Update ooo isched test
[urcu.git] / formal-model / ooomem-two-writes / mem.spin
CommitLineData
03c9e0f3 1/*
27afafe2
MD
2 * mem.spin: Promela code to validate memory barriers with out-of-order memory
3 * and out-of-order instruction scheduling.
4 *
5 * Algorithm verified :
6 *
7 * alpha = 0;
8 * beta = 0;
8e9a6153
MD
9 * x = 2;
10 * y = 2;
27afafe2
MD
11 *
12 * Process A Process B
13 * alpha = 1; beta = 1;
b245dd5c 14 * mb(); mb();
27afafe2
MD
15 * x = beta; y = alpha;
16 *
8e9a6153
MD
17 * if x = 0, then y != 0
18 * if y = 0, then x != 0
03c9e0f3
MD
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
33 *
34 * Copyright (c) 2009 Mathieu Desnoyers
35 */
36
37/* Promela validation variables. */
38
39/*
dfa8abef
MD
40 * Produced process control and data flow. Updated after each instruction to
41 * show which variables are ready. Using one-hot bit encoding per variable to
42 * save state space. Used as triggers to execute the instructions having those
43 * variables as input. Leaving bits active to inhibit instruction execution.
44 * Scheme used to make instruction disabling and automatic dependency fall-back
45 * automatic.
03c9e0f3
MD
46 */
47
dfa8abef
MD
48#define CONSUME_TOKENS(state, bits, notbits) \
49 ((!(state & (notbits))) && (state & (bits)) == (bits))
03c9e0f3 50
dfa8abef
MD
51#define PRODUCE_TOKENS(state, bits) \
52 state = state | (bits);
03c9e0f3 53
dfa8abef
MD
54#define CLEAR_TOKENS(state, bits) \
55 state = state & ~(bits)
03c9e0f3 56
03c9e0f3
MD
57#define NR_PROCS 2
58
59#define get_pid() (_pid)
60
61/*
62 * Each process have its own data in cache. Caches are randomly updated.
63 * smp_wmb and smp_rmb forces cache updates (write and read), wmb_mb forces
64 * both.
65 */
66
67#define DECLARE_CACHED_VAR(type, x, v) \
68 type mem_##x = v; \
69 type cached_##x[NR_PROCS] = v; \
70 bit cache_dirty_##x[NR_PROCS] = 0;
71
72#define IS_CACHE_DIRTY(x, id) (cache_dirty_##x[id])
73
74#define READ_CACHED_VAR(x) \
75 (cached_##x[get_pid()])
76
77#define WRITE_CACHED_VAR(x, v) \
78 atomic { \
79 cached_##x[get_pid()] = v; \
80 cache_dirty_##x[get_pid()] = 1; \
81 }
82
83#define CACHE_WRITE_TO_MEM(x, id) \
84 if \
85 :: IS_CACHE_DIRTY(x, id) -> \
86 mem_##x = cached_##x[id]; \
87 cache_dirty_##x[id] = 0; \
88 :: else -> \
89 skip \
90 fi;
91
92#define CACHE_READ_FROM_MEM(x, id) \
93 if \
94 :: !IS_CACHE_DIRTY(x, id) -> \
95 cached_##x[id] = mem_##x; \
96 :: else -> \
97 skip \
98 fi;
99
100/*
101 * May update other caches if cache is dirty, or not.
102 */
103#define RANDOM_CACHE_WRITE_TO_MEM(x, id) \
104 if \
105 :: 1 -> CACHE_WRITE_TO_MEM(x, id); \
106 :: 1 -> skip \
107 fi;
108
109#define RANDOM_CACHE_READ_FROM_MEM(x, id)\
110 if \
111 :: 1 -> CACHE_READ_FROM_MEM(x, id); \
112 :: 1 -> skip \
113 fi;
114
115inline ooo_mem()
116{
117 atomic {
118 RANDOM_CACHE_WRITE_TO_MEM(alpha, get_pid());
119 RANDOM_CACHE_WRITE_TO_MEM(beta, get_pid());
120 RANDOM_CACHE_READ_FROM_MEM(alpha, get_pid());
121 RANDOM_CACHE_READ_FROM_MEM(beta, get_pid());
122 }
123}
124
125/* must consume all prior read tokens */
126inline smp_rmb()
127{
128 atomic {
129 /* todo : consume all read tokens .. ? */
130 CACHE_READ_FROM_MEM(alpha, get_pid());
131 CACHE_READ_FROM_MEM(beta, get_pid());
132 }
133}
134
135/* must consume all prior write tokens */
136inline smp_wmb()
137{
138 atomic {
139 CACHE_WRITE_TO_MEM(alpha, get_pid());
140 CACHE_WRITE_TO_MEM(beta, get_pid());
141 }
142}
143
144/* sync_core() must consume all prior read and write tokens, including rmb/wmb
145 * tokens */
146
147/* must consume all prior read and write tokens */
148inline smp_mb()
149{
150 atomic {
151 smp_wmb();
152 /* sync_core() */
153 smp_rmb();
154 }
155}
156
157/* Keep in sync manually with smp_rmb, wmp_wmb and ooo_mem */
158DECLARE_CACHED_VAR(byte, alpha, 0);
159DECLARE_CACHED_VAR(byte, beta, 0);
160
161/* value 2 is uninitialized */
162byte read_one = 2;
163byte read_two = 2;
164
3db2d75b
MD
165/*
166 * Bit encoding, proc_one_produced :
167 */
168
169#define P1_PROD_NONE (1 << 0)
170
171#define P1_WRITE (1 << 1)
172#define P1_WMB (1 << 2)
173#define P1_SYNC_CORE (1 << 3)
174#define P1_RMB (1 << 4)
175#define P1_READ (1 << 5)
176
177int proc_one_produced;
178
03c9e0f3
MD
179active proctype test_proc_one()
180{
181 assert(get_pid() < NR_PROCS);
182
183 PRODUCE_TOKENS(proc_one_produced, P1_PROD_NONE);
184
185#ifdef NO_WMB
186 PRODUCE_TOKENS(proc_one_produced, P1_WMB);
187#endif
188#ifdef NO_RMB
189 PRODUCE_TOKENS(proc_one_produced, P1_RMB);
190#endif
4b8839f1
MD
191#ifdef NO_SYNC
192 PRODUCE_TOKENS(proc_one_produced, P1_SYNC_CORE);
193#endif
03c9e0f3
MD
194
195 do
196 :: CONSUME_TOKENS(proc_one_produced, P1_PROD_NONE, P1_WRITE) ->
197 ooo_mem();
198 WRITE_CACHED_VAR(alpha, 1);
199 ooo_mem();
200 PRODUCE_TOKENS(proc_one_produced, P1_WRITE);
201 :: CONSUME_TOKENS(proc_one_produced, P1_WRITE, P1_WMB) ->
202 smp_wmb();
203 PRODUCE_TOKENS(proc_one_produced, P1_WMB);
204 :: CONSUME_TOKENS(proc_one_produced, P1_WRITE | P1_WMB, P1_SYNC_CORE) ->
205 /* sync_core(); */
206 PRODUCE_TOKENS(proc_one_produced, P1_SYNC_CORE);
207 :: CONSUME_TOKENS(proc_one_produced, P1_SYNC_CORE, P1_RMB) ->
208 smp_rmb();
209 PRODUCE_TOKENS(proc_one_produced, P1_RMB);
210 :: CONSUME_TOKENS(proc_one_produced, P1_RMB | P1_SYNC_CORE, P1_READ) ->
211 ooo_mem();
212 read_one = READ_CACHED_VAR(beta);
213 ooo_mem();
214 PRODUCE_TOKENS(proc_one_produced, P1_READ);
215 :: CONSUME_TOKENS(proc_one_produced, P1_PROD_NONE | P1_WRITE
216 | P1_WMB | P1_SYNC_CORE | P1_RMB | P1_READ, 0) ->
217 break;
218 od;
219
220 //CLEAR_TOKENS(proc_one_produced,
221 // P1_PROD_NONE | P1_WRITE | P1_WMB | P1_SYNC_CORE | P1_RMB |
222 // P2_READ);
223
224 // test : [] (read_one == 0 -> read_two != 0)
225 // test : [] (read_two == 0 -> read_one != 0)
226 assert(!(read_one == 0 && read_two == 0));
227}
228
3db2d75b
MD
229
230/*
231 * Bit encoding, proc_two_produced :
232 */
233
234#define P2_PROD_NONE (1 << 0)
235
236#define P2_WRITE (1 << 1)
237#define P2_WMB (1 << 2)
238#define P2_SYNC_CORE (1 << 3)
239#define P2_RMB (1 << 4)
240#define P2_READ (1 << 5)
241
242int proc_two_produced;
243
03c9e0f3
MD
244active proctype test_proc_two()
245{
246 assert(get_pid() < NR_PROCS);
247
248 PRODUCE_TOKENS(proc_two_produced, P2_PROD_NONE);
249
250#ifdef NO_WMB
251 PRODUCE_TOKENS(proc_two_produced, P2_WMB);
252#endif
253#ifdef NO_RMB
254 PRODUCE_TOKENS(proc_two_produced, P2_RMB);
255#endif
4b8839f1
MD
256#ifdef NO_SYNC
257 PRODUCE_TOKENS(proc_two_produced, P2_SYNC_CORE);
258#endif
03c9e0f3
MD
259
260 do
261 :: CONSUME_TOKENS(proc_two_produced, P2_PROD_NONE, P2_WRITE) ->
262 ooo_mem();
263 WRITE_CACHED_VAR(beta, 1);
264 ooo_mem();
265 PRODUCE_TOKENS(proc_two_produced, P2_WRITE);
266 :: CONSUME_TOKENS(proc_two_produced, P2_WRITE, P2_WMB) ->
267 smp_wmb();
268 PRODUCE_TOKENS(proc_two_produced, P2_WMB);
269 :: CONSUME_TOKENS(proc_two_produced, P2_WRITE | P2_WMB, P2_SYNC_CORE) ->
270 /* sync_core(); */
271 PRODUCE_TOKENS(proc_two_produced, P2_SYNC_CORE);
272 :: CONSUME_TOKENS(proc_two_produced, P2_SYNC_CORE, P2_RMB) ->
273 smp_rmb();
274 PRODUCE_TOKENS(proc_two_produced, P2_RMB);
275 :: CONSUME_TOKENS(proc_two_produced, P2_SYNC_CORE | P2_RMB, P2_READ) ->
276 ooo_mem();
277 read_two = READ_CACHED_VAR(alpha);
278 ooo_mem();
279 PRODUCE_TOKENS(proc_two_produced, P2_READ);
280 :: CONSUME_TOKENS(proc_two_produced, P2_PROD_NONE | P2_WRITE
281 | P2_WMB | P2_SYNC_CORE | P2_RMB | P2_READ, 0) ->
282 break;
283 od;
284
285 //CLEAR_TOKENS(proc_two_produced,
286 // P2_PROD_NONE | P2_WRITE | P2_WMB | P2_SYNC_CORE | P2_RMB |
287 // P2_READ);
288
289 // test : [] (read_one == 0 -> read_two != 0)
290 // test : [] (read_two == 0 -> read_one != 0)
291 assert(!(read_one == 0 && read_two == 0));
292}
This page took 0.033436 seconds and 4 git commands to generate.