useless on a socket so better save a syscall. */
1758 if (!relayd) {
1759 /* This won't block, but will start writeout asynchronously */
1760 lttng_sync_file_range(outfd, stream->out_fd_offset, ret_splice,
1761 SYNC_FILE_RANGE_WRITE);
1762 stream->out_fd_offset += ret_splice;
1763 }
1764 stream->output_written += ret_splice;
1765 written += ret_splice;
1766 }
1767 lttng_consumer_sync_trace_file(stream, orig_offset);
1768
1769 ret = ret_splice;
1770
1771 goto end;
1772
1773write_error:
1774 /*
1775 * This is a special case that the relayd has closed its socket. Let's
1776 * cleanup the relayd object and all associated streams.
1777 */
1778 if (relayd && relayd_hang_up) {
1779 cleanup_relayd(relayd, ctx);
1780 /* Skip splice error so the consumer does not fail */
1781 goto end;
1782 }
1783
1784splice_error:
1785 /* send the appropriate error description to sessiond */
1786 switch (ret) {
1787 case EINVAL:
1788 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_EINVAL);
1789 break;
1790 case ENOMEM:
1791 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ENOMEM);
1792 break;
1793 case ESPIPE:
1794 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_SPLICE_ESPIPE);
1795 break;
1796 }
1797
1798end:
1799 if (relayd && stream->metadata_flag) {
1800 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1801 }
1802
1803 rcu_read_unlock();
1804 return written;
1805}
1806
1807/*
1808 * Take a snapshot for a specific fd
1809 *
1810 * Returns 0 on success, < 0 on error
1811 */
1812int lttng_consumer_take_snapshot(struct lttng_consumer_stream *stream)
1813{
1814 switch (consumer_data.type) {
1815 case LTTNG_CONSUMER_KERNEL:
1816 return lttng_kconsumer_take_snapshot(stream);
1817 case LTTNG_CONSUMER32_UST:
1818 case LTTNG_CONSUMER64_UST:
1819 return lttng_ustconsumer_take_snapshot(stream);
1820 default:
1821 ERR("Unknown consumer_data type");
1822 assert(0);
1823 return -ENOSYS;
1824 }
1825}
1826
1827/*
1828 * Get the produced position
1829 *
1830 * Returns 0 on success, < 0 on error
1831 */
1832int lttng_consumer_get_produced_snapshot(struct lttng_consumer_stream *stream,
1833 unsigned long *pos)
1834{
1835 switch (consumer_data.type) {
1836 case LTTNG_CONSUMER_KERNEL:
1837 return lttng_kconsumer_get_produced_snapshot(stream, pos);
1838 case LTTNG_CONSUMER32_UST:
1839 case LTTNG_CONSUMER64_UST:
1840 return lttng_ustconsumer_get_produced_snapshot(stream, pos);
1841 default:
1842 ERR("Unknown consumer_data type");
1843 assert(0);
1844 return -ENOSYS;
1845 }
1846}
1847
1848int lttng_consumer_recv_cmd(struct lttng_consumer_local_data *ctx,
1849 int sock, struct pollfd *consumer_sockpoll)
1850{
1851 switch (consumer_data.type) {
1852 case LTTNG_CONSUMER_KERNEL:
1853 return lttng_kconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1854 case LTTNG_CONSUMER32_UST:
1855 case LTTNG_CONSUMER64_UST:
1856 return lttng_ustconsumer_recv_cmd(ctx, sock, consumer_sockpoll);
1857 default:
1858 ERR("Unknown consumer_data type");
1859 assert(0);
1860 return -ENOSYS;
1861 }
1862}
1863
1864void lttng_consumer_close_metadata(void)
1865{
1866 switch (consumer_data.type) {
1867 case LTTNG_CONSUMER_KERNEL:
1868 /*
1869 * The Kernel consumer has a different metadata scheme so we don't
1870 * close anything because the stream will be closed by the session
1871 * daemon.
1872 */
1873 break;
1874 case LTTNG_CONSUMER32_UST:
1875 case LTTNG_CONSUMER64_UST:
1876 /*
1877 * Close all metadata streams. The metadata hash table is passed and
1878 * this call iterates over it by closing all wakeup fd. This is safe
1879 * because at this point we are sure that the metadata producer is
1880 * either dead or blocked.
1881 */
1882 lttng_ustconsumer_close_metadata(metadata_ht);
1883 break;
1884 default:
1885 ERR("Unknown consumer_data type");
1886 assert(0);
1887 }
1888}
1889
1890/*
1891 * Clean up a metadata stream and free its memory.
1892 */
1893void consumer_del_metadata_stream(struct lttng_consumer_stream *stream,
1894 struct lttng_ht *ht)
1895{
1896 int ret;
1897 struct lttng_ht_iter iter;
1898 struct lttng_consumer_channel *free_chan = NULL;
1899 struct consumer_relayd_sock_pair *relayd;
1900
1901 assert(stream);
1902 /*
1903 * This call should NEVER receive regular stream. It must always be
1904 * metadata stream and this is crucial for data structure synchronization.
1905 */
1906 assert(stream->metadata_flag);
1907
1908 DBG3("Consumer delete metadata stream %d", stream->wait_fd);
1909
1910 if (ht == NULL) {
1911 /* Means the stream was allocated but not successfully added */
1912 goto free_stream_rcu;
1913 }
1914
1915 pthread_mutex_lock(&consumer_data.lock);
1916 pthread_mutex_lock(&stream->chan->lock);
1917 pthread_mutex_lock(&stream->lock);
1918
1919 switch (consumer_data.type) {
1920 case LTTNG_CONSUMER_KERNEL:
1921 if (stream->mmap_base != NULL) {
1922 ret = munmap(stream->mmap_base, stream->mmap_len);
1923 if (ret != 0) {
1924 PERROR("munmap metadata stream");
1925 }
1926 }
1927 if (stream->wait_fd >= 0) {
1928 ret = close(stream->wait_fd);
1929 if (ret < 0) {
1930 PERROR("close kernel metadata wait_fd");
1931 }
1932 }
1933 break;
1934 case LTTNG_CONSUMER32_UST:
1935 case LTTNG_CONSUMER64_UST:
1936 if (stream->monitor) {
1937 /* close the write-side in close_metadata */
1938 ret = close(stream->ust_metadata_poll_pipe[0]);
1939 if (ret < 0) {
1940 PERROR("Close UST metadata read-side poll pipe");
1941 }
1942 }
1943 lttng_ustconsumer_del_stream(stream);
1944 break;
1945 default:
1946 ERR("Unknown consumer_data type");
1947 assert(0);
1948 goto end;
1949 }
1950
1951 rcu_read_lock();
1952 iter.iter.node = &stream->node.node;
1953 ret = lttng_ht_del(ht, &iter);
1954 assert(!ret);
1955
1956 iter.iter.node = &stream->node_channel_id.node;
1957 ret = lttng_ht_del(consumer_data.stream_per_chan_id_ht, &iter);
1958 assert(!ret);
1959
1960 iter.iter.node = &stream->node_session_id.node;
1961 ret = lttng_ht_del(consumer_data.stream_list_ht, &iter);
1962 assert(!ret);
1963 rcu_read_unlock();
1964
1965 if (stream->out_fd >= 0) {
1966 ret = close(stream->out_fd);
1967 if (ret) {
1968 PERROR("close");
1969 }
1970 }
1971
1972 /* Check and cleanup relayd */
1973 rcu_read_lock();
1974 relayd = consumer_find_relayd(stream->net_seq_idx);
1975 if (relayd != NULL) {
1976 uatomic_dec(&relayd->refcount);
1977 assert(uatomic_read(&relayd->refcount) >= 0);
1978
1979 /* Closing streams requires to lock the control socket. */
1980 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
1981 ret = relayd_send_close_stream(&relayd->control_sock,
1982 stream->relayd_stream_id, stream->next_net_seq_num - 1);
1983 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
1984 if (ret < 0) {
1985 DBG("Unable to close stream on the relayd. Continuing");
1986 /*
1987 * Continue here. There is nothing we can do for the relayd.
1988 * Chances are that the relayd has closed the socket so we just
1989 * continue cleaning up.
1990 */
1991 }
1992
1993 /* Both conditions are met, we destroy the relayd. */
1994 if (uatomic_read(&relayd->refcount) == 0 &&
1995 uatomic_read(&relayd->destroy_flag)) {
1996 consumer_destroy_relayd(relayd);
1997 }
1998 }
1999 rcu_read_unlock();
2000
2001 /* Atomically decrement channel refcount since other threads can use it. */
2002 if (!uatomic_sub_return(&stream->chan->refcount, 1)
2003 && !uatomic_read(&stream->chan->nb_init_stream_left)) {
2004 /* Go for channel deletion! */
2005 free_chan = stream->chan;
2006 }
2007
2008end:
2009 /*
2010 * Nullify the stream reference so it is not used after deletion. The
2011 * channel lock MUST be acquired before being able to check for
2012 * a NULL pointer value.
2013 */
2014 stream->chan->metadata_stream = NULL;
2015
2016 pthread_mutex_unlock(&stream->lock);
2017 pthread_mutex_unlock(&stream->chan->lock);
2018 pthread_mutex_unlock(&consumer_data.lock);
2019
2020 if (free_chan) {
2021 consumer_del_channel(free_chan);
2022 }
2023
2024free_stream_rcu:
2025 call_rcu(&stream->node.head, free_stream_rcu);
2026}
2027
2028/*
2029 * Action done with the metadata stream when adding it to the consumer internal
2030 * data structures to handle it.
2031 */
2032int consumer_add_metadata_stream(struct lttng_consumer_stream *stream)
2033{
2034 struct lttng_ht *ht = metadata_ht;
2035 int ret = 0;
2036 struct lttng_ht_iter iter;
2037 struct lttng_ht_node_u64 *node;
2038
2039 assert(stream);
2040 assert(ht);
2041
2042 DBG3("Adding metadata stream %" PRIu64 " to hash table", stream->key);
2043
2044 pthread_mutex_lock(&consumer_data.lock);
2045 pthread_mutex_lock(&stream->chan->lock);
2046 pthread_mutex_lock(&stream->chan->timer_lock);
2047 pthread_mutex_lock(&stream->lock);
2048
2049 /*
2050 * From here, refcounts are updated so be _careful_ when returning an error
2051 * after this point.
2052 */
2053
2054 rcu_read_lock();
2055
2056 /*
2057 * Lookup the stream just to make sure it does not exist in our internal
2058 * state. This should NEVER happen.
2059 */
2060 lttng_ht_lookup(ht, &stream->key, &iter);
2061 node = lttng_ht_iter_get_node_u64(&iter);
2062 assert(!node);
2063
2064 /*
2065 * When nb_init_stream_left reaches 0, we don't need to trigger any action
2066 * in terms of destroying the associated channel, because the action that
2067 * causes the count to become 0 also causes a stream to be added. The
2068 * channel deletion will thus be triggered by the following removal of this
2069 * stream.
2070 */
2071 if (uatomic_read(&stream->chan->nb_init_stream_left) > 0) {
2072 /* Increment refcount before decrementing nb_init_stream_left */
2073 cmm_smp_wmb();
2074 uatomic_dec(&stream->chan->nb_init_stream_left);
2075 }
2076
2077 lttng_ht_add_unique_u64(ht, &stream->node);
2078
2079 lttng_ht_add_unique_u64(consumer_data.stream_per_chan_id_ht,
2080 &stream->node_channel_id);
2081
2082 /*
2083 * Add stream to the stream_list_ht of the consumer data. No need to steal
2084 * the key since the HT does not use it and we allow to add redundant keys
2085 * into this table.
2086 */
2087 lttng_ht_add_u64(consumer_data.stream_list_ht, &stream->node_session_id);
2088
2089 rcu_read_unlock();
2090
2091 pthread_mutex_unlock(&stream->lock);
2092 pthread_mutex_unlock(&stream->chan->lock);
2093 pthread_mutex_unlock(&stream->chan->timer_lock);
2094 pthread_mutex_unlock(&consumer_data.lock);
2095 return ret;
2096}
2097
2098/*
2099 * Delete data stream that are flagged for deletion (endpoint_status).
2100 */
2101static void validate_endpoint_status_data_stream(void)
2102{
2103 struct lttng_ht_iter iter;
2104 struct lttng_consumer_stream *stream;
2105
2106 DBG("Consumer delete flagged data stream");
2107
2108 rcu_read_lock();
2109 cds_lfht_for_each_entry(data_ht->ht, &iter.iter, stream, node.node) {
2110 /* Validate delete flag of the stream */
2111 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2112 continue;
2113 }
2114 /* Delete it right now */
2115 consumer_del_stream(stream, data_ht);
2116 }
2117 rcu_read_unlock();
2118}
2119
2120/*
2121 * Delete metadata stream that are flagged for deletion (endpoint_status).
2122 */
2123static void validate_endpoint_status_metadata_stream(
2124 struct lttng_poll_event *pollset)
2125{
2126 struct lttng_ht_iter iter;
2127 struct lttng_consumer_stream *stream;
2128
2129 DBG("Consumer delete flagged metadata stream");
2130
2131 assert(pollset);
2132
2133 rcu_read_lock();
2134 cds_lfht_for_each_entry(metadata_ht->ht, &iter.iter, stream, node.node) {
2135 /* Validate delete flag of the stream */
2136 if (stream->endpoint_status == CONSUMER_ENDPOINT_ACTIVE) {
2137 continue;
2138 }
2139 /*
2140 * Remove from pollset so the metadata thread can continue without
2141 * blocking on a deleted stream.
2142 */
2143 lttng_poll_del(pollset, stream->wait_fd);
2144
2145 /* Delete it right now */
2146 consumer_del_metadata_stream(stream, metadata_ht);
2147 }
2148 rcu_read_unlock();
2149}
2150
2151/*
2152 * Thread polls on metadata file descriptor and write them on disk or on the
2153 * network.
2154 */
2155void *consumer_thread_metadata_poll(void *data)
2156{
2157 int ret, i, pollfd;
2158 uint32_t revents, nb_fd;
2159 struct lttng_consumer_stream *stream = NULL;
2160 struct lttng_ht_iter iter;
2161 struct lttng_ht_node_u64 *node;
2162 struct lttng_poll_event events;
2163 struct lttng_consumer_local_data *ctx = data;
2164 ssize_t len;
2165
2166 rcu_register_thread();
2167
2168 DBG("Thread metadata poll started");
2169
2170 /* Size is set to 1 for the consumer_metadata pipe */
2171 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2172 if (ret < 0) {
2173 ERR("Poll set creation failed");
2174 goto end_poll;
2175 }
2176
2177 ret = lttng_poll_add(&events,
2178 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe), LPOLLIN);
2179 if (ret < 0) {
2180 goto end;
2181 }
2182
2183 /* Main loop */
2184 DBG("Metadata main loop started");
2185
2186 while (1) {
2187 /* Only the metadata pipe is set */
2188 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2189 goto end;
2190 }
2191
2192restart:
2193 DBG("Metadata poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2194 ret = lttng_poll_wait(&events, -1);
2195 DBG("Metadata event catched in thread");
2196 if (ret < 0) {
2197 if (errno == EINTR) {
2198 ERR("Poll EINTR catched");
2199 goto restart;
2200 }
2201 goto error;
2202 }
2203
2204 nb_fd = ret;
2205
2206 /* From here, the event is a metadata wait fd */
2207 for (i = 0; i < nb_fd; i++) {
2208 revents = LTTNG_POLL_GETEV(&events, i);
2209 pollfd = LTTNG_POLL_GETFD(&events, i);
2210
2211 if (pollfd == lttng_pipe_get_readfd(ctx->consumer_metadata_pipe)) {
2212 if (revents & (LPOLLERR | LPOLLHUP )) {
2213 DBG("Metadata thread pipe hung up");
2214 /*
2215 * Remove the pipe from the poll set and continue the loop
2216 * since their might be data to consume.
2217 */
2218 lttng_poll_del(&events,
2219 lttng_pipe_get_readfd(ctx->consumer_metadata_pipe));
2220 lttng_pipe_read_close(ctx->consumer_metadata_pipe);
2221 continue;
2222 } else if (revents & LPOLLIN) {
2223 ssize_t pipe_len;
2224
2225 pipe_len = lttng_pipe_read(ctx->consumer_metadata_pipe,
2226 &stream, sizeof(stream));
2227 if (pipe_len < 0) {
2228 ERR("read metadata stream, ret: %zd", pipe_len);
2229 /*
2230 * Continue here to handle the rest of the streams.
2231 */
2232 continue;
2233 }
2234
2235 /* A NULL stream means that the state has changed. */
2236 if (stream == NULL) {
2237 /* Check for deleted streams. */
2238 validate_endpoint_status_metadata_stream(&events);
2239 goto restart;
2240 }
2241
2242 DBG("Adding metadata stream %d to poll set",
2243 stream->wait_fd);
2244
2245 /* Add metadata stream to the global poll events list */
2246 lttng_poll_add(&events, stream->wait_fd,
2247 LPOLLIN | LPOLLPRI);
2248 }
2249
2250 /* Handle other stream */
2251 continue;
2252 }
2253
2254 rcu_read_lock();
2255 {
2256 uint64_t tmp_id = (uint64_t) pollfd;
2257
2258 lttng_ht_lookup(metadata_ht, &tmp_id, &iter);
2259 }
2260 node = lttng_ht_iter_get_node_u64(&iter);
2261 assert(node);
2262
2263 stream = caa_container_of(node, struct lttng_consumer_stream,
2264 node);
2265
2266 /* Check for error event */
2267 if (revents & (LPOLLERR | LPOLLHUP)) {
2268 DBG("Metadata fd %d is hup|err.", pollfd);
2269 if (!stream->hangup_flush_done
2270 && (consumer_data.type == LTTNG_CONSUMER32_UST
2271 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2272 DBG("Attempting to flush and consume the UST buffers");
2273 lttng_ustconsumer_on_stream_hangup(stream);
2274
2275 /* We just flushed the stream now read it. */
2276 do {
2277 len = ctx->on_buffer_ready(stream, ctx);
2278 /*
2279 * We don't check the return value here since if we get
2280 * a negative len, it means an error occured thus we
2281 * simply remove it from the poll set and free the
2282 * stream.
2283 */
2284 } while (len > 0);
2285 }
2286
2287 lttng_poll_del(&events, stream->wait_fd);
2288 /*
2289 * This call update the channel states, closes file descriptors
2290 * and securely free the stream.
2291 */
2292 consumer_del_metadata_stream(stream, metadata_ht);
2293 } else if (revents & (LPOLLIN | LPOLLPRI)) {
2294 /* Get the data out of the metadata file descriptor */
2295 DBG("Metadata available on fd %d", pollfd);
2296 assert(stream->wait_fd == pollfd);
2297
2298 do {
2299 len = ctx->on_buffer_ready(stream, ctx);
2300 /*
2301 * We don't check the return value here since if we get
2302 * a negative len, it means an error occured thus we
2303 * simply remove it from the poll set and free the
2304 * stream.
2305 */
2306 } while (len > 0);
2307
2308 /* It's ok to have an unavailable sub-buffer */
2309 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2310 /* Clean up stream from consumer and free it. */
2311 lttng_poll_del(&events, stream->wait_fd);
2312 consumer_del_metadata_stream(stream, metadata_ht);
2313 }
2314 }
2315
2316 /* Release RCU lock for the stream looked up */
2317 rcu_read_unlock();
2318 }
2319 }
2320
2321error:
2322end:
2323 DBG("Metadata poll thread exiting");
2324
2325 lttng_poll_clean(&events);
2326end_poll:
2327 rcu_unregister_thread();
2328 return NULL;
2329}
2330
2331/*
2332 * This thread polls the fds in the set to consume the data and write
2333 * it to tracefile if necessary.
2334 */
2335void *consumer_thread_data_poll(void *data)
2336{
2337 int num_rdy, num_hup, high_prio, ret, i;
2338 struct pollfd *pollfd = NULL;
2339 /* local view of the streams */
2340 struct lttng_consumer_stream **local_stream = NULL, *new_stream = NULL;
2341 /* local view of consumer_data.fds_count */
2342 int nb_fd = 0;
2343 struct lttng_consumer_local_data *ctx = data;
2344 ssize_t len;
2345
2346 rcu_register_thread();
2347
2348 local_stream = zmalloc(sizeof(struct lttng_consumer_stream *));
2349 if (local_stream == NULL) {
2350 PERROR("local_stream malloc");
2351 goto end;
2352 }
2353
2354 while (1) {
2355 high_prio = 0;
2356 num_hup = 0;
2357
2358 /*
2359 * the fds set has been updated, we need to update our
2360 * local array as well
2361 */
2362 pthread_mutex_lock(&consumer_data.lock);
2363 if (consumer_data.need_update) {
2364 free(pollfd);
2365 pollfd = NULL;
2366
2367 free(local_stream);
2368 local_stream = NULL;
2369
2370 /* allocate for all fds + 1 for the consumer_data_pipe */
2371 pollfd = zmalloc((consumer_data.stream_count + 1) * sizeof(struct pollfd));
2372 if (pollfd == NULL) {
2373 PERROR("pollfd malloc");
2374 pthread_mutex_unlock(&consumer_data.lock);
2375 goto end;
2376 }
2377
2378 /* allocate for all fds + 1 for the consumer_data_pipe */
2379 local_stream = zmalloc((consumer_data.stream_count + 1) *
2380 sizeof(struct lttng_consumer_stream *));
2381 if (local_stream == NULL) {
2382 PERROR("local_stream malloc");
2383 pthread_mutex_unlock(&consumer_data.lock);
2384 goto end;
2385 }
2386 ret = update_poll_array(ctx, &pollfd, local_stream,
2387 data_ht);
2388 if (ret < 0) {
2389 ERR("Error in allocating pollfd or local_outfds");
2390 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2391 pthread_mutex_unlock(&consumer_data.lock);
2392 goto end;
2393 }
2394 nb_fd = ret;
2395 consumer_data.need_update = 0;
2396 }
2397 pthread_mutex_unlock(&consumer_data.lock);
2398
2399 /* No FDs and consumer_quit, consumer_cleanup the thread */
2400 if (nb_fd == 0 && consumer_quit == 1) {
2401 goto end;
2402 }
2403 /* poll on the array of fds */
2404 restart:
2405 DBG("polling on %d fd", nb_fd + 1);
2406 num_rdy = poll(pollfd, nb_fd + 1, -1);
2407 DBG("poll num_rdy : %d", num_rdy);
2408 if (num_rdy == -1) {
2409 /*
2410 * Restart interrupted system call.
2411 */
2412 if (errno == EINTR) {
2413 goto restart;
2414 }
2415 PERROR("Poll error");
2416 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
2417 goto end;
2418 } else if (num_rdy == 0) {
2419 DBG("Polling thread timed out");
2420 goto end;
2421 }
2422
2423 /*
2424 * If the consumer_data_pipe triggered poll go directly to the
2425 * beginning of the loop to update the array. We want to prioritize
2426 * array update over low-priority reads.
2427 */
2428 if (pollfd[nb_fd].revents & (POLLIN | POLLPRI)) {
2429 ssize_t pipe_readlen;
2430
2431 DBG("consumer_data_pipe wake up");
2432 pipe_readlen = lttng_pipe_read(ctx->consumer_data_pipe,
2433 &new_stream, sizeof(new_stream));
2434 if (pipe_readlen < 0) {
2435 ERR("Consumer data pipe ret %zd", pipe_readlen);
2436 /* Continue so we can at least handle the current stream(s). */
2437 continue;
2438 }
2439
2440 /*
2441 * If the stream is NULL, just ignore it. It's also possible that
2442 * the sessiond poll thread changed the consumer_quit state and is
2443 * waking us up to test it.
2444 */
2445 if (new_stream == NULL) {
2446 validate_endpoint_status_data_stream();
2447 continue;
2448 }
2449
2450 /* Continue to update the local streams and handle prio ones */
2451 continue;
2452 }
2453
2454 /* Take care of high priority channels first. */
2455 for (i = 0; i < nb_fd; i++) {
2456 if (local_stream[i] == NULL) {
2457 continue;
2458 }
2459 if (pollfd[i].revents & POLLPRI) {
2460 DBG("Urgent read on fd %d", pollfd[i].fd);
2461 high_prio = 1;
2462 len = ctx->on_buffer_ready(local_stream[i], ctx);
2463 /* it's ok to have an unavailable sub-buffer */
2464 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2465 /* Clean the stream and free it. */
2466 consumer_del_stream(local_stream[i], data_ht);
2467 local_stream[i] = NULL;
2468 } else if (len > 0) {
2469 local_stream[i]->data_read = 1;
2470 }
2471 }
2472 }
2473
2474 /*
2475 * If we read high prio channel in this loop, try again
2476 * for more high prio data.
2477 */
2478 if (high_prio) {
2479 continue;
2480 }
2481
2482 /* Take care of low priority channels. */
2483 for (i = 0; i < nb_fd; i++) {
2484 if (local_stream[i] == NULL) {
2485 continue;
2486 }
2487 if ((pollfd[i].revents & POLLIN) ||
2488 local_stream[i]->hangup_flush_done) {
2489 DBG("Normal read on fd %d", pollfd[i].fd);
2490 len = ctx->on_buffer_ready(local_stream[i], ctx);
2491 /* it's ok to have an unavailable sub-buffer */
2492 if (len < 0 && len != -EAGAIN && len != -ENODATA) {
2493 /* Clean the stream and free it. */
2494 consumer_del_stream(local_stream[i], data_ht);
2495 local_stream[i] = NULL;
2496 } else if (len > 0) {
2497 local_stream[i]->data_read = 1;
2498 }
2499 }
2500 }
2501
2502 /* Handle hangup and errors */
2503 for (i = 0; i < nb_fd; i++) {
2504 if (local_stream[i] == NULL) {
2505 continue;
2506 }
2507 if (!local_stream[i]->hangup_flush_done
2508 && (pollfd[i].revents & (POLLHUP | POLLERR | POLLNVAL))
2509 && (consumer_data.type == LTTNG_CONSUMER32_UST
2510 || consumer_data.type == LTTNG_CONSUMER64_UST)) {
2511 DBG("fd %d is hup|err|nval. Attempting flush and read.",
2512 pollfd[i].fd);
2513 lttng_ustconsumer_on_stream_hangup(local_stream[i]);
2514 /* Attempt read again, for the data we just flushed. */
2515 local_stream[i]->data_read = 1;
2516 }
2517 /*
2518 * If the poll flag is HUP/ERR/NVAL and we have
2519 * read no data in this pass, we can remove the
2520 * stream from its hash table.
2521 */
2522 if ((pollfd[i].revents & POLLHUP)) {
2523 DBG("Polling fd %d tells it has hung up.", pollfd[i].fd);
2524 if (!local_stream[i]->data_read) {
2525 consumer_del_stream(local_stream[i], data_ht);
2526 local_stream[i] = NULL;
2527 num_hup++;
2528 }
2529 } else if (pollfd[i].revents & POLLERR) {
2530 ERR("Error returned in polling fd %d.", pollfd[i].fd);
2531 if (!local_stream[i]->data_read) {
2532 consumer_del_stream(local_stream[i], data_ht);
2533 local_stream[i] = NULL;
2534 num_hup++;
2535 }
2536 } else if (pollfd[i].revents & POLLNVAL) {
2537 ERR("Polling fd %d tells fd is not open.", pollfd[i].fd);
2538 if (!local_stream[i]->data_read) {
2539 consumer_del_stream(local_stream[i], data_ht);
2540 local_stream[i] = NULL;
2541 num_hup++;
2542 }
2543 }
2544 if (local_stream[i] != NULL) {
2545 local_stream[i]->data_read = 0;
2546 }
2547 }
2548 }
2549end:
2550 DBG("polling thread exiting");
2551 free(pollfd);
2552 free(local_stream);
2553
2554 /*
2555 * Close the write side of the pipe so epoll_wait() in
2556 * consumer_thread_metadata_poll can catch it. The thread is monitoring the
2557 * read side of the pipe. If we close them both, epoll_wait strangely does
2558 * not return and could create a endless wait period if the pipe is the
2559 * only tracked fd in the poll set. The thread will take care of closing
2560 * the read side.
2561 */
2562 (void) lttng_pipe_write_close(ctx->consumer_metadata_pipe);
2563
2564 rcu_unregister_thread();
2565 return NULL;
2566}
2567
2568/*
2569 * Close wake-up end of each stream belonging to the channel. This will
2570 * allow the poll() on the stream read-side to detect when the
2571 * write-side (application) finally closes them.
2572 */
2573static
2574void consumer_close_channel_streams(struct lttng_consumer_channel *channel)
2575{
2576 struct lttng_ht *ht;
2577 struct lttng_consumer_stream *stream;
2578 struct lttng_ht_iter iter;
2579
2580 ht = consumer_data.stream_per_chan_id_ht;
2581
2582 rcu_read_lock();
2583 cds_lfht_for_each_entry_duplicate(ht->ht,
2584 ht->hash_fct(&channel->key, lttng_ht_seed),
2585 ht->match_fct, &channel->key,
2586 &iter.iter, stream, node_channel_id.node) {
2587 /*
2588 * Protect against teardown with mutex.
2589 */
2590 pthread_mutex_lock(&stream->lock);
2591 if (cds_lfht_is_node_deleted(&stream->node.node)) {
2592 goto next;
2593 }
2594 switch (consumer_data.type) {
2595 case LTTNG_CONSUMER_KERNEL:
2596 break;
2597 case LTTNG_CONSUMER32_UST:
2598 case LTTNG_CONSUMER64_UST:
2599 /*
2600 * Note: a mutex is taken internally within
2601 * liblttng-ust-ctl to protect timer wakeup_fd
2602 * use from concurrent close.
2603 */
2604 lttng_ustconsumer_close_stream_wakeup(stream);
2605 break;
2606 default:
2607 ERR("Unknown consumer_data type");
2608 assert(0);
2609 }
2610 next:
2611 pthread_mutex_unlock(&stream->lock);
2612 }
2613 rcu_read_unlock();
2614}
2615
2616static void destroy_channel_ht(struct lttng_ht *ht)
2617{
2618 struct lttng_ht_iter iter;
2619 struct lttng_consumer_channel *channel;
2620 int ret;
2621
2622 if (ht == NULL) {
2623 return;
2624 }
2625
2626 rcu_read_lock();
2627 cds_lfht_for_each_entry(ht->ht, &iter.iter, channel, wait_fd_node.node) {
2628 ret = lttng_ht_del(ht, &iter);
2629 assert(ret != 0);
2630 }
2631 rcu_read_unlock();
2632
2633 lttng_ht_destroy(ht);
2634}
2635
2636/*
2637 * This thread polls the channel fds to detect when they are being
2638 * closed. It closes all related streams if the channel is detected as
2639 * closed. It is currently only used as a shim layer for UST because the
2640 * consumerd needs to keep the per-stream wakeup end of pipes open for
2641 * periodical flush.
2642 */
2643void *consumer_thread_channel_poll(void *data)
2644{
2645 int ret, i, pollfd;
2646 uint32_t revents, nb_fd;
2647 struct lttng_consumer_channel *chan = NULL;
2648 struct lttng_ht_iter iter;
2649 struct lttng_ht_node_u64 *node;
2650 struct lttng_poll_event events;
2651 struct lttng_consumer_local_data *ctx = data;
2652 struct lttng_ht *channel_ht;
2653
2654 rcu_register_thread();
2655
2656 channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
2657 if (!channel_ht) {
2658 /* ENOMEM at this point. Better to bail out. */
2659 goto end_ht;
2660 }
2661
2662 DBG("Thread channel poll started");
2663
2664 /* Size is set to 1 for the consumer_channel pipe */
2665 ret = lttng_poll_create(&events, 2, LTTNG_CLOEXEC);
2666 if (ret < 0) {
2667 ERR("Poll set creation failed");
2668 goto end_poll;
2669 }
2670
2671 ret = lttng_poll_add(&events, ctx->consumer_channel_pipe[0], LPOLLIN);
2672 if (ret < 0) {
2673 goto end;
2674 }
2675
2676 /* Main loop */
2677 DBG("Channel main loop started");
2678
2679 while (1) {
2680 /* Only the channel pipe is set */
2681 if (LTTNG_POLL_GETNB(&events) == 0 && consumer_quit == 1) {
2682 goto end;
2683 }
2684
2685restart:
2686 DBG("Channel poll wait with %d fd(s)", LTTNG_POLL_GETNB(&events));
2687 ret = lttng_poll_wait(&events, -1);
2688 DBG("Channel event catched in thread");
2689 if (ret < 0) {
2690 if (errno == EINTR) {
2691 ERR("Poll EINTR catched");
2692 goto restart;
2693 }
2694 goto end;
2695 }
2696
2697 nb_fd = ret;
2698
2699 /* From here, the event is a channel wait fd */
2700 for (i = 0; i < nb_fd; i++) {
2701 revents = LTTNG_POLL_GETEV(&events, i);
2702 pollfd = LTTNG_POLL_GETFD(&events, i);
2703
2704 /* Just don't waste time if no returned events for the fd */
2705 if (!revents) {
2706 continue;
2707 }
2708 if (pollfd == ctx->consumer_channel_pipe[0]) {
2709 if (revents & (LPOLLERR | LPOLLHUP)) {
2710 DBG("Channel thread pipe hung up");
2711 /*
2712 * Remove the pipe from the poll set and continue the loop
2713 * since their might be data to consume.
2714 */
2715 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2716 continue;
2717 } else if (revents & LPOLLIN) {
2718 enum consumer_channel_action action;
2719 uint64_t key;
2720
2721 ret = read_channel_pipe(ctx, &chan, &key, &action);
2722 if (ret <= 0) {
2723 ERR("Error reading channel pipe");
2724 continue;
2725 }
2726
2727 switch (action) {
2728 case CONSUMER_CHANNEL_ADD:
2729 DBG("Adding channel %d to poll set",
2730 chan->wait_fd);
2731
2732 lttng_ht_node_init_u64(&chan->wait_fd_node,
2733 chan->wait_fd);
2734 rcu_read_lock();
2735 lttng_ht_add_unique_u64(channel_ht,
2736 &chan->wait_fd_node);
2737 rcu_read_unlock();
2738 /* Add channel to the global poll events list */
2739 lttng_poll_add(&events, chan->wait_fd,
2740 LPOLLIN | LPOLLPRI);
2741 break;
2742 case CONSUMER_CHANNEL_DEL:
2743 {
2744 struct lttng_consumer_stream *stream, *stmp;
2745
2746 rcu_read_lock();
2747 chan = consumer_find_channel(key);
2748 if (!chan) {
2749 rcu_read_unlock();
2750 ERR("UST consumer get channel key %" PRIu64 " not found for del channel", key);
2751 break;
2752 }
2753 lttng_poll_del(&events, chan->wait_fd);
2754 iter.iter.node = &chan->wait_fd_node.node;
2755 ret = lttng_ht_del(channel_ht, &iter);
2756 assert(ret == 0);
2757 consumer_close_channel_streams(chan);
2758
2759 switch (consumer_data.type) {
2760 case LTTNG_CONSUMER_KERNEL:
2761 break;
2762 case LTTNG_CONSUMER32_UST:
2763 case LTTNG_CONSUMER64_UST:
2764 /* Delete streams that might have been left in the stream list. */
2765 cds_list_for_each_entry_safe(stream, stmp, &chan->streams.head,
2766 send_node) {
2767 cds_list_del(&stream->send_node);
2768 lttng_ustconsumer_del_stream(stream);
2769 uatomic_sub(&stream->chan->refcount, 1);
2770 assert(&chan->refcount);
2771 free(stream);
2772 }
2773 break;
2774 default:
2775 ERR("Unknown consumer_data type");
2776 assert(0);
2777 }
2778
2779 /*
2780 * Release our own refcount. Force channel deletion even if
2781 * streams were not initialized.
2782 */
2783 if (!uatomic_sub_return(&chan->refcount, 1)) {
2784 consumer_del_channel(chan);
2785 }
2786 rcu_read_unlock();
2787 goto restart;
2788 }
2789 case CONSUMER_CHANNEL_QUIT:
2790 /*
2791 * Remove the pipe from the poll set and continue the loop
2792 * since their might be data to consume.
2793 */
2794 lttng_poll_del(&events, ctx->consumer_channel_pipe[0]);
2795 continue;
2796 default:
2797 ERR("Unknown action");
2798 break;
2799 }
2800 }
2801
2802 /* Handle other stream */
2803 continue;
2804 }
2805
2806 rcu_read_lock();
2807 {
2808 uint64_t tmp_id = (uint64_t) pollfd;
2809
2810 lttng_ht_lookup(channel_ht, &tmp_id, &iter);
2811 }
2812 node = lttng_ht_iter_get_node_u64(&iter);
2813 assert(node);
2814
2815 chan = caa_container_of(node, struct lttng_consumer_channel,
2816 wait_fd_node);
2817
2818 /* Check for error event */
2819 if (revents & (LPOLLERR | LPOLLHUP)) {
2820 DBG("Channel fd %d is hup|err.", pollfd);
2821
2822 lttng_poll_del(&events, chan->wait_fd);
2823 ret = lttng_ht_del(channel_ht, &iter);
2824 assert(ret == 0);
2825 consumer_close_channel_streams(chan);
2826
2827 /* Release our own refcount */
2828 if (!uatomic_sub_return(&chan->refcount, 1)
2829 && !uatomic_read(&chan->nb_init_stream_left)) {
2830 consumer_del_channel(chan);
2831 }
2832 }
2833
2834 /* Release RCU lock for the channel looked up */
2835 rcu_read_unlock();
2836 }
2837 }
2838
2839end:
2840 lttng_poll_clean(&events);
2841end_poll:
2842 destroy_channel_ht(channel_ht);
2843end_ht:
2844 DBG("Channel poll thread exiting");
2845 rcu_unregister_thread();
2846 return NULL;
2847}
2848
2849static int set_metadata_socket(struct lttng_consumer_local_data *ctx,
2850 struct pollfd *sockpoll, int client_socket)
2851{
2852 int ret;
2853
2854 assert(ctx);
2855 assert(sockpoll);
2856
2857 if (lttng_consumer_poll_socket(sockpoll) < 0) {
2858 ret = -1;
2859 goto error;
2860 }
2861 DBG("Metadata connection on client_socket");
2862
2863 /* Blocking call, waiting for transmission */
2864 ctx->consumer_metadata_socket = lttcomm_accept_unix_sock(client_socket);
2865 if (ctx->consumer_metadata_socket < 0) {
2866 WARN("On accept metadata");
2867 ret = -1;
2868 goto error;
2869 }
2870 ret = 0;
2871
2872error:
2873 return ret;
2874}
2875
2876/*
2877 * This thread listens on the consumerd socket and receives the file
2878 * descriptors from the session daemon.
2879 */
2880void *consumer_thread_sessiond_poll(void *data)
2881{
2882 int sock = -1, client_socket, ret;
2883 /*
2884 * structure to poll for incoming data on communication socket avoids
2885 * making blocking sockets.
2886 */
2887 struct pollfd consumer_sockpoll[2];
2888 struct lttng_consumer_local_data *ctx = data;
2889
2890 rcu_register_thread();
2891
2892 DBG("Creating command socket %s", ctx->consumer_command_sock_path);
2893 unlink(ctx->consumer_command_sock_path);
2894 client_socket = lttcomm_create_unix_sock(ctx->consumer_command_sock_path);
2895 if (client_socket < 0) {
2896 ERR("Cannot create command socket");
2897 goto end;
2898 }
2899
2900 ret = lttcomm_listen_unix_sock(client_socket);
2901 if (ret < 0) {
2902 goto end;
2903 }
2904
2905 DBG("Sending ready command to lttng-sessiond");
2906 ret = lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_COMMAND_SOCK_READY);
2907 /* return < 0 on error, but == 0 is not fatal */
2908 if (ret < 0) {
2909 ERR("Error sending ready command to lttng-sessiond");
2910 goto end;
2911 }
2912
2913 /* prepare the FDs to poll : to client socket and the should_quit pipe */
2914 consumer_sockpoll[0].fd = ctx->consumer_should_quit[0];
2915 consumer_sockpoll[0].events = POLLIN | POLLPRI;
2916 consumer_sockpoll[1].fd = client_socket;
2917 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2918
2919 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2920 goto end;
2921 }
2922 DBG("Connection on client_socket");
2923
2924 /* Blocking call, waiting for transmission */
2925 sock = lttcomm_accept_unix_sock(client_socket);
2926 if (sock < 0) {
2927 WARN("On accept");
2928 goto end;
2929 }
2930
2931 /*
2932 * Setup metadata socket which is the second socket connection on the
2933 * command unix socket.
2934 */
2935 ret = set_metadata_socket(ctx, consumer_sockpoll, client_socket);
2936 if (ret < 0) {
2937 goto end;
2938 }
2939
2940 /* This socket is not useful anymore. */
2941 ret = close(client_socket);
2942 if (ret < 0) {
2943 PERROR("close client_socket");
2944 }
2945 client_socket = -1;
2946
2947 /* update the polling structure to poll on the established socket */
2948 consumer_sockpoll[1].fd = sock;
2949 consumer_sockpoll[1].events = POLLIN | POLLPRI;
2950
2951 while (1) {
2952 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
2953 goto end;
2954 }
2955 DBG("Incoming command on sock");
2956 ret = lttng_consumer_recv_cmd(ctx, sock, consumer_sockpoll);
2957 if (ret == -ENOENT) {
2958 DBG("Received STOP command");
2959 goto end;
2960 }
2961 if (ret <= 0) {
2962 /*
2963 * This could simply be a session daemon quitting. Don't output
2964 * ERR() here.
2965 */
2966 DBG("Communication interrupted on command socket");
2967 goto end;
2968 }
2969 if (consumer_quit) {
2970 DBG("consumer_thread_receive_fds received quit from signal");
2971 goto end;
2972 }
2973 DBG("received command on sock");
2974 }
2975end:
2976 DBG("Consumer thread sessiond poll exiting");
2977
2978 /*
2979 * Close metadata streams since the producer is the session daemon which
2980 * just died.
2981 *
2982 * NOTE: for now, this only applies to the UST tracer.
2983 */
2984 lttng_consumer_close_metadata();
2985
2986 /*
2987 * when all fds have hung up, the polling thread
2988 * can exit cleanly
2989 */
2990 consumer_quit = 1;
2991
2992 /*
2993 * Notify the data poll thread to poll back again and test the
2994 * consumer_quit state that we just set so to quit gracefully.
2995 */
2996 notify_thread_lttng_pipe(ctx->consumer_data_pipe);
2997
2998 notify_channel_pipe(ctx, NULL, -1, CONSUMER_CHANNEL_QUIT);
2999
3000 /* Cleaning up possibly open sockets. */
3001 if (sock >= 0) {
3002 ret = close(sock);
3003 if (ret < 0) {
3004 PERROR("close sock sessiond poll");
3005 }
3006 }
3007 if (client_socket >= 0) {
3008 ret = close(client_socket);
3009 if (ret < 0) {
3010 PERROR("close client_socket sessiond poll");
3011 }
3012 }
3013
3014 rcu_unregister_thread();
3015 return NULL;
3016}
3017
3018ssize_t lttng_consumer_read_subbuffer(struct lttng_consumer_stream *stream,
3019 struct lttng_consumer_local_data *ctx)
3020{
3021 ssize_t ret;
3022
3023 pthread_mutex_lock(&stream->lock);
3024
3025 switch (consumer_data.type) {
3026 case LTTNG_CONSUMER_KERNEL:
3027 ret = lttng_kconsumer_read_subbuffer(stream, ctx);
3028 break;
3029 case LTTNG_CONSUMER32_UST:
3030 case LTTNG_CONSUMER64_UST:
3031 ret = lttng_ustconsumer_read_subbuffer(stream, ctx);
3032 break;
3033 default:
3034 ERR("Unknown consumer_data type");
3035 assert(0);
3036 ret = -ENOSYS;
3037 break;
3038 }
3039
3040 pthread_mutex_unlock(&stream->lock);
3041 return ret;
3042}
3043
3044int lttng_consumer_on_recv_stream(struct lttng_consumer_stream *stream)
3045{
3046 switch (consumer_data.type) {
3047 case LTTNG_CONSUMER_KERNEL:
3048 return lttng_kconsumer_on_recv_stream(stream);
3049 case LTTNG_CONSUMER32_UST:
3050 case LTTNG_CONSUMER64_UST:
3051 return lttng_ustconsumer_on_recv_stream(stream);
3052 default:
3053 ERR("Unknown consumer_data type");
3054 assert(0);
3055 return -ENOSYS;
3056 }
3057}
3058
3059/*
3060 * Allocate and set consumer data hash tables.
3061 */
3062int lttng_consumer_init(void)
3063{
3064 consumer_data.channel_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3065 if (!consumer_data.channel_ht) {
3066 goto error;
3067 }
3068
3069 consumer_data.relayd_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3070 if (!consumer_data.relayd_ht) {
3071 goto error;
3072 }
3073
3074 consumer_data.stream_list_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3075 if (!consumer_data.stream_list_ht) {
3076 goto error;
3077 }
3078
3079 consumer_data.stream_per_chan_id_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3080 if (!consumer_data.stream_per_chan_id_ht) {
3081 goto error;
3082 }
3083
3084 data_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3085 if (!data_ht) {
3086 goto error;
3087 }
3088
3089 metadata_ht = lttng_ht_new(0, LTTNG_HT_TYPE_U64);
3090 if (!metadata_ht) {
3091 goto error;
3092 }
3093
3094 return 0;
3095
3096error:
3097 return -1;
3098}
3099
3100/*
3101 * Process the ADD_RELAYD command receive by a consumer.
3102 *
3103 * This will create a relayd socket pair and add it to the relayd hash table.
3104 * The caller MUST acquire a RCU read side lock before calling it.
3105 */
3106int consumer_add_relayd_socket(uint64_t net_seq_idx, int sock_type,
3107 struct lttng_consumer_local_data *ctx, int sock,
3108 struct pollfd *consumer_sockpoll,
3109 struct lttcomm_relayd_sock *relayd_sock, uint64_t sessiond_id)
3110{
3111 int fd = -1, ret = -1, relayd_created = 0;
3112 enum lttcomm_return_code ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3113 struct consumer_relayd_sock_pair *relayd = NULL;
3114
3115 assert(ctx);
3116 assert(relayd_sock);
3117
3118 DBG("Consumer adding relayd socket (idx: %" PRIu64 ")", net_seq_idx);
3119
3120 /* Get relayd reference if exists. */
3121 relayd = consumer_find_relayd(net_seq_idx);
3122 if (relayd == NULL) {
3123 assert(sock_type == LTTNG_STREAM_CONTROL);
3124 /* Not found. Allocate one. */
3125 relayd = consumer_allocate_relayd_sock_pair(net_seq_idx);
3126 if (relayd == NULL) {
3127 ret = -ENOMEM;
3128 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3129 goto error;
3130 } else {
3131 relayd->sessiond_session_id = sessiond_id;
3132 relayd_created = 1;
3133 }
3134
3135 /*
3136 * This code path MUST continue to the consumer send status message to
3137 * we can notify the session daemon and continue our work without
3138 * killing everything.
3139 */
3140 } else {
3141 /*
3142 * relayd key should never be found for control socket.
3143 */
3144 assert(sock_type != LTTNG_STREAM_CONTROL);
3145 }
3146
3147 /* First send a status message before receiving the fds. */
3148 ret = consumer_send_status_msg(sock, LTTCOMM_CONSUMERD_SUCCESS);
3149 if (ret < 0) {
3150 /* Somehow, the session daemon is not responding anymore. */
3151 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3152 goto error_nosignal;
3153 }
3154
3155 /* Poll on consumer socket. */
3156 if (lttng_consumer_poll_socket(consumer_sockpoll) < 0) {
3157 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_POLL_ERROR);
3158 ret = -EINTR;
3159 goto error_nosignal;
3160 }
3161
3162 /* Get relayd socket from session daemon */
3163 ret = lttcomm_recv_fds_unix_sock(sock, &fd, 1);
3164 if (ret != sizeof(fd)) {
3165 ret = -1;
3166 fd = -1; /* Just in case it gets set with an invalid value. */
3167
3168 /*
3169 * Failing to receive FDs might indicate a major problem such as
3170 * reaching a fd limit during the receive where the kernel returns a
3171 * MSG_CTRUNC and fails to cleanup the fd in the queue. Any case, we
3172 * don't take any chances and stop everything.
3173 *
3174 * XXX: Feature request #558 will fix that and avoid this possible
3175 * issue when reaching the fd limit.
3176 */
3177 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_ERROR_RECV_FD);
3178 ret_code = LTTCOMM_CONSUMERD_ERROR_RECV_FD;
3179 goto error;
3180 }
3181
3182 /* Copy socket information and received FD */
3183 switch (sock_type) {
3184 case LTTNG_STREAM_CONTROL:
3185 /* Copy received lttcomm socket */
3186 lttcomm_copy_sock(&relayd->control_sock.sock, &relayd_sock->sock);
3187 ret = lttcomm_create_sock(&relayd->control_sock.sock);
3188 /* Handle create_sock error. */
3189 if (ret < 0) {
3190 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3191 goto error;
3192 }
3193 /*
3194 * Close the socket created internally by
3195 * lttcomm_create_sock, so we can replace it by the one
3196 * received from sessiond.
3197 */
3198 if (close(relayd->control_sock.sock.fd)) {
3199 PERROR("close");
3200 }
3201
3202 /* Assign new file descriptor */
3203 relayd->control_sock.sock.fd = fd;
3204 fd = -1; /* For error path */
3205 /* Assign version values. */
3206 relayd->control_sock.major = relayd_sock->major;
3207 relayd->control_sock.minor = relayd_sock->minor;
3208
3209 /*
3210 * Create a session on the relayd and store the returned id. Lock the
3211 * control socket mutex if the relayd was NOT created before.
3212 */
3213 if (!relayd_created) {
3214 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3215 }
3216 ret = relayd_create_session(&relayd->control_sock,
3217 &relayd->relayd_session_id);
3218 if (!relayd_created) {
3219 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3220 }
3221 if (ret < 0) {
3222 /*
3223 * Close all sockets of a relayd object. It will be freed if it was
3224 * created at the error code path or else it will be garbage
3225 * collect.
3226 */
3227 (void) relayd_close(&relayd->control_sock);
3228 (void) relayd_close(&relayd->data_sock);
3229 ret_code = LTTCOMM_CONSUMERD_RELAYD_FAIL;
3230 goto error;
3231 }
3232
3233 break;
3234 case LTTNG_STREAM_DATA:
3235 /* Copy received lttcomm socket */
3236 lttcomm_copy_sock(&relayd->data_sock.sock, &relayd_sock->sock);
3237 ret = lttcomm_create_sock(&relayd->data_sock.sock);
3238 /* Handle create_sock error. */
3239 if (ret < 0) {
3240 ret_code = LTTCOMM_CONSUMERD_ENOMEM;
3241 goto error;
3242 }
3243 /*
3244 * Close the socket created internally by
3245 * lttcomm_create_sock, so we can replace it by the one
3246 * received from sessiond.
3247 */
3248 if (close(relayd->data_sock.sock.fd)) {
3249 PERROR("close");
3250 }
3251
3252 /* Assign new file descriptor */
3253 relayd->data_sock.sock.fd = fd;
3254 fd = -1; /* for eventual error paths */
3255 /* Assign version values. */
3256 relayd->data_sock.major = relayd_sock->major;
3257 relayd->data_sock.minor = relayd_sock->minor;
3258 break;
3259 default:
3260 ERR("Unknown relayd socket type (%d)", sock_type);
3261 ret = -1;
3262 ret_code = LTTCOMM_CONSUMERD_FATAL;
3263 goto error;
3264 }
3265
3266 DBG("Consumer %s socket created successfully with net idx %" PRIu64 " (fd: %d)",
3267 sock_type == LTTNG_STREAM_CONTROL ? "control" : "data",
3268 relayd->net_seq_idx, fd);
3269
3270 /* We successfully added the socket. Send status back. */
3271 ret = consumer_send_status_msg(sock, ret_code);
3272 if (ret < 0) {
3273 /* Somehow, the session daemon is not responding anymore. */
3274 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3275 goto error_nosignal;
3276 }
3277
3278 /*
3279 * Add relayd socket pair to consumer data hashtable. If object already
3280 * exists or on error, the function gracefully returns.
3281 */
3282 add_relayd(relayd);
3283
3284 /* All good! */
3285 return 0;
3286
3287error:
3288 if (consumer_send_status_msg(sock, ret_code) < 0) {
3289 lttng_consumer_send_error(ctx, LTTCOMM_CONSUMERD_FATAL);
3290 }
3291
3292error_nosignal:
3293 /* Close received socket if valid. */
3294 if (fd >= 0) {
3295 if (close(fd)) {
3296 PERROR("close received socket");
3297 }
3298 }
3299
3300 if (relayd_created) {
3301 free(relayd);
3302 }
3303
3304 return ret;
3305}
3306
3307/*
3308 * Try to lock the stream mutex.
3309 *
3310 * On success, 1 is returned else 0 indicating that the mutex is NOT lock.
3311 */
3312static int stream_try_lock(struct lttng_consumer_stream *stream)
3313{
3314 int ret;
3315
3316 assert(stream);
3317
3318 /*
3319 * Try to lock the stream mutex. On failure, we know that the stream is
3320 * being used else where hence there is data still being extracted.
3321 */
3322 ret = pthread_mutex_trylock(&stream->lock);
3323 if (ret) {
3324 /* For both EBUSY and EINVAL error, the mutex is NOT locked. */
3325 ret = 0;
3326 goto end;
3327 }
3328
3329 ret = 1;
3330
3331end:
3332 return ret;
3333}
3334
3335/*
3336 * Search for a relayd associated to the session id and return the reference.
3337 *
3338 * A rcu read side lock MUST be acquire before calling this function and locked
3339 * until the relayd object is no longer necessary.
3340 */
3341static struct consumer_relayd_sock_pair *find_relayd_by_session_id(uint64_t id)
3342{
3343 struct lttng_ht_iter iter;
3344 struct consumer_relayd_sock_pair *relayd = NULL;
3345
3346 /* Iterate over all relayd since they are indexed by net_seq_idx. */
3347 cds_lfht_for_each_entry(consumer_data.relayd_ht->ht, &iter.iter, relayd,
3348 node.node) {
3349 /*
3350 * Check by sessiond id which is unique here where the relayd session
3351 * id might not be when having multiple relayd.
3352 */
3353 if (relayd->sessiond_session_id == id) {
3354 /* Found the relayd. There can be only one per id. */
3355 goto found;
3356 }
3357 }
3358
3359 return NULL;
3360
3361found:
3362 return relayd;
3363}
3364
3365/*
3366 * Check if for a given session id there is still data needed to be extract
3367 * from the buffers.
3368 *
3369 * Return 1 if data is pending or else 0 meaning ready to be read.
3370 */
3371int consumer_data_pending(uint64_t id)
3372{
3373 int ret;
3374 struct lttng_ht_iter iter;
3375 struct lttng_ht *ht;
3376 struct lttng_consumer_stream *stream;
3377 struct consumer_relayd_sock_pair *relayd = NULL;
3378 int (*data_pending)(struct lttng_consumer_stream *);
3379
3380 DBG("Consumer data pending command on session id %" PRIu64, id);
3381
3382 rcu_read_lock();
3383 pthread_mutex_lock(&consumer_data.lock);
3384
3385 switch (consumer_data.type) {
3386 case LTTNG_CONSUMER_KERNEL:
3387 data_pending = lttng_kconsumer_data_pending;
3388 break;
3389 case LTTNG_CONSUMER32_UST:
3390 case LTTNG_CONSUMER64_UST:
3391 data_pending = lttng_ustconsumer_data_pending;
3392 break;
3393 default:
3394 ERR("Unknown consumer data type");
3395 assert(0);
3396 }
3397
3398 /* Ease our life a bit */
3399 ht = consumer_data.stream_list_ht;
3400
3401 relayd = find_relayd_by_session_id(id);
3402 if (relayd) {
3403 /* Send init command for data pending. */
3404 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3405 ret = relayd_begin_data_pending(&relayd->control_sock,
3406 relayd->relayd_session_id);
3407 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3408 if (ret < 0) {
3409 /* Communication error thus the relayd so no data pending. */
3410 goto data_not_pending;
3411 }
3412 }
3413
3414 cds_lfht_for_each_entry_duplicate(ht->ht,
3415 ht->hash_fct(&id, lttng_ht_seed),
3416 ht->match_fct, &id,
3417 &iter.iter, stream, node_session_id.node) {
3418 /* If this call fails, the stream is being used hence data pending. */
3419 ret = stream_try_lock(stream);
3420 if (!ret) {
3421 goto data_pending;
3422 }
3423
3424 /*
3425 * A removed node from the hash table indicates that the stream has
3426 * been deleted thus having a guarantee that the buffers are closed
3427 * on the consumer side. However, data can still be transmitted
3428 * over the network so don't skip the relayd check.
3429 */
3430 ret = cds_lfht_is_node_deleted(&stream->node.node);
3431 if (!ret) {
3432 /*
3433 * An empty output file is not valid. We need at least one packet
3434 * generated per stream, even if it contains no event, so it
3435 * contains at least one packet header.
3436 */
3437 if (stream->output_written == 0) {
3438 pthread_mutex_unlock(&stream->lock);
3439 goto data_pending;
3440 }
3441 /* Check the stream if there is data in the buffers. */
3442 ret = data_pending(stream);
3443 if (ret == 1) {
3444 pthread_mutex_unlock(&stream->lock);
3445 goto data_pending;
3446 }
3447 }
3448
3449 /* Relayd check */
3450 if (relayd) {
3451 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3452 if (stream->metadata_flag) {
3453 ret = relayd_quiescent_control(&relayd->control_sock,
3454 stream->relayd_stream_id);
3455 } else {
3456 ret = relayd_data_pending(&relayd->control_sock,
3457 stream->relayd_stream_id,
3458 stream->next_net_seq_num - 1);
3459 }
3460 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3461 if (ret == 1) {
3462 pthread_mutex_unlock(&stream->lock);
3463 goto data_pending;
3464 }
3465 }
3466 pthread_mutex_unlock(&stream->lock);
3467 }
3468
3469 if (relayd) {
3470 unsigned int is_data_inflight = 0;
3471
3472 /* Send init command for data pending. */
3473 pthread_mutex_lock(&relayd->ctrl_sock_mutex);
3474 ret = relayd_end_data_pending(&relayd->control_sock,
3475 relayd->relayd_session_id, &is_data_inflight);
3476 pthread_mutex_unlock(&relayd->ctrl_sock_mutex);
3477 if (ret < 0) {
3478 goto data_not_pending;
3479 }
3480 if (is_data_inflight) {
3481 goto data_pending;
3482 }
3483 }
3484
3485 /*
3486 * Finding _no_ node in the hash table and no inflight data means that the
3487 * stream(s) have been removed thus data is guaranteed to be available for
3488 * analysis from the trace files.
3489 */
3490
3491data_not_pending:
3492 /* Data is available to be read by a viewer. */
3493 pthread_mutex_unlock(&consumer_data.lock);
3494 rcu_read_unlock();
3495 return 0;
3496
3497data_pending:
3498 /* Data is still being extracted from buffers. */
3499 pthread_mutex_unlock(&consumer_data.lock);
3500 rcu_read_unlock();
3501 return 1;
3502}
3503
3504/*
3505 * Send a ret code status message to the sessiond daemon.
3506 *
3507 * Return the sendmsg() return value.
3508 */
3509int consumer_send_status_msg(int sock, int ret_code)
3510{
3511 struct lttcomm_consumer_status_msg msg;
3512
3513 msg.ret_code = ret_code;
3514
3515 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3516}
3517
3518/*
3519 * Send a channel status message to the sessiond daemon.
3520 *
3521 * Return the sendmsg() return value.
3522 */
3523int consumer_send_status_channel(int sock,
3524 struct lttng_consumer_channel *channel)
3525{
3526 struct lttcomm_consumer_status_channel msg;
3527
3528 assert(sock >= 0);
3529
3530 if (!channel) {
3531 msg.ret_code = LTTCOMM_CONSUMERD_CHANNEL_FAIL;
3532 } else {
3533 msg.ret_code = LTTCOMM_CONSUMERD_SUCCESS;
3534 msg.key = channel->key;
3535 msg.stream_count = channel->streams.count;
3536 }
3537
3538 return lttcomm_send_unix_sock(sock, &msg, sizeof(msg));
3539}
3540
3541/*
3542 * Using a maximum stream size with the produced and consumed position of a
3543 * stream, computes the new consumed position to be as close as possible to the
3544 * maximum possible stream size.
3545 *
3546 * If maximum stream size is lower than the possible buffer size (produced -
3547 * consumed), the consumed_pos given is returned untouched else the new value
3548 * is returned.
3549 */
3550unsigned long consumer_get_consumed_maxsize(unsigned long consumed_pos,
3551 unsigned long produced_pos, uint64_t max_stream_size)
3552{
3553 if (max_stream_size && max_stream_size < (produced_pos - consumed_pos)) {
3554 /* Offset from the produced position to get the latest buffers. */
3555 return produced_pos - max_stream_size;
3556 }
3557
3558 return consumed_pos;
3559}
This page took 0.035897 seconds and 4 git commands to generate.